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Abstract 
Modern supply chains, especially in the automotive industry, are prone to events that endanger their ability to 
deliver products on time. Comprehensive real-time tracking and tracing systems (e.g. RFID-based) can help in 
making them more robust by identifying events and enabling early responses that are capable of mitigating 
adverse effects. However, these systems are rarely realized and read points only placed in a few default 
locations (e.g. receiving and shipping) without further considerations. In this contribution weighted linear 
optimization models are used to assess the effect of including process characteristics such as variability and 
cycle times in this decision problem. Using an intuitive simulation setup in which the degree of transparency 
and system sensitivity are varied, the results indicate that locating read points in sensible places along a 
process rather than by chance can reduce false alarms by 31% while raising successful identifications by 2%.  
 
Keywords: Supply chain event management, multi-criteria decision making, weighted linear optimization, RFID 

 

1 INTRODUCTION 
Globalization and lean production make supply chains 
(SC) increasingly complex and efficient but also prone to 
events (i.e. occurrences of different severity that certain 
SC actors regard as significant). One explanation for the 
instability of modern SC can be drawn from the Normal 
Accident Theory [1], which states that in complex, tightly 
coupled technological systems accidents (i.e. events of 
high severity) become inevitable. Similarly, an enlarged 
supply network and reduced time and stock buffers give 
rise to more uncertainty factors from which events result. 
As noted in [2], events are associated with a probability of 
occurrence and a severity of the resulting effects. They 
can manifest themselves in three forms of increasing 
severity: deviations, disruptions, and catastrophes [3]. In 
SC, deviations from target dates and with that the 
variability of order cycle times (CT) can partly be attributed 
to the severity of certain types of events (Figure 1).  

 

 

Figure 1: Variability of order cycle times (CT)  

 
To address events, preventive and reactive measures 
exist [4]. The former aims at minimizing the probability of 
events, while the latter focuses on handling their effects. 
Now, [1] argued that ‘redundancies and safety systems 
are the biggest single source of catastrophic failure in 
complex, tightly coupled systems.’ This statement implies 
and reality shows that preventive measures cannot 
exclude the possibility of events and thus, establishes a 
need for systems that address events and their effects 
once they unfold. One such system, supply chain event 
management (SCEM), aims at early, automated event 
recognition and communication to minimize the delay until 
the initialization of a reaction to ease their effects [4].  
To realize this vision, events need to be identifiable along 
the SC, as long as effects are still small and scope for 
intervention still large. This makes SC transparency a 
critical success factor and real-time monitoring systems 
(e.g. RFID-based) a prerequisite for effective SCEM. For 

various reasons (e.g. data ownership, financial return, etc. 
[5]) these systems are rarely realized within companies 
and even less among SC partners. Also, read points are 
frequently limited to prominent processes (e.g. receiving 
and shipping). As observed in [6], the sparse 
implementation of information capture technologies is 
partly due to the difficulty associated with the quantification 
of their value and the extent of their benefits. However, on 
a sample of 519 publicly announced SC glitches, [7] found 
that shareholder value showed an abnormal decrease of 
10.82%. Through early detection, monitoring systems can 
help in coping with some effects of SC glitches. 
Although desirable, continuous SC monitoring is rarely 
technically and economically realizable. Thus, locations for 
suitable read points have to be identified. However, not all 
points along SC allow for equally important observances of 
critical effects on order CT as e.g. tasks performed before 
each possible point differ widely. These differences allow 
for the identification of a subset of read points that should 
be most sensible to monitor. This decision problem of a 
structured selection of read points and the assessment of 
the effectiveness of the choice is largely missing in the 
academic literature and therefore, represents the focus of 
this contribution. The research questions are as follows: 
● Which points from a given set are most critical to 

monitor (i.e. where can it be expected to observe 
critical deviations from the order CT)? 

● How does a structured selection of read points 
perform in a simulation setup against a set of points 
that was selected by chance? 

To answer both questions, a serial process that is subject 
to minor, time-related events is assumed. The focus is put 
on deviations (Figure 1) because, in comparison to the 
other two categories, they are more frequent and subtle. 
Now, within this process, order progression can be 
monitored in intervals that can be separated by read 
points. By combining several criteria using weighted linear 
optimization models, the objective is to select a set of 
points that enables identification of critical deviations while 
minimizing false alarms. The performance of the models is 
compared against a benchmark model and through the 
usage of a static CT threshold above which a deviation is 
considered to be critical. In summary, this simulation study 
aims at effective identification of critical CT deviations by 
monitoring a sensible set of points that were selected in a 
structured way using weighted linear optimization models.  
The study illustrates the effects of a structured approach to 
selecting the most appropriate monitoring points along a 



process. Furthermore, the impact of different levels of 
process transparency and system sensitivity on the 
performance of the approach are illustrated. 
The remainder of the paper is structured as follows: 
Section 2 presents a literature review of possible models, 
including their respective advantages and disadvantages. 
In Section 3, details of the selected models and the 
employed criteria are presented. This is followed in 
Section 4 by an introduction to the simulation setup, its 
parameters and performance measures. The findings are 
summarized in Section 5. The last section is dedicated to 
some concluding remarks and next steps of research.  
 

2 LITERATURE REVIEW 
As stated earlier, the intention is to identify the most 
important read points among a certain selection, using 
their shared characteristics. Therefore, the literature 
review focuses on models that i) result in a single scalar 
measure, ii) are automatable and iii) intuitive. First, they 
need to be capable of combining several criteria (i.e. 
characteristics) of a single point into one measure of 
criticality. Second, they should be automatable as far as 
possible and third, they should be intuitive insofar that their 
application appeals to practitioners.  
Among others, multi-criteria decision models (MCDM) are 
appropriate tools for this task because they assists ‘a 
single decision maker to choose, rank, or sort alternatives 
within a finite set according to two or more criteria.’ [8] 
Recently it has undergone a rapid development with the 
application of several techniques to different problem 
areas; especially due to the popularity of artificial 
intelligence (AI) approaches [9]. The review focuses on 
methods used in inventory management as classifications 
of parts are a prime application area (e.g. [10, 11, 12]).  
The first proposal in this regard, was a joint criteria matrix 
that combines two criteria [10]. Rather than resulting in a 
single scalar, the scheme places items in one of nine 
categories. A weighted or mechanical procedure then 
reclassifies them. Although intuitive, there is no obvious 
way of extending the methodology to more criteria.  
The analytic hierarchy process (AHP) has also been 
applied to the problem [13]. Although the AHP is capable 
of combining many different criteria, it requires substantial 
subjective input from the decision maker for the preference 
matrices. The consistency index helps to judge the 
consistency of the user’s preferences [14] but the AHP 
cannot be automated.  
AI-based approaches have been applied to the problem. 
For instance, [15] used backpropagation (BP) and learning 
methods to develop an artificial neural network for 
inventory classification. More recently, [11] benchmarked 
AI-based classification techniques (support vector 
machines (SVMs), BP networks, and the k-nearest 
neighbor (k-NN) algorithm) against multiple discriminant 
analysis (e.g. AHP). They found that SVM enables more 
accurate classification than other AI-based techniques. 
However, their application is not as straightforward as that 
of methods based on multiple discriminant analysis.  
[12] proposed a linear optimization model with an ordering 
constraint that allows decision makers to rank criteria 
according to their importance rather than specifying a 
precise degree (e.g. AHP). To avoid the usage of a linear 
optimizer, the model was simplified to be spreadsheet 
implementable. [16] extended the model such that it 
maintains the effects of the weights in the final solution. 
[17] also proposed a weighted linear optimization model 
(R-model) that is similar to a class of linear programming 
models used in data envelopment analysis (DEA). The R-
model enables each item to select its own weights for 
estimating its score. However, despite this advantage the 

R-model could lead to a situation where an item with a 
high value in an unimportant criterion is inappropriately 
classified [18]. Also, it allows for several items to have the 
aggregated score of 1, making further distinction 
impossible. Consequently, [18] proposed a revised model. 
Both models have the advantages that they are intuitive 
and, due to items selecting their own weights, can be fully 
automated. Since the models proposed in [17], and its 
extensions in [18], fulfill all of the requirements stated at 
the beginning of this section they are chosen for 
addressing the decision problem presented in this study.  
 

3 STRUCTURED READ POINT SELECTION 
This section introduces the basic problem formulation. 
This is followed by the presentation of the weighted linear 
optimization models that will be employed in the 
simulation. The section concludes with an introduction to 
the criteria and the reasoning behind their choice.  

3.1 Problem formulation 
Figure 2 shows that a generic, serial process is examined. 
It can be divided into M intervals of different, average cycle 
time CTm and with each being subject to low variability 
(LV). As pointed out in [3], LV is the result of events that 
could delay or advance the arrival at a read point such as 
waiting time, set-up times, equipment failure, random 
noise, etc. Also, [19] stated that ‘it is a characteristic of 
most LV processes to have a bell-shaped probability 
density.’ Thus, for simplification purposes it is assumed 
that processing time during each interval is normally 
distributed with mean µm (= CTm) and standard deviation 
σm – the latter leading to (critical) deviations in processing 
time due to their possible accumulation over time. 
 

 

Figure 2: Problem setup 

 
The M intervals are separated through M+1 possible read 
points (rm). The scheduled target date is CTP, i.e. the time 
it takes on average to complete the process. Given this 
setup, the decision maker faces the constraint that not all 
possible read points rm can be monitored. Thus, the most 
critical points within the process have to be selected. 

3.2 Weighted linear models 
In order to be able to choose the most important read 
points, each has to be evaluated in terms of N criteria 
(Table 1). The criterion score of the mth point in terms of 
the nth criteria is denoted as ymn. Furthermore, all criteria 
are assumed to be positively related to the criticality level 
so they can be aggregated into a single score; the 
individual criticality cm.  

 

Table 1: Nomenclature 

Read point Criterion (n=1…N) Criticality 

m 1 2 … N cm 

1 y11 y12 … y1N c1 

2 y21 y22 … y2N c2 

… … … … … … 

M yM1 yM2 … yMN cM 
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The R-model [17] is expressed as follows:  
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With the objective to maximize the criticality of a specific 
read point cm, this optimization problem tries to select the 
highest possible values for the decision variables (i.e. the 
weights wmn). These are limited by the constraint that the 
weighted sum, computed using the same set of weights, 
for all read points (i=1,…,M) must be less than or equal to 
1. Thus, if another read point has the combined value of 1, 
using the chosen set of weights wmn in conjunction with its 
own specific scores yin, the criticality value cm of the point 
under concern cannot be raised further. In this way, each 
point tries to select the most favorable weights wmn for its 
criterion scores ymn to achieve the highest possible cm. 

If, due to this model, a read point has the highest score 
ymn for one criterion (i.e. dominating all other yin), it would 
always receive a high cm regardless of its values for other 
criteria. To avoid this drawback [18] revisited the issue and 
proposed an alternative approach. While the R-model 
helps in selecting weights which are most favorable, the Z-
model does the exact opposite and is defined as follows:  
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Thus, the R- and Z-model represent two extreme, opposite 
cases which enabled [18] to propose a composite index. It 
combines the indexes of the models through the 
introduction of a control parameter λ (with 0≤λ≤1) that may 
reflect the preferences of the decision maker. In the two 
extreme cases (λ=0 and λ=1), the normalized scores of the 
original models are obtained. If a decision maker is neutral 
about the indices, λ can be set to 0.5. This composite 
index allows for further distinction between the models:  
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3.3 Criteria  
To apply the models, it is necessary to define the N criteria 
that are used to calculate the criticality cm of each point.  
They can be selected from several dimensions (e.g. time, 
quality, reliability, costs, etc.). However, two constraints 
have to be considered. First, the selection of criteria is 
limited to those that are quantifiable. Second, criteria 
should be positively related, meaning a higher score 
indicates a higher criticality. For inversely related criteria 
[17] suggests to simply take the reciprocals of the scores.  

Given the problem formulation of Section 3.1, time-related 
criteria are used. They are easy to determine and other 
criteria (e.g. quality issues) can be directly traced back to 
time-related effects (i.e. order has to be reworked). Thus, 
three guidelines for the criteria selection are formulated: 

• ‘Target Date’: Read points closer to the target date 
are of greater importance than those further away.  

• ‘Visibility Gap’: The longer preceding and succeeding 
intervals the higher the importance of a read point. 

• ‘Process Stability’: More stable processes are of less 
importance than those that display a higher variability.   

Target date 

Read points further from the target date are less important 
than those closer to it. First, there is still time for an order 
to compensate its deviation without intervention. Also, it 
only becomes more certain towards the target date that a 
deviation is indeed ‘critical’. Second, sensitive reactions to 
deviations in early stages of a process increase the 
amount of (suspected) events. Early monitoring and 
identification is desirable but given the principle of 
‘management by exception’ [20], decision makers would 
find it difficult to handle a lot of suspected events. Also, the 
frequent revision of the original schedule would result in a 
nervous system. Third, time and scope for intervention are 
becoming limited as the target date approaches. In 
summary, the selection of read points should strike a 
balance between the ability of identifying critical deviations 
‘as early as possible and as late as necessary.’  
The first criterion is the amount of remaining read points. It 
is inversely related to the criticality because the more 
future chances of intervention, the less critical are process 
deviations at this particular point in the process. In short, 
the process might still be able to correct itself so that 
intervention can be postponed. The second criterion is the 
remaining processing time from the monitoring point under 
concern to the target date and is also inversely related to 
criticality. Points closer to the target date are more critical 
as the available scope for speeding up or slowing down 
becomes increasingly limited. The two criteria are 
important because at a certain point a process might still 
be long but without further monitoring chances. If the 
remaining time were the only indicator, the importance of 
the monitoring point would be underestimated.  

Visibility gap 

If a process is not monitored, uncertainty about the state of 
an order increases with time. The “visibility gap” is 
expressed as the sum of the average CT of the two 
intervals that follow and precede one possible read point. 
The larger the gap, the more critical is the respective point. 

Process stability 

Process intervals are not equally susceptible towards 
deviations. For instance, the likelihood of events with more 
serious effects is higher for just-in-sequence deliveries 
than for storage processes. Variability is one indicator of 
the potential magnitude of deviations that are possible 
during an interval. It can be expressed in different forms 
but is most commonly expressed through the (squared) 
coefficient of variation (CV); defined as the standard 
deviation of an interval m divided by its mean [19].  

According to [19], processes display low variability (LV; i.e. 
deviations) in the case of CV<0.75. However, since the CV 
measure normalizes variability across intervals, the same 
CV for two intervals might represent two very different 
standard deviations σm. Since it indicates that an interval 
might have a severe impact on the ability of the order to 
make the target date, σm (rather than the CV) of the 
preceding interval will be used as an indicator of the 
importance of the following read point.  



Summary 

Depending on the requirements of the decision maker or 
the process, the composition of the final scores cm can be 
easily adapted by adding or removing criteria. The four 
criteria that will be employed in the simulation study for 
ranking a read point rm are summarized in Figure 3. 

 

 

Figure 3: Employed criteria for read point ranking  

 

4 SIMULATION SETUP 
This section first addresses simulation related details, 
followed by an introduction to the performance indicators. 

4.1 Simulation related details 
As presented in Section 3.2, it is the intention to evalute 
the read point selections of three control parameters (λ=0, 
0.5, 1) against a random selection of points. Figure 4 
shows a schematic representation of the simulation 
procedure. First, the constants were defined. A process 
setup with 25 intervals (i.e. 26 possible read points) and a 
combined length of 5000 time units was employed.  

 

 

Figure 4: Schematic simulation procedure 

 
Next (step 2), the 25 intervals were assigned random, 
average CT lengths (with a combined length of 5000 time 
units) and CV values in the range of 0.05 and 0.5, i.e. well 
within the range suggested in [19] for LV processes. The 
CV value was then used to infer the standard deviation. 
Then the variables were selected (step 3). The degree of 
process transparency is defined by the size of the selected 
subset of read points that are used for monitoring 
purposes. The subsets contained 4, 6, and 8 points. The 
system sensitivity, the second variable, is a factor v that is 
added and subtracted from the average, cumulated CT at 
point rm (Equation 4). Thus, as long as the individual order 
CTi at the respective point CTm

i does not cross either 
threshold its current deviation is considered uncritical. The 
factor was chosen to be 0.1, 0.15, and 0.2.  

( ) ( )
1 1 1

1 1
m m m

i

m m m

m m m
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Afterwards (step 4) the read points were ranked according 
to the models and criteria presented in sections 3.2 and 
3.3 respectively. Depending on the degree of transparency 
the most critical ones were then selected for order 
progress monitoring. Following this, CT for 5000 orders 
were simulated and deviations recorded. The procedure 
(steps 5 and 6) was repeated ten times (s in Figure 4) to 
be able to identify the model that, on average, performed 
best for the specific configuration of assigned interval 
lengths, variability values and system variables. After 
these simulations a new configuration with random interval 
lengths (step 2) was generated and the aforementioned 
procedure repeated.     

4.2 Model evaluation 
The evaluation was based on the hit and miss rates, i.e. 
the effectiveness of a model in selecting a set of points 
that are superior in identifying critical deviations while 
minimizing false alarms. They are calculated as follows 
(Figure 5): At the chosen monitoring point (rm), a critical 
deviation of the order can be identified (y1) or not (n1). 
Then the same order can exhibit a critical (y2) or uncritical 
deviation (n2) at the end of the process (rM). 

 

 

Figure 5: Classification of order cycle times 

 
The hit rate (HR) is then defined as the ratio of orders that 
were correctly identified as exhibiting a critical deviation 
divided by the total amount of orders that showed a critical 
deviation at the end of the process (i.e. rM). The larger the 
HR for a model the more effective was the selection. Using 
the notation of Figure 5, it is defined as follows: 

1 2

1 2 1 2

1

y y
e

y y n y
=

+
 (5) 

The miss rate (MR) is defined as the ratio of orders that 
were wrongly identified as critical at rm divided by the total 
amount of orders that arrived on time at rM, i.e. within the 
given CT window (Equation 4).  In short, these orders were 
considered critical at the respective monitoring point but 
compensated for their deviation over the remainder of the 
process. A large MR shows that a given selection of read 
points produced more false alarms. Using the notation of 
Figure 5 again, it is defined as follows: 

1 2

1 2 1 2

2
y n

e
y n n n

=
+

 (6) 

 

5 CONCEPT ILLUSTRATION AND EVALUATION 
This section first discusses detailed results for one interval 
configuration before presenting the general evaluation of 
the models across several configurations.  
Figure 6 shows the criticality values across one set of  
read points. Since these are normalized scores they can 
be used to rank the points and to identify a subset of the 
most important ones. Those can be used for monitoring 
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purposes in the simulation. It is apparent that the different 
models result in different subsets and thus, it can be 
expected that the resulting accuracy in identifying critical 
deviations will vary. The coming paragraphs address the 
findings of the effects of transparency and system 
sensitivity before presenting the general effectiveness of 
the read point selection procedure employed in this study.  
 

 

Figure 6: Criticality of read points 

 
Figure 7 illustrates the effect of holding the CT threshold 
fixed while increasing the degree of transparency, which 
can be equated with increasing the possibility of early 
detection of critical deviations. It can be observed that 
more read points (RP) lead to a higher HR for the 
weighted linear models. However, while the increase from 
4 to 6 read points results in gains in the HR and relatively 
minor changes in the MR, the opposite occurs when the 
degree of transparency is raised from 6 to 8 read points. In 
this case the increases in the MR are disproportional to 
gains in the HR. This indicates that enlarging the subset 
with points that are not very critical decreases the 
effectiveness of the approach as more uncritical deviations 
are falsely identified as important. The random read point 
selection shows no apparent pattern and, due to very high 
MR, exhibits the worst performance. 

 

 

Figure 7: The effect of transparency 

 
Similar observations can be made for changing the system 
sensitivity while keeping the degree of transparency fixed. 
Figure 8 illustrates that lower thresholds lead to increases 
in the HR as well as the MR. This illustrates the trade-off 
between the robustness and sensitivity of a monitoring 
system. The more sensitive a system reacts to deviations, 
regardless of where the monitoring points are located, the 
more suspected events are raised, although they really 
were uncritical. Again, the random selection behaves 
counter-intuitive and exhibits the worst performance. 
 

 

Figure 8: The effect of system sensitivity 

 
While the effects of transparency and sensitivity are 
straightforward, the determination of the most effective 
model is somewhat more difficult. Figure 9 displays the 
best-performing models for a given parameter 
configuration. Arguably, it should be the objective to 
choose the system parameters in such a way that a high 
HR is combined with a low MR. Using this argument, the 
overall superior model should have the least distance to 
the lower right corner. Using the Pythagorean theorem it 
can be calculated that the parameter configuration 
RP6_CT20 and the R-model (�=1) is on average the best-
performing combination as it has the smallest distance to 
the lower right corner. However, this result accounts for a 
decision maker with the intention of identifying only the 
most severe deviations. A more careful decision maker 
would decide for the combination of RP4_CT10 (�=0.5), 
which is the best-performing model for a low threshold. 
However, since only four points are monitored in this case, 
deviations are detected rather late in the process.  
 

 

Figure 9: Parameter configurations and superior models 

 
Table 2 compares the average performance of the best 
weighted linear model (WLM) against the naïve (random) 
selection across all parameter configurations (i.e. 
sensitivity and degree of transparency) for eight 
configurations of different interval lengths and variability 
values. It shows that the structured selection of read points 
is generally superior to the naïve selection. Using the 
simulation setup, the structured read point selection raised 
over eight configurations the hit rate on average by 2% 
while reducing the miss rate by 31%. Both approaches 
successfully identify critical deviations well. However, there 
are substantial differences for deviations that were wrongly 
identified as being critical. This is partly due to the fact that 
the WLM approach selects read points for monitoring that 
are closer to the end of the process, where there is 
increased certainty about the criticality of a deviation.  
 



Table 2 : Performance comparison of the read point 
selection approaches (naive and weighted linear model)   

# Hit rate Miss rate 
  Naive WLM ∆ Naive WLM ∆ 
1 96,0% 96,2% -0,2% 60,6% 18,5% 42,1% 
2 97,4% 98,1% -0,8% 54,0% 14,7% 39,4% 
3 93,5% 99,0% -5,6% 41,4% 16,9% 24,5% 
4 97,6% 98,9% -1,3% 33,0% 12,6% 20,5% 
5 91,6% 96,9% -5,3% 47,0% 38,6% 8,4% 
6 92,1% 100,0% -7,9% 44,9% 10,9% 34,0% 
7 95,1% 93,0% 2,1% 62,9% 12,1% 50,8% 
8 91,9% 88,7% 3,1% 51,3% 23,1% 28,2% 

Ø 94,4% 96,4% -2,0% 49,4% 18,4% 31,0% 

 

6 CONCLUDING REMARKS AND NEXT STEPS 
Complex and efficient supply chains and production 
processes, especially those in the automotive industry, 
demand a comprehensive monitoring system for early 
event identification in order to be able to meet customer 
requirements. Therefore, the decision problem of selecting 
appropriate read points for monitoring purposes deserves 
close attention. This study examined the effect of a 
structured read point selection along a process as well as 
the effects of system transparency and sensitivity by using 
an intuitive simulation setup. The results indicate that a 
structured selection of read points achieves superior 
results to those selected by chance, given that meaningful 
criteria are employed. On average, it raised successful 
identifications by 2% while reducing false alarms by 31%.  
Both variables, system sensitivity and the degree of 
transparency, had an ambiguous effect on the 
performance of the models. The more read points are 
selected (i.e. the higher the degree of transparency), the 
more critical deviations are identified. However, at the 
same time the process is monitored at increasingly earlier 
stages when the true consequences of deviations are less 
predictable. Thus, the false alarm rate also rises. Also, the 
performance of the monitoring system is heavily influenced 
by system sensitivity. The more sensitive a system reacts 
to deviations, the less effective is any set of selected read 
points and thus, any given monitoring system. 
SCEM is a relatively novel research area and offers many 
opportunities for further scientific enquiry. First, research 
into criteria (others than time-related ones) that affect the 
presented decision problem would be of value. For 
instance, it would be a valuable contribution to weight 
financial gains from additional transparency against 
additional costs (e.g. more false alarms). 
Furthermore, the study is confined to order deviations 
rather than more severe events (e.g. disruptions). Thus, 
the assumption of normality could be relaxed to include 
(skewed) distributions that better resemble real-world 
processes by allowing exceptional events. This could be 
done by modeling them in a more sophisticated simulation 
software and re-evaluate the approach in this setting.  
The approach formulated in this contribution represents 
only a first step in addressing the decision problem of a 
more structured selection of read points within supply 
chains and production processes. It is a decision making 
tool to help planers decide in advance where transparency 
within a process would be most sensible. Thus, it should 
be beneficial to integrate an approach similar to the one 
presented in this study in existing engineering tools. 
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