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Abstract: Germinal centers (GCs) are specialized compartments within the secondary lymphoid
organs where B cells proliferate, differentiate, and mutate their antibody genes in response to the
presence of foreign antigens. Through the GC lifespan, interclonal competition between B cells
leads to increased affinity of the B cell receptors for antigens accompanied by a loss of clonal
diversity, although the mechanisms underlying clonal dynamics are not completely understood.
We present here a multi-scale quantitative model of the GC reaction that integrates an intracellular
component, accounting for the genetic events that shape B cell differentiation, and an extracellular
stochastic component, which accounts for the random cellular interactions within the GC. In addition,
B cell receptors are represented as sequences of nucleotides that mature and diversify through
somatic hypermutations. We exploit extensive experimental characterizations of the GC dynamics to
parameterize our model, and visualize affinity maturation by means of evolutionary phylogenetic
trees. Our explicit modeling of B cell maturation enables us to characterise the evolutionary processes
and competition at the heart of the GC dynamics, and explains the emergence of clonal dominance as
a result of initially small stochastic advantages in the affinity to antigen. Interestingly, a subset of the
GC undergoes massive expansion of higher-affinity B cell variants (clonal bursts), leading to a loss of
clonal diversity at a significantly faster rate than in GCs that do not exhibit clonal dominance.
Our work contributes towards an in silico vaccine design, and has implications for the better
understanding of the mechanisms underlying autoimmune disease and GC-derived lymphomas.

Keywords: GC; B cell receptor; somatic hypermutation; nucleotide sequence; antibody affinity;
affinity maturation; immunoglobulin; clonal competition; clonal burst; clonal dominance; stochastic
models; affinity models

1. Introduction

Germinal centers (GCs) [1–3] are specialized microanatomical structures that emerge within
the secondary lymphoid organs upon infection or immunization. A GC typically contains up to a
few thousand B cells that rapidly proliferate and mutate the immunoglobulin genes of their B cell
receptors (BCRs). GCs play a central role in mounting an effective immune response against infectious
pathogens, and failures within their tightly regulated environment can lead to the development of
autoimmune diseases [4] and cancer [5]. Hence, a detailed investigation of the processes that regulate
the dynamics of the GC reaction is of crucial importance to understand both healthy and pathological
immune responses.
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GCs are histologically divided into two different compartments, the dark zone (DZ) and light
zone (LZ), which play distinct and important roles in the maturation and selection of B cells [6].
The DZ consists primarily of a tight cluster of highly proliferative B cells, known as centroblasts (CBs),
while the LZ is less compact and more diverse, including GC B cells, known as centrocytes (CCs),
antigen-presenting follicular dendritic cells (FDCs) and a smaller population of T follicular helper cells
(TFH). A GC reaction is initiated when naive B cells are activated by TFHs. Upon activation, naive
B cells initiate a phase of monoclonal expansion characterized by very rapid proliferation rates and
somatic hypermutation (SHM) of their immunoglobulin genes [7,8]. After a few days, GCs become
polarized into the DZ and LZ, and CBs migrate to the LZ, where they undergo a phase of selection.
CCs in the light zone are committed to apoptosis and compete for survival signals delivered by TFHs.
To receive such signals, CCs must first acquire antigen from FDCs. Higher affinity CCs can capture
larger amounts of antigen, which is then engulfed, digested into peptides and returned to the B-cell
surface bound to the major histocompatibility MHC class II. TFHs that bind with enough strength to
the peptide–MHC complex (pMHC) deliver signals that stop apoptosis, upon which a CC can leave
the GC and terminally differentiate into a plasma cell (PC), responsible for secreting antibodies, or into
a long-lived memory B cell (MBC) that keeps memory of past infections and can rapidly respond to
repeated antigen exposure. Low affinity cells that do not receive enough TFH signaling are eliminated
by apoptosis in a process that replicates Darwinian evolution at the cellular level.

In addition, a fraction of CCs return to the DZ for additional rounds of cell division and BCR
maturation [9]. The speed of the cell cycle in the DZ is regulated by the amount of signalling received
from the TFHs [10], likely by upregulating cell-cycle regulators such as MYC [11–13]. As a result,
high-affinity cells that receive strong TFHs signals undergo accelerated cell cycles and can replicate up
to 6 times, while lower affinity cells that capture less antigen divide fewer times [14]. The regulation of
the cell cycle critically contributes to the selection and clonal expansion of high-affinity cells as well as
to the observed progressive decline of clonal diversity in at least a subset of GCs [15], although detailed
quantitative models are still needed to understand mechanisms behind clonal evolution, competition
and clonal burst induction.

Quantitative modelling of GCs: At the molecular level, the intracellular mechanisms associated
with regulation of the B cells, TFHs and FDCs interactions implicates more than 100 transcription
factors [16], most of which interact in highly regulated non-linear networks [17], making the precise
quantitative modeling of GC reaction tremendously complex. As GCs are stochastic systems that
display a high level of variability even within the same lymph node of the same individual [18],
mathematical models have been widely used to deepen our understanding of the cellular and molecular
processes characterising these complex dynamic systems [19]. In particular, multi-scale stochastic [20]
and spatial agent-based models have been proposed [21–23]. The advantage of such models is their
faithful replication of the probabilistic interactions between the different cellular populations in the GC.
Spatial models can capture the spatial dynamics and cellular flow between the two GC compartments,
although they are encumbered with several methodological challenges and computational complexity.
In comparison to spatial models, stochastic models offer fast and efficient computation of the main
statistical properties of the GC with the theoretical guaranties of convergence to the exact probabilistic
cellular distributions. Alternatively, computational models based on ordinary differential equations
(ODEs) tracking the evolution of individual cells have also been proposed, and concluded that there is
limited correlation between subclone abundance and affinity [24]. Other ODE models [25] were used
to look at clonal diversity with a simple birth, death and mutation model.

While these models have successfully reproduced the GC dynamics and B cell maturation process,
the accurate investigation of clonal diversity and burst emergence requires detailed modelling of the
affinity maturation process based on more realistic representations of the BCRs, where the impact of newly
acquired somatic mutations on the antigen binding capacity can be assessed. Advances in next-generation
sequencing of immunoglobulin genes (Ig-seq) have revealed the dynamics of BCR sequence diversification
across different B cell types in healthy and antigen-stimulated B cell donors [26]; however, structural
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information about the BCR, which is crucial to accurately model antibody binding capability [27], is not
available in a sequencing experiment. Preliminary work on BCR structural representations that model the
BCR as a short amino acid chain of (∼10 AAs) on a rectangular lattice has recently been developed [28].
Such detailed modelling comes however at a high computational cost—a single GC simulation takes a few
hours, which currently limits its application to GC simulations.

In this paper we build on a previous multi-scale GC model, where the cellular interactions of B
cells, TFH and FDCs were modelled stochastically using the Gillespie algorithm [20]. We improve the
model by adding an abstract molecular representation of the BCR based on its nucleotide sequence
that allows us to track the effect of SHM on the BCR affinity through time. Our quantitative
GC model is driven by 10 stochastic cellular interactions, which are parameterized using recent
experimental characterizations of the GC dynamics. We expand the previous model by adding new
regulatory mechanisms, such as centroblast division regulation by MYC, or centroblast apoptosis due
to nonproductive BCRs, and use the extended model to explore different differentiation scenarios of
B cells. Our sequence-based BCR representation enables a detailed investigation of clonal evolution
using phylogenetic trees [29], and an analysis of the factors that determine the emergence of clonal
dominance. Our paper summarizes the current quantitative knowledge about the GC responses,
and gives additional information about clonal diversity and B-cell affinity maturation, which is
particularly challenging to obtain from experimental data.

2. Methods: A Probabilistic Model of GC Dynamics

2.1. Stochastic Model of the GC

Our GC model includes reactions that occur in the low frequency regime where stochastic effects
cannot be neglected, and hence cannot be simulated using ordinary differential equations. Instead,
we use the formalism of chemical kinetics, where each reaction represents a stochastic process between
the following reactants: naive B cells (NB), centroblasts (CB), centrocytes (CC), selected centrocytes
(CCsel), memory B cells (MBC), plasma cells (PC), T follicular helper cells (TFH), and follicular dendritic
cells (FDC). The set of reactions are given in Table 1, and graphically depicted in Figure 1.

Figure 1. Probabilistic model for the germinal center (GC) dynamics. Activated naive B cells (NB) enter
the GC as centroblasts (CBs), which rapidly divide and mutate their immunoglobulin variable regions.
If mutation renders a BCR nonproductive, the CB commits apoptosis (∅). After a few hours, CBs migrate
to the light zone and become centrocytes (CCs). High-affinity CCs can acquire large amounts of antigen
from follicular dendritic cells (FDCs), which makes them more likely to receive survival signals from helper
T cells (TFH). Low affinity CCs, which acquire little or no antigen, cannot compete for T cell help and die
through apoptosis (∅). CCs that have received sufficient TFH signals may either recirculate into the dark
zone for another round of division and hypermutation, or leave the GC as a memory B cell (MBC) or a
plasma cell (PC).
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Table 1. Set of reactions used in our germinal center model, along with the reactions rate values
obtained after optimization, as detailed in Section 2.10.

Reaction Description Parameter Value

NB
ractivation−−−−→ CB B cell activation ractivation = 3.94 /h

CB
rdivision−−−−→ 2CB

where each daughter CB undergoes apoptosis
(CB −→ ∅) with probability δ per acquired mutation.

Centroblast division
rdivision = 0.134 /h

δ = 0.52

CB
rmigration−−−−→ CC Centroblast migration to LZ rmigration = 3.75 /h

CC
rapoptosis−−−−→ ∅ Centrocyte apoptosis rapoptosis = 0.084 /h

CC + FDC
rFDC:CC−−−−→ CC(pMHC) + FDC Centrocyte antigen uptake rFDC:CC =

40
NCC

/h

CC + TFH
rTC:CC−−−→ [CCTC] Centrocyte binding to TFH

rTC:CC =
145
NCC

/h
[CC1TC] + CC2

rTC:CC−−−→ CC1 + [CC2TC] Centrocyte TFH switch

[CCTC]
runbinding−−−−→ CCsel + TFH Centrocyte spontaneous unbinding rdivision = 2 /h

CCsel
rrecirculation−−−−−→ CB Centrocyte recirculation to DZ rrecirculate = 3.75 /h

CCsel
rexit−−→ MBC or PC

with probability pMBC : CC −→ MBC,
with probability pPC : CC −→ PC.

Centrocyte exit

rexit = 1.6 /h
see Section 2.7
for descriptions of
pMBC and pPC

To model the set of equations, we use the Gillespie algorithm [30], an algorithm that generates
statistically correct trajectories of a stochastic system of equations according to simple mass-action
kinetics. Briefly, at each time step, a propensity pi, or instantaneous probability that a reaction takes
place, is computed as pi = ∏s

j=1 Nij ∗ ri, where Nij are the number of reactants involved in reaction i and
ri is the reaction rate of the channel. The algorithm iteratively draws two random numbers: The first
one is used to define a time interval according to an exponential distribution, and the second one is
used to choose the reaction that takes place in that time interval. It can be proven that the Gillespie
algorithm converges to the exact probabilistic cellular distribution of all reactants. Furthermore, it is
computationally cheap compared to alternative simulation methods, and has been extensively applied
to model biomolecular interactions [31–33].

The standard Gillespie algorithm assumes that all particles are identical, and hence, it cannot
be applied to model cellular systems where individual cellular properties need to be distinguished,
such as the amount of antigen acquired by a CC, or its BCR sequence which determines its affinity and
probability of capturing antigen. To overcome this limitation, a modified Gillespie [20] algorithm was
developed that enables the efficient simulation of particles with individual properties by exploiting
Poisson thinning, a process whereby propensities that include undesired reactions are computed
and subsequently rejected. The modified algorithm was applied to simulate the GC reaction where
it demonstrated speed and accuracy. Here we use the modified Gillespie algorithm to account for
the following reactions: (i) CB division, (ii) CB migration, (iii) CC-TFH binding, (iv) CC competition
for TFH help, and (v) CC spontaneous unbinding. A brief description of each one of the cellular
interactions follows:

GC initiation and founder cells: NB
ractivation−−−−→ CB

A GC starts roughly 4 days after initial exposure to an antigen, after naive B cells are activated
by exposure to exogenous antigen within the lymph nodes. Early interclonal competition for T cell
signals selects a subset of B cells with the highest relative affinity to enter the GC reaction, contributing
to the early establishment of the oligoclonality in the GC [34]. Our GC model starts empty at day 4
after immunization, after which time B cells start to enter the GC reaction at a rate of ractivation per hour
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during the next 5 days (implying 5 · 24 · ractivation seeder cells) [22,35]. The propensity of this reaction
can be computed as:

propensity =

{
ractivation , between day 4 and day 9,

0 , otherwise.

In our simulation, we use a division counter [14] that takes values between 0 and 6, and is reduced by
one each time a B cell divides. Once the division counter falls to zero, the cell can no longer divide
and migrates to the LZ. Founding cells are initialized with the maximum division counter, i.e., 6.
We assume an initial affinity for BCRs ' 0.4 (see Supplementary Information for discussion about the
choice of parameters).

Centroblast division: CB
rdivision−−−−→ 2CB

CBs proliferate up to 6 times in the DZ [14], and randomly acquire mutations in their BCR genes
through SHM after each division. Similarly to seeder cells, we endow CBs with a division counter,
which allows them to divide up to 6 times depending on the amount of TFH help received. Cells are
only allowed to migrate to the LZ once the counter has fallen to 0. The propensity of this reaction is:

propensity =

{
NCB · rdivision , if division counter is > 0,

0 , if division counter is 0.

Each daughter CB undergoes apoptosis (CB −→ ∅) with probability δ per mutation (see
Section 2.2).

Centroblast migration DZ→ LZ: CB
rmigration−−−−→ CC

Once a CB division counter drops to 0, the cell can migrate to the LZ, where its regulatory program
significantly changes. The propensity of this reaction is:

propensity =

{
NCB · rmigration , if division counter is 0,

0 , if division counter is > 0.

Experiments suggest that class II MHC molecules are rapidly turned over on DZ B cells by
ubiquitin-mediated degradation, ensuring that the peptide-MHC II density is reset after every LZ-DZ
cycle [36]. Therefore, we assume that the number of antigen-MHC complexes is reset to 0 at the time
of migration, which ensures fair selection against other newly activated CCs in the LZ.

Centrocyte antigen uptake from FDC: CC + FDC
rFDC:CC−−−−→ CC(pMHC) + FDC

Centrocytes diffuse in the LZ until they encounter an FDC. Since the encounter rate is inversely
proportional to the LZ volume, rFDC-CC ∝ 1/volLZ, i.e., it is more likely for a CC to encounter a given
FDC when the GC volume is small. As volLZ is proportional to the number of CCs, NCC, the propensity
can be written as:

propensity = rFDC:CC ·NFDC ·NCC ∝ NFDC .

We assume that antigen uptake occurs when a CC encounters an FDC, upon which, the CC acquires
antigens in an affinity-dependent manner and re-exposes on its surface as a pMHC complex. Mature
B cells have been reported to carry up to 105 BCRs on their cell surface [37], and FDCs present a
very large amount of antigen [38], hence we assume that there is no competition for antigen and a
B cell can acquire as much antigen as the affinity of its BCR allows. Therefore, upon contact with
an FDC, the pMHC complex of the centrocyte is updated with pMHC = affinityCC. In the event
of the CC having previously acquired antigens from another FDC, the pMHC complex is replaced.
The interaction of GC B cells with FDCs is of the order of a second [6,39], and hence, we do not
explicitly model the binding time between B cells and FDCs. Alternative models that take into account
spatial motion have included a refractory time during which a B cell cannot attempt antigen binding
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again [22]. This interval is necessary to give time for the CC to diffuse away from the FDC and prevent
repetitive binding. However this is not necessary in our model, as the Gillespie algorithm models
cellular distributions, and the probability of the same CC–FDC pair binding more than once is very
small, ∼ (rFDC:CC/ ∑i propensity (reactioni))

2.

Centrocyte–TFH binding: CC + TFH
rTC:CC−−−→ [CCTC]

After acquiring antigen, CCs diffuse into the LZ until they encounter a free TFH . Upon encounter,
CCs attempt to bind their pMHCs ligands to the T cell receptors expressed on the surface of the TFHs.
The propensity is derived in the same manner as for the encouters with FDCs:

propensity =

{
rTC:CC · (NTFH)unbound · NCC , if pMHC > 0,

0 , if pMHC = 0.

Regarding the number of unbound TFHs, TFHs enter and leave the GC during the whole reaction [40].
Therefore, our model assumes that a homeostatic flow of TFHs has been established that leads to an
approximately constant density of TFHs during the whole reaction [18] (see Section 2.4 for a more
detailed discussion). Since the volume of the LZ is proportional to the number of CCs, we can write:

(NTFH)unbound + N[CCTC] = (NTFH)total = αTC · NCC

To implement this constraint, we dynamically adjust the number of TFHs at every iteration of the
Gillespie algorithm such that the above equation is always verified.
Centrocyte competition for TFH help: [CC1TC] + CC2

rTC:CC−−−→ CC1 + [CC2TC]

Two-photon microscopy imaging reveals that the majority of TFHs in GCs are not engaged in
stable interactions with B cells, but instead, most contacts between GC B cells and TFHs are of short
duration (<5 min) [6]. In our model, we replicate this phenomenon by introducing a competition
between the CCs to bind to TFHs. We assume that, if during the time a CC1 is bound to a TFHs a second
CC2 attempts to bind to the same TFH , the CC with the larger amount of pMHC will remain bound
and the other CC will be rejected [20]. The propensity can be written as:

propensity =

{
rTC:CC · N[CCTC] · NCC , if pMHC(CC2) > pMHC(CC1),

0 , otherwise.

As a result of this competition, a CC can interact with a TFH multiple times for shorter amounts
of time in our model. We assume that all these signals are cumulative and contribute towards fate
decision [23,41].

Furthermore, a CC substitution reaction happens in the timescale of a diffusion process, which is
typically much faster than the timescale of the GC reaction. Hence, we neglect the time associated
with the unbinding of CC1 and binding of CC2, and assume that this reaction has the same rate as a
standard CC–TFH binding.

Centrocyte–TFH spontaneous unbinding: [CCTC]
runbinding−−−−−→ CCsel + TFH

A CC bound to a TFH can unbind spontaneously after having received a sufficient amount of
TFH help:

propensity =

{
N[CCTC] · runbinding , if it was in contact with TFH for more than 30 min,

0 , otherwise.

Once a CC and TFH unbind after the CC has received enough TFH signal, the TFH cell is released
and the CC switches to the state selected.
Centrocyte apoptosis: CC

rapoptosis−−−−→ ∅
All CCs are subjected to a timed program regardless of their BCR affinity, and undergo apoptosis

with rate rapoptosis if not rescued by TFH signals:
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propensity = rapoptosis · NCC .

Centrocyte recirculation: CCsel
rrecirculate−−−−−→ CB

Selected CCs can recircule into the DZ for additional rounds of division and affinity maturation.
Their division counter is reset to 1–6 depending on the amount of TFH signals received (Section 2.6).

propensity = NCCsel · rrecirculate .

Centrocyte exit: CCsel
rexit−−→ MBC or PC

Similarly, CCsel can terminally differentiate as a PC or MBC with the following propensity:

propensity = NCCsel · rexit .

We assume that once a CC has been selected to differentiate, it becomes a PM or a MBC in a
pMHC-dependent manner. In Section 2.7, we computationally investigate three alternative scenarios
to determine fate choice.

2.2. Cell Fate after Somatic Hypermutation

Most of the variability of an antibody is concentrated into three hypervariable loops called
complementarity determining regions, CDR1, CDR2, and CDR3, which are responsible for the extensive
range of antigens with which antibodies can interact [42]. A mutation in the CDR typically modifies the
antigen binding properties of the BCR [43], while a mutation in the surrounding framework regions (FWR)
might compromise its structural support and potentially lead to apoptosis. Not surprisingly, CDR chains
show higher variability than FWR chains [44], although this might be due to posterior selection [6].

We model the effect of a mutation using a decision tree [24]. In this representation, a nucleotide
change can either: (1) be neutral or silent, i.e., the mutation has no impact on affinity, with probability
σ; (2) result in a nonproductive BCR that leads to apoptosis with probability δ; or (3) change the affinity
of the BCR with probability β = 1− σ− δ (Figure 2). In our simulation, we assume that a mutation
can happen in both the FWR and CDR regions, although only mutations in the CDR region can lead
to a change in affinity. To model the effect of a mutation, we draw two random numbers. The first
number determines the number of single nucleotide changes in the whole BCR sequence according
to a binomial distribution with parameters NBCR = 660 [45] and pSHM = 1× 10−3 [46]. The second
random number determines the impact of each mutation according to Figure 2.

Figure 2. Decision tree to model cell fate after somatic hypermutation (SHM). The number of mutations
in the BCR after each centroblast division is sampled from a binomial distribution. Each mutation can
produce a BCR of similar affinity, lead to cell apoptosis or produce a BCR of different affinity with
probability σ, δ, and β respectively.
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2.3. B Cell Receptor Affinity to Epitote

To model changes in affinity, we only consider the sequence SCDR of the CDR region of each
BCR. Each sequence SCDR is composed of NCDR sites that can take 4 possibles values ∈ [A, T, G, C].
To simplify sequence comparison, we further assume that all the BCRs sequences are of the same
length (NCDR = 25). We define the affinity of a sequence by using the normalized Hamming distance
between the sequence SCDR and the optimal CDR sequence S0 to bind the target antigen, as follows:

aCDR = 1− ||SCDR − S0||H
NCDR

. (1)

While this representation does not consider the structural properties of the BCR, it has the
advantage of modelling the effect of individual nucleotide changes and being computationally very
cheap to compute, which enables the running of exhaustive simulations of the GC with a realistic
number of cells. Furthermore, Equation (1) is bounded by 0 ≤ aCDR ≤ 1, and hence, aCDR is
endowed with the general properties expected of any physiologically relevant affinity function.
For instance, it becomes probabilistically less likely to increase the affinity of a sequence that is
close to the upper bound. Conversely, if a sequence exhibits low affinity, there is a wide range of
mutations that can significantly increase the affinity. Our definition of affinity has strong similarities
with previously postulated affinity measures [47], with the important difference being that we use the
Hamming distance instead of the Euclidean distance, which is more adequate to work with strings of
characters (nucleotides). It also agrees with other postulated properties of the affinity function such as:
homogeneity, i.e., the function applies equally well to all regions of the shape space; complementarity,
i.e., the optimal sequence can also be represented as a sequence, where shortest distance to the antigen
sequence corresponds to greater affinity; and smoothness, i.e., small changes in the distance correspond
to small changes in the affinity [48].

2.4. TFH Dynamics

Two-photon microscopy experiments have shown that TFHs exist in a state of dynamic exchange
between different GCs in a lymph node, and newly activated TFHs can invade pre-established GCs
and contribute to B cell selection and plasmablast differentiation [40]. Furthermore, TFHs also
proliferate [18], which results in cell count variability across time points. However, the ratio of
GC B cells to TFHs in the LZ appears to be maintained at a relatively constant ratio of ∼7:1 through
the entire GC reaction [18]. We also note that a constant ratio of CC:TFHs results in an approximately
constant probability of a CC encountering a TFH through the whole GC response.

In a typical GC, TFHs are activated by a variety of different antigens, and hence, CCs can only
successfully bind to a subset of the available TFHs. Since our model assumes that only one type of
antigen is presented by the FDCs and acquired by CCs, we decrease the experimentally determined
CC:TFHs ratio to a lower number, which we optimise using time resolved measurements on GC kinetics
data (Section 2.10). Our estimation is that the optimal effective ratio is ≈1/46, suggesting that only
15% of measured TFHs are specialized to a specific antigen.

2.5. TFH Survival Signals

The signaling interaction between a CC and a TFH is non-linear: ICOSL on B cells promotes
upregulation of CD40L on T cells, which in turn further upregulates ICOSL on the B cell, creating a
positive feedback loop that promotes a mode of intimate contact in which a large area of the B and T
cell surfaces are juxtaposed [49]. Thus, small differences in pMHC density between B cells of different
affinities can be nonlinearly amplified into large differences in signaling that allow for a more efficient
selection of high affinity B cells. To reproduce this behavior, we describe the strength of the binding
signal using a family of monotonically increasing functions with parameter n, such as:

signal strength (pMHC) = exp(pMHCn)− 1 ,
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where the parameter n controls the strength of the nonlinear interaction: higher values of n make
it harder for cells with low or moderate affinity to acquire TFH signals (see the Supplementary
Information for a more detailed discussion). At every unbinding event, the cumulative signal of the
CC acquired from TFH is incremented with:

∆Thelp = time in contact with TFH · signal strength(pMHC) .

Thus, in our model, the total amount of help received from a TFHs is the cumulative signal
obtained by aggregating the signals received through each encounter, however small, that a CC has
with a TFH in the LZ. In practice, most encounters are of short duration and typically increase the
cumulative TFHs help by only a small amount (70% of the bindings last for less than 5 min). This mimics
the observation that a CC probes and attempts to bind to many different TFHs endowed with different
receptors, before receiving a substantial amount of signalling from a TFH with a compatible receptor.

2.6. Regulation of the Cell Cycle

The process of acquiring T cell help ends when a CC unbinds spontaneously from a TFH after
having received signals for ∼30 min, upon which, the CC is considered selected and can either leave
the GC and terminally differentiate into a PC or a MBC, or recirculate into the DZ for further rounds
of division and BCR maturation. Cells that recirculate into the DZ regulate their cell cycle speed
according to the amount of TFHs help received, with cells that have received strong signals being able
to replicate up to 6 times [10,14]. The regulation of the cell cycle is likely to be induced by MYC [11,13],
a cell-cycle regulator that is upregulated by TFH help in cells selected for reentry into the DZ [12].
MYC is also known to play a critical role in the regulation of division bursts in the DZ [11].

To reproduce the regulation of the cell cycle, we use a division counter [14] that takes values
between 1 and 6 depending on the amount of TFH help received. To implement the division counter,
we first run a short simulation to precompute the distribution of cumulative help from TFH . This initial
distribution is kept fixed throughout the GC simulation and used to define 6 equal percentiles, such that
a cell in the nth percentile undergoes n divisions (Figure 3). Such definition corresponds to an average
of ∼3.5 divisions per recirculating cell in our model, very close to the experimentally determined
average of 3 divisions per recirculating cell [14]. Besides increasing in number due to the higher
number of cellular divisions, high-affinity cells also acquire a higher number of mutations than those
that undergo fewer divisions [14], which enhances their chances of developing more effective BCRs.

Figure 3. Fate of B cells after interaction with TFH. Cells that do not receive sufficient help from TFHs

undergo apoptosis. The remaining cells either leave the GC and differentiate into a PC or MBC, or
cycle back to the dark zone, where they undergo up to 6 divisions depending on the amount of TFH

signals received.
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2.7. Plasma Cell and Memory B Cell Differentiation

Upon exit from the GC, B cells terminally differentiate into PCs or MBCs. Temporal data has
demonstrated the existence of a temporal switch, where MBCs tend to be produced during the early
phases and PCs are produced at later times of the response [50]. The precise mechanism that determines
whether a cell differentiates into a PC or MBC is not completely understood [1], although recent work
suggests that affinity to antigen plays a central role in selecting the cells that enter the PC pool, while
lower affinity selected B cells progress to MBCs [51]. In this scenario, TFH help stimulates CD40
signaling and IRF4 transcription, which in turn regulates, in a dose-dependent manner, the choice
between differentiating into a PC or cycling back into the DZ [52]. This model has been computationally
investigated using a multi-scale probabilistic model and shown to lead to good agreement with the
experimentally determined GC output [20]. Regarding the differentiation into MBCs, the determinants
that predispose cells to enter the MBC pool or the markers that identify cells committed to the MBC
lineage are not known. A fraction of LZ B cells with lower affinity are prone to progress to resting
MBCs in a Bach2 TF-dependent manner [53,54], although high-affinity cells might also become MBCs.
This suggests that stochastic effects might be at play in the selection of the MBC fate.

We use our model to investigate alternative differentiation scenarios. Similarly to previous work,
we assume that IRF4 regulates cell fate in a dose-dependent manner, where high-affinity cells that
express high amounts of IRF4 are directed to the PC pool, and medium affinity cells either cycle back
into the DZ or differentiate as a MBC. Once a cell is positively selected, we simulate and analyse three
possible differentiation scenarios:

• Antigen-driven differentiation model (model 1): In this first scenario, we consider that affinity
determines B cell fate in a deterministic manner. Namely, there is a threshold pMHCthresh above
which a CC becomes a PC. Below that threshold, a cell becomes a MBC.

• Dynamic antigen-driven differentiation model (model 2): A more sophisticated hypothesis
is that T cells progressively become less sensitive to the pMHC complex and, as the average
affinity of B cells increases in the GC, a larger amount of pMHC is needed to induce the same
amount of IRF4. In the second scenario, the choice between PC and MBC is also deterministic,
although according to a dynamic threshold that increases linearly with time, i.e., pMHCthresh =
affinityGC(t− t0) + a0.

• Stochastic differentiation model (model 3): Finally, we also investigate a probabilistic scenario
where, once a B cell has been selected for differentiation, it becomes a PC or MBC according to
some fixed probabilities that depend on the amount of expressed pMHC as follows: pMBC =

e−k(pMHC−p0) and pPC = 1− pMBC.

In all three scenarios, apoptosis occurs irrespective of affinity. Namely, apoptosis is modelled in
the Gillespie algorithm as a reaction channel with constant kinetic rate, and hence, its probability of
happening only depends on the total number of CCs. We note, however, that CCs carrying high-affinity
BCRs are more likely to be positively selected and differentiate or recirculate, while lower affinity CCs
are more likely to stay in the GC and undergo apoptosis, which might result in an indirect association
between low affinity and apoptosis [55]. Regarding recirculation, it happens stochastically according
to a Gillespie channel of constant kinetic rate once a CC has been selected, and hence, recirculation
after selection is an affinity-independent event. In all scenarios, the amount of received T cell signaling
is only important to stop apoptosis and to decide on the number of divisions for cells that recirculate
into the DZ. In that respect, all models are based on antigen-driven selection mechanisms.

2.8. Phylogenetic Trees Representation

We use phylogenetic trees to visualize the evolution of the CDR sequences through SHM. In such
a representation, each founder cell, associated with a unique V, D and J combination, defines the
unmutated germline of a new tree, and newly acquired mutations are represented as downstream
nodes. Different approaches to represent clonal trees are possible. Here, we chose to associate each
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leaf with a sequenced cell and each internal node with an unique mutation of the BCR. Using our
simulated data, it is trivial to reconstruct lineage trees, as we can follow each founder cell and its
progeny through the whole GC reaction. Then, the topological properties of each phylogenetic tree,
such as number of nodes, average depth of the leaves, trunk length, etc provide important information
about the affinity maturation [29,56], and can be used to compare simulated trees to trees inferred from
experimental data.

To construct trees from experimental data, i.e., repertoire sequencing data, we first align the
variable (V), diversity (D) and joining (J) gene segments of each sequence using the IMGT [57] (for
V,D,J) and VBASE2 (for V) [58] databases with BLAST [59]. In the case of discrepancy between V
segment assignments from the two databases, the assignment leading to the lowest number of somatic
mutations is chosen. As cells have at most 20 mutations, all assignments were unambiguous with a
V(D)J alignment score over 95%. Next, functional V(D)J sequences are grouped together into clones
if they shared the same V, J and D gene segments. The grouped sequences from each clone are
then aligned with ClustalW [60]. This second alignment is necessary to infer a mutation matrix, as
tree inference algorithms typically require sequences to be aligned and of the same length, while
experimentally determined sequences have different lengths, and include insertions and deletions.
The corresponding trees are computed with SCITE [61], a stochastic search algorithm based on Markov
chain Monte Carlo sampling. The root node is defined by taking the unmutated V(D)J germline and
filling the remaining junction region with the consensus sequence of all available sequences. Finally,
the obtained trees are analyzed with the BioPhylo Python library [62] to compute the main topological
tree properties, such as number of leaves, internal nodes, branches, trunk, etc.

2.9. Clonal Diversity

Clonal diversity has been measured using a multi-color fate mapping technology that permanently
tags individual B cells and their progeny with different combinations of fluorescent proteins.
The method can generate up to 10 different color combinations, thus limiting the experiment to
characterising the evolution of a maximum number of 10 clones. A Normalized Dominance Score
(NDS), defined as the fraction of all B cells in a GC that carry the dominant color combination, was used
to characterize clonal diversity [15,63]. To simulate this experiment, we cluster founders into 10 groups,
and define an NDS score as the ratio between the cell count of the dominant cluster over the total
number of cells. The NDS is used only for a direct comparison with measurements, but not for other
characterisations of the clonal diversity. Later in the paper, we use the clonal dominance (CD), which is
simply the ratio between the cell count of a clone cluster and the total number of cells.

2.10. Parameter Optimization

Our models include 17 free parameters that need to be optimised. As the amount of quantitative
information about the GC dynamics is still limited, we exploit the recent literature to obtain reasonable
estimates about the value of some parameters as well as variability bounds (Lower bound and Upper
bound columns in Table 2). Further details can be found in the Supplementary Information.

In addition, many recent works have experimentally characterized the GC, and we use these
data to constrain different properties of the GC response, such as GC kinetics, output cell counts, etc.
We further use data from mice experiments when human experiments are not available. We briefly
discuss here the constraint bounds on each GC property.

• Number of GC B cells: A time-resolved study of 3457 GC sections from mice provided
information about the GC area AGC throughout the GC reaction [18]. Assuming that GC are
spherical, then AGC = π r2

GC, from where the radius of the GC, rGC, can be estimated. If we further
assume that B cells are the predominant cellular type in the GC, we can estimate the number of B
cells in the GC as:
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NB cell ≈
VGC

VB cell
=

(
rGC

rB cell

)3
,

where we have considered cells to be spherical. Taking rB cell = 6.2 µm [64] and rGC = 80 µm
(day 9) [18], we get an average of NB cell ≈ 2000 at the GC peak. As most histological sections do
not go cut GCs through the centre, estimations of individual GC volumes are only approximated.
Nevertheless, it has been shown that cross-sectional area distributions of spleen sections reflect
accurately the broad real-size distributions of GCs [65]. Moreover, as there is significant variability
in GC B cell sizes, notably during the cell division cycle [66,67]), the previous number has to be
considered only an order of magnitude approximation to the total number of cells. Interestingly,
the same study found that GC undergo a fast expansion phase from day 4 to 9, and then
progressively decrease in volume by a factor of 2, roughly 10 days after the initial expansion [18].

• DZ/LZ ratio: Despite high variability in size, a typical cellular composition with relatively stable
cell ratios of resident TFHs, macrophages, proliferating cells, and apoptotic nuclei seems to be
maintained during the established phase of the response [18]. Time-resolved data about the
relative size of DZ to LZ is also available from the same study. While the variability in the relative
volumes of DZ and LZ is considerably high at all sampled time points (Figure 4B), it stabilizes
after the phase of monoclonal expansion to an average of ∼ 1 during the entire GC reaction [18].
The high variability is consistent with some other studies that found a ratio of 2 [9]. In our
simulation, the DZ/LZ ratio is defined as the number of CBs over the number of CCs; however,
we only estimate this ratio after day 9 after immunization, hence avoiding the early days of the
GC establishment, where the DZ and LZ are still not spatially separated.

• Cell death: Apoptosis is prevalent in the GC, with up to half of all GC B cells dying every 6 h [55].
We use a relatively constant cell death rate of 8%/h in both the DZ and LZ through the entire
GC response.

• SHM mutations: Time-resolved data on sequenced BCR mutations, obtained by comparing
sequences to the closest known V,D,J germline sequences, suggest that B cell clones undergo
roughly 5 mutations every 10 days, and [6,44]. We use these data to further constrain our model.

• GC cellular output: Finally, we use time-resolve data of the GC cellular output [50] to constrain
our model. Because the experiment only measured relative abundances rather than direct cell
counts, we scale both the model predictions and experimental measures by the maximum value.

Next, we compute an error for each set of parameters, defined as the sum of the root mean square
deviation (RMSD) between the model prediction and experimental results. For a fair measurement
of the fitting performances across heterogeneous GCs, the RMSD is normalized by dividing it by the
standard deviation of the experimental data averaged over the different time-points—we also average
over same time-point replicates, when available, to reduce variability. As no measurement of the cell
death standard deviation is available, we arbitrarily assume a standard deviation of 1% cell death/h
(measured rate is 8% cell death/h). For each one of the 4 properties for which data is available, i.e.,
cell count, DZ/LZ ratio, cell death and number of mutations, we compute an independent NRMSD.
A NRMSD lower than one indicates that the simulation error is lower than the uncertainties intrinsic
to experiments.

The score function is minimized with the maxLIPO algorithm [68], which is both parameter free and
provably better than a random search. It is a good alternative to Bayesian optimization methods [69],
that typically require the definition of prior assumptions about the function being optimized and
thus require domain knowledge. The constraints specified for each parameter, as well as the obtained
optimal value, are reported in Table 2. Due to the high computational cost required for parameter
optimization with high dimensionality, a simplified ODE system was also used to speed up the
maxLIPO search (described in the Supplementary Information).
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Table 2. Parameter bounds and optimized values used in our model. The Lower bound and Upper
bound are derived from the literature; the fitted values are obtained with the maxLIPO optimization
algorithm. The Sensitivity column indicates how sensitive the score function is to a ±10 % change in
the parameter value. The labels low, moderate, high correspond respectively to a <10 %, <100 % and
<1000 % change of the score function. Further details can be found in the Supplementary Information.

Parameter Description Lower Bound Upper Bound Fitted Sensitivity Mainly Affects

In
te

rc
el

lu
la

r

ractivation [h−1] B cell activation rate 1 10 3.94 high Value of GC peak

rdivision [h−1] CB division rate 0.08 0.16 0.134 moderate DZ/LZ ratio

rmigration [h−1] CB migration rate 0.15 3.75 3.75 low DZ/LZ ratio

rapoptosis [h−1] CC apoptosis rate 0.06 0.16 0.084 high GC decay

rexit [h−1] CCsel exit rate 0.41 3.75 1.6 high GC decay

rrecirculate [h−1] CCsel recirculation rate fixed to 3.75 high GC decay

rFDC:CC [h−1] FDC encounter rate fixed to 40/NCC low Clonal competition

rTC:CC [h−1] TFH encounter rate fixed to 145/NCC moderate Clonal competition

runbinding [h−1] TFH unbinding rate fixed to 2 high GC decay

αTC = NTC/NCC TFH to CC ratio 1/100 1/7 1/46 high GC decay

NFDC Number of FDCs fixed to 250 low Clonal competition

In
tr

ac
el

lu
la

r

δ Lethal mutation
probability

0.1 0.9 0.52 high GC decay

σ Silent mutation
probability

fixed to 0.28 low Affinity maturation

pSHM Mutation rate fixed to 1× 10−3 high GC decay

NCDR CDR length (nucleotides) fixed to 25 low Affinity maturation

PC
/M

BC

pMHCthreshold Model 1 parameter 0 1 0.46 moderate PC/MBC production

t0 Model 2 parameter 0 ∞ 3 days moderate PC/MBC production

a0 Model 2 parameter 0 1 0.05 moderate PC/MBC production

k Model 3 parameter 0 ∞ 14 moderate PC/MBC production

p0 Model 3 parameter 0 1 0.4 moderate PC/MBC production

3. Results

3.1. Germinal Center Dynamics

We simulate our GC model using a modified Gillespie algorithm [20] and the parameters
optimised as discussed in Section 2.10. Namely, 1000 simulations were run and the normalized
root mean square deviation (NRMSE) of each optimised GC property was computed. Results are
presented in Figure 4.

Our model is in good agreement with the experimental data, having a fairly low (.1) NRMSD
for all optimised GC properties. For instance, the NRMSD of the GC B cell count is 0.13, indicating a
smaller deviation than the standard deviation of the experimentally determined number of GC output
cells. A reason for this disparity is the high heterogeneity of GCs in terms of size and cell count [18,65],
with measured GCs ranging from ∼500 to ∼10,000 B cells in size. As our model is trained to replicate
the mean experimental values, it is expected to show lower standard deviation. Despite this difference,
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our model recapitulates well the general trends of experimental measurements, e.g., the reduction of
GC volume by half in ∼5 days [65], and the shutdown of the GC at around day 40.

Figure 4. Experimental data vs. our model after 1000 simulations, along with the obtained normalized
root mean square deviation (NRMSE) of each measured GC property. Thin blue lines represent one
single Gillespie simulation, while thick lines are the average over all simulations. Experimental results
are represented by a tick bar corresponding to the median and 1st-3rd quartiles, the central point being
the median. Figures (A,B) depict simulations and experimental data about cell count and DZ/LZ
volumetric ratio respectively, the latter derived from [18]. Figure (C) shows the death rate percentages
of B cells in both the DZ and LZ (8 %/h) [55]. Figure (D) shows the mutation rates at different time
points, and roughly corresponds to 5 mutations every 10 days [6,44]. Figures (E,F) illustrate the
temporal switch from memory B cell to plasma cell production simulated with our model using 3
different differentiation scenarios and experimentally measured [50].

Regarding PC/MBC differentiation, the time-dependent GC output of the three models
investigated in Section 2.7 reproduces the temporal switch experimentally observed (Figure 4E,F),
where memory cell models are produced during the first two weeks of the GC reaction, and plasma
cells are produced afterwards [50]. The model based on a fixed threshold has the lowest agreement
with experiments, as this model does not lead to a substantial production of MBCs after 2 weeks,
while MBCs are produced during the whole GC reaction, albeit at a moderate rate at late time-points.
On the other hand, both the dynamic threshold and stochastic differentiation model are compatible
with experimental data (average NRMSD = 0.52 and 0.59), with the stochastic model fitting the data
slightly better.

To gain insight into which parameters have a higher impact on the GC dynamics, we perform
a stability analysis (Supplementary Information). The analysis reveals that the GC kinetics is most
sensitive to changes in the parameters that regulate the selection process by TFHs, such as the amount
of TFHs signals necessary for a LZ B cell to recirculate into the DZ, as well as the amount of cellular
divisions it undergoes once there. Similarly, the probability δ of dying in the DZ after a mutation leads
to a nonproductive receptor critically influences the number of cells in the GC.
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We also perform a sensitivity analysis to quantify the effect of changes in the parameters in
the simulation output. Due to the complexity of the model, we only consider individual changes
in parameters, namely, we explore changes of ±10% of each parameter, while keeping the rest of
the parameters unmodified [24]. The changes in the model output are quantified by measuring the
change in NRMSEtotal over all quantified GC properties (Table 2). Some parameter changes mainly
affect the GC kinetics, e.g., the GC B cell counts and the DZ/LZ ratio, while others have an impact
on the affinity maturation process, e.g., clonal diversity and number of acquired mutations. As an
example, the lethal mutation probability δ has a strong impact on the GC kinetics, as a 10% decrease
leads to a 660% change in the total NRMSD. On the other hand, the silent mutation probability σ has
a low impact, as a 10% decrease only leads to a change in the total NRMSD of <10% (Table S1 in the
Supplementary Information).

3.2. Comparison of Simulated and Experimentally Determined BCR Sequences

A direct comparison of sequences between sequenced GC B cell repertoires and sequences inferred
with our model is not possible due to our abstract representation of the variable region of the BCR.
As an alternative, we use phylogenetic trees to visualize the somatic evolution of B cells during the
GC response. To construct experimental trees, we use single-cell BCR sequencing data obtained from
individual GCs [15]. Specifically, the sequences of the Ig heavy chain of ∼1500 single B cells from 18
distinct GCs—with an average of roughly 80 cells per GC—were used to build 266 trees containing at
least 2 cells. All measurements were performed on mice at day 15 after immunization with different
antigens. By sampling midway through the GC reaction, intermediate BCRs that might have populated
the GC at earlier time-points are lost, and the inference sometimes shows long trunks, representing
the pruned evolutionary process of the sampled cells, in agreement with earlier observations [29].
Co-existing clones are only seen close to the tree leaves (Figure 5A), where selection is currently taking
place. Regarding the inference from simulated data, trees can be straightforwardly reconstructed,
as the whole lineage is available in a simulation. To reproduce the experimental sampling conditions
with the simulated data, we uniformly sampled 80 cells at day 15 after immunization from our model.

The experimental and simulated trees were analyzed with the BioPhylo python library [62] to
compute important topological properties, such as number of leaves, average leaf depth, and trunk
length. The distributions of these properties in both the simulated and the experimental tress are
shown in Figure 5B–D. Simulated distributions are obtained after averaging 1000 runs in our model.
Overall, the distributions obtained from simulated and experimental data are in good agreement
(S > 0.6, Figure 5). However, experiments suggest that the density function of cell mutations
per tree is broader than what our model predicts. This could be explained by the fact that all
mutations have equal contributions in our model, where one mutation can only increment the
affinity by 1

NCDR
, with NCDR = 25. Such limitation prevents cells with a low number of mutations

from having a high-affinity BCR, thus constraining the simulated density function to be narrower.
Another contributing factor could be the fact that our simulation only considers the CDR region,
and does not keep track of silent mutations that might occur in the FWR region.
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Figure 5. Phylogentic trees from BCR sequences at day 15 after immunization. (A) Representative
phylogenetic tree inferred from single-cell BCR sequencing extracted from individual GCs [15].
The purple nodes (M) represent mutation and the gray node (C) represent individual cells.
(B–D) distribution of tree topological properties (number of leaves, average leaf depth and trunk
length) in experimental and simulated trees. The score S is defined as Overlapping Area/Joint Area of
the histograms.

3.3. Visualizing Affinity Maturation

Figure 6A depicts the evolution of the average affinity in the GC through its lifespan. Noticeably,
affinity does not substantially improve during the first days of the GC reaction, corresponding to the
phase of monoclonal expansion where B cells divide without selection pressure. After day 10, affinity
increases linearly throughout most of the lifespan of the GC, only showing slower improvement
rates near the end of the GC reaction, where the remaining B cells have presumably developed
good receptors against the exposed antigens, and new mutations are likely to be detrimental to the
overall affinity.

For visualization purposes, we randomly sampled two cells every day from the dominant clone,
where dominance was established by analyzing clonal cell counts at the end of the simulation, and
computed a tree from the obtained set of BCR sequences (Figure 6B). Since we sample uniformly
throughout the lifespan of the GC, we do not observe the long trunk found in experimentally inferred
trees due to pruned clones. Although the specific structure of the tree shows high variability as a
consequence of the strong undersamplig, the tree clearly shows how affinity maturates as a result of
clonal evolution. Noticeable also is the clear correlation between increased affinity and number of
SHMs (the number of mutations is equal to the number of nodes connecting the root cell and a leaf).
Resampling the BCR set multiple times did not significantly change the properties of the tree.
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Figure 6. Affinity maturation in GC through its lifetime. (A) Mean BCR affinity as a function of time.
(B) Tree representation of affinity maturation. Two cells were sampled every day for 25 days (50 cells in
total). The purple nodes (M) represent mutation, and the color of cell nodes represents the BCR affinity
(yellow = low and green = high), the cell label subscript is the day on which the cell was sampled.

3.4. Visualizing Clonal Competition and Clonal Burst

To better understand the complex process of clonal competition and the mechanisms behind
clonal bursts observed in a subset of GCs [15], we plot the evolution of the number of clonal families
in the GC as a function of time (Figure 7A), where clonal families are defined in our simulations as the
cells descending from the same founder cell. Our model reveals that the number of clones increases
until day 8, corresponding to the continuous entry of new founder cells in the GC. Then, shortly
after the monoclonal expansion phase, the GC experiences a rapid loss of clonal diversity due to the
high selection pressure exerted in the LZ on the still immature CCs, followed by a more moderate
decrease that lasts until the end of the GC reaction. These results are consistent with experimental
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characterizations that have revealed that clonal diversity is relatively high during the early days of the
GC, followed by a phase lasting several weeks where a few clones quickly dominate the reaction [15].

While the evolution of the number of clones in the GC has not been measured quantitatively,
clonal diversity has been characterized using a Normalized Dominance Score (NDS) [15] (Section 2.9).
An interesting finding of this study is that, while most GCs retain substantial clonal diversity
within the 3-week lifetime of the GC response, rapid and massive expansion of higher-affinity
SHM variants (clonal bursts) leads to substantial loss of diversity in a subset of GCs. As illustrated
in Figure 7B, our model quantitatively reproduces the measured NDS with a low NRMSD (0.40).
Both the simulations and the experimental characterizations reveal a high variance in the NDS score.
For instance, our model predicts that 2.5% of GCs reach clonal dominance (NDS = 1) at day 30, and 25%
at day 40. This is expected if stochastic effects play a fundamental role in the emergence of dominance.

Figure 7. Clonal diversity evolution during the GC reaction. Thin blue lines represent one single
Gillespie simulation, while thick lines are the average of 1000 simulations. Figure (A) depicts the B cell
clonal evolution through the GC response, and (B) the Normalized Dominance Score (NDS), i.e., the
fraction of B cells in the dominant clone, as reported by [15]. Experimental results are represented by a
scatter plot, where individual points represent single measurements and the bar indicates the median.

To investigate the emergence of clonal dominance in more detail, we plot the Clonal Dominance
(CD), which clusters cells that descend from the same founder cell (Section 2.9), of individual families in
two representative simulations in Figure 8A,C. The first simulation (1) shows a GC with no observable
clonal bursts. The CD of the dominant clone (green line) only becomes dominant after day 15, but other
competing clones are still significantly present until much later (∼30 days). In the second simulation
(2), the dominant clones (brown line) outcompete other clones as early as day 10, with most of
the co-existing clones disappearing by day 25. It is interesting to notice that in the latter scenario,
representing a GC that underwent a clonal burst, the winning clone acquired an early advantage
(before day 10) in terms of affinity (Figure 8D), which enabled the clone to proliferate and gain
dominance. Although other clones reached higher levels of affinity at later time points, e.g., from days
15 to 25, the early advantage that led to a higher proliferation rate was sufficient to ensure dominance
throughout the whole GC reaction.

The simulation shown in Figure 8 (2) seems to suggest that there is a time delay of roughly 7 days
between the initial clonal affinity advantage and the clonal burst induced by it, corresponding to
multiple LZ-DZ cell cycles—in our model, a full DZ–LZ cycle lasts ∼1–2 days depending on the
number of divisions in the DZ. To better quantify the delay between the increase in affinity and
the appearance of clonal dominance, we performed a Time Lagged Cross Correlation analysis [70]
between the clonal affinity and the clonal dominance time series of each clone. Briefly, the analysis
computes the Pearson correlation of one time series with the respect to the second one shifted by a
time offset. By trying different values for the offset, one can find the optimal time delay that maximises
the correlation. We collected time series data from 1000 clone dominance-affinity pairs by taking the 10
most abundant clones of 100 GC simulations. The results obtained, highlighted in Figure 9, confirm that
the correlation is maximized for a time delay of 7.1 days, which suggests a causal relationship between
a random increase in affinity and the emergent appearance of dominance one week later. A delay of
7 days corresponds to roughly 3–4 rounds of DZ–LZ B cell cycles. This delay is consistent with the
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expectation that the production of high-affinity antibodies requires several rounds of cell division and
affinity maturation. More specifically, with an average of three divisions per DZ–LZ cycle, our model
suggests that one round of somatic hyperpermutation is not enough to achieve clonal dominance.

Figure 8. Clonal dominance and clonal affinity maturation for two representative GC simulations,
without (1) and with (2) clonal burst. Figures (A,C) showcase the clonal dominance score evolution
in the GC, and (B,D), the average affinity of each clonal family as a function of time. Only the most
abundant 50 clones are shown to simplify the presentation.

Figure 9. Time Lagged Cross Correlation analysis between clonal dominance and clonal affinity time
series. The Pearson correlation is averaged from the 10 most abundant clones of 100 germinal center
simulations (resulting in 1000 clone dominance-affinity pairs). The shaded region corresponds to one
standard deviation. The correlation peaks at 0.79 at an offset of 7.1 days.

4. Discussion

We have presented a stochastic multiscale model of the GC that combines an abstract representation
of individual B cell receptors (BCRs) as strings of nucleotides, a deterministic regulatory representation
of the transcriptional program associated with B cell differentiation [20] and a stochastic representation
of the cellular interactions that shape the GC reaction. The model parameters were optimised using
time-resolved data from various experimental characterizations of the GC kinetics and GC clonal
diversity [15,18,44,50,55]. Overall, our model recapitulates the GC dynamics characterized experimentally,
including the GC B cell counts at different times of the GC reaction, the DZ/LZ volumetric ratio, the cell
death and accumulation of mutations as a result of SHM. Compared to existing models, our model
accounts for a broader range of important biological processes, e.g., centroblast apoptosis, a more realistic
description of antigen capture, and faithfully replicates experimental data. A sensitivity analysis reveals
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that the GC kinetics is very sensitive to small changes in some key parameters, indicating that the B
cell maturation is a tightly regulated program. In particular, slight differences in the TFH selection
process have a high impact in the GC dynamics, and can potentially lead to a drastic increase in both the
number of dividing centroblasts as well as differentiating cells. Such sensitivity could explain the high
variability observed in the GC sizes [18]. Our optimisation approach enables the easy integration of new
experimental data that might become available in the near future.

With the help of our model, we computationally investigated three candidate mechanisms that
might potentially govern the terminal differentiation of GC B cells into PCs or MBCs. Namely, (i) a
deterministic scenario, where the amount of captured antigen determines cell fate; (ii) a dynamic
model, similar to the deterministic model, but where the threshold of captured antigen to become
a PC increases with the lifespan of the GC; and (iii) a probabilistic scenario, where the amount of
exposed antigen determines the cellular outcome in a probabilistic fashion, i.e., cells with high and low
amounts of antigen have a non-zero probability of becoming either a PC or a MBC. Although the three
models perform reasonably well and reproduce the observed temporal switch from memory cells to
plasma cell production accurately [50], the stochastic differentiation model has the best agreement
with experimental data (Figure 4E,F). One important point is that while the three models differ
in the absolute counts of PCs and MBCs produced (Supplementary Figure S2), the experimental
data only reports relative changes across time-points, which might hide global changes in cellular
output. Additional experimental data on the GC output will help further differentiate between the 3
considered scenarios.

The amount of TFHs plays a critical role in determining the GC outcome. Models where the
number of TFHs is fixed at a constant value tend to be stable, with the GC reaching a steady state upon
which it does not decreases or increases in size, contrary to observations (Figure 4A). We therefore
assume that TFHs can enter and leave the GC during the whole reaction [40], which leads to having an
approximately constant density of TFHs [18]. With this assumption, the sizes of our simulated GCs
closely resemble experimental determinations, and the GCs naturally become extinguished by day
∼40 (Figure 4A). Critical to achieving this self-shutdown is the choice of parameters. Indeed, a very
rough estimation of the rate of variation of the total number of GB B cells, ṄB, shows that this
number approximately evolves according to ṄB w 0.6 · rdivision · NCB − rapoptosis · NCC − NCCsel · rexit,
where 0.6 is a correction factor that accounts for apoptotic and non-dividing centroblasts. Taking
NCC/NCCsel w NCB/NCCsel w 100, as predicted by our model, our choice of parameters leads to
ṄB w −0.4 NCCsel < 0, explaining the observed reduction in NB after day 9 (a detailed ODE analysis can
be found in the Supplementary Information). Hence, after the initial phase of monoclonal expansion,
our simulated GCs enter a phase of slow decrease in size until they naturally shutdown around day 40.
Of course, additional mechanisms may be at play in terminating the GC reaction, such as antibody
feedback [71]. Similarly, asynchronous onset and intercommunication between GCs might alter the
efficiency of antibody response and lead to compromised efficiency and earlier termination of late
initialized GCs [21]. Future renditions of our work will explicitly investigate the mechanisms by
which affinity influences antigen uptake and antigen presentation, including its contribution to the
termination of the GC reaction.

We also generated BCR sequences from our simulations and compare the simulated sequences
with single-cell BCR sequencing data from individual GCs by means of phylogenetic trees. Each tree
represents the evolutionary process that took place in the GC and the acquisition of new mutations
that conferred higher affinity to the most fitting clones. The comparison of important tree topological
properties, such as the number of leaves, the average depth, or the length of the trunk, reveals good
agreement between our model and experiments. We find our predicted distribution of mutations
per cell to be narrower than experimentally characterized (Figure 5), which could indicate that our
current model of affinity, where one mutation can only increment the affinity by 1

NCDR
, constrains

the density function of the mutations count to be narrower. Furthermore, because of our explicit
modelling of the BCR sequences, our model enables the investigation of the clonal diversity within
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the GC and the emergence of dominance. A first observation is that B cells with the same affinity
can have very different outcomes, resulting in a high variability of the evolution of clonal diversity
across simulations, which matches experimental observations [15] (Figure 7). Interestingly, a deeper
investigation of the emergence of clonal dominance demonstrates that small advantages in the affinity
to antigen acquired through random mutations are amplified and result in clonal dominance within a
week (Figures 8 and 9). This delayed correlation might explain why previous computational models
found limited correlation between clone abundance and affinity throughout the GC lifespan [24].

As future work, we would like to investigate approaches to overcome technical limitations of the
Gillespie algorithm, such as the assumption that random interactions can be modelled as a memoryless
Poissonian process. This hypothesis might not be accurate for some biological programs, such as
apoptosis or cell division, which tend to be better represented using log-normal distributions [72,73].
We also plan to explore generalizations of the Gillespie algorithm that incorporate both individual
properties and non-Poissonian processes, while still being statistically correct.

Our model does not include regulation by T follicular regulatory, TFR, cells. TFR cells have been
implicated in the negative regulation of GC B cell activation, affinity maturation and the differentiation
of plasma cells [74]. Furthermore, TFRs may have a role in the negative selection of autoreactive B cells
that make up a significant part of GC B cells (8% according to [55]). Indeed, ex vivo TCR repertoire
analysis shows that TFHs and TFRs cells exhibit different TCR repertoires, with the latter more closely
resembling that of regulatory T cells and being skewed toward self-antigens [75]. This finding leads
to the hypothesis that TFRs might negatively regulate potentially autoreactive B cells to suppress
autoimmunity [76]. Further work will integrate TFRs and autoreactive B cells to our model, and will
provide more insight behind the mechanism of autoimmunity.

Finally, an improved model to compute BCR affinity that integrates information about BCR
sequences and about the structural shape of both the antibody variable region and the antigen
can significantly enhance our knowledge of the mechanisms involved in the adaptive immune
response [45]. Attempts in this direction have already been made, for instance by representing
BCRs as a chain of 10 amino acids on a rigid lattice [28]. Despite these promising works, a full
integration of the 3D structure of both the BCR and the antigen remains challenging. An alternative
approach is to focus on predicting binding affinity directly from sequence and transcriptomic data.
This is already routinely performed to predict drug sensitivity, where the binding affinity between
a drug compound and a protein is predicted using transcriptomic data and chemical information
without explicitly accounting for the 3D structure of either molecule [77,78]. An advantage of such
approaches is that they enable the in silico engineering of new compounds with improved biochemical
properties [79]. The adaption of these models to the task of predicting the binding affinity between a
receptor and an antigen or therapeutic compound, e.g., a vaccine, would open exciting opportunities
for synthetic antibody engineering or vaccines in silico optimisation. Work in this direction could
have vast repercussions in understanding the emergence of broadly neutralizing antibodies, designing
serological tests or vaccines against mutating pathogens, such as SARS-CoV-2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/6/1448/s1.
Figure S1: Germinal center B cell count with different parameters for Tcell help, Figure S2: Memory cells and
plasma cells production with and without scaling, Table S1: Sensitivity analysis.

Author Contributions: A.P. wrote the code and analyzed the experimental data under the supervision of M.R.M.
Y.A., K.J. and J.K. contributed to the phylogenetic tree analysis under the supervision of N.B. and M.R.M.
U.K. contributed by giving biological insights about the model assumptions. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the COSMIC European Training Network, funded from the European
Union’s Horizon 2020 research and innovation program under grant agreement No 765158.

Acknowledgments: A.P. and M.R.M. acknowledge Marta Schips, Theinmozhi Arulraj, Philippe A. Robert, Michael
Meyer-Hermann and Claus Horn for constructive discussions.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2073-4409/9/6/1448/s1


Cells 2020, 9, 1448 22 of 25

References

1. Mesin, L.; Ersching, J.; Victora, G.D. Germinal center B cell dynamics. Immunity 2016, 45, 471–482. [CrossRef]
2. De Silva, N.S.; Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015, 15, 137–148.

[CrossRef] [PubMed]
3. Victora, G.D.; Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 2012, 30, 429–457. [CrossRef]

[PubMed]
4. Vinuesa, C.G.; Sanz, I.; Cook, M.C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev.

Immunol. 2009, 9, 845–857. [CrossRef] [PubMed]
5. Pasqualucci, L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol. Rev. 2019,

288, 240–261. [CrossRef]
6. Allen, C.D.; Okada, T.; Tang, H.L.; Cyster, J.G. Imaging of germinal center selection events during affinity

maturation. Science 2007, 315, 528–531. [CrossRef]
7. Jacob, J.; Kelsoe, G.; Rajewsky, K.; Weiss, U. Intraclonal generation of antibody mutants in germinal centres.

Nature 1991, 354, 389–392. [CrossRef]
8. Berek, C.; Berger, A.; Apel, M. Maturation of the immune response in germinal centers. Cell 1991,

67, 1121–1129. [CrossRef]
9. Victora, G.D.; Schwickert, T.A.; Fooksman, D.R.; Kamphorst, A.O.; Meyer-Hermann, M.; Dustin, M.L.;

Nussenzweig, M.C. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable
fluorescent reporter. Cell 2010, 143, 592–605. [CrossRef]

10. Gitlin, A.D.; Mayer, C.T.; Oliveira, T.Y.; Shulman, Z.; Jones, M.J.; Koren, A.; Nussenzweig, M.C. T cell help
controls the speed of the cell cycle in germinal center B cells. Science 2015, 349, 643–646. [CrossRef]

11. Heinzel, S.; Giang, T.B.; Kan, A.; Marchingo, J.M.; Lye, B.K.; Corcoran, L.M.; Hodgkin, P.D. A Myc-dependent
division timer complements a cell-death timer to regulate T cell and B cell responses. Nat. Immunol. 2017,
18, 96–103. [CrossRef] [PubMed]

12. Dominguez-Sola, D.; Victora, G.D.; Ying, C.Y.; Phan, R.T.; Saito, M.; Nussenzweig, M.C.; Dalla-Favera, R.
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol.
2012, 13, 1083–1091. [CrossRef] [PubMed]

13. Calado, D.P.; Sasaki, Y.; Godinho, S.A.; Pellerin, A.; Köchert, K.; Sleckman, B.P.; De Alborán, I.M.; Janz, M.;
Rodig, S.; Rajewsky, K. The cell-cycle regulator c-Myc is essential for the formation and maintenance of
germinal centers. Nat. Immunol. 2012, 13, 1092–1100. [CrossRef] [PubMed]

14. Gitlin, A.D.; Shulman, Z.; Nussenzweig, M.C. Clonal selection in the germinal centre by regulated
proliferation and hypermutation. Nature 2014, 509, 637–640. [CrossRef] [PubMed]

15. Tas, J.M.; Mesin, L.; Pasqual, G.; Targ, S.; Jacobsen, J.T.; Mano, Y.M.; Chen, C.S.; Weill, J.C.; Reynaud, C.A.;
Browne, E.P.; et al. Visualizing antibody affinity maturation in germinal centers. Science 2016, 351, 1048–1054.
[CrossRef] [PubMed]

16. Song, S.; Matthias, P.D. The transcriptional regulation of germinal center formation. Front. Immunol. 2018,
9, 2026. [CrossRef]

17. Martínez, M.R.; Corradin, A.; Klein, U.; Álvarez, M.J.; Toffolo, G.M.; di Camillo, B.; Califano, A.;
Stolovitzky, G.A. Quantitative modeling of the terminal differentiation of B cells and mechanisms of
lymphomagenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 2672–2677. [CrossRef]

18. Wittenbrink, N.; Klein, A.; Weiser, A.A.; Schuchhardt, J.; Or-Guil, M. Is there a typical germinal center?
A large-scale immunohistological study on the cellular composition of germinal centers during the
hapten-carrier–driven primary immune response in mice. J. Immunol. 2011, 187, 6185–6196. [CrossRef]

19. Buchauer, L.; Wardemann, H. Calculating Germinal Centre Reactions. Curr. Opin. Syst. Biol. 2019. [CrossRef]
20. Thomas, M.J.; Klein, U.; Lygeros, J.; Rodríguez Martínez, M. A probabilistic model of the germinal center

reaction. Front. Immunol. 2019, 10, 689. [CrossRef]
21. Arulraj, T.; Meyer-Hermann, M.; Binder, S.C.; Robert, P.A. Synchronous germinal centre onset impacts the

efficiency of antibody responses. Front. Immunol. 2019, 10, 2116. [CrossRef]
22. Meyer-Hermann, M.; Mohr, E.; Pelletier, N.; Zhang, Y.; Victora, G.D.; Toellner, K.M. A theory of germinal

center B cell selection, division, and exit. Cell Rep. 2012, 2, 162–174. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.immuni.2016.09.001
http://dx.doi.org/10.1038/nri3804
http://www.ncbi.nlm.nih.gov/pubmed/25656706
http://dx.doi.org/10.1146/annurev-immunol-020711-075032
http://www.ncbi.nlm.nih.gov/pubmed/22224772
http://dx.doi.org/10.1038/nri2637
http://www.ncbi.nlm.nih.gov/pubmed/19935804
http://dx.doi.org/10.1111/imr.12745
http://dx.doi.org/10.1126/science.1136736
http://dx.doi.org/10.1038/354389a0
http://dx.doi.org/10.1016/0092-8674(91)90289-B
http://dx.doi.org/10.1016/j.cell.2010.10.032
http://dx.doi.org/10.1126/science.aac4919
http://dx.doi.org/10.1038/ni.3598
http://www.ncbi.nlm.nih.gov/pubmed/27820810
http://dx.doi.org/10.1038/ni.2428
http://www.ncbi.nlm.nih.gov/pubmed/23001145
http://dx.doi.org/10.1038/ni.2418
http://www.ncbi.nlm.nih.gov/pubmed/23001146
http://dx.doi.org/10.1038/nature13300
http://www.ncbi.nlm.nih.gov/pubmed/24805232
http://dx.doi.org/10.1126/science.aad3439
http://www.ncbi.nlm.nih.gov/pubmed/26912368
http://dx.doi.org/10.3389/fimmu.2018.02026
http://dx.doi.org/10.1073/pnas.1113019109
http://dx.doi.org/10.4049/jimmunol.1101440
http://dx.doi.org/10.1016/j.coisb.2019.10.004
http://dx.doi.org/10.3389/fimmu.2019.00689
http://dx.doi.org/10.3389/fimmu.2019.02116
http://dx.doi.org/10.1016/j.celrep.2012.05.010
http://www.ncbi.nlm.nih.gov/pubmed/22840406


Cells 2020, 9, 1448 23 of 25

23. Wang, P.; Shih, C.M.; Qi, H.; Lan, Y.H. A stochastic model of the germinal center integrating local antigen
competition, individualistic T–B Interactions, and B cell receptor signaling. J. Immunol. 2016, 197, 1169–1182.
[CrossRef]

24. Reshetova, P.; van Schaik, B.D.; Klarenbeek, P.L.; Doorenspleet, M.E.; Esveldt, R.E.; Tak, P.P.; Guikema, J.E.;
de Vries, N.; van Kampen, A.H. Computational model reveals limited correlation between germinal center
B-cell subclone abundancy and affinity: Implications for repertoire sequencing. Front. Immunol. 2017, 8, 221.
[CrossRef] [PubMed]

25. Amitai, A.; Mesin, L.; Victora, G.D.; Kardar, M.; Chakraborty, A.K. A population dynamics model for clonal
diversity in a germinal center. Front. Microbial. 2017, 8, 1693. [CrossRef] [PubMed]

26. Ellebedy, A.H.; Jackson, K.J.L.; Kissick, H.T.; Nakaya, H.I.; Davis, C.W.; Roskin, K.M.; McElroy, A.K.;
Oshansky, C.M.; Elbein, R.; Thomas, S.; et al. Defining antigen-specific plasmablast and memory B cell
subsets in human blood after viral infection or vaccination. Nat. Immunol. 2016, 17, 1226–1234. [CrossRef]

27. Peng, H.P.; Lee, K.H.; Jian, J.W.; Yang, A.S. Origins of specificity and affinity in antibody–protein interactions.
Proc. Natl. Acad. Sci. USA 2014, 111, E2656–E2665. [CrossRef]

28. Robert, P.A.; Meyer-Hermann, M. A 3D Structural Affinity Model for Multi-Epitope in Silico Germinal
Center Simulations. bioRxiv 2019. [CrossRef]

29. Dunn-Walters, D.K.; Belelovsky, A.; Edelman, H.; Banerjee, M.; Mehr, R. The dynamics of germinal centre
selection as measured by graph-theoretical analysis of mutational lineage trees. Clin. Dev. Immunol. 2002,
9, 233–243. [CrossRef]

30. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361.
[CrossRef]

31. McAdams, H.H.; Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 1997,
94, 814–819. [CrossRef] [PubMed]

32. Arkin, A.; Ross, J.; McAdams, H.H. Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in
Phage lambda-Infected Escherichia coli Cells. Genetics 1998, 149, 1633–1648. [PubMed]

33. Rodríguez Martínez, M.; Soriano, J.; Tlusty, T.; Pilpel, Y.; Furman, I. Messenger RNA fluctuations and
regulatory RNAs shape the dynamics of a negative feedback loop. Phys. Rev. E 2010, 81, 031924. [CrossRef]
[PubMed]

34. Schwickert, T.A.; Victora, G.D.; Fooksman, D.R.; Kamphorst, A.O.; Mugnier, M.R.; Gitlin, A.D.; Dustin, M.L.;
Nussenzweig, M.C. A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the
germinal center. J. Exp. Med. 2011, 208, 1243–1252. [CrossRef]

35. Liu, Y.J.; Zhang, J.; Lane, P.J.; Chan, E.Y.T.; Maclennan, I.C. Sites of specific B cell activation in primary
and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 1991,
21, 2951–2962. [CrossRef]

36. Bannard, O.; McGowan, S.J.; Ersching, J.; Ishido, S.; Victora, G.D.; Shin, J.S.; Cyster, J.G. Ubiquitin-mediated
fluctuations in MHC class II facilitate efficient germinal center B cell responses. J. Exp. Med. 2016,
213, 993–1009. [CrossRef]

37. Fiala, G.J.; Kaschek, D.; Blumenthal, B.; Reth, M.; Timmer, J.; Schamel, W.W. Pre-clustering of the B cell
antigen receptor demonstrated by mathematically extended electron microscopy. Front. Immunol. 2013,
4, 427. [CrossRef]

38. El Shikh, M.E.M.; El Sayed, R.M.; Sukumar, S.; Szakal, A.K.; Tew, J.G. Activation of B cells by antigens on
follicular dendritic cells. Trends Immunol. 2010, 31, 205–211. [CrossRef]

39. Nowosad, C.R.; Spillane, K.M.; Tolar, P. Germinal center B cells recognize antigen through a specialized
immune synapse architecture. Nat. Immunol. 2016, 17, 870–877. [CrossRef]

40. Shulman, Z.; Gitlin, A.D.; Targ, S.; Jankovic, M.; Pasqual, G.; Nussenzweig, M.C.; Victora, G.D. T follicular
helper cell dynamics in germinal centers. Science 2013, 341, 673–677. [CrossRef]

41. Papa, I.; Saliba, D.; Ponzoni, M.; Bustamante, S.; Canete, P.F.; Gonzalez-Figueroa, P.; McNamara, H.A.;
Valvo, S.; Grimbaldeston, M.; Sweet, R.A.; et al. T FH-derived dopamine accelerates productive synapses in
germinal centres. Nature 2017, 547, 318–323. [CrossRef] [PubMed]

42. Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. The structure of a typical antibody molecule.
In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001.

43. Hoehn, K.B.; Fowler, A.; Lunter, G.; Pybus, O.G. The diversity and molecular evolution of B-cell receptors
during infection. Mol. Biol. Evol. 2016, 33, 1147–1157. [CrossRef]

http://dx.doi.org/10.4049/jimmunol.1600411
http://dx.doi.org/10.3389/fimmu.2017.00221
http://www.ncbi.nlm.nih.gov/pubmed/28321219
http://dx.doi.org/10.3389/fmicb.2017.01693
http://www.ncbi.nlm.nih.gov/pubmed/28955307
http://dx.doi.org/10.1038/ni.3533
http://dx.doi.org/10.1073/pnas.1401131111
http://dx.doi.org/10.1101/766535
http://dx.doi.org/10.1080/10446670310001593541
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1073/pnas.94.3.814
http://www.ncbi.nlm.nih.gov/pubmed/9023339
http://www.ncbi.nlm.nih.gov/pubmed/9691025
http://dx.doi.org/10.1103/PhysRevE.81.031924
http://www.ncbi.nlm.nih.gov/pubmed/20365787
http://dx.doi.org/10.1084/jem.20102477
http://dx.doi.org/10.1002/eji.1830211209
http://dx.doi.org/10.1084/jem.20151682
http://dx.doi.org/10.3389/fimmu.2013.00427
http://dx.doi.org/10.1016/j.it.2010.03.002
http://dx.doi.org/10.1038/ni.3458
http://dx.doi.org/10.1126/science.1241680
http://dx.doi.org/10.1038/nature23013
http://www.ncbi.nlm.nih.gov/pubmed/28700579
http://dx.doi.org/10.1093/molbev/msw015


Cells 2020, 9, 1448 24 of 25

44. Abbott, R.K.; Lee, J.H.; Menis, S.; Skog, P.; Rossi, M.; Ota, T.; Kulp, D.W.; Bhullar, D.; Kalyuzhniy, O.;
Havenar-Daughton, C.; et al. Precursor frequency and affinity determine B cell competitive fitness in
germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 2018, 48, 133–146.
[CrossRef] [PubMed]

45. Kovaltsuk, A.; Krawczyk, K.; Galson, J.D.; Kelly, D.F.; Deane, C.M.; Trück, J. How B-cell receptor repertoire
sequencing can be enriched with structural antibody data. Front. Immunol. 2017, 8, 1753. [CrossRef]
[PubMed]

46. Kleinstein, S.H.; Louzoun, Y.; Shlomchik, M.J. Estimating hypermutation rates from clonal tree data.
J. Immunol. 2003, 171, 4639–4649. [CrossRef]

47. Perelson, A.S.; Oster, G.F. Theoretical studies of clonal selection: minimal antibody repertoire size and
reliability of self-non-self discrimination. J. Theor. Biol. 1979, 81, 645–670. [CrossRef]

48. Meyer-Hermann, M.; Deutsch, A.; Or-Guil, M. Recycling probability and dynamical properties of germinal
center reactions. J. Theor. Biol. 2001, 210, 265–285. [CrossRef]

49. Liu, D.; Xu, H.; Shih, C.; Wan, Z.; Ma, X.; Ma, W.; Luo, D.; Qi, H. T–B-cell entanglement and ICOSL-driven
feed-forward regulation of germinal centre reaction. Nature 2015, 517, 214–218. [CrossRef]

50. Weisel, F.J.; Zuccarino-Catania, G.V.; Chikina, M.; Shlomchik, M.J. A temporal switch in the germinal center
determines differential output of memory B and plasma cells. Immunity 2016, 44, 116–130. [CrossRef]

51. Ise, W.; Kurosaki, T. Plasma cell differentiation during the germinal center reaction. Immunol. Rev. 2019,
288, 64–74. [CrossRef]

52. Ise, W.; Fujii, K.; Shiroguchi, K.; Ito, A.; Kometani, K.; Takeda, K.; Kawakami, E.; Yamashita, K.; Suzuki, K.;
Okada, T.; et al. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into
Plasma Cell or Recycling Germinal Center Cell Fate. Immunity 2018, 48, 702–715. [CrossRef]

53. Shinnakasu, R.; Inoue, T.; Kometani, K.; Moriyama, S.; Adachi, Y.; Nakayama, M.; Takahashi, Y.;
Fukuyama, H.; Okada, T.; Kurosaki, T. Regulated selection of germinal-center cells into the memory
B cell compartment. Nat. Immunol. 2016, 17, 861–869. [CrossRef]

54. Suan, D.; Kräutler, N.J.; Maag, J.L.V.; Butt, D.; Bourne, K.; Hermes, J.R.; Avery, D.T.; Young, C.; Statham, A.;
Elliott, M.; et al. CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing
Light-Zone Location and Predominant Low Antigen Affinity. Immunity 2017, 47, 1142–1153. [CrossRef]
[PubMed]

55. Mayer, C.T.; Gazumyan, A.; Kara, E.E.; Gitlin, A.D.; Golijanin, J.; Viant, C.; Pai, J.; Oliveira, T.Y.; Wang, Q.;
Escolano, A.; et al. The microanatomic segregation of selection by apoptosis in the germinal center. Science
2017, 358, eaao2602. [CrossRef] [PubMed]

56. Shahaf, G.; Barak, M.; Zuckerman, N.S.; Swerdlin, N.; Gorfine, M.; Mehr, R. Antigen-driven selection in
germinal centers as reflected by the shape characteristics of immunoglobulin gene lineage trees: a large-scale
simulation study. J. Theor. Biol. 2008, 255, 210–222. [CrossRef]

57. Lefranc, M.P.; Giudicelli, V.; Ginestoux, C.; Jabado-Michaloud, J.; Folch, G.; Bellahcene, F.; Wu, Y.; Gemrot, E.;
Brochet, X.; Lane, J.; et al. IMGT R©, the international ImMunoGeneTics information system R©. Nucleic Acids
Res. 2008, 37, D1006–D1012. [CrossRef] [PubMed]

58. Retter, I.; Althaus, H.H.; Münch, R.; Müller, W. VBASE2, an integrative V gene database. Nucleic Acids Res.
2005, 33, D671–D674. [CrossRef] [PubMed]

59. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.
1990, 215, 403–410. [CrossRef]

60. Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 1994, 22, 4673–4680. [CrossRef] [PubMed]

61. Jahn, K.; Kuipers, J.; Beerenwinkel, N. Tree inference for single-cell data. Genome Biol. 2016, 17, 86. [CrossRef]
[PubMed]

62. Talevich, E.; Invergo, B.M.; Cock, P.J.; Chapman, B.A. Bio. Phylo: A unified toolkit for processing, analyzing
and visualizing phylogenetic trees in Biopython. BMC Bioinform. 2012, 13, 209. [CrossRef] [PubMed]

63. Meyer-Hermann, M.; Binder, S.C.; Mesin, L.; Victora, G.D. Computer simulation of multi-color brainbow
staining and clonal evolution of B cells in germinal centers. Front. Immunol. 2018, 9, 2020. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.immuni.2017.11.023
http://www.ncbi.nlm.nih.gov/pubmed/29287996
http://dx.doi.org/10.3389/fimmu.2017.01753
http://www.ncbi.nlm.nih.gov/pubmed/29276518
http://dx.doi.org/10.4049/jimmunol.171.9.4639
http://dx.doi.org/10.1016/0022-5193(79)90275-3
http://dx.doi.org/10.1006/jtbi.2001.2297
http://dx.doi.org/10.1038/nature13803
http://dx.doi.org/10.1016/j.immuni.2015.12.004
http://dx.doi.org/10.1111/imr.12751
http://dx.doi.org/10.1016/j.immuni.2018.03.027
http://dx.doi.org/10.1038/ni.3460
http://dx.doi.org/10.1016/j.immuni.2017.11.022
http://www.ncbi.nlm.nih.gov/pubmed/29262350
http://dx.doi.org/10.1126/science.aao2602
http://www.ncbi.nlm.nih.gov/pubmed/28935768
http://dx.doi.org/10.1016/j.jtbi.2008.08.005
http://dx.doi.org/10.1093/nar/gkn838
http://www.ncbi.nlm.nih.gov/pubmed/18978023
http://dx.doi.org/10.1093/nar/gki088
http://www.ncbi.nlm.nih.gov/pubmed/15608286
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/nar/22.22.4673
http://www.ncbi.nlm.nih.gov/pubmed/7984417
http://dx.doi.org/10.1186/s13059-016-0936-x
http://www.ncbi.nlm.nih.gov/pubmed/27149953
http://dx.doi.org/10.1186/1471-2105-13-209
http://www.ncbi.nlm.nih.gov/pubmed/22909249
http://dx.doi.org/10.3389/fimmu.2018.02020
http://www.ncbi.nlm.nih.gov/pubmed/30319600


Cells 2020, 9, 1448 25 of 25

64. Schwickert, T.A.; Lindquist, R.L.; Shakhar, G.; Livshits, G.; Skokos, D.; Kosco-Vilbois, M.H.; Dustin, M.L.;
Nussenzweig, M.C. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 2007, 446, 83–87.
[CrossRef] [PubMed]

65. Wittenbrink, N.; Weber, T.S.; Klein, A.; Weiser, A.A.; Zuschratter, W.; Sibila, M.; Schuchhardt, J.; Or-Guil, M.
Broad volume distributions indicate nonsynchronized growth and suggest sudden collapses of germinal
center B cell populations. J. Immunol. 2010, 184, 1339–1347. [CrossRef] [PubMed]

66. Monroe, J.G.; Cambier, J.C. Sorting of B lymphoblasts based upon cell diameter provides cell populations
enriched in different stages of cell cycle. J. Immunol. Methods 1983, 63, 45–56. [CrossRef]

67. Ersching, J.; Efeyan, A.; Mesin, L.; Jacobsen, J.T.; Pasqual, G.; Grabiner, B.C.; Dominguez-Sola, D.;
Sabatini, D.M.; Victora, G.D. Germinal center selection and affinity maturation require dynamic regulation
of mTORC1 kinase. Immunity 2017, 46, 1045–1058. [CrossRef]

68. Davis, K. A Global Optimization Algorithm Worth Using. dlib C++ Library. 2017. Available online:
http://blog.dlib.net/2017/12/a-global-optimization-algorithm-worth.html (accessed on 1 March 2020).

69. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms.
In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 2951–2959.

70. Shen, C. Analysis of detrended time-lagged cross-correlation between two nonstationary time series. Phys.
Lett. A 2015, 379, 680–687. [CrossRef]

71. Zhang, Y.; Meyer-Hermann, M.; George, L.A.; Figge, M.T.; Khan, M.; Goodall, M.; Young, S.P.; Reynolds, A.;
Falciani, F.; Waisman, A.; et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp.
Med. 2013, 210, 457–464. [CrossRef]

72. Koch, A.L. The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly. J. Theor.
Biol. 1966, 12, 276–290. [CrossRef]
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Code Availibility: The experimental data and python code used to fit our model, are provided freely
on Github under MIT license at https://github.ibm.com/SysBio/Germinal-Center. The GC kinetic
data of [18] were derived from the online database at http://sysimmtools.eu, and GC B cell sequences
used to construct trees were made publicly available by [15]. The normalized dominance score [15]
and MBC/PC output with time [50] were kindly provided by the corresponding authors of the
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