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Abstract

Drug discovery is the process of producing compounds with desired biological prop-
erties towards diseases of interest. Considering the enormous number of potential
structures one could produce, the achievements seen in modern pharmaceutical sci-
ence are astounding. Despite this, the immense amount of resources required to
develop a drug compound presents a bottleneck in the development of pharmaceuti-
cal compounds. Computational methods, such as machine learning, offer a potential
solution to this problem. Their major advantage is that, by proposing structures in
silico, they can narrow the search space, reducing the number of compounds required
to be synthesized and tested. However, the use of such methods is often encumbered
with issues of synthetic feasibility.

To aid in this issue, we present the algorithm DINGOS (Design of Innovative
NCEs Generated through Optimization Strategies). DINGOS combines the predic-
tive capabilities of computational methods with a rule-based model of synthesizability.
DINGOS is a ligand-based scoring method, generating structures which are similar
to the template ligand, while within the provided definition of synthesizability. The
functionality of the DINGOS algorithm was demonstrated in a case-study, in which
designs were proposed for four compounds (alectinib, cariprazine, osimertinib, and
pimavanserin). For each template, a set of 300 designs was proposed, out of which,
above 50% were predicted as active by target prediction. Three out of four selected
candidate structures were successfully synthesized with the synthetic pathway pre-
dicted by DINGOS. Of three synthesized compounds, one showed activity towards
the 5-HT2B serotonin receptor. The modular nature of the DINGOS algorithm was
demonstrated in a series of follow-up studies. In the first follow-up study, DINGOS
was paired with a custom automated synthesis system in order to generate de novo
designs within an autonomous active learning drug design cycle. Two rounds of auto-
mated synthesis were performed, generating a total of 22 novel compounds, of which
five showed micromolar activity towards carbonic anhydrase II. The method was fur-
ther extended, first by modifying the core predictive component of the algorithm,
allowing for the internal representation of the scoring function to be flexibly changed,
and in the second, DINGOS was combined with a MCTS (Monte Carlo tree search)
algorithm in order to allow for non-greedy optimization of the designed structures.
The results of this work showcase the potential of the DINGOS algorithm as a method
for generating synthetically feasible de novo designs, and highlights DINGOS’ abil-
ity to be adapted to a variety of different drug design problems, narrowing the gap
between in silico and experimental drug design.





xxi

Zusammenfassung

Die Entdeckung und Entwicklung von Medikamenten beschreibt den Prozess, chemi-
sche Verbindungen herzustellen, die gewünschte biologische Eigenschaften gegenüber
der untersuchten Krankheiten aufweisen. Angesichts der beträchtlichen Anzahl mög-
licher Strukturen, die hergestellt werden können, sind die Errungenschaften der mod-
ernen pharmazeutischen Wissenschaft beeindruckend. Dennoch stellt der grosse zeit-
liche Aufwand und der hohe Bedarf an Ressourcen eine grosse Herausforderung in
der Entwicklung von pharmazeutischen Wirkstoffen dar. Numerische Methoden, wie
zum Beispiel Machine Learning, ermöglichen neue Lösungsansätze für diese Prob-
lematik. Ihre Stärke besteht darin, dass sie neuartige chemische Strukturen in silico
vorschlagen können und so den Suchraum eingrenzen. Dadurch wird die Anzahl
chemischer Verbindungen reduziert, die synthetisiert und getestet werden müssen.
Allerdings bringt diese Herangehensweise keine Garantie für die Synthetisierbarkeit
der vorgeschlagenen Moleküle mit sich.

Um diese Problematik anzugehen, präsentieren wir den Algorithmus DINGOS
(Design of Innovative NCEs Generated through Optimization Strategies). DINGOS
vereint die Fähigkeit der numerischen Methoden, geeignete chemische Sturkturen zu
empfehlen, mit einem regelbasierten Modell, das die Synthetisierbarkeit jener Struk-
turen überprüft. DINGOS beruht auf einem ligandenbasierten Bewertungsverfahren,
das einerseits Strukturen erzeugt, die dem ursprünglichen Liganden ähnlich sind, und
auf der anderen Seite sicherstellt, dass diese der Definition von Synthetisierbarkeit
entsprechen, die vom Benutzer vorgegebenen wurde. Die Funktionsweise des DINGOS
Algorithmus wurde anhand einer Fallstudie demonstriert, in der de novo Designs für
vier Wirkstoffe (Alectinib, Cariprazin, Osimertinib und Pimavanserin) vorgeschlagen
wurden. Für jede dieser vier Vorlagen wurde ein Satz von 300 Designs von DINGOS
erzeugt, wovon durch Target Prediction für 50% Aktivität gegenüber dem Zielmolekül
des Vorlage-Liganden vorhergesagt wurde. Drei der vier ausgewählten Struktur-
Kandidaten wurden erfolgreich mit Hilfe desjenigen Syntheseweges synthetisiert, der
von DINGOS vorgeschlagen wurde. Davon wiederum zeigte ein de novo Wirkstoff
Aktivität gegenüber dem 5-HT2B Serotonin-Rezeptor. Der modulare Charakter des
DINGOS-Algorithmus wurde in einer Reihe von Folgestudien demonstriert. In der
ersten Folgestudie wurde DINGOS mit einem hauseigenen automatisierten Synthe-
sesystem kombiniert, um de novo Designs innerhalb eines autonomen, aktiven Wirk-
stoffdesignlernzykluses zu generieren. Die automatisierte Synthese generierte in zwei
Durchgängen insgesamt 22 neue chemische Verbindungen, von denen fünf mikromo-
lare Aktivität gegenüber Carbonic Anhydrase II zeigten. Desweiteren wurde ein-
erseits eine Modifizierung der prädikativen Kernkomponente von DINGOS durchge-
führt, um eine flexible Anpassung des internen Bewertungsverfahrens zu ermöglichen.
Andererseits wurde DINGOS mit dem Monte Carlo Tree Search Verfahren erweitert,
was eine nicht-gierige (non-greedy) Optimierung der erstellten Strukturen ermöglicht.
Die Ergebnisse dieser Arbeit präsentieren das Potenzial des DINGOS Algorithmus
als Methode zur Generierung synthetisch realisierbarer de novo-Designs und unter-
streichen seine Fähigkeit, sich an eine Vielzahl unterschiedlicher Probleme des Wirk-
stoffdesigns anzupassen und die Lücke zwischen in silico und experimentellem Wirk-
stoffdesign zu verkleinern.
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Chapter 1

Introduction - Computer
Assisted Drug Designs, Machine
Learning, and Research Problem

1.1 The Problem of Drug Design
The task of drug discovery, in its simplest form, is the problem of how best to filter the
vast expanse of chemical space to leave only those chemical entities with the desired
biological activity and absorption, distribution, metabolism, and excretion (ADMET)
properties [1, 2]. While the exact value is disputed, estimates place the number of
possible drug-like structures somewhere between 1018 and 10200 [3, 4]. To put this in
context, mankind has synthesized an estimated 108 molecules [5], or between 10-8 and
10-190 % of the total number of potential candidate structures. In early stage drug
discovery, one is often primarily concerned with the pharmacodynamic properties of
a molecule, usually manifesting as a binding interaction towards an identified target
protein of interest [6]. Efficient exploration of chemical space as a means of locating
regions with favourable binding interactions is a problem of much interest. Numerous
techniques have been developed in order to accomplish this task [7–9].

1.1.1 Natural Product Inspired Drug Design

Natural products have historically been a rich source for drug structures [10, 11],
with the use of chemical species derived from natural sources dating back thousands
of years. A textbook example of this would be the compound of acetylsalicylic acid
(Aspirin) Figure 1.1, which was originally developed from willow bark [12], while a
more contemporary example would be the anticancer compound paclitaxel (taxol)
Figure 1.2, which was originally extracted from Taxus brevifolia [13, 14]. Taxol acts
by inhibiting tubulin formation in cellular mitosis [15], preventing cell division. One
reason why natural products are often an attractive starting points in drug discov-
ery, is that, owing to their co-evolution with many protein species, they possess an
optimized ligand-protein binding interaction [16].
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Figure 1.1: The chemical structure of the anti-inflammatory com-
pound Aspirin.

By understanding and emulating the natural products structure, we can create
novel, synthetic compounds that modulate the target protein’s activity through bind-
ing. As natural products are formed by biogenesis, rather than chemical synthesis,
their structures tend towards a high degree of complexity, making direct chemical
synthesis difficult [17]. Taxol, for example, possesses a molecular weight of 854 Dal-
ton and eleven stereo-centers. Despite being isolated in 1971, a total synthesis of
taxol was not achieved until 1994 [18, 19].

Figure 1.2: The chemical structure of the anitcancer compound
taxol.

Unaltered natural products, such as taxol, make up an important class of drug
compounds [20]; however, recently, medicinal chemists have also explored the use of
natural product inspired analogs [21]. Due to the relative difficulty of synthesizing
such natural products, typical drug discovery projects attempt to create analogs that
retain key moieties, but with an overall reduction in complexity and an increase in
synthetic tractability. Often these compounds are designed to improve upon the
efficacy and toxicity of the natural product [22].

1.1.2 Screening Libraries

Another popular method in drug discovery is that of screening libraries [23]. While
natural product inspired drug design focuses on select, often complex, bioactive lig-
ands, screening libraries test a large array of diverse chemical species. In this ap-
proach, a library of compounds is carefully compiled and screened against the tar-
get protein(s) of interest. Any compounds showing activity towards the target are
selected as drug "hits" and further optimized to a "lead" drug candidate structure.
Compounds within these libraries are often selected due to their drug-likeness and ab-
sence of potential toxic or reactive moieties [24]. In phenotypic screening, rather than
being screened against a target protein, compound screening is performed against tar-
get cells, and the phenotypical response is measured. In phenotypical screening, the
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bioavailability of the compounds is of particular importance, as the molecule must
not only bind but also be absorbed into the target cell [25]. The screening libraries
may be formed from internal libraries, known drug compounds, or even commercially
available sets of molecules. In a 2013 study [26], Sun et al. performed a drug re-
purposing screening experiment in which a library of 4096 known drug compounds
was screened against the fungal strain Exserohilum rostratum. The anti-fungal agents
posaconazole and lanoconazole were shown to also be potent inhibitors of Exserohilum
rostratum growth.

1.1.3 Structure–Activity Relationship

Once an active compound has been established, iterative alterations are made to im-
prove upon the properties of the drug candidate. One common way of accomplishing
this is to make a series of closely related derivatives and measure their activity. By
exploring the effect induced by the introduction of the various structural variations,
one can establish what we call a structure-activity relationship (SAR), which gives
us an indication of which structural modifications lead to increased activity towards
the target. By following this procedure, we can make informed modifications to the
structure in order to optimize activity. In a study by Wang et al. [27], the group
performed a series of SAR studies based on the tubulin polymerization inhibitor
colchicine. Starting from previous lead compounds, the group synthesized and tested
a series of N-aryl-6-methoxy-1,2,3,4-tetrahydroquinoline derivatives. It was found
that the inclusion of a quinazoline moiety lead to high cytoxicity, resulting in the
production of a series of highly potent compounds (Figure 1.3).

Figure 1.3: The natural ligand, Colchicine, is shown in the top box.
Below are three select compounds from the study by Wang et al. [28].
In comparing the three structures, we see that minor structural mod-

ifications lead to a significant increase in efficacy.
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Outside of isolated SAR studies, the information relating structural features to
activity can then be used to construct a quantitative model of activity, known as
a quantitative structure–activity relationship (QSAR). Through the use of QSAR
models, compounds can be preferentially chosen based on their predicted activity,
reducing the number of synthesized compounds required for lead optimization [29].

1.2 Computer Assisted Drug Design
Recently, scientists have begun exploring the potential of using computer-based meth-
ods to propose active structures [30]. These methods attempt to describe the problem
algorithmically, with decisions relating to the chemical structure being based purely
on quantitative metrics. Inspired from QSAR studies (see Section 1.1.3), many com-
puter assisted drug design problems use a bioactive ligand(s) as a template in order to
inform structure generation. One common method amongst drug design algorithms is
that of de novo drug design, in which the molecules are generated entirely from sim-
plistic base units. These units can be individual atoms, or can be composed of larger
components, such as reactant molecules. One major advantage of computer-assisted
methods is that computer programs can process an immense amount of information,
incorporating structural [31, 32], biophysical [33] and even more abstract information
such as dynamic shape [34] and energetic [35] profiles. Secondly, computer-assisted
methods offer the potential to be scaled up in order to increase their overall efficiency.
With advances in parallel and GPU computing, an accurate but computationally ex-
pensive computational method could be sped up in order to complete the de novo
design in a shorter time frame [36, 37]. By generating and evaluating the molecules
in silico, we reduce the resource requirements in order to obtain a reasonable drug
candidate.

1.2.1 Descriptor Representation

While most chemical structures as drawn only depict the connectivity of the molecular
graph and the atomic number of each atom, a chemist can, through their expertise,
infer a large amount of relevant, implicit information about the molecule, such as:
the potential bonding interactions, electronic properties, conformational dynamics,
tautomerism, protonation states, reactivity, etc. In order for a computer-assisted
method to achieve a similar understanding, we first need a computer readable format
with which to describe the molecules. A common format routinely used by chemin-
formaticians is that of molecular descriptors [38–40]. A molecular descriptor encodes
chemical information about a molecule in a descriptive computer readable format,
such as a vector, which can then be read by the computer algorithm. The elements
of the descriptor can either describe purely structural features, such as the presence
or absence of particular groups, or describe properties relating to the molecule, such
as its electronic properties or conformational shape. A multitude of different meth-
ods exists for converting molecules into chemical descriptors, each one differing in
what specific information is included explicitly. The choice of representation is often
motivated by the nature of the problem one is working on. In the work by Wang et
al. [41], the group used molecules’ solvent accessible surfaces in order to construct a
molecular descriptor for solubility prediction.
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1.2.2 Molecular Similarity

The chemical similarity principle says that compounds which share a similar structure
are likely to show similar properties [42]. This principle forms the central tenet of
ligand-based scoring methods, in which we evaluate a compound according to its
similarity to a given template lignad. Using information related to known bioactives,
we aim to obtain a similar activity by emulating structural elements. This process
is analogous to the methods seen in natural product design and SAR studies, where
structures related to a known active are explored with the hopes of generating a
novel compound with the desired properties. Applying this principle quantitatively
presents us with the challenge of defining the concept of "similarity" rigorously. A
typical solution to this is to use the elements of the molecular descriptor to define
this similarity (see Section 1.2.1). Descriptors define the molecules as a vector in
high-dimensional space. Metric functions commonly seen in mathematics, such as
the euclidean distance, can be used to define the similarity of two molecules as the
complement of the distance between their respective descriptor values [43]. This
definition qualitatively matches what we would want in such a metric. If two molecules
share all of the same features described by the chosen molecular descriptor, they
will possess all the same elements, and hence the distance between them will be
zero. We would say that the two molecules are identical under the given descriptor
representation. Under a different descriptor representation the elements may differ,
leading to a non-zero distance value. The greater the degree to which the descriptor
elements differ, the larger the observed distance, corresponding to a higher degree of
dissimilarity reflected in the metric [44, 45].

1.2.3 SMILES and SMARTS

Another representation of molecules that is routinely used are those of the text-based
approaches. In this form, molecules are represented as a series of characters within
a text string. These characters can convey atomic information, such as the element
type and charge state, as well as topological information, such as the bond order
and arrangement. A very popular form of this is the Simplified Molecular-Input
Line-Entry System (SMILES) string developed by Weininger [46] and implemented
in the chemical computing software RDKit [47]. Figure 1.4 shows a depiction of a
molecule and its corresponding SMILES strings. Recently, several research groups
have exploited the similarities between of format with natural language to leverage
algorithms developed for language translation to generate novel molecules [48].
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Figure 1.4: Schematic representation of the SMILES text format
adapted from Arús-Pous et al. [49]. The molecular graph of Aspirin
is shown, with its corresponding SMILES representation underneath.
Each atom in the graph is label according to its position in the SMILES

string.

In a similar way to how molecular structures can be represented as SMILES,
RDKit also provides a text based format for representing chemical reactions. This
format is called SMILES arbitrary target specification (SMARTS). It makes use of
an extended version of the SMILES notation. Molecules are represented as their
corresponding SMILES, with individual chemical species being separated by the "."
character, and reactants and products being separated by the "»" character. A de-
piction of this can be seen in Figure 1.5.

Figure 1.5: Schematic representation of the SMARTS format.
Shown is the reaction SMARTS text defining an esterification reac-
tion between phenylmethanol and propionic acid. The two reactants
are separated by the "." character, while the reactants and propyl ben-

zoate product are separated by the "»" character.

Additionally, SMARTS provides the option to map specific atoms within the re-
actants to those within the product molecules. Importantly, the molecules within a
reaction SMARTS encode the subgroup of a molecule. Any unspecified substituents
effectively form an R-group, allowing us to represent a large number of explicit re-
actions with one generic reaction SMARTS. Further control is provided in order to
control the environment of the individual R-groups.
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1.3 Machine Learning
Recently, machine learning has received a huge amount of attention within the field
of computer-science, with companies such as Google, Apple, and Microsoft investing
heavily into machine learning research, following early innovation in academia [50–52].
The combined effect of this has been a dramatic increase in the number of machine
learning methods available. In adapting these techniques, we have seen significant
advancements made in a variety of problems ranging from image recognition [53, 54]
to natural language processing [55]. One such example of this was the 2016 victory
of the AlphaGo algorithm over world champion Go player Lee Sedol [56, 57]. This
represented a substantial leap forward for the field, being several decades ahead of
the commonly-predicted date, which was based solely on increases in computational
power rather than algorithmic innovation.

1.3.1 Neural Networks

In contrast to other algorithmic methods in computer science, in which a computa-
tional model follows a set of predefined instructions in order to find a solution to the
given problem [58, 59], in machine learning a model is trained to provide solutions
based on observed trends in data. In order to train these models, we provide the ma-
chine learning method with a set of existing examples, and from these examples, the
model learns inferred associations and constructs a statistical relationship, mapping
evidence probabilistically to a given solution. One such model which is central to
the field of machine learning is the artificial neural network (ANN) [60, 61]. ANNs
combine a series of simplistic perceptron models in order to learn complex patterns
from data [62]. The perceptron model was originally developed by Frank Rosenblatt
in 1958 [63]. The model weights inputs by some real number, and through the use of
a specific function called the activation function, converts the weighted input values
into a binary output. By tuning this weight term, the perceptron model can learn to
predict a sample point’s binary label based on its value. The problem solving ability
of this model was originally seen as analogous to that of biological neurons [64, 65],
however, it was soon shown that there existed problems that the perceptron model
could not solve [66]. ANNs were developed in order to resolve this issue. The ANN
model consists of multiple individual perceptrons connected together to form a net-
work. The perceptrons, or neurons, are organized in a series of layers, called hidden
layers, with the output values of one layer being combined to form the inputs of the
subsequent layer. A schematic depiction of this can be seen in Figure 1.6. By com-
bining the collective outputs of each individual perceptron model, these ANNs are
capable of approximating any real-valued function [67]. The weights of the network
can be optimized so that the predictions of the ANN best match the desired outputs,
and by carefully selecting the parameters of the network, we can improve the pre-
dictive capabilities of the model. The process of selecting these parameters is known
as hyper-parameter optimization. Since their inception, many variants of the ANN
architecture have been developed [68, 69]. The model presented here is often denoted
as a "feed-forward" neural network.
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Figure 1.6: Schematic representation of an artificial neural network
adapted from Bahi et al. [70]. The input values x1,x2, depicted on the
left-hand side in blue are fed into the hidden layers (green). The con-
nections represent the outputs of the various neurons, each weighted
by an individual weight parameter. The combination of weighted out-
puts results in the prediction y, depicted in yellow on the right-hand

side.

1.3.2 Training and Loss

As previously stated, in machine learning we train by presenting them with a series
of examples. The model parameters are updated such that the predicted outputs
best match their real-world equivalents. This process is called training. In order to
quantify the degree to which a model’s predictions adhere to the data, we define a
loss function. This is a measure of the error in a given model’s predictive capability.
As an example, in categorical prediction, a given model is used to assign a particular
sample to a category, such as assigning the label cat, dog, or bird to a given image.
This prediction can be defined as a binary string of length three with each on-bit
representing the assignment of the associated category (e.g. 100 for cats, 010 for
dogs, and 001 for birds). A common loss function for a task such as this is the
Hamming loss [71] (see Equation 1.1), which quantifies the disagreement between
this predicted binary string and the true binary string of the training data.

H(y, ŷ) = 1
N

N∑
i=1

I(yi, ŷi)

I(a, b) =
{

1 if a 6= b

0 if a = b

(1.1)

Equation 1: Expression for the hamming loss between two binary
strings. y represents the true binary string, while ŷ represents the
binary string predicted by the machine learning model. Each yi corre-
sponds to the bit value of the ith element of the string y, and each ŷi

corresponds to the bit value of the ith ŷ string element. N represents
the string length.

While one could use the Hamming loss for a problem such as this, many alternative
loss functions also exist, such as binary cross-entropy (see Equation 1.2) [72, 73]. Our
choice of loss function can have a profound influence of the model training [74].
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H(y, p) = − 1
N

N∑
i=1

yi ∗ log(pi) + (1− yi) ∗ log(1− pi) (1.2)

Equation 2: Expression for the binary cross-entropy between two
binary strings. p represents the string of probabilities associated with
our predicted binary string, while y represents the true binary string.
Each yi corresponds to the bit value of the ith string element, and each
pi to the model probability of assigning an on-bit (1) in this position.

One main problem seen in training a machine learning method is the problem of
over-training. Here, the parameters have been set so that the model can perfectly
predict each of the training examples, however, it has not learned the general trend;
rather, it has simply learned the values of the training data. As we want our models
to properly learn the associations between inputs and outputs, rather than effectively
memorize the training data, this poses a serious problem. One common way to test
for over-training is through a method called K-fold cross-validation [75]. In K-fold
cross-validation, the training data is split into two partitions, one containing 1

K of
the data, and another with the remaining (K−1)

K . The larger partition is used to train
the model, with the smaller partition retained for testing the predictive accuracy
(see Figure 1.7). This process is repeated K times, each with a different split of the
data. Performing evaluations in this way allows us to evaluate how generalized the
predictive accuracy of the model is (see Equation 1.3).

Figure 1.7: Representation of K-fold cross validation with 6-folds.
The entire dataset is split into the training data (white), representing
5/6th of the data, and the validation data (gray), representing the
remaining 1/6th. The model is trained on the majority of the data,
using the remaining validation data for evaluating the performance of
the model. This procedure is repeated six times, each with a different
section of the data being used for training and validation. The training
and validation losses are averaged across all 6 of the folds to give the

final cross-validated losses
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CVtrain =
1
K

K∑
i=1

L(Xtrain
i ,Y train

i )

CVval =
1
K

K∑
i=1

L(Xval
i ,Y val

i )

(1.3)

Equation 3: K-fold cross-validation. Using the loss function L(x, y),
the training and validation loss is evaluated and averaged across each
of the K folds, thus giving the training and validation CV scores of the

model.

1.3.3 Retrosynthetic Analysis

As previously mentioned in Section 1.3, one emblematic example of the power of
machine learning was the victory of Google’s AlphaGo algorithm against the current
world champion [56, 57]. The model combines elements of machine learning with
those of decision theory in order to create a powerful decision model capable of learn-
ing from past experiences. The core principles of the model are based on Markov
decision theory [76]. Markov decision theory is a subset of probability theory that is
concerned with the problem of making sequential decisions, each with an associated
uncertainty, in order to produce a desired outcome. The problem is modeled as a se-
ries of transitions from various states. In the case of the game of Go the states are the
different board configurations, and the actions are moves that can be made from these
board states. In AlphaGo, rather than training a model that maps inputs to outputs,
we seek to accurately model the overall outcome of selecting a particular action from
a given state. That is, to accurately determine the conditional expectation value of
the outcome from a given state s with given action a. Recently, methods such as
these have been used to solve problems in chemistry such as in the field of predictive
retrosynthetic analysis [77, 78]. In 2018, Segler et al. [79], inspired by the AlphaGo
method, created a similar technique that makes used of tree searching algorithms in
order to perform retrosynthesis. Here, the molecules represent the states, and the
various possible retrosynthetic cleavages represent the actions one could take. The
desired outcome of the program was to successfully reduce the structure into a set of
known reagents, thus providing a full synthetic pathway to the target molecule. The
procedure was governed by a machine learning model trained on a database of 12.4
million reactions, in order to bias the selection towards feasible retrosynthetic steps.
Using their method, they were successfully able to solve 95% of the synthetic routes
from a diverse set of 497 molecules.

1.3.4 Molecule Generation

One recent development in the field of de novo drug design has been the use of nat-
ural language models for molecule generation, with one prominent example of this
being the long short-term memory network. This method produces a conditional
probability distribution that predicts characters based on a provided input sequence.
Starting with an arbitrary "START" character, the models predict individual char-
acters sequentially, producing a sequence. This sequence is then used as the input
to predict further characters thus, generating full strings of text. This method was
applied to a set of molecular SMILES, and the models was used to sample the con-
ditional probability distributions between SMILES characters, thus generating novel
molecules. By selecting key examples for the model to focus on, we can bias this
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distribution to only generate molecules that possess features that we are interested
in. In the work by Merk et al. [80], a series of compounds active against PPARγ
were used as templates in order to generate a set of novel actives. By applying the
model, Merk et al. were able to generate a set of novel bioactive compounds, thus
capturing the desired underlying property (bioactivity) while making a leap into less
well-characterised chemical space (Figure 1.8).

Figure 1.8: Five de novo designed molecules synthesized by Merk
et al, [80]. Compounds were generated by a long short-term memory
network (LSTM) which had been trained on a series of 541,555 bioac-
tive compounds extract from ChEMBL [81], and then fine-tuned on a

series of 25 compounds with known RXR and PPAR agonism.

1.4 Current Problems

1.4.1 Machine Learning in Computer-Assisted Drug Discovery

Despite the success of recent computer assisted methods using machine learning, a
major limitation of these methods is the difficulty associated with producing the
molecules proposed. In order to confirm the accuracy of the models experimentally,
the novel, predicted compounds must be synthesized and tested. Not only does this
impose a rate limiting step, taking many weeks or months to manufacture a suitably
large sample size; but, due to the implicit nature of machine learning based methods,
the feasibility of producing such species is not guaranteed. The compounds shown
in Section 1.3.4 were selected based on their synthetic feasibility, with all synthetic
decisions being made independent of the model. While this did lead to a set of bioac-
tives, selection methods such as these have the potential to bias the results, making
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a full evaluation of the predictions made by the model difficult. In conventional drug
design projects, this does not pose a significant issue, as each step is governed not
only by the underying structural hypothesis but also by the synthetic feasability of
the considered compounds. In machine learning based drug design, however, the de-
cisions are implicitly learned from the data. Therefore, chemical considerations are
not a part of the decision making process, which leads to a high number of infea-
sible design structures. While recent advancements in simulated retrosynthesis and
product generation offer promising solutions to this problem, this issue still remains
one of the primary drawbacks of computer-based design. It would be beneficial to
restrict models such as these to only produce outputs with a given degree of synthetic
tractability. This would increase the throughput of such methods, and provide the
opportunity to more easily evaluate, and hence improve, a model’s performance on a
given problem.
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Chapter 2

Aims of this Thesis

The goal of this project was to develop a technique for generating de novo designed
molecules, that also guarantees that all molecules produced adhered explicitly to
a user stated definition of synthesizability. These definitions represent the expert
knowledge governing the synthesizability of the designs produced. By combining the
machine learning components for generation with the user provided rule-based logic
for synthesizability, the aim is to synergistically combine the predictive capabilities of
machine learning with the control and reliability of rule-based methods. Due to the
diversity of drug design problems and the differing requirements of each specific drug
project, it was of importance that the method developed be flexible with respect to
the target problem. To this end, we place particular importance on the modularity of
the de novo design method, as this would allow the technique to be adapted to each
specific drug design project. We intend that our method forms a bridge between in
silico predictions and the experimental consideration of a typical drug design project.

The aims of this thesis are organized thusly:

• Develop a computational method to generate novel de novo designs similar to a
template ligand that incorporates expert knowledge on synthesizaiblity. Of par-
ticular importance is the modularity of the method, specifically the databases,
predictive model, and synthesizability criteria.

• Experimentally explore the synthesizability and similarity to the template lig-
and of the structure proposed by the developed method in a laboratory envi-
ronment.

• Extend the method to be fully integrated within an active learning drug de-
sign cycle, using automated synthesis (continuous flow) and surface plamson
resonance for the synthesis and biotesting respectively.

• Implement a generalization of the initial method, allowing the algorithm to
incorporate arbitrary molecular representations and non-greedy de novo design
solutions.
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Chapter 3

DINGOS - Design of Innovative
NCEs Generated through
Optimization Strategies

This section was adapted from the following publication:
[82] Automated de novo molecular design by hybrid machine intelligence
and rule-driven chemical synthesis
Authors: Alexander Button, Daniel Merk, Jan A. Hiss and Gisbert Schneider
Journal : Nature Machine Intelligence.

The work within this PhD thesis resulted in the publication, Button et al. [82]. In
this publication, we established and defined the DINGOS (Design of Innovative NCEs
Generated through Optimization Strategies) algorithm, as well as presenting the first
proof-of-concept case study of its operation. This chapter was directly adapted from
this work, with some sections taken directly from the publication. These include the
methods descriptions, some figures along with their corresponding figure captions, and
the break down of the DINGOS algorithm. Alexander Button programmed the soft-
ware and performed the computational experiments. Alexander Button, Dr. Jan Hiss
and Prof. Dr. Gisbert Schneider designed the algorithm and analysed the data. Dr.
Daniel Merk supervised the chemical part of the study and, together with Alexander
Button, synthesized the compounds. Prof. Dr. Gisbert Schneider designed the study.

DINGOS was developed as a de novo design algorithm for generating syntheti-
cally feasible new chemical entities (NCEs) that are similar with regard to a prede-
fined similarity index to a given template ligand of interest. To accomplish this, DIN-
GOS combines more traditional rule-based methods with those of artificial intelligence
(AI). DINGOS is a ligand-based scoring method and optimises the NCEs generated
for their similarity to the provided template ligand. In this chapter, we present the
DINGOS algorithm, and test its capabilities, both experimentally and in silico, in a
proof-of-principle case study. DINGOS was used to generate a set of 300 novel de
novo designed molecules for four separate template ligands. These included: alectinib,
cariprazine, osimertinib, and pimavanserin. These four compounds represented a set
of drug molecules that had been recently approved by the U.S. Food and Drug Admin-
istration (FDA). The de novo populations were ranked according to their similarity
towards their respective template ligand. The similarity of the DINGOS designs were
compared to DINGOS’ compound database (used to construct the designs) and to the
bioactive database ChEMBL. For each template ligand, it was shown that DINGOS
successfully produced designs that were more similar to their respective templates than
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the compound database; however, with the exception of the pimavanserin de novo pop-
ulation, it was found that the DINGOS designs were less similar than those from the
ChEMBL database. One design was selected from each of the four DINGOS de novo
populations for synthesis. Of these four compounds, three were successfully synthe-
sised (the cariprazine, osimertinib, and pimavanserin de novo designs), and of those,
one compound, the pimavanserin design, showed binding affinity towards the desired
target. The relative activity of this compound was equivalent to 1 µM of serotonin
against the 5-HT2B serotonin receptor.

3.1 Introduction

3.1.1 The DINGOS algorithm

DINGOS was developed as a de novo design tool for producing new chemical entities
(NCEs). The intention was that these NCEs would be both similar to known tem-
plate ligands of interest and possess a high degree of synthetic feasibility. In recent
years we’ve seen an explosion in the number de novo design tools, particularly ones
utilizing methods from machine learning [48, 83, 84]. One main drawback for such
methods is the need for the intervention of a chemist in order to select compounds
and plan their synthesis. Not only is this an experimental bottleneck, but also may
lead to a number of proposed structures being rejected due to issues of synthetic feasi-
bility and internal bias. To deal with this problem, we developed DINGOS (Design of
NCEs Generated through Optimization Strategies), a de novo design tool that forms
NCEs by performing in silico virtual synthesis from an existing chemical database
(Figure 3.1).
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Figure 3.1: Overview of the DINGOS algorithm. A template ligand
of interest, whose chemical and/or biological properties we would like
to emulate, is provided along with a molecule and reaction database.
The molecule database contains the structure of all potential reactant
molecules. The reaction database contains the chemical logic required
to perform the virtual syntheses. The DINGOS algorithm contains two
main components, the AI component, which is used to recommend the
reactant pairs, and the rule-based component, which is used to perform
the virtual synthesis and make compound evaluations. From the pro-
vided template ligand, DINGOS generates a set of de novo designed
molecules along with their proposed synthetic pathways. Reprinted

with permission from Button et al. [82]

DINGOS combines AI methods with rule-based methods in order to generate
compounds. The AI methods are used to recommend meaningful reactant pairs for
chemical synthesis, while the rule-based methods are used to perform the virtual syn-
thesis. The incorporation of these rule-based methodologies allows for the desired
chemical logic to be explicitly encoded within the algorithm. In this way, DINGOS
forces the designs to adhere to the user defined definition of synthesizability. Addi-
tionally, de novo designs are constructed from a database of known building block
molecules, ensuring that all structures presented are chemically valid and, if desired,
commercially available. The advantage of performing compound generation in this
way is that the generated structures are accompanied with a synthetic pathway com-
posed of real building block molecules from the compound database. DINGOS is a
ligand-based scoring [85] algorithm, meaning that compounds are generated in or-
der to maximize their similarity to a known template ligand of interest. In order
to quantify this similarity, molecules are represented as molecular descriptors [86],
which are vector representations of the overall chemical structure, and the molecular
descriptors are compared using an appropriately chosen metric function [87]. This
metric function calculates the distance between the molecules in descriptor space,
in which the distance represents the chemical similarity of the two chemical species.
By carefully choosing our descriptor and metric functions, we are able to bias the
de novo design towards desired chemical and biochemical properties of interest. The
procedure of combining molecules in order to optimize for the chemical similarity
towards a template ligand is applied to individual single-step reactions (Figure 3.2).
Two molecules are reacted together forming a new product molecule. This molecule
then becomes the new starting molecule and the procedure is repeated until either a
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set of user defined stop criteria is met or we cease to see further improvements in the
molecules distance score (local convergence).

Figure 3.2: A schematic representation of the single-step iterative
assembly method used by DINGOS in order to perform its de novo

design. Reprinted with permission from Button et al. [82]

The DINGOS algorithm is defined in the following four main steps and illus-
trated in Figure 3.3. This description, along with the corresponding flow diagram
and the corresponding figure caption, are taken directly from the publication Button
et al. [82]:

"Step 1: Generation of the molecular building block library {mol}.
The compound database can be any set of molecules, with the only requirement

being that the molecular entries have a valid SMILES [88] representation. De novo
drug design by fragment growing involves the assembly of complex molecules from
smaller more simplistic components. For this rationale to be reflected within DIN-
GOS, the molecular weight of the building blocks should be considerably smaller than
that of the template drug. To ensure this, a molecular weight range is specified and
molecules outside of this mass range are not considered during the assembly proce-
dure. Additional filtering criteria based on molecular subgroups or properties can be
applied.

Step 2: generation of the set of starting molecules {S}.
The molecular descriptor of each member of the molecular building block library

{mol} is calculated, and the distance between those building blocks and the template
descriptor is evaluated. Building blocks are then sorted according to their increasing
distance to the template. A subset of the M closest molecules {S} is then selected
from this sorted set. Each element of {S} is used as the starting molecule for an in-
dividual assembly procedure. The selection of several unique starting points for each
NCE encourages a high degree of structural diversity within the producwas chosnt
set and is meant to promote designs with scaffolds that differ structurally from that
of the template ligand for the purpose of chemical scaffold-hopping [89–91].

Step 3: construction of optimal intermediates and products Popt.
The ith product molecule Pi is formed from the ith element Si of the start mol set

{S}. Thereby, Si and the template T serve as inputs for the machine learning model
M, which takes the descriptor values of Si and T and predicts a descriptor value. This
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predicted descriptor corresponds to the building block fingerprint B* representing the
ideal building block for transforming Si to T, which has been learned by the model
M during training. A distance calculation between B* and {mol} is performed, and a
subset {B} of the N most similar molecules is produced. All valid chemical transfor-
mations between Si and {B} are applied, generating a set of intermediate products
{P1,..,Pk } of size K. The element most similar to T is chosen as the optimal inter-
mediate product Popt. If none of the termination criteria is met (step 4), then Popt is
selected as the starting molecule for the next growing step (Si = Popt ).

Step 4: termination.
The growing of Si is continued until at least one of the stop criteria is met. There

are three conditions under which the construction is halted: (1) the molecular weight
of the product exceeds the molecular weight limit, (2) the number of applied reac-
tion steps exceeds that of the reaction step limit and (3) the distance of Popt to the
template T is greater than that of the starting molecule Si. On halting the con-
struction process, the current optimal product Popt is saved as the ith final product
(Pfinal ≡ Popt ) and Pfinal is added to the output product set {P}. In the event of
criterion (3) being met, the starting molecule of the current step is saved as the final
product (Pfinal ≡ Si ) instead of Popt . The current Popt is not considered for any
further assembly steps, as it has been shown to be less similar to the template ligand
than the starting molecule. Step 3 is then repeated for the next element of {S}, Si+1 ."
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Figure 3.3: Orange boxes, inputs; blue box, output. Step 1: the
compound database is filtered according to a set of predefined criteria
to obtain the set of building blocks {mol}. Step 2: this input molecule
set {mol} is sorted according to its distance to the template molecule
T. The most similar molecule S is selected as the starting molecule.
The starting tuple [S,T] serves as the input for the trained machine
learning model (here, a feedforward neural network [92]). Step 3: the
network predicts the descriptor value of the building block B*, and
the N most similar molecules form the building block set {mol}. The
set of possible reactions {rxn} between {B} and S is selected from
the reaction database and all reactions are performed, thus generating
a set of intermediate products {P}. From the intermediate product
set, the top-ranking molecule Popt is selected. Step 4: if Popt is more
dissimilar to the template T than the starting molecule S, then the
starting molecule is selected as the final product. If Popt is more similar
to T and none of the stop criteria are met, then Popt is selected as the
new start molecule for a further iteration of the DINGOS molecule
growing algorithm. Otherwise, if the stop criteria are met, then Popt

is selected as the final product P final. Reprinted with permission from
Button et al. [82]

DINGOS was intended to be directly integrated within existing drug design pro-
jects. Owing to the different synthetic and design requirements of each individual
drug design project, it is unlikely that one overarching de novo design strategy would
be universally optimal. Hence, the DINGOS algorithm was design to be modular
in nature, allowing for the individual components to be easily replaced while main-
taining the overall functionality of the method. In this chapter, we present our first
proof-of-concept case study of the DINGOS method, highlighting its performance and
function on a simple test problem. For this purpose, we chose one consistent set of
parameters. The modular aspects of the algorithm, however, are further explored in
Chapters 5 and 6.
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3.1.2 Rule-Based Method

A key goal in developing DINGOS was to produce a de novo design method that
generates synthetically feasible structures. While in recent years many achievements
have been made in the field of reaction feasibility [93, 94], this problem is far from
resolved. In order to practically tackle this problem, we established a set of 64
in silico reactions (shown in Appendix A.2.1), that incorporated all of the desired
chemical logic for synthesis. These in silico chemical reactions were used as our
’rules’ for combining building block molecules and for forming the corresponding
product molecule. In the case where multiple reactions, and hence products, were
possible, all potential products were produced from a single building block pair. This
set was written in the SMARTS notation, which is a text-based format for encoding
chemical reactions within the RDKit software suite. While this set is by no means
comprehensive, or infallible, it represents the total range of chemical logic available
to the DINGOS algorithm. A key advantage of the modular nature of DINGOS is
that these reaction can easily be replaced, allowing DINGOS to perfectly match the
synthetic capabilities of the user. Furthermore, improved knowledge gained from
both experiment and expertise can be used to update the reaction set, allowing the
DINGOS to be continually improved without the need for reimplementation of the
underlying algorithm.

3.1.3 Machine Learning Model

A crucial part of step 3 in the DINGOS algorithm is the recommendation of appro-
priate building block molecules for the de novo assembly. A machine learning model
was developed in order to performed this recommendation. We chose to make use
of the relatively simple multi-layered perceptron model (MLP) for the building block
recommendation (see Figure 3.4). The 167 public molecular access keys (MACCS
keys) [95] were chosen as the molecular descriptor for this study. The MACCS keys
are a structural, binary fingerprint, in which each on-bit (1) represents the pres-
ence of a particular substructure. By combing the various on- and off-bits we gain
a picture of the overall molecular structure. In comparison to other molecular de-
scriptors, such the extended connectivity fingerprint, the MACCS keys are a more
coarse-grained representation. The choice of the MACCS keys were motivated by two
features of this representation. Firstly, the MACCS keys represent a relatively low
dimensional representation, encompassing only 167 bits. By comparison, the more
common-place Morgan fingerprint commonly uses 2048 bits in its encoding. The use
of a low-dimensional representation allows for more effective training within the ma-
chine learning model, and reduces the influence of the ’curse of dimensionality’ (The
increased data requirement needed to fully represent a high dimensional space) [96,
97]. Secondly, since the MACCS keys encode substructural elements explicitly, this
means that reaction relevant subgroups, such as the alcohols for esterification, are di-
rectly present within the representation. For molecular descriptors incorporating non-
structural features, such as 3D shape, these requirements would have to be learned
implicitly from the data, which could potentially inhibit the learning of the algorithm.
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Figure 3.4: Schematic representation of the multi-layered percep-
tron model used in the DINGOS algorithm case-study. The start and
product molecule (left-hand side) are converted into the MACCS keys
descriptor. Their descriptor value serves as the input for the network
(middle). The descriptor value of the building block molecule is pre-
dicted (right-hand side). Reprinted with permission from Button et

al. [82]

For training data, we selected the US Patent and TradeMark Office database
(USPTO). Each entry consisted of a single chemical reaction written as a SMARTS
string. Reaction type and yield was not stated in the dataset. For training, the struc-
tures within the chemical reactions were converted to their descriptor representation.
To form the training data, each product molecule was paired with one of the reactants
within the reaction entry, this reactant molecule served as the starting molecule for
the reaction. The remaining reactant, in the case of two-component reactions, was
set as the building block. In the case of one-component reactions, a null-fingerprint
(fingerprint of all off-bits) was chosen as the building block’s descriptor value. In the
case of two-component reactions, two pairs were formed with the product, one for
each of the two reactant molecules. The model was trained and gave an average loss
of 0.0988 ± 0.0002 (mean ± standard deviation) for the training set and 0.1029 ±
0.0006 for the validation set (Figure 3.5).
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Figure 3.5: Plot showing the results of the hyperparameter optimi-
sation of the multi-layered perceptron model. An architecture of one
hidden layer with 334 hidden neurons was selected. Reprinted with

permission from Button et al. [82]

3.2 Methods
All methods used in this section were taken directly from the publication Button et
al. [82].

3.2.1 RDKIT Software

All in silico chemical manipulations were performed using the open-source cheminfor-
matics software RdKit [47](version 2018.09.1). For the initial DINGOS study version
2017.03.3 was used. In the revised version of the DINGOS code (Chapter 5 and 6)
version 2018.09.1 was used. Reactions were performed using the RunReactants()
function. Conversion of the molecules into a canonical SMILES format was achieved
with MolToSmiles(). The MACCS keys molecular fingerprints were generated with
the RDKit function MACCSkeys().

3.2.2 Template Molecule Processing

For the DINGOS study, the template molecules used for de novo design were washed
using the KNIME implementation of the MOE ‘wash’ method (Molecular Operating
Environment, version 2011.10, The Chemical Computing Group) [98].

3.2.3 SPiDER

All target predictions were performed using the software SPiDER (self-organizing
map–based prediction of drug equivalence relationship) [99]. SPiDER utilizes self-
organising maps to evaluate the pseudo-probability of activity of a given molecule
against a pool of 251 predefined targets. Predictions are reported as p-values rep-
resenting the pseudo-probability of misclassification. Compounds with p-values less
than 0.1 were considered as predicted active.
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3.2.4 Compound Database

A set of commercially available chemical compounds were identified through Reaxys
(www.reaxys.com, version 2018.3.14) [100]. All molecular structures were converted
into a standardized canonical SMILES format using RDKit’s molecule converter.
Salts and minor components were removed as well as all incomplete and inaccurate
structures. This yielded a dataset of 245,296 molecules, which were used as the com-
pound database (construction set) for DINGOS.

3.2.5 Run Parameters

During the de novo assembly, the building block set was restricted to molecular
weights less than 400 g mol-1. A product limit of 300 compounds and a product
molecular weight limit of 600 g mol-1 was set, this represented an upper limit of the
templates’ molecular weights. The number of reaction steps was set to a maximum
of four, and the number of building blocks considered at each assembly step was 20.
The MACCS keys descriptor was used to represent the molecules, and the distance
between molecules was calculated as the Hamming distance, which is the complement
of the Hamming loss (see Equation 1.1). All parameters were kept consistent across
each run, and all calculations were performed on a single CPU within one hour.

3.2.6 Training Data

To obtain training data for our neural network model, 1.8 million entries were ex-
tracted from the US Patent and TradeMark Office (USPTO) database [101]. This
dataset contained cases that fell outside the bounds of our considered problem set
(peptides, large molecules and so on). To remove these cases, the product molecules
were filtered based on molecular weight. An upper molecular weight limit of 400 g
mol-1 was enforced on each of the starting reactants. This ensured that all products
were formed from a combination of small molecular building blocks. The same sani-
tation procedure used for the compound database was applied to remove salts, minor
components and erroneous cases. Reactions were filtered by number of reactants; an
upper limit of two reactants per reaction was imposed. To extend the data set for
training, examples were generated in which reactant positions were exchanged. This
yielded a dataset of 897,286 examples.

3.2.7 Multi-layered Perceptron Model

For the training of the machine learning model, the binary cross-entropy (see Equa-
tion 1.2) [102] of the binary fingerprints was used as the loss function, with the Adam
optimizer being used in order to perform the back-propagation [103]. The input layer
of the network consisted of 334 neurons, twice the size of the MACCS keys. This
represented a concatenation of the starting and product molecules’ descriptor values.
The output layer consisted of 167 neurons, each corresponding to the bits of the pre-
dict building block descriptor. The network was trained for 50 epochs with a batch
size of 256 and a learning rate of 0.001. For the activation the sigmoid activation
function was chosen. In order to select the architecture of the model, hyperparame-
ter optimization was performed with 10-fold cross validation (Figure 3.5). From the
considered architectures, we selected a single hidden-layer consisting of 334 neurons.
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3.2.8 ChEMBL Dataset

The molecule sets used for the distance analysis (Section 3.3.4) were prepared with
the same procedure used for the compound database. Entries from the ChEMBL [104]
dataset that did not have valid activity data were omitted. A molecular weight limit
of 1,000 g mol-1 was enforced to ensure that only small molecule drug structures were
considered. For the physico-chemical analysis, four separate sets of compounds were
extracted from ChEMBL, each sharing the biological targets of the four template
compounds. Only compounds with inhibition constants (Ki values) less than 10 nM
were considered.

3.2.9 Synthesis of compound 5 - alectinib de novo design

3-(((4-(2,2-dimethylmorpholino)-2-ethoxyphenyl) amino)methyl)-1H-
indole-5-carbonitrile (Compound 5)
4-(2,2-dimethylmorpholino)-2ethoxyaniline (Compound 5, 125 mg, 0.50 mmol, 1.00
equiv.) and 3-formyl-1H-indole-5carbonitrile (10, 85 mg, 0.50 mmol, 1.00 equiv.) were
dissolved in dichloroethane (5 mL), a 4 Å molecular sieve and acetic acid (0.25 mL)
were added and the mixture was stirred at room temperature for 60 min. Sodium
triacetoxyborohydride (210 mg, 1.00 mmol, 2.00 equiv.) was then added and the
mixture was stirred at room temperature for another 4 h. The mixture was filtered,
water (25 mL) was added, the phases were separated, and the aqueous layer was ex-
tracted three times with ethyl acetate (3 x 25 mL). The combined organic layers were
dried over magnesium sulfate and the solvents were evaporated in vacuum. The crude
product was purified by column chromatography using methylene chloride/ methanol
98:2 as the mobile phase to obtain the title compound as yellow oil; MS(ESI+) m/z
405.4 ([M + H]+). Compound 5 was sensitive to water and especially light, and was
not stable enough for in vitro characterization.

3.2.10 Synthesis of compound 6 - cariprazine de novo design

N-(4-chlorophenyl)-4-(2-isopropylbenzyl)piperazine-1-carboxamide
(Compound 6)
N-(4-chlorophenyl)-piperazine-1-carboxamide hydrochloride (Compound 6, 138 mg,
0.50 mmol, 1.00 equiv.) and 2-isopropylbenzaldehyde (12, 96 mg, 0.65 mmol, 1.30
equiv.) were dissolved in dichloroethane, 4 Å molecular sieve was added and the
mixture was stirred at room temperature for 30 min. Sodium triacetoxyborohydride
(211 mg, 1.00 mmol, 2.00 equiv.) was slowly added and the mixture was stirred at
50 ◦C for 48 h. The reaction mixture was then filtered, added to saturated sodium
carbonate solution (25 mL), the phases were separated, and the aqueous layer was
extracted with ethyl acetate (3 x 25 mL). The combined organic layers were dried
over magnesium sulfate and the solvents were evaporated in vacuum. The crude
product was purified by column chromatography using methylene chloride/methanol
(98:2) as the mobile phase to obtain the title compound as a colourless solid (119
mg, 64%). 1H NMR (400 MHz, chloroform-d) δ = 1.16 (d, J = 6.9, 6H), 2.37–2.44
(m, 4H), 3.28 (hept., J = 6.9, 1H), 3.35–3.40 (m, 4H), 3.47 (s, 2H), 7.06 (td, J =
7.2, 1.6, 1H), 7.13–7.18 (m, 3H), 7.20–7.28 (m, 4H) ppm. 13C NMR (101 MHz,
chloroform-d) δ = 24.06, 28.51, 44.29, 52.62, 60.66, 121.08, 125.67, 127.85, 128.04,
128.86, 130.42, 134.21, 137.61, 148.60, 154.68 ppm. MS(ESI+) m/z 372.3 ([M +
H]+). HRMS(ESI+) m/z calculated 372.1837 for C21H27ClN3O, found 372.1841 ([M
+ H]+). HPLC, retention time: 2.740 min.
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3.2.11 Synthesis of compound 7 - osimertinib de novo design

N-(2-((2-(dimethylamino)ethyl)amino)benzyl)-2-(1-(5-methoxybenzo[d]
oxazol-2-yl)piperidin-3-yl)acetamide (Compound 7)
2-(1-(5-methoxybenzo[d]oxazol-2-yl) piperidin-3-yl)acetic acid (Compound 7, 77 mg,
0.25 mmol, 1.00 equiv.), N1-(2-(aminomethyl) phenyl)-N2,N2-dimethylethane-1,2-
diamine (14, 58 mg, 0.30 mmol, 1.20 equiv.) and 4-DMAP (31 mg, 0.25 mmol,
1.00 equiv.) were dissolved in chloroform (abs., 10.0 mL) and EDC (47 mg, 53 µl,
0.30 mmol, 1.20 equiv.) was slowly added. The mixture was stirred under reflux
for 2 h. After cooling to room temperature, 15 mL saturated sodium carbonate so-
lution was added, phases were separated, and the aqueous layer was extracted with
ethyl acetate (2 x 15 mL). The combined organic layers were dried over magne-
sium sulfate and the solvents were evaporated in vacuum. The crude product was
purified by column chromatography using methylene chloride/methanol (95:5) and
acetone/triethylamine (98:2) as mobile phases to obtain the title compound as red-
dish oil (59 mg, 51%). 1H NMR (400 MHz, chloroform-d): δ = 1.34 (td, J = 8.8,
4.2, 1H), 1.50–1.69 (m, 2H), 1.81–1.88 (m, 1H), 2.01 (dd, J = 13.1, 5.5, 1H), 2.11
(d, J = 0.5, 1H), 2.11–2.18 (m, 1H), 2.22 (dd, J = 13.1, 7.8, 1H), 2.41 (s, 6H), 2.76
(t, J = 6.3, 2H), 3.15 (dd, J = 13.2, 7.8, 1H), 3.27 (t, J = 6.4, 2H), 3.28–3.35 (m,
1H), 3.71 (s, 3H), 3.74–3.81 (m, 1H), 3.85 (dd, J = 13.2, 3.6, 1H), 4.28 (dd, J =
14.6, 5.5, 1H), 4.38 (dd, J = 14.6, 6.2, 1H), 6.47 (dd, J = 8.7, 2.6, 1H), 6.56 (dd, J
= 8.1, 1.2, 1H), 6.62 (td, J = 7.4, 1.1, 1H), 6.69 (d, J = 2.5, 1H), 7.00 (d, J = 8.7,
1H), 7.09–7.17 (m, 2H) ppm. 13 C NMR (101 MHz, chloroform-d): δ = 23.56, 29.28,
30.42, 30.93, 32.84, 39.87, 40.60, 41.04, 44.81, 46.35, 50.44, 53.80, 55.96, 57.62, 101.11,
107.00, 108.54, 110.43, 116.92, 129.36, 130.80, 143.14, 143.97, 146.05, 157.01, 163.14
ppm. MS(ESI+) m/z 466.1 ([M + H]+). HRMS(ESI+) m/z calculated 466.2813 for
C26H36N5O3, found 466.2811 ([M + H]+). HPLC, retention time: 15.650 min.

3.2.12 Synthesis of compound 8 - pimavanserin de novo design

N-(4-bromophenyl)-4-(isobutylamino)piperidine-1-carboxamide
(Compound 16)
4-amino-N-(4-bromophenyl)-piperidine-1-carboxamide hydrochloride (Compound 16,
100 mg, 0.33 mmol, 1.00 equiv.) and isobutyric aldehyde (40 µl, 32 mg, 0.43 mmol,
1.30 equiv.) were dissolved in dichloroethane (5.0 mL), acetic acid (0.50 mL) and 4
Å molecular sieve were added and the mixture was stirred at room temperature for
30 min. Sodium triacetoxyborohydride (95 mg, 0.43 mmol, 1.30 equiv.) was slowly
added and the mixture was stirred at room temperature for 16 h. The reaction mix-
ture was filtered, added to saturated sodium carbonate solution (25 mL), the phases
were separated and the aqueous layer was extracted with ethyl acetate (3 x 25 mL).
The combined organic layers were dried over magnesium sulfate and the solvents were
evaporated in vacuum. The crude product was purified by column chromatography
using methylene chloride/methanol (95:5) as the mobile phase to obtain the title com-
pound as a colourless solid (89 mg, 76%). 1H NMR (400 MHz, DMSO-d6) δ = 0.97
(d, J = 6.7, 6H), 1.44–1.59 (m, 2H), 1.90–2.10 (m, 3H), 2.73–2.86 (m, 4H), 4.20 (d,
J = 13.6, 2H), 7.38–7.43 (m, 2H), 7.43–7.49 (m, 2H), 8.55 (s, 2H), 8.78 (s, 1H) ppm.
13C NMR (101 MHz, DMSO-d6) δ = 20.59, 26.07, 28.33, 42.83, 51.44, 55.42, 121.82,
131.53, 140.45, 144.62, 155.03 ppm. MS(ESI+) m/z 354.2, 356.2 ([M + H]+).
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N-(3’-fluoro-5’-isobutoxy-[1,1’-biphenyl]-4-yl)-4-(isobutylamino)
piperidine-1-carboxamide (Compound 8)
16 (65 mg, 0.18 mmol, 1.00 equiv.), 3-fluoro-5isobutyloxyphenylboronic acid (Com-
pound 8, 78 mg, 0.37 mmol, 2.00 equiv.) and caesium carbonate (180 mg, 0.55 mmol,
3.00 equiv.) were dissolved in a mixture of dioxane (9.0 mL) and DMF (1.0 mL) and
the mixture was stirred for 30 min at room temperature. Tetrakis(triphenylphosphine)-
palladium(0) (42 mg, 0.04 mmol, 0.20 equiv.) was then added and the mixture was
stirred for 12 h under reflux. After cooling to room temperature, the reaction mix-
ture was filtered, water (25 mL) was added and the mixture was extracted with ethyl
acetate (3 x 25 mL). The combined organic layers were dried over magnesium sul-
fate and the solvents were evaporated in vacuum. The crude product was purified
by column chromatography using methylene chloride/methanol (9:1) as the mobile
phase and recrystallized from chloroform/hexane to obtain the title compound as a
colourless solid (26 mg, 33%). 1 H NMR (400 MHz, methanol-d4) δ = 0.95 (d, J
= 5.0, 6H), 0.97 (d, J = 5.0, 6H), 1.52 (qd, J = 12.5, 4.4, 2H), 1.88–2.02 (m, 3H),
2.06–2.12 (m, 2H), 2.83 (d, J = 7.2, 2H), 2.85–2.92 (m, 1H), 3.25 (s, 1H), 3.70 (d, J =
6.4, 2H), 4.25 (dt, J = 13.8, 2.6, 2H), 4.48 (s, 1H), 6.53 (dt, J = 10.8, 2.3, 1H), 6.79
(ddd, J = 9.9, 2.3, 1.5, 1H), 6.84 (t, J = 1.9, 1H), 7.33–7.38 (m, 2H), 7.42–7.46 (m,
2H) ppm. 13C NMR (101 MHz, methanol-d4) δ = 12.38, 17.13, 18.11, 18.76, 18.93,
26.17, 27.96, 28.18, 42.42, 74.45, 87.72, 98.97, 104.83, 116.50, 116.97, 120.70, 126.77,
155.41, 168.24, 171.31 ppm. MS(ESI+) m/z 442.4 ([M + H]+). HRMS(ESI+) m/z
calculated 442.2864 for C26H37FN3O2, found 442.2865 ([M + H]+). HPLC, renten-
tion time: 18.367 min.

3.2.13 In vitro testing of compound 6 against the D2L, D2S, and
D2L Dopamine receptors

Compound 6 was studied on dopamine receptors D2L, D2S and D3. D2L activation and
antagonism were studied in a functional assay using membranes containing human
recombinant D2L receptors (expressed in Chinese hamster ovary (CHO) cells) wherein
binding of radiolabelled [35S]GTPγS was determined. Results represent relative ac-
tivity compared to 1 mM dopamine. Activity on D2S was assessed in a cell-based
(HEK293 (human embryonic kidney) cells) impedance assay and a cellular (CHO
cells) homogeneous time resolved fluorescence (HTRF) assay with cyclic adenosine
monophosphate (cAMP) readout served for D3 testing. Biological assays were per-
formed by Eurofins (www.eurofins. com) on a fee-for-service basis.

3.2.14 In vitro testing of compound 7 against the EGFR receptor

The inhibitory potency of compound 7 on EGFR was studied on recombinant en-
zyme (expressed in insect cells) with poly-Glu-Tyr as substrate in the presence of
radiolabelled [γ32P]ATP (adenosine triphosphate). Substrate phosphorylation was
quantified by scintillation measurements. Biological assays were performed by Eu-
rofins (www.eurofins. com) on a fee-for-service basis.

3.2.15 In vitro testing of compound 8 against the 5-HT2A, 5-HT2B,
and 5-HT2C Serotonin Receptors

The activity of compound 8 on serotonin receptors 5-HT2A, 5-HT2B, and 5-HT2C
was determined in cellular functional assays (HEK293 cells for 5-HT2A and 5-HT2C
and CHO cells for 5-HT2B) with detection of IP1 by HTR fluorescence resonance
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energy transfer. Serotonin receptor activation and antagonism were assessed, and the
results represent relative activity compared to 1 µM serotonin. Biological assays were
performed by Eurofins (www.eurofins. com) on a fee-for-service basis.

3.3 Results and Discussion

3.3.1 Proof-of-Concept Case Study

DINGOS has two main algorithmic objectives. The first is to produce compounds
that are synthetically feasible, that is, ones that can be successfully synthesized given
the resources of a standard organic chemistry laboratory. The second objective is that
DINOGS produces molecules that are similar to a provided template of interest. This
"similarity" is defined by the choice of molecular descriptor and design metric. The
underlying hypothesis of similarity-driven de novo design is that, with an appropri-
ate measure of similarity, we can expect that two molecules sharing a high degree of
similarity will, similarly, share chemical and biological properties [105]. Our choice of
similarity metric represents our underlying design hypothesis, with the molecules pro-
duced representing evidence that either supports or rejects this hypothesis. In order
to evaluate the performance of the DINGOS algorithm, a case-study was constructed.
Descriptor and metric functions were chosen, along with a set of four bioactive ligands
of interest. A series of chemical reactions were compiled within the rule-based method
module, and a predictive machine learning model was trained for the building block
recommendation system. The goal of the case-study was to see if DINGOS could
successfully generate designs that were similar to the respective templates, synthesiz-
able with the provided synthetic pathways, and, ideally, active against the biological
targets of the respective template ligands.

3.3.2 Template Ligands

In order to test the DINGOS method, we required a set of template ligands. These
template ligands represent the molecules that we would like to emulate with DINGOS.
For this, we compiled a set of four drug molecules: alectinib, an ALK inhibitor used
as a treatment for non-small cell lung cancer [106], cariprazine, a dopamine D2/D3
partial agonist used as a treatment for schizophrenia and bipolar disorder [107], os-
imertinib, an EGFR inhibitor used as a treatment for non-small cell lung cancer [108],
and pimavanserin, an inverse agonist against the serotonin receptor proposed as a po-
tential anti-psychotic [109](see Figure 3.6).
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Figure 3.6: Structures of the four FDA drug compounds used as
the template ligands. These consist of alectinib (1), cariprazine (2),

osimertinib (3), and pimavanserin (4)

3.3.3 In silico Analysis

DINGOS produced four sets of 300 de novo designed molecules. DINGOS’ overarching
goal was to produce populations of molecules that were both similar to the provided
templates and synthetically feasible. Similarity in the context of this work is defined
in terms of the number of shared bits between the binary fingerprints of two molecules;
however, we are also interested in the overall drug-like and bioactive character of the
molecules and to what degree this agrees with that of the template ligands. In this
section, we interrogate the similarity of the designs, considering the distance values
obtained as well as physico-chemical properties and predictive activities.

3.3.4 Distance Analysis

The structures generated by DINGOS are optimized for their distance to the template
ligand. The underlying hypothesis is that structures with small distance values are
more likely to share biological properties with the template ligand than those that
are dissimilar [110]. To investigate DINGOS’ performance with respect to distance
optimization, the distance values of the de novo designs relative to those of their
respective templates were calculated. In evaluating the performance, we are posed
with a problem, namely, defining what a "close distance" is in this context. In order
to determine this, we consider two extreme cases. In the "worst case" scenario, we
consider the case where all of the designs produced would be less similar to the tem-
plate than those of the compound database used. This is the worst-case, as we would
see superior performance by simply screening our compound database, and hence,
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failed to produce any molecules with improved similarity to our desired template lig-
ands. To this end, we sorted the compound database according to its distance to
the four template ligands and compared the distance values obtained. It should be
noted that for this analysis the molecular weight and reaction filters were not applied
as to not unfavourably bias the results towards the DINGOS algorithm. In addition
to this analysis, the distance values of the DINGOS designs were also compared to
those of the ChEMBL database [104]. This represented our "best-case" scenario. The
ChEMBL database is a chemical database encompassing over 1.8 million molecules
along with their curated bioactivity values. This represents a significant proportion
of our current biochemical knowledge. Outperforming the ChEMBL database would
mean that DINGOS produced designs that were more similar than any molecules
previously reported within ChEMBL. Figure 3.7 shows a comparison of the distance
distributions obtained between the DINGOS designs and the 300 top ranked com-
pounds from both the compound database and the ChEMBL set (300 encompasses
the entire set of DINGOS designs). As can be seen, the DINGOS designs produced a
larger range of values, with the construction and ChEMBL distributions possessing
a lower interquartile range. A comparison of the median values showed that for each
of the four FDA template ligands, a median value lower than that of the compound
database was obtained, while for the ChEMBL set, the median distance values were
consistently larger.

Figure 3.7: Distance distributions of the DINGOS designs (light
blue) compared against the top 300 ranked compounds from the com-
pound database (white) a and the ChEMBL database (white) b.

Reprinted with permission from Button et al. [82]

The DINGOS distance distribution possessed a large range of values. A further
comparison was made between the top 20 ranking molecules. These represented a
focused set of ranked compounds. The comparison of the distance distributions can
be seen in Figure 3.8. As can be seen, just as in Figure 3.7, DINGOS consistently
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obtained a lower median distance than that of the compound database. These results
show that DINGOS was indeed capable of producing designs that improved upon the
similarity of its initial compound database. In comparing to the ChEMBL database,
it was observed that ChEMBL possessed a lower median distance value for three of
the four drug templates (alectinib, cariprazine, osimertinib).

Figure 3.8: Distance distributions of the top 20 ranked DINGOS
designs (light blue) compared against the top 20 ranked compounds
from the compound database (white) a and the ChEMBL database

(white) b. Reprinted with permission from Button et al. [82]

While the distributions were of a comparable range, the largest difference in me-
dian distance observed was 0.03. These results indicate that, despite DINGOS’ capa-
bilities at assembling more similar designs, the compounds produced were still more
dissimilar than those extracted from the ChEMBL database. One notable exception
was the case of pimavanserin, in which a lower median distance value compared to
ChEMBL was observed. Although only occurring in one out of four cases, this re-
sult highlights DINGOS potential to produce novel chemical entities that are similar
to a desired template ligand. The results of this analysis are summarized in Table 3.1.

Table 3.1: A summary of the median distance values obtained from
the distance analysis presented in Figures 3.7 and 3.8. Median dis-
tance values are reported along with the inter-quartile ranges (IQR)

shown in brackets

Template DINGOS
Top 300

ChEMBL
Top 300

Sigma Aldrich
Top 300

DINGOS
Top 20

ChEMBL
Top 20

Sigma Aldrich
Top 20

alectinib 0.11 (0.05) 0.08 (0.02) 0.12 (0.01) 0.06 (0.006) 0.03 (0.02) 0.10 (0.01)
cariprazine 0.08 (0.04) 0.07 (0.01) 0.10 (0.01) 0.04 (0.01) 0.02 (0.03) 0.065 (0.006)
osimertnib 0.13 (0.06) 0.08 (0.01) 0.14 (0.02) 0.06 (0.006) 0.03 (0.03) 0.09 (0.01)
pimavanserin 0.10 (0.05) 0.10 (0.01) 0.13 (0.01) 0.05 (0.01) 0.069 (0.007) 0.1 (0.02)
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3.3.5 Physico-Chemical Properties

In the previous section, it was shown that DINGOS was capable of producing com-
pounds that were similar to the provided template ligands. In this section we now
seek to determine if this similarity corresponds with shared physico-chemical proper-
ties with the respective template ligand. The goal of similarity-based de novo design
is that generating similar structures will result in molecules that share properties of
interest with our template ligand. While we are often concerned with the biological
properties of the molecules, it is also of interest for these compounds to reflect the
various physico-chemical attributes of the provided template ligand. For this study,
we chose to measure the Lipinski rule-of-5 properties, which were originally prescribed
in Lipinski et al. [111] as being important for bioavailability. To further determine
if these are desirable attributes for our de novo designs, we compared these results
to a series of bioactive sets extracted from ChEMBL. Four sets of compounds were
extracted, each sharing the biological targets of the four template ligands. Only com-
pounds with Ki values less than 10 nM were considered as active.
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Figure 3.9: Distributions of the rule-of-5 properties of the de novo
designs. a) Number of hydrogen-bond acceptors (HBA), b) number
of hydrogen-bond donors (HBC), c) calculated logP (clogP), and d)
molecular weight. The DINGOS designed populations (300 molecules,
light blue), bioactive ligands extracted from ChEMBL (white) that
show activity against the respective template’s target, and the value
of the corresponding template compound (dashed line). Each plot
in the figure represents the estimated probability distribution of the
property values with dots representing the explicit data points. These
distributions are mirrored to aid in readability of the plots. Reprinted

with permission from the publication Button et al. [82]

As can be seen from Figure 3.9, both the DINGOS designs and the extracted
bioactives agreed well with the physico-chemical properties of the template ligands.
Table 3.2 summarizes these results. The one notable exception is the case of alectinib,
in which the DINGOS designs showed a stronger adherence to the template ligand
with respect to the number of hydrogen bond donor and acceptor groups. These
results show that the DINGOS algorithm did indeed conserve the physico-chemical
properties of the template ligands in the de novo designs. We see that the DINGOS
designs showed a stronger adherence to the number of hydrogen bond donors and
acceptors, while they underestimated the ClopP and molecule weight.
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Table 3.2: Summary of the median values obtained in the physico-
chemical analysis. The median Lipinski rule-of-5 values were calcu-
lated for each of the DINGOS de novo and ChEMBL sets, as well as
the corresponding template ligands. Median values are reported along

with their IQR shown in brackets.

Template Dataset HBA HBD clogP MW
alectinib Template 6 1 4.8 482

cariprazineb Template 5 1 4.3 426
osimertinibb Template 9 2 4.5 499
pimavanserin Template 5 1 4.7 427

alectinib DINGOS 5 (1) 1 (1) 3.5 (2.9) 389 (190)
cariprazineb DINGOS 4 (2) 1 (1) 2.4 (2.1) 309 (145)
osimertinibb DINGOS 7 (2) 2 (1) 2.7 (2.7) 376 (202)
pimavanserin DINGOS 5 (2) 1 (0) 3.8 (2.7) 399 (180)

alectinib ChEMBL 8 (1) 3 (2) 3.6 (1.5) 470 (125)
cariprazineb ChEMBL 5 (2) 1 (0) 4.4 (1.4) 442 (86)
osimertinibb ChEMBL 8 (1) 3 (1) 3.4 (1.1) 418 (88)
pimavanserin ChEMBL 5 (2) 1 (1) 4.1 (1.7) 410 (122)

3.3.6 Target Prediction

Ultimately, the goal of any drug design project is to produce bioactive ligands. While
the activity of a given compound can only truly be confirmed experimentally for
larger sets of molecules, the process of synthesizing and biotesting can quickly be-
come prohibitively expensive. One solution to this problem is to employ predictive
methods in order to estimate the activity of a given compound in silico. Considering
the large number of compounds (1200) that would require full synthesis, we chose
to perform target prediction to estimate the bioactivity of the populations. For this
study, the algorithm SPiDER was chosen. SPiDER is a similarity based target pre-
diction method that was developed by Reker et al. [99]. Since its development, it has
been utilized in a series of successful drug design studies [112–114]. SPiDER performs
target prediction by clustering a set of 12,000 known bioactive ligands in descriptor
space along with the query molecule whose target activity we’re interested in. This
set of 12,000 ligands is a well-curated list of bioactive molecules representing 251 dis-
tinct biological targets. SPiDER uses the cluster assignment of the query molecule,
along with the distribution of in-cluster ligands, to assign a series of p-value scores
for each target. These scores give the pseudo-probability of inactivity. The lower
the p-value for a given target, the lower the probability that the molecule is inactive
against this target. In essence, this is a guilt by association, if the ligands within the
query molecule’s cluster all share the same biological target, SPiDER asserts that
there is a high probability that the query molecule also shares this activity. SPiDER
uses both the CATS descriptor [115], a topological pharmacophoric based descriptor
for evaluating bioactive scaffolds, and the MOE descriptor [98], a descriptor encom-
passing a list of physicochemical properties, to encode the molecules in descriptor
space. For the purpose of evaluating the DINGOS designs, the pharmacophoric and
physicochemical descriptors utilized by SPiDER are an orthogonal measure to the
purely structure-based descriptor used for generating the de novo designs. While
target prediction results in an increase in efficiency, it also introduces error in our
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measurement originating from inaccuracies in the chosen predictive model. To ac-
count for this, we first verified the predictive model for our problem of interest. The
bioactive sets used in the physico-chemical analysis section 3.3.5 were used as our
control set. SPiDER predictions were performed and the proportion of compounds
that were accurately predicted as active was measured. These results are summarized
in Table 3.3. It was found that SPiDER achieved an accuracy between 86-100% on
all four of the set, thus illustrating its applicability for this given task.

Table 3.3: Proportion of known bioactive compounds predicted ac-
tive against the target subgroups of the template compounds. Bioac-
tive compounds showing a Ki < 10nM against the templates’ targets
were extracted from ChEMBL. Predictions were performed with the
target prediction software SPiDER. All four sets showed between 86-
100% predictive accuracy, thus validating SPiDER as a prediction tool

against these templates.

Target Subgroup Number of
Bioactives

Number of
Predicted
Active

Percent Active
(%)

alectinib Tyrosine Kinase 79 72 91
cariprazine Dopamine Receptor 3539 3057 86
osimertinib Tyrosine Kinase 50 50 100
pimavanserin Serotonin Receptor 1898 1777 94

Having verified SPiDER for the activity prediction of the template ligands pri-
mary biological targets, we performed activity prediction on the DINGOS designed
sets. For each of the de novo designed sets, above 50% of the compounds were pre-
dicted as active against the respective template ligands’ biological target (as shown
in Figure 3.10). In the case of pimavanserin, a vast majority of the compounds, 90%,
were predicted as active. While this high degree of predicted activity was encourag-
ing, a concern was that this could be due to DINGOS solely generating compounds
with a single bioactive scaffold, and not reflective of true de novo design. In order to
investigate this, we performed scaffold analysis on the de novo populations.
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Figure 3.10: Proportion of DINGOS generated compounds predicted
active against the respective template’s target. SPiDER software was
used for all target predictions. Predictions were presented as p-values,
pseudo-probabilities of misclassification. A compound was considered
active against the desired target, if it showed a p-value of less than
0.1. All four sets showed a predicted active proportion of above 50%.
For pimavanserin, 90% of the compounds produced were predicted
active against the serotonin target receptor family. Reprinted with

permission from Button et al. [82]

3.3.7 Scaffold Analysis

Scaffold analysis was performed in order to evaluate the overall structural novelty of
the de novo designs. While DINGOS’ primary goal is to produce compounds with
maximal similarity to the template ligand, it is also of interest that these compounds
possess a high degree of diversity and novelty. One feature of the DINGOS algorithm
intended to promote the diversity, and hence novelty, of the designs is the selection of
a unique starting molecule for each design. By selecting a unique starting molecule,
we force the molecules to incorporate varied structural elements. There are multiple
reasons why inherent novelty is of interest. One primary reason is that by promoting
diversity we gain a greater understanding of DINGOS’ capabilities for generating
similar designs. If, in fact, DINGOS produced only near-identical structures with
only minute structural differences and all sharing a common scaffold, we would likely
observe disproportionately close distances in the design population. These "highly
similar" de novo designed structures, while scoring well, would not represent the true
de novo design we’re interested in, that is, generating structurally novel molecules
that are similar to our template ligand of interest. An additional reason motivating
our interest in diversity, is that it enables us to better interrogate our underlying
design hypothesis. The diversity in the generated designs provides us with multiple
structural variants on our template ligand. By synthesizing and testing these, we
can better understand the nature of the template ligand’s bioactivity. In a scenario
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in which diversity was not present within the designs, we may indeed only end up
confirming the existence of single, known bioactive scaffolds. In order to quantify the
degree of diversity in our de novo designs, we calculated the percentage of unique
Murocko scaffolds for each of the sets of de novo designs. Additionally, we measure
the percentage of unique scaffolds for the corresponding construction and ChEMBL
sets. These results are summarized in Table 3.4.

Table 3.4: Percentage of unique Murcko scaffolds from the DIN-
GOS, ChEMBL and compound database populations. All scaffold
were calculated in the RDKit suite. Reprinted with permission from

the publication Button et al. [82]

Template ligand DINGOS designs (%) ChEMBL dataset (%) Compound database (%)
alectinib 88 73 63
cariprazine 43 45 25
osimertinib 87 61 85
pimavanserin 59 57 36

As can be seen, the DINGOS designs possessed a higher degree of diversity than
both the ChEMBL and compound databases, with the exception of the case of
cariprazine, in which the ChEMBL and DINGOS designs differed by 2%. Cariprazine
and pimavanserin had a significantly lower percent of unique scaffolds compared to
that of alectinib and osimertinib (> 20%). Both cariprazine and pimavanserin rep-
resent more simplistic structures in comparison to alectinib and osimertinib, and
this may have resulted in DINGOS producing multiple designs sharing the same
scaffold. To further understand this discrepancy, we examined the five most fre-
quent scaffolds observed for each of the DINGOS sets (see Figure 3.11). We observed
that the scaffolds generated for the cariprazine/pimavanserin sets generally contained
more reduced scaffolds (lower molecular weight, fewer atoms) in contrast to the alec-
tinib/osimertinib sets. We also saw that the cariprazine/pimavanserin sets favoured
1-2 top scaffolds in the designs, the top scaffold represented 12 and 9% of the popula-
tion respectively, while the alectinib/osimertinib scaffolds were more homogeneously
distributed, the top scaffolds were only representative of 2 and 1% of the de novo
sets.
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Figure 3.11: The four drug templates, alectinib (1), cariprazine
(2), osimertinib (3) and pimavanserin (4) with their Murcko scaffolds
(atom scaffolds) highlighted in bold as well as the top five most fre-
quently observed Murcko scaffolds of the DINOGS designs, ordered
according to occurrence. The occurrence of each distinct molecular
scaffold was measured for the four de novo sets, and the number of
occurrences for the five most frequent scaffolds was determined. The
occurrences are presented as a percentage of the de novo sets (300
molecules each). Reprinted with permission from the publication But-

ton et al. [82]

3.3.8 Synthetic Feasibility and Bioactivity

Apart from proposing designs that are similar to a given template ligand, DINGOS
other main objective was to produce compounds that are synthesizable, thus enabling
production and biological evaluation of the proposed structures. This synthesizabil-
ity is key to determining the validity of our design hypothesis and improving our
understanding of the target system. In order to investigate this aspect of the DIN-
GOS algorithm, we selected one compound from each of the de novo design sets
for synthesis. The synthesized compounds were then tested for activity against the
corresponding template ligand’s biological target.
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3.3.9 Design Synthesis and Biotesting

For selection of the drug candidates, we used the 20 top ranking molecules considered
in Section 3.3.4. These sets were further reduced by removing all compounds that
were not predicted active by SPiDER, that is, compounds with a p-value greater
than 0.1 (10%) for the intended target. From the remaining sets, one compound was
selected for synthesis. This choice was motivated by the availability of the correspond-
ing building blocks. As part of the output, DINGOS not only gives the structure of
the de novo design, but also the corresponding synthetic pathway, with all pathways
being based on commercially available molecules from our compound database. For
the synthesis, we imposed the restriction that all compounds must be synthesized in
accordance with the synthetic pathways proposed by DINGOS. As reaction condi-
tions and solvent choice is not a part of the DINGOS algorithm, this was left to the
discretion of the chemist. The selected compounds, along with their syntheses, are
shown in Figure 3.12.
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Figure 3.12: Synthetic reagents and conditions: a DCE (1,2-
dichloroethane), NaB(OAc)3H, room temperature, 5 h, product in-
stable; b DCE, NaB(OAc) 3 H, 50 ◦C, 48 h, 64%; c CHCl3,
EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), 4-DMAP (4-
(dimethylamino)pyridine), reflux, 2 h, 51%; d DCE, NaB(OAc)3H,
room temperature, 16 h, 76%; e dioxane/DMF, Cs2CO3, Pd(PPh3)4,
reflux, 12 h, 33%. IC50, half-maximum inhibitory concentration. Ki

inhibition constant; ALK, anaplastic lymphoma kinase; EGF, epi-
dermal growth factor; LOVO, human LoVo cancer cells; 5-HT, 5-
hydroxytrytamine (serotonin) receptor. Reprinted with permission

from the publication Button et al. [82]

Three of the four selected compounds we successfully synthesized with yields
ranging from 33-64%. These compounds corresponded to the cariprazine, osimertinib,
and pimavanserin designs. For the alectinib, we obtained the correct mass signal
(m/z 405.4 [M + H]+), however, the sample proved to be light and water sensitive,
and hence, could not be fully structurally characterized. The NMR spectra for the
synthesized compounds are shown in Appendix A.2.2. Having successfully synthesized
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three of the four designs, we now sought to evaluate their biological activity towards
the target of the respective template ligands. All three of the designs were tested in
vitro at a concentration of 10 µM. The cariprazine design was tested against the D2S,
D2L, and D3 dopamine receptor subgroups, the osimertinib design against the EGFR,
and the pimavanserin designs against the 5-HT2A, 5-HT2B, and 5-HT2C serotonin
receptor subgroups. Figure 3.13 summarizes the bioactivity results. As can be seen,
both the cariprazine and osimertinib design did not show agonism or antagonism
against the intended target. The pimavanserin design showed preferential antagonistic
activity against the 5-HT2B subgroup. Following these results a dose-dependent study
was conducted, revealing partial antagonism equivalent to a relative activity of 1 µM
of serotonin. While partial activity was observed in the pimavanserin design, this
value is significantly lower than that of the pimavanserin template ligand (Ki =
0.087 nM). The inactivity observed in the DINGOS designs refutes the underlying
designs hypothesis used in this case-study, that is, that the hamming loss of the
molecules’ MACCSkeys binary fingerprint is proportional to the likelihood of their
shared bioactivity.

Figure 3.13: In vitro pharmacological activities of designs 6-8 at
10 µM concentration on the molecular targets of their respective tem-
plates 2-4: a) cariprazine mimetic 6 showed no agonistic or antago-
nistic activity on dopamine receptors D2S, D2L or D3. b) Design 7
derived from Osimeritinib (3) was inactive on EGFR. c) pimavanserin
mimetic 8 significantlyantagonized 5-HT2B activation by serotonin and
d) dose-response characterization indicated dose-dependent partial an-
tagonistic activity of compound 8. All results are the mean±S.E.M.,
N=2, *p<0.05. Reprinted with permission from the publication But-

ton et al. [82]

3.3.10 Large in silico Design Study

Having established DINGOS with the initial case-study, we now sought to investigate
the influence of the choice of template, and to determine for which templates DINGOS
would perform best. In order to do this, we compiled a set of 927 drug molecules
extracted from the DrugBank database [116]. These molecule were filtered to be
within a molecular weight range of 300-600 g mol-1. The same run parameters were
used as those in the case-study, again using the MACCS keys and Hamming distance
as the descriptor and metric functions respectively. Figure 3.14 shows the median
distance values obtained for both the entire set of 300 designs, the top 20 ranked
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molecules, and the top, most similar molecule. For this analysis, we removed all zero
step designs, that is, designs in which the starting molecule was selected as the optimal
product. As the compound database contained many of the existing templates and
close analogues, this was done in order to more fairly evaluate DINGOS’ capability
at generating similar designs.

Figure 3.14: Comparison of the median distances for the top 300
(blue), top 20 (orange), and top (green) ranked DINGOS de novo
designs for each of the 927 separate drug-template de novo design
populations, ordered by their rank on the x-axis. The area around the
median curve represents the IQR. Distinct steps are observed amongst
the top molecule due to the discrete nature of the binary descriptor.

Broadly, we see that the Hamming distance varied between a value of 0.0 and 0.25,
with the zero distance values representing an "optimal" design, that is, as similar as
possible under the given representation. Table 3.5 shows the first, second, and third
quartiles of the three distance distributions. Amongst the four template ligands
considered in the case-study, the de novo populations possessed a median distance
value between 0.08 and 0.11. Comparing these results with those of the DrugBank
set, we found that 65% of the template ligands (601 template ligands) resulted in de
novo populations with a median distance value less than 0.8. For the top 20 designs,
in which a median value of 0.03-0.06 was observed in the case-study, 31% of the
DrugBank templates (286 template ligands) possessed a median distance less than
0.03. These templates represent drug-design challenges in which DINGOS would have
out-performed the results seen in the case-study.
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Table 3.5: A summary of the 1st, 2nd and 3rd quartile values for the
drug-template distance distributions presented in Figure 3.14

Size of set 1st Quartile 2nd Quartile 3rd Quartile
Top 300 ranked mols 0.06 0.07 0.09
Top 20 ranked mols 0.03 0.04 0.06

Top molecule 0.01 0.02 0.04

The initial flat line of the ’Top molecule’ plot indicates designs that possessed a
zero distance value, i.e. designs that were "optimal" under the MACCS keys. From the
set of 927 template ligands, 12% of the de novo designed populations (112 template
ligands) contained an optimal design. Figure 3.15 shows a selection of three of these
optimal designs, along with their corresponding template ligands. Despite the zero
distance, structural variation between the designs and template ligand can be seen.
These differences highlight the limitations of the descriptor used.

Figure 3.15: Structural comparison between template ligands and
the "optimal" DINGOS designs, defined as a Hamming distance of
zero. This has been observed in the case of the torasemide [117],
papaverine [118], trandolapril [119] template ligands. One can see

that a zero distance does not imply identical structure.
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3.4 Conclusion
In silico analysis showed that DINOGS is capable of producing designs with improved
similarity towards the template ligand. Analysis of the physico-chemical properties
and Murcko scaffolds showed a strong adherence to the physico-chemical properties of
the template ligand, along with a high degree of scaffold diversity in the de novo po-
pulations. Target prediction showed that above 50% of the designs were predicted as
active against the intended target, with pimavanserin showing 90% predicted actives.
One design was selected from each population and of the four, three were successfully
synthesized with the proposed synthetic pathway. The synthesized compounds were
then biotested, and of these three, one compound, the pimavanserin mimetic, showed
partial antagonism of the serotonin 5-HT2B receptor. Despite this, comparable acti-
vity to the template ligand was not observed, refuting the chosen design hypothesis.
Having established DINGOS with this initial case-study, in further sections of this
thesis we seek to extend the DINGOS method towards larger scale and higher degree
drug design problems. Within this section, a total of four syntheses were attempted.
In the next chapter, we expand upon this, integrating DINGOS with contemporary
continuous-flow chemistry to generate a larger set of de novo designs. These results
enable us to better determine the overall synthesizability of the designs, and to further
determine the applicability of the underlying design hypothesis. A major limitation
of the current implementation of the DINGOS method is the rigidity of the machine
learning model used. The machine learning model used in this study was trained
explicitly on the MACCS keys descriptor values of the training data. This means that
in order to change our underlying design hypothesis, we would be required to develop
and train an entirely new machine learning model. While this is indeed possible,
the time investment, along with the difficulties associated with training a model on
other, higher dimensional representations, makes this a significant limitation. In
Chapter 5, we investigate potential solutions to this problem and use these solutions
to interrogate the influence of the underlying design hypothesis.
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Chapter 4

Amalgamating DINGOS with
Automated Synthesis

The work presented within this chapter was conducted in collaboration with Berend
Huisman, Cyrill Brunner, Benedikt Winkler, and Alice Lessing. Data analysis and
operations of the DINGOS algorithm were performed by Alexander Button. Chemi-
cal synthesis, analysis and operations of the continuous flow system were performed
by Berend Huisman and Benedikt Winkler. The continuous flow system was devel-
oped by Berend Huisman. Berend Huisman, Benedikt Winkler, and Alice Lessing all
contributed to the testing and implementation of the continuous flow system used in
this chapter. All biotesting and bioanalysis was performed by Cyrill Brunner. All
figures, passages, and methods provided by the collaborators are explicitly stated as
such.

A primary motivation for the development of the molecular design software DIN-
GOS is the need to find novel, optimised, and bioactive compounds for targets of
interest. Accompanying the structure and distances scores, DINGOS also provides
the synthetic pathways used for the in silico de novo design output. The existence of
these explicit synthetic routes makes DINGOS an attractive complement to the field
of automated synthesis. Automated synthesis, in contrast to conventional organic
synthesis, aims at synthesizing synthetic molecules through the use of a mechanical
apparatus, with minimal direct human involvement. Automated systems can run con-
tinuously with lower resource and time expenditure per reaction. The goal of this is
to improve upon the efficiency and safety of conventional synthesis, and facilitate the
synthesis of diverse compounds-of-interest. Various automated procedures have been
proposed with the two main methods being automated batch synthesis and continuous
micro-flow. DINGOS is a potentially promising tool for integration within such an
automated workflow, as all synthetic routes are explicitly provided, and all chemical
components consist of real, commercially available building block molecules. In this
chapter, we explore a proof of principle case study, in which DINGOS was used in
conjunction with an established continuous micro-flow system to generate novel car-
bonic anhydrase inhibitors. With acetozolamide selected as the template ligand, two
rounds of de novo design, synthesis, and bio-testing were performed, generating 15
and seven compounds respectively. Overall, five bioactive compounds were produced,
with three of the de novo designs showing low micromolar binding affinity toward
carbonic anhydrase II.
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4.1 Introduction

4.1.1 Continuous Flow System

Continuous flow offers the opportunity to greatly increase the synthetic output within
a given drug design project. Despite this, however, current continuous flow systems
are still racked with many limitations. Currently, the field of automated synthesis
is still in its infancy, with many chemical reactions which are commonplace within
conventional organic chemistry not having yet been successfully established in au-
tomated synthesis [120]. There are many reasons for these discrepancies, such as
the limited range of viable solvent conditions, limits on the catalysts which can be
incorporated, and restrictions on possible temperature and pressure ranges within
a closed system. While solutions to these limitations are presently being explored,
the possibility to account for these restrictions and exclude them from consideration
would be advantageous. The DINGOS algorithm, due to its modularity, offers such
a potential solution. As the procedures within DINGOS can be readily altered, this
allows us to tailor our design strategies to suit the specific constraints of a given au-
tomated setup. In the work presented here, we explored the possibility of integrating
the DINGOS algorithm with autonomous continuous flow. Within the course of this
project, we were provided access to the custom continuous flow system developed by
Berend Huisman. An image of the system is shown in Figure 4.1.

Figure 4.1: Photograph of the continuous flow system used for this
experiment. Courtesy of Berend Huisman.

Combining the DINGOS algorithm within such a continuous flow system, not
only provides key insights into the feasibility of the synthetic pathways suggested
by DINGOS, but also provides the opportunity to assess the challenges associated
with incorporating such an automated system within our design procedure, and,
ultimately, provide further validation of DINGOS’ ability to generate NCEs with
similar bioactivity to their template ligand. In the work presented here, both the
DINGOS algorithm and the continuous flow system were used to develop an active
drug design learning cycle.



4.2. Methods 47

4.1.2 Active Drug Design Learning Cycle

Active learning is a machine-learning approach in which an algorithm trained on
existing data, such as DINGOS, generates new data points which are then used to
inform and further improve the algorithm [121, 122]. By cycling through this pro-
cedure, we are able to greatly improve the predictive accuracy of our models [123,
124], and generate previously unconsidered data points which can provide a greater
degree of insight for our underlying hypothesis. Despite these advantages, one major
shortcoming is the cost of producing of new data points. For purely computational
problems, such as those seen in computer chess and AlphaGo gameplay [56, 57], this
is governed solely by the costs of the algorithm. In problems involving real-world feed-
back, such as in drug design, there is a significant cost in the production of new data
points. In the context of drug design, the synthesis and biotesting of novel structures
present the major bottleneck, severely limiting the throughput of our active learning
cycle, and, subsequently, the rate of improvement of model quality. In the context
of a drug design active learning cycle, the combination of DINGOS and automated
synthesis offer a promising solution to this problem. In order to facilitate improved
throughput, we require proper communication between the model (DINGOS) and
the automated procedure (continuous flow). Here, the overall synthesizability of the
designs within our continuous flow system is critical for the possibility of prompting
an effective learning procedure. In the work presented here, we investigate the ways
in which these two components, the continuous flow system and the de novo design
tool DINGOS, might be successfully integrated, and how these might lead us on the
first steps towards a fully automated, active learning driven drug design cycle. In
order to facilitate testing of the de novo designs, surface plasmon resonance (SPR)
was used to test the binding affinity of the de novo designs.

4.2 Methods
Parts of this section were provided by the collaborators, describing the methods as
they were performed. All methods descriptions that were provided by the collabora-
tors and their work are explicitly stated as such.

4.2.1 General Chemistry

Description provided by Berend Huisman

All chemicals and solvents were reagent grade and used without further purifi-
cation, unless specified otherwise. All reactions were conducted using a Cetoni flow
chemistry setup (Cetoni GmbH, Korbussen, DE) in absolute solvents, unless specified
otherwise. NMR spectra were recorded on a Bruker Ultrashield spectrometer (Bruker
Corporation, Bremen, DE). Chemical shifts (δ) are reported in ppm relative to TMS
(tetramethylsilane) as reference; approximate coupling constants (J) are reported in
Hz. Compound purity was evaluated by high-performance liquid chromatography
(HPLC) on a Shimadzu LCMS-2020 system (Shimadzu, Kyoto, JP) equipped with
a C18 reverse phase column (Macherey-Nagel, Nucleodur C18 HTec, 5 µm) using a
gradient (H2O/MeCN 70:30 + 0.1% formic acid isocratic for 3 min to H2O/MeCN
5:95 + 0.1% formic acid over 12 min and H2O/MeCN 5:95 + 0.1% formic acid iso-
cratic for an additional 2 min) at a flow rate of 0.5 mL min-1 and UV detection at
254 nm and 280 nm. All final compounds had a purity of >95% (area-under-the-curve
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for UV254 and UV280 peaks). Preparative HPLC was carried out on a Shimadzu
LCMS-2020 system (Shimadzu, Kyoto, JP) equipped with a C18 (Macherey-Nagel,
VP 150/21 Nucleodur C18 HTec, 5 µm) or C8 (Macherey-Nagel, VP 250/21 Nucleosil
300-5 C8) reverse phase column using a gradient (H2O/MeCN 70:30 + 0.1% formic
acid to H2O/MeCN 5:95 + 0.1% formic acid over 17 min or H2O/MeCN 95:5 + 0.1%
formic acid to H2O/MeCN 30:70 + 0.1% formic acid over 28 min). High-resolution
mass spectra were recorded on a Bruker maXis ESI-Qq-TOF-MS (electrospray ion-
ization quadruple time-of-flight mass spectrometry) instrument (Bruker Corporation,
Bremen, DE).

4.2.2 Amide Bond Formation Procedure in Continuous Flow

Description provided by Berend Huisman and Benedikt Winkler

Dimethylformamide. The amine reactants were dissolved to a concentration of
0.2 M in DMF. A 2 equiv. of triethylamine was added to each of the amine solutions.
A 0.2 M solution of the corresponding acid chloride was dissolved in DMF, and 1 mL
of the amine and acid chloride solutions were each added to separate wells within the
96-well plate. 0.75 mL of each solution was aspirated in the syringe pumps and di-
luted to 1 mL in the running solution (DMF). The two reactant solutions were mixed
within the reaction chip and then pumped through the reaction coil. Continuous flow
synthesis was performed with a residence time of 5 minutes and at a temperature of
75 ◦C. A final solution of 2 mL was collected in the 96-well plate.

Dimethylformamide/Acetonitrile. The amine reactants were dissolved to a concen-
tration of 0.2 M in DMF. A 0.2 M solution of the corresponding acid chloride was
dissolved in MeCN, and 1 mL of the amine and acid chloride solutions were each added
to separate wells within the 96-well plate. 0.75 mL of each solution was aspirated in
the syringe pumps and diluted to 1 mL in the running solution (DMF/MeCN). The
two reactant solutions were mixed within the reaction chip and then pumped through
the reaction coil. Continuous flow synthesis was performed with a residence time of
10 minutes and at a temperature of 70 ◦C. A final solution of 2 mL was collected in
the 96-well plate.

Tetrahydrofuran. The amine reactants were dissolved to a concentration of 0.2 M
in THF. A 0.2 M solution of the corresponding acid chloride was dissolved in THF,
and 1 mL of the amine and acid chloride solutions were each added to separate wells
within the 96-well plate. 0.75 mL of each solution was aspirated in the syringe pumps
and diluted to 1 mL in the running solution (THF). The two reactant solutions were
mixed within the reaction chip and then pumped through the reaction. Continuous
flow synthesis was performed with a residence time of 5 minutes and at a temperature
of 55 ◦C. A final solution of 2 mL was collected in the 96-well plate.

Tetrahydrofuran/Acetonitrile. The amine reactants were dissolved to a concentra-
tion of 0.2 M in MeCN. A 0.2 M solution of the corresponding acid chloride was
dissolved in THF, and 1 mL of the amine and acid chloride solutions were each added
to separate wells within the 96-well plate. 0.75 mL of each solution was aspirated in
the syringe pumps and diluted to 1 mL in the running solution (THF/MeCN). The
two reactant solutions were mixed within the reaction chip and then pumped through
the reaction coil. Continuous flow synthesis was performed with a residence time of
5 minutes and at a temperature of 55 ◦C. A final solution of 2 mL was collected in



4.2. Methods 49

the 96-well plate.

Tetrahydrofuran/Acetonitrile/Dimethylformamide. The amine reactants were dis-
solved in a minimal amount of DMF, and then diluted in MeCN to a concentration
of 0.2 M. A 0.2 M solution of the corresponding acid chloride was dissolved in THF,
and 1 mL of the amine and acid chloride solutions were each added to separate wells
within the 96-well plate. 0.75 mL of each solution was aspirated in the syringe pumps
and diluted to 1 mL in the running solution (THF/MeCN/DMF). The two reactant
solutions were mixed within the reaction chip and then pumped through the reaction
coil. Continuous flow synthesis was performed with a residence time of 5 minutes and
at a temperature of 55 ◦C. A final solution of 2 mL was collected in the 96-well plate.

4.2.3 Reductive Amination Procedure in Continuous Flow

Description provided by Berend Huisman and Benedikt Winkler

One-step reductive amination without catalyst. The amine reactants were dis-
solved with 1 equiv. of formic acid to a concentration of 0.2 M in MeCN. A 0.2 M
solution of the corresponding aldehyde/ketone was dissolved in MeCN, and 1 mL of
the amine and aldehyde/ketone solutions were each added to separate wells within
the 96-well plate. 0.75 mL of each solution was aspirated in the syringe pumps and
diluted to 1 mL in the running solution (MeCN). The two reactant solutions were
mixed within the reaction chip and then pumped through the reaction coil. Con-
tinuous flow synthesis was performed with a residence time of 10 minutes and at a
temperature of 75 ◦C. A final solution of 2 mL was collected in the 96-well plate.

One-step reductive amination with a heterogeneous catalyst. A series of 0.5 M amine
and 0.33 M aldehyde solutions were prepared in a 1:4 ratio of MeOH/THF. 1 mL of
the amine and aldehyde/ketone solutions were each added to separate wells within
the 96-well plate. The reactant solutions were taken up into the reaction chip, and
the reaction mixture was then pumped through a column containing the heteroge-
neous catalyst (1:1:0.76 w/w of Celite/NaBH4/LiCl). A final solution of 14 mL was
collected in the 96-well plate.

Two-step reductive amination with Methanol. A 1 M solution of the amine and alde-
hyde/ketone reactants were prepared separately in MeOH. A 1.88 M stock solution
of the reducing agent (NaBH3CN) in MeOH was prepared. 1 mL of the amine and
aldehyde/ketone solutions were each added to separate wells within the 96-well plate
and the reducing agent stock solution was connected to the inlet of the third syringe
pump. 0.75 mL of each solution was loaded in the syringe pumps and diluted to 1 mL
total volume with the running solvent (MeOH). After mixing both solutions in the
reaction chip, the reaction mixture was pumped through the coil. Continuous flow
synthesis was performed with a residence time of 20 minutes and at a temperature
of 57 ◦C and afterwards, the reaction mixture was mixed with 2 ml of the reducing
agent solution using a T-piece, resulting in 4 mL being collected in the 96-well plate.
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4.2.4 Imidazole Arylation Procedure in Continuous Flow

Description provided by Berend Huisman and Benedikt Winkler

Imidazole Arylation. The imidazole reactant was dissolved in DMF to a concen-
tration of 0.015 M. A 0.015 M solution of copper(II)acetate with 2 equiv. of boronic
acid, 1 equiv. of triethylamine, and 2 equiv. of pyridine was prepared in DMF. 1 mL
of the imidazole and copper(II)acetate solutions were each added to separate wells
within the 96-well plate. 0.75 mL of each solution was aspirated in the syringe pumps
and diluted to 1 mL in the running solution (DMF). The two solutions were mixed
within the reaction chip and then pumped through the reaction coil. Continuous flow
synthesis was performed with a residence time of 30 minutes and at a temperature of
130 ◦C. A final solution of 2 mL was collected in the 96-well plate.

4.2.5 Biophysical Evaluation

Description provided by Cyrill Brunner

Surface plasmon resonance (SPR) measurements were performed on an automated
SPR-16 instrument (Bruker Daltonics AG, Hamburg, Germany) for bovine carbonic
anhydrase II (bCAII). All experiments were performed at 25 ◦C with a constant flow
rate of 5 µL min-1 for the immobilization and 25 µL min-1 for both the screening
and affinity determination. The assay running buffer contained 10 mM phosphate
buffered saline (PBS, P3813, Sigma-Aldrich) pH 7.4 with 0.05% TWEEN 20 (P9416,
Sigma-Aldrich) and 5% dimethyl sulfoxide (DMSO, Merck) and was vacuum filtered
and degassed for 15 minutes. bCAII was immobilized by amine coupling on a High
Capacity Sensor (Bruker Daltonics, Hamburg, Germany). The surface was activated
with an injection of 200 mM N-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)
and 50 mM N-hydroxy-succinimide (NHS)) for 8 minutes. bCAII was than immobi-
lized at 20 µg mL-1 (according to UV-VIS spectrometric determination, BioSPEC-
nano, Shimadzu Scientific Instruments) with four minutes contact time to reach a
final immobilization level of approximately 4000 RU (screening) and 3000 RU (ki-
netic analysis). The surface was inactivated with 1.0 M Ethanolamine-HCl pH 8.5
(Bruker Daltonics, Hamburg, Germany) for 8 minutes.

The synthesized designs were evaluated in vitro for their biological activity on
carbonic anhydrase II. All compounds were dissolved in DMSO, diluted and mea-
sured at three concentrations (10, 50 and 100 µM) with a final DMSO-concentration
of 5%. All screening experiments were conducted as duplicates. The functionality of
the immobilized bovine CA II was assessed by determining the dissociation constant
of the positive control 4-sulfamoylbenzoic acid (CBS).

Hits from the screening were further analyzed for their binding affinities and
kinetic constants. A twelve point dilution series of each compound in a range from
500 µM to 2 nM was prepared and injected in technical triplicates at 50 µl with
240 seconds of dissociation time. The effect of the DMSO-content on the signal was
controlled by five DMSO controls at 4.6%, 4.8%, 5%, 5.2% and 5.4% DMSO at the
beginning and the end of the measurement. CBS served as positive control and was
measured in the same concentration range in technical quadruplicates.
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4.2.6 Compound Database

The compound database used for this study was comprised of all compounds available
within the in-house laboratory chemical listing at the time at which the study was
conducted (February 2019). This gave a set of 574 molecules. With the exception of
the 4-sulfamoylbenzoyl chloride, no compounds were ordered for the specific purpose
of this study. All compounds were represented as canonical SMILES with salts and
minor components removed. All molecular structures were provided to the DINGOS
algorithm in RdKit (version 2017.03.3) using the MolToSmiles() function.

4.2.7 Flow Reactions

The reactions provided to the algorithm consist of a set of 19 reactions used in the first
design cycle (Table 4.1). For the second design cycle, the reaction set was modified
in order to improve the synthetic feasibility of the designs within the flow set-up.
The reductive amination reaction was changed so that only aldehyde carbonyls were
considered as valid reactant inputs. The sulfonamide formation reaction was split into
three separate reactions, with each reaction taking either a primary amine, secondary
amine, or ammonia as its input reactant. The Ugi and arylation of imidazole reactions
were removed, as they were found not to perform well within the current flow set-up
(Table 4.5). All reactions were written in the SMARTS format, with atom-mappings
and reactive centers explicitly specified. All in-silico chemical transformations were
performed in RDKIT using the RunReactants() function.

4.2.8 DINGOS Algorithm

The DINGOS algorithm used in this study was the same as that used in the initial
DINGOS publication [82]. The building block molecular weight range was set to be
between 0-250 g mol-1, while the product molecular weight limit was set to 600 g
mol-1. The number of building blocks recommended within a single assembly step
was set to 20 and the number of starting molecules, and hence the number of products
produced, was set to the size of the in-lab compound database. For the design objec-
tive, the MACCSkeys were used as the descriptor representation and the Hamming
distance was used in order to evaluate similarity. These were chosen in order to be
consistent with the implementation of DINGOS considered in in the previous chapter
(see Section 3.2.5). The compound acetazolamide was used as the template ligand
and the reaction step limit was set to one reaction step.

4.3 Results and Discussion

4.3.1 Reaction and Building Block Set

The first step towards integrating DINGOS within the continuous flow system was
establishing the scope of possible chemical reactions within the current setup. A
list of 19 reactions were compiled that were considered feasible within the developed
system (Table 4.1). These were based on reactions that had been successfully per-
formed on other continuous flow systems [120]. This reaction set formed the reaction
database used by DINGOS, forcing all designs produced to be within the scope of
these reactions, and hence, in principle synthetically tractable within the flow sys-
tem. One feature of the DINGOS method is that it uses custom sets of molecules for
all compound generation. By selecting only available sets of molecules, this ensures
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that all the required components exist and will be readily available. One particu-
lar case of interest is in utilizing in-house sets of building blocks. This allows for
the development cycle to reduce the time and monetary investment of ordering new
compounds, allowing for synthesis to be performed at a lower cost, and lowering the
economic threshold for drug development. In the context of continuous flow, our goal
was to produce large sets of molecules, while reducing the overall time and cost of
production. Considering this, we chose to restrict our building block set solely to the
molecules available within our own laboratory.

Table 4.1: Reactions considered within the continuous flow system.
These reactions were compiled based on a literature review of reactions
currently established on continuous flow [120]. Some reactions, such
as those of Pictet-Spengler and the Ugi reactions were separated based
on the size of the reaction relevant ring structure. FGI = Functional
Group Interconversions. The corresponding reaction SMARTS can be

found in Appendix A.3.1

Reaction Name
Pictet-Spengler-6-membered-ring
Pictet-Spengler-5-membered-ring

Aminothiazol formation
Paal-Knorr-pyrole formation
Triaryl-imidazol-1 2-diketone

Triaryl-imidazol-alpha hydroxy ketone
Fischer indole

Ester formation Acid Chloride
Thioester formation Acid Chloride

Reductive amination-Primary amine-Ketone
Amide formation Acid Chloride

Sulfonamide formation Sulfonyl Chloride
Aryl-Imidazole formation

FGI Acyl chloride
FGI sulfonyl chloride
Ugi-6-ring-aliphatic
Ugi-6-ring-aromatic
Ugi-5-ring-aliphatic

Hantzsch

4.3.2 The Drug Design Problem

Having established the reaction and building block sets, we now focused on selecting
a model drug design problem. To this end, carbonic anhydrase II was chosen as the
target system, with acetozolamide as the template ligand. This selection was made
for two main reasons: Firstly, within the continuous flow setup used in this study,
automated purification was currently not available. In a fully automated system, we
ideally would incorporate an automated purification and testing component; how-
ever, such components are encumbered with their own set of technical difficulties.
The system considered in this work did not contain such components, and hence,
all purification and testing was performed manually. This meant that for multi-step
reactions, intermediate products would require manual purification between reaction
steps. As this would not adhere to fully automated synthesis, we chose to restrict the
de novo designs to only a single reaction step. Acetozolamide is a relatively small drug
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compound (222 Da), which would enable for effective de novo design within a single
reaction step. The second reason is that biotesting of carbonic anhydrase is fairly
robust and straightforward [125]; considering the large number of de novo designs we
intended to test, selecting a system such as this reduces the overall experimental cost.

4.3.3 Run Parameters

For this experiment, the same version of DINGOS as in Chapter 3 was used. The
MACCS keys were used as the descriptor function for the de novo designs, with the
building blocks being recommended by the same AI model established in Section 3.1.3.
A molecular weight limit of 250 g mol-1 was imposed on the building blocks, and
400 g mol-1 was used for the final products. This was done in order to make the
overall designs more in line with the molecular weight of the template ligand. Along
with de novo designs, the DINGOS output also included returned starting molecules.
After removing all returned starting molecules, we obtained a set of 123 de novo
designs.

4.3.4 First Round De Novo Design

DINGOS produced 123 de novo designs. Considering the small size of the com-
pound database used, we thought it pertinent to investigate the overall novelty of the
compounds produced, and to see whether or not the designs already existed within
established synthetic and/or screening libraries. To determine this, we made use
of the ZINC database (ZINC15, 2015) [126]. ZINC is an online docking database
developed by John Irwin and the Shoichet lab. It contains a library of over 230
million molecules, comprised of 393 distinct chemical catalogs. These include both
pharmaceutical databases, such as ChEMBL20 [81], as well as synthetic and com-
mercial catalogs, such as the Enamine [127] and the Sigma Aldrich catalogs. ZINC
provides the option to screen sets of compounds based on their structure. When
querying compounds within the database, the compounds are reported as either im-
mediately commercially available, or via synthesis on-demand. In addition to this,
ZINC provides publicly-reported activities or biotests which have been performed on
the report compounds. Of the 123 molecules suggested, 68 were found to be within
the ZINC database. Two of these compounds had reported activities, both having
been tested in a cell-based displacement assay against the Trace amine-associated re-
ceptor 1 [128], rather than the carbonic anhydrase target annotated for our template
structure. None of the reported compounds had been tested before against carbonic
anhydrase. Despite the limited size of the compound database used, DINGOS was
capable of producing a large number of previously unreported de novo designs, none
of which had been considered in the context of our biological target.

4.3.5 First Round of Automated Synthesis

All syntheses were performed by Benedikt Winkler and Berend Huisman.

The set of de novo designs was sorted according to its distance to the acetazo-
lamide template, and the top 40 compounds were selected for synthesis (Figure 4.2).
Of the 40 top-ranked designs, 22 were formed by amide bond formation (Figure 4.3),
16 by reductive amination (Figure 4.4), and two by arylation of an imidazole (Fig-
ure 4.5). Having obtained the de novo set, we then attempted to synthesize the
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compounds with our continuous flow system using the reaction pathways prescribed
by DINGOS.

Figure 4.2: Overview of the 40 DINGOS designs selected for synthe-
sis. Of the 40 proposed compounds, 22 were formed by amide bond
formation, 16 by reductive amination, and two by imidazole arylation.
Compounds are segregated by their reaction type, and sorted by their

distance rank.

4.3.6 Amide Bond Formation

One challenge presented by continuous flow is that all species must remain in solution
in order for the reaction to commence. Any solid material will accumulate throughout
the system and likely lead to clogging within the system. This restricted our choice
of reaction conditions, as the reaction could only be performed in a solvent-system
that fully dissolved both building blocks.
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Figure 4.3: Overview of the 22 proposed DINGOS designs formed
by amide bond formation. Compounds are sorted by their distance

rank.

As a preliminary step in the synthesis of the 22 amide bond products (Figure 4.3),
a series of trial experiments were performed in order to determine the appropriate
solvent conditions in which to dissolve the building blocks. N,N dimethylformalde-
hyde (DMF), tetrahydrofuran (THF), and acetonitrile (MeCN) were all considered.
Table 4.2 summarizes the resulting solubilities of the proposed designs.
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Table 4.2: Resultant solubilities of the 22 proposed amide bond
DINGOS designs. A design is specified as insoluble, if one or
more of the building blocks could not be successfully dissolved in
the solvent system considered. DMF=N,N dimethylformaldehyde,

THF=tetrahydrofuran, MeCN= acetonitrile

DMF DMF/MeCN THF THF/MeCN THF/MeCN/DMF

24 Insoluble Insoluble Insoluble Insoluble Insoluble
25 Soluble Soluble Insoluble Insoluble Soluble
26 Soluble - Insoluble Insoluble Soluble
27 - - Insoluble Insoluble Soluble
28 Insoluble Insoluble Insoluble Insoluble Insoluble
29 Soluble - Insoluble Insoluble Soluble
30 - Soluble Insoluble Insoluble -
31 - - Insoluble Insoluble Soluble
32 - - Insoluble Insoluble Soluble
33 Soluble - Soluble Soluble -
34 Insoluble Insoluble Insoluble Insoluble Insoluble
35 - - Soluble Soluble -
36 - - Soluble Soluble -
37 - - - Soluble -
38 Insoluble Insoluble Insoluble Insoluble Insoluble
39 - - - Soluble -
40 Soluble - - Soluble -
41 Insoluble Insoluble Insoluble Insoluble Insoluble
42 Insoluble Insoluble Insoluble Insoluble Insoluble
43 - - - Soluble -
44 - - - Soluble -
45 - - - Soluble -

As can be seen from Table 4.2, there were no consistent solvent conditions which
worked for all of the designs. In total, six of the 22 amide products were removed
due to the insolubility of the corresponding building blocks, resulting in a set of
16 viable designs (Figure 4.4). It was found that the THF/MeCN solvent mix-
ture was capable of dissolving the aniline/pyridine based building blocks, while the
THF/MeCN/DMF solvent mixture was capable of dissolving the tertiary sulfonamide
and 2-aminothiazole building blocks. Having established the working solvent condi-
tions, all 16 of the reactions were performed in continuous flow with a residence
time of 5 minutes at a temperature of 55 ◦C. Of the nine aniline/pyridine based
products performed in THF/MeCN, seven were successfully synthesized and puri-
fied. The remaining sulfonamide and 2-aminothiazole based products were reacted in
THF/MeCN/DMF, and, of these seven products, five products were successfully syn-
thesized, with two of the 2-aminothiazole based products failing to yield the desired
product. Table 4.3 summarizes these results.
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Table 4.3: Resultant reactions of the 22 proposed amide DIN-
GOS designs. The reactions were performed in four separate
solvent conditions: DMF, DMF/MeCN, THF, THF/MeCN, and
THF/MeCN/DMF. A design was considered successful if the for-
mation of the desired compound could be confirmed. DMF=N,N
dimethylformaldehyde, THF=tetrahydrofuran, MeCN= acetonitrile

DMF DMF/MeCN THF THF/MeCN THF/MeCN/DMF

24 - - - - -
25 Successful Successful - - Successful
26 Failed - - - Successful
27 - - - - Successful
28 - - - - -
29 Failed - - - Successful
30 - Failed - - -
31 - - - - Successful
32 - - - - Failed
33 Failed - Successful Successful -
34 - - - - -
35 - - Successful Successful -
36 - - Successful Successful -
37 - - - Successful -
38 - - - - -
39 - - - Failed -
40 Failed - - Successful -
41 - - - - -
42 - - - - -
43 - - - Successful -
44 - - - Failed -
45 - - - Successful -

4.3.7 Reductive Amination

Reductive amination in continuous flow has been performed previously by multiple
groups [129–131]. These methods vary from those proposed by Zhang et al. [132],
in which Leuckart-Wallach conditions (formic acid in the presence of an amine) were
used, to those employed by Seeberger et al. [120] in which a solid-phase heterogeneous
column composed of Sodium Borohydrate and Lithium Chloride was used to catalyze
the reaction. In the work by Cronin et al. [133] they made use of a two-step continuous
flow system. In this setup, the formation of the desired amine occurred in two steps.
In the first step, the intermediate imine was formed, and then subsequently reduced
to give the desired amine product. These three procedures were investigated for their
use in the formation of the DINGOS amine products. All building blocks were suc-
cessfully dissolved in methanol, and the three reaction procedures were attempted.
Reactions were performed with a residence time of 20 minutes and at a temperature
of 57 ◦C. Table 4.4 summarizes the findings of the various reaction conditions.
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Figure 4.4: Overview of the 16 proposed DINGOS designs formed
by reductive amination. Compounds are sorted by their distance rank.

Table 4.4: Resultant reactions of the 16 proposed reductive ami-
nation DINGOS designs. A design was considered successful if the

formation of the desired compound could be confirmed.

One-step
No Catalyst

One-step
Heterogeneous Catalyst

Two-step
MeOH

46 - - Failed
47 - - Failed
48 - - Failed
49 - - Failed
50 Failed Failed Successful
51 - - Failed
52 - - Failed
53 - - Failed
54 - - Failed
55 Failed Failed Successful
56 - - Failed
57 Failed Failed Failed
58 Failed Failed Successful
59 Failed Failed Failed
60 - - Failed
61 - - Failed

As can be seen, of the considered conditions, only the two-step system using
MeOH yielded successful results. With this system, we were successfully able to
produce the desired product for three of the five aldehyde based building blocks. The
method was, however, unfortunately shown to be unsuccessful for all of the ketone
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based building blocks. In the work outlined in Zhang et al. and Cronin et al., all
experiments only considered reductive amination through aldehyde based reactants,
and in the publication by Seeberger, attempts to perform reductive amination with
ketone based building blocks gave no product. Taking this into consideration, we
decided to discard these designs. In total, of the 16 considered products, only three
were successfully synthesized and purified.

4.3.8 Imidazole Arylation

Two of the proposed designs were suggested to be formed by imidazole arylation
(Figure 4.5). Previous work by Van Der Eycken et al. [134] had shown successful
N-arylation in continuous flow, however, they did not consider imidazoles in their
experiments.

Figure 4.5: Overview of the two proposed DINGOS designs formed
by imdiazole arylation.

In the outlined procedure, they successfully performed copper catalyzed N-aryla-
tion in both dichloromethane (DCM) and DMF. As a preliminary step, the solubil-
ity of the building blocks in DMF was established. Unfortunately, only one of the
product’s building blocks, that of 63, was found to be soluble. Because of this, we
discarded 62, and focused soley on the remaining design. In the procedure outlined
by Van Der Eycken, 0.15 M of the copper(II)acetate catalyst was used. We were,
however, unsuccessful at dissolving the required amount of copper catalyst in DMF.
Multiple attempts were made to form the required catalyst solution, however ulti-
mately, the catalyst could only be dissolved by diluting it by a factor of 10. To match
equivalence, the synthetic procedure was performed at the reduced concentration,
however, no product was observed. Hence, we were unable to synthesize either of the
two Ar-imidazole designs.

4.3.9 Bioactivity of First-Round Designs

All biotesting was performed by Cyrill Brunner. The prepublished results presented
here were directly communicated by Cyrill Brunner.

Of the set of 40 de novo designs, we were successfully able to synthesize 15 of the
compounds within the continuous flow system. These experiments were performed
over a time span of four weeks. From this set of 15 compounds, we performed biotest-
ing in order to determine their binding affinity towards carbonic anhydrase II. The
bovine carbonic anhydrase II protein (bCAII) was used as the target protein, with
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the biotesting experiments being performed using Surface Plasmon Resonance (SPR).
4-sulfamoylbenzoic acid (CBS) was used as our positive control. A compound was
considered as active if it showed an SPR response above 50% of the CBS reference at
50 µM. The experiment was repeated at concentrations of 10, 50, and 100 µM. Of the
15 designs, no response above 50% CBS was detected, indicating that the compounds
produced did not bind to the target protein.

4.3.10 Refinement of Designs Using Information Gained from the
First Cycle

Having completed our first cycle of the active learning procedure, we then sought to
improve upon the results obtained. Our first cycle presented issues with both the
synthesis and binding affinity of the compounds produced. Using the information
gained, both synthetically and biologically, we updated our procedure in order to
improve the results.

4.3.11 Improving Binding Affinity by Inclusion of a Potential Ter-
minal Sulfonamide

The tested DINGOS designs did not show significant binding towards carbonic anhy-
drase. For the de novo design, the template ligand used by DINGOS was the 20 nM
carbonic annydrase inhibitor acetozoloamide. It is known that the binding mode of
acetozoloamide occurs primarily through a coordination of the terminal sulfonamide
to the zinc(II) cation of the carbonic anhydrase protein [135]. Multiple studies have
confirmed that this interaction is indeed important for carbonic anhydrase II bind-
ing. Of the 40 DINGOS designs, none of the produced compounds possesses this key
terminal sulfonamide group. Upon examination of the in-house building block set
used as the compound database, it was discovered that given the reagents and reac-
tions provided, formation of terminal sulfonamide possessing designs would not have
been possible. This was because no sulfonamide containing building blocks capable of
reacting were present within this set, nor were any terminal sulfonamide forming reac-
tions in our reaction database. The set did contain, however, sulfonyl chlorides, which
were responsible for the formation of the three secondary sulfonamides produced by
DINGOS. In comparing the structures of the de novo designs, it was observed that
31 of the 123 designs contained terminal methyl ester moieties, formed by the selec-
tion of the methyl 4-(chlorocarbonyl)benzoate acid chloride building block. It was
hypothesized that this group was selected by DINGOS as a structural replacement
for the sulfonamide group found in acetozoloamide. To this end, we introduced the
compound 4-sulfamoylbenzoyl chloride into our compound database. This was done
in order to, firstly, see whether or not DINGOS would preferentially select this com-
pound for inclusion within the de novo designs, and secondly, whether this inclusion
would result in an improvement in binding affinity for the bCAII target.

4.3.12 Improving Synthetic Feasibility by Updating the Reaction to
Incorporate Constrains of the Flow

Of the 40 designs that we intended to synthesize, we were only able to successfully
synthesize 15. This was primarily due to issues with solubility of the building blocks
and discrepancies between the reaction definitions in conventional organic chemistry,
and those that are feasible within a continuous flow system. A significant proportion
of the designs, 12 of the 40 proposed, were rejected, due to the infeasibility of the
reductive amination reaction. This was due to the presence of ketone based building
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blocks, for which the established amination reactions were not applicable. Addition-
ally, we were unable to perform either of the proposed imidazole arylations within
our system. While the issues observed could have potentially been resolved with sys-
tem modifications, we decided instead to modify the reaction logic within DINGOS’
reaction database. Modifications of this nature kept more inline with the notion of
rapid compound generation. These changes were facilitated by the modular nature
of the DINGOS algorithm. To resolve the observed issues, we modified the reductive
amination reaction to exclude all ketone carbonyl building blocks, and removed the
imidazole arylation reaction entirely. A review of the reaction outputs produced by
DINGOS also revealed that the Ugi reaction was not possible with the building blocks
provided, and hence, this reaction was subsequentially removed. As we intended in
this round to bias our results towards sulfonamides, we decided to split the more
generalized sulfonamide formation reaction into three variants. One that accepted
sulfonic acids, one that accepted sulfonyl chlorides, and one that would allow for
the conversion of sulfonyl chlorides to a terminal sulfonyl amide through the use of
ammonia. Table 4.5 shows the updated reaction list.

Table 4.5: Updated reaction set used for the second active learn-
ing cycle. The reductive amination reaction was modified to neglect
ketone carbonyls, while the sulfonamide formation reaction was split
into three separate reactions: one for sulfonic acid, one for sulfonyl
chlorides, and one that converts sulfonyl chloride to a sulfonamide via
ammonia. The imidazole arylation and Ugi reactions were removed.
FGI=Functional Group Interconversions. The corresponding reaction

SMARTS can be found in Appendix A.3.2

Reaction Name
Pictet-Spengler-6-membered-ring
Pictet-Spengler-5-membered-ring

Aminothiazol formation
Paal-Knorr-pyrole formation
Triaryl-imidazol-1 2-diketone

Triaryl-imidazol-alpha hydroxy ketone
Fischer indole

Ester formation Acid Chloride
Thioester formation Acid Chloride
Reductive amination-Aldehyde
Amide formation Acid Chloride

Sulfonamide formation Sulfonyl Chloride Secondary amine
Sulfonamide formation Sulfonyl Chloride Primary amine

Sulfonamide formation Sulfonyl Chloride Ammonia
FGI Acyl chloride

FGI sulfonyl chloride
Hantzsch

Ugi-5-ring-aliphatic
Hantzsch

A test run was performed in order to ensure that the modified reactions set still
yielded meaningful designs. DINGOS was successfully able to generate 128 de novo
designs, with the sulfonamide and reductive amination reactions still being repre-
sented in the de novo outputs. The compounds were again queried in the ZINC
database. Of the 128 designs generated by DINGOS, 84 of the compounds were
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found to be reported within the ZINC database, and of these reported compounds,
it was found that two of them had reported bioactivities. In contrast to the previous
design cycle, these compounds had in fact been tested against carbonic anhydrase.
Both compounds were found to be inactive against CAII, with reported IC50 values
of above 50 µM.

4.3.13 Second Round of Automated Synthesis

All syntheses were performed by Berend Huisman.

We now performed the second de novo design cycle, incorporating both the up-
dated reaction set and modified compound database. Within this second cycle, DIN-
GOS was successfully able to produce 109 de novo designs. Of the 109 designs, 67
of the product molecules were formed using the 4-sulfamoylbenzoyl chloride build-
ing block. Of the designs generated in the first cycle, three contained sulfonamides
and 31 a methyl ester group. In contrast, the second round designs contained 77
sulfonamides and eight methyl esters, supporting the claim that DINGOS had been
selecting the methyl moiety in order compensate for the lack of sulfonamide building
blocks. As with the previous design cycle, we queried the ZINC database in order to
determine the overall novelty of the de novo designs. Of the 109 designed compounds,
68 were reported within the ZINC database. Of these 68 compounds, two had been
tested, and in fact, had been shown to be active against carbonic anhydrase II.

As with the previous cycle, the top 40 designs were sorted according to their
distance scores. A comparison was made with the compounds from the first design
cycle. This can be seen in Figure 4.6. As can be seen, both updating the reactions
and introducing the 4-sulfamoylbenzoyl building block lead to an improvement in the
designs’ distance values.
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Figure 4.6: Comparative plot of the distance values obtained for the
top 40 ranked molecules for the first and second active learning drug
design cycle, as well as with the updated reaction set. Distance was
measures as the Hamming distance of the MACCS keys descriptors.

The top 40 ranked designs from the first design cycle had a median distance
value of 0.25, while the median distance of those from the second cycle was 0.12, a
reduction of approximately one half. Of the 40 top ranked molecules, we selected
eleven of the designs for synthesis. For all eleven of these compounds, DINGOS
proposed synthesis by amide bond formation. All building blocks were successfully
dissolved in MeCN/THF. The same reaction conditions as used in the previous cycle
were used here. Of the eleven proposed designs, seven were successfully synthesized
and purified (Figure 4.7).

4.3.14 Bioactivity of Second-Round Designs

All biotesting was performed by Cyrill Brunner. The prepublished results presented
here were directly communicated by Cyrill Brunner.

The seven compounds that were successfully synthesized in the second de novo
design cycle were then tested against bCAII. The same experimental conditions as
those in the previous design cycle were used. Of the seven compounds tested, five
were found to show activity below 50 µM. Of these five actives, three showed activity
below 10 µM (Figure 4.7).
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Figure 4.7: Overview of the seven compounds synthesized in the
second active learning cycle. All seven compounds were tested against
bCAII in a SPR binding assay, with CBS as a reference. Of the seven
designs, 66, 67, 68, 70, 71 showed binding affinity towards the target.
Compounds 66, 68, and 71 possessed a comparable affinity to that of

the CBS reference.

The introduction of the terminal sulfonamide group did in fact result in an in-
creased binding affinity towards bCAII. Despite this, we did observe sulfonamide
containing structures that showed no binding towards bCAII. Figure 4.7 shows the
structure of the seven synthesized compounds. In comparing their structure, one im-
mediately striking result is the discrepancy between compound 68 and compound 67.
Compounds 68 and 67 differed only in the position of the pyridine nitrogen (meta in
68 and ortho in 67). Despite their similar structures, 68’s KD,Eq. was 10 times lower
than that of 67. A similar discrepancy was observed in 66, which only differed from
67 in the presence of a single methyl group at the para position of the pyridine ring,
but similarly showed a 10-fold increase in binding affinity. NMR spectra of the five
bioactive compounds are shown in Appendix A.3.3.

4.4 Conclusion
In summary, in this work we established an active learning de novo design cycle.
Compounds were generated by DINGOS, transferred to our continuous flow system
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for synthesis, and tested for their binding affinity via SPR measurements. Within this
cycle, DINGOS was successfully integrated within our custom continuous flow sys-
tem. Two full de novo design cycles were performed, producing 15 and seven de novo
designs as prescribed by the DINGOS algorithm. The first cycle highlighted some of
the key issues in adapting a method such as this to automated synthesis. In contrast
to conventional synthetic chemistry, continuous flow places stricter limitations on the
choice of solvent systems and reagents. This was a major factor of consideration in
synthesizing the amide based de novo designs. In order to successfully transfer the
reactions into continuous flow, a series of preliminary solubility experiments were first
required in order to determine the appropriate solvent conditions. Further limitations
relating to the scope of applicable reactants in flow resulted in the exclusion of 12 of
the 16 amine designs, and all of the Ar-imidazole ones. Biotesting revealed that of
the compounds synthesized within the first cycle, none of the designs showed binding
affinity towards the bCAII target. It was observed that the designs lacked a terminal
sulfonamide, which has been associated with CAII binding. Between the two cycles,
modifications were made to both the reaction set and the compound database in or-
der to improve upon the observed activity and synthesizability. The lack of binding
affinity observed in the first cycle motivated the inclusion of the 4-sulfamoylbenzoyl
chloride building block into the compound database, in order to bias the de novo
designs to be more in line with the conventional mode of CAII binding. The reaction
database was modified in order to exclude failed reaction conditions observed in the
first design cycle. These modification resulted in an increase in the proportion of the
successful syntheses, as well as the overall binding affinity of the generated designs.
The relative ease with which the modifications were performed highlight the advan-
tages of DINGOS’ modular design in such an application. Ultimately, we were able
to produce five novel, active compounds, with three of them showing a comparable
binding affinity to our positive control (CBS). Two of the de novo designs, 68 and 67,
showed a 10-fold difference in binding affinity, despite only differing structurally by a
single atom. The presence of activity clefts such as these highlights the importance
of locally exploring new structures. DINGOS was shown capable of being integrated
within such an active learning procedure; however, as with the previous study, we
were still restricted to a fairly constrained design hypothesis, that is, the Hamming
distance of the MACCS keys. Despite the success seen within this work, this is still a
major limitation of the DINGOS algorithm. In the following chapter, we investigate
a potential solution to this problem, and a way of generalizing DINGOS towards a
broader range of design hypotheses.
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Chapter 5

Generalization of DINGOS
Towards Arbitrary Descriptor
Spaces through Generative
Machine Translation

A core component of the DINGOS algorithm is the building block recommendation
system. This component selects the most appropriate building block to combine with
a given starting molecule in order to generate a de novo design that is similar to a
provided template ligand. Building blocks are selected by first predicting the molecule’s
descriptor value, and then using this value to query the compound database. While
this method did lead to the generation of similar designs in Chapter 3 and 4, it pre-
sented difficulties associated with changing the descriptor representation. In order
to change the descriptor, an entirely new predictive model would be required, limit-
ing the flexibility of the DINGOS algorithm. In this chapter, we investigate the use
of generative machine translation as a potential solution. A model which generates
the building blocks molecules directly was developed, and the capabilities of this newly
generalized DINGOS method were explored. DINGOS was used to generate de novo
designs for eleven separate sets of bioactive molecules extracted from the ChEMBL
database. For these experiments, we defined our domain of interest, which were all
distances below the most similar inactive compound. The goal was to produce com-
pounds within this region. DINGOS was shown capable of generating designs within
the ’domain of interest’ for each of the eleven template ligands. In the case of the H3
histamine receptor, DINGOS was able to generate compounds that were more similar
to the respective template ligand than any reported bioactive in ChEMBL.

5.1 Introduction

5.1.1 Descriptor Agnostic Building Block Recommendation

The version of DINGOS presented in Chapter 3 performed building block recommen-
dations by first generating a molecular fingerprint and then finding the molecules
from the compound database with the most similar fingerprints. This fingerprint
is generated by a multilayer-perceptron model, which was trained on a set of exist-
ing, patented chemical reactions (USPTO database). For the training procedure, the
molecules were converted into the MACCS keys binary representation. Because of
this, the trained model can only select appropriate building blocks by a comparison
of their MACCS keys. Ideally, one would want to be able to change representation
without the need for entirely new predictive models, however, this requires a model
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which is independent of the choice of representation.
Recent work adapting models for text generation have shown promise for generating
molecular structures [84, 136]. All of these studies make use of the SMILES format, in
which the chemical structure of a molecule is represented as a sequence of characters.
Of particular note was the work of Schwaller et al. [137]. Schwaller and co-authors
trained a model to predict the most probable products from a given set of reactant
molecules. Based on this work, we sought to develop a predictive model to perform
the reverse process, that is, generate a building block from a pair of starting and
product molecules. As the model would be generating molecular structures, rather
than descriptors values, the AI model would be completely independent of our choice
of descriptor representation.

5.1.2 Transformer Model

The model by Schwaller et al. was adapted from the transformer architecture [138]
developed by Google brain in 2017 for machine translation. In machine translation,
a model is trained in order to convert text from one target language, say English,
to another, say French. One can say that the French sentences are generated by the
model using the English sentences as an input. Most machine translation models
consists of two main components, an encoder, which converts the input text into a
latent representation, and a decoder, which converts this latent representation into
the output text [139]. The transformer architecture is an encoder-decoder that makes
use of an attention mechanism in order to perform text generation. In machine
translation, attention mechanisms are a method for determining which elements of
a sequence the model should pay attention to during translation. The attention
mechanism converts a sentence into a series of attention vectors, one for each word
in the sentence. These vectors encode the importance of each word for the given
translation task relative to each of the other words in the sentence. An example of
this can be seen in the work by Bahdanau et al. [140], in which they combined an
attention mechanism with a recurrent neural network (RNN) based encoder-decoder
to perform English-French translations. As can be seen from Figure 5.1, each of the
individual words plays a different level of importance towards the overall translation.
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Figure 5.1: Attention map taken from Bahdanau et al. [140]. The
map shows the results of the machine translation model RNNsearch.
Along the horizontal axis is the English input sentence, while along
the vertical axis is the generated French translation. The brightness
of the boxes in the heat map indicate the value of the attention weights
for the English-French word pairs, with white representing a value of
1 and black a value of 0. The higher the attention weight the more

importance that was placed on the given word.

In the transformer, input and output sentences are each converted into separate
attention vectors which are then combined to produce a series of encoder-decoder
attention vectors. These encoder-decoder attention vectors then serve as the inputs
for a feed-forward network component. The ultimate output of the transformer is a
vector of output probabilities, with each element giving the probability of selecting a
particular word for the translation (see Figure 5.2).
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Figure 5.2: Schematic depiction of the transformer model adapted
from Vaswani et al. [138]. The encoder, depicted in red, is comprised
of an attention layer followed by a feed-forward neural network. The
encoder converts the English sentence into its corresponding encoder-
attention vectors, which then serve as inputs for the feed-forward neu-
ral network. The neural network then generates the latent represen-
tation which is then accepted by the decoder. The decoder is sim-
ilarly comprised of an attention layer which accepts the translated
sentence in French and converts it into the decoder-attention vec-
tors. This initial decoder attention layer is followed by an additional
encoder-decoder attention layer which accepts the latent representa-
tion from the encoder and the decoder-attention vectors as inputs.
A final feed-forward neural network layer converts the output of the
encode-decoder attention layer to a vector of output probabilities, with
each entry representing the probability of selecting a specific word in

French.

5.2 Methods

5.2.1 Descriptor Set

A set of eight descriptors were used for this study. This set was comprised of the
MACCS keys, extended connectivity fingerprint (ECFP), featMorgan, Atom pair,
RDKit, Avalon, Torsional, and Layered descriptors using the functions available
within RDKit. The descriptors are summarized in Table 5.1.
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Table 5.1: Summary of the eight molecular descriptors used for the
bioactivity analysis.

Descriptor Name Description References
MACCS keys A 1-dimensional structural representation consisting

of a set of individual molecular fragments or ’keys’.
The molecule is queried against this set of keys and
assigned an on-bit (1) if they are found within the
molecule and an off-bit (0) if not.

Durant et al.
(2001) [95]

ECFP Iteratively expands each atom’s neighbours in order
to create a list of substructures. Each substructure is
converted into an atomic invariant format using the
Daylight atomic invariants.

Morgan [141],
Rogers,
Hahn [142]

featMorgan Uses the same algorithm as the ECFP descriptor, how-
ever, instead of using the Daylight atomic invariants,
it uses a predefined feature list to convert the substruc-
ture list. This list includes common pharmacophoric
groups such as donor and acceptor.

Morgan [141],
Rogers,
Hahn [142]

Atom Pair Measures the frequency of atom pairs within a
molecule. Each atom is defined by its atom property
(atomic type, number of π-electrons, and number of
non-hydrogen neighbors) and by the shortest number
of bond separating the pair.

Carhart et
al. [143]

RDKit Converts the molecule into a set of all linear molecu-
lar subgraphs. Atom-type, bond-type, atomic number
and the aromaticity are used to calculate the descrip-
tor value.

RDKit [47]

Avalon Similar to the RDKit Daylight fingerprint, the Avalon
fingerprint enumerates a predefined list of path and
atom feature classes in order to convert the molecular
graph into a property list.

Gedeck et
al. [144]

Torsional Converts the molecules into a set of four atom frag-
ments (inspired by the torsional angle). The atom
type, number of π-electrons, and non-hydrogen neigh-
bors are used to describe the atoms within a fragment.
The frequency of each fragment is used to calculate the
descriptor value.

Nilakantan et
al. [145]

Layered Using the same algorithm as the RDKit descriptor,
however, includes additional information, such as the
number and size of rings within the molecule.

RDKit [47]

5.2.2 Training Data for the Generative Model

The datasets used were taken from the publication Schwaller et al. [137] 1. The au-
thors experimented with two datasets, one taken from Jin et al. [146], and a modified
version in which the reaction set was doubled by randomizing the canonical repre-
sentation of the SMILES. These two datasets were called the MIT and MIT-augm
datasets, respectively. The datasets were preprocessed in order to remove salts, sol-
vents, and common reagents. The remaining datasets were further filtered in order

1https://github.com/pschwllr/MolecularTransformer
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to limit the reactions to at most two-component. The initial reaction SMARTS were
of the form "reactant.reactant»product". In order to be used for building block gen-
eration, the training data first needed to be converted to the appropriate format,
that is "starting molecule.product»building block". In converting to this format, we
were presented with a choice. As the distinction between the starting molecule and
the building block is arbitrary, a decision was required when converting the reaction
SMARTS. To resolve this, we decided to generate two versions of each dataset; a) one
labeled "-SINGLE", in which the most similar molecule to the product (as defined by
Tanimoto distance of the extended connectivity fingerprint(ECFP)) was selected as
the starting molecule, and b) one labeled "-DOUBLE", in which every two-component
reaction was split into two separate reactions SMARTS, with each reactant serving
as the starting molecule. This preprocessing procedure was applied to both the MIT
and MIT-augm datasets, yielding a total of four datasets: MIT-SINGLE, MIT-augm-
SINGLE, MIT-DOUBLE, MIT-augm-DOUBLE.

5.2.3 Compound Database for the DINGOS Algorithm

The Sigma Aldrich catalog was used as the compound database for this study. The
catalog was extracted from the PubChem database (www.pubchem.ncbi.nlm.nih.gov,
version 2019.01.23) [147] as canonical SMILES. All salts and minor components were
removed. The molecular SMILES were converted to their corresponding RDKit mol
objects with the MolToSmiles() function. Any entries that did not yield a valid mol
object were removed. The resulting database contained 217,758 molecules.

5.2.4 Data for the Bioactivity Analysis

All data was extracted from ChEMBL(ChEMBL25, 2018) [81]. Each set consisted
of reported compounds that had been tested against the following ChEMBL targets:
Histamine H1, Histmaine H2, Histamine H3, Histamine H4, Dopamine D1, Dopamine
D2, Dopamine D3, Dopamine D4, TTK dual-specificity protein kinase, Cannabinoid
CB1, and Coagulation factor Xa. The ‘Canonical SMILES’ field was converted into
the corresponding RDKit mol object. All structures that did not lead to a valid
RDKit mol object were removed from the set. Descriptor values were calculated
for each of the descriptors in the descriptor set (see Methods 5.2.1). Entries that
failed to produce a valid descriptor were removed. All entries without a valid entry
in the "STANDARD UNITS", "STANDARD TYPE" and/or "STANDARD VALUE"
fields were removed, as without these entries a valid bioactivity value could not be
discerned. Repeated SMILES were discarded if the relative standard deviation (see
Appendix A.4.3) in their bioactivity value was above 0.25.

5.2.5 Bioactive Analysis

The distance analysis was performed with compounds with a reported IC50 or Ki

value in nM units. For the analysis, an activity threshold of 1 µM was set, with all
molecules with a reported activity below this threshold being considered as active.
We define the "distance threshold" for each set as the minimum observed distance
within the set of inactive compounds. This threshold was calculated for of the eight
descriptors. Using the distance threshold, we defined our "domain of interest", which
was the region encapsulating all compounds with a distance value less than that of the
distance threshold. By definition all of these compounds were active. The distance
values were calculated as the Tanimoto distance (1-Tanimoto coefficient). Receiver
Operating Characteristic Curves (ROCs) were calculated by moving the distance
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threshold along the x-axis and measuring the true and false positive rates. The area
under curve (AUC) of each curve was measured.

5.2.6 De Novo Design Paramters

For the DINGOS algorithm, the number of starting molecules was set to 300, the
number of reaction steps was set to a limit of four, and the building block recom-
mendation pool was set to 20. A building block molecular weight limit of 400 g mol-1
and a product weight limit of 600 g mol-1 was used. The Tanimoto distance metric
was used to evaluate the similarity of the designs to the template ligand. In the
case-study, a single template ligand was selected for each target system. For each
target, the template and descriptor that gave the highest number of compounds in
the "domain of interest" was selected.

5.2.7 Reaction set

The reaction set used in this chapter was adapted from the set used in Chapter 3.1.2
with the following modifications. The Williamson ether reaction was separated into
two separate reactions, one forming ether and another thioether products. The ester-
ifciation and amide bond formation reactions were separated into ones that accepted
carboxylic acid reactants and ones accepting acid chlorides. The sulfonamide forming
reaction was separated into ones accepting sulfonic acid and ones accepting sulfonyl
chloride. Reductive amination was separated between ketone and aldehyde reac-
tants. Additionally, two reactions were added to the set, Nucleophilic substitution
and the Grignard reaction. This yielded a set of 73 separate reactions (shown in
Appendix A.4.1)

5.3 Results and Discussion

5.3.1 Building Block Generation

The model of Schwaller et al. was originally developed for machine translation [138].
In machine translation, a predictive model is used to convert a piece of text in one
target language to another language. By exploiting the text based SMILES for-
mat, Schwaller et al. were able to train a model that translates the reactant text
into that of the corresponding product. The associations between the inputs and
outputs (reactants and products) are learned directly from the reaction data. This
means that, in theory, it would be possible to produce a similar model that gener-
ates the building block molecule simply by interchanging the product and building
block molecules within the training data. The datasets used in the original publica-
tion were extracted and converted to the format of our target problem (see Meth-
ods 5.2.2). This yielded four datasets: MIT-SINGLE, MIT-augm-SINGLE, MIT-
DOUBLE, MIT-augm-DOUBLE. Four separate models were trained, one on each
of the datasets, using the same hyper-parameters as in Schwaller et al. A testing
set of 40000 previously unseen reaction SMARTS were used in order to quantify the
predictive accuracy of the respective models. These models do not generate a single
SMILES, but rather, predict a set of the most likely SMILES. In the original paper,
the group measured the predictive accuracy up to the top five predicted SMILES,
providing a broader measure of the models performance. Similarly, we measured the
predictive accuracy of the top five predicted building blocks SMILES. A prediction
was considered correct, if the model was capable of generating the building block
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SMILES exactly. As can be seen from Table 5.2, for more than 85% of the testing
data, all four of the models were successfully able to generate the correct SMILES
as their top prediction. Of the models considered, the MIT-DOUBLE and the MIT-
augm-DOUBLE models possessed the highest predictive accuracy amongst the top
five predictions.

Table 5.2: Predictive accuracy (percentage of correct predictions) of
generating the correct building block SMILES. A set of 40000 testing
SMILES were used in order to evaluate the four models considered.
The accuracy was measured among the top five predicted building
block molecules with Top5 representing an accurate prediction within

the top five predicted SMILES.

Top1 Top2 Top3 Top4 Top5
MIT-augm-DOUBLE 86.4 92.6 94.3 95 95.2
MIT-augm-SINGLE 86.3 92.2 93.9 94.6 94.8
MIT-DOUBLE 86.7 92.5 94.2 94.9 95.2
MIT-SINGLE 85.9 91.6 93.3 94 94.3

In order to determine if the structural information was retained within the model,
we performed a second test. Here, we took the top predicted building blocks from
the previous analysis and combined it with the product molecule to determine if the
model was capable of successfully reproducing the correct starting molecule.

Table 5.3: Predictive accuracy (percentage of correct predictions)
of reproducing the correct starting molecule from the top predicted
building block. A set of 40000 testing SMILES were used in order
to evaluate the four models considered. The accuracy was measured
among the top five predicted starting molecules with Top5 representing
an accurate prediction within the top five predicted SMILES. Of the
four trained models, MIT-DOUBLE obtained the highest accuracy

(bold).

Top1 Top2 Top3 Top4 Top5
MIT-augm-SINGLE 31.6 37.5 40 41.4 42.1
MIT-augm-DOUBLE 66.8 74 76.2 77.2 77.6
MIT-SINGLE 28.5 33.8 36.2 37.6 38.2
MIT-DOUBLE 67.9 74.9 77.5 78.8 79.2

As can be seen from Table 5.3, a strong difference in performance was observed
between the "SINGLE" and "DOUBLE" models. This can likely be attributed to the
fact that the "DOUBLE" models have seen both building blocks in the input space. Of
the four models, the "MIT-DOUBLE" model obtained the highest predictive accuracy
amongst the top five predictions. This model was selected as the AI component for the
DINGOS algorithm, and was used for the remainder of the study. In all subsequent
chapters the building generation model is referred to as the "BGEN" model, and the
updated version of DINGOS as "DINGOS-BGEN"

5.3.2 Comparative Performance with the Previous Model

DINGOS was designed to produce synthesizable molecules which adhered to a user
defined hypothesis. In Chapter 3, we stated that a limitation of the method was the
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use of the multi-layer perceptron (MLP) model for descriptor prediction. While this
did prove capable of generating structurally-related molecules, the need to produce an
entirely new model in order to use different descriptors might be seen as a drawback.
DINGOS-BGEN allows one to use any descriptor without the need for retraining.
One concern in incorporating this new method is that the BGEN model may be less
capable than the MLP model at recommending appropriate building blocks for de
novo design. To investigate the influence that the use of the BGEN model had on the
overall designs, a comparison was made between the DINGOS-BGEN algorithm and
the original DINGOS model (Chapter 3). In order for the comparison to be mean-
ingful, the same design parameters were used as in the previous study. The MACCS
keys were used as the molecular descriptor and the Hamming distance (1 - Hamming
loss) was used in order to quantify the similarity of the designs. Figure 5.3 shows a
comparison of the distance values for the top 300 and top 20 de novo designs.

Figure 5.3: Distance comparison between the DINGOS-BGEN
model (Red) and the DINGOS model presented in Chapter 3 (Blue).
The same parameters and templates as those in Chapter 3 were used.
Distances were calculated as the Hamming distance of the MACCS
keys. The distances were compared for a) the top 300 and b) top 20
most similar de novo designs. In the case of the top 300 designs, one
can see that DINGOS-BGEN improved upon the similarity for each

template.

Comparing the median distances of the top 300 designs, we see that the DINGOS-
BGEN algorithm outperformed the previous model for all four of the template ligands,
while for the top 20, a lower median distance value of the DINGOS-BGEN algorithm
was only obtained for the alectinib template (Table 5.4). Of the remaining drug
templates, the difference in median distance of the top 20 designs was at most 0.01,
within the interquartile ranges of the distributions. These results showed that the
same, or better, quality of performance from DINGOS could be obtained through the
use of the BGEN model.
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Table 5.4: A summary of the median distance values obtained from
the distance analysis presented in Figure 5.3. Median distance val-
ues are reported along with the inter-quartile ranges (IQRs) shown in

brackets.

Template Model Median distance
Top 300

Median distance
Top 20

Alectinib BGEN 0.08 (0.03) 0.04 (0.007)
Alectinib Original 0.11 (0.05) 0.06 (0.006)
Cariprazine BGEN 0.07 (0.02) 0.04 (0.006)
Cariprazine Original 0.08 (0.04) 0.04 (0.01)
Osimertinib BGEN 0.09 (0.02) 0.07 (0.001)
Osimertinib Original 0.13 (0.06) 0.06 (0.006)
Pimavanserin BGEN 0.09 (0.03) 0.05 (0.018)
Pimavanserin Original 0.1 (0.06) 0.04 (0.01)

5.3.3 Choice of Descriptor Representation

Having now established the performance of the DINGOS-BGEN method at the pre-
viously considered case-problem, we sought to test the capabilities of the method
with different ligand-scoring drug design problems. To this end, we compiled a set
of eight well-known molecular descriptors, which are summarized in Table 5.1. In
Chapter 3 the Hamming distance was chosen to be consistent with the loss function
used in training the multi-layer perception model; however, while the Hamming loss
is commonplace within the machine learning community, it is less common in the
field of cheminformatics. The reason for this is that descriptor representations of
molecules tend to be very sparse, owing to the large number of potential structural
features, and because of this, the on-bits of the descriptor tend to be under repre-
sented in the similarity measurements [148, 149]. Unlike the Hamming distance, the
Taniomoto distance only considers the shared on-bits, excluding all off-bit elements
(see Equation 5.1).

Dtanimoto(A,B) = 1− c

a+ b− c (5.1)

Equation 4: a is the number of on bits in the binary string A, b is
number of on bits in binary string B, and c is number of on bits in

both A and B

Because of this, the Tanimoto distance tends to give preferential weighting to
these structural features found within the molecule. We chose to use the Tanimoto
distance for all following work.

5.3.4 Case Study - Data Driven De Novo Design for Bioactive Com-
pounds

The ultimate goal of the de novo drug design is to produce molecules with the de-
sired biological properties. DINGOS is a template based ligand scoring method, and
therefore, its designs are governed by the choice of scoring function (i.e. similarity
metric) and template. In order to decide on the appropriate descriptor-template sys-
tem, analysis was performed on a series of compounds with reported activity values.
The goal of this analysis was to determine under which descriptor representation
the compounds’ distance values were proportional to their activity measurements.
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Eleven sets of reported compounds were extracted from ChEMBL, each from a sep-
arate biological target of interest (see Methods 5.2.4). Two activity measurements
were considered: Ki and IC50. For each set, the compounds with the five lowest
recorded activity values were chosen as template ligands, and their distance to the
set was measured. This analysis was performed for each of the different descriptor
representations. Two threshold values were defined, one for bioactivity, which was
defined as being any point with an activity value less than 1 µM, and one for distance,
which was the smallest distance observed amongst the inactive compounds (i.e. those
below the bioactivity threshold). An example of this analysis in shown in Figure 5.4.

Figure 5.4: Distance values of the extracted H3 histamine bioactives
(ChEMBL ID:264) relative to the template 72 (ChEMBL ID:2413837).
Distances were calculated as the Tanimoto distance between ECFP4
descriptor values. The horizontal line depicts the activity threshold
(1 µM), while the vertical line depicts the distance of the most sim-
ilar observed inactive, forming our distance threshold. The plot is
divided into four sections: (blue) Actives below the distance threshold
(domain of interest), (red) inactives below the distance threshold, (yel-
low) inactives above the distance threshold, and (grey) actives above

the distance threshold.

If the actives and inactives within each set were perfectly separable by distance,
then only the lower left and upper right regions would be populated; however, as
can be seen from Figure 5.4, the lower right corner (region in which all compounds
are active and above the distance threshold) contains a significant proportion of the
population. The lower left region represents a range of distances in which no inactive
has yet to be observed. This region represents our “domain of interest” in which any
compound showing a distance to the template within this range shows at least 1 µM
activity. Table 5.5 summarizes the descriptor-ligand systems that gave the highest
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number of points in the lower left region, that is, the highest number of positive ex-
amples within our “domain of interest”.

DINGOS was used to produce de novo designs for each of the descriptor-ligand
systems shown in Table 5.5. The goal was to investigate whether DINGOS would be
capable of populating the various “domains of interest” with synthesizable examples,
and hence, providing examples for which one could produce and test the underlying
hypothesis.

Table 5.5: Summary of the descriptor-template systems that gave
the largest number of points in the domain of interest (DOI). Of the
considered systems, the H3 histamine receptor had the largest number
of positive examples in the domain of interest. In contrast, the H2 his-
tamine receptor, despite its ChEMBL set containing over 312 reported
compounds, only showed three within the domain of the interest. For

each set the ROC-AUC of the distance values was calculated.

Target name Descriptor Activity
(nM)

Number of
mols in DOI

Threshold
value ROC-AUC Set size

Cannabinoid
CB1

ECFP4 0.065 (Ki) 111 0.68 0.65 2420

Coagulation
factor X

featMorgan 0.004 (Ki) 157 0.66 0.63 3534

Dopamine D1 torsional 0.2 (Ki) 153 0.73 0.62 904
Dopamine D2 ECFP4 0.058 (Ki) 196 0.65 0.61 5530
Dopamine D3 atom pair 0.043 (Ki) 436 0.55 0.78 3992
Dopamine D4 atom pair 0.03 (Ki) 72 0.47 0.65 1980
Dual speci-
ficity protein
kinase TTK

ECFP4 0.2 (IC50) 292 0.79 0.81 877

Histamine H1 atom pair 0.108 (Ki) 67 0.57 0.67 1082
Histamine H2 RDKit 18 (Ki) 3 0.75 0.74 312
Histamine H3 ECFP4 0.045 (Ki) 502 0.67 0.64 3064
Histamine H4 layered 0.04 (Ki) 122 0.39 0.58 1056
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Figure 5.5: Median distance values of the DINGOS-BGEN de novo
designs generated for the eleven ChEMBL template-descriptor sys-
tems. The distance threshold value defining the domain of interest
for each system is depicted as a red line. Each template was chosen
based on the bioactivity analysis, taking the ligand that resulted in
the highest number of actives in the domain of interest. For each tem-
plate system, DINGOS successfully generated de novo designs in the

domain of interest.

As can be seen from Figure 5.5, for each system DINGOS was shown capable of
generating designs below the threshold, producing between 15 and 287 designs within
the domain of interest. The Dopamine D1 and dual-specificity protein TTK kinase
systems generated the most number of designs below this threshold. For seven of
the eleven cases, the median distance value of the de novo design populations was
less than that of the threshold value (Table 5.6). The de novo compounds below
the distance threshold represent a testable set of examples that could be synthesized
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in order to interrogate the validity of the domain of interest, which could then be
exploited to find novel, bioactive ligands.

Table 5.6: Summary distance analysis of the DINGOS de novo de-
sign experiment presented in Figure 5.5. Each template was chosen
based on the bioactivity analysis, taking the ligand that resulted in

the highest number of actives in the domain of interest.

Target name Descriptor Threshold
value Median distance (IQR)

Number of
mols below
the thresh-
old

Cannabinoid
CB1

ECFP4 0.68 0.68 (0.04) 187

Coagulation fac-
tor X

featMorgan 0.66 0.55 (0.06) 282

Dopamine D1 torsional 0.73 0.58 (0.09) 287
Dopamine D2 ECFP4 0.65 0.6 (0.13) 228
Dopamine D3 atom pair 0.55 0.63 (0.07) 15
Dopamine D4 atom pair 0.47 0.52 (0.04) 41
Dual specificity
protein kinase
TTK

ECFP4 0.79 0.66 (0.07) 287

Histamine H1 atom pair 0.57 0.59 (0.05) 98
Histamine H2 RDKit 0.75 0.71 (0.05) 245
Histamine H3 ECFP4 0.67 0.51 (0.1) 280
Histamine H4 layered 0.39 0.36 (0.1) 208

5.3.5 H3 Histamine Inhibitors - Exploration of Previously Unex-
plored Compound Space

Of particular note from the previous analysis was the H3 histamine system. Of these
systems considered, the H3 histamine system had the highest number of reported
actives in the domain of interest (502). Of the 300 de novo designs generated, 280 of
the them possessed a distance below the H3 set’s threshold value. Eight of the designs
were found to be more similar to the template ligand than any other compounds found
within the template’s bioactive set. These designs are shown in Figure 5.6. One can
see a gradual change in structural similarity away from the template ligand, with
the top two designs (73 and 74) possessing only a two and three atom difference
respectively. For these top two designs, the main diaryl scaffold was formed during
the de novo design, rather than being present in the start molecule. For these two
designs, two separate C-C bond forming reactions were used, Suzuki coupling and
Negishi. This is in contrast to traditional combinatorial library approaches [150], in
which a single reaction is enumerated in order to generate compounds.
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Figure 5.6: Eight most similar de novo designs produced for the H3
histamine system. Distance was measured as the Tanimoto distance of
the ECFP4 descriptor. Compounds depicted in magenta are formed
via a Suzuki coupling reaction, those in blue via Negishi coupling, in
red nucleophilic aromatic substitution, and in brown Williamson ether.

5.3.6 TTK Kinase Inhibitors - Dataset with the Highest ROC-AUC
Value

For each of the datasets, ROC-AUC values were calculated using the distance thresh-
old as the discriminator. This value represented how well distance can be used to
discriminate between the active and inactive points of the given dataset.

It was found that the TTK dual specificity protein kinase had the highest ROC-
AUC value of any of the datasets considered, indicating that this was the system
that was most well described by its distance to the template molecule. Of the 877
points reported for the TTK kinase, 38% were found to be in the lower left and upper
right regions. These points are those in which activity can be safely separated by
distance (see Figure 5.7). In contrast, for the H3 histamine system, only 10% of
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the 3064 reported points confirmed the distance hypothesis. This is reflected by the
significantly lower ROC-AUC value observed. For the TTK system, DINGOS was
able to generate 287 designs with a distance value below that of the threshold (0.79).
These designs ranged in distance from 0.39 to 0.80 with a median value of 0.66 (0.08).

Figure 5.7: Distance values of the extracted dual-specificity pro-
tein kinase TTK (ChEMBL ID: 3983) relative to the template 81
(ChEMBL ID: 3951371). Distances were calculated as the Tanimoto
distance between ECFP4 descriptor values. The horizontal line de-
picts the activity threshold (1 µM), while the vertical line depicts the
distance threshold. The plot is divided into four sections: (blue) Ac-
tives below the distance threshold (domain of interest), (red) inactives
below the distance threshold, (yellow) inactives above the distance

threshold, and (grey) actives above the distance threshold.

Figure 5.8 shows the top eight most similar de novo designs from the TTK DIN-
GOS experiment. In comparing the top design 82 to the template ligand, we see that
it is considerably smaller than the template, with a molecular of 389 g mol-1 com-
pared to that of 479 g mol-1. This could be due to the choice of molecular descriptor,
as ECFP, in contrast to say the MACCS keys, penalizes dissimilar substructural ar-
rangements, rather than simply rewarding matching subgroups. As we go down the
distance rankings we see larger structures emerging. Of particular note is that of the
compound 88, which had a molecular weight of 493 g mol-1. Of the top eight de-
signs, this was the only compound to possess the same benzimidazole scaffold as the
template. Additionally, the design also contain the cyclopropane amide substituent,
and the 3-floro aliphatic chain. It did, however, differ in the position of the 3-floro
chain and the pyridine substituent about the benzimidazole ring, as well as lacking
one methyl group and replacing a secondary amine with an amide bond.



5.4. Conclusion 83

Figure 5.8: Eight most similar de novo designs produced for the dual-
specificity protein kinase TTK system. The distance was measured as

the Tanimoto distance of the ECFP4 descriptors.

5.4 Conclusion
Through the use of machine translation, we were successfully able to further gener-
alise the DINGOS algorithm (DINGOS-BGEN). In contrast to the previous version
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presented in Chapter 3, this modified version of DINGOS can accept any descriptor
representation without the need for retraining of the machine learning model. The de
novo design experiments performed in Section 3.3.1 were repeated with the DINGOS-
BGEN model, and the distance values obtained were compared. It was found that the
de novo sets produced by the DINGOS-BGEN model had a lower median distance
value for each of the template ligands. In a further case-study, we performed analysis
on a series of compounds extracted from the ChEMBL database. The goal was to
determine the appropriate choice of template and descriptor for de novo design, and
to see whether or not DINGOS was capable of generating "desirable" NCEs based on
this analysis. For each system, we calculated a threshold distance value. Compounds
below this threshold represented molecules in which low distances and bioactivity
were observed. For each descriptor-template system, DINGOS was successfully able
to populate this region. The highest proportion of the designs in this region were
generated by the dopamine D1 and TTK protein kinase system, in which 287 designs
were produced below this threshold. In the case of the H3 histamine receptor, the
eight most similar compounds were more similar to the template ligand than any of
the reported H3 active compounds.
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Chapter 6

Extension of the DINGOS
Algorithm Towards Non-Greedy
Solutions in the Exploration of
Chemical Space through the Use
of Monte Carlo Tree Search

In the previous chapter we extended DINGOS to be capable of accepting any arbi-
trary descriptor and metric function. This greatly expanded the range of problems
that DINGOS was capable of tackling. In effect, DINGOS can now be used for any
problem that can be phrased as a distance optimization problem. Despite these im-
provements, other limitations are still present within the DINGOS algorithm. One
main limitation is that the optimization always follows a greedy strategy [151], i.e.
at each assembly step, only the highest scoring solution is considered. While incre-
mental improvement through greedy optimization may yield optimal results in some
cases, often a globally optimal solution requires making locally suboptimal steps [152–
154]. In order to investigate this, the DINGOS algorithm was further extended to
allow for non-greedy optimization. We chose the Monte Carlo tree search (MCTS)
algorithm [155] in order to do this. This algorithm was chosen as it is an efficient
method for performing local, explorative searches. Using the descriptor-template sys-
tems considered in Chapter 5.3.4, a series of simulated experiments were performed
in order to parameterize the extended DINGOS-MCTS algorithm.

6.1 Introduction

6.1.1 Monte Carlo Tree Search

Decision theory is a sub-discipline of probability, in which we are concerned with
transitions from particular states s in which there is a degree of uncertainty about
the value of each state [76]. The act of moving from a given state to another can be
viewed as a "decision" or "action". One particular problem in decision theory is that
of the Markov decision process, in which we are required to make a series of sequential
actions with the goal being to successfully transition to the most optimal state. It
can often be useful to model processes such as these through a reward function R(s)
and policy. A reward function evaluates the value of being in a particular state, while
a policy determines the probability of selecting a particular action from a given state.
Depending on the problem of interest, the number of potential states and actions can
be immense, leading to the need for effective searching algorithms [156, 157]. One



86

recent example is that of AlphaGo [56]. The game of Go is estimated to have some
10172 potential moves from the starting position [158, 159]. In order to effectively
navigate this space, the team at Google employed a combination of Monte Carlo tree
search(MCTS) and deep learning and were successfully able to defeat world cham-
pion Lee Sedol, in 2016 [56, 57]. MCTS is a search strategy in which the algorithm
employs Monte Carlo sampling in order to estimate the value of a given state [155].
A series of simulated actions are performed, and the resulting reward values are av-
eraged to give the expected reward for taking a particular action at the given state.
This information is used to build up a model of the decision problem, allowing the
algorithm to estimate which decisions will be most globally advantageous.

The MCTS algorithm is typically broken down into four distinct phases:

Selection
Starting at the initial state So, the MCTS algorithm transitions to one of the next

available states Si in the sequence. This process is repeated until some stop criterion
is met. Selections are made by a policy called the tree policy.

Expansion
One or more new states are added from Si. These states are selected from all

possible states, governed by a separate policy, called the expansion policy.

Simulation
From the new state(s), a simulation is performed. In the simulation phase, a

more efficient policy (faster), called the default- or rollout-policy, is used to simulate
searching from the given state. The goal is to approximate the outcome one would
expect from being in this state.

Backpropagation
Once the simulation is complete, the reward function is used to evaluate the re-

ward of the final simulated state. This reward is then backpropagated through the
sequence in order to reflect the ultimate outcome of selecting the early stage states.

A schematic representation of this process can be see in Figure 6.1.
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Figure 6.1: Schematic representation of the Monte Carlo tree search
algorithm. Circles depict the individual states (s1,s2,s3,s4) and the
connecting edges depict the actions between states. Each state pos-
sess a visit count N , which measures the number of times a particular
state has been visited, and an intrinsic value given by v(s). The four
distinct steps in the MCTS algorithm are depicted: selection, expan-
sion, simulation, and backpropagation. The circles in red represent
states that have been selected for this iteration. The blue circle and
edge represent the simulated state obtained via rollout. The value of
this state is given by rollout(s). The circles in purple represent the
states for which the rollout value, r, is backpropagated. The value of
the state and the visit counts are updated accordingly. This image

was adapted from Cameron et al. [155].

6.1.2 De Novo Drug Design as a Decision Process

The MCTS extension presented here offers the potential to greatly expand the capa-
bilities of the DINGOS algorithm. The primary advantage of this method is in the
the ability to use future values to evaluate decisions. However, despite the potential
benefits, the introduction of this extension greatly increases the complexity of the
algorithm. We can frame the problem of de novo drug design as a Markov decision
problem. In this picture, molecules represent the states, and the reactions performed
our actions. The reward for which we are trying to optimize is the similarity of the
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designs to our template of interest. In this chapter, we combine the MCTS approach
with the DINGOS algorithm established in Chapter 5. The modified version of the
DINGOS algorithm is referred to as the "DINGOS-MCTS" algorithm throughout this
chapter.

6.1.3 Algorithm Components

Decision function
All selections are made by a decision function, which is a function that takes into
account the ’value’ of a given state, that is, the expected reward from selecting this
state, as well as the number of times that this state has been visited. The constant
parameter C is used to control the influence of these two attributes (see Equation 6.1).

Decision score = X̄(s) +C ∗G(N) (6.1)

The C parameter controls the explorative and exploitative behaviour of the search
strategy. If C equals 0, then the decision function is equal solely to the expected re-
ward, and a purely exploitative run is performed (each step is selected only based on
which state gives the highest expected reward). If C is significantly larger than X(s),
then the N term will dominate and a purely explorative run will be performed, i.e.
states are selected only by their visit counts. In practice, neither purely explorative
or exploitative searching is desirable, but rather some combination of the two.

Expected reward
The expected reward, X̄(s), is calculated as the average reward obtained over all
searches. The initial reward is obtained directly from the state being considered,
while the rewards for future searches are obtained via the backpropagation. In effect,
the expected reward incorporates the average of the state reward with those of the
future states. This "reward" is evaluated using the value-policy. The value-policy is a
function that calculates the quality of a given state as some positive reward. Adapting
a technique used in AlphaGo, the state value was calculated as a combination of the
state itself and the value of the rollout-policy. This is shown in Equation 6.2.

X̄(s) =
1

N(s)

N∑
i=1

V (si)

V (s) = λ ∗ v(s) + (1− λ) ∗ rollout(s)
(6.2)

Here, v(s) is the intrinsic value of the state. In the context of a ligand-based scor-
ing method, this is the distance of the design to the template ligand. The function
rollout(s) gives the reward obtained by applying the rollout policy at state s. The
lambda parameter (λ) controls the degree to which the overall state value V (s) is
determined by its intrinsic value and its rollout (future) value. If lambda equals 1,
we only consider the state values. If lambda equals 0, we only consider the reward of
future values. In many MCTS problems rollout is more important than intrinsic state
value, as we are often primarily concerned by the terminal states of the tree (states
that cannot be further expanded). In the context of similarity-driven drug design,
this is not the case, as intermediate solutions are as valid as terminal state solutions.
It is, therefore, worthwhile to consider the intrinsic value of the state value as well as
the rollout value.
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Explorative function
The explorative function, G(N), governs to what degree the algorithm values the
novelty of a particular state over its expected reward. Various explorative terms can
be used, with this defining multiple different decision functions. For this study, we
chose the upper confidence bound for tree (UCT), which is defined as

G(N) =

√
2 logN
n

(6.3)

The UCT function takes two terms, n, which is the number of total searches of
the parent state, and N , which is the number of searches of the state being consid-
ered. This represents a measure of the number of times the state has been considered,
weighted by the visit count of the parent. The less often a state has been visited,
the higher the value ofG(s), and hence, the more likely this state is to be selected.

Terminal states
A terminal state is one that cannot be expanded upon further. This can either be
defined by exhaustive constraints, i.e. there being no other potential moves available,
or by some external stop criteria. Once a terminal state is reached, no further actions
can be taken from this state. In the DINGOS-MCTS algorithm, a state is defined
as terminal if it reaches one of the DINGOS stop criteria (Molecular weight limit,
reaction step limit, etc.)

Rollout
The rollout-policy is a function that allows us to efficiently evaluate the future re-
wards expected from a given state position. The idea of a rollout-policy is that it
is a more simplistic, less-accurate model, capable of simulating searches quickly. By
performing fast evaluation at each state s, we are able to estimate the potential value
of previously unexplored states. For this work, we chose to use the DINGOS algo-
rithm for the rollout-policy. The idea here is that we would use a reduced form of
the algorithm to generate a "simulated-design". This compound is the design that
would be obtained if the DINGOS algorithm was applied using the chosen state as
the starting molecule. In the context of MCTS, in which the algorithm favours many
iterations, the full DINGOS algorithm is too slow to expect convergence in a reason-
able time scale. To solve this, we restricted the DINGOS compound database to only
considers the R most similar molecules to the template. This value R was called the
"rollout-depth". Restricting the number of potential building blocks sped up the al-
gorithm, but also reduced the number of potential products that could be formed.

State expansion
At each state position there are an enormous number of potential intermediate pro-
ducts that could be formed. Considering all of the potential start molecule-building
block pairs would be infeasible. To resolve this, we employed the use of an expansion-
policy. The expansion-policy is a function that selects a small subset of potential
intermediate products from a given state. In the context of this work, we employed
the DINGOS algorithm, restricting the method to a single reaction step, and only
producing M intermediate products. It should be noted that we allow for the further
expansion of states that have already been expanded upon. In effect, this means that
given enough time, the MCTS algorithm will consider all potential start molecule-
building block pairs.
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6.2 Methods

6.2.1 DINGOS Parameters

The DINGOS-MCTS algorithm was adapted from the extension of DINGOS pre-
sented in Chapter 5 (DINGOS-BGEN). The same reaction and compound database
was used. A molecular weight limit of 400 and 600 g mol-1 was used for the building
block and product molecules respectively. A reaction limit of four was used. For the
expansion state experiments, the building block recommendation pool was set to be
ten times that of the expansion limit.

6.3 Results and Discussion

6.3.1 Algorithm Parameterization

The performance of the MCTS approach is determined by multiple parameters. In
order to determine what value these parameters should take, we performed a parame-
ter optimization experiment. For the purpose of making a meaningful comparison, we
chose the bioactive ChEMBL set from Section 5.2.4. Due to the combinatorial nature
of parameter optimization, we chose only to optimize the C and lambda parameters.
A rollout depth of 1000 and an expansion limit of 1 was used for each of the de novo
design runs. All experiments were run for 12 hours. In order to facilitate comparison
with the results from Section 5.3.4, we evaluated the parameters according to the
median distance value of the top 300 most similar designs. This was done in order
to provide a fair comparison between the 300 compounds generated by the DINGOS-
BGEN algorithm. For the experiments, we considered C parameter values of 0, 0.01,
0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, and 1.0, and lambda values of 0.0, 0.25, 0.5,
0.75, and 1.0. Figure 6.2 shows a heatmap of the values obtained. A summary of the
parameters that gave the lowest median distance value amongst the 300 most similar
designs is shown in Table 6.1.
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Figure 6.2: Heatmaps showing the median distance values from the
C-lambda parameterization experiments. The maps are coloured ac-
cording to median distance of the 300 most similar de novo designs
generated in each run, with blue indicating low distance, and yellow
indicating high distance. The y-axis shows the C parameter values
(0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0), while the x-axis

shows the lambda values (0.0, 0.25, 0.5, 0.75, 1.0).
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In comparing the results, no consistent combination of parameters gave optimal
performance for all of the considered systems. For the TTK kinase, and the H2, H3,
and H4 histamine receptor systems, the minimum median value was obtained for a
lambda value of zero, that is, one in which no simulated searching was performed. For
two of these systems, that of the H2 and H4 histamine receptor, optimal performance
was obtained with a C parameter of zero, representing purely explorative runs. For
the remaining systems, we see from Figure 6.2 that a lambda value of zero had a
detrimental influence on the results produced (shown by the first column). We also
observed that above a certain C parameter value, a comparable degree of performance
was observed e.g. 0.025 for the coagulation factor Xa.

Table 6.1: Optimal parameters obtained from the C-lambda parame-
terization experiment, performed for each of the template ligands used
Section 5.3.4. Optimal was defined as the parameters that gave the

lowest median distance amongst the 300 most similar designs.

Target name C Lambda Median
distance (300)

Median
distance (20) Top distance

Cannabinoid CB1 receptor 1 0.25 0.66 0.62 0.57
Coagulation factor X 0.025 1 0.54 0.5 0.48
Dopamine D1 receptor 1 0.25 0.5 0.39 0.33
Dopamine D2 receptor 0.25 1 0.42 0.29 0.18
Dopamine D3 receptor 0.5 1 0.62 0.56 0.52
Dopamine D4 receptor 0.75 0.75 0.51 0.44 0.41
Dual specificity protein kinase TTK 0.025 0 0.56 0.5 0.39
Histamine H1 receptor 0.075 1 0.56 0.45 0.29
Histamine H2 receptor 0 0 0.61 0.59 0.27
Histamine H3 receptor 0.075 0 0.27 0.12 0.1
Histamine H4 receptor 0 0 0.26 0.21 0.18

Having now parameterized the DINGOS-MCTS algorithm, we sought to inves-
tigate the influence that the rollout depth and expansion limit had on the designs
produced.

6.3.2 Investigating Rollout-Depth Limits

The rollout depth defines the number of molecules available to our rollout-policy.
There is a trade-off in setting the rollout depth. A large value leads to a more
accurate rollout-policy, however, this policy is also more computationally expensive,
leading to a reduction in the number of iterations performed within the set runtime.
In order to investigate the influence of this, we performed a series of de novo design
experiments using a rollout depth of 1000, 5000, 10000, 50000, and 100000. For the
remaining parameters the optimal values from Section 6.3.1 (see Table 6.1) were used.
For runs where optimal performance was obtained with a lambda equal to zero, we
chose the best parameter set with a non-zero lambda value.

Table 6.2 shows the median distance values for the runs that gave the lowest me-
dian distance for the top 300 molecules. In cases of multiple "best" runs, the run with
the smallest rollout depth was selected, as this would be the most computationally
inexpensive run.
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Table 6.2: Summary of the results of the rollout-depth experiments.
A series of de novo design experiments were performed with DINGOS-
MCTS for each of the template ligands used Section 5.3.4. A rollout-
depth value of 1000, 5000, 10000, 50000, and 100000 was used for
the de novo design. Only the optimal parameters are shown for each
template ligand. Optimal was defined as the parameters that gave the

lowest median distance amongst the 300 most similar designs.

Run name Rollout depth Median
distance (300)

Median
distance (20) Top distance

Cannabinoid CB1 receptor 10000 0.64 0.58 0.53
Coagulation factor Xa 10000 0.48 0.42 0.34
Dopamine D1 receptor 5000 0.49 0.4 0.34
Dopamine D2 receptor 5000 0.41 0.29 0.18
Dopamine D3 receptor 50000 0.57 0.48 0.42
Dopamine D4 receptor 1000 0.51 0.44 0.41
Dual specificity protein kinase TTK 1000 0.56 0.5 0.39
Histamine H1 receptor 100000 0.53 0.43 0.29
Histamine H2 receptor 1000 0.61 0.59 0.27
Histamine H3 receptor 5000 0.26 0.12 0.05
Histamine H4 receptor 1000 0.26 0.21 0.18

For the TTK protein kinase, Dopamine D4, and Histamine H2 and H4 targets,
the optimal median distance value was obtained using the same rollout depth used
in the C-lambda parameterization. One notable result is the improvement observed
for the top designs of the Coagulation Factor Xa target. The optimal result from the
C-lambda parameterization gave a distance of 0.48, however, by increasing the rollout
depth from 1000 to 100000, a distance of 0.34 was obtained. Shown in Figure 6.3 is
a comparison of these two top designs.
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Figure 6.3: DINGOS-MCTS designs for the coagulation factorXa
(ChEMBL ID: 244) template ligand (ChEMBL ID: 226775). Com-
pounds 91 and 92 are the most similar de novo designs generated from
Section 6.3.1 (C-lambda parameterization) and Section 6.3.2 (rollout
parameterization) respectively. Compound 92, which possessed a roll-
out depth ten times greater than that of 91, was to be closer to the

template by 0.14.

6.3.3 Investigating Expansion Limits

In the previous analysis, only a single state expansion was considered, however, it
is also possible to allow for multiple expanded states to occur at each expansion
event. This enables efficient exploitation of desirable states, however, depending on
the choice of C and lambda, may bias the results towards these early selected states.
In order to investigate the influence of the expansion limit, a series of de novo design
experiments using a state expansion limit 1, 20, 100, 1000, and 10000 were performed.
One important note, at each expansion event, a simulation is performed on each of
the expanded states, and each of the simulation scores are back-propagated through
the tree separately. The increase in the number of expansions increases the number
of simulated rollouts that are performed, and, therefore, increases the computational
load of each search. Taking this into consideration, we set the rollout depth to 1000
for all runs. The optimal C and lambda values from the parameterization experiment
in Section 6.3.1 were used. Table 6.3 shows the distance values for the runs that gave
the lowest median distance value for the top 300 molecules. Again, as in Section 6.3.2,
when multiple "best" runs were observed, the run with the lowest expansion limit was
selected.
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Table 6.3: Summary of the results of the expansion-limit experi-
ments. A series of de novo design experiments were performed with
DINGOS-MCTS for each of the template ligands used Section 5.3.4.
Expansion-limit values of 1, 20, 100, 1000, and 10000 were used for
the de novo design. Only the optimal parameters are shown for each
template ligand. Optimal was defined as the parameters that gave the

lowest median distance amongst the 300 most similar designs.

Run name Expansion limit Median
distance (300)

Median
distance (20) Top distance

Cannabinoid CB1 receptor 20 0.65 0.62 0.57
Coagulation factor Xa 20 0.53 0.5 0.48
Dopamine D1 receptor 100 0.48 0.38 0.33
Dopamine D2 receptor 1 0.42 0.29 0.18
Dopamine D3 receptor 20 0.61 0.56 0.53
Dopamine D4 receptor 1 0.51 0.44 0.41
Dual specificity protein kinase TTK 20 0.42 0.37 0.34
Histamine H1 receptor 20 0.55 0.43 0.29
Histamine H2 receptor 1000 0.56 0.5 0.27
Histamine H3 receptor 100 0.16 0.07 0
Histamine H4 receptor 100 0.17 0.15 0.13

For the Dopamine D2 and D4 targets, the minimum median distance was obtained
with the original expansion limit. Of particular note is the case of the H3 histamine
receptor, in which increasing the expansion limit to 1000 resulted in the DINGOS-
MCTS algorithm producing two designs with zero distance to the template. The
structure of these two designs is shown in Figure 6.4.

Figure 6.4: DINGOS-MCTS designs for the H3 histamine (ChEMBL
ID:264) template ligand (ChEMBL ID:2413837). Both designs pos-
sessed a zero distance value, and as one can see, compound 94 was

identical to the target ligand.
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As can be seen, compound 94 has exactly the same structure as the template
ligand. Compound 93 does vary structurally from in the template ligand in that one
of the piperidine rings is actually an azepane ring. This difference is at the limit of
what can be detected by the ECFP descriptor.

6.3.4 Populating the Domain of Interest

Table 6.4 summarizes the parameters that gave optimal results from the three pa-
rameter experiments. These results were compared with those of Section 5.3.4. The
number of molecules produced by the DINGOS-BGEN algorithm is limited to 300
(the number of starting molecules). The DINGOS-MCTS algorithm is not limited in
such a way, and hence, each de novo set did not have a fixed number of compounds.
In order to make a meaningful comparison, we selected the 300 most similar designs
from the DINGOS-MCTS de novo set. Figure 6.5 shows a comparison of the dis-
tance values obtained between the two DINGOS algorithms. These are summarized
in Table 6.5.

Table 6.4: Optimal parameters obtained from the DINGOS-MCTS
de novo design experiments considered in this chapter. Optimal
was defined as the parameters that gave the lowest median distance

amongst the 300 most similar designs.

Target name Descriptor C lambda rollout depth expansion limit
Cannabinoid CB1 receptor ECFP4 1 0.25 1000 1
Coagulation factorXa featMorgan 0.025 1 10000 1
Dopamine D1 torsional 1 0.25 1000 1
Dopamine D2 ECFP4 0.25 1 5000 1
Dopamine D3 atom pair 0.5 1 50000 1
Dopamine D4 receptor atom pair 0.75 0.75 1000 1
Dual specificity protein kinase TTK ECFP4 0.025 0 1000 20
Histamine H1 atom pair 0.075 1 100000 1
Histamine H2 rdkit 0 0 1000 10000
Histamine H3 ECFP4 0.075 0 1000 100
Histamine H4 layered 0 0 1000 100

As can be seen, the DINGOS-MCTS algorithm outperformed the DINGOS-BGEN
algorithm for each of the target systems. The largest difference in performance was
observed for the H3 histamine receptor target, in which a difference in median distance
of 0.35 was observed. By contrast, the smallest observed median distance difference,
which was for the H4 histamine receptor, was 0.01, which is within the inter-quartile
range of the two populations.
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Figure 6.5: Distance comparison between DINGOS-BGEN and
DINGOS-MCTS de novo designs. De novo designs were produced
for the eleven template ligands considered in Section 5.3.4. For the
DINGOS-MCTS algorithm, the parameters shown in Table 6.4 were
used for the de novo design. For the comparison, the 300 most similar

designs were selected from those generated by DINGOS-MCTS.

We can also compare the number of molecules which were produced below the
distance threshold value. Table 6.5 summarizes these results. Of the eleven target
systems considered, eight of the DINGOS-MCTS runs resulted in 300 molecules below
the threshold (red line). In contrast, none of the DINGOS-BGEN runs results in the
entire population being below the threshold, with the largest being 287 generated for
the D1 dopamine and TTK kinase systems.
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Table 6.5: Comparison of the number of molecules generated below
the distance threshold by the DINGOS-BGEN and DINGOS-MCTS
algorithms, respectively. For the comparison, the 300 most similar de
novo designs generated by the DINGOS-MCTS algorithm were used.

Target name Descriptor Threshold
value Mols below

the threshold
(BGEN)

Mols below
the threshold
(MCTS)

Cannabinoid CB1 ECFP4 0.68 187 300
Coagulation fac-
tor Xa featMorgan 0.66 282 300

Dopamine D1 torsional 0.73 287 300
Dopamine D2 ECFP4 0.65 228 300
Dopamine D3 atom pair 0.55 15 83
Dopamine D4 atom pair 0.47 41 40
Dual specificity
protein kinase
TTK

ECFP4 0.79 287 300

Histamine H1 atom pair 0.57 98 290
Histamine H2 rdkit 0.75 245 300
Histamine H3 ECFP4 0.67 280 300
Histamine H4 layered 0.39 208 300

6.4 Conclusion
The results presented in this chapter represent a first step towards exploring the
potential capabilities of the DINGOS-MCTS algorithm. Monte Caro Tree Searching
was incorporated within the DINGOS algorithm in order to expanded DINGOS’
de novo design procedure to non-greedy solutions. A parameterization experiment
was performed for the C and lambda parameters to determine their influence on
the de novo design. This parameterization was performed on the eleven bioactive
template ligands derived from our analysis of the ChEMBL database performed in
Section 5.3.4. The optimal choice of parameter was found to be template dependent,
with different parameters being selected for different template ligands. Using the
parameters derived from the parameterization, a series of experiments were performed
in order to investigate the influence of the rollout depth and expansion limit. While
improvements were shown by increasing the the values of these parameters, this was
not consistent across all target systems, with four of the target systems showing no
improvement with increased rollout depth, and one showing no improvement with an
increased expansion limit. The experiments revealed that some targets were more
susceptible to particular parameters than others. The Coagulation Factor Xa showed
improvements upon increasing the rollout depth, while very little improvement was
seen when increasing the expansion limit. In contrast, by increasing the expansion
limit on the H3 histamine receptor, we obtain a significant decrease in the median
distance, as well as obtaining an "optimal" de novo design. One aspect where an
improvement was observed was in the number of high scoring designs produced. For
eight of the eleven systems, all of the 300 most similar de novo designs were found
to be below the distance threshold. In contrast, this was not observed for any of the
de novo sets generated by the DINGOS-BGEN model. Due to the explorative nature
of the tree searching algorithm, the MCTS extension lead to a higher proportion of
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high scoring designs. In the context of the bioactive generation, DINGOS-MCTS was
capable of populating our domain of interest with hundreds of designs. This large
number of designs provides a large sample of examples that could be syntheiszed and
tested to better understand the nature of our target problem.
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Chapter 7

Conclusion

The goal of this work was to develop techniques for generating de novo drug designs
that are both similar to a provided template ligand and synthetically tractable. We
intended for this method to be highly modular and flexible in order for it to be
smoothly adapted and integrated within a given drug design project. The primary
motivation for achieving this goal was to bridge the gap between the in silico and
experimental components in drug design and discovery. Computational methods offer
a promising solution to many of the problems presented in drug design and discovery;
however, experimentally generating and verifying results from these methods still
remains a challenging enterprise.

To address this, we developed the DINGOS algorithm. DINGOS combines ma-
chine learning with aspects of rule-based methods in order to perform de novo drug
design. Within these rules, we force the generated designs to adhere to the desired
chemical logic. This, in effect, provides the chemists with the capability to directly
incorporate their expert knowledge into the design procedure. In Chapter 3, we pre-
sented the DINGOS algorithm and the initial case-study that was used to evaluate its
performance. DINGOS uses a virtual synthetic procedure to react sets of molecule
in silicio to generate NCEs. The pairs of molecules that are reacted are selected
by ligand-based scoring combined with predictive artificial intelligence. The four
drug compounds alectinib, cariprazine, osimertinib, and pimavanserin were selected
as template ligands, and with these, four sets of de novo designs were produced by
DINGOS. Distance analysis showed a general improvement in similarity towards the
template ligand over the compound database used. The designs showed adherence
to the physico-chemical properties of the template, as well as above 50% of the com-
pounds being predicted as active in target prediction studies. Four designs from the
de novo sets produced by DINGOS were selected for synthesis. We were successfully
able to synthesize three of the four designs with the synthetic pathway proposed by
DINGOS. The remaining design was found to be light and water sensitive and so
could not be structurally characterised. Each synthesized design was tested against
the biological target of the respective template lignand, and of the tested designs, one
compound showed a partial agonism against the 5-HT2B equivalent to 1 µM of sero-
tonin. This study showed that DINGOS is capable of achieving its intended purpose,
that is, proposing synthetically feasible molecules that are similar to a given template
ligand.

In Chapter 4, a follow up study was conducted in which DINGOS was integrated
within an active learning drug design cycle. Here, the goal was to further interrogate
the overall synthetic feasibility of the de novo designs produced, while simultaneously
testing the modular aspects of the DINGOS algorithms. DINGOS was combined
with surface plasmon resonance and a custom continuous flow synthesis system to
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produce de novo designs autonomously. The carbonic anhydrase inhibitor acetozo-
lamide was selected as the template ligand, and the compound and reaction databases
were restricted to adhere to the capabilities of the in-lab environment. Two cycles
of the active learning procedure were successfully performed, generating a total of
22 designs. Within the first cycle, 15 of the 40 proposed designs were successfully
synthesized. The unsuccessful designs were primarily due to limitations of the sys-
tem restricting the choice of solvent and reagents. Of the 15 synthesized designs,
no binding was observed towards the carbonic anhydrase protein. Modifications were
made to the compound and reaction database in order to improve the synthesizability
within the flow and the overall binding affinity of the designs. In the second cycle,
seven of the eleven proposed designs, were successfully synthesized and of these, five
showed binding towards the target protein. Three of these were shown to bind with a
low micromolar Kd value. Here, the modular nature of the DINGOS algorithm proved
advantageous, as it enabled us to rapidly update our procedure to better serve the
target problem and system. Modifications made through DINGOS lead to an increase
in the synthesizability of the designs from 38% to 64%, and resulted in the generation
of five novel carbonic anhydrase binders.

In Chapter 5, modifications were made to the core machine learning component of
the DINGOS algorithm in order to allow for flexible substitution of the descriptor rep-
resentation. The initial implementation performed building block recommendation
by predicting the molecular descriptor values. This prevented a change in descriptor
representation, limiting the scope of potential design problems. This predictive model
was replaced with a language-based model that generated the molecular structures
directly. By using a descriptor agnostic model, DINGOS was effectively generalized
to any descriptor representation. In order to test the capabilities of the updated DIN-
GOS algorithm, a series of eleven bioactives sets were extracted from the ChEMBL
database, with each set representing a different biological target. For each set, we
defined a "domain of interest", which was a distance range that we were interested
in populating with novel, de novo designs. Each set’s domain of interest was defined
for a particular descriptor representation. For each set, DINGOS was shown capa-
ble of populating this region, and in some cases up to 96% of the designs produced
were within this region. These results show that with the modified machine learn-
ing component, DINGOS can successfully perform descriptor agnostic de novo design.

In the final chapter (Chapter 6), we explored one potential extension to the DIN-
GOS algorithm. Taking inspiration from advances seen in algorithms such as Al-
phaGo, we combined the DINGOS algorithm with Monte Carlo tree searching, in
order to allow for non-greedy optimization of the de novo designs. Here, a decision
tree method was implemented, with DINGOS acting as the expansion and rollout
policy, generating and simulating new states through DINGOS’ de novo design pro-
cedure. The C and lambda parameter, controlling exploration and rollout respec-
tively, were parameterized for each of the sets of bioactive molecules considered in
the previous chapter. No consistent choice of parameters was found which resulted in
globally-optimal results. Once fully parameterized, two experiments were performed
in order to investigate the influence of the rollout policy and expansion limit. Again,
no general trend was observed, with the results appearing to be template specific.
In comparing the results obtained with those of the previous chapter, the extended
version of the DINGOS algorithm was found to outperform the previous implemen-
tation for each system considered, with eight of the sets being entirely comprised of
compounds within our domain of interest. In one case, DINGOS was shown capable
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of exactly reproducing the template ligand.

Through the work presented here, we have illustrated the capabilities of the DIN-
GOS algorithm. DINGOS provides an experimentally focused computer-assisted de
novo design method, which, owing to its modular nature, can be tailored to the
specific needs of a given drug design project. De novo designs were produced for
four drug templates, resulting in the synthesis and biotesting of three novel de novo
designs. A de novo active learning cycle was developed, combining DINGOS with
a custom continuous flow system, providing the first steps towards fully automated
drug design. Having established the DINGOS methods, the underlying algorithm
was modified, extending the de novo design procedure to any arbitrary descriptor
representation and to non-greedy solutions.
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Chapter 8

Future Directions

Despite the results presented in this thesis, there are still many interesting places in
which the DINGOS algorithm could be extended. In all of the studies considered, the
problem of drug design was described in terms of ligand-based scoring. While meth-
ods such as these having proven successful in various studies, the analysis performed
in Chapter 5 demonstrated that this success cannot be taken for granted. It would
be interesting to apply DINGOS to problems other than solely ligand-based scoring.
Instead of scoring based on similarity, DINGOS could employ, due to its modular-
ity, alternative scoring functions, including advanced crystallographic or hydrogen
bonding models, or predictive models designed to estimate compound bioactivity or
ADMET properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity).

In addition to modifying the scoring function, it would also be of interest to fur-
ther develop the synthetic component. Currently, synthetisizability is controlled by
a set number of rules. While this does provide direct control over the design’s struc-
ture, it imposes a developmental bottleneck, as improving and extending the reaction
database requires the laborious task of encoding all desired "synthetic rules". Recent
advancements in the field of computer-assisted retro-synthetic analysis and feasibility
prediction may offer a solution. Equally, it would be interesting to see out how these
predictive reaction components compare to the more explicit rule-based elements used
in this work, and what their influence is on the overall structure of the designs.

The work presented in Chapter 6 represents a preliminary implementation and
parameterization of the Monte Carlo tree search algorithm. In order to fully come
to terms with the potential capabilities of this method, further studies investigating
the influence of the various control parameters are required. A key element that
was not realised in this thesis was that of adaptive self-improvement. Both AlphaGo
and its successor AlphaZero achieved superhuman performance by using the results
of previous playthroughs to update their respective machine learning components.
Despite the potential benefits, implementing a strategy such as this is encumbered
with its own technical considerations. It would be of interest to develop such a self-
learning procedure within DINGOS-MCTS.
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Appendix A

Supplementary Information

A.1 DINGOS Code Availability
The code of the original DINGOS method from Chapter 3, as well as the trained
multilayer-perceptron model, CAS number of the training data and reaction SMARTS
has been published in Button et al. [82] and is provided in the Code Ocean capsule
https://doi.org/10.24433/CO.6930970.v1.

The modified version of the DINGOS code shown in Chapter 5 and Chapter 6
will be released alongside the subsequent publications.

A.2 Chapter 3

A.2.1 Reaction Set Used in Chapter 3

Reaction Name Reaction SMARTS|

Bischler-
Napieralski

[$(C([CH2,CH3])),CH:10](=[O:11])−[NH+0:9]−[C$(C(N)(C)(C)(C)),
C$([CH](N)(C)(C)),C$([CH2](N)(C)):8]−[C$(C(c)(C)(C)(C)),C$([CH]
(c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[cH:1][c:2][c:3][c:4][c:5]1»[C:10]−1
=[N+0:9]−[C:8]−[C:7]−[c:6]2[c:5][c:4][c:3][c:2][c:1]−12

Pictet-Gams

[$(C([CH2,CH3])),CH:10](=[O:11])−[NH+0:9]−[C$([CH](N)(C)(C)),
C$([CH2](N)(C)):8]−[C$([C](c)(C)(C)),C$([CH](c)(C)):7]([O$(OC),OH])
−[c:6]1[cH:1][c:2][c:3][c:4][c:5]1»[c:10]−1[n:9][c:8][c:7][c:6]2[c:5][c:4][c:3][c:2]
[c:1]−12

Pictet-Spengler-
6-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1
][c:2][c:3][c:4][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]
−[C:8]−[C:7]−[c:6]2[c:1][c:2][c:3][c:4][c:5]−12

Pictet-Spengler-
5-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1
][c:2][nH:3][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]
−[C:8]−[C:7]−[c:6]2[c:1][c:2][nH:3][c:5]−12

Bischler-Indole

[NH2,NH3+1:8]−[c:5]1[cH:4][c:3][c:2][c:1][c:6]1.[Br:18][C$([CH2](C)(Br)),
C$([CH](C)(C)(Br)):17]−[C:15](=[O:16])−[c:10]1[c:11][c:12][c:13][c:14][c:
9]1»[c:13]1[c:12][c:11][c:10]([c:9][c:14]1)−[c:15]1[c:17][c:4]2[c:3][c:2][c:1][c:
6][c:5]2[nH+0:8]1

Benzimidazol
formation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[N$([NH](c)([CX4])),N$([NH2,NH3+1](c)):11]»[c:2]
1[n+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2[n:11]1
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Aminothiazol
formation

[C$([CH]([Br,Cl,I])(C)([CX4])),C$([CH2]([Br,Cl,I])(c)),C$([CH2]([Br,Cl
,I])(C)):1](−[Br,Cl,I:3])−[C$(C(C)([c,C])),C$([CH](C)):2]=[O:4]>[NH2:
8]−[C:7](−[NH2:9])=[S:10]>[NH2+0: 8]−[c:7]1[n:9][c:1][c:2][s:10]1

Benzoxazol for-
mation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[OH:11]»[c:2]1[o+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2
[n:11]1

Benzothiazol for-
mation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[SH:11]»[c:2]1[s+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2[n
:11]1

Rap-Stoermer
[Cl:1][CH2:2]−[C$([CH](C)),C$(C(C)(C)):3]=[O:4].[OH:12]−[c:11]1[c:6]
[c:7][c:8][c:9][c:10]1−[CH:13]=[O:14]»[C:3](=[O:4])−[c:2]1[c:13][c:10]2[c:
9][c:8][c:7][c:6][c:11]2[o:12]1

Niementowski

[N$([NH](C)([CX4])),N$([NH2,NH3+1](C)):2]−[C$(C(N)(C)),C$([CH]
(N)):1]=[O:3].[NH2,NH3+1:13]−[c:8]1[c:7][c:6][c:5][c:4][c:9]1−[C:10](−[
OH,O−:12])=[O:11]»[O:11]=[c:10]−1[n:2][c:1][n:13][c:8]2[c:7][c:6][c:5][c:
4][c:9]−12

Quinazolinone
formation

[NH2,NH3+]−[C$([CX4](N)([c,C])([c,C])([c,C])),C$([CH](N)([c,C])([c,C]
)),C$([CH2](N)([c,C])),C$([CH3](N)):2].[NH2:12]−[c:7]1[c:6][c:5][c:4][c:3]
[c:8]1−[C:9](−[OH,O−:11])=[O:10]»[C:2]−[n+0]−1[c:13][n:12][c:7]2[c:6][c
:5][c:4][c:3][c:8]2[c:9]−1=[O:10]

Chinonlin-2-one
Intramol

[C$(C(C)(=O)([CX4])),C$([CH](C)(=O)):10](=[O:13])−[C$([CH]([CX4])
),C$([CH2]):9]−[C:8](=[O:12])−[NH:7]−[c:5]1[cH:6][c:1][c:2][c:3][c:4]1»[c:
10]−1[c:9][c:8](−[OH:12])−[n:7]−[c:5]2[c:4][c:3][c:2][c:1][c:6]−12

Tetrazol forma-
tion

[C$(C(#N)([CX4])),C$([CH](#N)):1]#[N:2]»[c$(c(n)(n)([CX4])),c$([cH]
(n)(n)):1]−1[n:2][nH:4][n:6][n:5]−1

Tetrahydro-
Indole formation

[N$([NH2]([CX4])),N$([NH3+1]([CX4])):1].[O:5]−[C$([CH]([CX4])(C)(O
)),C$([CH2]([CX4])(O)):3][C$(C([CX4])(=O)([CX4])),C$([CH]([CX4])(=
O)):4]=[O:6]>[O:15]=[C:9]−1−[CH2:10]−[CH2:11]−[CH2:12]−[CH2:13]−
[CH2:14]−1>[c:4]1[c:3][n+0:1][c:10]2−[C:11]−[C:12]−[C:13]−[C:14]−[c:
9]12

3-nitrile pyridine

[C$(C(=O)([CX4])([CX4])),C$([CH](=O)([CX4])):2](=[O:6])−[C$([CH]
([CX4])),C$([CH2]):3]−[C$(C(=O)([CX4])([CX4])),C$([CH](=O)([CX4])
):4]=[O:7].[NH2:8]−[C:9](=[O:10])−[CH2:11][C:12]#[N:13]»[OH:10]−[c:9]
1[n:8][c:4][c:3][c:2][c:11]1[C:12]#[N:13]

Triazole forma-
tion

[C$(C(#N)([CX4])):2]#[N:3].[NH2,NH3+1:4]−[NH:5]−[C$(C(N)(=O)
([CX4])),C$([CH](N)(=O)):6]=[O:7]»[c:6]−1[n:5][c:2][n:3][n:9]−1

Huisgen 1-3
Dipolar Cycload-
dition

[C$(C(#C)([CX4])):2]#[C$(C(#C)([CX4])):1].[N$(N( N)([CX4])):5]~[N]
~[N]»[c:2]1[c:1][n:5][n][n]1

Huisgen 1 3
Dipolar Cycload-
dition double
bond

[C$(C(=C)([CX4])):2]=[C$(C(=C)([CX4])):1].[N$(N( N)([CX4])):5]~[N]
~[N]»[C:2]1[C:1][N:5][N]=[N]1
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Diels-Alder

[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX
2,NX3])),C$([CH2](=C)):1]=[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,N
X3])),C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):2].[C$(C(=C)([C
X4,OX2,NX3])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX2,NX3])),C$(
[CH2](=C)):3]=[C$([C](=C)(C)([CX4,OX2,NX3])),C$([CH](=C)(C)):4]
−[C$([C](=C)(C)([CX4,OX2,NX3])),C$([CH](=C)(C)):5]=[C$(C(=C)(
[CX4,OX2,NX3])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX2,NX3])),C
$([CH2](=C)):6]»[C:1]1[C:2][C:3][C:4]=[C:5][C:6]1

Diels-Alder-
Alkyne

[C$(C(#C)([CX4,OX2,NX3])),C$([CH](#C)):1]#[C$(C(#C)([CX4,OX2
,NX3])),C$([CH](#C)):2].[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3])
),C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):3]=[C$([C](=C)(C)([C
X4,OX2,NX3])),C$([CH](=C)(C)):4]−[C$([C](=C)(C)([CX4,OX2,NX3]))
,C$([CH](=C)(C)):5]=[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3])),
C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):6]»[C:1]1=[C:2][C:3][C:
4]=[C:5][C:6]1

Spiro-piperidine
formation

[N$(N([CX4])),N$([NH]):5]−1−[C$(C(C)(N)([CX4])([CX4])),C$([CH](C)
(N)([CX4])),C$([CH2](C)(N)):4]−[C$(C(C)(C)([CX4])([CX4])),C$([CH](
C)(C)([CX4])),C$([CH2](C)(C)):3]−[C:2](=[O:7])−[C$(C(C)(C)([CX4])(
[CX4])),C$([CH](C)(C)([CX4])),C$([CH2](C)(C)):1]−[C$(C(C)(N)([CX4
])([CX4])),C$([CH](C)(N)([CX4])),C$([CH2](C)(N)):6]−1.[C$([CH](C)([
CX4])([CX4])),C$([CH2](C)([CX4])),C$([CH3]):18]−[C:16](=[O:17])−[c:
14]1[c:9][c:10][c:11][c:12][c:13]1−[OH:15]»[N:5]−1−[C:4]−[C:3][C:2]2([C:1]
−[C:6]−1)[C:18]−[C:16](=[O:17])−[c:14]1[c:9][c:10][c:11][c:12][c:13]1−[O:
15]2

Pyrazol forma-
tion

[NH2,NH3+:3]−[N$([NH](N)([CX4])):2].[C$([CH](C)(C)([CX4])),C$([C
H2](C)(C)):6](−[C$(C(=O)(C)([CX4])),C$([CH](=O)(C)):5]=[O:9])−[C
$(C(=O)(C)([CX4])),C$([CH](=O)(C)):7]=[O:10]»[c:7]1[n:3][n:2][c:5][c:6]1

Phthalazinone
[NH2,NH3+1:2]−[N$([NH](N)([CX4])):1].[OH,O−:12]−[C:10](=[O:11])−
[c:5]1[c:4][c:9][c:8][c:7][c:6]1−[C$(C(c)(=O)([CX4])),C$([CH](c)(=O)):13]
=[O:14]»[N:1]−1−[N:2]=[C:13][c:6]2[c:7][c:8][c:9][c:4][c:5]2−[C:10]−1=[O:11]

Paal-Knorr-
pyrole formation

[C$(C(=O)(C)([CX4])),C$(C[H](=O)(C)):1](=[O:2])−[$([CH](C)(C)([C
X4])),$([CH2](C)(C)):3]−[$([CH](C)(C)([CX4])),$([CH2](C)(C)):4]−[C$
(C(=O)(C)([CX4])),C$(C[H](=O)(C)):5]=[O:6].[N$([NH2,NH3+1]([CX4]
)):7]»[c:5]1[c:4][c:3][c:1][n+0:7]1

Triaryl-imidazol-
1 2-diketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[C:22](=[O:25
])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1
>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10][c:
11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3]
[c:4][c:5][c:6]1

Triaryl-imidazol-
alpha hydroxy
ketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[CH:22](−[
OH :25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:
18][c:19]1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15
]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]
1[c:2][c:3][c:4][c:5][c:6]1

Fischer indole
[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$
([CH]([CX4])(=O)):3]=[O:1].[NH2:6]−[NH:7]−[c:9]1[c:10][c:11][c:12][c:13
][cH:8]1»[c:3]1[nH:7][c:9]2[c:10][c:11][c:12][c:13][c:8]2[c:4]1
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Friedlaender chi-
noline formation

[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$
([CH]([CX4])(=O)):2]=[O:1].[NH2:12]−[c:10]1[c:9][c:8][c:7][c:6][c:11]1−[
C$(C(c)(=O)([CX4])),C$([CH](c)(=O)):13]=[O:14]»[c:2]1[c:13][c:11]2[c:
6][c:7][c:8][c:9][c:10]2[n:12][c:4]1

Peachmann
coumarine

[OH:7]−[c:6]1[cH:1][c:2][c:3][c:4][c:5]1.[O$(O(C)([CX4])):12]−[C:11](=[O:
15])−[C$([CH](C)(C)([CX4])),C$([CH2](C)(C)):10]−[C:8]=[O:16]»[C:8]−
1=[C:10]−[C:11](=[O:15])−[O]−[c:6]2[c:5][c:4][c:3][c:2][c:1]−12

Benzofuran for-
mation

[C$(C(#C)([CX4])),C$([CH](#C)):2]#[CH:1].[OH:11]−[c:8]1[c:7][c:6][c:5
][c:4][c:9]1[I:10]»[c:2]1[c:1][c:9]2[c:4][c:5][c:6][c:7][c:8]2[o:11]1

Imidazol-
Acetamid

[C$(C(=O)(N)([CX4])),C$([CH](=O)(N)):5](=[O:6])−[NH:4]−[C:2](−[N
H2:1])=[NH:3].[Br:12][C$([CH](Br)(C)([CX4])),C$([CH2](Br)(C)):9]−[C$
(C(=O)(C)([CX4])),C$([CH](=O)(C)):8]=[O:10]»[C:5](=[O:6])−[NH:4]−
[c:2]1[n:3][c:9][c:8][nH:1]−1

Dieckmann 5-ring [O$(O(C)([CX4])):8][C:7](=[O:9])[CH:6][C:5][C:4][C:3][C:2]([O$(O(C)([C
X4])):10])=[O:1]»[O:8][C:7](=[O:9])[C:6]1[C:5][C:4][C:3][C:2]1=[O:1]

Dieckmann 6-ring
[O$(O(C)([CX4])):8][C:7](=[O:9])[CH:6][C:5][C:11][C:4][C:3][C:2]([O$(O
(C)([CX4])):10])=[O:1]»[O:8][C:7](=[O:9])[C:6]1[C:5][C:11][C:4][C:3][C:2]
1=[O:1]

Flavone forma-
tion

[Cl:9][C:7](=[O:8])−[c:3]1[c:2][c:1][c:6][c:5][c:4]1.[C$([CH2](C)([CX4])),C
$([CH3](C)):18]−[C:16](=[O:17])−[c:14]1[c:13][c:12][c:11][c:10][c:15]1−[O
H:19]»[O:17]=[C:16]−1−[C:18]=[C:7](−[O:8]−[c:15]2[c:10][c:11][c:12][c:13
][c:14]−12)−[c:3]1[c:2][c:1][c:6][c:5][c:4]1

Oxadiazole for-
mation

[OH,O−:3]−[C$(C(=O)(O)[CX4]),C$([CH](=O)(O)):2]=[O:1].[N:12]#[C
:11][c:10]1[c:5][c:6][c:7][c:8][c:9]1»[c:2]1[n:12][c:11]([n:13][o:1]1)−[c:10]1[c:5
][c:6][c:7][c:8][c:9]1

Michael addition

[C$(C(C)(=O)([CX4,OX2&H0])),C$(C(C)(#N)),N$([N+1](C)(=O)([O
−1])):1][C$([CH]([C,N])([C,N])([CX4])),C$([CH2]([C,N])([C,N])):2][C$(
C(C)(=O)([CX4,OX2&H0])),C$(C(C)(#N)),N$([N+1](C)(=O)([O−1]))
:3].[C$(C(C)(#N)),C$(C(C)([CX4,OX2&H0])([CX4,OX2&H0])([OX2&H
0])),C$([CH](C)([CX4,OX2&H0])([OX2&H0])),C$([CH2](C)([OX2&H0])),
C$(C(C)(=O)([OX2&H0])):6][CH:5]=[C$(C(=C)([CX4])([CX4])),C$([CH
](=C)([CX4])),C$([CH2](=C)):4]»[C:6][C:5][C:4][C:2]([C:1])[C:3]

Cross Claissen

[C$([C](O)([CX4])([CX4])([CX4])),C$([CH](O)([CX4])([CX4])),C$([CH2]
(O)([CX4])):4]−[O:3]−[C$(C(=O)([CX4])),C$([CH](=O)):2]=[O:5].[C$([
CH](C)([CX4])([CX4])),C$([CH2](C)([CX4])),C$([CH3](C)):7]−[C$(C(=
O)([CX4])),C$([CH](=O)):8]=[O:9]»[C:7](−[C:2]=[O:5])−[C:8]=[O:9]

Williamson ether

[Br,Cl,I:1][C$(C([Br,Cl,I])([CX4,c])([CX4,c])([CX4,c])),C$([CH]([Br,Cl,I])
([CX4,c])([CX4,c])),C$([CH2]([Br,Cl,I])([CX4,c])),C$([CH3]([Br,Cl,I])),c
$(c([Br,Cl,I])([c,n,o])([c,n,o])):2].[OH:3][C$(C(O)([CX4,c])([CX4,c])([CX4
,c])),C$([CH](O)([CX4,c])([CX4,c])),C$([CH2](O)([CX4,c])),C$([CH3]([O
H])),c$(c([OH])([c,n,o])([c,n,o])):4]»[C,c:2][O:3][C,c:4]

Ester foramtion
[Cl,OH,O−:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[O$([OH]([C
X4,c])),O$([OH]([CX4,c])([CX4,c])),S$([SH]([CX4,c])),S$([SH]([CX4,c])(
[CX4,c])):6]»[*:6]−[C:2]=[O:4]

Reductive
amination-
Ketone

[C$(C(=O)([CX4,c])([CX4,c])),C$([CH](=O)([CX4,c])):1]=[O:2].[N$([NH
2,NH3+1]([CX4,c])),N$([NH]([CX4,c])([CX4,c])):3]»[N+0:3][C:1]
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Suzuki coupling

[Br:1][c$(c(Br)),n$(n(Br)),o$(o(Br)),C$([CH](Br)(=C)):2].[C$(C(B)([CX
4])([CX4])([CX4])),C$([CH](B)([CX4])([CX4])),C$([CH2](B)([CX4])),C$
([CH2](B)),C$(C(B)(=C)),c$(c(B)),o$(o(B)),n$(n(B)):3][B$(B([C,c,n,o])
([OH,$(OC)])([OH,$(OC)])),B$([B−1]([C,c,n,o])(N)([OH,$(OC)])([OH,$
(OC)])):4]»[C,c,n,o:2][C,c,n,o:3]

Piperidine and
Indole

[cH:9]1[c:8][n:7][c:5]2[c:4][c:3][c:2][c:1][c:6]12.[N:17]−1−[CX4:16]−[CH:15]
−[C:14](=[O:20])−[CX4:19]−[CX4:18]−1»[N:17]−1−[C:18]−[C:19]−[C:
14](=[C:15]−[C:16]−1)−[c:9]1[c:8][n:7][c:5]2[c:4][c:3][c:2][c:1][c:6]12

Negishi

[Br,I:1][C$(C([Br,I])([CX4])([CX4])([CX4])),C$([CH]([Br,I])([CX4])([CX
4])),C$([CH2]([Br,I])([CX4])),C$([CH3]([Br,I])),C$([C]([Br,I])(=C)([CX
4])),C$([CH]([Br,I])(=C)),C$(C([Br,I])(#C)),c$(c([Br,I])):2].[Br,I:3][C$(C
([Br,I])([CX4])([CX4])([CX4])),C$([CH]([Br,I])([CX4])([CX4])),C$([CH2](
[Br,I])([CX4])),C$([CH3]([Br,I])),C$([C]([Br,I])(=C)([CX4])),C$([CH]([Br
,I])(=C)),C$(C([Br,I])(#C)),c$(c([Br,I])):4]»[C,c:2][C,c:4]

Mitsunobu imide

[C$(C(C)([CX4])([CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2]
(C)([CX4])),C$([CH3](C)):1][C:2](=[O:3])−[NH:4]−[C:5]([C$(C(C)([CX
4])([CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2](C)([CX4])),C$
([CH3](C)):10])=[O:7].[OH:11]−[C$(C(O)([CX4])([CX4])([CX4])),C$([CH
](O)([CX4])([CX4])),C$([CH2](O)([CX4])),C$([CH3](O)):9]»[C:9][N+0:4]
(−[C:2]([C:1])=[O:3])−[C:5]([C:10])=[O:7]

Mitsunobu car-
boxlyic acid

[OH,O−]−[C$(C(=O)(O)([CX4,c])):2]=[O:3].[OH:8]−[C$([CH](O)([CX4,c
])([CX4,c])),C$([CH2](O)([CX4,c])),C$([CH3](O)):6]»[C:6][O]−[C:2]=[O:3]

Mitsunobu sul-
fonic amide

[OH:1]−[C$([CH](O)([CX4,c])([CX4,c])),C$([CH2](O)([CX4,c])),C$([CH3
](O)):3].[N$([NH](S)([CX4])),N$([NH2,NH3+1](S)):9][S$(S(N)([CX4])):6](
=[O:7])=[O:8]»[C:3][N+0:9][S:6](=[O:8])=[O:7]

Heck
[C$([CH](=C)([CX4])),C$([CH2](=C)):2]=[C$(C(=C)([CX4])([CX4])),C
$([CH](=C)([CX4])),C$([CH2](=C)):3].[Br,I:7][C$([CX4]([Br,I])),c$([c]([
Br,I])):4]»[C,c:4][C:2]=[C:3]

Amide formation [Cl,OH,O−:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[N$([NH2,N
H3+1]([CX4,c])),N$([NH]([CX4,c])([CX4,c])):6]»[N+0:6]−[C:2]=[O:4]

Thiolether
formation-Alkene

[C$(C(=C)([CX4])([CX4])),C$([CH](=C)([CX4])),C$([CH2](=C)):1]=[C
$(C(=C)([CX4])([CX4])),C$([CH](=C)([CX4])),C$([CH2](=C)):2].[SH:4]
−[CX4:5][Br,Cl,I]»[C:1]−[C:2]−[S:4][C:5]

Thiolether
formation-
Carboxlyic acid

[C$([C](=O)([CX4])),C$([CH](=O)):2](=[O:1])[OH,Cl,O−:6].[SH:4]−[CX
4:5][Br,Cl,I]»[CH2:2]−[S:4][C:5]

Ketone formation
[I:1][C$(C(I)([CX4,c])([CX4,c])([CX4,c])),C$([CH](I)([CX4,c])([CX4,c])),
C$([CH2](I)([CX4,c])),C$([CH3](I)):2].[C$(C(=O)([Cl,OH,O−])([CX4,c])
),C$([CH]([Cl,OH,O−])(=O)):3](=[O:6])[Cl,OH,O−:5]»[C:2]−[C:3]=[O:6]

Sulfonamide for-
mation

[Cl:5][S$(S(=O)(=O)(Cl)([CX4])):2](=[O:3])=[O:4].[NH2+0,NH3+:6]−[C
$(C(N)([CX4,c])([CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C$([
CH2](N)([CX4,c])),C$([CH3](N)),c$(c(N)):7]»[C,c:7]−[NH+0:6][S:2](=[O
:4])=[O:3]

Ar-Imidazole for-
mation

[c:5]1[c:4][nH:3][c:2][n:1]1.[OH,$(OC):13]−[B:12](−[OH,$(OC):14])−[c:6]1
[c:7][c:8][c:9][c:10][c:11]1»[c:4]1[c:5][n:3]([c:2][n:1]1)−[c:6]1[c:7][c:8][c:9][c:
10][c:11]1
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Alkyne alkylation
[*:1][C:2]#[CH:3].[Br,I:4][C$(C([CX4,c])([CX4,c])([CX4,c])),C$([CH]([C
X4,c])([CX4,c])),C$([CH2]([CX4,c])),C$([CH3]),c$(c):5]»[C,c:5][C:3]#[C
:2][*:1]

Alkyne acylation
[C$(C(C)([CX4])([CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2]
(C)([CX4])),C$([CH3](C)):1][C:2]#[CH:3].[Br,I:4][C$(C(=O)([Br,I])([CX
4])),C$([CH](=O)([Br,I])):5]=[O:6]»[C:1][C:2]#[C:3][C:5]=[O:6]

FGI Acyl chlo-
ride

[OH,O−:4]−[C$(C(=O)([OH,O−])([CX4])),C$([CH](=O)([OH,O−])):2]=
[O:3]»[Cl:5][C:2]=[O:3]

FGI bromination [OH:2]−[$([CX4]),c:1]»[Br:3][C,c:1]
FGI chlorination [OH:2]−[$([CX4]),c:1]»[Cl:3][C,c:1]
FGI sulfonyl
chloride

[OH,O−:3][S$(S([CX4])):2](=[O:4])=[O:5]»[Cl:6][S:2](=[O:5])=[O:4]

FGA alpha
bromination

[OH+0,O−:5]−[C:3](=[O:4])−[C$([CH]([CX4])),C$([CH2]):2]»-
[OH+0,O−:5]−[C:3](=[O:4])−[C:2]([Br:6])

FGA alpha chlo-
rination

[OH+0,O−:5]−[C:3](=[O:4])−[C$([CH]([CX4])),C$([CH2]):2]»-
[OH+0,O−:5]−[C:3](=[O:4])−[C:2]([Cl:6])

FGI Rosenmund-
von Braun

[Cl,I,Br:7][c:1]1[c:2][c:3][c:4][c:5][c:6]1»[N:9]#[C:8][c:1]1[c:2][c:3][c:4]-
[c:5][c:6]1

FGI nitrilation
[OH,NH2,NH3+:3]−[CH2:2]−[C$(C([CX4,c])([CX4,c])([CX4,c])),-
C$([CH]([CX4,c])([CX4,c])),C$([CH2]([CX4,c])),C$([CH3]),c$(c):1]»-
[C,c:1][C:2]#[N:4]

A.2.2 NMR Spectra

Presented here are the 1H-NMR spectra of the de novo designs synthesized in Chap-
ter 3. The NMR spectra were provided courtesy of Dr. Daniel Merk.
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1H	NMR	(400	MHz,	Chloroform-d)	δ	=	1.16	(d,	J=6.9,
6H),	2.37	–	2.44	(m,	4H),	3.28	(p,	J=6.9,	1H),	3.35	–	3.40
(m,	4H),	3.47	(s,	2H),	7.06	(td,	J=7.2,	1.6,	1H),	7.13	–
7.18	(m,	3H),	7.20	–	7.28	(m,	4H).

Figure A.1: 1-H NMR spectrum of the cariprazine de novo design
(compound 6).
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1H	NMR	(400	MHz,	Chloroform-d)	δ	=	1.34	(td,	J=8.8,	4.2,	1H),	1.60	(dqd,	J=31.8,	9.2,	8.3,
4.2,	2H),	1.85	(ddd,	J=13.7,	6.9,	3.5,	1H),	2.01	(dd,	J=13.1,	5.5,	1H),	2.11	(d,	J=0.5,	1H),	2.11	–
2.18	(m,	1H),	2.22	(dd,	J=13.1,	7.8,	1H),	2.41	(s,	6H),	2.76	(t,	J=6.3,	2H),	3.15	(dd,	J=13.2,	7.8,
1H),	3.24	–	3.36	(m,	3H),	3.71	(s,	3H),	3.74	–	3.81	(m,	1H),	3.85	(dd,	J=13.2,	3.6,	1H),	4.24	–
4.42	(m,	2H),	6.47	(dd,	J=8.7,	2.6,	1H),	6.56	(dd,	J=8.1,	1.2,	1H),	6.62	(td,	J=7.4,	1.1,	1H),	6.69
(d,	J=2.5,	1H),	7.00	(d,	J=8.7,	1H),	7.09	–	7.17	(m,	2H).

Figure A.2: 1-H NMR spectrum of the osimertinib de novo design
(compound 7).
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1H	NMR	(400	MHz,	Methanol-d4)	δ	=	0.95	(d,	J=5.0,	5H),	0.97	(d,
J=5.0,	5H),	1.52	(qd,	J=12.5,	4.4,	2H),	1.88	–	2.02	(m,	2H),	2.06	–
2.12	(m,	1H),	2.83	(d,	J=7.2,	2H),	2.85	–	2.92	(m,	1H),	3.25	(s,	1H),
3.70	(d,	J=6.4,	2H),	4.25	(dt,	J=13.8,	2.6,	2H),	4.48	(s,	1H),	6.53	(dt,
J=10.8,	2.3,	1H),	6.79	(ddd,	J=9.9,	2.3,	1.5,	1H),	6.84	(t,	J=1.9,	1H),
7.33	–	7.38	(m,	2H),	7.44	(dq,	J=8.7,	2.1,	1.7,	2H).

Figure A.3: 1-H NMR spectrum of the pimavanserin de novo design
(compound 8).

A.3 Chapter 4

A.3.1 Reaction Set Used in Chapter 4 for the First Design Cycle

Reaction Name Reaction SMARTS

Pictet-Spengler-
6-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:
1][c:2][c:3][c:4][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−
[N]−[C:8]−[C:7]−[c:6]2[c:1][c:2][c:3][c:4][c:5]−12

Pictet-Spengler-
5-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:
1][c:2][nH:3][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]
−[C:8]−[C:7]−[c:6]2[c:1][c:2][nH:3][c:5]−12

Aminothiazol for-
mation

[C$([CH]([Br,Cl,I])(C)([CX4])),C$([CH2]([Br,Cl,I])(c)),C$([CH2]([Br,Cl,
I])(C)):1](−[Br,Cl,I:3])−[C$(C(C)([c,C])),C$([CH](C)):2]=[O:4]>[NH2:8]
−[C:7](−[NH2:9])=[S:10]>[NH2+0:8]−[c:7]1[n:9][c:1][c:2][s:10]1

Paal-Knorr-
pyrole formation

[C$(C(=O)(C)([CX4])),C$(C[H](=O)(C)):1](=[O:2])−[$([CH](C)(C)([CX
4])),$([CH2](C)(C)):3]−[$([CH](C)(C)([CX4])),$([CH2](C)(C)):4]−[C$(C
(=O)(C)([CX4])),C$(C[H](=O)(C)):5]=[O:6].[N$([NH2,NH3+1]([CX4])):
7]»[c:5]1[c:4][c:3][c:1][n+0:7]1
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Triaryl-imidazol-
1 2-diketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[C:22](=[O:
25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:
19]1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:
10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2
][c:3][c:4][c:5][c:6]1

Triaryl-imidazol-
alpha hydroxy
ketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[CH:22](−[O
H:25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c
:19]1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10]
[c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3]
[c:4][c:5][c:6]1

Fischer indole
[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$([
CH]([CX4])(=O)):3]=[O:1].[NH2:6]−[NH:7]−[c:9]1[c:10][c:11][c:12][c:13][c
H:8]1»[c:3]1[nH:7][c:9]2[c:10][c:11][c:12][c:13][c:8]2[c:4]1

Ester formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[O$([OH]([CX4,c])),O
$([OH]([CX4,c])([CX4,c])):6]»[O:6]−[C:2]=[O:4]

Thioester forma-
tion Acid Chlo-
ride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[S$([SH]([CX4,c])),S$
([SH]([CX4,c])([CX4,c])):6]»[S:6]−[C:2]=[O:4]

Reductive
amination-
Primary amine-
Ketone

[C$(C(=O)([CX4,c])([CX4,c])),C$([CH](=O)([CX4,c])):1]=[O:2].[N$([NH2
,NH3+1]([CX4,c])),N$([NH]([CX4,c])([CX4,c])):3]»[N+0:3][C:1]

Amide formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[N$([NH2,NH3+1]([C
X4,c])),N$([NH]([CX4,c])([CX4,c])):6]»[N+0:6]−[C:2]=[O:4]

Sulfonamide for-
mation Sulfonyl
Chloride

[Cl:5][S$(S(=O)(=O)(Cl)([CX4])):2](=[O:3])=[O:4].[NH2+0,NH3+:6]−[C
$(C(N)([CX4,c])([CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C$([
CH2](N)([CX4,c])),C$([CH3](N)),c$(c(N)):7]»[C,c:7]−[NH+0:6][S:2](=[O
:4])=[O:3]

Ar-Imidazole for-
mation

[c:5]1[c:4][nH:3][c:2][n:1]1.[OH,$(OC):13]−[B:12](−[OH,$(OC):14])−[c:6]1
[c:7][c:8][c:9][c:10][c:11]1»[c:4]1[c:5][n:3]([c:2][n:1]1)−[c:6]1[c:7][c:8][c:9][c:
10][c:11]1

FGI Acyl chloride [OH,O−:4]−[C$(C(=O)([OH,O−])([CX4])),C$([CH](=O)([OH,O−])):2]=
[O:3]»[Cl:5][C:2]=[O:3]

FGI sulfonyl chlo-
ride [OH,O−:3][S$(S([CX4])):2](=[O:4])=[O:5]»[Cl:6][S:2](=[O:5])=[O:4]

UGI-6-ring-
aliphatic

[NH2,NH3+1:1][C:2]1=[N:3][CH2:4][CH2:5][CH2:6][CH2:7]1.O=[CH:8][c:9]
2[cH:14][cH:13][cH:12][cH:11][cH:10]2>[N:15]#[C:16]C>[CH3:16][NH:15]c3
[n:3]4[c:2]([CH2:7][CH2:6][CH2:5][CH2:4]4)[n+0:1][c:8]3[c:9]5[cH:14][cH:13]
[cH:12][cH:11][cH:10]5

UGI-6-ring-
aromatic

[NH2,NH3+1:1][c:2]1[cH:7][cH:6][cH:5][cH:4][n:3]1.O=[CH:8][c:9]2[cH:14]
[cH:13][cH:12][cH:11][cH:10]2>[N:15]#[C:16]C>[CH3:16][NH:15]c([c:8]([c:9]
3[cH:14][cH:13][cH:12][cH:11][cH:10]3)[n+1:1]4)[n:3]5[c:2]4[cH:7][cH:6][cH:5]
[cH:4]5

UGI-5-ring-
aliphatic

[NH2,NH3+1:1][C:2]1=[N:3][CH2:4][CH2:5][CH2:6]1.O=[CH:7][c:8]2[cH:13]
[cH:12][cH:11][cH:10][cH:9]2>[N:14]#[C:15]C>[CH3:15][NH:14]c3[n:3]4[c:2]
([CH2:6][CH2:5][CH2:4]4)[n+0:1][c:7]3[c:8]5[cH:13][cH:12][cH:11][cH:10][cH:
9]5

Hantzsch [C:1][NH:2][C:3]([NH2NH3+1:5])=[S:4].Br[CH2:6][C:7]([Cc:8])=O»[Cc:8]
[c:7]1[c:6][s:4][c:3]([NH:2][C:1])[n+0:5]1
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A.3.2 Reaction Set Used in Chapter 4 for the Second Design Cycle

Reaction Name Reaction SMARTS

Pictet-Spengler-
6-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1]
[c:2][c:3][c:4][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]−
[C:8]−[C:7]−[c:6]2[c:1][c:2][c:3][c:4][c:5]−12

Pictet-Spengler-
5-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C))
:8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1]
[c:2][nH:3][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]−
[C:8]−[C:7]−[c:6]2[c:1][c:2][nH:3][c:5]−12

Aminothiazol for-
mation

[C$([CH]([Br,Cl,I])(C)([CX4])),C$([CH2]([Br,Cl,I])(c)),C$([CH2]([Br,Cl,I])
(C)):1](−[Br,Cl,I:3])−[C$(C(C)([c,C])),C$([CH](C)):2]=[O:4]>[NH2:8]−[C
:7](−[NH2:9])=[S:10]>[NH2+0:8]−[c:7]1[n:9][c:1][c:2][s:10]1

Paal-Knorr-
pyrole formation

[C$(C(=O)(C)([CX4])),C$(C[H](=O)(C)):1](=[O:2])−[$([CH](C)(C)([CX
4])),$([CH2](C)(C)):3]−[$([CH](C)(C)([CX4])),$([CH2](C)(C)):4]−[C$(C
(=O)(C)([CX4])),C$(C[H](=O)(C)):5]=[O:6].[N$([NH2,NH3+1]([CX4])):7]
»[c:5]1[c:4][c:3][c:1][n+0:7]1

Triaryl-imidazol-
1 2-diketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[C:22](=[O:25]
)−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1>
[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10][c:11]
[c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3][c:4][c
:5][c:6]1

Triaryl-imidazol-
alpha hydroxy
ketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[CH:22](−[OH
:25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]
1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10][c:
11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3][c:
4][c:5][c:6]1

Fischer indole
[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$([
CH]([CX4])(=O)):3]=[O:1].[NH2:6]−[NH:7]−[c:9]1[c:10][c:11][c:12][c:13][c
H:8]1»[c:3]1[nH:7][c:9]2[c:10][c:11][c:12][c:13][c:8]2[c:4]1

Ester formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[O$([OH]([CX4,c])),
O$([OH]([CX4,c])([CX4,c])):6]»[O:6]−[C:2]=[O:4]

Thioester forma-
tion Acid Chlo-
ride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[S$([SH]([CX4,c])),S$
([SH]([CX4,c])([CX4,c])):6]»[S:6]−[C:2]=[O:4]

Reductive
amination-
Aldehyde

[C$([CH](=O)([CX4,c])):1]=[O:2].[N$([NH2,NH3+1]([CX4,c])),N$([NH]
([CX4,c])([CX4,c])):3]»[N+0:3][C:1]

Amide formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[N$([NH2,NH3+1]([C
X4,c])),N$([NH]([CX4,c])([CX4,c])):6]»[N+0:6]−[C:2]=[O:4]

Sulfonamide
formation Sul-
fonyl Chloride
Secondary amine

[Cl:5][S$(S(=O)(=O)(Cl)([CX4,c])):2](=[O:3])=[O:4].[C$(C(N)([CX4,c])(
[CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C$([CH2](N)([CX4,c]))
,C$([CH3](N)),c$(c(N)):8]−[NH+0,NH2+:6]−[C$(C(N)([CX4,c])([CX4,c])
([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C$([CH2](N)([CX4,c])),C$([CH
3](N)),c$(c(N)):7]»[C,c:7]−[N+0:6]([C,c:8])[S:2](=[O:4])=[O:3]

Sulfonamide for-
mation Sulfonyl
Chloride Primary
amine

[Cl:5][S$(S(=O)(=O)(Cl)([CX4,c])):2](=[O:3])=[O:4].[NH2+0,NH3+:6]−
[C$(C(N)([CX4,c])([CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C
$([CH2](N)([CX4,c])),C$([CH3](N)),c$(c(N)):7]»[C,c:7]−[NH+0:6][S:2](=
[O:4])=[O:3]
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Sulfonamide
formation Sul-
fonyl Chloride
Ammonia

[Cl:5][S$(S(=O)(=O)(Cl)([CX4,c])):2](=[O:3])=[O:4]>[NH3]>[NH2+0:6]
[S:2](=[O:4])=[O:3]

FGI Acyl chloride [OH,O−:4]−[C$(C(=O)([OH,O−])([CX4])),C$([CH](=O)([OH,O−])):2]=
[O:3]»[Cl:5][C:2]=[O:3]

FGI sulfonyl chlo-
ride [OH,O−:3][S$(S([CX4])):2](=[O:4])=[O:5]»[Cl:6][S:2](=[O:5])=[O:4]

Hantzsch [C:1][NH:2][C:3]([NH2,NH3+1:5])=[S:4].Br[CH2:6][C:7]([C,c:8])=O»[C,c:8]
[c:7]1[c:6][s:4][c:3]([NH:2][C:1])[n+0:5]1

A.3.3 NMR Spectra of the Bioactive DINGOS Designs

Presented here are the 1H-NMR spectra of the bioactive de novo designs synthesized
in Chapter 4. The NMR spectra were provided courtesy of Berend Huisman.
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(m,	2H),	8.09	–	8.05	(m,	1H),	7.89	(d,	J	=	8.5
Hz,	2H),	7.79	(dd,	J	=	8.7,	2.3	Hz,	1H),	2.31
(s,	3H).

Figure A.4: 1-H NMR spectrum of the compound 66.
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Figure A.5: 1-H NMR spectrum of the compound 67.
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Figure A.6: 1-H NMR spectrum of the compound 68.
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Figure A.7: 1-H NMR spectrum of the compound 70.
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1H	NMR	(400	MHz,	DMSO-d6)	δ	10.21	(s,
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11.4	Hz,	1H),	7.04	(d,	J	=	8.0	Hz,	1H),	2.33
(s,	3H).

Figure A.8: 1-H NMR spectrum of the compound 71.

A.4 Chapter 5

A.4.1 Reaction Set Used in Chapter 5

Reaction Name Reaction SMARTS

Bischler-
Napieralski

[$(C([CH2,CH3])),CH:10](=[O:11])−[NH+0:9]−[C$(C(N)(C)(C)(C)),C$
([CH](N)(C)(C)),C$([CH2](N)(C)):8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)
(C)),C$([CH2](c)(C)):7]−[c:6]1[cH:1][c:2][c:3][c:4][c:5]1»[C:10]−1=[N+0:9]
−[C:8]−[C:7]−[c:6]2[c:5][c:4][c:3][c:2][c:1]−12

Pictet-Gams

[$(C([CH2,CH3])),CH:10](=[O:11])−[NH+0:9]−[C$([CH](N)(C)(C)),C$
([CH2](N)(C)):8]−[C$([C](c)(C)(C)),C$([CH](c)(C)):7]([O$(OC),OH])−
[c:6]1[cH:1][c:2][c:3][c:4][c:5]1»[c:10]−1[n:9][c:8][c:7][c:6]2[c:5][c:4][c:3][c:2]
[c:1]−12

Pictet-Spengler-
6-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C)):
8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1]
[c:2][c:3][c:4][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]
−[C:8]−[C:7]−[c:6]2[c:1][c:2][c:3][c:4][c:5]−12

Pictet-Spengler-
5-membered-ring

[NH3+,NH2]−[C$(C(N)(C)(C)(C)),C$([CH](N)(C)(C)),C$([CH2](N)(C)):
8]−[C$(C(c)(C)(C)(C)),C$([CH](c)(C)(C)),C$([CH2](c)(C)):7]−[c:6]1[c:1]
[c:2][nH:3][cH:5]1.[CH:10](−[CX4:12])=[O:11]»[c,C:12]−[CH:10]−1−[N]−
[C:8]−[C:7]−[c:6]2[c:1][c:2][nH:3][c:5]−12
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Bischler-Indole

[NH2,NH3+1:8]−[c:5]1[cH:4][c:3][c:2][c:1][c:6]1.[Br:18][C$([CH2](C)(Br)),
C$([CH](C)(C)(Br)):17]−[C:15](=[O:16])−[c:10]1[c:11][c:12][c:13][c:14][c:
9]1»[c:13]1[c:12][c:11][c:10]([c:9][c:14]1)−[c:15]1[c:17][c:4]2[c:3][c:2][c:1][c:6]
[c:5]2[nH+0:8]1

Benzimidazol for-
mation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[N$([NH](c)([CX4])),N$([NH2,NH3+1](c)):11]»[c:2]
1[n+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2[n:11]1

Aminothiazol for-
mation

[C$([CH]([Br,Cl,I])(C)([CX4])),C$([CH2]([Br,Cl,I])(c)),C$([CH2]([Br,Cl,
I])(C)):1](−[Br,Cl,I:3])−[C$(C(C)([c,C])),C$([CH](C)):2]=[O:4]>[NH2:8]
−[C:7](−[NH2:9])=[S:10]>[NH2+0:8]−[c:7]1[n:9][c:1][c:2][s:10]1

Benzoxazol for-
mation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[OH:11]»[c:2]1[o+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2
[n:11]1

Benzothiazol for-
mation

[OH,O−]−[C$(C([CX4])),C$([CH]):2]=[O:3].[NH2,NH3+:12]−[c:9]1[c:8]
[c:7][c:6][c:5][c:10]1−[SH:11]»[c:2]1[s+0:12][c:9]2[c:8][c:7][c:6][c:5][c:10]2
[n:11]1

Rap-Stoermer
[Cl:1][CH2:2]−[C$([CH](C)),C$(C(C)(C)):3]=[O:4].[OH:12]−[c:11]1[c:6]
[c:7][c:8][c:9][c:10]1−[CH:13]=[O:14]»[C:3](=[O:4])−[c:2]1[c:13][c:10]2[c:9]
[c:8][c:7][c:6][c:11]2[o:12]1

Niementowski

[N$([NH](C)([CX4])),N$([NH2,NH3+1](C)):2]−[C$(C(N)(C)),C$([CH](
N)):1]=[O:3].[NH2,NH3+1:13]−[c:8]1[c:7][c:6][c:5][c:4][c:9]1−[C:10](−[OH
,O−:12])=[O:11]»[O:11]=[c:10]−1[n:2][c:1][n:13][c:8]2[c:7][c:6][c:5][c:4][c:9]
−12

Quinazolinone
formation

[NH2,NH3+]−[C$([CX4](N)([c,C])([c,C])([c,C])),C$([CH](N)([c,C])([c,C]
)),C$([CH2](N)([c,C])),C$([CH3](N)):2].[NH2:12]−[c:7]1[c:6][c:5][c:4][c:3]
[c:8]1−[C:9](−[OH,O−:11])=[O:10]»[C:2]−[n+0]−1[c:13][n:12][c:7]2[c:6]
[c:5][c:4][c:3][c:8]2[c:9]−1=[O:10]

Chinonlin-2-one
Intramol

[C$(C(C)(=O)([CX4])),C$([CH](C)(=O)):10](=[O:13])−[C$([CH]([CX4]
)),C$([CH2]):9]−[C:8](=[O:12])−[NH:7]−[c:5]1[cH:6][c:1][c:2][c:3][c:4]1»[c
:10]−1[c:9][c:8](−[OH:12])−[n:7]−[c:5]2[c:4][c:3][c:2][c:1][c:6]−12

Tetrazol forma-
tion

[C$(C(#N)([CX4])),C$([CH](#N)):1]#[N:2]»[c$(c(n)(n)([CX4])),c$([cH]
(n)(n)):1]−1[n:2][nH:4][n:6][n:5]−1

Tetrahydro-
Indole formation

[N$([NH2]([CX4])),N$([NH3+1]([CX4])):1].[O:5]−[C$([CH]([CX4])(C)(O)
),C$([CH2]([CX4])(O)):3][C$(C([CX4])(=O)([CX4])),C$([CH]([CX4])(=O
)):4]=[O:6]>[O:15]=[C:9]−1−[CH2:10]−[CH2:11]−[CH2:12]−[CH2:13]−[C
H2:14]−1>[c:4]1[c:3][n+0:1][c:10]2−[C:11]−[C:12]−[C:13]−[C:14]−[c:9]12

3-nitrile pyridine

[C$(C(=O)([CX4])([CX4])),C$([CH](=O)([CX4])):2](=[O:6])−[C$([CH]
([CX4])),C$([CH2]):3]−[C$(C(=O)([CX4])([CX4])),C$([CH](=O)([CX4]))
:4]=[O:7].[NH2:8]−[C:9](=[O:10])−[CH2:11][C:12]#[N:13]»[OH:10]−[c:9]
1[n:8][c:4][c:3][c:2][c:11]1[C:12]#[N:13]

Triazole forma-
tion

[C$(C(#N)([CX4])):2]#[N:3].[NH2,NH3+1:4]−[NH:5]−[C$(C(N)(=O)([C
X4])),C$([CH](N)(=O)):6]=[O:7]»[c:6]−1[n:5][c:2][n:3][n:9]−1

Huisgen 1-3 Dipo-
lar Cycloaddition

[C$(C(#C)([CX4])):2]#[C$(C(#C)([CX4])):1].[N$(N(~N)([CX4])):5]~[N]
~[N]»[c:2]1[c:1][n:5][n][n]1

Huisgen 1 3 Dipo-
lar Cycloaddition
double bond

[C$(C(=C)([CX4])):2]=[C$(C(=C)([CX4])):1].[N$(N(~N)([CX4])):5]~[N]
~[N]»[C:2]1[C:1][N:5][N]=[N]1
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Diels-Alder

[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX2
,NX3])),C$([CH2](=C)):1]=[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3]
)),C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):2].[C$(C(=C)([CX4,O
X2,NX3])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=
C)):3]=[C$([C](=C)(C)([CX4,OX2,NX3])),C$([CH](=C)(C)):4]−[C$([C](=
C)(C)([CX4,OX2,NX3])),C$([CH](=C)(C)):5]=[C$(C(=C)([CX4,OX2,NX3
])([CX4,OX2,NX3])),C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):6]»[C
:1]1[C:2][C:3][C:4]=[C:5][C:6]1

Diels-Alder-
Alkyne

[C$(C(#C)([CX4,OX2,NX3])),C$([CH](#C)):1]#[C$(C(#C)([CX4,OX2
,NX3])),C$([CH](#C)):2].[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3]))
,C$([CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):3]=[C$([C](=C)(C)([CX
4,OX2,NX3])),C$([CH](=C)(C)):4]−[C$([C](=C)(C)([CX4,OX2,NX3])),C
$([CH](=C)(C)):5]=[C$(C(=C)([CX4,OX2,NX3])([CX4,OX2,NX3])),C$([
CH](=C)([CX4,OX2,NX3])),C$([CH2](=C)):6]»[C:1]1=[C:2][C:3][C:4]=[C
:5][C:6]1

Spiro-piperidine
formation

[N$(N([CX4])),N$([NH]):5]−1−[C$(C(C)(N)([CX4])([CX4])),C$([CH](C)
(N)([CX4])),C$([CH2](C)(N)):4]−[C$(C(C)(C)([CX4])([CX4])),C$([CH]
(C)(C)([CX4])),C$([CH2](C)(C)):3]−[C:2](=[O:7])−[C$(C(C)(C)([CX4])
([CX4])),C$([CH](C)(C)([CX4])),C$([CH2](C)(C)):1]−[C$(C(C)(N)([CX
4])([CX4])),C$([CH](C)(N)([CX4])),C$([CH2](C)(N)):6]−1.[C$([CH](C)(
[CX4])([CX4])),C$([CH2](C)([CX4])),C$([CH3]):18]−[C:16](=[O:17])−[c:
14]1[c:9][c:10][c:11][c:12][c:13]1−[OH:15]»[N:5]−1−[C:4]−[C:3][C:2]2([C:1]
−[C:6]−1)[C:18]−[C:16](=[O:17])−[c:14]1[c:9][c:10][c:11][c:12][c:13]1−[O
:15]2

Pyrazol forma-
tion

[NH2,NH3+:3]−[N$([NH](N)([CX4])):2].[C$([CH](C)(C)([CX4])),C$([CH
2](C)(C)):6](−[C$(C(=O)(C)([CX4])),C$([CH](=O)(C)):5]=[O:9])−[C$(C
(=O)(C)([CX4])),C$([CH](=O)(C)):7]=[O:10]»[c:7]1[n:3][n:2][c:5][c:6]1

Phthalazinone
[NH2,NH3+1:2]−[N$([NH](N)([CX4])):1].[OH,O−:12]−[C:10](=[O:11])−
[c:5]1[c:4][c:9][c:8][c:7][c:6]1−[C$(C(c)(=O)([CX4])),C$([CH](c)(=O)):13]
=[O:14]»[N:1]−1−[N:2]=[C:13][c:6]2[c:7][c:8][c:9][c:4][c:5]2−[C:10]−1=[O:11]

Paal-Knorr-
pyrole formation

[C$(C(=O)(C)([CX4])),C$(C[H](=O)(C)):1](=[O:2])−[$([CH](C)(C)([CX
4])),$([CH2](C)(C)):3]−[$([CH](C)(C)([CX4])),$([CH2](C)(C)):4]−[C$(C
(=O)(C)([CX4])),C$(C[H](=O)(C)):5]=[O:6].[N$([NH2,NH3+1]([CX4])):7]
»[c:5]1[c:4][c:3][c:1][n+0:7]1

Triaryl-imidazol-
1 2-diketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[C:22](=[O:
25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]
1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10][c:
11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3]
[c:4][c:5][c:6]1

Triaryl-imidazol-
alpha hydroxy
ketone

[CH:7](=[O:8])−[c:1]1[c:2][c:3][c:4][c:5][c:6]1.[O:24]=[C:23](−[CH:22](−[OH
:25])−[c:15]1[c:10][c:11][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]
1>[NH4].[O−]C(=O)C>[nH:27]−1[c:7]([n:26][c:23]([c:22]−1[c:15]1[c:10][c:11
][c:12][c:13][c:14]1)−[c:20]1[c:21][c:16][c:17][c:18][c:19]1)−[c:1]1[c:2][c:3][c:4][c
:5][c:6]1

Fischer indole
[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$([
CH]([CX4])(=O)):3]=[O:1].[NH2:6]−[NH:7]−[c:9]1[c:10][c:11][c:12][c:13][c
H:8]1»[c:3]1[nH:7][c:9]2[c:10][c:11][c:12][c:13][c:8]2[c:4]1
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Friedlaender chi-
noline formation

[C$([CH2](C)([CX4])),C$([CH3](C)):4]−[C$(C([CX4])(=O)([CX4])),C$([
CH]([CX4])(=O)):2]=[O:1].[NH2:12]−[c:10]1[c:9][c:8][c:7][c:6][c:11]1−[C$(
C(c)(=O)([CX4])),C$([CH](c)(=O)):13]=[O:14]»[c:2]1[c:13][c:11]2[c:6][c:7
][c:8][c:9][c:10]2[n:12][c:4]1

Peachmann
coumarine

[OH:7]−[c:6]1[cH:1][c:2][c:3][c:4][c:5]1.[O$(O(C)([CX4])):12]−[C:11](=[O
:15])−[C$([CH](C)(C)([CX4])),C$([CH2](C)(C)):10]−[C:8]=[O:16]»[C:8]
−1=[C:10]−[C:11](=[O:15])−[O]−[c:6]2[c:5][c:4][c:3][c:2][c:1]−12

Benzofuran for-
mation

[C$(C(#C)([CX4])),C$([CH](#C)):2]#[CH:1].[OH:11]−[c:8]1[c:7][c:6][c:5]
[c:4][c:9]1[I:10]»[c:2]1[c:1][c:9]2[c:4][c:5][c:6][c:7][c:8]2[o:11]1

Imidazol-
Acetamid

[C$(C(=O)(N)([CX4])),C$([CH](=O)(N)):5](=[O:6])−[NH:4]−[C:2](−[N
H2:1])=[NH:3].[Br:12][C$([CH](Br)(C)([CX4])),C$([CH2](Br)(C)):9]−[C$
(C(=O)(C)([CX4])),C$([CH](=O)(C)):8]=[O:10]»[C:5](=[O:6])−[NH:4]−
[c:2]1[n:3][c:9][c:8][nH:1]−1

Dieckmann 5-ring
symmetry 1

[O$(O(C)([CX4])):8][C:7](=[O:9])[CH:6][C:5][C:4][C:3][C:2]([O$(O(C)([C
X4])):10])=[O:1]»[O:8][C:7](=[O:9])[C:6]1[C:5][C:4][C:3][C:2]1=[O:1]

Dieckmann 6-ring
symmetry 1

[O$(O(C)([CX4])):8][C:7](=[O:9])[CH:6][C:5][C:11][C:4][C:3][C:2]([O$(O
(C)([CX4])):10])=[O:1]»[O:8][C:7](=[O:9])[C:6]1[C:5][C:11][C:4][C:3][C:2]
1=[O:1]

Flavone forma-
tion

[Cl:9][C:7](=[O:8])−[c:3]1[c:2][c:1][c:6][c:5][c:4]1.[C$([CH2](C)([CX4])),C$
([CH3](C)):18]−[C:16](=[O:17])−[c :14]1[c:13][c:12][c:11][c:10][c:15]1−[OH
:19]»[O:17]=[C:16]−1−[C:18]=[C:7](−[O:8]−[c:15]2[c:10][c:11][c:12][c:13][c
:14]−12)−[c:3]1[c:2][c:1][c:6][c:5][c:4]1

Oxadiazole for-
mation

[OH,O−:3]−[C$(C(=O)(O)[CX4]),C$([CH](=O)(O)):2]=[O:1].[N:12]#[C:
11][c:10]1[c:5][c:6][c:7][c:8][c:9]1»[c:2]1[n:12][c:11]([n:13][o:1]1)−[c:10]1[c:5]
[c:6][c:7][c:8][c:9]1

Michael addition [C:1][OH,SH:2].[C$([CH2]),C$([CH]C),C$(C(C)(C)):3]=[C:4][C$(C(C)(C)
(=O)),C$([CH](C)(=O)):5](=[O,S:6])»[C:1][O,S:2][C:3][C:4][C:5](=[O,S:6])

Cross Claisen

[C$([CH2](C)(C)),C$([CH3](C)):2][C:3](=[O:4])[O:5][C,c:6].[C$([CH2]([C,
c])(C)),C$([CH3](C)):7][C:9](=[O:10])[O:11][C,c:12]»[C$([CH2]([C,c])(C))
,C$([CH3](C)):7][C:9](=[O:10])[C$([CH](C)(C)(C)),C$([CH2](C)(C)):2][C
:3](=[O:4])[O:5][C,c:6]

Williamson ether
Alcohol

[Br,Cl,I:1][C$(C([Br,Cl,I])([CX4])([CX4])([CX4])),C$([CH]([Br,Cl,I])([CX
4])([CX4])),C$([CH2]([Br,Cl,I])([CX4])),C$([CH3]([Br,Cl,I])):2].[OH:3][C$
(C(O)([CX4,c])([CX4,c])([CX4,c])),C$([CH](O)([CX4,c])([CX4,c])),C$([CH
2](O)([CX4,c])),C$([CH3]([OH])),c$(c([OH])([c,n,o])([c,n,o])):4]»[C:2][O:3][
C,c:4]

Williamson ether
Thiol

[Br,Cl,I:1][C$(C([Br,Cl,I])([CX4])([CX4])([CX4])),C$([CH]([Br,Cl,I])([CX
4])([CX4])),C$([CH2]([Br,Cl,I])([CX4])),C$([CH3]([Br,Cl,I])):2].[SH:3][C$
(C(S)([CX4,c])([CX4,c])([CX4,c])),C$([CH](S)([CX4,c])([CX4,c])),C$([CH
2](S)([CX4,c])),C$([CH3]([SH])),c$(c([SH])([c,n,o])([c,n,o])):4]»[C:2][S:3][C
,c:4]

Nucleophilic sub-
stitution

[C$([CH3]),C$([CH2]([C,c])),C$([CH]([C,c])([C,c])),C$(C([C,c])([C,c])([C
,c])),c$(c([c,n,o])([c,n,o])):1][Cl,Br,I:2].[C$([CH3]),C$([CH2]([C,c])),C$([C
H]([C,c])([C,c])),C$(C([C,c])([C,c])([C,c])),c$(c([c,n,o])([c,n,o])):3][OH,SH
,NH2,NH3+1:4]»[C,c:1][O,S,N+0:4][C,c:3]
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Grignard reaction

[C$([CH3]),C$([CH2]([C,c])),C$([CH]([C,c])([C,c])),C$(C([C,c])([C,c])([C
,c])),c$(c([c,n,o])([c,n,o])):1][Cl,Br,I:2].[C$([CH3]),C$([CH2]([C,c])),C$([C
H]([C,c])([C,c])),C$(C([C,c])([C,c])([C,c])),c$(c([c,n,o])([c,n,o])):3][C:4](=
[O:5])[C$([CH3]),C$([CH2]([C,c])),C$([CH]([C,c])([C,c])),C$(C([C,c])([C,
c])([C,c])),c$(c([c,n,o])([c,n,o])):6]»[C:4]([OH:5])([C,c:1])([C,c:3])([C,c:6])

Ester formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[O$([OH]([CX4,c])),O
$([OH]([CX4,c])([CX4,c])):6]»[O:6]−[C:2]=[O:4]

Ester formation
Carbox

[OH,O−:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[O$([OH]([CX4,c
])),O$([OH]([CX4,c])([CX4,c])):6]»[O:6]−[C:2]=[O:4]

Thioester forma-
tion Acid Chlo-
ride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[S$
([SH]([CX4,c])),S$([SH]([CX4,c])([CX4,c])):6]»[S:6]−[C:2]=[O:4]

Thioester forma-
tion Carbox

[OH,O−:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[S$([SH]([CX4,c]))
,S$([SH]([CX4,c])([CX4,c])):6]»[S:6]−[C:2]=[O:4]

Reductive
amination-
Ketone

[C$(C(=O)([CX4,c])([CX4,c])):1]=[O:2].[N$([NH2,NH3+1]([CX4,c])),N$
([NH]([CX4,c])([CX4,c])):3]»[N+0:3][C:1]

Reductive
amination-
Aldehyde

[C$([CH](=O)([CX4,c])):1]=[O:2].[N$([NH2,NH3+1]([CX4,c])),N$([NH](
[CX4,c])([CX4,c])):3]»[N+0:3][C:1]

Suzuki coupling

[Br:1][c$(c(Br)),n$(n(Br)),o$(o(Br)),C$([CH](Br)(=C)):2].[C$(C(B)([CX
4])([CX4])([CX4])),C$([CH](B)([CX4])([CX4])),C$([CH2](B)([CX4])),C$
([CH2](B)),C$(C(B)(=C)),c$(c(B)),o$(o(B)),n$(n(B)):3][B$(B([C,c,n,o])
([OH,$(OC)])([OH,$(OC)])),B$([B−1]([C,c,n,o])(N)([OH,$(OC)])([OH,$
(OC)])):4]»[C,c,n,o:2][C,c,n,o:3]

Piperidine and In-
dole

[cH:9]1[c:8][n:7][c:5]2[c:4][c:3][c:2][c:1][c:6]12.[N:17]−1−[CX4:16]−[CH:15]
−[C:14](=[O:20])−[CX4:19]−[CX4:18]−1»[N:17]−1−[C:18]−[C:19]−[C:1
4](=[C:15]−[C:16]−1)−[c:9]1[c:8][n:7][c:5]2[c:4][c:3][c:2][c:1][c:6]12

Negishi

[Br,I:1][C$(C([Br,I])([CX4])([CX4])([CX4])),C$([CH]([Br,I])([CX4])([CX4]
)),C$([CH2]([Br,I])([CX4])),C$([CH3]([Br,I])),C$([C]([Br,I])(=C)([CX4])),
C$([CH]([Br,I])(=C)),C$(C([Br,I])(#C)),c$(c([Br,I])):2].[Br,I:3][C$(C([Br,
I])([CX4])([CX4])([CX4])),C$([CH]([Br,I])([CX4])([CX4])),C$([CH2]([Br,I]
)([CX4])),C$([CH3]([Br,I])),C$([C]([Br,I])(=C)([CX4])),C$([CH]([Br,I])(=
C)),C$(C([Br,I])(#C)),c$(c([Br,I])):4]»[C,c:2][C,c:4]

Mitsunobu imide

[C$(C(C)([CX4])([CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2](C
)([CX4])),C$([CH3](C)):1][C:2](=[O:3])−[NH:4]−[C:5]([C$(C(C)([CX4])([
CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2](C)([CX4])),C$([CH
3](C)):10])=[O:7].[OH:11]−[C$(C(O)([CX4])([CX4])([CX4])),C$([CH](O)(
[CX4])([CX4])),C$([CH2](O)([CX4])),C$([CH3](O)):9]»[C:9][N+0:4](−[C:
2]([C:1])=[O:3])−[C:5]([C:10])=[O:7]

Mitsunobu car-
boxlyic acid

[OH,O−]−[C$(C(=O)(O)([CX4,c])):2]=[O:3].[OH:8]−[C$([CH](O)([CX4,c])
([CX4,c])),C$([CH2](O)([CX4,c])),C$([CH3](O)):6]»[C:6][O]−[C:2]=[O:3]

Mitsunobu sul-
fonic amide

[OH:1]−[C$([CH](O)([CX4,c])([CX4,c])),C$([CH2](O)([CX4,c])),C$([CH3]
(O)):3].[N$([NH](S)([CX4])),N$([NH2,NH3+1](S)):9][S$(S(N)([CX4])):6](
=[O:7])=[O:8]»[C:3][N+0:9][S:6](=[O:8])=[O:7]

Heck
[C$([CH](=C)([CX4])),C$([CH2](=C)):2]=[C$(C(=C)([CX4])([CX4])),C$
([CH](=C)([CX4])),C$([CH2](=C)):3].[Br,I:7][C$([CX4]([Br
,I])),c$([c]([Br,I])):4]»[C,c:4][C:2]=[C:3]
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Amide formation
Carbox

[OH,O−:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[N$([NH2,NH3+
1]([CX4,c])),N$([NH]([CX4,c])([CX4,c])):6]»[N+0:6]−[C:2]=[O:4]

Amide formation
Acid Chloride

[Cl:3][C$(C(=O)([CX4,c])),C$([CH](=O)):2]=[O:4].[N$([NH2,NH3+1]([C
X4,c])),N$([NH]([CX4,c])([CX4,c])):6]»[N+0:6]−[C:2]=[O:4]

Thiolether
formation-Alkene

[C$(C(=C)([CX4])([CX4])),C$([CH](=C)([CX4])),C$([CH2](=C)):1]=[C
$(C(=C)([CX4])([CX4])),C$([CH](=C)([CX4])),C$([CH2](=C)):2].[SH:4]
−[CX4:5][Br,Cl,I]»[C:1]−[C:2]−[S:4][C:5]

Thiolether
formation-
Carboxlyic acid

[C$([C](=O)([CX4])),C$([CH](=O)):2](=[O:1])[OH,Cl,O−:6].[SH:4]−[CX
4:5][Br,Cl,I]»[CH2:2]−[S:4][C:5]

Ketone formation
[I:1][C$(C(I)([CX4,c])([CX4,c])([CX4,c])),C$([CH](I)([CX4,c])([CX4,c])),
C$([CH2](I)([CX4,c])),C$([CH3](I)):2].[C$(C(=O)([Cl,OH,O−])([CX4,c])
),C$([CH]([Cl,OH,O−])(=O)):3](=[O:6])[Cl,OH,O−:5]»[C:2]−[C:3]=[O:6]

Sulfonamide for-
mation Sulfonic
Acid

[OH,O−:5][S$(S(=O)(=O)(O)([CX4])):2](=[O:3])=[O:4].[NH2+0,NH3+:6]
−[C$(C(N)([CX4,c])([CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C
$([CH2](N)([CX4,c])),C$([CH3](N)),c$(c(N)):7]»[C,c:7]−[NH+0:6][S:2](=
[O:4])=[O:3]

Sulfonamide for-
mation Sulfonyl
Chloride

[Cl:5][S$(S(=O)(=O)(Cl)([CX4])):2](=[O:3])=[O:4].[NH2+0,NH3+:6]−
[C$(C(N)([CX4,c])([CX4,c])([CX4,c])),C$([CH](N)([CX4,c])([CX4,c])),C
$([CH2](N)([CX4,c])),C$([CH3](N)),c$(c(N)):7]»[C,c:7]−[NH+0:6][S:2](=
[O:4])=[O:3]

Ar-Imidazole for-
mation

[c:5]1[c:4][nH:3][c:2][n:1]1.[OH,$(OC):13]−[B:12](−[OH,$(OC):14])−[c:6]1
[c:7][c:8][c:9][c:10][c:11]1»[c:4]1[c:5][n:3]([c:2][n:1]1)−[c:6]1[c:7][c:8][c:9][c:
10][c:11]1

Alkyne alkylation
[*:1][C:2]#[CH:3].[Br,I:4][C$(C([CX4,c])([CX4,c])([CX4,c])),C$([CH]([CX
4,c])([CX4,c])),C$([CH2]([CX4,c])),C$([CH3]),c$(c):5]»[C,c:5][C:3]#[C:2]
[*:1]

Alkyne acylation
[C$(C(C)([CX4])([CX4])([CX4])),C$([CH](C)([CX4])([CX4])),C$([CH2]
(C)([CX4])),C$([CH3](C)):1][C:2]#[CH:3].[Br,I:4][C$(C(=O)([Br,I])([CX
4])),C$([CH](=O)([Br,I])):5]=[O:6]»[C:1][C:2]#[C:3][C:5]=[O:6]

FGI Acyl chloride [OH,O−:4]−[C$(C(=O)([OH,O−])([CX4])),C$([CH](=O)([OH,O−])):2]=
[O:3]»[Cl:5][C:2]=[O:3]

FGI bromination [OH:2]−[$([CX4]),c:1]»[Br:3][C,c:1]
FGI chlorination [OH:2]−[$([CX4]),c:1]»[Cl:3][C,c:1]
FGI sulfonyl chlo-
ride [OH,O−:3][S$(S([CX4])):2](=[O:4])=[O:5]»[Cl:6][S:2](=[O:5])=[O:4]

FGA alpha
bromination

[OH+0,O−:5]−[C:3](=[O:4])−[C$([CH]([CX4])),C$([CH2]):2]»[OH+0,O
−:5]−[C:3](=[O:4])−[C:2]([Br:6])

FGA alpha chlori-
nation

[OH+0,O−:5]−[C:3](=[O:4])−[C$([CH]([CX4])),C$([CH2]):2]»[OH+0,O
−:5]−[C:3](=[O:4])−[C:2]([Cl:6])

FGI Rosenmund-
von Braun

[Cl,I,Br:7][c:1]1[c:2][c:3][c:4][c:5][c:6]1»[N:9]#[C:8][c:1]1[c:2][c:3][c:4][c:5][c
:6]1

FGI nitrilation
[OH,NH2,NH3+:3]−[CH2:2]−[C$(C([CX4,c])([CX4,c])([CX4,c])),C$([CH]
([CX4,c])([CX4,c])),C$([CH2]([CX4,c])),C$([CH3]),c$(c):1]»[C,c:1][C:2]#
[N:4]

A.4.2 De Novo Designs with the YLT-11 Template Ligand

The primary goal of DINGOS is to create synthesizable structures that are related
to a template ligand as a means of determining the structural dependence for the
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observed bioactivity, and to potentially produce novel bioactive “hits”. To emulate
the scenario in which a chemist is working with a known bioactive and wishes to
produce similar compounds, we chose the PLK4 kinase inhibitor YLT-11 [160] as a
template ligand. The PLK4 kinase, despite being a potential therapeutic target for
antitumour therapy [161], possesses few small-molecule inhibitors under clinical trial,
with the underlying mechanism of inhibition still not fully known.

YLT-11 was originally developed by Liu et al. as part of a structure activity
relationship study for the PLK4 kinase [162]. Based of existing reported actives,
the scaffold (E)-4-(3-arylvinyl-1H-indazol-6-yl)pyrimidin-2-amine was chosen for the
study and the corresponding R groups were modified, thus yielding YLT-11. Lei
et al. [160] selected YLT-11 for further testing and analysis, due to its selectivity
towards PLK4 over the other subgroups (>200-fold selectivity against PLK1, PLK2
and, PLK3). Lei et al. confirmed preferential activity towards triple-negative breast
cancers (TNBC) cells over mammalian cell lines, showing an IC50 of between 68-
120 nM. Molecular docking of YLT-11 showed binding in the ATP-binding pocket of
PLK4, indicating that it was likely an ATP-competitive inhibitor. Hydrogen bonding
between the indazole ring nitrogens and the catalytic Cysteine and Glutamic acid
residues, as well as between the pyrimidine ring and Lysine residue, was observed.
These results are consistent with hydrogen bonding patterns determined from other
co-crystallized PLK4 inhibitors [163].

Eight individual de novo design experiments were performed, each with a differ-
ent descriptor representation (see Methods 5.2.1). The same parameters as in Meth-
ods 5.2.6 were used, with the exception of the building block recommendation pool,
which was set to 1000. This yielded eight sets of 300 de novo designed molecules. Fig-
ure A.9 shows the top ranked designs from each of the de novo descriptor populations.
Of the eight designs, four contained the indazole and pyrimidine subgroups.
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Figure A.9: Most similar de novo designs obtained for the YLT-11
template, using the eight separate descriptor representations. Of the
eight designs, both the indazole and pyrimidine subgroups were only
observed for the the layered, RDKit, ECFP4, and featMorgan designs.

A.4.3 Relative Standard Deviation

For a sample X1,X2, ...,XN we define the relative standard deviation as

σr =
σ

µ

Where µ and σ are defined as follows:

µ =
1
N

N∑
i=1

Xi and σ =

√√√√ 1
N − 1

N∑
i=1

(Xi − µ)2

A.4.4 Template Ligands Extracted from ChEMBL

The template ligands that were selected in Chapter 5 via the bioactivity analysis are
shown in Figure A.10.
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Figure A.10: Structures of the eleven template ligands selected for de
novo design in Chapter 5. Ligands are shown with their corresponding

ChEMBL IDs and biological targets.

A.4.5 Top De Novo Designs Generated by DINGOS-BGEN

Figure A.11 shows the eleven most similar de novo designs produced from the DINGOS-
BGEN experiments presented Section 5.3.4.



A.5. Chapter 6 145

Figure A.11: Structures of the eleven top de novo designs generated
in Chapter 5 by the DINGOS-BGEN model for the eleven template
ligands (see Figure A.10). Compounds are labeled by the targets of

their corresponding template ligand.

A.5 Chapter 6

A.5.1 Top De Novo Designs Generated by DINGOS-MCTS

The eleven most similar de novo designs produced in Section 6.3.4 are shown in
Figure A.12.
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Figure A.12: Most similar de novo designs produced in Section 6.3.4.
The structures shown in Figure A.10 were used as the template ligands.
Compounds are labeled by the targets of their corresponding template

ligand.
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