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Abstract
This paper presents the state of application of Precision Agricultural enabling Technol-
ogy (PAT) in Swiss farms as an example for small-scale, highly mechanised Central Euro-
pean agriculture. Furthermore, correlations between farm and farmers’ characteristics and 
technology adoption were evaluated. Being part of a comprehensive and representative 
study assessing the state of mechanisation and automation in Swiss agriculture, this paper 
focuses on the adoption of Driver Assistance Systems (DAS) and activities in which Elec-
tronic Measuring Systems (EMS) are used. The adoption rate of DAS was markedly higher 
compared to EMS in all agricultural enterprises. The adoption rate was highest for high-
value enterprise vegetables and surprisingly low for the high-value enterprise grapes. The 
results of a binary logistic regression showed that farmers located in the mountain zone 
were less likely to adopt PAT compared to farmers in the valley. Small farm size correlated 
with low adoption rates and vice versa showing adoption happens country-specific in the 
upper farm size distribution. The results show the potential for novel technologies to be 
adopted by farmers of high-value products. Furthermore, technologies have been partially 
used to reduce physical workload but not yet to evaluate crop or management performance 
to support decisions. However, automatic collection and forwarding of data is a fundamen-
tal step towards Smart Farming realizing its full potential in the future.

Keywords Digitalisation · Precision agriculture · Technology uptake · Drivers of adoption

Introduction

The application and connection of digital technologies in agricultural production has been 
the focus of research and received increasing attention in the last years. The adoption of 
digital technologies in the agricultural sector comprises the use of electronic devices, 
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robots, sensor technology and automation as well as the use of information and communi-
cation technologies. It is associated by terms such as Precision Agriculture (PA), Precision 
Farming (PF), Smart Farming, Digital Farming or Agriculture 4.0 (Paustian and Theuvsen 
2017; Pierpaoli et al. 2013). Thereby, the aim of all these applications is to simplify and 
automate processes, reduce or even shift daily workloads from physical to cognitive labor 
and increase profitability while decreasing the ecological footprint of farming resulting 
in an integrated, improved and sustainable farm and decision management (Walter et  al. 
2017; Shepherd et al. 2018; Tey and Brindal 2012).

At the international level, there has been no consistent definition of PA for a long time 
(Lowenberg-DeBoer and Erickson 2019). A recently published definition of the Interna-
tional Society of Precision Agriculture states: “Precision Agriculture is a management 
strategy that gathers, processes and analyzes temporal, spatial and individual data and 
combines it with other information to support management decisions according to esti-
mated variability for improved resource use efficiency, productivity, quality, profitability 
and sustainability of agricultural production.” (ISPA 2019). The broadness of the definition 
considers PA at the management level and might make it difficult in some cases to define 
specific technologies inside or outside the PA category.

Therefore in the context of this paper, technologies related to plant production are sum-
marized as precision agricultural enabling technologies (PAT), including the use of driver 
assistance systems (DAS) and electronic measuring systems (EMS). DAS comprises vari-
ous support technologies and steering assistance technologies that relieve farmers of physi-
cal work-load or time spent in field and crop management and simplify processes from 
the perspective of labor economics (for example automatic steering systems). Such support 
technologies were considered in this study, as they are often considered as transition tech-
nologies and help making management more precise. Less additional training is needed for 
their application (Miller et al. 2019) and those technologies are comparable with guidance 
technologies in other studies (Miller et al. 2019; Schimmelpfennig 2018). The use of these 
systems is often but not necessarily based on global navigation satellite systems (GNSS) 
such as the global positioning system (GPS) which is the basis to reach the full optimi-
zation potential. The application of EMS is a more integrated use of PA and combines 
the use of GNSS, field or plant related sensors with farm machinery ready for real-time 
adjustments to the respective field or crop management. An example is the use of preci-
sion fertilization in which sensors based on, for example canopy reflection or chlorophyll 
fluorescence are installed at the machine, provide crop-nitrogen-status related indices and 
allows the inference of a nitrogen application rate (Heege 2013). However, PAT does not 
always have to comprise complex, expensive technologies. Even simple, cost-effective 
technologies, such as chlorophyll meters (Cao et al. 2012) or smartphone-based technolo-
gies (Pongnumkul et al. 2015) can provide useful information and help to make manage-
ment decisions related to daily work. Reducing the input of N or pesticides is an important 
aim when promoting further use of PAT in the interest of sustainable agricultural practices 
(Gebbers and Adamchuk 2010).

Most available studies focus on the benefits and adoption of PA, which aim at the opti-
mized handling of variability and uncertainties within agricultural fields by using sensors, 
enhanced machinery and information systems (Gebbers and Adamchuk 2010; Pierpaoli 
et al. 2013; Zhang et al. 2002). However, there are also difficulties arising from PAT adop-
tion for farmers. The purchase of new technologies can be capital-intensive without taking 
a real cost/-benefit analysis into account (Lawson et  al. 2011). Moreover, data interpre-
tation, data rights and the compatibility of different manufacturers and, of course, farm-
ers’ personal interests and knowledge can be barriers in the adoption of new technologies 
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(Reichardt and Jürgens 2009; Zhang et  al. 2002; Batte and Arnholt 2003; Barnes et  al. 
2019).

Even if the application of PAT could offer many advantages for farmers, adoption in 
Europe has been little-studied so far (Barnes et al. 2019). According to Reichardt and Jür-
gens (2009) the adoption of PA was about 11% for German crop farmers in 2006. Eight 
years later Paustian and Theuvsen ( 2017) found a PA adoption rate of 30% for German 
farmers in 2014. In both studies, farmers were asked if they use PA without differentiat-
ing between possible technologies. This makes a comparison of adoption rates for specific 
technologies difficult. Some studies asked the farmers directly if they were PA users with-
out asking which kind of technology or sensors they used, while other studies asked spe-
cifically about the applications of a certain technology and defined the farmers who used 
them as adopters. Thus, the different definitions of technologies as well as the data collec-
tion methods make it difficult to compare country adoption rates (Lowenberg-DeBoer and 
Erickson 2019).

Factors influencing the adoption rates depend on the type of technology investigated. 
For example, the adoption of nutrient-loss-reducing technologies as well as its influenc-
ing factors varied for spreading equipment, slurry tanks and precision technology (Konrad 
et  al. 2019). Further, in a recent study by Barnes et  al. (2019), the adoption of machine 
guidance (MG) and variable-rate nitrogen technologies (VRNT) (corresponding to DAS 
and EMS in this study) was studied among European Union farmers. The results showed 
that, respectively, 21% and 2% of the surveyed Belgian farmers, 36% and 14% of Greek 
farmers, 30% and 47% UK farmers, 34% and 26% of German farmers and 48% and 24% 
of Dutch farmers used MG and VRNT (Barnes et al. 2019). Thus, the results differed with 
regard to adoption and to influencing factors between the use of MG and VRNT. MG could 
also be described as an assistance tool, and VRNT combines a diagnostic tool (sensor) 
with a real-time adjusting device or equipment as applicative tools. Whereas diagnostic 
tools utilise different techniques to collect information, with the use of applicative tools 
management decisions can be made (Finger et al. 2019; McBride and Daberkow 2003).

Several studies have investigated potential drivers for the adoption of PAT, including 
farm and farmers’ characteristics. Operator age is one example of a farmer’ characteristic 
that may be an influencing factor in the adoption process. However, the results from the 
literature are inconsistent (Tey and Brindal 2012). Whereas some studies state that adop-
ters are significantly younger compared to non-adopters (Barnes et  al. 2019; Daberkow 
and McBride 2003), others could not find clear differences in age between the two groups 
but reporting that experience in crop farming of less than 5 years and more than 16 years 
increased the likelihood of adoption (Paustian and Theuvsen 2017). In addition, other cor-
related variables are known, such as region or full- or part-time farming (Reichardt and 
Jürgens 2009; Konrad et  al. 2019). An example for a farm characteristic that often cor-
relates with PAT adoption is farm size, mainly expressed in hectares of agricultural area. 
Farmers with larger farm sizes are often more likely to adopt technology (Konrad et  al. 
2019; Reichardt and Jürgens 2009; Tamirat et al. 2018). Several other farm characteristics 
are described in the literature such as number of livestock units, organic or conventional 
farming and farm or crop specialization (Konrad et al. 2019; Paustian and Theuvsen 2017). 
However, it is important to note that these studies are not based on representative sampling 
procedures in terms of region, farm size or farm type, which would allow for generalization 
of results. These are rather exemplary studies, which, however, cannot be applied to other 
technologies or other countries.

Structural change in agriculture has also had an impact on Switzerland. But despite an 
average increase in farm size and specialization, Switzerland’s agricultural landscape is 
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still more diverse compared to other European countries. In 2018, the average farm size 
in Switzerland was about 20.5 ha which is almost half the size of farms in Germany or 
France (Ferjani et al. 2015; FOAG 2018). These structures are reinforced by strong finan-
cial support from the federal government to promote sustainable agriculture including, for 
example, the maintenance of the cultural landscape or ensuring animal welfare (Pierpaoli 
et al. 2013; FSO 2018a). However, structural change has also taken place in Switzerland 
albeit to a smaller extent than in other countries. Farms measuring 30 ha or more steadily 
increased in number, whereas the number of farms measuring less than 30 ha decreased 
(FOAG 2019). Even if Swiss agriculture comprises comparatively small farms in an inter-
national context, the degree of mechanization is very high. Declining numbers of farms are 
contrasted by increasing registrations for agricultural machinery resulting in an average of 
2.7 agricultural tractors per farm (FSO 2018a, b).

As only a small number of papers have dealt with adoption of PAT at the European level 
(Barnes et  al. 2019), this paper contributes to extending this knowledge by investigating 
the technology adoption levels including PA enabling technologies of small-scale agricul-
ture in Switzerland. In addition to recording country-specific adoption rates of individual 
technologies, the paper adds information to the published literature on drivers for PAT, 
allowing for a comparison with existing studies. To do this, a postal survey was conducted 
with farmers situated throughout Switzerland to generate knowledge about the status quo 
of mechanization and automation in different enterprises in Swiss agriculture. Thus, the 
two objectives of the present study were to find out (1) which kind of PAT have already 
been adopted by Swiss agriculture and (2) which characteristics of farm and farmers’ are 
correlated with the adoption. The analyses were conducted by analyzing the survey data 
on the application of DAS and activities involving EMS such as nitrogen sensors. For both 
analyses, technologies relevant to Swiss agriculture were offered as possible answers. It 
should be noted that these answer options included also non-classical PA technologies. It 
was hypothesized that technology adoption does not occur to the same extent in different 
areas of agricultural production and that farm and farmers’ characteristics, which, based on 
PA studies from other countries, are also important in the adoption process of agricultural 
technologies in Switzerland.

Material and methods

Study sample and survey design

This explorative work was part of a comprehensive study aiming at identifying the degree 
of mechanization and automation for economic labor considerations in different agricul-
tural enterprises. In total, 17 questionnaires were developed, covering livestock farm-
ing and plant production. The distinction between the different enterprises was primar-
ily defined on the basis of typical working procedures and the use of machinery in the 
respective enterprises (e.g. row crops, trees). Each agricultural enterprise belongs to one 
main farm type: plant production, livestock farming or combined farming. The number 
of questions, the length of the questionnaires and the specified answer possibilities dif-
fered depending on the agricultural enterprise. Farmers were reminded that the questions 
were only related to working steps on their own farms even if the machines were rented 
or belonged to a joint farming cooperation. Farm work done for others was not consid-
ered. Together with the Swiss Federal Statistical Office (FSO, Statistical Methods Section) 
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a sampling plan was defined. Therefore, the Swiss Farm Structure Survey (FSS) from 2016 
was used as the basis for determining the total population. The FSS is conducted annually 
to analyze information on structural, technical and socio-demographic factors and includes 
almost all Swiss farms (FSO 2016; Ferjani et al. 2015).

In the study, a two stage random sampling procedure of farms and enterprises was used. 
The first stage consisted of a Poisson sample of farms. The selection probabilities were 
constructed as follows: For each of the 17 considered enterprises of interest, a specific sam-
pling design has been established along the lines of stratified simple random sampling. For 
each enterprise, the stratifications were based on an appropriate size variable, which was 
also used to calculate the sample sizes by means of optimal Neyman allocation. This step 
resulted for each farm in a set of 17 selection probabilities (in case a certain enterprise is 
not relevant for a farm, the corresponding selection probability can be interpreted as being 
zero). The first stage selection probability for each farm was calculated as the sum of the 17 
enterprise-wise probabilities (with a cap at one). Due to the length of the questionnaires, it 
was decided that each farm may only receive a maximum of one questionnaire, even if the 
farm comprised several enterprises. This enterprise was chosen in a second sampling stage 
with probability proportional to size, where the enterprise specific sampling probabilities 
developed for the first sampling stage were used as size variable.

The detailed sampling procedure is shown in Table 5 in the Appendix. Since Switzer-
land is a multilingual country, questionnaires were sent in German, French or Italian.

In total, 4954 postal questionnaires, which covers almost 10% of all Swiss farms 
(51 620 farms in total in 2018) (FOAG 2018), were sent to farmers between January and 
March 2018. Finally, 2657 returned questionnaires could be analyzed further resulting in a 
response rate of 53.6%.

As this study focused on PAT adoption in plant production, the questionnaires contain-
ing the following two questions were evaluated: ‘Do you use any of the following Driver 
Assistance Systems (DAS)?’ and ‘In which of the following activities do you use Electronic 
Measuring Systems (EMS) (e.g. N-sensor, optical plant detection) on the machines?’. In 
both cases, the answer possibilities comprised technologies or activities relevant to Swiss 
agriculture, which in part differ from the international view of PA. The answer options for 
the use of DAS and EMS are explained in detail in Table 1.

In total, 827 questionnaires were used for further analysis including the following six 
enterprises: arable crops, fodder crops, vegetables, grapes, fruits and strawberries. The 
questions were used to classify farmers into PAT adopters and non-adopters. In both ques-
tions, multiple answers were possible.

Farm and farmers’ characteristics

Based on previous research, the hypothesis was made that PAT adoption depends on farm 
and farmers’ characteristics. Two continuous variables were considered including the age 
of the operation manager in years and number of livestock units. The investigated dichoto-
mous variables were gender (female/male), the production system (conventional/organic) 
and the on farm working time (part-time/full-time).

Further, polytomous variables such as productivity zone, region, farm size and main 
farm type were investigated. The productivity zones are defined by the Swiss Federal 
Office for Agriculture (FOAG) as valley, hill and mountain zones. The classification 
depends, among other variables, on the climatic situation and vegetation period, the 
traffic conditions and topography including the proportion of slopes and steep slopes 
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(FOAG 1999). Because of unfavourable production conditions, it was hypothezied that 
farmers located in the mountain zone would be less likely to adopt PAT compared to 
farmers located in the valley.

For this study Switzerland was divided into seven major regions, namely the 
Lake Geneva region, Espace Mittelland, Northwestern Switzerland, Zurich, Eastern 

Table 1  Description of DAS and EMS answer options

Technology Description

Driver assistance system
Support system
Cruise control PA enabling technology and basis for consistent manage-

ment by constant but different driving speeds
Rear-view camera Camera based digital support tool, work simplification
Automatic data collection Automatic data collection (position) is often used to trans-

fer management tracks to other machinery, this makes 
only sense if the tracks are straight and have correct dis-
tances, which can be assured by driver assistant systems

Data transfer into field file The data transfer, being position or sensor information, 
to the field file is an eminent part of data collection and 
thus of PA. It is mentioned under DAS as part of its 
assistance properties

Headland management At the touch of a button, previously recorded functions are 
done automatically

Steering assistance system
Automatic steering systems Auto-steer without human input, most effective in combi-

nation with cruise control
Row guidance Row guidance is an orientation along a crop row. Gives 

impulses to the steering unit and guides the machine 
automatically

Parallel guidance A manual steering system by means of a light bar or LED 
display

Recording of cutting edges Similar to row guidance but mainly used during the harvest 
and also for fodder crops; optical steering system guiding 
along the edges of the crop or tracks

Activities for electronic measuring systems
Variable nutrient supply Site-specific fertilisation
Irrigation Site-specific irrigation
Yield recording Automatic yield recording on the harvesting machine. Can 

include quality measures of the harvested product
Weed detection Weeds and grass weeds are detected by sensors on the 

machine and can be distinguished from the crop plants, 
so that specific treatment can be applied

Precision hoeing Intra-row mechanical weed removal using optical sensors 
to detect non-crop plants

Precision seeding Based on digital seeding maps, the sowing rate is 
determined by GPS positioning and is forwarded fully 
automatically to the control system of the machine

Moisture measurement of the harvest product Quality indicator for cereals and forage crops. Can be also 
included in yield recording
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Switzerland, Central Switzerland and Tessin. The regional location of farms may be 
correlated to PAT adoption.

Farm size was classified depending on the size of the agricultural land into the fol-
lowing categories: 1 to less than 3 ha, 3 to less than 5 ha, 5 to less than 10 ha, 10 to less 
than 20 ha, 20 to less than 30 ha, 30 to less than 50 ha and 50 ha and more. Based on 
several studies, it was assumed that farm size is positively correlated with PAT adop-
tion. Finally, the main farm types were investigated, with farm types being classified 
into specialist field crops, specialist horticulture, specialist permanent crops, special-
ist ruminant livestock, specialist granivore, mixed cropping, mixed livestock and mixed 
crops-livestock according to the data from the FSS.

Data analyses

Average characteristics of adopters and non‑adopters

The results of the survey were analysed using the statistical software R Version 3.5. 3 
(R Core Team 2013). In a first step, responders were divided into DAS and EMS adop-
ters and non-adopters for each question separately; adopters were defined as those who 
selected at least one answer option to the relevant question (except ‘none’), and non-
adopters were defined as those that only choose ‘none’ or did not answer the question at 
all. In a second step, the frequencies for each DAS and EMS technology were evaluated.

For all further analyses, respondents were defined as PAT adopters, if they replied 
positively to at least one of the two questions (DAS and EMS). Non-adopters were 
defined by having chosen ‘none’ in both cases (see Table  6 in the Appendix for a 
detailed overview). Differences in average characteristics were tested using chi-squared 
tests for categorical variables and variance analysis and a Welch two-sample t-test for 
continuous scale data. Significant levels of differences between both groups were indi-
cated as follows: *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001.

In Table 2, farm and farmers’ characteristics for PAT adopters and non-adopters are 
shown by comparing their means. Significant differences in the average characteris-
tics between the two subsamples are found for different topographic zones. Even if the 
majority of adopters and non-adopters are located in the valley, the proportion is signifi-
cantly higher for adopters in this zone. On the contrary, the proportion of agricultural 
technology adopters located in the mountain zone is lower compared to the respective 
non-adopters. Further significant differences between the subgroups were found in the 
different classes of agricultural area. The proportion of farms with larger agricultural 
area (> 50 ha) was higher in the adopters’ group. Conversely, the proportion of smaller 
farms (1–3  ha, 10 ≤ 20  ha) was higher for the non-adopters. However, regardless of 
adoption behavior, only a very small number of farmers had farms smaller than 5 ha. 
Furthermore, the number of livestock units was higher in the adopters’ group, which 
underlines the results for farm size.

Among the PAT adopters, the proportion of arable crop and vegetable producing farms 
was significantly higher compared to the group of non-adopters. On the contrary, in the 
adopters’ group, the proportion of fodder crops and grapes was significantly lower. Further 
significant differences between the averages in the subgroups were found for the main farm 
types where the mean was higher for adopters from specialist horticulture and lower for 
adopters from specialist permanent crop farming and specialist ruminant farming.
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Table 2  Distribution of average characteristics within the two subgroups of adopters and non-adopters

*Indicates items that are significantly different from non-adopters (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, n.s. 
(not significant) p > 0.05

Adopter Non-adopter Level of 
signifi-
cance

Number (n) 346 481
Age (Mean ± SE) 48.9 ± 0.04 49.8 ± 0.03 n.s.
Gender (0/1; 1 = female) 0.02 0.05 n.s.
Production system (0/1; 1 = organic) 0.09 0.13 n.s.
Working time (0/1; 1 = full time) 0.97 0.95 n.s.
Livestock units (Mean ± SE) 28.9 ± 0.13 22.1 ± 0.01 **
Zone
 Valley 0.84 0.67 ***
 Hill 0.08 0.10 n.s.

 Mountain zone 0.08 0.24 ***
Agricultural area
 1 ≤ 3 ha 0.00 0.02 *
 3 ≤ 5 ha 0.01 0.02 n.s.
 5 ≤ 10 ha 0.04 0.06 n.s.
 10 ≤ 20 ha 0.15 0.32 ***
 20 ≤ 30 ha 0.20 0.28 **
 30 ≤ 50 ha 0.25 0.20 n.s.
 ≥ 50 ha 0.36 0.10 ***

Region
 Lake Geneva region 0.34 0.31 n.s.
 Espace Mittelland 0.23 0.23 n.s.

 Northwestern Switzerland 0.11 0.08 n.s.
 Zurich 0.08 0.06 n.s.
 Eastern Switzerland 0.16 0.20 n.s.
 Central Switzerland 0.06 0.11 **
 Tessin 0.01 0.03 n.s.

Agricultural enterprises
 Arable crops 0.24 0.14 ***
 Fodder crops 0.20 0.35 ***
 Vegetables 0.20 0.06 ***
 Grapes 0.14 0.25 ***
 Fruits 0.14 0.12 n.s.
 Strawberries 0.08 0.09 n.s.

Main farm types
 Specialist field crops 0.10 0.07 n.s.
 Specialist horticulture 0.16 0.04 ***
 Specialist permanent crops 0.25 0.32 *
 Specialist ruminant farming 0.17 0.35 ***
 Specialist granivore 0.02 0.01 n.s.
 Mixed cropping 0.10 0.07 n.s.
 Mixed livestock 0.05 0.04 n.s.
 Mixed crops-livestock 0.15 0.11 n.s.
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Binary logistic regression

To identify correlations between PAT adoption and farm and farmers’ characteristics, a 
binary logistic regression was used. The binary decision to adopt the technology is denoted 
as Y. Y is equal to 1 for adopters and 0 for non-adopters. The probability for adoption 
Prob(Y = 1) can be modelled in relation to a set of regressors x using the logit model:

Λ
(
x��

)
 is the cumulative logistic distribution function. Coefficient estimates β are in 

contrast to the linear probability model not directly interpretable as marginal relations 
between the regressors and the probability of adoption. The marginal changes in the adop-
tion probability related to changes in the regressors can be displayed as:

The marginal changes alter with x. Therefore, the marginal changes are shown, while 
keeping all other variables at their averages. These can be interpreted as changes in the 
probability to adopt in relation to a change in the regressor by one unit (Greene 2018).

Independent variables x included the previously described farm and farmers’ charac-
teristics. Different model specifications were tested with respect to the set of independent 
variables used to evaluate the robustness of the results (Table 7 in the Appendix). Error 
terms are clustered at the enterprise level as the error term are expected to be correlated 
within each enterprise.

Results

Relative frequency of technologies used

Figure 1 shows the percentage of adopters and non-adopters in the different agricultural 
enterprises for DAS and EMS separately as well as for PAT adoption (users of at least 
one queried technology). On average, across all enterprises, 37% of the surveyed farmers 
already used at least one function of DAS, whereas only 17% of farmers were EMS adop-
ters (Table 6 in Appendix). However, vegetable production constituted the only enterprise 
having more DAS adopters than non-adopters with an adoption rate of 67%. About 44% 
of arable crop- and fruit farmers adopted any kind of DAS followed by strawberry farmers 
(36%). For grapes and fodder crops, the adoption was lowest at 26% and 25%, respectively. 
EMS were used less with higher non-adopter rates compared to adopters within all agricul-
tural enterprises. Again, arable crops and vegetables had the highest adoption rate at 34% 
and 31%, respectively. The EMS adoption for the other enterprises was between 10 and 
13%. Only about 30% of DAS adopters were also EMS adopters in this study, resulting in 
even higher adoption rates for the group of PAT except in strawberry production.

The two questions analyzed related to PAT adoption as well as the frequencies of appli-
cation in the different agricultural enterprises are shown in Table 3. The table lists the per-
centages of farmers using DAS, followed by the percentages of activities in which EMS are 

Prob(Y = 1|x) =
exp

(
x��

)

1 + exp (x��)
= Λ

(
x��

)

�E[y|x]
�x

= Λ
(
x��
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1 − Λ

(
x��
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used. Most of the farmers indicated using none of the specified technologies. However, the 
number differed depending on the type of technology with 63% and 83%, respectively, for 
Questions 1 and 2.

For all agricultural enterprises, cruise control was the most frequent application of a 
DAS except for arable crops, where the proportion was almost similar for the application 
of rear-view cameras. In vegetable production, about 45% of surveyed farmers indicated 
the use of rear-view cameras, and the frequency of the application of automatic steering 
systems was high at 32%. About 11% of arable crop farmers indicated using DAS in head-
land management and as parallel driving aids. In vegetable production, 26% and 28% of 
respondents used these DAS applications, respectively. Other answer options were selected 
by less than 20% of respondents for all agricultural enterprises as shown in Table 3.

Moisture measurement of harvest product was the most frequent EMS application in 
arable crops with a positive response rate of about 20%. In vegetable production, about 
11% of farmers reported the application of EMS in hoeing. For all other agricultural enter-
prises and answer options, the application of EMS was below 10% (lower part of Table 3).

Binary logistic regression analysis

A binary logistic regression was used to identify correlations between PAT adoption and 
farm and farmers’ characteristics. The estimated marginal changes indicate the magnitude 
of the correlation, or the change in the adoption probability when changing the respective 
independent variable by one unit. To evaluate the robustness of the results, different model 
specifications were tested with respect to the set of independent variables used (Table 7 in 
the Appendix), where Model 1 constitutes the full set of variables. The significant results 
are shown in Table 4. Neither livestock units, age, gender, production system nor work-
ing time were found to be significantly correlated to PAT adoption. Regarding the zones, 

44
34

56

25
11

30

67

31

69

26
10

28
44

13

46
36

11
19

56 66 44 75 89 70 33 69 31 74 90 72 56 87 54 64 89 81

0

20

40

60

80

100

D
A

S

EM
S

PA
T

D
A

S

EM
S

PA
T

D
A

S

EM
S

PA
T

D
A

S

EM
S

PA
T

D
A

S

EM
S

PA
T

D
A

S

EM
S

PA
T

Arable crops Fodder crops Vegetables Grapes Fruits Strawberries

Pe
rc

en
ta

ge
  [

%
]

Adopter Non-adopter

Fig. 1  Percentage of adopters and non-adopters for DAS, EMS and PAT (adoption of at least one DAS or 
EMS technology) for different agricultural enterprises



1337Precision Agriculture (2020) 21:1327–1350 

1 3

farms located in the mountain zone were found to be less likely to adopt compared to the 
baseline category valley. Moreover, farms with an agricultural area of 1 ha to less than 3 ha 
were 36% points less likely to adopt technology compared to the base category of farms of 
10 ha to 20 ha, which constitutes the medium category and represents the average farm size 
in Switzerland. On the contrary, large Swiss farms (i.e. farms with more than 30 ha) were 
more likely to adopt PAT. Further, grape farmers were less likely to adopt compared to the 
base category of arable crop farms. A weak negative correlation could also be found for 
fruit production and PAT adoption. In addition, a weak correlation with the main farm type 
specialist permanent crops, which also includes viticulture, and adoption was observed.

Table 3  Frequencies (%) for the use of DAS and EMS for the different agricultural enterprises

na indicates that the answer option was not available in the respective agricultural enterprise

1. Do you use any of the following driver assistance systems?

Enterprise Arable crops Fodder crops Vegetables Grapes Fruits Strawberries ∑

Number of responses n = 148 n = 235 n = 97 n = 166 n = 105 n = 69 n = 820

None 56 75 33 74 56 64 63
Cruise control 23 14 45 22 27 19 23
Automatic steering 

systems
16 1 33 3 16 7 10

Rear-view camera 24 8 32 5 4 9 13
Automatic data col-

lection
3 2 6 3 2 3 3

Data transfer to field 
file

1 2 12 1 3 1 3

Row guidance 6 na 18 1 8 6 7
Headland manage-

ment
11 6 26 na na 6 11

Parallel guidance 11 6 28 na na 9 11
Recording of cutting 

edges
2 1 1 na na na 1

Others 1 1 4 2 3 1 2

2. In which of the following activities do you use electronic measuring systems (e.g. Nitrogen sensor, opti-
cal plant detection) on the machines?

Enterprise Arable crops Fodder crops Vegetables Grapes Fruits Strawberries ∑

Number of responses n = 140 n = 231 n = 93 n = 165 n = 102 n = 65 n = 820

None 66 89 69 90 87 89 83
Nutrient supply 9 4 9 3 4 9 6
Irrigation 1 0 9 1 8 9 3
Yield recording 5 2 2 1 1 2 2
Weed detection 0 0 6 na na 0 1
Precision hoeing 1 na 12 na na 0 4
Moisture measurement 

of harvest product
20 6 na na na na 12

Others 1 2 2 5 3 2 3
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To examine correlations between farm and farmers’ characteristics for the different 
types of technologies, PAT adoption (Model 1) was compared to DAS and EMS adoption 
(Models 7 and 8) (Table 8 in the Appendix). An additional strong positive correlation was 
found for the enterprise strawberries with EMS adoption. However, the results were robust 
across the adoption of PAT, DAS and EMS for the effects of zone, farm size and for the 
enterprise grapes.

Discussion

The results of this study extend the current research on the adoption of agricultural tech-
nologies and differs in particular in the consideration of Switzerland as an example of a 
country with small-scale, but highly mechanized agriculture. The study investigated the 
adoption of two superordinate types of agricultural technologies enabling PA for different 
agricultural enterprises. The sample selection procedure considered almost all Swiss farms 
as a basis for random sampling and more than 800 responders, corresponding to more than 
5% of all Swiss farms, replied regarding the use of DAS and EMS. This makes the study 
valuable and much more representative compared to the database of many other published 
studies. In comparison, Tamirat et  al. (2018) evaluated 260 questionnaires, mainly from 
Denmark with regard to PA adoption; Winstead et al. (2010) based their findings on the use 
of PA technologies in the U.S. on 42 questionnaires. Reichardt and Jürgens (2009) inter-
viewed between 400 and 2300 farmers in Germany (a market ten times larger than Switzer-
land with a number of farms about six times larger than in Switzerland) in several years; 
but with the bias that they did this at famous agricultural fairs, where more technically 
inclined farmers are likely to be found. Thus, these results have to be interpreted with care.

A country-specific comparison of technology adoption rates is also difficult, because 
of the different technologies surveyed. In the study of Tamirat et al. (2018) based on less 
representative data from Denmark and Germany, an adoption rate of 19% was shown. 

Table 4  Significant results of binary logistic regression of characteristics correlated with PAT adoption

Number of observations = 608; Log-likelihood: -341.26; Deviance: 682.52; AIC: 746.52; BIC: 887.65
*p ≤ 0.05
**p ≤ 0.01
***p ≤ 0.001

Marginal effects SE z-values

Zone (base category: valley)
 Mountain zone − 0.15 0.04 − 4.17***

Agricultural area (base category: 10 to 20 ha)
 1 ≤ 3 ha − 0.36 0.00 − 115.69***
 30 ≤ 50 ha 0.20 0.06 3.06**
 ≥ 50 ha 0.48 0.07 7.32***

Agricultural enterprises (base category: arable crops)
 Grapes − 0.25 0.02 − 9.99***
 Fruits − 0.08 0.04 − 1.97*

Main farm type (base category: specialist field crops)
 Specialist permanent crops 0.26 0.10 2.54**
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However, the authors focused only on GPS-assisted PA and/or auto-guidance, which may 
be comparable to DAS in the present study. Similar results were obtained by Reichardt 
and Jürgens (2009) who reported that most of the surveyed German farmers (at specific 
agricultural fairs) did not use any PF technology but without further specification. How-
ever, the study was done almost ten years ago. In a recent study by Paustian and Theuvsen 
(2017), an adoption rate of 30% of PF technology was found in Germany based on 227 
online questionnaires. However, the authors did not use random sampling nor specify the 
PF technologies, making a comparison between the studies difficult.

In this study, DAS technologies comprised several technologies, which support or assist 
the driver in their farming activities and which are not typically included in other PA adop-
tion studies. However, the presented technologies are named more specific than in most 
other studies, which either not include such assistance technology or summarize individual 
technologies under one technology, often called ‘machine guidance’. Therefore, the results 
show a classification of individual technologies into technology groups and results differ-
entiated adoption rates, which allows a transparent evaluation and comparison between 
studies. A uniform definition of PA, as issued by ISPA (ISPA 2019), in combination with 
an overview of included technologies would bring more clarity in this context.

Reasons for low PAT adoption rates in European countries could be small farm size 
together with high acquisition costs (Reichardt and Jürgens 2009). Even though the current 
survey did not ask for motivations of PAT adoption, this result could also be important in 
Switzerland, as farms, particularly small farms, have to cope with large acquisition costs 
relative to overall profit. In this study, PAT adoption was positively correlated with a large 
farm size by area and vice versa, whereby the definition of a large farm size varies by 
study. While in the recent study the largest farm category covered 50 ha and more, which 
is more than twice the Swiss average, German farmers with large farm sizes of more than 
250 ha were found to be more likely to invest in technologies enabling PA (Reichardt and 
Jürgens 2009). In addition, in a review by Pierpaoli et al. (2013) farms with 500 ha and 
more were defined as large (Pierpaoli et al. 2013). In this context, the results of the current 
study confirm that adoption happens in the upper part of the farm size distribution. How-
ever, farm size is relative, so country-specific studies are important as adoption rates based 
on foreign studies can lead to incorrect conclusions.

Whether age is an important factor in the adoption process is not clear from the litera-
ture since the results from other studies are inconsistent regarding the operators’ ages (Tey 
and Brindal 2012). In this study, age was not correlated with PAT adoption.

In terms of agricultural enterprises, 67% of the surveyed vegetable farmers had already 
adopted DAS technology in the current study. With 1.1 billion Swiss Francs (CHF; conver-
sion rate to US $ is roughly 1:1) vegetable farming generates about 14% of the total pro-
duction value of Swiss agriculture but covers only about 1% of the agricultural area in the 
country (ASVP and AIS 2014; FSO 2017). In contrast to this, fodder crops make up two 
thirds of the total agricultural area (ASVP and AIS 2014) but the production value of fod-
der crops (e.g. grassland/pasture) is similar at 1 billion CHF or almost 10% of the total pro-
duction value of Swiss agriculture (FSO 2017). However, fodder crop production showed 
the lowest DAS adoption. High adoption rates in vegetable production might be due to 
several reasons. Obviously, high production values favor the adoption of or investment 
in new technologies. The advantages of adopting DAS or EMS are more significant for 
crops with high returns, particularly for field vegetable crops for which fields are smaller 
and crops are often produced in a series of different ages next to each other. In this case, 
DAS and EMS are more often used compared to, for example, arable crops or fodder crops 
for which the whole field is cultivated homogeneously. Additionally, in high-value crops, 
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losses from small driving errors or mismanagement also reflect higher financial losses link-
ing to an immediate gain. Furthermore, vegetable farmers might be more experienced in 
the automatic control management of humidity, fertilization and temperature if they also 
have intensive greenhouse production (Roldán et al. 2017), where this is essential for pro-
ducing high-quality products. Therefore, vegetable farmers are likely more affine with con-
trol technology.

Moreover, fodder crops are typically grown in the mountain zone, where there are hardly 
any production alternatives because other crop specializations are not feasible. Therefore, 
farm location can be considered an important factor for the PAT adoption in fodder crops. 
This fact is clearly supported by the results of the binary regression showing that farmers 
from the mountain zone are less likely to adopt compared to farmers located in the valley 
areas.

Across all models of the binary regression, grape production was less likely to see the 
adoption of PAT, regardless of the type of technology. An explanation could be the cul-
tivation on steep slopes, where the possibilities for mechanization and, therefore, PAT 
are currently still limited. The application of Unmanned Aerial Vehicles (UAVs) such as 
drones could be useful to promote agricultural management in these difficult areas (Matese 
et al. 2015). In this context, Switzerland is the first European country that has developed a 
licensing procedure that could trigger the increased use of drones for pesticide applications 
in the future (FOCA 2019; Agroscope 2019).

The adoption of DAS was higher than for EMS possibly because some DAS technolo-
gies are not classical PA technologies but more transition technologies, which are easier to 
apply. Thus the level of usage difficulty might be decisive. These results confirm previous 
studies done e.g. by Schimmelpfennig (2016) and Miller et al. (2019) in the U.S., showing 
that DAS-type technologies are more readily adopted than EMS-type technologies. How-
ever, this observation could be confirmed in Switzerland, a country with different farm 
structure and lower average farm size. DAS technologies are well-established and are often 
part of the basic equipment of new machines. Thus, they are easy for farmers to learn and 
use. The application of EMS is often more complex since they are seldom integrated into 
machinery, making data exchanges between the machines and devices necessary. Although 
data transfer standards have been developed and are largely used, the difficult connectivity 
between devices and machines of different manufacturers is still often a practical hurdle 
for adoption from a technical point of view. Thus, a better differentiation of EMS technolo-
gies and their uses could benefit a better target-oriented implementation. Variation in the 
adoption rates related to different technologies was also shown for the adoption of GPS-
based applications (e.g. area measurement or soil mapping) with VRNT (e.g. site-specific 
fertilization), which is often lower for the latter (Reichardt and Jürgens 2009). While the 
first relies on the machine terminal or requires interfacing of only one sensor, variable rate 
application needs the combination of a sensor for the machine terminal and an application 
device, making the connection much more complex.

According to Winstead et  al. (2010), yield monitoring was the most frequently used 
information-intensive technology (about 40% of farmers used it) among U.S. farmers from 
Alabama and Florida in almost equal proportions with or without GPS use. Furthermore, 
it could be shown that the adoption of yield monitors was more likely for large farms 
(Winstead et  al. 2010). However, the authors used non-representative data from audi-
ence responses at a conference. Still, in comparison only 2% of Swiss farmers used EMS 
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for yield recording, which could again be related to small farm sizes in an international 
context.

The integration of remote sensing technologies or mapping services, which currently 
develop very quickly, allows also for variable rate or precision management without trac-
tor-based sensors. This approach relies on the upload of map information on the machine 
terminal such as satellite derived maps, harvest or yield maps or soil zones, eventually 
making the use of some technologies easier and cheaper (Matese et al. 2015; Mulla 2013).

The application of automatic data collection or data transfer to field file is still low, 
which could show that technologies are partially used to reduce physical workloads but not 
yet to evaluate the performance of crop and crop management to support decision-making. 
However, automatic collection and forwarding of data is a fundamental step towards smart 
farming, and only if data processing and analysis is applied, the full potential can be real-
ised in the future. To promote the digital transformation in Swiss agriculture, the Federal 
Council decided in 2016 to make an active contribution to the digitalisation of the Swiss 
agricultural and food sectors (FOAG 2016). However, when promoting PAT, it is important 
to consider the type of agricultural enterprise and the location, otherwise high adopters 
could be preferred (e.g. valley zone and vegetable production), which could result in unde-
sirable side effects on the structure of Swiss agriculture. On the other hand, it could also be 
actively used to promote certain agricultural enterprises, for example with regard to their 
environmental impact (e.g. nitrate leaching per ha).

Even if adoption of PA enabling technologies is still low in some individual agricul-
tural enterprises, the introduction of digital or shared technologies could contribute to 
higher adoption rates. For example, the application of drones could be useful in order to 
promote the management in difficult terrains (e.g. the mountain zone) but also to simplify 
the monitoring of crops, identify pests, estimate constituents or facilitate precision spray-
ing application such as for pesticides or nutrients (King 2017; Giles 2016; Xiongkui et al. 
2017; SATW 2019). This aspect is particularly important in grapes, where the use of UAVs 
will support the agricultural management of slopes in the future (Santesteban et al. 2017; 
Matese et  al. 2015). Currently, there are three companies that already offer UAV pesti-
cide application in grapes in Switzerland (Finger et al. 2019). The usage of technologies 
to target pesticide applications to reduce the large numbers of pesticide treatments (e.g. in 
horticultural crops) contributes to the environmentally friendly and cost-saving handling of 
resources. However, the cost-saving aspect of PAT adoption during, for example, pesticide 
applications is not enough because acquisition costs are often high and advantages need to 
be extended to make the application more attractive for lower-value crops and small-scale 
farmers (Finger et al. 2019).

Another approach to promote the implementation can be seen in the example of France. 
French farmers are obliged to report N fertilization efficiency measures and VRA maps 
or a satellite-based service are accepted proof. The decision-support tool ‘FARMSTAR’, 
which provides variable rate application maps to farmers in order to support the right 
amounts of field-inputs, was used already by French 18 000 farmers in 2016 (Soenen et al. 
2017; Coquil et al. 2005). However, linking, for example, direct payments to N-monitoring 
of the fertilization of grassland and arable land in Switzerland would also create the possi-
bility that more PA enabling technologies could be used for crops that generate little added 
value per se.

Shepherd et al. (2018) summarized that the use of technologies must also support farm-
ers to meet the growing demands of consumers and regulators (Shepherd et  al. 2018). 
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Thus, technology adoption is not limited to farms but could be extended to the entire value 
chain including the post-harvest processing, storage and retail. Besides the above results, 
some limitations in this study leave space for further research on agricultural technology 
adoption enabling the implementation of PA in Swiss agriculture. The survey focused on 
the adoption of DAS and EMS with regard to the main agricultural enterprises and the 
most common working steps regarding each enterprise. Thus, not all possible technologies 
could be listed and there are possibly other technologies already used by Swiss farmers 
(e.g. Smartphone Apps, drones) that are not covered in this study. Furthermore, it is also 
possible that farmers are not entirely sure which technologies are actually used on their 
fields if they are carried out by contractors or in farming co-operations. In addition, there 
is no gradation between the different technologies queried. A division into old technolo-
gies that have long been available on the market and new technologies could be helpful in 
the future. The intensity of use also remains unclear; for example, it is not measured as a 
percentage of land area. Furthermore, there is a lack of farmers’ personal assessment as to 
why they do not use available technologies. Thus, questions to be answered in the future 
are as follows: Are small farms really lagging behind or just not adopting because it pro-
vides no added value? Are other, cheaper technologies more interesting for small farms? 
How could the use of PA enabling technologies be promoted in order to exploit its benefits 
and potential? Determinants to drive development forward with a special focus on small 
structured farms should also be analysed as well as a more detailed consideration of the 
intensity of technology use.

Conclusion

This representative study found that the PAT adoption rate of individual agricultural enter-
prises was very heterogeneous in Switzerland. In general, vegetable and arable crop pro-
ducers were strong adopters, but the adoption was low for fodder crops and grapes. Adop-
tion trends in Switzerland are in line with results from abroad, showing that DAS-type 
technologies are more frequently used in practice than EMS-type technologies. This result 
indicates that technologies are used rather to reduce physical workloads than to support 
crop or management decisions. The effects of farm size as well as for the enterprise grapes 
were robust across the adoption of DAS, EMS and PAT.

For future research, these results can be used as a basis to develop a more-detailed sur-
vey that includes farmers’ expectations of PA. Thus, working areas could be identified 
where new technologies would bring an added value aiming to managing small farms more 
efficiently, more economically, less labor-intensively and in a more economically friendly 
way. Also, the connection between agricultural policy goals such as nature conservation 
policies or direct payments and PAT adoption could be another important research question 
directed at understanding the drivers and barriers in the adoption process in the agricultural 
sector.
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Appendix

See Tables 5, 6, 7, and 8.

Table 5  Sampling plan on the basis of the Swiss Farm Structure Survey (FSS) of 2016

a Based on area (ha) or quantity (number of animals) (Agroscope 2000)

Enterprises Limit value for 
exclusion of 
small  farmsa

Stratification Number of 
questionnaires 
sent1 2 3 4 5

Arable crops 10 ha 10.01–20 20.01–30 30.01–50 > 50 222
Fodder crops 10 ha 10.01–20 20.01–30 30.01–50 > 50 518
Vegetables 3 ha 3.01–10 10.01–20 > 20 175
Grapes 0.2 ha 0.21–1 1.01–2 2.01–5 5.01–10 > 10 319
Tall fruit trees 20 21–50 51–150 > 150 421
Fruits 1 ha 1.01–3 3.01–10 10.01–20 > 20 182
Bush berries 0.1 ha 0.11–0.3 0.31–1 1.01–2 > 2 109
Strawberries 0.1 ha 0.11–0.3 0.31–1 1.01–2 > 2 122
Dairy cattles 10 11–25 26–50 51–100 > 100 450
Suckler cows 5 6–10 11–25 26–50 > 50 200
Beef cattles 5 6–10 11–25 26–50 51–100 > 100 513
Breeding pigs 10 11–20 21–50 50–100 > 100 312
Porkers 10 11–50 51–200 201–500 501–1000 > 1000 255
Meat sheeps 25 26–50 51–150 > 150 244
Dairy goats 5 6–25 26–50 > 50 279
Laying hens 50 51–100 101–500 501–2000 2001–5000  > 5000 265
Broilers 1000 1001–5000 > 5000 368

http://creativecommons.org/licenses/by/4.0/
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Table 8  Model comparison of PAT adopters, DAS adopters and EMS adopters

***p < 0.001, **p < 0.01, *p < 0.05

Model 1
PAT

Model 7
DAS

Model 8
EMS

Livestock units − 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Age (years) − 0.00 (0.00) − 0.00 (0.00) 0.00 (0.00)
Gender (1 = female) − 0.10 (0.13) − 0.10 (0.10) − 0.02 (0.06)
Production system (1 = organic) − 0.09 (0.07) − 0.06 (0.06) − 0.01 (0.02)
Working time (1 = full-time) − 0.03 (0.09) − 0.01 (0.12) − 0.06 (0.13)
Zone (base category = valley)
 Hill − 0.05 (0.05) − 0.05 (0.06) − 0.01 (0.02)
 Mountain zone − 0.15*** (0.04) − 0.11** (0.04) − 0.04* (0.02)

Agricultural area (base category = 10–20 ha)
 1 ≤ 3 ha − 0.36*** (0.00) − 0.31*** (0.00) − 0.10*** (0.01)
 3 ≤ 5 ha − 0.07 (0.18) − 0.16 (0.16) 0.02 (0.07)
 5 ≤ 10 ha 0.10 (0.11) 0.04 (0.07) 0.13** (0.04)
 20 ≤ 30 ha 0.11 (0.08) 0.11 (0.08) 0.06 (0.03)
 30 ≤ 50 ha 0.20** (0.06) 0.20** (0.07) 0.07* (0.03)
 ≥ 50 ha 0.48*** (0.07) 0.45*** (0.06) 0.24*** (0.03)

Region (base category = Espace Mittelland)
 Lake Geneva region 0.08 (0.09) − 0.02 (0.08) 0.10** (0.04)
 Northwestern Switzerland 0.02 (0.03) 0.05 (0.06) 0.00 (0.02)
 Zurich 0.09 (0.11) 0.04 (0.09) 0.03 (0.07)
 Eastern Switzerland − 0.01 (0.06) − 0.02 (0.03) − 0.01 (0.04)
 Central Switzerland − 0.02 (0.07) 0.03 (0.09) − 0.01 (0.06)
 Tessin 0.22 (0.12) 0.18* (0.07) − 0.09*** (0.00)

Type of farming (base category = arable crops)
 Fodder crops 0.02 (0.06) 0.03 (0.05) − 0.01 (0.03)
 Vegetables 0.07 (0.06) 0.10 (0.06) 0.01 (0.03)
 Grapes − 0.25*** (0.02) -0.12** (0.05) − 0.06** (0.02)
 Fruits − 0.08* (0.04) 0.02 (0.06) − 0.06** (0.02)
 Strawberries − 0.04 (0.05) 0.02 (0.06) − 0.04*** (0.01)

Main agricultural business (base category = Specialist field crops)
 Specialist horticulture 0.24 (0.12) 0.24* (0.12) − 0.02 (0.04)
 Specialist permanent crops 0.26** (0.09) 0.23** (0.09) 0.01 (0.07)
 Specialist ruminant livestock − 0.03 (0.20) − 0.08 (0.16) − 0.04 (0.07)
 Specialist granivore 0.35 (0.20) 0.21 (0.29) 0.01 (0.04)

  Mixed cropping 0.05 (0.17) − 0.02 (0.17) 0.03 (0.07)
 Mixed livestock 0.06 (0.31) − 0.02 (0.24) − 0.00 (0.11)
 Mixed crop-livestock 0.11 (0.15) 0.02 (0.15) 0.03 (0.04)

Num. obs 608 604 592
Log likelihood − 341.26 − 326.87 − 214.06
Deviance 682.52 653.75 428.11
AIC 746.52 717.75 492.11
BIC 887.65 858.66 632.38



1348 Precision Agriculture (2020) 21:1327–1350

1 3

References

Agroscope. (2000). Neue methodik für die zentrale auswertung von Buchhaltungsdaten an der FAT [New 
methodology for the central evaluation of accounting data at the FAT]. Working Paper.

Agroscope. (2019). Schweiz bewilligt Sprühdrohnen als erstes Land Europas [Switzerland approves spray 
drones as the first country in Europe]. Retireved 25 July, 2019, from https ://www.agros cope.admin .ch/
agros cope/de/home/aktue ll/medie ninfo rmati onen/medie nmitt eilun gen.html.

ASVP, & AIS. (2014). Fakten zum Schweizer Gemüsebau [Facts about Swiss vegetable growing]. Reti-
reved 25 July, 2019, from https ://www.gemue se.ch/Resso urcen /PDF/Polit ik/CHGem ueseb au_BROSC 
HURE_LID.PDF.

Barnes, A., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., et al. (2019). Exploring the adoption 
of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80, 
163–174.

Batte, M. T., & Arnholt, M. W. (2003). Precision farming adoption and use in Ohio: Case studies of six 
leading-edge adopters. Computers and Electronics in Agriculture, 38(2), 125–139.

Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of 
indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agri-
culture, 13(1), 45–61.

Coquil, B., Bordes, J. P., & Stafford, J. (2005). FARMSTAR: An efficient decision support tool for near real 
time crop management from satellite images. In Precision agriculture’05 (pp. 873–880). Wageningen: 
Wageningen Academic Publishers.

Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and 
adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

Ferjani, A., Zimmermann, A., & Roesch, A. (2015). Determining factors of farm exit in agriculture in Swit-
zerland. Agricultural Economics Review, 16(389), 59.

Finger, R., Swinton, S. M., Benni, N. E., & Walter, A. (2019). Precision farming at the nexus of agricultural 
production and the environment. Annual Review of Resource Economics, 11, 313–335.

FOAG. (1999). Landwirtschaftliche Zonen-Verordnung [Agricultural zones regulation]. Retireved 25 July, 
2019, from https ://www.admin .ch/opc/de/class ified -compi latio n/19983 417/index .html.

FOAG. (2016). Charta zur digitalisierung der schweizer land- und ernährungswirtschaft [Charter for digi-
tialisation in the agricultural and food sector]. Retireved 14 May, 2019, from https ://www.blw.admin 
.ch/blw/de/home/servi ces/medie nmitt eilun gen.msg-id-71171 .html.

FOAG. (2018). Agrarbericht [Agricultural report].
FOAG. (2019). Landwirtschaftsbetriebe: Grösse, Fläche, Besitzverhältnisse [Agricultural farms: size, area, 

ownership]. Retireved 25 July, 2019 from https ://www.bfs.admin .ch/bfs/de/home/stati stike n/land-forst 
wirts chaft .asset detai l.83467 09.html.

FOCA. (2019). Faktenblatt Ausbringen aus der Luft mittels Drohnen [Fact sheet spreading from the air 
by means of drones]. Retireved 25 July, 2019, from https ://www.bazl.admin .ch/bazl/de/home/suche 
.html#Fakte nblat t.

FSO. (2016). Strukturdatenerhebung [Farm structure survey]. Retireved 25 July, 2019, from https ://www.
bfs.admin .ch/bfs/de/home/stati stike n/land-forst wirts chaft /erheb ungen /stru.html.

FSO. (2017). Land- und Forstwirtschaft: Panorama [Statistical basis and overviews - Agriculture and for-
estry]. Retireved 25 July, 2019, from https ://www.bfs.admin .ch/bfs/en/home/stati stics /agric ultur e-fores 
try.asset detai l.78465 85.html.

FSO. (2018a). Landwirtschaft und ernährung: Taschenstatistik [Agriculture and food: pocket statistics]. 
Retireved 25 July, 2019, from https ://www.bfs.admin .ch/bfs/de/home/stati stike n/katal oge-daten banke 
n/publi katio nen.asset detai l.52877 62.html.

FSO. (2018b). Strassenfahrzeugbestand nach fahrzeuggruppe und fahrzeugart [Distribution of road vehi-
cles]. Retireved 25 July, 2019, from https ://www.bfs.admin .ch/bfs/de/home/stati stike n/mobil itaet -verke 
hr/verke hrsin frast ruktu r-fahrz euge/fahrz euge/stras senfa hrzeu ge-besta nd-motor isier ungsg rad.asset detai 
l.72263 14.html.

Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 
828–831.

Giles, D. K. (2016). Use of remotely piloted aircraft for pesticide applications: Issues and outlook. Outlooks 
on Pest Management, 27(5), 213–216.

Greene, W. H. (2018). Econometric analysis. London: Pearson Education.

https://www.agroscope.admin.ch/agroscope/de/home/aktuell/medieninformationen/medienmitteilungen.html
https://www.agroscope.admin.ch/agroscope/de/home/aktuell/medieninformationen/medienmitteilungen.html
https://www.gemuese.ch/Ressourcen/PDF/Politik/CHGemuesebau_BROSCHURE_LID.PDF
https://www.gemuese.ch/Ressourcen/PDF/Politik/CHGemuesebau_BROSCHURE_LID.PDF
https://www.admin.ch/opc/de/classified-compilation/19983417/index.html
https://www.blw.admin.ch/blw/de/home/services/medienmitteilungen.msg-id-71171.html
https://www.blw.admin.ch/blw/de/home/services/medienmitteilungen.msg-id-71171.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/land-forstwirtschaft.assetdetail.8346709.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/land-forstwirtschaft.assetdetail.8346709.html
https://www.bazl.admin.ch/bazl/de/home/suche.html#Faktenblatt
https://www.bazl.admin.ch/bazl/de/home/suche.html#Faktenblatt
https://www.bfs.admin.ch/bfs/de/home/statistiken/land-forstwirtschaft/erhebungen/stru.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/land-forstwirtschaft/erhebungen/stru.html
https://www.bfs.admin.ch/bfs/en/home/statistics/agriculture-forestry.assetdetail.7846585.html
https://www.bfs.admin.ch/bfs/en/home/statistics/agriculture-forestry.assetdetail.7846585.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken/publikationen.assetdetail.5287762.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken/publikationen.assetdetail.5287762.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-motorisierungsgrad.assetdetail.7226314.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-motorisierungsgrad.assetdetail.7226314.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-motorisierungsgrad.assetdetail.7226314.html


1349Precision Agriculture (2020) 21:1327–1350 

1 3

Heege, H. J. (2013). Site-specific fertilizing. In H. J. Heege (Ed.), Precision in crop farming: Site specific 
concepts and sensing methods: Applications and results (pp. 193–271). Dordrecht: Springer.

ISPA. (2019). ISPA precision Ag definition. Retireved 26 February, 2020, from https ://ispag .org/.
King, A. (2017). The future of agriculture. Nature, 544(7651), S21–S23.
Konrad, M. T., Nielsen, H. Ø., Pedersen, A. B., & Elofsson, K. (2019). Drivers of farmers’ investments in 

nutrient abatement technologies in five Baltic Sea countries. Ecological Economics, 159, 91–100.
Lawson, L. G., Pedersen, S. M., Sørensen, C. G., Pesonen, L., Fountas, S., Werner, A., et al. (2011). A four 

nation survey of farm information management and advanced farming systems: A descriptive analysis 
of survey responses. Computers and Electronics in Agriculture, 77(1), 7–20.

Lowenberg-DeBoer, J., & Erickson, B. (2019). How does European adoption of precision agriculture com-
pare to worldwide trends? In Precision agriculture’19 (pp. 7–20). Wageningen: Wageningen Academic 
Publishers.

Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., et al. (2015). Intercompari-
son of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing, 
7(3), 2971–2990.

McBride, W. D., & Daberkow, S. G. (2003). Information and the adoption of precision farming technolo-
gies. Journal of Agribusiness, 21(1), 21–38.

Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied knowledge 
and information intensive precision agriculture technology bundles. Precision Agriculture, 20(2), 
348–361.

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remain-
ing knowledge gaps. Biosystems Engineering, 114(4), 358–371.

Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farm-
ers. Precision Agriculture, 18(5), 701–716.

Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies 
adoption: A literature review. Procedia Technology, 8, 61–69.

Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agri-
culture: A systematic review of research. Journal of Sensors, 2015, 1–18.

Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: 
Results of several surveys among different agricultural target groups. Precision Agriculture, 10(1), 
73–94.

Roldán, J. J., del Cerro, J., Garzón‐Ramos, D., Garcia‐Aunon, P., Garzón, M., de León, J., et  al. (2017). 
Robots in agriculture: State of art and practical experiences. In Service robots. London: IntechOpen.

Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture (No. 1477-2016-121190).
Schimmelpfennig, D. (2018). Crop production costs, profits, and ecosystem stewardship with precision agri-

culture. Journal of Agricultural and Applied Economics, 50(1), 81–103.
Santesteban, L., Di Gennaro, S., Herrero-Langreo, A., Miranda, C., Royo, J., & Matese, A. (2017). High-

resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant 
water status within a vineyard. Agricultural Water Management, 183, 49–59.

SATW. (2019). Drones in precision farming. Retireved 25 July, 2019, from https ://www.satw.ch/en/early 
-ident ifica tion/techn ologi es/detai ls/techn ology /drone s-in-preci sion-farmi ng/.

Shepherd, M., Turner, J. A., Small, B., & Wheeler, D. (2018). Priorities for science to overcome hurdles 
thwarting the full promise of the ‘digital agriculture’revolution. Journal of the Science of Food and 
Agriculture. https ://doi.org/10.1002/jsfa.9346.

Soenen, B., Closset, M., Bonnard, A., & Le Bris, X. (2017). Validation of a new nitrogen management tool 
on winter wheat based on remote sensing diagnostic and agronomic prognosis: ‘QN-method’—FARM-
STAR. In Proceedings of Innovative Solutions for Sustainable Nitrogen Management (pp. 32–33).

Tamirat, T. W., Pedersen, S. M., & Lind, K. M. (2018). Farm and operator characteristics affecting adoption 
of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica B, 68(4), 349–357.

R Core Team. (2013). R: A language and environment for statistical computing. Vienna: Austria.
Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A 

review for policy implications. Precision Agriculture, 13(6), 713–730.
Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key to developing sus-

tainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148–6150.
Winstead, A. T., Norwood, S. H., Griffin, T. W., Runge, M., Adrian, A. M., Fulton, J., et al. (2010). Adop-

tion and use of precision agriculture technologies by practitioners. In Proceedings of the 10th Interna-
tional Conference on Precision Agriculture (pp. 18–21).

https://ispag.org/
https://www.satw.ch/en/early-identification/technologies/details/technology/drones-in-precision-farming/
https://www.satw.ch/en/early-identification/technologies/details/technology/drones-in-precision-farming/
https://doi.org/10.1002/jsfa.9346


1350 Precision Agriculture (2020) 21:1327–1350

1 3

Xiongkui, H., Bonds, J., Herbst, A., & Langenakens, J. (2017). Recent development of unmanned aerial 
vehicle for plant protection in East Asia. International Journal of Agricultural and Biological Engi-
neering, 10(3), 18–30.

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture: A worldwide overview. Computers and 
Electronics in Agriculture, 36(2–3), 113–132.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


