mzuriCh ETH Library

Double syntax oriented processing

Journal Article

Author(s):
Alpiar, R.

Publication date:
1971

Permanent link:
https://doi.org/10.3929/ethz-b-000423061

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Computer journal 14(1), https://doi.org/10.1093/comjnl/14.1.25

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000423061
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1093/comjnl/14.1.25
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Double syntax oriented processing

R. Alpiar

Computer Centre of the Swiss Federal Institute of Technology, Ziirich, Switzerland, and The
Swiss Federal Institute for Reactor Research, Wiirenlingen, Switzerland

A syntax-oriented processing scheme is described in which the syntaxes of both the input and
output sentences are given equal importance. Both syntaxes are defined by BN-type production
rules, and are connected by giving certain classes identical names in the two languages. This
results in a fully symmetric scheme, input can be recovered from output by merely exchanging the
two blocks of production rules. ‘Simple’ and ‘Ramified’ processing are distinguished—the latter
being an extension which allows context sensitive features to be handled. It is suggested that this
scheme is a useful tool enabling the non-specialist to effect routine modifications to sentences or
whole programmes automatically. The possibilities of the method are illustrated by numerous
examples, and reference is made to a field-tested implementation.

(Received January 1970)

1. Introduction and preliminary matters

The aim of this paper is to introduce a processing scheme,
with particular application to the processing of programmes
written in formal languages. We use the word ‘processing’,
rather than ‘translation’ deliberately. For under ‘processing’
we imply not only the construction of a new programme
(as in compilation, for instance), but also the construction
of any other information relating to the input matter (such
as diagnostics, lists of variable names, and so on). Particular
applications of the present scheme include:

1. The modification of entire programmes in conformity
with a local ‘dialect’ of the original programming
language.

2. The execution of programmes in a temporarily altered
form, either as a debugging aid, or to test special
features.

3. Translation of programmes written in an extended
symbolic language, back into the original symbolic
language.

Emphasis is placed on applications of a provisional
nature. There are numerous occasions when only a single
execution of a temporarily altered programme is necessary,
in which the alterations are slight, but occur repeatedly in
the programme. A single execution of the modified pro-
gramme may be all that is required in order to compare its
speed and accuracy on a machine of different type and word
length. Under such circumstances it becomes economical
to employ an automatic processor even when the latter is
somewhat inefficient by reason of its generality. It will be
argued that the presently described scheme, at least in its
simpler form, could be a convenient instrument in the
hands of an unsophisticated programmer—enabling him to
perform automatically routine modification which would
otherwise have to be performed ‘by hand’.

1.1. General principles

The scheme which we shall describe will be seen to be an
obvious extension of principles which are well known, and
which fall under the heading of ‘Syntax-Oriented Trans-
lation’. In such schemes the input, consisting of a set of
sentences, is analysed according to a set of language

Volume 14 Number 1

production rules. The resulting parsing tree is then utilised
to generate the desired output sentences, given certain rules
of procedure which are appended to the production rules
of the input language. The relationship between input and
output is asymmetric—since the output (in contrast to the
input) is not generally treated as belonging to a formal
language specifiable by production rules.

If we do regard input and output in a symmetric way,
the source and target languages would each be specified by
its own autonomous set of production rules. Input would
be analysed using the source productions, and this analysis,
with the help of the target productions, would be utilised
to synthesise the desired output. Source and target pro-
duction rules can be considered as independent entities:
in fact, most of the examples in this paper will work back-
wards—that is output sentences can be processed back into
their original input sentences by merely interchanging the
blocks of source and target production rules. Further, on
adding more blocks of production rules, chain processing
through a succession of intermediate languages can be
accomplished.

It may be noticed that languages will here be regarded
as being sufficiently defined by their syntax production rules.
Since we are concerned merely with the processing of
strings, the notion of semantics becomes superfluous. If we
insist on using the word, we may say that the semantics of
the source language is defined by the target language pro-
ductions, and the mapping between these production blocks.
Semantics is always relative, an explanation of meaning in
terms of symbols which are assumed to be well understood.
Without going outside our present scheme, we might easily
construct a target language which printed out natural
language ‘semantic’ interpretations of source language
sentences.

The plan of this paper is first to clarify the notation and
terminology which will be used here. Next, in Section 2,
the philosophy of ‘simple processing’ is explained, and
illustrated by a number of graded examples. Section 3 deals
with ‘ramified processing’, an extension which enables one
to handle context sensitive features. Section 4 discusses the
setting up of a processor which is easy to use in practice,
mentioning a recently-developed programme, named
MAMMAL (A Modest Manipulation Language).

25

1.2. Terminology and notation

In the following discussion a number of words and signs
will be used in a specialised sense. Without wishing to set
down a complete terminology of formal languages, it is
nevertheless helpful to underline the meanings of certain
frequently-used expressions.

A process is understood to mean a transformation of
input sentences into output sentences, utilising the presently
described method. We shall later distinguish between simple
and ramified processing. A production rule consists of two
parts: the left hand or defined part, and the right hand or
definition part. The defined part contains a single, non-null
identifier: the definition part may be empty, or contain one
or more identifiers separated by logical delimiters. An
identifier is a string of alphanumeric characters, possibly
empty. There are two logical delimiters, they are the logical
‘and’ and ‘or’ signs, neither of which are alphanumeric.
A language consists of a set of production rules, headed by
a unique language identifier. Class names are identifiers
which appear in the defined part of at least one production
rule of the language. If the class name also appears in the
definition part of the same production rule, then that class
name is recursive. An initial class name is one which never
appears in the definition part of a production, unless it also
appears as the defined class name of that production. Thus
initial class names may be recursive, though this is unusual.
Terminals are identifiers which are neither class names, nor
language identifiers, they stand either for themselves, or
for special sets of characters, called terminal classes.

If the definition of a class name contains » logical ‘or’
delimiters, then that class name is said to have n + 1
alternative definitions, alternatives, or choices. If n is zero
then that class name is said to be uniquely defined, otherwise,
it is multiply defined.

The signs which will be used in this paper are set out in
Table 1, and the actual fount characters appearing there
constitute the publication language. Different sets of con-
sistently defined characters may be used elsewhere, as for
instance, as punched card input for a particular implemen-
tation of processing. Table 1 will be extended by the use of
subscripts when we come to discuss ramified processing.
As a reading aid, language production blocks will be
indented in the text, headed by an offset language identifier
symbol. Blank spaces are employed merely for the sake of
appearance, and have no logical significance.

Our notation differs slightly from standard BNF, and
the author hopes that readers accustomed to the latter will
bear with him. The reason for the change will become clear
in the discussion of Ramified Processing in Section 3.
Although we could have stuck strictly to BNF in earlier
sections, it was felt better to adopt a consistent notation
throughout the paper. In our notation fewer supplementary
signs are needed. For example:

Standard BNF:
<CLASS>::=<TYPEl> . <END> | <TYPE2> . <END>

(12 signs)
Modified BNF:
<CLASS> TYPE1 A.A END | TYPE2 A.A END
(only 7 signs)

There is however a drawback. It is not immediately
apparent whether a string in the definition part of a rule is
aclass name or a terminal string. This can only be determined
by seeing whether the string also occurs in the defined part
of a rule of that language.

The following example serves to illustrate the terminology
and conventions which we have adopted. Production rules
are set up for a language consisting of non-empty sets of
unsigned numbers, separated by commas. The numbers may
be any mixture of integers, or fixed and floating point forms.

26

Table 1
Publication language conventions

SEMANTIC MEANING

PUBLICATION LANGUAGE

Language identifiers:
source languages
target languages

Start of the defined part of
a production rule

Start of the definition part
of a production rule

Logical ‘and’

Logical ‘or’

Class names

S *Sn* | ‘n’ being an
T *Tn* [integer

<

>
A
!

any upper case

alphanumeric string
Terminal classes:

any single letter 1
any single digit i
any single letter or digit li
any string of letters sl
any string of digits si
any alphanumeric string sli
any single character a
any string of characters sa

Terminal identifiers Any strings of characters,
including the null string,
but excluding the special
signs < > A |, and lower

case letters

Example 1
S <SET> NUMBER | NUMBER A, A SET
<NUMBER > INTEGER | FIXED POINT |
FLOATING POINT
<INTEGER > i

S
< FIXED POINT > IlNTEGER A .|. A INTEGER |
INTEGER A . A INTEGER
<FLOATING POINT > FIXED POINT A EXPONENT
<EXPONENT > E A POSSIBLE SIGN A INTEGER
<POSSIBLE SIGN > [+ | —

In this language *S*, SET, NUMBER, INTEGER,
FIXED POINT, FLOATING POINT, EXPONENT, and
POSSIBLE SIGN are all class names. The strings,. + — E
are five different terminals (in this example, exceptionally,
there are no terminals longer than one character). The
terminal class si has been used to define the class name
INTEGER. Strictly speaking terminal classes are a super-
fluous concept, for we could have defined

<INTEGER> 0]1]2[3]4.......

However, the use of terminal classes makes production
rules more easily read. Moreover, the parsing algorithm
may be so constructed that membership of a terminal class
is more efficiently established than membership of the same
class name expanded in extenso. The class name SET is
recursively defined, and is an initial class. INTEGER,
FLOATING POINT and EXPONENT are uniquely
defined, but all other class names are multiply defined.

Clearly the actual choice of class names is a dummy
choice, consistently altering them does not affect the
language being defined. This fact will be made use of later
on.

1.3. Parsing, parsing trees and their representation

Given a language defined by a set of production rules, any
sentence belonging to it can be analysed, and its analysis

The Computer Journal

can be represented by a parsing tree. This parsing tree
provides complete information as to exactly how the
language production rules can generate the given sentence.
We shall conceive of a parsing tree as consisting of nodes and
pointers. Each node contains certain internal information,
and in addition, points to four other nodes. These four
other nodes can be thought of as being respectively the
‘father’, the ‘eldest son’, the ‘next elder brother’ and the
‘next younger brother’ of an all-male genealogical tree.
Some of these pointers may point at a ‘zero’ or ‘dummy’
node—as, for instance, the next younger brother pointer
of a youngest son. Only one node, the vertex will have a
zero father pointer.

The internal information contained within a node con-
sists of four items: a class name, an integer representing one
of the possible alternative definitions of that class name, the
identifier of one of the components of that alternative
definition, finally the section of the input sentence covered
by that component. The vertex node however contains only
two items of information, being the language identifier,
and the entire input sentence.

In this paper parsing trees are represented with the aid
of both a diagram and also a tabulation. The diagram names
the various nodes, n0, nl, n2,... and illustrates their
genealogical relationships graphically. The tabulation sets
out the internal information contained within each node,
in four columns.

As an illustration of this convention, we will set up a
parsing diagram and a parsing tabulation of the parsing tree
of the following sentence

17, 3.89, 7.E-3
parsed according to the production rules of Example 1.

We shall often wish to traverse a parsing tree—that is—
to visit each of its nodes once and only once in some logical
manner. There are several possible ways of doing this.
The particular order which we have chosen to enumerate
the nodes of Fig. 1 is called ‘preorder traversal’. Briefly
stated, down pointers take priority over right pointers, and
the latter take priority over up pointers. We shall adhere
to preorder traversal throughout this paper.

Our attention will be mainly focused on the structure of
the parsing tree: the mechanism of the parsing algorithm
which creates it is here of secondary importance. However,
the mechanism of parsing will touch our argument at three
points, and it may be as well to mention these now.

First comes the question of the speed and efficiency of the

n0
|
| | 1
nl n4 ns
| |
n2 I I 1
| né6 nl3 nl4
|
n3 n7 nl|5
n8 nl0 nll n!6
| | L
nJ nl2 a7 n21
nl8 n20 n22 n23 n2s5
nl9 l l

n24 n26

Fig. 1. Diagram of the parsing tree of a simple sentence.

Volume 14 Number 1

parsing algorithm. We have already seen how the concept
of terminal classes was introduced with this factor in mind.
Secondly, the matter of parsing ambiguity. It may be

possible to generate a given sentence from the same set of
production rules in two different ways. When this is so,
we adopt the convention that the first possible valid parsing
is the one which is required of the parsing algorithm. By
“first possible parsing’ we mean that valid parsing obtained
by taking the first possible alternative definition of each
multiply defined class name in the parsing tree traversed in
preorder. This priority convention is rather important in
the present scheme. Suppose that we are interested in
strings of a certain type appearing in the input sentence:
we set up the following production rules

<STRING > CERTAIN TYPE | ANY OTHER

<ANY OTHER > sa

<CERTAIN TYPE> etc. etc.
The priority convention ensures that a CERTAIN TYPE
stringlet is always so parsed, even though it could always be
alternatively parsed as ANY OTHER. One application is
when one wishes to treat certain types of strings in a special
way, and ignore all other types of strings. Again, one may
wish to take specific action on encountering ungrammatical
strings: this would be effected by adding an alternative
definition ANY OTHER as the last alternative definition
of the initial class name of the language. Appropriate
action would be taken if the parsing algorithm were forced
to choose that alternative. Thus the order of alternatives in
the definition part of production rules is significant, although
the ordering of the production rules themselves is not. It is
assumed that the parsing algorithm will consider each
alternative definition of a class name in the order in which
these alternatives are written in the language.

Lastly, the problem of ‘left recursion’. Consider the

following production rules:

S <STRING > INTEGER | ANY OTHER
<INTEGER > INTEGER A DIGIT | DIGIT
<DIGIT > i

<ANY OTHER > sa

Any input string would cause an unsophisticated parser
to hang up—continually searching for confirmation of the
class name INTEGER. We therefore amend the definition
of INTEGER:

<INTEGER > DIGIT | INTEGER A DIGIT

The production rules will now parse input strings con-
sisting of digits successfully. However ANY OTHER
strings will still cause a hang up, which can be cured by a
further amendment:

<INTEGER > DIGIT | DIGIT A INTEGER
and this works perfectly for all possible input strings.
However there are instances (and specific examples will be
provided below) in which only the original or first amend-
ment of the production rules will produce a parsing tree of
the ‘shape’ desired for a particular translating application.
Of course, parsing algorithms can be constructed which
accept left recursive production rules—but these may carry
heavy penalties in computation time. It is therefore interest-

. ing to note, as will be demonstrated further on, that the

left recursion problem can be neatly sidestepped within
the framework of the proposed processing scheme.

2. Simple processing

2.1. Basic principles

The production rules of a language are rules which enable
us to produce all valid strings of that language. Different
strings are the result of making different choices from the
possible alternative definitions of multiply defined class
names. Apart from the measure of indeterminacy implied

27

in terminal classes, each valid string can be considered as
characterised by a certain set of choices of the multiply
defined class names.

Let us emphasise this point by carrying out a little experi-
ment. Suppose we have a ‘defective parsing tree’, that is,
a parsing tree of which the diagram, and also the 3rd and
4th items in the tabulation have been lost. How would one
then set about recovering the missing information, and
finally the entire original input string? One would scan
each node of the tabulation in turn. Since these are tabulated
in preorder, the position of each node in a reconstructed
parsing diagram can be determined. Each node which
represents a multiply defined class name can now have its
component item filled in—referring to the production rules,
the correct alternative choice for that class name, and the
parsing diagram under reconstruction. Once the component
item is filled in, the immediate progeny of that node can be
identified. Fach son node must fall under one of four types.
Either it is a terminal, in which case the production rule
enables us to fill in the 4th item of the node immediately.
Or it is a terminal class, and in this case we are permitted
to enter any stringlet belonging to that terminal class. Or
again, it is a uniquely defined class name—and then we
can add a set of daughter nodes as specified in the pro-
duction rules. Or lastly it is a multiply defined class name—
and in this case we refer to the second item of the tabulation
to tell us which of the possible alternative definitions is to be
chosen.

Perhaps a practical example will help to make this point
clearer. We take the production rules of Example 1, and the
first three columns only of Table 2. Our aim is to recover the
input string from this information. Readers wishing to take
part in this exercise should cover over the last two columns
of Table 2.

Running down the table, node n0 merely tells us that we

are at the vertex of a parsing tree. Node nl says that the
next nodes of the parsing tree are given by the production
rule for the class name SET, taking the second alternative.
We now have the beginning of a parsing tree, see Fig. 2(a).
Further reference to the production rules indicates that the
second component is a terminal string. This branch of the
parsing tree cannot therefore grow any further. For clarity
we enclose such terminal nodes in a ring. Both the class
names NUMBER and SET are multiply defined. These
branches of the parsing tree must therefore continue to
grow, and we indicate the fact by a vertical bar beneath the
node, as in Fig. 2(b).

We return to Table 2 at the place where we broke off.
Node n2 tells us to take the first alternative definition of the
class name NUMBER. The production rules specify that
this definition contains only one component (the class name
INTEGER). Further this class name is also uniquely
defined as the terminal class ‘si’. Entering all this information
into our parsing tree we obtain Fig. 2(c).

Returning again to Table 2, nodes n3, n4 and n5 contain
redundant information which we have already obtained
from the production rules. Node n6 says that the second
alternative definition of the class name SET must again be
selected. Using the production rules as far as they can be
unambiguously followed, we get Fig. 2(d). Node n7 now
tells us to take the second alternative definition of the class
name NUMBER (that is FIXED POINT). And node n8
says we must take the third alternative definition of FIXED
POINT. The parsing tree has grown to Fig. 2(e).

By now we have grasped the rules of the game. We
persevere to the end of Table 2, and then have a completed
parsing tree. All branches end with either a terminal string,
or a terminal class. Conflating these together in preorder
we get the following reconstruction of the input string:

si,si.si,si.E-si

Table 2

Tabulation of the parsing tree of a simple sentence
NODE CLASS NAME ALT. COMPONENT INPUT SENTENCE
n0 S 17,3.89,7.E-3
nl SET 2 NUMBER 17
n2 NUMBER 1 INTEGER 17
n3 INTEGER 1 si 17
n4 SET 2 , ,
n5 SET 2 SET 3.89,7.E-3
n6é SET 2 NUMBER 3.89
n7 NUMBER 2 FIXED POINT 3.89
n8 FIXED POINT 3 INTEGER 3
n9 INTEGER 1 si 3
nl0 FIXED POINT 3 . .
nll FIXED POINT 3 INTEGER 89
nl2 INTEGER 1 si 89
nl3 SET 2 R ,
nl4 SET 2 SET 7.E-3
nl5 SET 1 NUMBER 7.E-3
nl6 NUMBER 3 FLOATING POINT 7.E-3
nl7 FLOATING POINT 1 FIXED POINT 7.
nl8 FIXED POINT 1 INTEGER 7
nl9 INTEGER 1 si 7
n20 FIXED POINT 1 . .
n2l FLOATING POINT 1 EXPONENT E-3
n22 EXPONENT 1 E E
n23 EXPONENT 1 POSSIBLE SIGN -
n24 POSSIBLE SIGN 3 - -
n25 EXPONENT 1 INTEGER 3
n26 INTEGER 1 si 3

The Computer Journal

VER"II'EX

I I I

NUMBER) SET

Fig. 2(a). Start of a reconstructed parsing tree.

VER;[‘EX

[|
NUNi BER é SET

Fig. 2(b). Next stage of reconstruction.

VERTEX
|

| |
NUMIBER é) SET

INTEGER

®

Fig. 2(c). Entering the information from node n2.

VERTEX
I

r]
NUMBER S‘?T

J |
NUMBER é} SET

INTEGER

Fig 2(d). Including information from node n6.
VERTEX

| 1
NUNIIBER é SI?T

INTEGER

Fig. 2(¢). Information from nodes n7 and n8 included.

We have thus recovered the form of the original string
(it was 17, 3.89, 7. E-3). Because we defined INTEGER as
the terminal class ‘si’, the particular digits present in the
input string have been lost. Had we chosen to define

<INTEGER> 0]1]2]3|4|5|6]7|8]9

in the production rules, then the parsing table would have
been longer, but the exact contents of the input string would
have been recoverable.

This apparently pointless thought-experiment has been
conducted solely in order to introduce the basic principles
of simple processing: for in the suggested processing scheme
all we do is to use a new set of production rules in the above
reconstruction algorithm. We now have two sets of pro-
duction rules: those which were used to parse the original
input string are termed the source production rules. And
the new set of rules used to ‘reconstruct’ the original string
are called the target production rules. Of course if the two

Volume 14 Number 1
2

sets of production rules are identical, then the reconstruction
algorithm will merely reconstruct the original sentence,
apart from differences in the terminal classes. Otherwise a
different string will be reconstructed, which is a valid
string of the target language, and may be thought of as a
translation of the original string from the source to the
target language.

Three further points need to be cleared up.

First, how are alternative choice numbers to be trans-
mitted from the source to the target parsing tree under
construction ? The solution adopted here is that this trans-
mission will occur only when the source and target nodes
carry the same (multiply defined) class name. We have
already seen that the choice of class names in a language is
a dummy choice, so that no restrictions are imposed on a
new language in insisting that certain of its class names
should be identical with certain ones of another language.
The alternative choice number of the source parsing tree
is thus transferred to the target parsing tree under construc-
tion, when the two nodes contain the same class name. We
must therefore insist that the number of alternative
definitions of identically named class names in the two
languages be the same. Once again, this imposes no real
restriction upon the target language. It merely ensures that
the target language is neither incomplete nor over abundant.
This assignment of corresponding alternative definitions to
identically named class names will be referred to as the
‘principle of correspondence’. When an as yet undecided
target tree node is assigned one of its alternative definitions
by means of the principle of correspondence, we shall say
that it has been ‘determined’. The source tree node respon-
sible for this ‘determination’ will be called the ‘activating
node’.

The second point is this: what happens if the target tree
contains several undecided nodes bearing the same class
name ? Which of these nodes will be subject to determination
by an identically named source tree activating node? Each
time an activating node in the source tree determines an
undecided node of the target tree, the latter node is ‘filled
out’—by this we mean that the target productions are
invoked to create progeny for the newly determined target
tree node. These progeny in turn breed further progeny,
so that the newly determined target node becomes the
vertex of a subtree. The leaves of this subtree are either
terminals, terminal classes, or undecided nodes, that is
nodes bearing a multiply defined class name. The latter
undecided nodes are strung together in a ‘chain of undecided
nodes’ and the source tree activating node is made to point
at the first member of this chain.

The rule which we shall always apply is that an undecided
target tree node can only be determined by activating nodes
which are correctly positioned in the source tree. This
correct positioning insists that the activating node must be
a member of a subtree whose vertex is the header of an
undecided chain of nodes to which the candidate for
determination belongs. Intuitively, we may think of this
as insisting that the ‘meaning’ of any node can only be
found in the contents of its subtree of nodes, and never in
any collateral subtree: loosely speaking, this means that
our languages are context-free. This rule, the ‘principle of
paternity’ ensures that recursively defined class names are
determined by the correctly nested activating nodes of the
source tree. Example 6, below, illustrates this point nicely.
But a further question occurs. What if two nodes belonging
to the same undecided chain of nodes carry the same class
name? Our convention will be that only the first of these
will be determined by an activating source tree node. The
fact that one node and only one is determined by each
activating node is again associated with the idea of context

29

freedom. In Section 3, we shall see that relaxing this rule,
and linking alternative choices together, results in a degree
of context sensitive behaviour. The fact that the only node
of the undecided chain to be determined is the first suitable
candidate in that chain is of no great significance, since it
can be bypassed by writing out the components of produc-
tion rules in a different order.

The third and last point is fairly trivial, and concerns the
treatment of terminal classes in the target parsing tree under
construction. The convention is that the terminal class
stringlet will be transmitted unaltered from the terminal
class source tree node to the target tree node bearing the
same terminal class name,and in the corresponding position
of the target language tree.

2.2. Graded examples

One gets a better feel for what is happening by following
a number of examples, than by trying to assimilate many
pages of abstract explanation. Some of the following cases
have no particular application, other than to demonstrate
special processing techniques.

Example 2 :
The output sentence is to be an exact copy of the input
sentence.
S <STRING > CHARACTER | CHARACTER A STRING
<CHARACTER > a
T <STRING > CHARACTER | CHARACTER A STRING
<CHARACTER > a
The above process analyses the source sentence character
by character, and sets up the target tree, again character by
character. Since the class name CHARACTER is a terminal
class, stringlets (in this case single characters) in the source
tree CHARACTER nodes are copied unaltered into the
corresponding target tree nodes. The same copying opera-
tion would have been more simply and efficiently effected by
the process '

S < STRING> sa
T <STRING> sa

Example 3
The output sentence is to be the reversal of the input
sentence—e.g. PQRS becomes SRQP

S <STRING> a|a A STRING
T <STRING> a|STRING A a

We notice that the definition of STRING in the target
productions is left-recursive. But this causes no trouble in
target productions, since the construction of the target
parsing tree (as opposed to the parsing analysis of the
source sentence) requires no ‘back up’ operations.

Example 4
The output sentence is to be a copy of the input sentence
but with the final character missing.

S <STRING> a|a A STRING
T <STRING> a A STRING

Here we notice that the first alternative definition of the
target production for the class name STRING is a terminal
which is the null string.

Example 5
The output sentence is to be the tail of the input sentence—
that is, the input sentence with the first character missing.

S <STRING> a|STRING A a
T <STRING> STRING A a

and here STRING is left-recursively defined in the source
productions. In case the parsing algorithm is unable to cope,

30

source production left-recursion can be circumvented with
the following two-link process

S1 <STRING> a|a A STRING
T1 <STRING> a|STRING A a
S2 <STRING> a|a A STRING
T2 < STRING > STRING A a
The first link of the process reverses the order of the
original string. This reversed string is now an input string
for the second link, which chops off the first character, and
reverses the remaining characters. A typical string ABCDEF
becomes first FEDCBA and finally BCDEF.

Example 6
The source language consists of ordered pairs of objects
(Object 1, Object 2): each object is either an alphanumeric
string or itself an ordered pair. The output strings are to
reverse the order of objects in each pair: for example, the
input string ((A, B), (C,(D, E))) is to be processed to give
(((E, D) ,©), (B,A)).
S <PAIR> (A OBJECT1 A, A OBJECT2 A)
<OBJECT1> sli | PAIR
<OBJECT2> sli | PAIR
T <PAIR> (A OBJECT2 A, A OBJECTI A)
<OBJECT1> sli| PAIR
<OBJECT2> sli| PAIR
This example illustrates the importance of the principle
of paternity. Consider the processing of an input sentence
((A, B),C). The source language tree, stripped of the
irrelevant brackets and commas, can be illustrated by the
following diagram and tabulation:

n0
|
I I
nl ni
I I
n2 n8
I
I I
n3 ns
I I
n4 n6

n0 S ((A,B), O)
nl PAIR 1 OBJECTI1 (A,B)
n2 OBJECTI1 2 PAIR (A,B)
n3 PAIR 1 OBJECT1 A
n4 OBJECT1 1 sli A
ns PAIR 1 OBJECT?2 B
n6 OBJECT2 1 sli B
nl PAIR 1 OBJECT2 C
n8 OBJECT2 1 sli C

The initial node of the parsing tree for the target language
is filled out, producing an undecided chain of two nodes with
class names OBJECT2 and OBJECT1. As node n2 of the
source tree is scanned, OBJECT]1 of the target tree becomes
determined: its second alternative definition is selected, thus
producing two further undecided nodes, OBJECT2 and
OBJECTI. The contents of the latter is then determined by
node n4. When we get to node n6, the target tree contains
two undecided nodes with the same class name OBJECT?2.
The principle of paternity ensures that the correct target
tree node is determined—that is the one which belongs to an
undecided chain headed by the activating node n2, and not
that belonging to the chain headed by #8.

Incidentally this operation could have been performed
merely by interchanging the brackets (and) in a reversed
string:

S <STRING > CHARACTER | CHARACTER A STRING
<CHARACTER > sli | DELIMITER
<DELIMITER> (}|)],

T <STRING> CHARACTER | STRING A CHARACTER

<CHARACTER > sli | DELIMITER
<DELIMITER>)| (|

The Computer Journal

However, if the processing requires the reorganisation of
triplets or larger multiplets, it cannot be so neatly debunked.

Example 1
Source sentences consist of function statements of the form
‘function name’ (‘parameters separated by commas’).
Four function names are available, the functions JUP and
JDOWN are each called with one parameter only, whereas
the functions IUP and IDOWN must be called with two
parameters. The parameters may be either alphanumeric
identifiers, or themselves function calls.
In the target language only a single function name NODE
is present, but is always called with four parameters, with
the following meaning:

Parameter 1 : identical with the first parameter of
input function calls
Parameter 2 : value 1 for functions JUP or IUP,
value 2 for functions JDOWN or IDOWN
Parameter 3 : value O for functions JUP or JDOWN
value 1 for functions IUP or IDOWN
Parameter 4 : same as second parameter of functions
IUP or IDOWN, set zero for functions
JUP or JDOWN

Thus the input sentence IUP(JDOWN(P), JUP(JUP (XYZ))
would become on output
NODE(NODE(P,2,0,0),1,1, NODE(NODE(XYZ,1,0,0),1,0,0))
The following process will perform the required trans-
formation:

S <SENTENCE> OP1 A (A EXP1 A)|
OP2 A (A EXPL A, A EXP2 A)

<OP1> JUP | JDOWN

<OP2> IUP [IDOWN

<EXP1> sli | SENTENCE

<EXP2> sli | SENTENCE

T <SENTENCE> NODE(A EXP1 A, A OP1 A ,0,0) |
NODE(A EXP1 A, A OP2 A1, A EXP2 A)

<OP1> 1]2

<OP2> 1 ’ 2

<EXP1> sli | SENTENCE

<EXP2> sli | SENTENCE

Incidentally, this process (as well as those of preceding
examples) is reversible. On exchanging the two blocks of
production rules, former output will be processed back
again to the original input.

Example 8

The input statements are FORTRAN instructions, possibly
containing calls for library functions of the form SINF (),
COSF(), EXPF(), etc. These calls may occur recursively
and repeatedly in the same instruction. The output state-
ments are to consist of the same instructions modified by
removing the final ‘F’ from all such function calls. The trick
is so to set up the source language productions that function
calls are selectively recognised—we must beware of recognis-
ing other identifiers, for example PQCOSF(. .. as library
calls.

S <INSTRUCTION> ANY A SPECIAL A INSTRUCTION |

ANY
<ANY > |a A ANY
<SPECIAL > DELIMITER A LIBRARY A F(

<DELIMITER > + | =1*/1=1d,

<LIBRARY > SIN | COS | EXP | LOG | etc.
T <INSTRUCTION> ANY A SPECIAL A INSTRUCTION |
ANY
<ANY> la A ANY
<SPECIAL > DELIMITER A LIBRARY A (
<DELIMITER> + | — | *|/] =|(],
<LIBRARY > SIN | COS | EXP | LOG | etc.

This example illustrates an application of the priority
convention. INSTRUCTION is non-uniquely deconcaten-
able, since any string could be parsed under the second

Volume 14 Number 1

alternative definition, ANY. The priority convention
ensures that the instruction is first tested for the presence
of a SPECIAL sub-string, which is defined as one con-
taining function calls.

But why has the class name ANY been defined as
|a A ANY, instead of simply < ANY > sa? For two reasons.
First, the parser might be so constructed that sa was not
treated as a class name with unlimited alternative definitions
of 0 characters, 1 character, 2 characters Thus the
whole instruction would be parsed as ANY, leaving no
characters over to be parsed under SPECIAL A INSTRUC-
TION: thus the parser would always pass to the second
alternative definition of INSTRUCTION. Secondly: even
if the parser algorithm recognised sa as a multiply defined
class name, it would probably ‘work backwards’, that is, as
first alternative associate all characters of the string with
ANY, as second alternative, all characters but the last with
ANY, and so on, until enough characters were left at the
end of the string to be recognised as SPECIAL A IN-
STRUCTION. Exhaustive as this is, it is only a tiny inner
loop of a still wider search, since, at this stage, only the
last occurrence of SPECIAL in the input string has been
recognised. The above definition of ANY ensures that the
parser always searches forwards, and minimises the length
of the input string falling under this class name.

Example 9

Certain dialects of FORTRAN, and certain compilers,
require that the titles of all programmes, subroutines and
functions commence with the string FORTRAN VI,
followed by the normal name and possible formal para-
meters. The following process will convert title cards to this
format, and copy all other strings unaltered.

S <STATEMENT> TITLE |sa

<TITLE> INITIAL A sa

< INITIAL > PROGRAM | SUBROUTINE | FUNCTION
T <STATEMENT> TITLE |sa

<TITLE> FORTRAN VI A INITIAL A sa

<INITIAL > PROGRAM | SUBROUTINE | FUNCTION

Example 10

This set of examples is included to demonstrate the versatile
nature of simple processing. Possible applications include
the extension of source language syntax to include matrix
expressions, the manipulation of algebraic expressions, or
the systematic modification of source statements to take
advantage of the idiosyncracies of a given compiler.

The problem is to set up a process for the conversion of
simple assignment statements into simple machine code.
We will first define what we mean by these two phrases.
By simple machine code, we mean machine code limited to
the following set of instructions, all but the last of which
are followed by an ‘address’, consisting of an alphanumeric
upper case identifier, which may be identical to a correspond-
ing identifier appearing in the input assignment statement:

CLA clear accumulator and add contents of address
SUB subtract contents of address from accumulator
ADD add contents of address to accumulator

MUL multiply accumulator by contents of address

DIV divide accumulator by contents of address

POW raise accumulator to power of contents of address
STO store contents of accumulator in address

CHS change sign of accumulator

The address following an instruction may be an erasible
storage location, denoted by a lower case letter, or string,
x, y, abc. If necessary, a pushdown stack is also available,
and is addressed simply as ‘stack’.

The questions of where the input strings come from,
and what is to be done with the corresponding output
strings, have been ignored up to now. These considerations,
in so far as they are relevant to the present study, will be

31

touched on in Section 4. But the present example serves as a
convenient introduction to the policy which will be later
advocated. Let us assume that the machine code output is
to be punched on cards, one instruction per card, in certain
columns. The target productions must generate output
strings of instructions with special markers, which indicate
where each instruction and each address part starts. It will
then be the duty of a specially written dispatcher routine to
recognise these markers, and to take appropriate action. In
the same way a specially written dispatcher routine would
be written to recognise which fields of an input card con-
stitute an input string for the source language, to deal with
the matter of continuation cards, to reject comment cards,
and so on.

In the present set of examples, we shall make the target
productions insert a — sign between the function and
address parts of an instruction, and place a period at the
end of each instruction.

By a ‘simple assignment statement’ we mean here a
statement of the form ‘identifier’ = ‘expression’, where
‘identifier’ is an alphanumeric string, and ‘expression’
consists only of unsubscripted identifiers together with the
arithmetic operators + — * / ** (1), interpreted normally.
‘Expression’ may contain neither subscripted variables, nor
pure numbers.

The problem will be handled one step at a time, first
considering the simplest of assignment statements, in which
only the operators + and — may appear, till finally a
scheme for fully bracketed expressions is set up.

Example 10(a)
The very simplest case assumes that the expressions contain
the operators + and — only.

S < ASSIGNMENT >
<EXPRESSION >
<POSS UNARY >
<POSS CONT >

sli A = A EXPRESSION
POSS UNARY A sli A POSS CONT

+ |-
\ PM A sli A POSS CONT

<PM > + | —
T <ASSIGNMENT> EXPRESSION A STO- A sli A .
<EXPRESSION> CLA- A sli A. A POSS UNARY A
POSS CONT
<POSS UNARY > | CHS-
<POSS CONT > PM Asli A . A POSS CONT
<PM> ADD- | SUB-

Under this process, an input assignment statement, say
A = —B + C — D, will result in the following output
string.

CLA-B. CHS. ADD-C. SUB-D. STO-A.

Example 10(b)

When the input expressions are allowed to contain all four
operators +, —, *, /, two alternative policies may be
followed. Either, regardless of the efficiency of the compiled
output, we may insist on the operations being performed in
their input string order: alternatively, laws of commutation
and association may be invoked to produce compacter

A typical input string reading, say, Z = A + B*C — DJE,
will result in the following output:

CLA-A. STO-y. CLA-B. MUL-C. STO-x. CLA-Y. ADD-x. STO-y.
CLA-D. DIV-E. STO-x. CLA-y. SUB-x. STO-Z.

The above source language production rules are viciously
left-recursive. Consider the parsing of a simple string
Z = A + B + C. In order to identify A + B + C as an
EXPRESSION, A must first be identified as a CLAUSE:
then +B + C has to be identified as a POSS CONT. But
before this can happen, the parser must fail in an attempt to
identify +B + C as a CLAUSE. Unless the parser is quite
sophisticated it will hang. The author’s parser, after some
modification, was able to control the situation, but at the
expense of a frightening expenditure of machine time. By
applying the lesson learnt in Example 5, left-recursive source
language productions can be circumvented entirely, using
the following 2-link process:

S1 <STRING > sli | sli A OP A STRING
<OP> += [)] =] =+]|=-

T1 <STRING> sli | STRING A OP A sli
<OP> + =%/ =[=]-=

S2 < ASSIGNMENT> EXPRESSION A = A sli
<EXPRESSION> POSS CONT A CLAUSE A POSS UN
<POSS CONT > ! CLAUSE A PM A POSS CONT
<POSS UN> -
<PM> S+ =
<CLAUSE> sli | sli A MD A CLAUSE
<MD> *|/

T2 <ASSIGNMENT> EXPRESSION A STO- A sli A .
<EXPRESSION> POSS CONT A CLAUSE A POSS UN
<POSS CONT > | POSS CONT A STO-y. A CLAUSE

ASTO-x. CLA-y. A PM A x.
<POSS UN> | CHS.
<PM> ADD- | SUB-
<CLAUSE > CIJLA- Asli A .| CLAUSE A MD A
sli A .
<MD > MUL- | DIV-

In link 1, language S1, we have distinguished between
identifiers (sli) and operators (OP), in order to avoid the
reversal of component characters of identifiers, as would
have occurred without this distinction. Also, the monary
+ sign has been eliminated in link 1, leaving only a possible
unary — to be dealt with in link 2.

Some improvements in output coding can be expected
if we allow the productions to distinguish between simple
clauses (e.g. PQRT) and compound ones (e.g. P*Q/R*T):
as it stands a simple clause + A generates the coding
STO-y. CLA-A. STO-x. CLA-y. ADD-x. !

Example 10(c)

However, the normal way of generating efficient coding is
to re-order the clauses so that structured clauses are always
handled before simple identifier clauses: thus all temporary
storing in registers x and y is avoided. This could either be
accomplished in a two link process, of which the first
produces a rearranged output string as input for the
second link—or in a one link process:

coding. The first process follows the former alternative:

S < ASSIGNMENT> sli A = A EXPRESSION
<EXPRESSION > (PE%%STUNARY A CLAUSE A POSS
<POSS CONT> ’ POSS CONT A PM A CLAUSE
<POSS UNARY > + |-
<PM> + , -
<CLAUSE > sli | CLAUSE A MD A sli
<MD> *
T <ASSIGNMENT> EXPRESSION A STO- A sli A .
<EXPRESSION> CLAUSE A POSS UNARY A
POSS CONT

<POSS CONT > | POSS CONT A STO-y. A CLAUSE A
STO-x. CLA-y. A PM A x.

<POSS UNARY > | | CHS.

<PM> ADD- | SUB-

<CLAUSE> (lJLA- Asli A .]CLAUSE A MD A
sli A .

<MD> MUL- | DIV-

32

S <ASSIGNMENT> sli A = A EXPRESSION
<EXPRESSION> POSS UN A NAME A POSS NAMES |
POSS UN A CLAUSE A MIXTURE |
POSS UX A NAME A POSS NAMES A
PNC A CLAUSE A MIXTURE
<POSS NAMES > PNN A NAME A POSS NAMES
<MIXTURE > PNN A NAME A MIXTURE |
PNC A CLAUSX A MIXTURE
<POSS UN> + | -
<POSS UX > + | -
<PNN> + | -
<PNC> + | -
<NAME > sli
<CLAUSE > sli A MD A sli A POSS MORE
<POSS MORE > | POSS MORE A MD A sli
<CLAUSX > CLAUSE
<MD> *|/
T <ASSIGNMENT> EXPRESSION A STO- A sli A .
<EXPRESSION> CLA- A NAME A . A POSS UN A

POSS NAMES | CLAUSE A POSS UN

The Computer Journal

A MIXTURE | CLAUSE A PNC A
POSS UX A NAME A POSS NAMES
A MIXTURE

<POSS NAMES > PNN A NAME A . APOSS NAMES

<MIXTURE > MIXTURE A PNN A NAME |
CLAUSX A PNC A MIXTURE

<POSS UN> | | CHS-

<POSS UX> ADD- | ADD- | SUB-

<PNN> ADD- | SUB-

<PNC> | CHS-

<NAME > sli

<CLAUSE> CLA- Asli A . AMD Asli AL A
POSS MORE

<POSS MORE > | POSS MORE A MD Asli A .

<CLAUSX > STO-x. A CLAUSE A PNC A ADD-x.

<MD> MUL- | DIV-

The above productions, utilising the principle of priority,
first test for expressions composed entirely of simple
clauses, next for mixtures commencing with a structured
clause, and lastly for any other mixture of simple and
structured clauses. In the third case the first occurring
structured clause in the mixture is singled out for special
treatment. Notice the use of repeated identical productions
for the class names PNN and PNC, since a + or — occur-
ring before a simple clause has to be treated differently
from the same signs occurring before structured clauses.
The class names POSS MORE is left recursive—we have
already seen how this nuisance can be avoided.

If expressions are now allowed to contain the power
operator **, the translation of CLAUSE becomes a little
more complicated. In order to produce efficient coding, the
same kind of ordering search has to take place within
CLAUSE as within EXPRESSION in the above example.

The details are not particularly instructive.

Example 10(d)
As a final example, we set up a two-link process for compil-
ing fully bracketed expressions. Since it is not output opti-
mised it is fairly easy to follow what is happening

S1 <SEQ> sli | sli A OPS A SEQ
<OPS> OP | OP A OPS
<OP> =)=
T1 <SEQ> sli [SEQ A OPS A sli
<OPS> OP | OPS A OP
<OP> +=1*1/1**DI=
S2 < ASSIGNMENT> EXP SION A = 1i
<EXPRESSION> CLAUSE A POSS SIGN |
sli A PM A EXPRESSION |
CLAUSE A PM A EXPRESSION
<CLAUSE> ATOM |sli A MD A ATOM |
ATOM A MD A CLAUSE
<ATOM > sli | (A EXPRESSION A) |

NAMI A ** A NAM2 |

(A EXPRESSION A)** A sli |
(A EXPRESSION A)**

(A EXPRESSION /)

<POSS SIGN > |+ -

<PM> + | -

<MD> *|

<NAMI > sli

<NAM2> sli

T2 < ASSIGNMENT> EXPRESSION A STO- A sli A .

<EXPRESSION> CLAUSE A POSS SIGN |
EXPRESSION A PM A sli |
EXPRESSION A STO-stack. A
CLAUSE A STO-x. CLA-stack. A
PM A x.

<CLAUSE > ATOM | ATOM A MD A sli|
CLA- A NAM2 A POW- A
NAMI1 A .| EXPRESSION A
STO-stack. CLA- A sli A
POW-stack. | EXPRESSION A
STO-stack. A EXPRESSION A
POW-stack.

<POSS SIGN > | | CHS.

<PM> ADD- | SUB-

<MD> MUL- | DIV-

<NAMI1> sli

<NAM2> sli

3. Ramified processing
3.1. Basic principles

Versatile as simple processing has shown itself to be, there

Volume 14 Number 1

are a number of operations (some of which seemingly
trivial) which cannot be performed at all, or only with great
inelegance, within the framework already set up. These
operations will be recognised as demanding context sensitive
understanding of the production rules.

To give two examples: firstly, the selective recognition of
strings of duplicated characters (e.g. AA11BB22), or, the
processing of a given string, say A1B2, into such a duplicated
string. Although the problem is soluble within the frame-
work of simple processing, the solution is about as inelegant
as can be envisaged:

S <STRING > CHARACTER | CHARACTER A
STRING
<CHARACTER> A |B]|....|0]1]2....
T <STRING > CHARACTER | CHARACTER A
STRING
<CHARACTER> AA |BB|....|00[11]....

As a second example, leading to an even uglier solution,
consider the conversion of an arbitrary string, say AlB2,
into a palindromic string A1B22BIA.

S <STRING> A|B|....|A A STRING |
B A STRING |C A STRING |......
T <STRING> AA|BB|....|A A STRING A A |

B A STRING A B|C A STRING A C|....

These problems are characterised by the need to ‘under-
stand’ certain class names, in terms of a previous analysis
of class names. We distinguish two cases: (a) A class name
depends for its interpretation upon the analysis of another
class name within the same parsing tree, and (b) A class
name depends for its interpretation on other parsing trees,
that is, on the parsing trees of previously parsed sentences.

A small extension to simple processing will allow us to
deal with problems falling under type (a). It is just a matter
of linking alternative definitions, so that linked class names
which are also brothers in the parsing tree are compelled to
follow the same alternative definition. In the publication
language, class names are denoted by upper case alpha-
numeric strings. We now introduce a new publication
language sign, §, to link class names together. This sign
will appear in the definition part of a production rule only.
A string of the form say, ABC§P12 in the definition part of
a production rule will mean that, when utilising the pro-
duction rule for the class name ABC, look for an elder
brother in the parsing tree under construction, with the
same name ABC§P12. If one is found, then take the same
alternative definition for ABC, as was taken by that elder
brother. In particular, if ABC is a terminal class, use the
same terminal class stringlet as that elder brother. This
convention may be used in both the source, and the target
productions.

With this convention in use the production rule

<PROD> AB§3 A PQ A AB A RS A AB§4 A AB§3 A AB§4

would insist that the alternative definitions chosen for the
first and sixth sons of PROD were the same—and also
those chosen for the fifth and seventh sons. If it so happened
that AB were defined by the production rule

<AB> + |-

then there would be just four possible ‘expansions’ for
PROD, namely

<PROD >

Were, however, AB defined by the production rule
<AB> i

then some 100 possible expansions of PROD might be
generated:

3

3 APQ A AB A RS A 030 and so on

The two little problems of generating duplicated and
palindromic strings can now be solved.

S <STRING > CHARACTER | CHARACTER A

STRING
<CHARACTER> a
T <STRING > CHARACTER§1 A CHARACTERS! |
CHARACTER§1 A CHARACTERS! A
STRING

a
CHARACTER | CHARACTER A
STRING

aCHARACTER§l A CHARACTERSI |
CHARACTERS! A STRING A
CHARACTERS1

<CHARACTER> a

Using linked alternatives in the source productions, we
can also selectively recognise palindromic strings:

S <STRING> PALINDROMIC | sa
<PALINDROMIC> CHARACTER§X A CHARACTERG§X|
CHARACTERS§Z A PALINDROMIC

A CHARACTERS§Z

Nice though this arrangement appears to be, we shall not
devote much space to its development here, since it has
already been discussed in the literature, and it unfortunately
cannot deal with problems of type (b).

Problems of the latter type are not far to find. Within
the FORTRAN language for instance, TYPE and DI-
MENSION statements are glaring examples, since they
create rules for the understanding of strings which will only
be encountered later on.

We are looking for some mechanism whereby information
can be conveyed from earlier parsing trees, to ones which
will be set up later. The storage and recovery of this inform-
ation might be accomplished in two ways. First by conserv-
ing certain parsing trees, at least in skeletal form, as a list
or set of tables for future reference. Unfortunately this
would mean very radical departure from the simple process-
ing concepts of Section 2. The second alternative is to insist
that production rules, and these alone, are to convey all
necessary information. We therefore need a mechanism
whereby production rules can be manipulated, modified,
added to. We are led a step further towards the proposed
viewpoint when we consider that the output from simple
processing is an output string, to be dealt with by a specially
written output dispatcher routine. If we wish to remain
within the boundaries set by simple processing, or at least
to avoid straying too far outside them, we must arrange for
the processing output to be, on occasion, a string which is
a new production rule. We are then led to distinguish
between production rules whose output is a genuine output
string, and those whose output is raw material of production
rules. This can be done hierarchically. All production rules
so far set up, whose output is sent to the output dispatcher,
will be termed zero type production rules. We then define
a type-n production rule as one whose output string is to
be considered as raw material for a type-(n—1) production
rule. .

A type-0 production rule is unable to generate an output
string which is itself a type-0 production rule, since it is
unable to generate the production rule delimiters < > A |.
Since these signs are necessary to the setting up of production
rules, and will have to appear in the output strings of higher
type productions, a distinction must be made between their
appearance as genuine delimiters oras parts of outputstrings.

Further, the distinction must be hierarchical, to cor-
respond with the hierarchy of production types set up. The
most natural way of making this distinction is by appending

<CHARACTER >
S <STRING>

<CHARACTER >
T <STRING>

34

digital suffixes to the four signs < > A |. These signs will
appear suffixed with o in type-0 productions: though this
suffix may be omitted without causing confusion, in order
to retain compatibility with simple processing. In type-1
productions these signs will appear suffixed with ; when
they are used as delimiters. When they are otherwise
suffixed, then they are simply terminal characters as far as
that production rule is concerned. The output from a
type-n production becomes a type-(n—1) production rule
to be entered in the same language block (source or target)
in which that type-n production occurred. If that block
already contains a type-(n— 1) production bearing the same
class name, then the newly created production replaces the
old.

The activation of higher type productions is subject to
just the same rules as for type-0 productions: that is, a
production will be activated provided that it is part of the
correct undecided chain and bears the same class name as
the activating node. The output from a higher type pro-
duction is entered as a new production as soon as it is
complete, that is, when the higher type parsing tree being
generated contains no more undecided nodes. A rule must
also be stated to decide when a node is to set up a new
parsing tree, rather than merely determine undecided nodes
in an already existing tree. A new parsing tree will only be
set up when the vertex is an initial class name.

In cases when a class name has more than one type of
definition, and also appears in the definition part of a
production, we must indicate which type of production is
intended there. This can be done by subscripting the class
name itself with the type-digit of the production to which
reference is intended. All this is entirely consistent with
simple, or type-0, processing.

We have, of necessity, introduced a subscripting extension
of the simple publication language of Table 1. We now
further introduce, for pure convenience rather than from
necessity, another little extension. It is at times convenient
to perform simple integer arithmetic during processing. In
other words, given a string of integers and the usual
arithmetic symbols + — * (), we may wish to construct a
second string of digits only (possibly preceded by a unary —)
with the same numerical value. This could actually be done
by setting up production rules! However, these would
constitute rather a clumsy mess of operations. We therefore
introduce the pair of brackets { } with the convention that
any characters between them are limited to the digits and
the operators + — * (), as normally understood—and
that an equivalent string of digits is to replace the whole
structure. This replacement may be thought of as being
performed by a specially written subroutine, which (for
further convenience) will not complain on encountering such
strings as, say, {— —3 + —4}, but will quietly replace such
a string by — 1. This act of evaluation will be considered as
taking place immediately before the completed output string
is handed over to the output dispatcher, or incorporated as
a lower type production rule, as the case may be.

A procedural problem arises when a higher type pro-
duction occurs in a source language, and concerns the
backing-up which most parsers have to perform when they
follow a false trail. What is to happen if one of these false
trails has generated alterations in the source production
rules? The parser, in backing up, may then be using a false
set of production rules. There appear to be three different
approaches to meet this difficulty: firstly, to construct such
a clever parsing algorithm that back-up is never necessary;
secondly, insist that whenever a production rule results in
modifications, that the old state of the productions be
stored alongside the activating node, and be restored if the
parser ever backs-up past that node. The third approach is

The Computer Journal

to take this peculiarity explicitly into account in setting up
production rules.

For example: suppose that the class name LANGUAGE
has two alternative definitions

<LANGUAGE> FRENCH | GERMAN

and further, that the class name FRENCH activates a
type-1 production reading

<,FRENCH,>VERBSTEM A ; A A ;PAST PART
which finally generates a new type-0 production, reading
<VERB> AVOIR A PAST PART

At a later stage, the parser decides that FRENCH was
the wrong alternative definition of LANGUAGE, and
that it must try for GERMAN. We now have a false type-0
production for the class name VERB, which may invalidate
the proper parsing of the GERMAN branch. We now
wish to replace this false production rule for VERB, with
either (a) a known new production, or (b) by a known
(possibly non-existent) previous production, or (c) by a
production whose text we don’t know, but which was
created by a known activating node.

Cases (a) and (b) are readily handled by the introduction
of a type-1 production

<,GERMAN>; <VERB> (known replacement definition)

This will become active as a type-0 production as soon as
the parsing tree node GERMAN is set up, since it contains
no further undecided nodes.

But case (c) requires the use of a type-2 production.
Suppose that the node which set up the definition of VERB
which we wish to recover, has the class name ACTIVE.
Then the type-2 production required reads:

<,ACTIVE>, <,GERMAN>,<VERB> A ; VERB

When the parsing node FRENCH is set up, we can arrange
for the node ACTIVE to be activated, and to set up the
vertex of a new parsing treelet. This will result in a type-1
production being added to the language

<,GERMAN>; <VERB>(old type-O definition). ..

Later, if backup occurs, and the node GERMAN is set up
in the main tree, the above type-1 production will be
activated to yield the desired, but not specifically known
production text.

Notice the interpretation which must be placed upon the
definition part of the above type-2 production. The string
<,GERMAN >, < VERB> is a single terminal string, since
no production rule exists with such a string in its defined part.
However the string VERB is a class name, since a type-0
production commencing < VERB> exists.

3.2. Graded examples

Example 11
Given an arbitrary input string ABC. . . construct as output
the corresponding palindromic string ABC. . . .CBA.
S <STRING> ANY |ANY A STRING
<ANY > a
T <STRING> ANY A SAME|ANY A STRING A SAME

<ANY > a
<,ANY >, <SAME> A, ANY

Perhaps some comments may help to explain what is
happening. Whenever a node with class name ANY is
scanned in the source language parsing tree, two things
happen. First, a target tree node bearing the class name

Volume 14 Number 1

ANY is ‘determined’. Since ANY is a terminal class,
according to our rules, the input stringlet covered by this
node is conveyed to the target tree node—suppose that this
stringlet is the character X. The next thing to happen is
that a first order target parsing tree with vertex bearing
the class name ANY is set up. This vertex has two sons, with
class names <SAME> and ANY. The first of these is
simply a terminal string, the second a terminal class, which
as before receives the input stringlet X. This first order tree
now contains no undecided nodes, and therefore immedi-
ately generates the type-0 production

<SAME> X

The process of filling out the target tree continues. The
next node to be encountered bears the class name STRING,
and is left undecided. The last node at this stage of filling
out bears the class name SAME. This class name has a
zero order production consisting of the terminal character
X. Thus the latter character again enters the target tree.
The scanning of the source parsing tree now continues, and
the next node to be encountered bears the class name
STRING, and will determine the target tree node bearing
that class name which was left undecided. The next time a
source tree node bearing the class name ANY is scanned,
a new zero order production for the class name SAME will
result, and will replace the previously generated production
for this class name.

Example 12
To construct a source language which selectively dis-
criminates sentences of the form:

‘string of characters’ * ‘same string of characters’.

S <REPEAT> STRING A * A SAME STRING | sa
<STRING> sli
<,STRING>,; <SAME STRING> A, STRING

Example 13

Input sentences consist of strings of alphanumeric identifiers
separated by commas. Qutput sentences are similar, but
any duplicated identifiers are suppressed.

S < LIST> IDENT | IDENT A ; A LIST
<IDENT> OLD | NEW
<OLD> *
<NEW > sli
<,NEW>, <OLD> A ,;OLD A,;| Ay NEW
T <LIST> IDENT | IDENT A LIST
<IDENT> |NEW A,
<NEW> sli

On encountering the first identifier in the list, say ABI,
the parser must take the second alternative definition of
IDENT, since the first leads to a terminal * which cannot
be an identifier. This second alternative has class name
NEW which results in setting up a type-1 production, in
turn generating a type-0 production reading

<OLD> *|ABI

If any later identifier in the input string is identical with
an earlier one, then the first alternative definition of IDENT
will be followed, as the production rule for OLD will
already contain an alternative definition leading to that
identifier.

The target language production rules ensure that a new
identifier is added in to the target tree only when the second
alternative definition of IDENT in the source tree has been
followed.

Notice the various interpretations which must be placed
on the four components in the definition partof <;NEW >,.
The first component is <OLD >—this is a terminal string
since no production rule for <OLD> exists: the next

35

component is OLD—and this is a class name, since a
production rule for OLD does exist. The third component
is |, which is a terminal string in a type-1 production rule.
The last component is NEW which is a class name, since
there is a production rule for this identifier.

Example 14

The input sentences contain imbedded alphanumeric
identifiers. In the output strings these identifiers are to be
replaced by standardised identifiers, say JNO, JN1,JN2, . ..
such that the same input identifier, wherever it appears, is
to be replaced by the same standardised identifier. The
production rules written out here are purposely incomplete,
since we are not concerned with the question of how the
identifiers are to be teased out of input sentences.

S <IDENT> OLD |NEW
*

<OLD>
<NEW > sli
<,NEW>; <OLD> A, A, NEW
T <IDENT> OLD | NEW
<JC> 0
<OLD> *
<,NEW>; <NEW>sli<OLD> A; OLD A;JN A,JCA

<JC>{AAL+1}

When a NEW node is scanned in the source tree, a
new type-0 source production, and three new type-0 target
productions are generated. After encountering three
different input string identifiers, say ABC, PQR, XYZ, the
state of the production rules is:

S <IDENT> OLD |NEW
<OLD> *| ABC | PQR | XYZ
<NEW> sli

<,NEW>, remains unaltered
T <IDENT> OLD |NEW

<JC> 3
<OLD> * | JNO | IN1 | JN2
<NEW > sli

<;NEW>, remains unaltered

Example 15

The simple machine code set up in Example 10, allowed the
use of stack operations of the form STO-stack. , ADD-stack.
and so on. We wish to convert all such input sentence
operations into conventional operations, using sequential
identifiers, say LCO, LC1, LC2, in place of ‘stack’.

S <INSTRUCTION> STACK | OTHER
<OTHER > sa

<STACK > STO-stack. A INC |
DEC A OP A -stack.
<OP> ADD | SUB | MUL | DIV | POW
<INC>
<DEC>

T <INSTRUCTION> STACK | OTHER

<OTHER > sa
<STACK > STO-LC A INT A .|

OP A -LC A INT A .
<OP> ADD | SUB | MUL | DIV | POW
<INT> 0
<,INC>, <INT> {A,INT A, +1}
<,DEC>, <INT> {A,INT A, —1}

The two class names INC and DEC, with null source
language productions, have been introduced solely to
increment or decrement the target production for INT at
the right times. The right times being to increment INT
after each STO-stack operation and to decrement INT
before any other stack operation.

Example 16

As a final exercise we show how an extension to standard
FORTRAN syntax can be implemented. Input consists of
sentences in an ‘extended-FORTRAN’ dialect. In this
dialect arrays may be subscripted with unlimited number of
subscripts, instead of just three subscripts as in normal
FORTRAN. Each subscript may range between lower and
upper bounds set in a DIMENSION statement. Upper and
lower bounds are integers, possibly negative. A comma

36

separates the lower from the upper bound, and a $ separates
the latter from the next lower bound. A typical DIMEN-
SION statement might read
DIMENSION ABC(10,20$-3,0$-10,+100),PQR(7,21),
XYZ(—1,+08$-2,+28 —3.4+3 % —4,+4)

Output from the processor is to consist of equivalent
instructions in standard FORTRAN, in which all arrays
are singly subscripted, with positive subscripts, and the
appropriately altered DIMENSION statements.

The processing scheme which we shall set up to solve
this problem, is not the only possible solution, nor necessarily
the simplest. Furthermore, certain implicit assumptions are
made, for instance that the source strings contain one
DIMENSION statement only. These simplifications could
have been avoided at the cost of making the production
rules more complex, and the whole exercise less valuable
as a demonstration. On the other hand, further elaborations
could have been incorporated, such as making the scheme
compatible with standard FORTRAN, or constructing
built-in execution checks against dimensioning outside
limits. These refinements have been avoided for the same
reason.

The problem divides neatly into simple and ramified
processing tasks. The reconstruction of the DIMENSION
statement is a matter of simple processing. All that is really
required is to replace § signs by multiplications, add
brackets and +1 stringlets, and use curly brackets to
evaluate the results arithmetically. The above written
dimension statement is to appear in output as:
DIMENSION ABC({(20— IO—H)*(O— —=341)*(4+100— —10+1) }),

PQR({(21-7+1)})
XYZ({(+1— = 1+ 1)*(+2— =2+ 1)*(+3 — —3+1)*
(+4——4+1))

We have already assumed that our arithmetic processor
can deal with the eccentric appearance of these expressions,
and replace the whole string by

DIMENSION ABC(4884),PQR(15),XYZ(945).

The task of the ramified process is to set up new type-0
production rules in both the source and target languages.
These will be production rules for a new class name,
DNA (standing for ‘dimensioned name’). This class name
will explain how dimensioned variables are to be recognised
in the source language, and how they are to be processed
in the target language. Given a dimension statement item,
say ABC(I1, ul § 12, u2 $ 13, u3 §$. .) and a source string
dimensioned array, say ABC(dl, d2, d3...), the following
type-0 production for DNA will be set up in the source
language

<DNA> ..|ABC(A .OTS A, AOTS A, A OTS...)..

where OTS is also a type-0 class name (‘other statement’),
defined by a source language production. The above pro-
duction for DNA will contain as many OTS entries in ABC,
as the latter has subscripts in its DIMENSION declaration.

In the target language, the following corresponding type-0
production must be generated:

..]ABC(+ A dl A {= ATl A }+({u1 A
= ADA+IP*EAA2A = A2 A}
+({Au2 A = A12 /\ +1})‘(/\
AAA{=AIBAL}...00))..
In the above typical dimensioned variable ABC, on substitut-
ing the actual upper and lower limits of the subscripts, we
would get
<DNA> ABC(1+ Adl A —10 +11*(A d2 A +34111%*
Ad3 A +10)))

The subscripts d1, d2 and d3 are simply strings of characters
which may themselves contain subscripted variables, which
will undergo the same processing operations recursively.

<DNA >

The Computer Journal

Function names pass unaltered through the processor,
since their identifiers will not have appeared in the DI-
MENSION statement. Arrays differently dimensioned to
the number of dimensions allocated in the DIMENSION
statement, will not be recognised under the class name
DNA. The upper and lower subscript limits appearing in
the DIMENSION statement may be integral arithmetic
expressions, since they are in any case passed through
the arithmetic processor by the use of { }.

For the sake of brevity we have used a new terminal
class name, ssi, to stand for a set of digits possibly preceded
by a unary + or — sign.

S <STATEMENT> DST|OTHER

<DST> DIMENSION A LIST
<LIST> LIST ITEM | LIST ITEM A, A LIST
<LIST ITEM > sli A (A DIMENSIONS A)
<DIMENSIONS> LOD A, A HID |
LOD A, A HID A § A DIMENSIONS
<OTHER > sa A DNA A OTHER |sa
<LOD> ssi
<HID > ssi
<,DST>, <DNA> A, LIST,
<,LIST>, LIST ITEM, |, LIST ITEM; A, |
A1 LIST,
<,LIST ITEM >, sli A, (A, DIMENSIONS, A,)

<,DIMENSIONS >, A OTHER A |,
A OTHER A , Ay DIMENSIONS,
T <STATEMENT> DST | OTHER
<DST > DIMENSION A LIST
<LIST > LIST ITEM | LIST ITEM A , A LIST
<LIST ITEM > sli A ({A\ DIMENSIONS A })
<DIMENSIONS> (A HID A — A LOD A +1)]|
(AHID A — ALOD A +1)* A
DIMENSIONS

<OTHER > sa A\ DNA A OTHER |sa
<LOD> ssi
<HID > ssi
<,DST> , <DNA> A, LIST,
<,LIST> , LIST ITEM, |, LIST ITEM, A, |
A1 LIST,
<,LIST ITEM >, sli A,(1+ A OTHER {— A,LOWA,}

A, DIMENSIONS A,)

<,DIMENSIONS >, |, +({A; HID A; — A, LOD A,
+1})*(A OTHER {— A, LOW A,}
A, DIMENSIONS A ;)

<,LOD>, <LOW> A,;LOD

Processing in practice

Some thought has been given to the question of how the
above described scheme might be presented in a form
acceptable to the average user. At one extreme one might
incorporate all the above ideas, with additional refinements
into a new formal language. At the other extreme we might
imbed all the processing operations into an existing formal
language making use of subroutine calls. On the whole a
compromise seems preferable. The language production
rules will be regarded as strings in a new formal language,
or as input for a processor-compiler. All other needs will be
imbedded in a symbolic language. In practice the user
would have to write out his source and target production
rules in the specified program input language (that is, the
punched card corollary of the publication language set up
in Table 1, and its extension). The user would also write his
own input and output dispatcher routines, called say
INPUT and OUTPUT. In these the user will have to
decide how to cut up input into meaningful strings, whether
to ignore blank columns, how to deal with continuation
cards, what to do with the output, and so on. The target
productions might have been so written that the first
character of the output string was really an instruction to

References

the OUTPUT routine (as, analogously, the first character
of each line of machine output is commonly an instruction
to the line printer). By this means one might select format
statements, print out messages (for instance ‘INPUT
STRING UNGRAMMATICAL’), decide whether to
print, punch or otherwise store output. All these are
matters of conventional programming.

The author has set up a field-tested programme for
performing simple processing, calleld MAMMAL. It
accepts blocks of production rules in a form closely similar
to the publication language of Table 1. A small main
program, and input and output dispatcher routines complete
the system. Most of the examples of Section 2 have been
tested out, and run correctly, though they are inefficient
and time-consuming. The slow running is due to the employ-
ment of rather a naive parsing algorithm, based on a general
tree manipulation scheme (MESH). Most of the parsing
algorithm instructions are calls on the various MESH sub-
routines. The use of MESH made MAMMAL easy to
write, but execution times are an order of magnitude
greater than if the processing scheme had been properly
programmed.

5. Conclusion

It was our aim to present a compact scheme enabling a
wide variety of manipulation operations to be specified
and performed. It is believed that, at the simple processing
level at any rate, the scheme is quite easy to use. It involves
little more than a slight extension of normal notation for
syntax for production rules. We suggest that simple process-
ing could be a useful tool in the hands of a fairly unsophisti-
cated programmer. Ramified processing however, calls
for a more informed approach: the language is hardly
more elaborate, but its application to the solution of specific
problems does require very careful thought.

6. References

By far the greatest fraction of the literature associated with
syntax processing is devoted to the construction of parsing
algorithms, and the formal studies of syntax. A most
informative review article of this material, with numerous
references is to be found in Feldmann and Gries (1968).
The author has made extensive use of Ingermann (1966) and
Cheatham and Sattley (1964) in the initial stage of learning
about syntax parsing. The present paper is however con-
cerned more with the use made of parsing trees, than their
construction. Here the literature is relatively sparse. The
author has been unable to discover any papers in which the
output strings are obtained from output production rules,
in a scheme so symmetric, that input and output blocks of
production rules can be actually interchanged. The system
with the greatest similarity appears to be Brooker, Morris
and Rohl (1967): in the latter, productions for input strings
are called formats or phrase definitions, with which output
productions named format routines are associated. However
the latter productions do not appear to be in a form such
as could be used by a parsing algorithm. Other systems
contain actual output instructions, or pointers to such
instructions, imbedded within the input production rules.
Yet another scheme, in Reynolds (1965) makes use of list
processing operations to define the output strings.

BROOKER, R. A., Morris, D., and RoHL, J. S. (1967). Compiler-compiler facilities in Atlas autocode, The Computer Journal, Vol. 9,

pp. 350-352.

CHeATHAM, T. E., and SATTLEY, K. (1964). Syntax directed compiling, Proc. AFIPS 1964 SJCC, Vol. 25, pp. 31-57.
FELDMANN, J., and Gries, D. (1968). Translator writing systems, CACM, Vol. 11, No. 2, pp. 77-113.

INGERMAN, P. Z. (1966). A Syntax Oriented Translator. Academic Press Inc.: New York.

REYNOLDS, J. C. (1965). An introduction to the COGENT programming system, Proc. ACM 20th Natl. Conf., pp. 422-436.

Volume 14 Number 1

37

