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In the beginner’s mind there are many possibilities,
but in the expert’s there are few.

Zen Mind, Beginner’s Mind
Shunryu Suzuki

The paradox is now fully established that the
utmost abstractions are the true weapons with
which to control our thought of concrete fact.

Science and the Modern World
Alfred North Whitehead





Abstract

In recent decades the design of feedback control systems that steer a
physical system to an optimal state, rather than tracking a set-point, has
taken many forms ranging from extremum seeking, to economic model
predictive control, to internet congestion control.
One application emerging as a prime subject for this type of closed-

loop optimization is the operation of power systems in the presence of
intermittent renewable energy production and new consumption patterns.
The vision shared by industry and academia is to implement autonomous
power grids that can react intelligently to outages, sudden changes in
renewable output, and other events. Simultaneously, the safety and
reliability of power supply must not be jeopardized, and all available
resources should be used to their full economic potential.

Even from a simplified viewpoint, this problem poses conceptual chal-
lenges that are not covered by existing approaches to closed-loop opti-
mization: First, the flow of electric power in a grid can be highly non-
linear, especially under critical operating conditions. Second, running
an electricity grid relies on the satisfaction of many constraints, such as
voltage limits or thermal line ratings. Further, power system operation
is subject to limited generation capacity and inelastic demand. Third,
model information about large-scale, interconnected, and open power
grids is generally limited to an approximate model for the steady-state
power flow.
In summary, the safe, reliable, and optimal real-time operation of

power grids requires a new scalable and model-light approach to closed-
loop optimization that applies to nonlinear systems with complicated
constraints. Towards this end, this thesis presents contributions to the
recent field of online feedback-based optimization with a focus on non-
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convex constrained optimization problems.
Projected gradient flows are the technical and mathematical center

point of this thesis. We study their approximation and implementation
as feedback controllers. We establish various convergence and robustness
properties, and we show how they inform the design of real-time closed-
loop optimization schemes for power systems operations.
In the first part, we study the general class of projected dynamical

system (PDS). We extend their definition to arrive at a coordinate-free
formulation, which makes them adequate for modeling physical systems.
We further introduce and study anti-windup approximation (AWA) and
linearized output projection (LOP) discretizations of PDS. AWAs result
from high-gain anti-windup controllers and motivate the exploitation of
physical input saturation for constraint enforcement in feedback-based
optimization. LOP discretizations, on the other hand, offer a possibility
to reliably enforce output constraints with a combination of first-order
model information and output measurements.

The second part of the thesis emphasizes the convergence and robust-
ness properties of projected gradient flows. In particular, we establish
nominal convergence and the relation between stability and optimal-
ity for coordinate-free projected gradient flows. We show that these
properties are preserved for anti-windup approximations and LOP dis-
cretizations of projected gradient flows.
Moreover, we study the stability requirements when interconnecting

a controller that implements a projected gradient flow with a dynamic
physical system. This type of robustness is particularly important for
the envisioned application where feedback-based optimization schemes
must not destabilize the power system dynamics.

To conclude the second part, we extend the applicability of projected
gradient flows to time-varying setups by introducing sweeping gradi-
ent flows and quantifying their tracking performance in a special case.
Again, this topic is essential for power systems, where electricity demand,
available generation capacity, and other factors change over time, and
feedback-based optimization schemes need to reliably track the optimal
state.
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Finally, in the third part, we illustrate these theoretical results for
the closed-loop optimization of power systems. However, rather than
presenting algorithms tailored to specific use cases or grid levels, we
focus our discussion on the general control designs, possibilities, and
fundamental limitations. For these designs, we also infer theoretical
guarantees from the results of the first two parts of the thesis.
All in all, this thesis provides a fundamental look at the possibilities

of implementing projected gradient flows in closed loop with a physical
plant and points at the opportunities and potential shortcomings for the
optimal real-time operation of power systems.
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Zusammenfassung

Regelsysteme, die keine Führungsgröße benötigen, sondern direkt ein
inhärentes Gütekriterium optimieren, haben in den letzten Jahrzehnten
unterschiedliche Formen angenommen. Beispiele dafür reichen von Ex-
tremwertregelung über ökonomisch-modellprädiktive Regelung bis hin
zur Engpasssteuerung in Computernetzwerken wie dem Internet.

Eine vielversprechende Anwendung für diese Art von Optimierung im
geschlossenen Regelkreis ist der Betrieb von Energiesystemen unter dem
Einfluss schwankender erneuerbar Energien und neuartiger Verbrauchs-
formen. Eine breit abgestützte Vision besteht darin, Stromnetze so weit
zu automatisieren, dass sie intelligent auf Ausfälle, Schwankungen in der
erneuerbaren Energieproduktion und auf andere Ereignisse reagieren
können. Dabei sollen die Versorgungssicherheit nicht gefährdet und alle
verfügbaren Ressourcen bestmöglich genutzt werden.

Allerdings wirft dieses Problem selbst unter vereinfachenden Annah-
men konzeptionelle Herausforderungen auf, die von bestehenden An-
sätzen nicht abgedeckt werden: Erstens kann der Leistungsfluss in einem
Stromnetz hochgradig nicht-linear sein. Dies ist insbesondere unter kri-
tischen Betriebsbedingungen der Fall. Zweitens hängt der sichere Be-
trieb eines Stromnetzes von der Erfüllung vieler Nebenbedingung wie der
Spannungshaltung oder der Leitungskapazitäten ab. Dazu kommen die
begrenzte Erzeugungskapazität und eine schwankende, aber inelastische
Nachfrage. Drittens sind Netzmodelle für große, vernetzte Stromnetze
im Allgemeinen nur beschränkt verfügbar und erlauben ausschließlich
Aussagen über den stationären Leistungsfluss.

Zusammenfassend erfordert der sichere, zuverlässige und kostengün-
stige Echtzeitbetrieb von Stromnetzen einen neuen, skalierbaren und
modellfreien Ansatz zur Optimierung im geschlossenen Regelkreis, der
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auf nicht-lineare Systeme mit komplizierten Nebenbedingungen anwend-
bar ist. Zu diesem Zweck werden in dieser Arbeit Beiträge zum ak-
tuellen Forschungsfeld der regelungsbasierten Echtzeitoptimierung für
nicht-konvexe Probleme erarbeitet.
Der technische und mathematische Schwerpunkt dieser Arbeit sind

projizierte Gradientenflüsse. Sowohl deren Approximation und Imple-
mentierung als Regler als auch grundlegende Konvergenz- und Robus-
theitseigenschaften sind Kernbestandteil dieser Dissertation. Daneben
werden konkrete Reglerentwürfe für die Echtzeitoptimierung von En-
ergiesystemen vorgestellt.
Der erste Teil dieser Arbeit befasst sich mit projizierten dynamis-

chen Systemen (PDS). Eine neue, verallgemeinerte Definition dieser
unstetigen Systeme führt zu einer koordinatenfreien Formulierung, die
für die Modellierung physikalischer Systeme geeignet ist. Ferner wer-
den anti-Windup Approximationen und linearisierte Ausgangsprojektion
(LOP) als Näherungs- und Implementierungsverfahren von PDS einge-
führt und untersucht. Anti-Windup Approximationen resultieren aus
der Verwendung von hochverstärkten anti-Windup-Reglern und zeigen,
wie physikalische Sättigung von Eingangsgrößen zur Erfüllung von Ne-
benbedingungen genutzt werden kann. Dem gegenüber erlauben LOP
Diskretisierungen Nebenbedingungen auf Ausgangsgrößen zuverlässig
zu erfüllen, indem Messungen mit Modellinformation erster Ordnung
kombiniert werden.
Im zweiten Teil werden Konvergenz und Robustheit diskutiert. Das

Augenmerk liegt dabei auf der Konvergenz koordinatenfreier projizierte
Gradientenflüsse und der Beziehung zwischen Stabilität und Optimal-
ität. Es wird gezeigt, dass anti-Windup-Approximationen und LOP
Diskretisierungen diese Eigenschaften erhalten.

Außerdem werden Stabilitätsbedingungen für die Rückkopplung einer
Regelstrecke und einem projizierten Gradientenfluss als Regler ausgear-
beitet. Diese Robustheit ist besonders wichtig für die Anwendung in
Stromnetzen, bei der eine Echtzeitoptimierung die schnelle Wechsel-
stromdynamik nicht destabilisieren darf.

Zum Abschluss des zweiten Teils wird die Anwendbarkeit projizierter
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Gradientenflüsse auf nicht-stationäre Probleme ausgeweitet. Zu diesem
Zwecke werden sweeping gradient flows eingeführt und ihre dynamische
Regelgüte in Spezialfällen quantifiziert. Dieses Thema ist wichtig im
Zusammenhang mit Energiesystemen, wo sich der Energiebedarf, die
verfügbare Erzeugungskapazität und andere Faktoren im Laufe der Zeit
ändern und regelungsbasierte Optimierungsapplikationen dem optimalen
Zustand zuverlässig folgen müssen.
Im dritten Teil werden diese theoretischen Ergebnisse anhand der

regelungsbasierten Optimierung von Energiesystemen veranschaulicht.
Anstatt Algorithmen vorzustellen, die auf spezifische Anwendungsfälle
oder Netzebenen zugeschnitten sind, konzentriert sich die Diskussion
auf allgemeine Reglerentwürfe, ihre Möglichkeiten und grundlegenden
Limitationen sowie auf theoretische Garantien, die aus den Ergebnissen
der ersten beiden Teile der Arbeit abgeleitet werden können.
Alles in allem bietet diese Arbeit einen grundlegenden Einblick in

die Möglichkeiten der Implementierung projizierter Gradientenflüsse im
geschlossenen Regelkreis mit einer Regelstrecke.
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Nomenclature

Basic Notation

:= equal by definition

≡ identically equal

∅ empty set

x 7→ f(x) mapping of the point x into f(x)

f(·, y) mapping x 7→ f(x, y) for a fixed y

Rn (Cn) real (complex) n-dimensional Euclidean space

Rn≥0 non-negative orthant of Rn

Sn+ space of square symmetric, positive definite n×n-matrices

B (intB) closed (open) unit ball at 0 of appropriate dimension

I identity matrix (of appropriate dimension)

0 zero matrix (of appropriate dimension)

AT transpose of matrix A

λmax
A , λmin

A max and min eigenvalues of a square symmetric matrix A

σmax
B , σmin

B max and min singular values of a matrix B

κA condition number of a matrix A ∈ Sn+

rankA rank of a matrix A (or linear map)

xix



Nomenclature

〈·, ·〉 Euclidean inner product

〈·, ·〉A inner product induced by A ∈ Sn+

Dxf differential of a map f at point x

Df(x; v) directional derivative of a map f at point x in direction v

∇xf Jacobian (m× n-matrix) of a map f : Rn → Rm at x

gradG Φ gradient of Φ in the metric G

LFΦ(x) Lie derivative of function Φ along vector field F at x

C0 continuous maps (with appropriate domain/co-domain)

C1 class of continuously differentiable maps

C0,1 class of locally Lipschitz maps

C1,1 class of C1 maps with locally Lipschitz derivative

C2 class of twice continuously differentiable maps

K∞ class of K∞ functions

KL class of KL functions

cl C closure of a set C

co C (co C) (closed) convex hull of a set C

domF domain of a set-valued map F : Rn ⇒ Rm

epi f epigraph of a single-valued map f : Rn → R

gphF graph of set-valued mapping

dC(x) Euclidean point-to-set distance from x to the set C

PC(x) Euclidean projection of the point x onto the set C

PAC (x) projection of x onto C with respect to A ∈ Sn+.

TxC tangent cone of the set C at point x

xx



Nomenclature

TCx C (Clarke) regular tangent cone of the set C at point x
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CHAPTER 1

Introduction & Survey

Most advances in mathematical optimization in the past decades have
been geared towards computational implementations. The common view-
point is that an optimization problem can be formulated, transformed,
reduced, or relaxed. However, ultimately the necessary steps to solve
the problem rely purely on numerical linear algebra, which can be im-
plemented and run on a microprocessor. Then, this offline computed
solution is used to reach a decision.
This paradigm is almost synonymous with the field of management

science and operations research [34, 129], which has flourished ever since
the inception of linear programming in the mid-20th century. Today,
this kind of offline optimization is applied in various disciplines ranging
from econometrics over statistical and machine learning [37] to optimal
control [32].

However, from a control engineering perspective, solving an optimiza-
tion problem offline (with known problem data) and implementing its
output as a decision is a “feedforward” approach. In contrast, in this
thesis, we consider feedback approaches to constrained nonlinear opti-
mization to drive a (possibly nonlinear dynamical) system towards an
optimal state. This type of closed-loop optimization has mainly been

This chapter is adapted from [Ha8]. The content is self-contained, and the
notation and style are independent of the main part of the thesis.
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Chapter 1. Introduction & Survey

pursued for four reasons:

(i) to increase robustness against disturbances and uncertainty,

(ii) to reduce dependence on model information, i.e., to make the
control model-free,

(iii) to minimize computational effort, and

(iv) to eliminate the need for an exogenous set-point or reference.

These reasons resonate well with the general feedback and feedforward
paradigms advocated in control textbooks [108, 14], and we will further
dwell on them below:
Robustness is key in optimization: More often than not, practical prob-

lems lack precise data. Parameters and states based on measurements
and statistical inference are inherently flawed, and so is the solution of
an optimization problem based on such data. The earliest attempts at
addressing this issue have resulted in the general theory of sensitivity
analysis for optimization problems [219] which asks the question of how
a solution changes as problem parameters vary. From a more practical
perspective, robust optimization [27] and stochastic programming [46]
offer ways to incorporate uncertainty in the problem. However, these
approaches are inherently conservative and can entail massive computa-
tional cost because they need to take into account the full set of possible
instances. In contrast, using feedback, one needs to react only to the
actual realization, thereby naturally achieves disturbance rejection and
increases robustness.
More radical than improving robustness is the idea of rendering op-

timization schemes model-free: A physical system defines a set of con-
straints (either algebraic or dynamic and often time-varying). Therefore,
it is only natural to probe a system for information and learn its be-
havior from measurements instead of building a static model from first
principles or previously acquired data.
These physical constraints imposed by the system cannot only be

learned; they can also be exploited to enforce constraints directly: Phys-
ical laws naturally couple inputs and outputs of a plant. Hence, for
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any input, the physical system will produce an output that satisfies this
input-output relation. Similarly, saturation effects (such as actuator
limitations) will naturally guarantee that states and inputs do not ex-
ceed their limits. Especially if one does not risk the plant’s destruction,
this type of natural constraint satisfaction can be used to lighten the
computational load of a closed-loop optimization scheme because the
physical system acts as a “constraint enforcer”.
Finally, compared to a standard feedback control loop, a closed-loop

optimization setup can run without external set-point or reference. In-
stead, an economic objective can be directly optimized as long as a
cost function can be specified. This feature is particularly powerful in
combination with the inherent constraint enforcement. Whereas in clas-
sical control setups pre-computed set-points have to be feasible (e.g., lie
within actuator limits), convergence to a feasible and optimal steady
state is a defining feature of closed-loop optimization.
The boundary between feedforward and feedback optimization, how-

ever, is not always clear cut. For instance, model predictive control
(MPC) uses feedback to achieve robustness but relies on an accurate
model based on which an optimal control problem is formulated and
solved to optimality at every iteration. On the other hand, some of
the control schemes presented in this thesis require the computationally
cheap solution of a simple quadratic program (QP) to compute a feasible
descent direction at every iteration.
Nevertheless, we focus on control schemes that result in closed-loop

dynamics that mimic optimization algorithms such as gradient descent
or saddle-point methods. The following simple example of a gradient
system interconnected with a physical plant illustrates this idea.

Example 1.1. Consider the problem of minimizing an objective Φ(y) as
a function of the measured output y of a plant

ζ̇ = f(ζ, u) y = g(ζ) + d , (1.1)

where d denotes an additive disturbance to the output.
Assume that, for any fixed input u, the plant is asymptotically stable

with fast-decaying transients such that for every u there exists a unique
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∫ ζ̇ = f(ζ, u)
y′ = g(ζ)

−∇h(u)T∇Φ(y) d

u

+

y

+

Figure 1.1: Simple Gradient Flow

output y = h(u) + d where h is the steady-state input-to-output map,
namely, 0 = f(h′(u), u) for some h′ such that h = g ◦ h. We assume h
to be differentiable.

To minimize Φ̃(u) := Φ(h(u) + d) = Φ(y), we consider a gradient flow

u̇ = −∇Φ̃(u)T = −∇h(u)T∇Φ(h(u) + d)T , (1.2)

where ∇h(u) appears due to the chain rule applied to Φ(h(u) + d).
The gradient flow (1.2) is a closed system. However, recognizing

h(u) + d as the measurable output y, (1.2) can be easily transformed
into an open system and interconnected with the plant (1.1), as shown
in Figure 1.1 This yields the closed-loop dynamics

plant
{
ζ̇ = f(ζ, u)
y = g(ζ) + d

controller
{
u̇ = −∇h(u)T∇Φ(y)T .

(1.3)

It can be easily seen that any equilibrium point (ζ?, u?) of (1.3) is a
steady-state of the plant and satisfies ∇Φ̃(u?)T = ∇h(u?)T∇Φ̃(h(u?) +
d)T = 0. Therefore, u? is a critical point of Φ̃ (and guaranteed to be a
minimizer if Φ̃ is convex).
Furthermore, concerning stability, if the plant dynamics are fast-

decaying, we may assume that y ≈ h(u) + d. In singular perturbation
terminology, this approximation yields the so-called reduced dynamics,
which, in the current case, are given by (1.2).
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Crucially, the control law does not require explicit knowledge of h
(nor of f, g). Instead, only the gradient of the cost function ∇Φ(u) as
well as the steady-state input-output sensitivities ∇h(u) are required.
Moreover, the additive disturbance d does not need to be (explicitly)
estimated and is fully rejected, i.e., an equilibrium is a critical point of
Φ(h(u) + d), independently of the value of d. In practice, if ∇h(u) needs
to be computed online, it is often beneficial to use the measurement y in
the estimate of the input-output sensitivities ∇h(u). This is particularly
the case when disturbances enter the plant non-additively.
Finally, if f(ζ, u) = Aζ +Bu+ w and g(ζ) = Cζ form a linear time-

invariant (lti) system and Φ(y) = 1
2‖y − y

set‖2 is quadratic with a set-
point yset, we recover a simple linear integral controller u̇ = −HT (y−yset)
where H := −CA−1B (assuming that A is Hurwitz). �

While Example 1.1 captures some of the main conceptual ideas behind
steering physical plants to an optimal steady state without exogenous
inputs, it is not fully representative of some of today’s challenging ap-
plications.
For instance, instead of simply optimizing an objective as a function

of the plant output, the cost might also depend on the plant inputs.
More importantly, however, in real-world applications constraints on the
plant inputs and outputs often take center stage. Hence, the general
optimization problem that one wishes to solve in closed loop can often
be expressed as

minimize Φ(u, y)
subject to y = h(u, d)

u ∈ U
(u, y) ∈ X ,

where h is the steady-state input-to-output map of a plant (as in Exam-
ple 1.1) and d is a disturbance, albeit not necessarily additive. Further,
U denotes a set of admissible inputs, and X is a set of additional engi-
neering constraints on inputs and outputs.

One application where the full generality of (1.4) is required concerns
the optimal real-time operation of power systems which will be discussed
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in more detail in Part III of this thesis:
Example 1.2. The task of operating a power grid safely and efficiently
may be cast as an AC optimal power flow (ACOPF) problem [106, 107,
134] which is given, in a simplified and stylized version, as

minimize
v,θ,pG,qG

N∑
l=1

Φl(pG
l , q

G
l ) (1.5a)

subject to ∀l = 1, . . . , N : (1.5b)

pG
l − pL

l = vl

N∑
k=1

vk (glk cos(θl − θk) + blk sin(θl − θk))

(1.5c)

qG
l − qL

l = vl

N∑
k=1

vk (glk sin(θl − θk)− blk cos(θl − θk))

(1.5d)
p
l
≤ pG

l ≤ pl (1.5e)

q
l
≤ qG

l ≤ ql (1.5f)

vl ≤ vl ≤ vl (1.5g)

(g2
lk + b2

lk)
(
v2
k + v2

l − 4vkvl cos(θk − θl)
)
≤ i2kl , (1.5h)

where v, θ, pG, qG, pL, qL ∈ RN denote voltage magnitude, voltage angles,
real and reactive power generation and demand, respectively, at each
of the N buses of the grid. The generation at each bus l incurs a cost
Φl(pG

l , q
G
l ) and the load pL, qL is assumed to be fixed.

The physical flow of power at steady state is governed by the AC
power flow (ACPF) equations (1.5c–d) [181, 105] where glk and blk
denote the so-called conductance and susceptance of a transmission line
connecting buses k and l. We adopt the convention that glk = blk = 0
if l and k are not connected by a line. Furthermore, (1.5e–g) denote
simple constraints on power generation and voltages at each bus, and
(1.5h) limits the current that flows through the line from k to `.

Even in an offline setting, ACOPF problems like (1.5) are computa-
tionally demanding, because of the nonlinear power flow equations which
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render the entire problem non-convex (although convex relaxations of
the problem can yield global optimality certificates [181, 169]).
In an online setting, the purpose of (1.5) is to find adjustments to

the power flow and power injections, given the actual realization of
disturbances (as opposed to predictions used in offline day/hour-ahead
calculations). Moreover, (1.5) can also be considered when reacting to
unforeseen contingencies such as line outages (which modify gkl and bkl)
or generator outages (which modify pl, ql).
In order to express (1.5) as a problem of the form (1.4), we need to

identify inputs, outputs, and disturbances. For this purpose, for each
generation unit, the real power output and either the reactive power or
voltage magnitude at are assumed to be controllable (more precisely, one
distinguishes between so-called PQ- and PV-buses). Further, the loads
pL, qL are considered be a disturbance in (1.5). All remaining quantities
are treated as outputs (see [Ha14] for a more detailed discussion including
the role of the slack bus in numerical simulations).
Consequently, (1.5) can be brought into the form (1.4) where the

constraints (1.5e–h) are assigned to either U or X according to whether
they apply only to controllable variables or not. Under normal operating
conditions, the local existence and differentiability of the steady-state
map h is guaranteed by the implicit function theorem. �

We will see that solving the ACOPF problem in Example 1.2 in closed
loop combines several aspects that require a new approach to feedback
optimization that satisfied the following criteria:

(i) A large number of physical and engineering constraints of different
nature have to be satisfied, some at all times (e.g., limits on gener-
ation) and others only asymptotically (e.g., thermal limits on line
flows).

(ii) In general, only an approximate model in the form of the steady
state AC power flow equations is available. A dynamical model
for a large-scale power system is in practice not available, as parts
of the system are owned by different stakeholders, models are
proprietary, and the operating conditions (e.g., generation units
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online) are time-varying. However, the power system dynamics
may be assumed to be asymptotically stable.

(iii) The nonlinear nature, especially under critical operating condi-
tions, of the power flow equations call for methods that work in
the absence of convexity and for ill-conditioned problems.

These requirements lead us to consider online feedback-based optimiza-
tion as the main topic of this thesis. This recent field builds upon the
basic principle illustrated in Example 1.1 of interconnecting optimiza-
tion algorithms with a physical system. In particular, for more general
problems of the form (1.4) (such as the ACOPF problem) a variety of
constraint enforcement mechanisms have been developed and different
implementation and robustness aspects have been studied, yet many
problems remain unsolved new algorithm designs keep emerging.

The remainder of this introductory chapter is structured as follows: In
Section 1.1 we discuss several existing approaches, all of which can be con-
sidered closed-loop optimization techniques, each of them with specific
use cases, advantages, and disadvantages. Because we aim at intercon-
necting off-the-shelf optimization algorithms with physical systems, in
Section 1.2 we review recent advances in the study of numerical optimiza-
tion algorithm as dynamical systems. This allows us in Section 1.3 to
review recent work on constrained online feedback-based optimization
and to illustrate different control designs which will be studied more
rigorously in the remainder of the thesis. After this preview, Section 1.4
describes the structure of the remaining chapters.

1.1 Existing Approaches for Optimization
in Closed Loop

The approaches to closed-loop optimization that we present in the fol-
lowing have emerged independently from each other and follow different
philosophies. Each of methods is particularly suited for specific types of
problems, but none comes without drawbacks.
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1.1 Existing Approaches for Optimization in Closed Loop

(i) Extremum seeking puts an emphasis on being completely model-
free and instead of probing the system with the help of a pertur-
bation signal. However, the approach is limited to systems with
low-dimensional inputs and methods for enforcing constraints are
limited.

(ii) Real-time iteration schemes aim at solving classical receding hori-
zon problems with limited resources. The focus is the stabilization
of a plant under state and input constraints. For this purpose, a
full model of the plant dynamics is generally required and compu-
tational burden scales with the planning horizon.

(iii) The primary merit of modifier adaptation is to mitigate the effects
of model uncertainty when solving successive optimization prob-
lems. By itself, this method does not reduce the computational
requirements compared to feedforward optimization. Furthermore,
an auxiliary method to estimate input-output sensitivities is re-
quired.

(iv) Algorithms for time-varying optimization are specifically designed
to track the optimizer of a non-stationary optimization problem
and provide quantifiable performance guarantees. However, the
need for a unique optimizer to track confines these schemes mostly
to convex optimization problems.

(v) The control designs in the context of network utility maximization
focus on a distributed implementation, but require a particular
problem structure, and do not easily generalize to non-convex
problems.

1.1.1 Extremum Seeking

Arguably, one of the oldest control methods to steer a plant to an
extremum of a function rather than tracking a set-point is extremum
seeking (ES) (see [238, 11] for historical accounts). Its popularity rose
in the 1950’s and 60’s as part of adaptive control and later regained
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momentum with [239, 152] which, for the first time, established rigorous
stability guarantees.

The main idea behind ES is to inject a dither signal to locally explore
the objective function and “learn” its gradient. This dither signal is
generally sinusoidal, but other perturbations have been proposed [246].
Consequently, the objective can be optimized without recourse to any
model information about the plant (and objective) and without any
computation aside from the addition and multiplication of the dither
signal. The following example illustrates this fact.

+

a − ε
a

ζ̇ = f(ζ, u)
y′ = g(ζ)

sin(ωt)
∫

d

× Φ(y)

u

y

Figure 1.2: Simple Extremum Seeking to minimize Φ(h(u))

Example 1.3. Consider the same setup as in Example 1.1. Namely, we
wish to minimize Φ(y) where y is the output of a plant of the form (1.1)
with a steady-state input-to-output map y = h(u) + d. We assume that
the plant is single-input-single-output.

The reduced ES dynamics of the system in Figure 1.2 (i.e., replacing
the fast plant dynamics by the steady-state map y = h(u) + d as in
Example 1.1) take the form

u̇ = f(u, t) := Φ
(
h
(
− ε
au+ a sin(ωt)

)
+ d
)

sin(ω(t)) . (1.6)

The averaged dynamics are obtained by integrating f(u, t) from 0 to T =
2π
ω which, by using the Taylor expansion of Φ

(
h(− ε

au+ a sin(ωt)) + d
)
,

yields

1
T

∫ T

0
Φ
(
h
(
− ε
au+ a sin(ωt)

)
+ d
)

sin(ω(t)) ≈ − ε
2∇h(u)∇Φ(h(u)) .
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Thus, the ES scheme approximates the gradient flow (1.2) from Exam-
ple 1.1. However, in contrast to (1.1), ES merely requires measurements
of Φ(y) and neither an estimate of ∇h nor of ∇Φ.
Moreover, ES systems generally evolve on three different timescales:

the plant dynamics (which have been ignored for this example), the
frequency range of the probing signal, and the slow averaged optimization
dynamics. �

Classically, averaging theory and singular perturbation analysis (for
dynamic plants) are used to render the insights from Example 1.3 rigor-
ous [239, 122, 152]. More recently, ES schemes have also been studied
with the help of Lie bracket approximations which offer an alternative
perspective [120, 86, 87].
While most works considered only finding extrema (i.e. minima or

maxima) of unconstrained problems, constraints have been incorporated
by submanifold constraints [88], barrier functions [74], and saddle-point
formulations [89], and ES has been studied for Nash-equilibrium seek-
ing [109, 231]. Further, ES has been studied for stochastic [233, 65]
and discrete-time setups [97, 110, 232], and hybrid extensions have been
proposed [202, 204].

ES has been applied in the automotive sector [145], process engineer-
ing [121], formation flight and obstacle avoidance [183, 36] and others.
More modern applications concern problems in renewable energy such
as maximum power point tracking in photovoltaic [116] or wind energy
systems [115, 151], and Volt-VAR control in power systems [12].
Despite strong theoretical guarantees and being model-free, ES has

been confined to relatively low-dimensional, mostly unconstrained, sys-
tems. This is due to the fact that plants with multidimensional input
require probing signals at different, carefully chosen, frequencies that do
not interfere with each other.

1.1.2 Real-Time Iterations

Historically speaking, MPC provides a method to control and stabilize
a plant that is subject to input and state constraints. This is achieved

11



Chapter 1. Introduction & Survey

by numerically solving an optimal control problem with a finite receding
horizon at every sampling time, but implementing only the first input
of the computed optimal policy before solving the next problem with a
shifted horizon and based on an updated state measurement.
The high computational requirements have long limited the applica-

tion of MPC to relatively slow and low-dimensional plants in process
engineering. For standard (linear) MPC, this issue has led to explicit
MPC [7, 26] which exploits multi-parametric optimization [249] to solve
the receding horizon problem ahead of time and implement the controller
as a simple lookup table.
More interesting from our perspective are real-time iterations (RTIs)

for nonlinear MPC [80, 40]. These methods have emerged as an approx-
imation of multiple shooting methods [78] and have been proposed for
various applications in process engineering [82], robotics [78], and for
airborne kites [77].
The main idea of RTIs is to solve the optimal control problem only

approximately at every iteration by performing only a single iteration
of the underlying optimization algorithm (which is usually an sequential
quadratic programming (SQP) scheme [206, 266, 191]). The first input
of the approximate control policy is implemented and the optimization
problem for the next sampling period is warm-started at a shifted version
of the previous (approximate) solution. Example 1.4 below illustrates
this procedure.

The underlying idea of RTIs is that the approximation error committed
by performing only a single optimization iteration is offset by savings in
computation time. In particular, because the receding horizon problem
is solved more often, it changes less between samples. This feature allows
one to prove stability and convergence of RTI schemes [81, 77, 79].
However, although they interleave optimization iterations with phys-

ical dynamics, RTIs have been developed for stabilization and require
an exogenous set-point as well as a dynamic model of the plant. This
is particularly reflected in the assumptions on the state cost function,
which are, roughly speaking, required to be quadratic functions centered
at the origin (see also Remark 1.1 further below on economic MPC).
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Example 1.4. We consider a discrete-time plant ζ+ = f(ζ, u) for which
the origin is a steady state. For simplicity, we do not consider any input
or state constraints, although RTIs can incorporate them naturally.
Consider the following receding horizon problem at time l

minimize
r1:K−1,s1:K

K−1∑
k=1

[ skrk ]T Q [ skrk ] + sTKRsK

subject to 0 = s1 − ζl
0 = sk+1 − f(sk, rk) ∀k ∈ {1, . . . ,K − 1} ,

(1.7)

where K denotes the horizon length, Q,R are positive definite stage and
terminal cost matrices, and ζl denotes the measured plant state at time
l. Let (r̂l, ŝl) denote the solution of (1.7) for the sampling instant l.
Then the feedback control law at l is given by u[l] = r̂l1. In other words,
upon solving (1.7), the first control of the optimal policy is implemented
at l. This is the key mechanism behind standard MPC.
RTI schemes approximate the solution of (1.7) by performing only a

single iteration of an SQP method. Namely, let z = (s, r, λ) and consider
the Lagrangian at time l defined as

Ll(z) :=
K−1∑
k=1

[ skrk ]T Q [ skrk ] + sTKRsK

+ λ1(s1 − ζl) +
K−1∑
k=1

λk (sk+1 − f(sk, rk)) .

An SQP iteration then takes the form

z+ = z + ∆z where ∆z solves ∇Ll(z) +∇2
zzL

l(z)∆z = 0 , (1.8)

where, in practice, the inverse of the Hessian ∇2
zzL

l is often approxi-
mated.

Crucially, the receding horizon problem (1.7) at the next sample l+ 1
is warm-started with the shifted approximate of the previous sample.
This procedure leads, under additional assumptions, to local stability of
the scheme. �
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Example 1.1 elucidates several differences with respect to the optimal
steady-state control problem (1.4) we wish to solve: First, the purpose
of RTIs is primarily to drive a plant to the steady state at the origin, not
seeking out a steady-state with minimal cost (see Remark 1.1 below).
Further, a full dynamic model f of the plant dynamics is required, and
finally, the computational burden of solving the SQP iteration scales not
only with the system dimension but also with the prediction horizon. Of
course, compared to Example 1.1, while stabilizing the system RTI also
seeks to minimize a quadratic running stage cost.
Remark 1.1. Traditionally, linear and nonlinear MPC have been consid-
ered with the goal of stabilizing a plant and to track a precomputed
set-point or trajectory. The modern variation of economic MPC [93, 91,
209] studies the effects of incorporating an economic objective directly
and thus not requiring an exogenous setpoint. This idea is very much
in line with the topic of this thesis.
Economic MPC, however, still requires the solution of an optimal

control problem at every iteration. Thus, it is computationally very
expensive and does not seem to be amenable to an RTI implementation.
Moreover, the optimal solution is not a-priori guaranteed to be a steady-
state of the plant. This makes the stability analysis of economic MPC
more involved and, in particular, still requires a full model of the plant
dynamics. �

1.1.3 Modifier Adaptation

In the context of real-time optimization in process engineering, the notion
of measurement-based optimization [103, 56] has been used to collect
several approaches towards mitigating the effects of model uncertainty
in repetitive optimization applications. In the following we focus on
so-called modifier adaptation (MA) methods [172, 173, 104, 112].
Given a model of a physical system, assume that we can solve an op-

timal steady-state problem like (1.4) numerically. When implementing
this solution by setting the appropriate inputs of the plant to their pre-
computed optimal set-points, the mismatch between the model estimate
(used for computing an optimal state) and the actual plant will invari-
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ably lead to an system state that is suboptimal, and possibly violating
constraints.

If the optimization of the optimal plant state is performed repeatedly,
and at each step the solution is implemented on the physical system, MA
provides a method to steadily reduce the discrepancy between model-
based solution and physical plant by modifying the optimal steady-state
problem at every iteration by incorporating plant measurements from
the previous iteration. MA does not directly “learn” or identify a better
model of the plant. Instead, MA corrects only the optimization problem
by adding adaption terms to the cost and constraint functions. The
following simple example illustrates this basic concept.
Example 1.5. Consider the same setup as in Example 1.1. Namely, we
wish to minimize the function Φ̃(u) := Φ(h(u) + d) where y = h(u) + d

is the steady-state input-to output map of a plant with fast-decaying
dynamics. However, only an approximate model h̃ of h and an estimate
d̃ of d are available.
Therefore, instead of minimizing Φ̃, we repeatedly solve the problem

minimize
u

Φ̃(h̃(u) + d̃) + λTk u , (1.9)

where λk is a modifier at iteration k that is adapted at every iteration
based on the outcome of the previous iteration u?k. In particular, λ is
updated according to

λk+1 = ∇Φ̃(u?k)−∇Φ̃′(u?k) ,

where ∇Φ̃(u?k) needs to be estimated and ∇Φ̃′(u?k) := ∇
(
Φ(h̃(u?k) + d̃)

)
is model-based. The particular structure of Φ̃, however, lets us write

∇Φ̃(u?k) = ∇h(u?k)∇Φ(h(u?k) + d) ,

where h(u?k) + d is the measured output of the plant. Thus, essentially,
only ∇h(u?k) needs to be estimated. If the scheme converges to some u?,
we can easily verify that u? is a critical point of Φ̃(u). �

Example 1.5 is simplified to the point that a comparison with Exam-
ple 1.1 is easily possible. However, MA methods are easily applied
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to constrained problems where modifiers on constraints are introduced
analogously [93, 69, 119].

Clearly, the tricky part about MA is the estimation of the (true) plant
sensitivities ∇Φ̃(u?k). This can be achieved with finite differences [171],
but ultimately, restricts the method to fairly low-dimensional setups.
Moreover, MA does not reduce the computation burden nor does it aim
to reduce the amount of model information required.

1.1.4 Time-Varying Online Optimization

A topic that is central to online optimization, either in open or closed
loop, is the study of optimization problems that vary over time. In
recent years, this topic has garnered significant interest because of its
relevance to many applications in control, robotics, signal processing,
and others.
The main focus has been the development of online algorithms that

can track the solution of a time-varying optimization problem with tight
performance guarantees. One can distinguish two different perspectives:
On the one hand, [163, 35, 123, 137, 269] and others frame time-

varying optimization as an iterative learning problem in following sense:
At every iteration k an agent chooses an action xk and subsequently a
convex function Φk is revealed. The agent’s goal is to minimize her regret,
i.e., some measure of accumulated suboptimality. In the simplest case,
this may be the static regret

∑
k Φk(xk)−minx

∑
k Φk(x) comparing the

player’s actions against the best “constant” decision, or dynamic regret∑
k Φk(xk)−

∑
k minx Φk(x) which compares the agent’s actions against

the sequence of minimizers of Φ.
On the other hand, [242, 207, 226, 208] are inspired more by control

theory and describe time-varying optimization as a tracking problem
whereby an optimization algorithm defines an time-varying solution map
t 7→ x?(t) that needs to be followed as closely as possible by the online
optimization scheme.
Both avenues share common points: First, convexity is generally as-

sumed to guarantee the existence of a unique minimum and, in the case
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of strong convexity, a unique minimizer [225]. Exceptions are [Ha10, 242]
where results for non-convex optimization problems are presented. Sec-
ond, to give meaningful performance guarantees, some sort of “bounded
variation” in the optimization problem has to be assumed. For this pur-
pose, assumptions about the time-variability and (uniform) boundedness
of the problem components have to be made. A common assumption
for this purpose is to assume that the rate of change of the optimizers is
bounded by a known constant. This assumption is relaxed [Ha10] which
shows how, in special cases, the rate of change of the optimizer can
be bounded using information about the objective and the constraint
functions only.

Depending on the application, the time-varying optimization problem
might be unconstrained [201], or constrained to a stationary set [178, 123,
137, 269] or have time-varying constraints [Ha10, 242, 207, 208]. Time-
varying constraints have been dealt with using barrier functions [96, 95]
or perturbed sweeping processes [Ha10, Ha12, 242].
Roughly speaking, algorithms for time-varying optimization can be

divided into running algorithms that do not incorporate any informa-
tion about the evolution of the problem [29, 242, 201] and predictive
schemes that exploit some knowledge or estimate about the change in
the optimization problem [163, 96, 224, 226].

Example 1.6. Consider a time-varying objective function Φ(x, t) that is
continuously differentiable in x. Assuming measurability of ∇xΦ(x, t) in
t, we may consider the gradient system

ẋ = −∇xΦ(x, t) (1.10)

to try to track minimizers of Φ(x, t) over time.
Assume, for simplicity, that Φ(x, t) is β-strongly convex in x for all

t. Consequently, for every t, there exists a unique minimizer x?(t) of
Φ(x, t). Furthermore, assume that x?(t) is `-Lipschitz continuous, i.e.,
‖x?(t′)− x?(t)‖ ≤ `‖t′− t‖. Namely, the rate of change of the optimizer
is bounded.
Then, the distance between a trajectory x(t) of (1.10) and x?(t) sat-
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isfies

d
dt

1
2‖x(t)− x?(t)‖2 ≤ 〈ẋ(t), x(t)− x?(t)〉+ `‖x(t)− x?(t)‖ .

Consequently, ‖x(t)−x?(t)‖ is decreasing as long as ‖x(t)−x?(t)‖ > `/β.
It follows from standard invariance arguments that, as t→∞, x(t) will
be `/β-close to x?(t). A similar statement holds for the discrete-time
case.
If, in addition, Φ is twice continuously differentiable and the time

derivative of ∇xΦ is available, then trajectories of

ẋ = −τ∇xΦ(x, t)T − d
dt (∇xΦ)T (x, t)

are guaranteed to converge to x?(t) as t → ∞. To see this, one may
consider the time-varying Lyapunov function W (x, t) := 1

2‖∇xf(x, t)‖2
whose time-derivative is negative for all t and all x(t) 6= x?(t). �

1.1.5 Distributed Network Utility Maximization

Arguably one of the largest man-made distributed feedback systems is
formed by the congestion management mechanisms at the heart the
internet [167]. These protocols manage the allocation of link capacities
to individual connections in highly dynamic environments, for heteroge-
neous agents, and subject to real-world imperfections such as delays [240,
193, 261, 256].

Deterministic, continuous-time flow models have been particularly
successful in explaining these protocols, by providing an optimization-
based perspective in terms network utility maximization [168, 218, 166,
142], and enabling improved designs [260, 265, 259]. The following
example illustrates the basic modeling approach.
Example 1.7. Given a communication network, let a set of N sources
share M links. The set of links used by each source are collected in the
routing matrix R ∈ RN×M in the sense that Rij = 1 if link j is used by
node i and Rij = 0 otherwise.
Each link j in the network has an associated congestion measure µj

(also referred to as price) which may be derived from queuing delays
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or packet loss. Each link j has a finite capacity cj . Each source i has
a controllable source rate xi, e.g., in the form of its window size. The
different source rates define an aggregate flow for each line given by
y = Rjx where Rj is the row of R corresponding to link j. Conversely,
sources are assumed to have access to the respective aggregate price
RTµ. This is, for instance, satisfied by the fact that the aggregated
probability of a packet loss (which can be estimated by the source) can
be approximated by

∏
j∈Li(1 − pj) ≈ 1 −

∑
j pj where Li denotes the

links used by source i and pj is the probability of a packet being dropped
on link j.
The simplest link algorithm to compute µj is given by the projected

gradient law µ̇j = Π [yj − cj ] (µj) where, for now, Π [yj − cj ] (µj) =
yj − cj if µj = 0 and yj > cj , and Π [yj − cj ] = 0 otherwise.
Source controllers can often be modeled as ẋi = −∇Φi(xi) − piyi

where Φi(xi) is a specific type of cost function, reverse-engineered and
depending on the particular protocol. (For consistency with the rest
of the thesis, we consider the minimization of a cost, rather than the
maximization of a utility function).
Hence, congestion control mechanisms interconnect source and link

controllers into a feedback loop as illustrated in Figure 1.3 where Φ(x) :=∑
i Φi(xi). Importantly, each controller is fully distributed and requires

only locally available information.

R

∇Φ(x)
∫

Π[y − c](µ)

∫
RT

x y

µ

−

−

Figure 1.3: Simple Network Utility Maximization
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Given the optimization problem

minimize Φ(x) subject to Rx ≤ c , (1.11)

note that the closed-loop dynamics

ẋ = −∇xL(x, µ) = −∇Φ(x)−RTµ
µ̇ = Π [∇µL(x, µ)] (µ) = Π [Rx− c] (µ)

(1.12)

form a (projected) saddle-point flow of the Lagrangian L(x, µ) = Φ(x) +
µT (Rx − c). Since Φ is convex, trajectories of (1.12) can be shown to
converge to saddle-points of L, all of which correspond to optimizers
of (1.11). �

From a control and optimization perspective, source and link controllers
form a closed feedback loop that implicitly tracks the solution of the
underlying utility maximization problem [258]. From the perspective of
closed-loop optimization, one can argue that the link controllers define a
plant which implements the dual dynamics that have to be complemented
by controllers that form the primal dynamics. This interpretation, how-
ever, does not quite fit the optimal steady-state control problem (1.4).

Another possibility, more in line with the optimal input-output prob-
lem (1.4), is to assume that y = Rx forms a simple algebraic plant
and that link and source controllers together form a two-stage dynamic
controller where µ is an internal variable. This interpretation, however,
clearly ignores much of the particular structure which allows for a very
natural distributed implementation.
This same problem structure can also be observed more generally in

optimization problems over networks where constraints are either local
to each node or take the form of linear balancing constraints for which
there exists an effective way to compute a price-signal.
Another important application where this structure can be identi-

fied and exploited is frequency control of power systems. Namely, in
AC power grids, the deviation of the system frequency from its nominal
value can be seen as a pricing signal that is available to all grid-connected
components and indicates a mismatch between power generation and
consumption. This and other insights have led to extensive work on
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optimal frequency control schemes based on distributed averaging-based
control [85, 10] and primal-dual methods [165, 267, 141] which iden-
tify already existing control mechanism as optimization dynamics and
propose extensions or improved designs (see [179] for other pertinent
references).
Although, this type of feedback-based optimization naturally admits

a distributed implementation, it requires a special structure with either
the physical system or an additional integrator implementing the dual
dynamics. Furthermore, as we will see in Section 1.2.1, the primal-dual
dynamics that form the closed-loop behavior do not easily generalize
to non-convex problems with the same global stability and convergence
guarantees as for convex setups.

1.2 Optimization Algorithms as Dynamical
Systems

In this section, we survey advances in the study of optimization algo-
rithms (without feedback control aspect), because these insights are
important for closed-loop optimization since they may inspire new con-
trol designs and provide important theoretical guarantees.

In recent years, renewed attention has been paid to the fact that many
numerical optimization algorithms can be in interpreted as dynamical
systems (equipped with a stopping criterion). Hence, two questions
have been asked: First, can dynamical systems inspire new optimization
algorithms? And second, can existing algorithms be better understood
using tools from dynamical systems analysis?
The former question has been supported by the fact that optimiza-

tion dynamics such as gradient flows are well-defined and well-behaved
on abstract spaces including smooth manifolds. Consequently, various
works such as [38, 94, 51] culminating in [126] have shown how compu-
tational problems such as eigenvalue computations, sorting lists, linear
programming, etc. can be framed as optimization problems on appropri-
ate matrix manifolds and that numerical algorithms can be recovered
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from discretizing the corresponding gradient flow. These insights have,
in turn, led to the field of optimization on manifolds [3] which studies
the design of numerical algorithms to minimize cost functions defined
on Riemannian manifolds embedded in a vector space.
The latter question whether new insights for optimization can be

gained using tools from control and dynamical system theory has been
addressed in various ways. In the following we focus on saddle-point
flows and accelerated first-order methods, both of which have been under
intense investigation over the last years.

1.2.1 Primal-Dual Saddle-Point Dynamics

Simply speaking, under weak technical assumptions, solutions of a con-
strained optimization problem are saddle-points of the associated La-
grangian. For this reason, dynamical systems that seek out saddle-
points rather than extrema of a function are of particular interest for
constrained optimization.
Historically, saddle-point flows have primarily been studied in the

context of nonlinear circuit analysis [228, 50], but their potential for
optimization has been observed even before that [13, 149]. Although
saddle-point flows have been studied throughout the years[39, 255], they
have recently become a topic of intense study due their importance in
the context of distributed network optimization (Section 1.1.5).
Generally, if a saddle function L(x, µ) is convex in x for every µ,

concave in µ for all x, and either strictly convex in x or strictly concave
in µ, then trajectories of the system

ẋ = −∇xL(x, µ)T µ̇ = ∇µL(x, µ)T (1.13)

converge to a saddle-point of L, i.e., a point (x?, µ?) such that L(x, µ?) ≥
L(x?, µ?) ≥ L(x?, µ) for all x and all µ. In particular, (1.13) consists of
a gradient descent in the primal variables x and a gradient ascent in the
dual variables µ.

Differentiability of L is not generally required. In fact, (1.13) can be
generalized to include projections on both x and/or µ [Ha7, 58–60] and,
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even more generally, (1.13) can be defined in terms of subgradients if L
is not differentiable [117, 255].
Convergence proofs for (1.13) and its generalization usually exploit

monotonicity of the vector field [−∇xL(x, µ) ∇µL(x, µ)] and apply an
invariance argument. However, without either strict convexity in x or
strict concavity in µ, convergence to equilibria is not guaranteed and,
instead, oscillations may occur [132] which can, however, be eliminated
with a simple augmentation term [Ha7].

The following example illustrates the construction of a projected
saddle-point flow to solve a nonlinear optimization problem with dif-
ferent types of constraints.
Example 1.8. Consider the problem

minimize Φ(x)
subject to x ∈ X

g(x) ≤ 0 ,
(1.14)

where Φ : Rn → R and g : Rn → Rm are convex and continuously
differentiable, X ⊂ Rn is non-empty and closed convex. Further, let the
partial Lagrangian L : X × Rm≥0 → R of (1.14) be defined as

L(x, µ) := Φ(x) + µT g(x) .

We define the projected saddle-point flow

ẋ = ΠX
[
−∇xL(x, µ)T

]
(x) = ΠX

[
−∇Φ(x)T +∇g(x)Tµ

]
(x)

µ̇ = ΠRm≥0

[
∇µL(x, µ)T

]
(µ) = ΠRm≥0

[g(x)] (µ)
(1.15)

where ΠX [w] (x) and ΠRm≥0
[w] (x) project w and v onto the tangent

cone of X and on the non-negative orthant Rm≥0 at x and µ, respectively.
Consequently, trajectories of (1.15) cannot leave X × Rm≥0. This class
of projected dynamical systems is well-studied, even for non-convex and
non-Euclidean settings [Ha2, 125, 18, 68] and will be one of the main
topics of this thesis.
Under adequate constraint qualifications and if Φ is strictly convex,

trajectories of (1.15) are guaranteed to converge to a KKT point (and
thereby to a global optimizer) of (1.14) [117].
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If Φ is non-strictly convex, then trajectories of (1.15) converge to the
optimizer of (1.15) if, instead of L, an augmented Lagrangian of the
form

La(x, µ) := Φ(x) + µT g(x) + γ(x)

is used, where γ is a convex penalty function for the set {x | g(x) ≤ 0}.
Namely, γ(x) = 0 for all x ∈ X and γ(x) > 0 for x /∈ X . This is, for
example, the case for γ(x) := ρ

2‖max{g(x), 0}‖2 [Ha7].
If Φ or g are non-convex, convergence is not guaranteed unless an

additional regularization of the form

Lb(x, µ) := Φ(x) + µT g(x) + γ(x) + ρ′

2 ‖µ‖
2

is added [29, 71, 242, 243]. However, this modification changes the
equilibria of (1.15) which then do not necessarily coincide with KKT
points of (1.14) anymore. �

Remark 1.2. Augmented saddle-point flows exhibit strong parallels with
classical PI-controllers: Consider the problem

minimize Φ(x) subject to yset = Hx+ d ,

where yset is set-point andH and d are a matrix and vector of appropriate
size.
Assume that a plant exhibits the nonlinear dynamics

ẋ = −∇Φ(x)T +HTu y = Hx+ d .

Applying a proportional controller u = −ρ(y−yset) realizes a closed-loop
system of the form

ẋ = −∇Φ(x)T − ρHT (H + d− yset)

which is the gradient flow of the penalty-augmented cost Φ(x) + ρ
2‖Hx+

d− yset‖2.
An integral controller u̇ = η(y − yset), on the other hand, leads to a

closed-loop behavior that implements the saddle-point flow

ẋ = −∇Φ(x)T − ρHTu

u̇ = η(Hx+ d− yset)
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for the Lagrangian L(x, u) = Φ(x) + uT (Hx+ d− yset) with a dual gain
η.
Finally, combining both controllers into a PI-controller, leads to the

system

ẋ = −∇Φ(x)T − ρHT (u+ (H + d− yset))
u̇ = η(Hx+ d− yset)

which is a saddle-point flow for the augmented Lagrangian

La(x, u) := Φ(x) + uT (Hx+ d− yset) + ρ
2‖Hx+ d− yset‖2 . �

All in all, saddle-point flows have proven to be very versatile and par-
ticularly useful for distributed optimization where agents share certain
constraints. However, convergence and stability results for non-convex
problems are not generally available. Moreover, even for convex prob-
lems, tuning can be difficult, especially for nonlinear problems because
suboptimal choices of the dual gain η and penalty parameter ρ can lead
to severely under- or over-damped transients, a problem that only gets
more challenging for high-dimensional and ill-conditioned problems.

1.2.2 Accelerated First-Order Methods

Even though accelerated algorithms have yet to be successfully imple-
mented as feedback controllers, we quickly survey recent results and
discuss the challenges in deploying them in closed loop with a physical
plant.

Ever since its inception, Nesterov’s accelerated gradient method [190,
189] has remained enigmatic. Its convergence rate is provably optimal for
a first-order method and is matched only by the heavy-ball method [114,
200] and the more recent “triple momentum” method [253], which was
designed using tools from robust control [164]. Nevertheless, the intuition
behind the phenomenon of acceleration remains elusive.
In [237] it was first noted that a continuous-time limit of Nesterov’s

method is given by the second-order ODE

ẍ+ 3
t ẋ+∇Φ(x) = 0 , (1.16)

25



Chapter 1. Introduction & Survey

where 3
t ẋ is commonly seen as time-varying damping term [262, 263, 15,

16].
However, for an application in (continuous-time) closed-loop optimiza-

tion, (1.16) remains ill-suited because (1.16) is non-autonomous and thus
not adequate as a running algorithm. Moreover, in [203] it was noted
that (1.16) is not robust from control-theoretic perspective since the
optimizer of Φ is not uniformly attractive and [Ha3] provides a counter-
example showing the interconnection of (1.16) with a dynamical system
is, in general, not asymptotically stable.
A case of Nesterov’s method for µ-strongly convex objectives takes

the form

xk+2 = xk+1 + β(xk+1 − xk)− α∇Φ(xk+1 + β(xk+1 − xk)) , (1.17)

where α, β are carefully chosen parameters based on µ and the Lipschitz
constant of ∇Φ. Based on this special case, an alternative time-invariant
ODE was established in [185]. However, despite its time-invariant na-
ture, (1.17) is known for this lack of robustness against inexact gradient
evaluations [177, 70, 176, 75].

Another topic of recent study are adaptive resets of the momentum in
accelerated methods [192] which have been observed to increase the ro-
bustness towards uncertainty in the algorithm parameters. Attempts at
making this heuristic more rigorous have led to new types of algorithms
in the form of hybrid dynamical systems [135, 148, 203, 247, 147].
In summary, accelerated methods have received a lot attention in

recent years and continue to inspire new work. However, their application
to closed-loop optimization remains difficult because of their general lack
of robustness.

1.3 Constrained Feedback Optimization

We now turn our attention to the main methods that have in recent years
been developed to steer plants, such as electricity grids, to an optimal
steady state subject to physical and engineering constraints.
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Early designs for this type of online feedback-based optimization can
be traced back to [53, 140]. Both works consider steering a dynam-
ical plant towards the solution of a constrained convex optimization
problem and resort to saddle-point formulations to enforce constraints.
While [140] proposed control designs based on so-called “complemen-
tarity integrators”, [53] considers a smooth saddle-flow variation and
applies backstepping to design the feedback controller. Compared to the
general problem (1.4), [53, 140] study a simple optimization problem
in the output variable only, i.e., without input constraints and a cost
function that does not depend on u.
More recent work has studied more complex (including non-convex)

problem setups, different control designs, and has explored alternative
approaches to establish stability and convergence properties. In the
following, we first classify the various control papers by their problem
setup and then provide examples of the particular methods studied in
this thesis. Most of these works have been developed in the context of
real-time power systems optimization. However, we limit ourselves to a
discussion of the control-theoretic aspects and do not discuss application-
focused works such as [144, 174, Ha14] and pertinent references in [179].

1.3.1 Convex Problem Setups

Assuming that (1.4) is a convex problem implies that the steady-state
input-to-output map h is affine. Within this problem class, [187] stud-
ies an (otherwise) unconstrained setup whereas [159, 227, 57, 66, 158]
also incorporate additional linear equality constraints on plant outputs.
In [29] more general nonlinear convex inequality constraints on the out-
puts are used and [29, 57] also incorporate general convex constraints
on plant inputs. However, it should be noted that the focus of [159,
227, 66, 158, 187] is on the interconnection with dynamical plants (see
forthcoming Section 1.3.3) and not on constraint handling.
Time-varying problems are studied in [29, 66] which also provide

bounds on the tracking performance under various assumptions (see also
Section 1.1.4). Furthermore, [29] also models the effect of measurement
noise.
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Most of these papers consider a continuous-time setup [159, 227, 57,
67, 158, 187] while only [29] works in discrete time.

The control designs are, to a large degree, based on saddle-point algo-
rithms (Section 1.2.1). For instance, [57] implements a double projection
saddle-point flow (see Example 1.8), [66] is based on the proximal aug-
mented Lagrangian method [76], and [29] implements a saddle-point flow
with regularization in the dual variables.

The architectures in [159, 158, 187] are more difficult to categorize
since they also include the design of estimators and stabilizing controllers.

1.3.2 Non-Convex Problem Setups

If the steady-state feedback optimization problem (1.4) is non-convex,
the number of possible control designs for which stability is guaranteed
is limited.
The source of non-convexity is often a nonlinear steady-state map

or non-convex cost function whereas constraints are often assumed to
be convex (especially if some sort of projection is involved). Hence,
the continuous-time formulations in [Ha3–Ha6, Ha13, Ha15] and the
discrete-time setups in [Ha1, 67, 71, 243, 241, 111] all deal with some
form of non-convexity.

In terms of the underlying optimization dynamics, projected gradient
schemes are particularly suited because of their convergence guarantees
for non-convex problems as we will see in the rest of this thesis. Other-
wise, quasi-Newton methods [241] have been considered, although they
suffer from the fact that constraints cannot be easily enforced by pro-
jection. Yet another algorithm, based on regularized saddle-point flows,
was proposed in [71, 243] (and [29] for the convex case). However, the
stability conditions for non-convex regularized saddle-point flows are
relatively involved.
The papers [71, 243, 241] further establish tracking results for time-

varying problem setups. However, the bound in [71] is with respect to
a linearly approximated problem and the bound in [241] is with respect
to a penalty-relaxed problem.
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1.3.3 Interconnection with Dynamic Plants

Most of the previously discussed papers in this section assume complete
timescale separation between plant dynamics and optimization process
and, consequently, model the plant as an algebraic steady-state map.
Notable exceptions to this assumptions are [Ha3, 159, 227, 66, 158,
Ha13, 187] which investigate the stability of interconnecting optimization
dynamics with plant dynamics.

For this purpose, [Ha3, Ha13] pursue a singular perturbation approach
and arrive at easy-to-compute sufficient conditions that guarantee overall
stability. In particular, [Ha3] considers general nonlinear (but stable)
plant dynamics and investigates a variety of optimization dynamics for
convex and non-convex problems including (projected) gradient, saddle-
point, and momentum methods. Using similar techniques, [227] provides
stability guarantees for general low-gain integral controllers that satisfy
an infinitesimal contraction property, but with a discussion of feedback-
based optimization applications limited to LTI plant dynamics.
By restricting their attention to LTI plants, [66, 187] use tools from

robust control to provide computational stability certificates in the form
of LMIs. In particular, [187] studies the joint design of stabilizing control,
estimator and optimization dynamics. Also limited to LTI plants, [159,
158] consider an output regulation framework and reduce the control
design to a stabilization problem.

1.3.4 Enforcing Input Constraints with Saturation
and Anti-Windup

Papers like [Ha3, 29, 57, 71, 111] consider constraints on plant inputs
which are, from an optimization perspective, enforced by projection onto
a set of feasible inputs. From an control viewpoint, however, one would
like to exploit physical input saturation to enforce this type of constraints.
For this purpose, [Ha4–Ha6] show rigorously how anti-windup control
schemes can be used to implement this type of constraint enforcement.
The following example illustrates the concept which will be studied in
detail in Chapters 5 and 9.

29



Chapter 1. Introduction & Survey

Example 1.9. Consider the same setup and controller as in Example 1.1.
Namely, we want to drive a plant (with fast decaying dynamics and
steady-state map y = h(u) + d) to an optimal steady state minimizing
the cost function Φ̃(u).
In addition, we assume that the plant is subject to input saturation

that acts like a projection onto a set U of admissible inputs. In order to
mitigate the effects of integrator windup, a simple anti-windup scheme
with a tuneable gain ε is in place as illustrated in Figure 1.4.

It turns out (which can be easily verified) that equilibrium points
of this feedback loop correspond to KKT points of the optimization
problem

minimize Φ(y) subject to y = h(u) + d u ∈ U .

Moreover, it can be shown that, under mild assumptions and high
enough ε, the interconnection is asymptotically stable and as ε→ 0 we
recover a projected gradient flow. �

∫
PU

ε
ζ̇ = f(ζ, u)
y′ = g(ζ)

−∇h(u)T∇Φ(y) d

u u := PU (u)

y

−

+−

Figure 1.4: Anti-windup Gradient Flow

1.3.5 Enforcing Output Constraints by Linearized
Output Projection

The following method has been proposed in [Ha1] and will be discussed in
detail in Chapters 6 and 10. The controller combines strong convergence
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1.3 Constrained Feedback Optimization

guarantees with relatively weak assumptions and easy tuning.
Example 1.10. Consider the general steady-state optimization prob-
lem (1.4) and assume that U := {u |Au ≤ b} and X := {(x, u) |Cuu +
Cyy ≤ d} are polyhedra.
To steer the plant to a solution of (1.4) we consider the feedback

control law
u+ = u+ α σ̂α(u, y) y = h(u, d) , (1.18)

where α > 0 is a fixed step-size, y = h(u, d) is the measured system
output, and σ̂α : Rp × Rn → Rp is defined as

σ̂α(u, y) := arg min
w∈Rp

‖w +G−1(u)H(u, d)T∇Φ(u, y)T ‖2G(u)

subject to A(u+ αw) ≤ b (1.19)
Cuu+ Cy(y + α∇uh(u, d)w) ≤ d ,

where H(u, d)T :=
[
Ip ∇uh(u, d)T

]
and G assigns to every u ∈ U a

positive definite matrix. While technically ∇uh(u, d) depends on the
input u and the disturbance d, in practice, it is often possible to esti-
mate ∇uh(u, d) from u and the output y without explicitly estimating d.
Furthermore, simulations indicate that the scheme is very robust against
uncertainty in ∇uh.
The feedback law (1.18) approximates a projected gradient descent,

by computing a descent direction that is feasible with respect to U and
approximately feasible (up to first order) with respect to Y. However,
any equilibrium point of (1.18) has to be feasible and a KKT point
of (1.4).
Note that, computing σ̂α(u, y) requires the solution of a quadratic

program. However, in comparison to RTI schemes, the computational
effort does not scale with a prediction horizon and no explicit model
of the plant dynamics is required. Instead, it is enough to estimate
∇uh(u, d). On the other hand, in general, (1.18) does not lend itself
to a natural distributed implementation. Although, depending on the
problem structure, one can solve (1.19) distributedly at every iteration.
Apart from the step-size α, the metric G is another design parame-

ter. Fairly standard choices are the identity matrix or the Hessian of
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Figure 1.5: Load and generation profiles for the modified 30-bus test
case in Example 1.11

the reduced cost function Φ̃(u) = Φ(h(u, d), u), although the following
example will feature a third option. �

The following example is taken from Part III of this thesis and illus-
trates the performance of linearized output projection scheme described
in Example 1.10 applied to the real-time power systems optimization
problem from Example 1.2.

Example 1.11. To track the solution of ACOPF problem as explained
in Example 1.2, we consider the output linearization approach in Exam-
ple 1.10 and implement a feedback controller according to (1.18). For
this purpose, we consider a modified version of the IEEE 30-bus power
systems test case as considered in [Ha14]. In particular, in addition to
three generators and three synchronous condensers, a wind and solar
plant provide intermittent generation capacity. Their respective profiles
are illustrated in Figure 1.5. The goal is hence to optimally use these
renewable resources without violating engineering constraints such as
voltage limits and thermal line ratings.

To implement (1.18) we evaluate H̃(u, y) ≈ ∇uh(u, d) based on input
and output measurements and the power flow model (1.5). Further, we
choose G(u) := H̃(u, y)T H̃(u, y).
Figure 1.6 illustrates the (almost perfect) performance achieved by

this feedback-based optimization approach in terms of cost compared to
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Figure 1.6: Cost value realized feedback-based optimization scheme
compared to the offline a-posteriori solution for the modified 30-bus test
case in Example 1.11

the a-posteriori sequential solution of the ACOPF problem.
More importantly, however, Figure 1.7 shows that over the entire sim-

ulation horizon constraint violations are very minor and only temporary.
The controller achieves this by jointly managing real and reactive power
infeed to manage voltage magnitudes and line currents. In particular,
both solar and wind generation have to be curtailed to prevent line
overloads. �

1.4 Structure of the Thesis

The remainder of this thesis is structured into three parts, based on their
level of abstraction and technical tools. Parts I and II share the same
terminology, and mathematical style, whereas Part III is deliberately
kept more high-level with a self-contained notation for power systems.
Nevertheless, the three parts build upon each other.

Chapter 2 summarizes most of the mathematical background required
for the results in the first two parts of the thesis. Where possible, the
usefulness for subsequent chapters is explained for each of the tools to
allow for more selective reading.
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Figure 1.7: Feedback-based ACOPF optimization for 30-bus case
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1.4 Structure of the Thesis

The definitions in Chapter 3 of metrics (Section 3.1) and prox-regular
sets (Sections 3.2 and 3.3) are used throughout the thesis. Although, for
simplicity, the reader may skip the latter and, instead, assume convexity
(which implies prox-regularity) throughout the rest of the thesis where
prox-regularity is imposed. The same simplification can also be made
for Clarke regularity.

In Part I, we study the class of projected dynamical system (PDS) and
how they can be implemented as the closed-loop behavior of feedback
control loops. These insights lay the foundation to realize constrained
feedback-based optimization in the subsequent parts.

To theoretically motivate this application, we first show in Chapter 4
that PDSs admit a coordinate-free definition, i.e., they are independent
of any particular coordinate representation. This feature is desirable for
any model of a physical system and, particularly, for steady-state power
systems for which multiple, equivalent formulations exist.

Chapters 5 and 6 present two fundamentally new ways of approximat-
ing and implementing PDSs: One the one hand we consider anti-windup
approximations (AWAs), which exploit physical saturation to enforce
input constraints, and, on the other hand, we introduce linearized out-
put projection (LOP) discretizations, which form a numerical integration
scheme that can be implemented as a feedback controller. LOP discretiza-
tions are particularly suited to enforce constraints on plant outputs and
turn out to be one of the most promising algorithms for constrained
real-time power systems optimization, as explained in Example 1.10
and Chapter 15.

For both approximation schemes, we use the theory of perturbed differ-
ential inclusions to prove uniform convergence and semiglobal practical
stability for the nominal PDS, thus motivating why we can base our
control designs on PDSs.
Part II studies continuous-time optimization dynamics in the form

of PDSs with a particular focus on projected gradient flows and their
convergence, stability, and invariance properties.
Chapter 7 provides an introduction to the second part by summa-

rizing well-known pathologies that can occur with unconstrained (i.e.,
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un-projected) gradient flows and thus illustrating the natural limitations
of gradient-based approaches which also extend to projected gradient
flows. Furthermore, Chapter 7 also discusses the relation between pro-
jected gradient flows and existing offline optimization schemes such as
proximal algorithms, which are recovered by particular discretization
schemes.

Chapters 8, 9, and 10 mirror the structure of Part I by establishing con-
vergence results for nominal projected gradient flows, their anti-windup
approximations, and LOP discretizations, respectively. In particular, for
the AWA and LOP schemes, we show robust convergence in the sense
that trajectories of both approximations converge to the equilibria of
the nominal projected gradient flow.

In Chapter 11, we establish conditions for the stable interconnection of
projected gradient flows with dynamic plants. This problem is inherent
to feedback-based optimization, particularly the real-time optimization
of power systems with complicated, partially unknown, but stable dy-
namics. Using ideas from singular perturbation theory, we show that
one can always choose a feedback gain small enough not to destabilize
the interconnected system.

Chapter 12 proposes an extension of projected gradient flows for time-
varying optimization problems. The modeling is based on so-called
perturbed sweeping processes and establishes asymptotic tracking guar-
antees for convex problems. These insights are based on the general
sensitivity results documented Appendix A. Although these results do
not achieve the same level of generality as the previous chapters, they
are informative for the local behavior of feedback-based optimization
schemes for time-varying problems.
Finally, in Part III, we discuss the relevance of these theoretical re-

sults in the context of power systems operations. Chapter 13 revisits
conventional steady-state AC power flow modeling and optimal power
flow problems.
In Chapter 14, arguably the most critical chapter of this thesis, this

power system model is cast into the framework of feedback-based op-
timization. What follows are Statements 1 and 2, which tie in all the

36



1.4 Structure of the Thesis

relevant theoretical results from the previous chapters. Further, the
chapter also provides blueprints for numerical feedback controllers and
highlights potential limitations concerning algebraic singularities.
Chapter 15 then explores three different numerical implementations

and their performance in a 30-bus test grid with renewable energy in-
feed. These simulations help us illustrate the different characteristics of
each algorithm. In particular, these computations show how well each
algorithm enforces constraints such as voltage limits and line ratings in
the presence of variable consumption and renewable infeed.
These simulations illustrate the robustness of the proposed schemes

beyond the theoretical results by considering time delays between mea-
surement and actuation and the impact of inaccurate model information.
Chapter 16 concludes the thesis. On the one hand, we summarize

the state-of-the-art for feedback-based optimization designs based on
projected gradient flows, and we list open theoretical problems. On the
other hand, we propose practical use cases for feedback-based optimiza-
tion in power system operations.
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CHAPTER 2

Preliminaries

2.1 Notation

We consider only finite-dimensional spaces. Unless noted otherwise, we
work in the usual Euclidean setup for Rn with inner product 〈·, ·〉 and
2-norm ‖ · ‖. We write Rn≥0 for the non-negative orthant. The closed
(open) unit ball of appropriate dimension is denoted by B (intB).

The closure, boundary, convex hull, and closed convex hull of a set
C ⊂ Rn are denoted by cl C, ∂C, co C, and co C, respectively. The set C is
locally compact if it is the intersection of a closed and an open set. If C
is non-empty, we use the notation ‖C‖ := supv∈C ‖v‖. A neighborhood
V ⊂ C of x ∈ C is understood to be a relative neighborhood, i.e., with
respect to the subspace topology on C. Given a convergent sequence
{xk}, the notation xk →

C
x implies that xk ∈ C for all k. If xk ∈ R,

the notation x → 0+ means that xk > 0 holds for all k and that xk
converges to 0.

Let V and W be vector spaces endowed with norms ‖ · ‖V and ‖ · ‖W ,
respectively, and let C ⊂ V . A map F : C →W is `-Lipschitz if

‖F (y)− F (x)‖ ≤ `‖y − x‖ (2.1)

holds for all y, x ∈ C. When C = Rn, we call F globally `-Lipschitz. The
map F is (globally) Lipschitz if it is (globally) `-Lipschitz for some ` > 0.
The map F is locally `′-Lipschitz at x′ ∈ C if for every ` ≥ `′ there
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exists a (relative) neighborhood N ⊂ C of x′ such that (2.1) holds for
all x, y ∈ N . In other words, `′ is the largest lower bound on ` such that
(2.1) is satisfied, i.e., `′ = lim supy→x ‖F (y)− F (x)‖/‖y − x‖. The map
F is locally Lipschitz (denoted by C0,1) if, for every x ∈ C, F is locally
`-Lipschitz for some ` > 0.
Differentiability is understood in the sense of Fréchet. Namely, if C

is open, then the map F is differentiable at x if there is a linear map
DxF : V →W such that

lim
y→x

‖F (y)− F (x)−DxF (y − x)‖W
‖y − x‖V

= 0 .

The map F is differentiable (C1) if it is differentiable at every x ∈ C.
Further, F is C1,1 if it is C1 and DxF is C0,1 (as function of x). Finally,
given bases for V (dim V = m) and W (dimW = n), the Jacobian of
F at x is denoted by the n×m-matrix ∇F (x) of partial derivatives. If
n = 1, then ∇2F (x) ∈ Rm×m denotes the Hessian of F at x.
From differential geometry, we adopt the definition that a C1 (C1,1)

diffeomorphism is a C1 (C1,1) map φ : V → W with a C1 (C1,1) inverse
between two open sets V,W ⊂ Rn. In other words, φ is an invertible
coordinate transformation between V and W.

The (Euclidean) distance to C ⊂ Rn is defined as dC(x) := inf x̃∈C ‖x−
x̃‖, and the (Euclidean) projection PC : Rn ⇒ C is given by the set
PC(x) := {x̃ ∈ C | ‖x− x̃‖ = dC(x)}.

We use the usual definition of convexity for sets and functions. Namely,
a set C ⊂ Rn is convex if for every x, x′ ∈ C we have (1− δ)x+ δx′ ∈ C
for all δ ∈ (0, 1). A C1 function f : C → R on a convex set C is (strictly)
convex (relative to C) if, for every y, x ∈ C, we have

f(y) ≥ (>)f(x) +∇f(x)(y − x) ,

and f is β-strongly convex (for some β > 0) if

f(y) ≥ f(x) +∇f(x)(y − x) + β
2 ‖y − x‖

2 .

In particular, if f is twice continuously differentiable in a neighborhood
of C, f is β-strongly convex if and only if λmin

∇2f(x) ≥ β for all x ∈ C. A
map F : C → Rn is convex if all its components (F1, . . . Fn) are convex.
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The identity matrix (of appropriate size) is written as I. We denote
the set of square symmetric, positive definite matrices of size n by Sn+.
Any G ∈ Sn induces an inner product 〈·, ·〉G defined by 〈u, v〉G := uTGv

for all u, v ∈ Rn. In addition, we define the 2-norm induced by G as
‖u‖G :=

√
〈u, u〉. The maximum and minimum eigenvalues of G are

denoted by λmax
G := max{‖v‖G | ‖v‖ = 1} and λmin

G := min{‖v‖G | ‖v‖ =
1} respectively, and the condition number is defined as κG := λmax

G /λmin
G .

In this context, also recall that the 2-norms induced by any two
matrices A,B ∈ Sn+ on a finite-dimensional vector space are equivalent.
That is, for a vector space V with norms ‖ · ‖A and ‖ · ‖B there are
constants `, `′ > 0 such that for every v ∈ V it holds that `‖v‖A ≤
‖v‖B ≤ `′‖v‖A. For instance, ` = λmin

B /λmax
A and `′ = λmax

B /λmin
A .

2.2 Nonlinear Optimization

We briefly revisit standard notions from nonlinear optimization which
will be required throughout the thesis, but in particular in Parts II
and III. The following definitions and results are standard and can be
found, e.g., in [22, 31, 170] and others.
Consider a nonlinear optimization problem of the form

minimize
x

Φ(x)

subject to h(x) = 0
g(x) ≤ 0 ,

(2.2)

where the objective Φ : Rn → R and the constraint functions h : Rn →
Rm and g : Rn → Rp are continuously differentiable. Further, we
define the feasible set of (2.2) as C := {x ∈ Rn |h(x) = 0, g(x) ≤ 0}.
Given x ∈ C, let I(x) := {i | gi(x) = 0} denote the set of active inequality
constraints at x and Ī(x) := {i | gi(x) < 0} is the set of inactive inequality
constraints at x.

A point x ∈ Rn is feasible for (2.2) if x ∈ C. A feasible point x? ∈ C
is a (local) optimizer1 of (2.2) if Φ(x̂) ≥ Φ(x?) for all x̂ ∈ (x? + εB) ∩ C

1To avoid confusion we reserve the term solution for trajectories of dynamical
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for some ε > 0. If Φ(x̂) > Φ(x?) for all x̂ ∈ (x? + εB) ∩ C with x̂ 6= x?

we say that x? is a strict optimizer of (2.2), and x? is a global optimizer
of (2.2) if Φ(x̂) ≥ Φ(x?) for all x̂ ∈ C.

Definition 2.1 (LICQ). Given a set C := {x ∈ Rn |h(x) = 0, g(x) ≤ 0}
where h : Rn → Rm and g : Rn → Rp are continuously differentiable, the
linear independence constraint qualification (LICQ) holds at x ∈ C if

rank
[
∇h(x)
∇gI(x)(x)

]
= m+ |I(x)|

holds. The set C satisfies LICQ if LICQ is satisfied at all x ∈ C.

The Lagrangian L : Rn × Rm × Rp≥0 → R of (2.2) is defined as

L(x, λ, µ) := Φ(x) + λTh(x) + µT g(x) ,

and λ, µ are referred to as the dual variables (or Lagrange multipliers)
associated with the constraints h and g, respectively.

Definition 2.2 (KKT conditions). A point (x?, λ?, µ?) ∈ C×Rm×Rp≥0
satisfies the Karush-Kuhn-Tucker (KKT) conditions for (2.2) if

∇xL(x?, λ?, µ?) = ∇Φ(x?) + (λ?)T∇h(x?) + (µ?)T∇g(x?) = 0

and µ?i = 0 hold for all i ∈ Īξx? (or, equivalently, µ?i gi(x?) = 0 for all
i = 1, . . . p).
The point x? ∈ C is first-order optimal or critical2 for (2.2) if there

exist (λ?, µ?) such that the KKT conditions are satisfied.

Under LICQ every optimizer is a KKT point [22, Thm. 4.2.13]:

Theorem 2.1. If x? is a local optimizer of (2.2) and LICQ holds at
x?, then there exist unique (λ?, µ?) ∈ Rm × Rp≥0 such that the KKT
conditions are satisfied at (x?, λ?, µ?).
systems and use the term optimizer (or minimizer/maximizer) in the context of
optimization problems.

2In Definition 2.8 we will replace this definition with a more general geometric
notion of critical points.

42



2.2 Nonlinear Optimization

Remark 2.1. There exist weaker constraint qualifications (CQs) than
LICQ that guarantee that a minimizer satisfies the KKT conditions.
For instance, in convex optimization it is common to require Slater’s
condition to hold which requires the feasible set to have a non-empty
relative interior. Note that Slater’s condition does not imply nor is it
implied by LICQ [22, Ch. 5].

Another common CQ is the Magasarian-Fromowitz CQ which general-
izes LICQ in so far that not all of the active inequality constraints need
to be linearly independent [31, Prop. 3.3.8]. Even weaker CQs, such as
the Abadie CQ [22, Thm. 5.1.3], take a more abstract geometric form
but are less easy to manipulate algebraically.
Ultimately, however, all constraint qualifications serve the purpose

to connect the “algebraic” KKT conditions of (2.2) with the more geo-
metric optimality requirement that, at an optimizer, the gradient of the
objective is necessarily contained in the normal cone of the feasible set
(see Example 2.2).

Throughout the thesis we limit ourselves to LICQ for three reasons:

(i) LICQ is the only CQ that guarantees that dual multipliers are
unique [257].

(ii) LICQ is easy to manipulate.

(iii) For large classes of parametrized optimization problems LICQ hold
generically, i.e., for almost all parameter values [Ha11, 230].

Nevertheless, most results presented in this thesis presumably hold under
weaker CQs. �

Corollary 2.1. If g and Φ are convex, h is linear, and LICQ holds at
x?, x? is a global optimizer of (2.2) if and only if it is a critical point.

Definition 2.3 (SSOSC). Consider (2.2). The point (x?, λ?, µ?) ∈
C × Rm × Rp≥0 satisfies the strong second-order sufficiency condition
(SSOSC) if yT∇2

xxLy > 0 holds for all y 6= 0 for which (i) ∇xh(x?)y = 0
holds, and (ii) ∇xgi(x?, ξ)y = 0 holds for all i for which µ?i > 0.

SSOSC guarantees that a KKT point is a strict optimizer of (2.2):
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Theorem 2.2. [22, Thm. 4.4.2] If (x?, λ?, µ?) is a KKT point for (2.2)
and satisfies SSOSC, and LICQ holds at x?, then x? is a strict local
minimizer of (2.2).

We say that x? ∈ C is a regular minimizer of (2.2) if LICQ is satisfied
at x? and there exist (λ?, µ?) such that (x?, λ?, µ?) form a KKT point
that satisfies SSOSC.

2.2.1 Sensitivity Analysis

In Chapters 6, 10, and 12 we will encounter parametrized problems of
the form

minimize
x

Φ(x, ξ),

subject to h(x, ξ) = 0
g(x, ξ) ≤ 0 ,

(2.3)

where ξ ∈ Ξ is a perturbation parameter and Ξ ⊂ Ro. Furthermore,
Φ : Rn×Ξ→ R, h : Rn×Ξ→ Rm, and g : Rn×Ξ→ Rp are continuously
differentiable in x.
Analogously to the unperturbed problem (2.2), we define the (para-

metrized) feasible set C(ξ) := {x |h(x, ξ) = 0, g(x, ξ) ≤ 0} and La-
grangian L(x, λ, µ, ξ) := Φ(x, ξ)+λTh(x, ξ)+µT g(x, ξ) for all (x, λ, µ) ∈
Rn × Rm × Rp≥0 and all ξ ∈ Ξ. For a fixed ξ, the definitions of LICQ,
KKT, SSOSC, as well as Theorems 2.1 and 2.2 and Corollary 2.1 apply
accordingly.
Importantly, under assumptions on the differentiability of Φ, h and

g, the following result based on [138, Thm. 2.3.2 & 2.3.3] states that a
regular optimizer of (2.3) (and the associated Lagrange multipliers) are
locally continuous functions of ξ:

Theorem 2.3. Consider (2.3) and assume that Φ, h, and g are twice
continuously differentiable in x, and that Φ, h, g, ∇xΦ,∇xh,∇xg,∇2

xx,
Φ∇2

xxh, and ∇2
xxg are continuous in ξ. Further, let x̄? be a regular min-

imizer of (2.2) for ξ̄ with multipliers (λ̄?, µ̄?). Then, on a neighborhood
N ⊂ Ξ of ξ̄, there exist continuous maps x? : N → Rn, λ? : N → Rm

and µ? : N → Rp such that
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(i) x?(ξ̄) = x̄?, λ?(ξ̄) = λ̄?, and µ?(ξ̄) = µ̄?,

(ii) for all ξ ∈ N , LICQ is satisfied at x?(ξ), and (x?(ξ), λ?(ξ), µ?(ξ))
is a KKT point for which SSOSC holds,

(iii) for all ξ ∈ N , x?(ξ) is a local minimizer for (2.2) and (λ?(ξ), µ?(ξ))
are the corresponding Lagrange multipliers.

If, in addition, Φ, h and g be twice continuously differentiable in (x, ξ)

(iv) x?, λ? and µ? are locally Lipschitz at ξ̄.

Under convexity and other assumptions that guarantee a unique (global)
optimizer for every ξ, the maps x?, λ?, and µ? exist (and are single-
valued) globally on Ξ:

Corollary 2.2. Consider (2.3) and assume that Φ, h, and g are C2 in
x, and that Φ, h, g, ∇xΦ,∇xh,∇xg,∇2

xxΦ, and ∇2
xxg are continuous in

ξ. Further, for all ξ ∈ Ξ, let

(i) Φ be strongly convex in x, g be convex in x, and h be linear in x,

(ii) C(ξ) be non-empty,

(iii) LICQ be satisfied for all x ∈ C(ξ).

Then, there exist continuous maps x? : Ξ → Rn, λ? : Ξ → Rm and
µ? : Ξ→ Rp≥0 such that x?(ξ) is the unique global optimizer of (2.3) for
all ξ ∈ Ξ and (λ?(ξ), µ?(ξ)) are its Lagrange multiplier. If, in addition,
Φ, h and g be twice continuously differentiable in (x, ξ), then x?, λ? and
µ? are locally Lipschitz at ξ̄.

Proof. By assumption, (2.3) is feasible for all ξ ∈ Ξ and LICQ holds for
all x ∈ C(ξ) and all ξ ∈ Ξ. Hence, by strong convexity of Φ and convexity
of C(ξ), (2.3) admits a unique (global) optimizer for all ξ ∈ Ξ. Therefore,
the solution map ξ 7→ x?(ξ) and the maps ξ 7→ λ?(ξ)ξ 7→ µ?(ξ) are single-
valued. Moreover, for all ξ ∈ Ξ, the KKT conditions are satisfied and
SSOSC holds (trivially) by (strong) convexity (of Φ)). It then follows
from Theorem 2.3 that x? and µ? are continuous around every ξ ∈ Ξ
and hence on all of Ξ.
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2.3 Set-Valued & Variational Analysis

We review basic notions from set-valued analysis and variational analysis.
We limit ourselves to a very reduced set of concepts. For a comprehensive
treatment of the following definitions and results see [131, 211, 17].
The definitions of set convergence and semicontinuity reviewed in

Section 2.3.1 will be required explicitly only for Part I. The notions
of tangent and normal cones, as well as Clarke regularity are impor-
tant throughout the thesis. Example 2.2 is of particular importance
in that respect, since it highlights the connections between these “geo-
metric” concepts and the nonlinear optimization theory summarized in
Section 2.2.
In our context, a set-valued map F : Rn ⇒ Rm assigns to every

point x ∈ Rn a set F (x) ⊂ Rm. The domain of F is denoted by
domF := {x ∈ Rn |F (x) 6= ∅} and its graph is given by gphF :=
{(x, y) ∈ Rn×Rm | y ∈ F (x)}. The map F is non-empty, closed, convex,
or compact if, for every x ∈ C, the set F (x) is non-empty, closed, convex,
or compact, respectively. It is locally bounded if for every x ∈ Rn there
exists M > 0 such that ‖F (y)‖ ≤ M for all y in a neighborhood of x.
The map F is bounded (on C) if there existsM > 0 such that ‖F (y)‖ ≤ L
for all x (all x ∈ C). The same definitions also apply to single-valued
functions. In particular, every continuous function is non-empty, closed,
convex, compact, and locally bounded. We slightly abuse notation by
writing F (x) = a instead of F (x) = {a} if F is single-valued at x.

2.3.1 Set-Convergence & Semicontinuity

Given a sequence {xk} with xk ∈ Rn and a set C ⊂ Rn, the notation
xk

sub−→
C

x denotes the existence of a subsequence {xk′} that converges to

x and xk′ ∈ C for all k′. Similarly, xk
ev−→
C

x implies that xk ∈ C holds
eventually, i.e., for all k larger than some K, and that {xk} converges
to x. Given a sequence of subsets {Ck} of Rn, its outer limit and inner
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limit are given, respectively, as

lim sup
k→∞

Ck :=
{
x

∣∣∣∣ ∃{xi} : xi
sub−→
Ci

x

}
and

lim inf
k→∞

Ck :=
{
x

∣∣∣∣ ∃{xi} : xi
ev−→
Ci

x

}
.

In other words, the outer limit of a sequence of sets Ck is the set of all
points x for which there exists a subsequence {Cik}k and points xk ∈ Cik
such that xk → x. The inner limit is the set of all x for which there
exists points xi ∈ Ci for all i ≥ N for some N such that xi → x. In
particular, note that inner and outer limits of a sequence of sets are
always closed sets.
As a simple example to distinguish between inner and outer limits,

consider an alternating sequence of sets given by C2m := A and C2m+1 :=
B. Then, we have lim supk→∞ Ck = A ∪ B and lim infk→∞ Ck = A ∩ B.
To see this, note that on the one hand any constant sequence {xk}

with xk = c ∈ A ∩ B for all k satisfies the requirement such that c ∈
lim infk→∞ Ck. On the other hand, any sequence {xk} with x2m = a ∈ A
for m ∈ N has a trivial (constant) subsequence converging to a ∈ A and
hence a ∈ lim supk→∞ Ck.

If the inner and outer limits of a sequence {Ck}k are equal, we say that
{Ck} converges and limk→∞ Ck := lim supk→∞ Ck = lim infk→∞ Ck is its
limit. In particular, given a sequence Fk : Rn → Rm of set-valued maps,
we say that {Fk} converges graphically if the graphs of Fk converge in
the sense of set convergence, i.e. S = limk→∞ gphFk. As a subset of
Rn × Rm, S uniquely defines a set-valued map F̂ such that gph F̂ = S.
Example 2.1. Recall that a sequence of single-valued functions f : I →
Rn where I ⊂ R is a compact interval is said to converge uniformly to
f : I → Rn if for every ε > 0 there exists K > 0 such that for all k ≥ K
and all x ∈ I we have |fk(x)− f(x)| < ε. It is easy to see that uniform
convergence of {fk} implies graphical convergence of {fk}. �

Further, note that, as an generalization of the Bolzano-Weierstrass The-
orem, we know that any sequence {Ck} with Ck ⊂ Rn either has a sub-

47



Chapter 2. Preliminaries

sequence converging to a non-empty set, or escapes to the horizon (i.e.,
for every compact set B ⊂ Rn there exists K such that Ck ∩B 6= ∅) [211,
Thm 4.8] or [118, Thm 5.7].

Finally, for a set-valued map F : Rn ⇒ Rm we define

lim sup
y→x

F (y) :=
⋃
xk→x

lim sup
k→∞

F (xk)

and
lim inf
y→x

F (y) :=
⋂
xk→x

lim inf
k→∞

F (xk) .

Consequently, we say that F is outer semicontinuous (osc) at x if
lim supy→x F (y) ⊂ F (x) and inner semicontinuous (isc) at x if it holds
that lim infy→x F (y) ⊃ F (x) [211, Def. 5.4]. In other words, F is osc
if for every sequence xk → x, the outer limit of {F (xk)}k is a subset
of F (x) and F is isc if for every sequence xk → x, the inner limit of
{F (xk)}k is contains F (x). The map F is osc (isc) if it is osc (isc) at
every x ∈ Rn. Importantly, a set-valued map F : Rn ⇒ Rm is outer
semicontinuous if and only if its graph, gphF , is a closed subset of
Rn × Rm [118, Lem. 5.10].

2.3.2 Variational Geometry

The tangent cone of a set at a given point is, simply speaking, the set
of direction in which one can leave the point and still remain in the set.
This is captured by the following definition and illustrated in Figure 2.1a.

Definition 2.4. Given a set C ⊂ Rn and x ∈ C, a vector v ∈ TxRn is
a tangent vector of C at x if there exist sequences xk →

C
x and δk → 0+

such that xk−x
δk
→ v. The set of all tangent vectors is the tangent cone

of C at x and denoted by TxC.

The tangent cone of C at x, also known as (Bouligand’s) contingent
cone, can also be equivalently defined in terms of set convergence as
TxC := lim supδ→0+

1
δ (C−x). Also note that, by definition, TxC is closed
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(a) (b) (c)

Figure 2.1: (a) Tangent cone construction according to Definition 2.4
by a sequence {xk} in C approaching the point x; (b) Example of a non-
Clarke regular set C, in particular, at x the (non-convex) tangent cone
and the (convex) Clarke tangent cone do not coincide; (c) Example of a
“non-derivable” tangent cone, where sequences {xk} in C that approach
x do exist, but no continuously differentiable curve can be constructed.

and non-empty (namely, 0 ∈ TxC) for any x ∈ C. Furthermore, we use
the convention that TxC = ∅ for all x /∈ C. Thus, we refer to x 7→ TxC
as the (set-valued) tangent cone mapping.

Tangent cones for general sets can be fairly ill-behaved. For instance,
a tangent vector v ∈ TxC might not be geometrically derivable, i.e., there
does not necessarily exist a continuously differentiable curve leaving x in
direction v while remaining in C, since the definition of TxC calls only for
the existence of a sequence of points. Moreover, the tangent cone map
for a general set does not generally exhibit a particular type continuity.

Hence, a powerful property of a set is Clarke (or tangential) regularity
which, roughly speaking, requires a set to have a boundary that is
smooth, up to convex edges and corners. In this thesis, for simplicity,
we consider only Clarke regularity for locally compact subsets of Rn, i.e.,
sets that are the intersection of a closed and an open set. In particular,
making the a-priori assumption of local compactness simplifies most
definitions and results.

Definition 2.5. For a locally compact set C ⊂ Rn the Clarke tangent
cone at x ∈ C is defined as the inner limit of the tangent cones, i.e.,
TCx C := lim inf

y→x
TyC.
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By definition of the inner limit, we have TCx C ⊆ TxC. Furthermore, TCx C
is closed, convex and non-empty for all x ∈ C [211, Thm. 6.26].

Definition 2.6. We call a set C ⊂ Rn Clarke regular at x if it is locally
compact and TxC = TCx C. The set C is Clarke regular if it is Clarke
regular for all x ∈ C.

A set that is not Clarke regular is illustrated in Figure 2.1b.
Clarke regularity of a set also implies that several notions of normal

cones (such as limiting, Clarke, and regular normal cones) coincide and
reduce to the following simple definition of the normal cone as the polar
cone to the tangent cone:

Definition 2.7. Let C ⊂ Rn be Clarke regular, then the normal cone at
x ∈ C, denoted by NxC, is defined as the polar cone of TCx C, i.e.,

NG
x C :=

{
η
∣∣ ∀v ∈ TCx C : 〈v, η〉 ≤ 0

}
.

For x /∈ C, we adopt the convention that NxC := ∅. Note that, in
contrast to TxC, the definition of the normal cone relies on an inner
product defined on Rn. An important property of Clarke regular sets
(which will be generalized in the next chapter) is that the normal cone
mapping x 7→ NxC is osc [211, Prop. 6.5].
As an important interlude, we next show how the concepts from

nonlinear optimization in Section 2.2 can be interpreted from a geometric
perspective:
Example 2.2. Consider the optimization problem

minimize Φ(x) subject to x ∈ C , (2.4)

where C ⊂ Rn is non-empty, closed and Clarke regular, and Φ : Rn → R
is continuously differentiable in a neighborhood of C.

Every local minimizer x? ∈ C of (2.4) satisfies −∇Φ(x?)T ∈ Nx?C [211,
Thm. 6.12]. This statement is an abstraction of Theorem 2.1 as we
explain next.
Consider a set C := {x ∈ Rn |h(x) = 0, g(x) ≤ 0} ⊂ Rn where

h : Rn → Rm, g : Rn → Rp are continuously differentiable as before
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in Section 2.2. Then, if LICQ is satisfied for all x ∈ C := {x |h(x) =
0, g(x) ≤ 0}, C is Clarke regular [211, Thm. 6.31]. In particular, the
(Clarke) tangent cone at x is given by

TCx C = TxC =
{
v | ∇h(x)v = 0, ∇gI(x)(x)v ≤ 0

}
,

where I(x) := {i | gi(x) = 0}. Moreover, the normal cone of C at x is
given by

NxC =
{
η
∣∣∣ η = ∇h(x)Tλ+∇gI(x)(x)TµI, µI ∈ R|I(x)|

≥0

}
. (2.5)

In particular, for a KKT point (x?, λ?, µ?) ∈ C × Rm × Rp≥0 according
to Definition 2.2 we have

∇Φ(x?)T +∇h(x?)Tλ+∇g(x?)Tµ︸ ︷︷ ︸
∈Nx?C

= 0

since µi = 0 for all i /∈ I(x). Conversely, if −∇Φ(x?)T ∈ Nx?C, then x?
is a first-order optimal point of Definition 2.2.
Thus, in summary, constraint qualifications such as LICQ guarantee

that a set defined by constraints h and g form a Clarke regular set, and
their normal cone takes an explicit form (2.5) and allows us to recover
the classical “algebraic” KKT conditions. �

In view of Example 2.2, we generalize the notion of critical point from
Definition 2.2 as follows:

Definition 2.8. Consider a Clarke regular set C ⊂ Rn, Φ : Rn → R
continuously differentiable in a neighborhood of C. The point x? ∈ C is
a critical point of

minimize Φ(x) subject to x ∈ C

if and only if it holds that −∇Φ(x?)T ∈ Nx?C.

The next lemma will be useful to eliminate equality constraints from
optimization problems.
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Lemma 2.1. Let C ⊂ Rm be Clarke regular and let h : Rm → Rp

and Φ : Rp × Rm be continuously differentiable in a neighborhood of C
and Rp × C, respectively. Then, (y?, x?) ∈ Rp × C is a critical point
(minimizer) of

minimize
y,x

Φ(y, x)

subject to y = h(x)
x ∈ C

(2.6)

if and only if x? is a critical point (minimizer) of

minimize
x

Φ̃(x)

subject to x ∈ C
(2.7)

where Φ̃ : Rm → R is defined as Φ̃(x) := Φ(h(x), x) and y? = h(x?).

Proof. Define X := {(y, x) | y − h(x) = 0} ⊂ Rp × Rm which is a Clarke
regular by Example 2.2 since LICQ is satisfied. Furthermore, we have

N(y,x)X =
{
η
∣∣∣ η =

[
Ip

−∇h(x)T

]
λ, λ ∈ Rp

}
.

From [211, Thm. 6.14 & 6.42] it thus follows that the feasible set of
(2.6) given by X̃ := X ∩ (Rp × C) is Clarke regular. Moreover, we have

N(y,x)X̃ = N(y,x)X +N(y,x)(Rp × C)

=
{
η

∣∣∣∣ η =
[

Ip
−∇h(x)T

]
λ+

[
0
v

]
, λ ∈ Rp, v ∈ NxC

}
.

Hence, if (y?, x?) ∈ X̃ is a critical point of (2.6) then, by definition,
we have that −∇Φ(y?, x?)T ∈ N(y?,x?)X̃ , or equivalently

−∇Φ(y?, x?)T =
[

Ip
−∇h(x?)T

]
λ+

[
0
v

]
(2.8)

for some λ ∈ Rp and v ∈ Nx?C.
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Next, note that [∇h(x?)T Im ]
[

Ip
−∇h(x?)T

]
= 0, and therefore (2.8) im-

plies that

− [∇h(x?)T Im ]∇Φ(y?, x?)T︸ ︷︷ ︸
∇Φ̃(x?)T

= [∇h(x?)T Im ] [ 0
v ] = v ∈ Nx?C, (2.9)

and therefore x? is a critical point of (2.7).
Conversely, let x? ∈ C be a critical point of (2.7) and y? = h(x?). Re-

versing the line of arguments above, it is easy to see that ∇Φ(y?, x?)T ∈
N(y?,x?)X̃ and thus (y?, x?) is a critical point of (2.6).

The equivalence of minimizers of (2.6) and (2.7) follows from the topo-
logical equivalence of the two problems: Because there is a continuous
one-to-one mapping between feasible points of (2.6) and (2.7), if x? is a
minimizer Φ̃ on C, then (h(x?), x?) minimizes Φ on X̃ .

The next lemma shows that a C1 diffeomorphism (i.e., a C1 coordinate
transformation) maps (Clarke) tangent cones to (Clarke) tangent cones.
Hence, C1 diffeomorphisms preserve Clarke regularity [211, Ex. 6.7].

Lemma 2.2. Let V,W ⊂ Rn be open and consider a C1 diffeomorphism
φ : V → W. Given C ⊂ Rn and C̃ := C ∩ V, for every x ∈ C̃ it holds that

Tφ(x)φ(C̃) = Dxφ(TxC̃) (2.10)
TCφ(x)φ(C̃) = Dxφ(TCx C̃) . (2.11)

Hence, φ(C̃) is Clarke regular at φ(x) if and only if C̃ is Clarke regular
at x ∈ C̃.

Proof. We need to show only that Tφ(x)φ(C̃) ⊂ Dxφ(TxC̃). Since φ is
a C1 diffeomorphism the other direction follows by applying the same
arguments to φ−1.

Let v ∈ TxC̃. Then, by definition there exist xk → x with xk ∈ C̃ and
δk → 0+ such that (xk−x)/δk → v. Furthermore, ‖xk−x‖/δk converges
to ‖v‖. According to the definition of the derivative of φ, for the same
sequence {xk} we have lim

k→∞
‖φ(xk)−φ(x)−Dxφ(xk−x)‖/‖xk−x‖ = 0.
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Since the limit of the element-wise product of convergent sequences
equals the product of its limits we can write

lim
k→∞

‖φ(xk)−φ(x)−Dxφ(xk−x)‖
‖xk−x‖

‖xk−x‖
δk

= 0

which, using the fact that Dxφ is linear, simplifies to

lim
k→∞

∥∥∥φ(xk)−φ(x)
δk

−Dxφ
(
xk−x
δk

)∥∥∥ = 0 .

This implies that (φ(xk)− φ(x))/δk → Dxφ(v), and hence Dxφ(v) is a
tangent vector of φ(C̃) at φ(x). This proves (2.10).

To show (2.11) we use (2.10) together with the definition of the Clarke
tangent cone as the inner limit of the surrounding tangent cones (Defi-
nition 2.5). We can write

TCφ(x)φ(C̃) = lim inf
ŷ→φ(x)

Tŷφ(C̃) = lim inf
y→x

Dyφ
(
TyC̃

)
.

Since Dxφ is continuous in x, we have

lim inf
y→x

Dyφ(TyC̃) = lim inf
y→x

Dxφ(TyC̃) .

Further, Lemma 4.5 implies that

lim inf
y→x

Dxφ(TyC̃) ⊃ Dxφ(lim inf
y→x

TyC̃) = Dxφ(TCx C̃)

and therefore we have TCφ(x)φ(C̃) ⊃ Dxφ(TCx C̃). Again, since φ is a diffeo-
morphism, the opposite inclusion holds by applying the same argument
to φ−1. This shows (2.11) and completes the proof.

2.4 Dynamical Systems & Stability

2.4.1 Continuous-Time Systems

In general, we understand a continuous-time dynamical systems to be
defined by a differential inclusion (e.g.,[18, 100, 17] or [118, Ch. 5]).
Namely, given a set-valued map H : Rn ⇒ Rn and a set C ⊂ Rn, we
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say that x : [0, T ]→ C for some T > 0 is a solution of the (constrained)
differential inclusion

ẋ ∈ H(x) , x ∈ C (2.12)

if x is absolutely continuous, x is viable (i.e., x(t) ∈ C for all t ∈ [0, T ]),
and ẋ(t) ∈ H(x(t)) holds for almost all t ∈ [0, T ].

A map x : [0,∞)→ C is a complete solution of (2.12) if its restriction
to any compact subset [0, T ] is a solution of (2.12). A solution is maximal
if it is complete or cannot be extended, i.e., there does not exist a solution
x′ : [0, T ′] → C with T ′ > T such that x(t) = x′(t) for all t ∈ [0, T ].
A solution is unique if for every other solution x′ : [0, T ′] → Rn with
x′(0) = x(0) it holds that x(t) = x′(t) for all t ∈ [0,min{T, T ′}].

Definition 2.9. An inclusion (2.12) is well-posed if C is closed, H
is osc3 and locally bounded relative to C, and H(x) is non-empty and
convex for all x ∈ C.

Definition 2.10. Given a set-valued map H : Rn ⇒ Rn, a closed set
C ⊂ domH is a viability domain of H if and only if F (x)∩ TxC 6= ∅ for
all x ∈ K.

Existence of solutions to constrained differential inclusions is guaranteed
by the following result, which also states that solutions evolving on a
viability domain are either complete or escape to the horizon in finite
time.

Theorem 2.4 (Viability Theorem [18, Thm. 3.3.4 & 3.3.5]). Let (2.12)
be well-posed and C be a viability domain for H. Then, for any initial
condition x(0) ∈ C, (2.12) admits either a complete solution or a maximal
solution on [0, T ) such that lim supt→T− ‖x(t)‖ =∞.

Further, if there exists c > 0 such that ‖H(x)‖ ≤ c(‖x‖+ 1) holds for
all x ∈ domH, then there exists a complete solution to (2.12) for every
initial condition x0 ∈ K.

3Recall that under local boundedness, outer semicontinuity and upper semiconti-
nuity are equivalent [118, Lem. 5.16].
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The following result is particularly useful for the study of viable trajec-
tories.

Lemma 2.3. Given a set C ⊂ Rn, an absolutely continuous map x :
[0, T ] → C with T ∈ [0,∞] satisfies ẋ(t) ∈ Tx(t)C ∩ −Tx(t)C for almost
all t ∈ [0, T ], where −Tx(t)C := {v| − v ∈ Tx(t)C}.

Proof. Let t ∈ (0, T ) be such that ẋ(t) exists. This implies that by
definition

ẋ(t) = lim
τ→0+

x(t+τ)−x(t)
τ = lim

τ→0+

x(t)−x(t−τ)
τ .

Thus, by choosing any sequence τk → 0 with τk > 0, the sequence
x(t+τk)−x(t)

τk
converges to a tangent vector and −x(t−τk)+x(t)

τk
converges

to a vector in −Tx(t)C by definition of Tx(t)C and the fact that x(t) ∈ C
for all t ∈ [0, T ).

For convenience, we introduce the following notion of truncated solution
for unconstrained inclusions which will be used in Chapter 5 to study
anti-windup approximations of projected dynamical systems:

Definition 2.11. Consider (2.12), let T, ε > 0 and x0 ∈ Rn. A solution
x : [0, T ′] → C of (2.12) with initial condition x(0) = x0 is (T, ε)-
truncated if x(t) ∈ x0 + εB for all t ∈ [0, T ′] and either T ′ = T or
‖x(T ′)− x0‖ = ε holds.

As stated above, Theorem 2.4 implies that maximal solutions of (2.12)
are either complete or escape to the horizon. Therefore, by considering
an augmented inclusion with Ĥ(x) := (H(x), 1), initial condition x̂(0) :=
(x(0), 0), Ĉ = Rn × R, and Â = A× [0, T ], Theorem 2.4 guarantees the
existence of truncated solutions for every T and every ε:

Corollary 2.3. Let (2.12) be well-posed and C be a viability domain
of H. Then, for every T, ε > 0 and every x(0) ∈ Rn there exists a
(T, ε)-truncated solution.

Hence, truncated solutions are convenient if finite escape times cannot
be precluded, since their graph is always a compact subset of [0, T ] ×
(x(0) + εB).
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We also require the notion of σ-perturbation of an inclusion which
will be convenient to prove uniform convergence and semiglobal prac-
tical robust asymptotic stability for anti-windup approximations and
linearized output projection discretizations in Chapter 5 and Chapter 6,
respectively.

Definition 2.12 ([118, Def. 6.27]). Given σ > 0, the σ-perturbation
of (2.12) is given by

ẋ ∈ Hσ(x) x ∈ Cσ ,

where

Cσ := C + σB and Hσ := coH((x+ σB) ∩ C) + σB ∀x ∈ Cσ .

Note in particular that for σ′ ≥ σ we have Cσ ⊂ Cσ′ , Hσ(x) ⊂ Hσ′(x)
for all x ∈ Cσ, and every solution of the σ-perturbation is a solution of
the σ′-perturbation.

2.4.2 Notions of Stability

Consider (2.12) and a compact4 set A ⊂ C. We say that A is

(i) stable (for (2.12)), if for every ε > 0 there exists δ > 0 such
that every solution x : [0, T ] → C with dA(x(0)) ≤ δ satisfies
dA(x(t)) ≤ ε for all t ∈ [0, T ],

(ii) locally asymptotically stable (las) if it is stable and there exists γ >
0 such that every complete solution of (2.12) with dA(x(0)) ≤ γ

converges to A, i.e., limt→∞ dA(x(t)) = 0,

(iii) globally asymptotically stable (gas) it is stable and every com-
plete solution of (2.12) with dA(x(0)) ≤ γ converges to A, i.e.,
limt→∞ dA(x(t)) = 0,

4Throughout the thesis, we limit ourselves to stability of compact sets and defini-
tions of (asymptotic) stability are automatically “uniform”.
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Furthermore, we say that x̂ ∈ C is a weak equilibrium of (2.12) if
the constant map t 7→ x̂ is a solution of (2.12). Namely, x̂ is a weak
equilibrium if and only if 0 ∈ F (x̂). The point x̂ is a strong equilibrium
of (2.12) if t 7→ x̂ is the only solution of (2.12) starting at x̂.
Next, recall that ω : R≥0 → R≥0 is a K∞-function (denoted by

ω ∈ K∞) if ω is continuous, strictly increasing, unbounded, and it holds
that ω(0) = 0. In particular, a compact set A is stable if and only if
there exists ω ∈ K∞ such that for every solution x : [0, T ]→ C of (2.12)
we have dA(x(t)) ≤ ω(dA(x(0))) for all t ∈ [0, T ].

Furthermore, recall that a K∞-function can serve as a modulus of
continuity for a uniformly continuous function. Namely, every map
f : V → Rm for some V ⊂ Rn that is uniformly continuous on V admits
an ω ∈ K∞ such that

‖f(y)− f(x)‖ ≤ ω(‖y − x‖)

for all y, x ∈ V .
A function β : R≥0 × R≥0 → R≥0 is a KL-function (denoted by

β ∈ KL) if it is non-decreasing in its first argument, non-increasing
in its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0, and
lims→∞ β(r, s) = 0 for each t ∈ R≥0.
In particular, we have that a compact set A ⊂ Rn is gas for (2.12) if

and only if there exists β ∈ KL such that for every complete solution
x : [0,∞)→ C of (2.12) it holds that

dA(x(t)) ≤ β(dA(x(0)), t) ∀t ∈ [0,∞) .

Remark 2.2. Let (2.12) be well-posed and let C be a viability domain
for H. Further, assume that A ⊂ C is compact and gas. Any solution
x : [0, T ] → C of (2.12) does not leave the (compact) set {x | dA(x) ≤
β(dA(x(0)), t)} and thus cannot escape to the horizon. By Theorem 2.4
it follows that for any initial condition x(0) ∈ C, (2.12) admits a complete
solution. �

Consider a class of continuous-time dynamical systems {(Hα, Cα)}α for
α ≥ 0 defined by the constrained inclusions

ẋ ∈ Hα(x) , x ∈ Cα .

58



2.4 Dynamical Systems & Stability

We say that a set A ⊂ Rn is semiglobally practically asymptotically
stable (spas) for {(Hα, Cα)}α if for every ζ > 0 and every compact
set B, there exists α? > 0 such that for all α < α?, every solution of
ẋ ∈ Hα(x), x ∈ Cα starting in B ∩ Cα converges to A + ζB. In other
words, for every compact set of initial conditions, every neighborhood
of A can be rendered attractive for a small enough α.

Invariance

The ω-limit set of a complete solution of (2.12), denoted by Ω(x), is the
set of all points x̂ for which there exists a sequence {tk} with limk→∞ tk =
∞ and limk→∞ x(tk) = x̂.

A set A ⊂ C is weakly invariant, if and only if for every initial condition
x0 ∈ A, there exists a complete solution starting at x0 that remains in A
for all t ∈ [0,∞). The union of weakly (invariant subsets is again weakly
invariant, hence the notion of largest weakly invariant set is well-defined.
A set A ⊂ C is invariant, if and only if for every initial condition x0 ∈ A,
every complete solution starting at x0 remains in A for all t ∈ [0,∞).
We will make us of the following invariance principle for differential

inclusions. The result is a special case of [118, Thm. 8.2] which applies
to hybrid systems. For a similar result for differential inclusion see [214].

Theorem 2.5. Consider a continuous function V : Rn → R, any func-
tions u : Rn → [−∞,∞], and a set U ⊂ Rn such that u(x) ≤ 0 for every
x ∈ U and such that the growth of V along solutions of a well-posed in-
clusion ẋ ∈ F (x) is bounded by u on U , i.e., any solution x : [0, T ]→ U
of (2.12) satisfies

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

u(x(τ))dτ .

Let a complete and bounded solution x of (2.12) be such that x(t) ∈ U
for all t ∈ [0,∞). Then, for some r ∈ V (U), x approaches the nonempty
set that is the largest weakly invariant subset of V −1(r) ∩ U ∩ cl u−1(0).
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2.4.3 Discrete-Time Systems

In Chapters 6 and 10 we consider a class of iterative algorithms which
we analyze as discrete-time dynamical systems. For this purpose, and
for simplicity, we introduce only discrete-time systems with unique and
complete solutions, namely, we consider only recursions of the form

x+ = H(x) x ∈ C , (2.13)

where C ⊂ Rn is non-empty and H : C → C.
A solution of (2.13) is a map x : N0 → C such that x[k+ 1] = H(x[k])

for all k ∈ N0. From the fact that C is non-empty and the definition of
H it follows immediately that (2.13) admits a unique complete solution
for every initial condition x[0] ∈ C.

The notions of global asymptotic stability, semiglobal practical asymp-
totic stability and invariance carry over from continuous-time systems.
Furthermore, we will make use of the following invariance theorem (which
is again a special case of [118, Thm. 8.2]). The original result for discrete-
time systems can be found in [156, Thm. 6.3].

Theorem 2.6. Consider a discrete-time dynamical system (2.13) where
H : C → C is continuous and S ⊂ C is an invariant set. Further, let
V : S → R be a continuous function such that V (T (x)) ≤ V (x) for all
x ∈ S. Let x = {x0, x1, x2, . . .} ⊂ S be a bounded solution. Then, for
some r ∈ V (S), x converges to the non-empty set that is the largest
invariant subset of V −1(r) ∩ S ∩ {x |V (T (x))− V (x) = 0}.
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CHAPTER 3

Coordinate-Free Prox-Regularity

3.1 Low-Regularity Riemannian metrics

Throughout this thesis, wherever possible, we adopt a geometric view-
point according to which qualitative features of dynamical systems need
to be preserved under nonlinear coordinate transformations. For this
purpose, we borrow the idea of a metric from Riemannian geometry.
Simply speaking, a metric defines an inner product at every point of

a subset of Rn (or, more generally, at every point on a manifold). Under
standard assumptions adopted in differential geometry, a metric allows
one to define the length of a curve, the (geodesic) distance between
points, different notions of curvature, etc.
In this thesis, we employ the notion of a metric for two purposes:

• In the context of projected dynamical systems (Chapter 4), a
metric is a convenient object to model oblique projection directions
at the boundary of a domain.

The material presented in this chapter is largely taken from [Ha2]. In particular
Propositions 3.2, 3.3, and 3.4 constitute the main technical results of this chapter.
Further expository material from [Ha4, Ha5] is included and will be required in
Chapter 5 and Section 9.3.
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• We use metrics to study variations of optimization algorithms
under a common model of projected gradient flows.

As a consequence, we do not require any additional notions from
Riemannian geometry. Instead, we derive our results from first principles,
which also allows us to retain a higher degree of generality and use fewer
advanced notions from differential geometry.

For simplicity, we define a metric to be a map from some set C ⊂ Rn

to the space of symmetric positive definite matrices Sn+. We consider
Sn+ to be supplied with the λmax-norm. Hence, a metric is (Lipschitz)
continuous if it is (Lipschitz) continuous as a map G : C → Sn+.
From a more abstract viewpoint, a metric is a map from C to the

space of bilinear forms over the tangent space TxRn at x ∈ C. This more
formal perspective was adopted in [Ha2].
In accordance with our notation for symmetric positive definite ma-

trices, we also define the functions λmax
G : C → R+, λmin

G : C → R+,
and κG : C → R+ to assign to every x ∈ C the maximum or minimum
eigenvalue, or condition number of G(x), respectively. In particular,
since G(x) is positive definite for all x ∈ C, by definition, it follows that
λmax
G(x), λ

min
G(x) and κG(x) are well-defined for all x ∈ C. However, κG(x)

is not necessarily locally bounded, even if G is bounded as a map. In
particular, λmin

G(x) might not be bounded below, away from 0. Hence, for
metrics we require the following definition of local boundedness.

Definition 3.1. A metric G : C → Sn+ on C ⊂ Rn is locally weakly
bounded if for every x ∈ C there exist `, ¯̀> 0 such that ` ≤ κG(y) ≤ ¯̀
holds for all y ∈ C in a neighborhood of x. The metric is weakly bounded
if ` ≤ κG(x) ≤ ¯̀ holds for all x ∈ C.

A metric can be locally weakly bounded even if it is not locally bounded.
Furthermore, since maximum and minimum eigenvalues (and hence the
condition number) are continuous functions Sn+ → R+ it follows that a
continuous metric is always locally weakly bounded.
Given a metric G on a Clarke regular set C ⊂ Rn, we can define the

(oblique) normal cones induced by G as follows:
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(a) (b)

Figure 3.1: (a) Euclidean normal cones for C; (b) oblique normal cones
induced by G.

Definition 3.2. Let C ⊂ Rn be Clarke regular and let G : C → Sn+ be a
metric, then the normal cone at x ∈ C with respect to G is defined as
the polar cone of TCx C with respect to G, i.e.,

NG
x C :=

{
η
∣∣∣ ∀v ∈ TCx C : 〈v, η〉G(x) ≤ 0

}
. (3.1)

The normal cone with respect to the Euclidean metric G ≡ I is simply
denoted by NxC. For x /∈ C, we adopt the convention NG

x C := ∅.

Note that the Euclidean normal cone and the normal cone with respect
to any metric G are isomorphic. Namely, we have

η ∈ NxC ⇐⇒ G−1(x)η ∈ NG
x C . (3.2)

Figure 3.1 illustrates the Euclidean and oblique normal cones of C. This
effect of the metric G will allow us in the forthcoming chapters to define
state-dependent oblique projections onto the tangent cones of C.

If the set C is defined by constraint functions, the oblique normal cone
takes an explicit form similar to the expression in Example 2.2:
Example 3.1 (normal cone to constraint-defined sets). Consider C :=
{x |h(x) = 0, g(x) ≤ 0} where h : Rn → Rm and g : Rn → Rp are C1

and assume that C satisfies LICQ. Further, let G : C → Sn+ be a metric.
Then, the normal cone of C at x with respect to G is given by

NxC =
{
η
∣∣∣ η = G−1(x)

(
∇h(x)Tλ+∇gI(x)(x)TµI

)
, µI ∈ R|I(x)|

≥0

}
,
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Chapter 3. Coordinate-Free Prox-Regularity

where I(x) denotes the set of active constraints at x. �

The following result is a generalization of [211, Prop. 6.5] to the case of
a continuous metric instead of the standard Euclidean metric:

Lemma 3.1. Let C be Clarke regular. If the metric G : C → Sn+ is
continuous, then the set-valued map x 7→ NG

x C is outer semicontinuous.

Proof. Consider any two sequences xk → x with xk ∈ C and ηk → η with
ηk ∈ NG

xk
C. To complete the proof we need to show that η ∈ NG

x C. By
definition of NG

xk
C we have 〈v, ηk〉g(xk) ≤ 0 for all v ∈ TCx C. Furthermore,

by continuity of G we have 〈v, η〉g(x) ≤ 0 for all v ∈ lim supxk→x T
C
xk
C.

(Namely, we must have 〈vk, ηk〉g(xk) ≤ 0 for every sequence vk → v with
vk ∈ TCxkC, hence the use of lim sup.) By definition of the Clarke tangent
cone, we note that 〈v, η〉g(x) ≤ 0 holds for all

v ∈ TCx C = lim inf
xk→x

TxkC = lim inf
xk→x

TCxkC ⊂ lim sup
xk→x

TCxkC ,

and therefore η ∈ NG
x C.

3.2 Prox-Regular Sets

Throughout the thesis we require the notion of prox-regular sets which
are, roughly speaking, closed sets onto which the projection is unique
in a neighborhood. Prox-regular sets include closed convex sets (onto
which the projection is globally single-valued).

In particular, prox-regular sets turn out to be crucial for (1) the
uniqueness of solutions of projected dynamical systems (Section 4.4), (2)
anti-windup approximations of projected dynamical systems (Chapter 5),
and (3) iterative schemes using constraint linearizations (Chapter 6).

In this subsection we recall the basic definition and properties of prox-
regular sets and show that if C := {x | g(x) ≤ 0} satisfies the LICQ at
all x ∈ C and g is C1,1, then C is prox-regular. The following definition
follows [211, Ex. 13.31].
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3.2 Prox-Regular Sets

Definition 3.3. A Clarke regular set C ⊂ Rn is α-prox-regular at x ∈ C
with α > 0 if for every y, z ∈ C in a neighborhood of x, and every
η ∈ NzC we have

〈η, y − z〉 ≤ α‖η‖‖y − z‖2 . (3.3)

The set C is prox-regular if, at every x ∈ C, it is α-prox-regular for some
α > 0 (with α possibly depending on x). Further, C is α-prox-regular if
it is α-prox-regular at every x ∈ C and C is uniformly prox-regular if it
is α-prox-regular for some α > 0.

Note that every closed convex set is α-prox-regular for any α > 0, since
for closed convex sets we have 〈η, y − x〉 ≤ 0 for any η ∈ NxC and all
y ∈ C.
One of the key features of a uniformly prox-regular set C is that for

every point in a neighborhood of C there exists a unique projection on
the set [5, Def. 2.1 & Thm. 2.2].

Proposition 3.1. If C ⊂ Rn is α-prox-regular, then for any x ∈
C + 1

2α intB the set PC(x) is a singleton and d2
C is differentiable with

∇dC(x)T = 2(x− PC(x)).

The following example illustrates how the non-prox-regular sets can fail
to have a locally single-valued projection map.
Example 3.2 (Prox-regularity in Euclidean spaces). Consider the para-
metric set

Cγ := {(x1, x2) | |x2| ≥ max{0, x1}γ} , (3.4)

where 0 < γ < 1 and which is illustrated in Figure 3.2. For γ ≤ 0.5 the
set is (uniformly) prox-regular. In particular for the origin, a ball with
non-zero radius can be placed tangentially such that it intersects the set
only at 0. For γ > 0.5 on the other hand the set is not α-prox-regular
at the origin for any α > 0. In fact, all points on the positive axis have
a non-unique projection on Cγ as illustrated in Figure 3.2c. �

Furthermore, for uniformly prox-regular sets, the pre-image of PC is
spanned by a truncated normal cone, and PC is locally Lipschitz [5,
Thm. 2.2 & Prop. 2.3]:
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(a) γ = 0.3 (b) γ = 0.5 (c) γ = 0.6

Figure 3.2: Cγ (shaded) for different γ. In (a) and (b) the set Cγ is
prox-regular, unlike in (c).

Lemma 3.2. If C ⊂ Rn is α-prox-regular, then for every x ∈ C and
all v ∈ NxC ∩ 1

2α intB it holds that PC(x + v) = x. In particular, for
y ∈ C + 1

2α intB, we have y − PC(y) ∈ NPC(y)C.

Lemma 3.3. Let C ⊂ Rn be α-prox-regular, then the projection x 7→
PC(x) is locally Lipschitz on C + 1

2α intB.

Another crucial property of uniformly prox-regular sets is that the normal
cone mapping x 7→ NxC admits a hypomonotone localization [211, Ex.
13.38]. We will exploit this property through the following lemma which,
in contrast to [211, Ex. 13.38], quantifies the hypomonotonicity in terms
of α.

Lemma 3.4. Let C ⊂ Rn be α-prox-regular. Then, for all x, x′ ∈ C,
η ∈ NxC ∩ B, and η′ ∈ Nx′C ∩ B, we have

〈η′ − η, x′ − x〉 ≥ −2α‖x′ − x‖2 .

Proof. Since 0 ≤ ‖η‖ ≤ 1 and 0 ≤ ‖η′‖ ≤ 1 it follows from the definition
of prox-regularity that

〈η, x′ − x〉 ≤ α‖x′ − x‖2 and 〈−η′, x′ − x〉 ≤ α‖x′ − x‖2 .

Adding up both inequalities yields the desired result.
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We conclude this section by showing that feasible domains defined by
C1,1 constraint functions are prox-regular under the usual constraint
qualifications (see also Example 2.2). For this, we require the well-known
Descent Lemma, e.g. [198, Lem. 1.30].

Lemma 3.5 (Descent Lemma). Let f : V → R be C1,1 and V ⊂ Rn is
open. Given x ∈ V, there exists ` > 0 such that for all z, y ∈ V in a
neighborhood of x it holds that

|f(z)− f(y)−Dyf(z − y)| ≤ `‖z − y‖2 .

Proposition 3.2 (Prox-regularity of constraint-defined sets). Let g :
Rn → Rm be C1,1 and let C := {x | g(x) ≤ 0} satisfy the LICQ at all
x ∈ C. Then, C is prox-regular.

Proof. Given x̂ ∈ C, consider a compact neighborhood N ⊂ C of x̂ such
that I(x) ⊂ I(x̂) for all x ∈ N , i.e., no other constraint is active on N
other than those active at x̂. Clearly, such a neighborhood exists around
every x̂ ∈ C. Further, if necessary, reduce the size of the neighborhood
to guarantee that ‖∇gi(x)‖ > δi for some δi > 0, all x ∈ N and all
i ∈ I(x̂). This is possible since ∇gi(x̂) 6= 0 for all i ∈ I(x̂) by LICQ and
∇gi is continuous.
Using Lemma 3.5, there exists `i > 0 such that for all z, y ∈ N we

have
−`i‖z − y‖2 ≤ gi(z)− gi(y)−∇gi(y)(z − y) .

In particular, for all i ∈ I(x̂) and all y such that gi(y) = 0 we have

∇gi(y)(z − y) ≤ gi(z) + `i‖z − y‖2 ≤ `i‖z − y‖2 (3.5)

since z ∈ N ⊂ C and thus gi(z) ≤ 0.
Recall from Example 3.1 that for y ∈ C, under LICQ, we have

NyC =
{
η

∣∣∣∣ η =
∑

i∈I(y)
γi∇gTi (y), γi ≥ 0

}
.

In particular, since I(y) ⊂ I(x̂) and thus ‖∇gi(y)‖ ≥ δi, we have that
for η ∈ NyC ∩ B it holds that γi ≤ 1/δi.
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Let η ∈ NyC ∩ B. Using (3.5), we have for all z ∈ C

〈η, z − y〉 =
〈∑

i∈I(y)
γi∇gi(y)T , z − y

〉
≤
(∑

i∈I(y)
γi`i

)
‖z − y‖2 ≤

∑
i∈I(x̂)

`i
δi︸ ︷︷ ︸

=:α(x̂)

‖z − y‖2 .

Thus, C is α(x̂)-prox-regular at x̂ according to Definition 3.3.

3.3 Non-Euclidean Prox-Regular Sets

Definition 3.3 cannot be directly generalized to non-Euclidean spaces
since it requires the distance ‖y − x‖ between two points in C. Hence,
in [133] prox-regularity is defined on smooth (i.e., C∞) Riemannian
manifolds and ‖y − x‖ is replaced with the geodesic distance between
y and x. For our purposes we can avoid the notational complexity of
Riemannian geometry, yet preserve a higher degree of generality. We
introduce the following definitions:

Definition 3.4. Given a Clarke regular set C ⊂ Rn and a metric G :
C → Sn+ , a normal vector η ∈ NG

x C at x ∈ C is α-proximal in G for
α > 0 if, for all y ∈ C in a neighborhood of x, we have

〈η, y − x〉G(x) ≤ α‖η‖G(x)‖y − x‖2G(x) . (3.6)

The cone of all α-proximal normal vectors at x in G is denoted by N̄G,α
x C.

A crucial detail in (3.6) is the fact that G is evaluated at x and is used
as an inner product on Rn. This is a slight abuse of notation because
from a conceptual viewpoint G defines a bilinear form between (tangent)
vectors at x, i.e., vectors in TxRn. However, we have that y − x ∈ Rn

and, to use G(x) as an inner product on Rn, we exploit the canonical
isomorphism between Rn and TxRn.

Definition 3.5. A Clarke regular set C ⊂ Rn with a metric G : C → Sn+
is α-prox-regular at x ∈ C in G if N̄G,α

y C = NG
y C for all y ∈ C in a
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neighborhood of x. The set C is α-prox-regular in G if it is α-prox-regular
in G at every x ∈ C and C is prox-regular in G if there exists α > 0 such
that C is α-prox-regular in G.

Note that if G is the Euclidean metric, Definition 3.5 reduces to Def-
inition 3.3. The following result shows that prox-regularity is in fact
independent of the metric. This is the first step towards a coordinate-free
characterization of prox-regularity.

Proposition 3.3. Let C ⊂ Rn be Clarke regular. If C is prox-regular
in a continuous metric G : C → Sn+, then it is prox-regular in any other
continuous metric.

In particular if C is prox-regular in the Euclidean metric, i.e., according
to Definition 3.3, then it is prox-regular in any other continuous metric
on Rn. For the proof of Proposition 3.3 we require the following lemma
which establishes the pointwise correspondence of proximal normal cones.

Lemma 3.6. Let C ⊂ Rn be Clarke regular and consider two metrics
G,G′ : C → Sn+. Given x ∈ C, if N̄G,α

x C = NG
x C holds for some α > 0

then N̄G′,α′

x C = NG′

x C holds for α′ ≥ κG(x)κG′(x)α.

Proof. First, note that for every x ∈ C the two metrics G and G′ induce
a bijection between NG

x C and NG′

x C (see (3.2)). Namely, we define ψ :
TxRn → TxRn as the unique element ψ(v) that satisfies by 〈v, w〉G(x) =
〈ψ(v), w〉G′(x) for all w ∈ TxRn. To clarify, in matrix notation we can
write vTG(x)w = ψ(v)TG′(x)w and since G(x), G′(x) are symmetric
positive definite we have ψ(v) := G′(x)−1

G(x)v. It follows that if η ∈
NG
x C (hence, by definition 〈η, w〉G(x) ≤ 0 for all w ∈ TxC), then ψ(η) ∈

NG′

x C. Furthermore, omitting the argument x, we have ‖ψ(η)‖G′ =
ηTGG′

−1
Gη ≥ 1/λmax

G′ ‖Gη‖ and ‖η‖G = ηTGG−1Gη ≤ 1/λmin
G ‖Gη‖,

and therefore ‖ψ(η)‖G′(x) ≥ λmin
G(x)/λ

max
G′(x)‖η‖G(x).

Hence, let η ∈ NG
x C \ {0} be a α-proximal normal vector, then〈

ψ(η)
‖ψ(η)‖G′(x)

, y − x
〉
G′(x)

≤
λmax
G′(x)
λmin
G(x)

〈
η

‖η‖G(x)
, y − x

〉
G(x)

≤
λmax
G′(x)
λmin
G(x)

α‖y − x‖2G(x) .
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Finally, using the equivalence of norms, we have

λmax
G′(x)
λmin
G(x)

α‖y−x‖2G(x) ≤
λmax
G′(x)
λmin
G(x)

λmax
G(x)

λmin
G′(x)

α‖y−x‖2G′(x) ≤ α
′‖y−x‖2G′(x) , (3.7)

where α′ ≥ κG(x)κG′(x)α. Thus, we have shown that if v ∈ N̄G,α
x C =

NG
x C then ψ(v) ∈ N̄G′,α′

x = NG′

x C which completes the proof.

Proof of Proposition 3.3. Since G and G′ are continuous it follows that
κG(x) and κG′(x) are continuous in x and therefore locally bounded.
Given any x ∈ C and using the pointwise result in Lemma 3.6, we can
choose α′ > 0 such that (3.7) is satisfied for all y ∈ C in a neighborhood
of x, thus satisfying Definition 3.5 for α′-prox regularity at x. Since x
is arbitrary, we conclude that C is prox-regular (albeit not uniformly,
unless κG(x) and κG′(x) are bounded).

Thus, we have shown that prox-regularity as in Definition 3.5 is an
inherent property of a set C ⊂ Rn independent of the metric (as long
as the metric is continuous). Therefore, we will refer to a set simply as
being prox-regular, rather than being prox-regular in G. Also note that
this insight extends the scope of Proposition 3.2.
Finally, we show that prox-regularity is preserved under sufficiently

smooth coordinate transformations. This will be key in Section 4.5
where we show coordinate invariance of projected dynamical systems.

Proposition 3.4. Let V,W ⊂ Rn be open and consider a C1,1 diffeo-
morphism φ : V → W, i.e., φ is a C1,1 map and has a C1,1 inverse
φ−1 : W → V. If C ⊂ V is prox-regular then the image φ(C) is prox-
regular.

Proof. By Proposition 3.3 it suffices to show prox-regularity in a sin-
gle metric on V and W respectively. Hence, let W be endowed with
the canonical Euclidean metric which we denote explicitly by E, i.e.,
E : W → Sn+ with E ≡ I. Next, let E∗ denote the so-called pull-
back metric on V along φ, i.e., E∗ is defined such that 〈v, w〉E∗(x) :=
〈Dxφ(v), Dxφ(w)〉 (or, more explicitly, E? : x 7→ ∇φ(x)∇φ(x)T ).
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Analogously to Lemma 2.2, we show that (proximal) normal cones are
preserved under C1,1 coordinate transformations, i.e., we prove that

η ∈ NE∗

x C ⇐⇒ Dxφ(η) ∈ Nφ(x)φ(C) ∀x ∈ C (3.8)

η ∈ N̄E∗,α
y C ⇐⇒ Dyφ(η) ∈ N̄α′

φ(y)φ(C) ∀y ∈ Nx (3.9)

for some α′, α > 0 where Nx ⊂ C is a neighborhood of x. Since φ is a
diffeomorphism it suffices to show one direction only.
Hence, we first consider a (standard) normal vector η ∈ NE∗

x C. By
Definition 3.2 of the normal cone and using Lemma 2.2 we have

η ∈ NE∗

x C ⇔ 〈η, w〉E∗(x) = 〈Dxφ(η), Dxφ(w)〉 ≤ 0 ∀w ∈ TxC

⇔ 〈Dxφ(η), w̃〉 ≤ 0 ∀w̃ ∈ Dxφ(TxC) = Tφ(x)φ(C) .

We conclude that Dxφ(η) ∈ Nφ(x)φ(C) and (3.8) holds.
Next, for (3.9) we consider y ∈ C in a neighborhood of x and a α-

proximal normal vector η ∈ N̄E∗,α
y C at y such that, by definition,

〈η, z − y〉E∗(y) = 〈Dyφ(η), Dyφ(z − y)〉 ≤ α‖z − y‖2E∗G(y)

holds for all z ∈ C in a neighborhood of y. However, we need to show
that for some α′ > 0 we have

〈Dyφ(η), φ(z)− φ(y)〉 ≤ α′‖φ(z)− φ(y)‖2 . (3.10)

We define the C1,1 function ψ : V → R as ψ(z) := 〈Dyφ(η), φ(z)〉
and note that by linearity we have Dzψ(v) := 〈Dyφ(η), Dzφ(v)〉. This
enables us to apply the Descent Lemma (Lemma 3.5) and state that for
some M > 0 it holds that

|ψ(z)− ψ(y)−Dyψ(z − y)| = | 〈Dyφ(η), φ(z)− φ(y)−Dyφ(z − y)〉 |︸ ︷︷ ︸
=:γ(z)

≤M‖z − y‖2 .

This bound can be used to establish

〈Dyφ(η), φ(z)− φ(y)〉 ≤ 〈Dyφ(η), Dyφ(z − y)〉+ γ(z)
≤ (α+M)‖z − y‖2 .
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Finally note that ‖z− y‖2 ≤ `‖φ(z)−φ(y)‖2 for some ` > 0 since φ−1

is locally Lipschitz continuous. Hence, (3.10) and therefore (3.9) holds
for α′ = `(α+M).

In summary, in this section, we have proposed a new coordinate-free and
intrinsic definition of prox-regular sets which generalizes the standard
definition of prox-regularity for sets. For this purpose, we have defined
prox-regularity with respect to a (Riemannian) metric, but then we
have shown that the choice of metric does not affect the prox-regularity.
The key takeaway is Proposition 3.4 which states that prox-regularity is
preserved by C1,1 coordinate transformations.
Note that Propositions 3.3 and 3.4 do not make statements about

uniform prox-regularity of C. However, it is easy to see that Proposi-
tion 3.3 can be adapted to uniformly prox-regular sets by considering
only globally weakly bounded metrics, i.e., metrics with bounded con-
ditions numbers. Similarly, Proposition 3.4 can be reformulated by
considering a C1,1 diffeomorphism φ with globally Lipschitz ∇φ and
∇φ−1. In that case uniform prox-regularity is preserved by the coor-
dinate transformation φ (although the modulus of prox-regularity may
change).

3.4 Notes & Comments

The definition of a metric as a variable inner product is at the center of
classical Riemannian geometry. In that context, a Riemannian metric
is formally defined as symmetric, positive definite bilinear form defined
over the tangent bundle of a manifold [161].
Most work in differential geometry deals with sufficiently smooth

objects and most standard textbooks limit themselves to C∞ manifolds
and metrics. The reason for this seems to be that many sophisticated
tools are available only under sufficient smoothness (see e.g. [124] for a
counter-example where geodesics are not well-defined on a C2 manifold).

For our purposes, these advanced tools are not required. We primarily
use a variable metric to induce oblique projection directions in Part I
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and adapt the notion of steepest descent for gradient descent algorithms
in Part II. Hence, from an engineering perspective, a variable metric is,
to a large extent, a design parameter.

Historically, prox-regularity has first been established and studied for
functions (in the sense that prox-regular functions are those functions
with a prox-regular epigraph) [199]. The notion of prox-regular sets
is, however, of great importance. Particularly for the uniqueness of
solutions of projected dynamical systems and sweeping processes (i.e.,
time-varying projected dynamical systems; see also Chapter 12) prox-
regularity is a key component which was identified and studied in [68]
and others. We will revisit the uniqueness results for projected dynam-
ical systems in Section 4.4 and generalize them to oblique projection
directions.
Various definitions of prox-regularity (either via the locally single-

valued projections or hypomonotonicity of unit normal vectors) have
been proposed and shown to be equivalent [5]. The recent papers [28,
133] have also extended the concept of prox-regularity to C∞ Riemannian
manifolds by imposing that prox-regular subsets on a manifold need to
admit a locally single-valued projection (in geodesic terms).
The results presented in this chapter go in a different direction: We

have shown that prox-regularity is an inherent property of a subset of Rn
and preserved by sufficiently smooth coordinate transformations. This
is important to motivate the modeling of physical processes, which are
inherently coordinate-free, by projected dynamical systems.
Finally, we note that Proposition 3.2 provides an important link be-

tween the geometry and analysis of prox-regular sets, essentially ex-
tending Example 2.2 where we gave explicit descriptions of tangent and
normal cones for Clarke regular sets.
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CHAPTER 4

Coordinate-Free Projected
Dynamical Systems

We now rigorously define projected dynamical systems (PDSs) and
establish basic existence and uniqueness results for their trajectories.
Our goal in this chapter is to establish a “geometric” model of PDSs

that is coordinate-free. In other words, the properties of PDSs should
be invariant under (nonlinear) coordinate transformations. This feature
is highly desirable, if not essential, to motivate the use of PDS to model
physical feedback control systems.
As a specific example, the laws of AC power flow that govern the

physical flow of power in an electricity grid at steady state can be
formulated in different coordinates. This fact will be discussed in more
detail in Part III. While the design and implementation of a control
scheme for this kind of system is generally based on a specific choice
of coordinates, it is judicious to require that any qualitative properties
such as well-posedness, stability, and convergence hold irrespective of a

This chapter presents the key results of [Ha2] in a slightly simplified form. Namely,
we develop existence and uniqueness results for PDS over closed instead of locally
compact domains. This yields a more concise presentation in Sections 4.1, 4.2, 4.3,
and 4.4 at the expense of a less rigorous treatment of PDS on manifolds in Section 4.5.
Corollaries 4.1 and 4.3 and Theorems 4.2 and 4.3 constitute the main results of this
chapter.
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Chapter 4. Coordinate-Free Projected Dynamical Systems

specific numerical representation.
To achieve such a geometric viewpoint we use (Riemannian) metrics,

as introduced in Chapter 3, to describe oblique projection directions
that are preserved along sufficiently smooth coordinate transformations.
Besides the use of a variable metric, we take a different approach in

showing existence compared to the classical works [17, 68, 127] and the
popular, albeit slightly unconventional book [186]. Namely, we start
by considering a Krasovskii-regularized inclusion, which allows us to
generalize PDSs beyond Clarke regular sets.
For our purposes, a PDS is defined as a differential inclusion of the

form

ẋ ∈ ΠG
C [f(x)] (x) x ∈ C , (4.1)

where C ⊂ Rn is a closed set, G : C → Sn+ is a metric, and f : C → Rn is
a vector field. Given x ∈ C and w ∈ Rn, the operator ΠG

C [w] (x) projects
w onto the tangent cone of C at x with respect to the metric G, i.e.,

ΠG
C [w] (x) := arg min

v∈TxC
‖v − w‖G(x) . (4.2)

Since TxC is non-empty for any x ∈ C (namely, 0 ∈ TxC) and closed,
a minimum norm projection exists, and therefore ΠG

C [f ] (x) is non-
empty for all x ∈ C.1 If x /∈ C, we have ΠG

C [w] (x) = ∅ and therefore
dom ΠG

C [w] = C for all w ∈ Rn. If f is a vector field, we abuse notation
and write ΠG

C [f ] (x) := ΠG
C [f(x)] (x) for brevity. For simplicity, we call

ΠG
C [f ] a vector field even though ΠG

C [f ] (x) is, in general, not a singleton
for every x ∈ C. However, if C is Clarke regular and therefore TxC is
convex for all x, then ΠG

C [f ] (x) is a singleton for all x ∈ C (note that
‖v − f(x)‖2G(x) is strictly convex as function of v). In this case, we can
consider the ordinary differential equation (ODE) ẋ = ΠG

C [f ] (x), x ∈ C
instead of the inclusion (4.1).
The key properties of ΠG

C [·] are summarized in the following lemma
which is a simple application of Moreau’s Decomposition Theorem [131,
Thm. 3.2.5].

1See, e.g., the first part of the proof of Hilbert’s projection theorem [198,
Prop. 1.37].
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Lemma 4.1. Given C ⊂ Rn, x ∈ C, a metric G : C → Sn+, and w ∈ Rn,
for any v ∈ ΠG

C [w] one has 〈w, v〉G(x) = ‖v‖2G(x). If in addition C is
Clarke regular at x, then ΠG

C [w] (x) is a singleton and there exists a
unique η̂ ∈ NG

x C such that the following equivalent statements hold:

(i) ΠG
C [w] (x) = w − η̂,

(ii) arg minη∈NGx C‖η − w‖G(x) = η̂, and

(iii) w − η̂ ∈ TxC and 〈x− η̂, η̂〉G(x) = 0.

Proof. Let v ∈ ΠG
C [f ] (x). As TxC is a cone we have λv ∈ TxC for all

λ ≥ 0. Since v (locally) minimizes ‖v − f(x)‖2G(x) over TxC, it follows
that λ = 1 minimizes M(λ) := 1

2‖λv − f(x)‖2G(x) for v fixed. Hence,
for λ = 1 the optimality condition dM

dλ (λ) = λ 〈v − f(x), v〉G(x) = 0
holds. This proves the first part. The second part follows from Moreau’s
Theorem [131, Thm. 3.2.5] since TxC is convex by Clarke regularity.

Recall from Example 2.2 that the tangent cone TxC for a given x ∈ C
can be expressed explicitly as a polyhedral cone whenever the set C is
defined by differentiable constraints and satisfies the LICQ. In this case,
the projection onto TxC as given by ΠG

C [·] takes the form of a quadratic
program. This fact that ΠG

C [f ] (x) can be computed numerically will
be exploited in Chapter 6 to develop an iterative scheme to implement
PDSs as feedback control loops.

Example 4.1 (pointwise evaluation of a projected vector field). As in
Example 3.1 let g : Rn → Rm be C1, let C := {x | g(x) ≤ 0} satisfy the
LICQ for all x ∈ C, and let G : C → S+

n a metric. Furthermore, consider
a vector field f : C → Rn. Then, the projected vector field ΠG

C [f ] (x) at
x ∈ C is given as the solution of the convex quadratic program

minimize
v∈Rn

(f(x)− v)TG(x)(f(x)− v) subject to ∇hI(x)(x)v ≤ 0 .

Note that x is not an optimization variable. Hence, the properties of f
and G as functions of x are irrelevant when doing a pointwise evaluation
of ΠG

C [f ] (x). �
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Chapter 4. Coordinate-Free Projected Dynamical Systems

Remark 4.1. Projected dynamical systems can be generalized to the
case where the (unprojected) vector field f : C → Rn is replaced with a
set-valued map F : Rn ⇒ Rn. This avenue has been explored in [18, 17,
68, 127], albeit only for the Euclidean metric G ≡ I and Clarke regular
sets C. For our purposes, we assume that f is single-valued, in order not
to overload the forthcoming sections with technicalities. �

4.1 Existence of Krasovskii Solutions

Existence of solutions to PDSs of the form (4.1) is not covered by Theo-
rem 2.4 (viability theorem) because x 7→ ΠG

C [f ] (x) is in general neither
convex nor outer semicontinuous.

In previous work such as [68, 127] as well as [18, Ch. 10.1] or [17, Ch.
6], existence of solutions to (4.1) has been shown under the additional
assumption of C being Clarke regular or even convex. These works have
shown, in particular, that slow2 solutions of the so-called differential
variational inequalities ẋ ∈ f(x)−NxC are equivalent to solutions of (4.1)
(assuming the Euclidean metric G ≡ I; see also Section 4.3).

In this thesis we take a different approach by considering a Krasovskii
regularization of the PDS (4.1) which is well-posed almost by definition
and which does not rely on a reformulation as a DVI. As a consequence,
we do not require the use of normal cones and can therefore deal with
general domains C. Yet, for Clarke regular sets C, we recover results
that are analogous to the results in [18, 17, 68, 127], albeit generalized
to arbitrary metrics.

Definition 4.1. Given H : Rn ⇒ Rn, the Krasovskii regularization of
H is defined as

K [H] : Rn ⇒ Rn x 7→ co lim sup
y→x

H(y) .

By definition, the Krasovskii regularization K [H] of H takes only closed
convex values. In addition, it is outer semicontinuous and preserves local

2A solution x : [0, T ] → Rn to an inclusion ẋ ∈ F (x) is slow if ‖ẋ(t)‖ =
min{‖v‖ | v ∈ F (x(t))} holds for almost all t ∈ [0, T ]
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4.1 Existence of Krasovskii Solutions

boundedness as the following lemma corresponding to [118, Lem. 5.16]
shows:

Lemma 4.2. Given H : Rn ⇒ Rn, the Krasovskii regularization of H is
outer semicontinuous and, if H is locally bounded, then K [H] is locally
bounded.

Hence, a Krasovskii solution to the differential inclusion ẋ ∈ H(x), x ∈ C
is simply a solution x : [0, T ]→ C to the Krasovskii-regularized inclusion

ẋ ∈ K [H] (x) , x ∈ C . (4.3)

In other words, a solution of (4.3) is a Krasovskii solution of ẋ ∈ H(x),
x ∈ C.
The Krasovskii regularization being well-posed almost by definition,

we can state the following existence result about Krasovskii solutions.

Corollary 4.1 (Existence of Krasovskii solutions). Let C ⊂ Rn be closed,
f : C → Rn a locally bounded vector field, and G : C → Rn a locally
weakly bounded metric. Then, for any initial condition x(0) ∈ C, the
PDS (4.1) admits a Krasovskii solution x : [0, T ]→ C with either T =∞
or T <∞ and lim supt→T− ‖x(t)‖ =∞.

Corollary 4.1 is slightly less general than [Ha12, Thm. 4.2] because C
needs to be closed. Assuming the closedness of C allows for a more concise
presentation of the following proof and the proof of the forthcoming
Corollary 4.2. However, Corollary 4.1, is strictly speaking, not general
enough to establish existence on abstract manifolds (Section 4.5). In
this case, C is in general only locally compact (which is covered by [Ha12,
Thm. 4.2]).

Proof. We apply Theorem 2.4. First, note that dom ΠG
C [f ] = C since

TxC = ∅ for all x /∈ C, by convention. Because C is closed we also
have dom K

[
ΠG
C [f ]

]
= C. Given x ∈ C, for all v ∈ ΠG

C [f ] (x) ⊂
K
[
ΠG
C [f ]

]
(x) we have v ∈ TxC (by definition of ΠG

C [·]). Therefore,
we have K

[
ΠG
C [f ]

]
(x) ∩ TxX 6= ∅ for all x ∈ C and C is a viability

domain for K
[
ΠG
C [f ]

]
.
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Chapter 4. Coordinate-Free Projected Dynamical Systems

To show that the regularized inclusion ẋ ∈ K
[
ΠG
C [f ]

]
(x), x ∈ C is

well-posed, note that K
[
ΠG
C [f ]

]
(x) is non-empty for all x ∈ C (since

∅ 6= ΠG
C [f ] (x) ⊂ K

[
ΠG
C [f ]

]
(x) for all x ∈ C) and K

[
ΠG
C [f ]

]
is convex

by definition. Furthermore, by Lemma 4.2, K
[
ΠG
C [f ]

]
is osc. It remains

to show that K
[
ΠG
C [f ]

]
is locally bounded which follows immediately

by Lemma 4.2 if ΠG
C [f ] is locally bounded.

To show that ΠG
C [f ] is locally bounded, we first introduce an auxiliary

metric Ĝ defined as Ĝ(x) := 1
λmax
G

(x)G(x), that is, we scale the metric at
every x ∈ C by dividing it by its maximum eigenvalue at that point. This
implies that ‖f(x)‖Ĝ(x) ≤ ‖f(x)‖ for all x ∈ C. Note that the projected
vector field is unchanged, i.e., ΠĜ

C [f ] = ΠG
C [f ], since in (4.2) only the

objective function is scaled. Furthermore, κG(x) = κĜ(x) for all x ∈ C,
and consequently Ĝ is locally weakly bounded since G is locally weakly
bounded.

Given any x ∈ C, we have 0 ∈ TxC. It follows that ‖v‖Ĝ(x) ≤ ‖f(x)−
0‖Ĝ(x) for every v ∈ ΠĜ

C [f ] (x). Consequently, by local boundedness of
f there exists `′′ > 0 such that ‖ΠĜ

C [f ] (y)‖Ĝ(y) ≤ `′′ for every y ∈ C
in a neighborhood of x. Furthermore, by weak local boundedness of Ĝ
there exists `′ > 0 such that κĜ(x) ≤ `′ in a neighborhood of x. Since
λmax
Ĝ

(x) = 1, it follows that λmax
G(x) ≥ 1/`′ and therefore ‖v‖ ≤ `′‖v‖G(y)

for all v ∈ TyRn and all y ∈ C in a neighborhood of x. Combining
these arguments, there exist `′, `′′ > 0 such that for every y ∈ C in a
neighborhood of x it holds that

1
`′ ‖Π

Ĝ
C [f ] (y)‖ ≤ ‖ΠĜ

C [f ] (y)‖Ĝ(y) ≤ ‖f(y)‖Ĝ(y) ≤ ‖f(y)‖ ≤ `′′ . (4.4)

Hence, since ΠĜ
C [f ] = ΠG

C [f ], it follows that ΠG
C [f ] is locally bounded.

Consequently, the regularized inclusion ẋ ∈ K
[
ΠG
C [f ]

]
(x), x ∈ C is

well-posed and C is a viability domain for K
[
ΠG
C [f ]

]
. Theorem 2.4 can

thus be applied to guarantee the existence of Krasovskii solutions to (4.1)
which completes the proof.

The next result establishes conditions for the existence of complete
solutions.

Corollary 4.2. Consider the same setup as in Corollary 4.1. If either
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4.1 Existence of Krasovskii Solutions

(i) f is bounded, and G is weakly bounded, or

(ii) C is compact, f and G are continuous, or

(iii) f is globally Lipschitz and G is weakly bounded,

then for every x(0) ∈ C there exists a complete Krasovskii solution
to (4.1).

Proof. According to Theorem 2.4, the linear growth condition∥∥K
[
ΠG
C [f ]

]
(x)
∥∥ ≤ c(‖x‖+ 1)

for some c > 0 guarantees the existence of complete solutions.
(i) If f is bounded and G is weakly bounded, then the local bound-

edness argument of the proof of Corollary 4.1 can be applied globally,
i.e., (4.4) holds for all y ∈ C for the same `′, `′′ and hence ΠG

C [f ] is
bounded and (trivially) has linear growth.

(ii) Since f is continuous it takes only bounded values on a compact set.
Furthermore, continuity of G implies local weak boundedness, i.e., for
every x ∈ C there exist `x, `x > 0 such that `x < κG(y) < `x for all y ∈ C
in a neighborhood of x. Since C is compact, there exist ` := minx∈C `x
and ` := maxx∈C `x and (4.4) holds for all y ∈ C. Hence, G is weakly
bounded. Then, the same arguments as for (i) apply.

(iii) Assume without loss of generality that 0 ∈ C. Lipschitz continuity
of f on C implies the existence of `′′ > 0 such that ‖f(x)‖ ≤ `′′(‖x‖+ 1)
for all x ∈ C. To see this, recall that by the reverse triangle inequality
and the definition of Lipschitz continuity there exists `′ > such that
|‖f(x)‖ − ‖f(0)‖| ≤ ‖f(x) − f(0)‖ ≤ `′‖x‖ for all x, y ∈ C. It follows
that ‖f(x)‖ ≤ `′‖x‖+‖f(0)‖ and hence `′′ can be chosen as the maximum
of `′ and ‖f(0)‖ to yield the linear growth property.
Since G is weakly bounded, the same arguments as for (4.4) can be

used to establish the existence of `′′′ > 0 such that for all x ∈ C we have

`′′′‖ΠG
C [f ] (x)‖ < ‖ΠG

C [f ] (x)‖G(x) ≤ ‖f(x)‖G(x)

≤ ‖f(x)‖ < `′′(‖x‖+ 1) .
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It follows by the same arguments as in the proof of Corollary 4.1 that
‖K

[
ΠG
C [f ]

]
(x)‖ ≤ `(‖x‖ + 1) where ` = `′′/`′′′, i.e., the linear growth

condition applies to K
[
ΠG
C [f ]

]
.

4.2 Existence of Carathéodory Solutions

We now ask whether the PDS (4.1) admits a (Carathéodory) solution
without being regularized. We show that under additional assumptions
on the problem parameters, all Krasovskii solutions are Carathódory
solutions, consequently proving the existence of the latter.
Consider a set C ⊂ Rn, a metric G : C → Sn+ and a vector field f :
C → Rn. The sets of Carathéodory and Krasovskii solutions of (4.1) with
initial condition x0 ∈ C are denoted by SC(x0) and SK(x0), respectively.

Since ΠG
C [f ] (x) ⊂ K

[
ΠG
C [f ]

]
(x), every Carathéodory solution of (4.1)

is a Krasovskii solution, i.e., SC(x0) ⊂ SK(x0) for all x0 ∈ C. To show
the opposite inclusion we need the following lemma about the Krasovskii
regularization of a projected vector field.

Lemma 4.3. Consider C ⊂ Rn closed, let G : C → Sn+ and f :
C → Rn be continuous. Then, for every v ∈ K

[
ΠG
C [f ]

]
(x), one has

〈f(x), v〉G(x) ≥ ‖v‖2G(x). If, in addition, C is Clarke regular, then it
holds that f(x)− v ∈ NG

x C.

Proof. Let F : Rn ⇒ Rn be the osc-regularization of ΠG
C [f ], i.e., for

all x ∈ Rn we have F (x) := lim supy→xΠG
C [f ] (y). By definition of the

outer limit, there exist sequences xk → x with xk ∈ C and vk → v with
vk ∈ ΠG

C [f ] (xk) for every v ∈ F (x) and every x ∈ C. In particular,
〈f(xk), vk〉G(xk) = ‖vk‖2G(xk) holds for every k by Lemma 4.1. Since f
and G are continuous the equality holds in the limit, i.e., 〈f(x), v〉G(x) =
‖v‖2G(x) for every v ∈ F (x). Taking any convex combination v =

∑
i γivi

with vi ∈ F (x) and γi ≥ 0 and
∑
i γi = 1, we have

∑
i
〈f(x), γivi〉G(x) =

∑
i
γi‖vi‖2G(x) ≥

∥∥∥∑
i
γivi

∥∥∥2

G(x)
= ‖v‖2G(x) ,
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and therefore we get 〈f(x), v〉G(x) ≥ ‖v‖2G(x) for every vector v ∈
coF (x) = K

[
ΠG
C [f ]

]
(x).

According to Lemma 4.1, if C is Clarke regular, given a sequence
xk → x, the sequences vk = ΠG

C [f ] (xk) and η̂k ∈ NG
xk
C for which

η̂k = f(xk)−ΠG
C [f ] (xk) are uniquely defined. Since G is continuous, the

mapping x 7→ NG
x C is outer semicontinuous (Lemma 3.1) and therefore

limk→∞ η̂k ∈ NG
x C. In other words, for every v ∈ F (x) it holds that

f(x) − v ∈ NG
x C. Since by Clarke regularity NG

x C is convex, it follows
that, for any convex combination η =

∑
i γi(f(x) − vi) with vi ∈ F (x)

and γi ≥ 0 and
∑
i γi = 1, it must hold that η ∈ NG

x C, which completes
the proof.

The proof of the next result follows ideas from [68]. The requirement
that G and f need to be continuous deserves particular attention.

Theorem 4.1 (equivalence of solution sets). Consider the PDS (4.1).
If C is Clarke regular, G : C → Sn+ is continuous, and f : C → Rn is
continuous, then SC(x0) = SK(x0) for all x0 ∈ C.

Proof. Since SC(x0) ⊂ SK(x0), we need to show only that x ∈
SK(x0) implies x ∈ SC(x0). For this, we first show that, for all x ∈ C,
K
[
ΠG
C [f ]

]
(x) ∩ TxC = ΠG

C [f ] (x).
By definition of ΠG

C [f ] (x) we have ΠG
C [f ] (x) ⊂ K

[
ΠG
C [f ]

]
(x) ∩ TxC.

For the converse, let v ∈ K
[
ΠG
C [f ]

]
(x)∩TxC. By Lemma 4.3, v = f(x)−

η̂ for some η̂ ∈ NG
x C and ‖v‖2G(x) ≤ 〈v, f(x)〉G(x). Since 〈v, η〉G(x) ≤ 0

for all η ∈ NG
x C we have

‖v‖2G(x) ≤ 〈v, f(x)〉G(x) − 〈v, η〉G(x) ≤ ‖v‖G(x)‖f(x)− η‖G(x)

holds for all η ∈ NG
x C, where the second inequality is due to Cauchy-

Schwarz, and therefore ‖v − η̂‖G(x) ≤ ‖f(x) − η‖G(x) holds for all η ∈
NG
x C. However, according to Lemma 4.1, η̂ = arg min

η∈NGx C
‖f(x)− η‖G(x)

is equivalent to v ∈ ΠG
C [f ] (x).

Consequently, we have K
[
ΠG
C [f ]

]
(x) ∩ TxC = ΠG

C [f ] (x) holds for
all x ∈ C and by Lemma 2.3, ẋ(t) ∈ Tx(t)C holds for almost all t.

85



Chapter 4. Coordinate-Free Projected Dynamical Systems

Therefore, we have that ẋ(t) ∈ K
[
ΠG
C [f ]

]
(x(t)) ∩ Tx(t)C which implies

that ẋ(t) = ΠG
C [f ] (x(t)) for almost all t and therefore x ∈ SC .

Theorem 4.1, combined with Corollary 4.1, guarantees the existence
Carathéodory solutions. Namely, the following corollary recovers the
conditions for existence derived in [68], but generalizes them to a variable
metric.

Corollary 4.3 (Existence of Carathéodory solutions). If C is Clarke
regular, and G : C → Sn+ and f : C → Rn are continuous, then there exists
a (Carathéodory) solution x : [0, T ]→ C for (4.1) for any initial condition
x(0) ∈ C with either T =∞ or T <∞ and lim supt→T− ‖x(t)‖ =∞.

4.3 Differential Variational Inequalities

We now discuss an equivalent formulation of a PDS which is known
as a differential variational inequality (DVI)3. Namely, under Clarke
regularity of the feasible set C, we may define the differential inclusion

ẋ ∈ f(x)−NG
x C , x ∈ C . (4.5)

The set of (Carathéodory) solutions of (4.5) starting at x0 ∈ C is denoted
by SN (x0).

For the Euclidean metric G ≡ I, inclusions of the form (4.5) have been
studied extensively, particularly for convex sets C [52, 17, 68] and the
connection to PDSs is well-established.

The inclusion (4.5) is also the starting point for the definition of time-
varying PDSs which are a special case of so-called sweeping processes [28,
248, 154] in which the set C is time-varying.

To show existence of solutions for (4.5), Theorem 2.4 cannot be applied
directly, because x 7→ f(x) − NG

x C is not well-posed. In particular,
this set-valued map is not locally bounded. However, we can establish

3The name “differential variational inequality” refers to the fact that, for a solution
x : [0, T ]→ C where C is convex, the derivative ẋ(t), whenever it exists, satisfies the
variational inequality 〈ẋ(t), y − x〉 ≤ 0 for all y ∈ C.
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equivalence with PDSs, i.e., any solution of (4.5) is also a solution of
(4.1) and vice versa. Hence, the following result is an generalization
of [68, Thm. 2.3] to arbitrary metrics.

Corollary 4.4. Consider a Clarke regular set C ⊂ Rn, a continuous
vector field f , and a continuous metric G, both defined on C. Then,
SN (x0) = SC(x0) holds for systems of the form (4.1) and (4.5), and
for all x0 ∈ C.

Proof. We first note that SC(x0) ⊂ SN (x0) since ΠG
C [f ] (x) ⊂ f(x) −

NG
x C for all x ∈ C by virtue of Lemma 4.3 and since C is Clarke regular.

Conversely, let x ∈ SN (x0) be defined for t ∈ [0, T ) for T > 0. Then for
almost all t, we have ẋ(t) ∈ f(x(t))−NG

x(t)C and ẋ(t) ∈ Tx(t)C ∩−Tx(t)C
by Lemma 2.3. Thus, for ẋ(t) = f(x(t))− η(x(t)) with η(x(t)) ∈ NG

x(t)C
it must hold that

〈f(x(t))− η(x(t)), η(x(t))〉G(x(t)) ≤ 0

〈f(x(t))− η(x(t)),−η(x(t))〉G(x(t)) ≤ 0 .

Thus, 〈f(x(t))− η(x(t)), η(x(t))〉G(x(t)) = 0, and using Lemma 4.1 it
follows that ẋ(t) = ΠG

C [f ] (x(t)).

We immediately conclude the existence of solutions for (4.5) from Corol-
lary 4.3:

Corollary 4.5 (Existence of solutions for DVI). If C is Clarke regular,
and G : C → Sn+ and f : C → Rn are continuous, then there exists a
solution x : [0, T ] → C for (4.5) for any initial condition x(0) ∈ C with
either T =∞ or T <∞ and lim supt→T− ‖x(t)‖ =∞.

Remark 4.2. Defining inclusions of the form (4.5) for a set C that is not
Clarke regular is possible but technical since one needs to distinguish
between different types of normal cones. Furthermore, depending on the
choice of normal cone the resulting set of solutions can be overly relaxed
or too restrictive. In the context of sweeping processes, this idea has
been explored in [248]. �
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Remark 4.3. Using (ii) in Lemma 4.1 it follows that whenever ẋ exists,
we have

ẋ = arg min
v∈f(x)−NGx C

‖v‖G(x) .

When G is the Euclidean metric, this minimum norm property gives rise
to so-called slow solutions of (4.5) [18, Ch. 10.1]. For a general metric,
the definition of a slow solution generalizes accordingly. However, the
property of being “slow” depends on the metric. �

4.4 Uniqueness of Solutions

To guarantee the uniqueness of solutions for (4.1), we require additional
assumptions on C, f and G. From the classical theory for continuous
ODEs, it is well-known that local Lipschitz continuity of the vector
field f guarantees uniqueness. Since PDSs include unconstrained ODEs
by setting C = Rn, it is unsurprising that Lipschitz continuity of f is
generally required for uniqueness.
Before formulating our main uniqueness result, we present an exam-

ple that illustrates the impact of prox-regularity on the uniqueness of
solutions.
Example 4.2 (prox-regularity and uniqueness of solutions). We consider
the set

Cγ := {(x1, x2) | |x2| ≥ max{0, x1}γ}

for 0 < γ < 1, as in Example 3.2. We study how the value of γ affects the
uniqueness of solutions of the PDS defined by the uniform “horizontal”
vector field f(x) = (1, 0) for all x ∈ C and the initial condition x(0) = 0
as illustrated in Figure 4.1.

Since Cγ is Clarke regular and closed, since the vector field is uniform,
and since we use the Euclidean metric, the existence of Krasovskii so-
lutions and the equivalence of Carathéodory solutions is guaranteed by
Corollary 4.2 and Theorem 4.1, respectively. The prox-regularity of Cγ
at the origin is, however, guaranteed only for 0 < γ ≤ 1

2 (Example 3.2).
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(a) γ = 0.3 (b) γ = 0.5 (c) γ = 0.6

Figure 4.1: Projected vector field on Cγ (shaded) for different values of
γ in Example 4.2. The origin is a strong equilibrium in (a) and (b), and
it is a weak equilibrium in (c).

A rigorous analysis reveals that for 0 < γ ≤ 1
2 the origin is a strong

equilibrium, i.e., the constant solution x(t) = 0 is the unique solution to
the PDS. For 1

2 < γ < 1, however, the origin is only a weak equilibrium
point. Namely, a solution may remain at 0 for an arbitrary amount
of time before leaving 0 on either upper or lower halfplane, and thus
uniqueness is not guaranteed. �

For the proof of uniqueness under prox-regularity, we require the fol-
lowing lemma for which local Lipschitz continuity of the metric G is
key.

Lemma 4.4. Let C ⊂ Rn be α-prox-regular at x with respect to a C0,1

metric G : C → Sn+. Then, there exist ᾱ > 0 such that for all y ∈ C
in a neighborhood of x and all η ∈ NG,α

y with ‖η‖G(y) = 1 we have
〈η, z − y〉G(x) ≤ ᾱ‖z − y‖2G(x).

Proof. By the definition of the proximal normal cone, we know that
η ∈ NG,α

y C satisfies 〈η, y − x〉G(y) ≤ α‖y − x‖2G(y) for y close enough to
x. Furthermore, by the equivalence of norms there exists α′ > 0 such
that 〈η, y − x〉G(y) ≤ α′‖y − x‖2G(x).
Next, we show that | 〈η, x− y〉G(y) − 〈η, x− y〉G(x) | ≤ `‖y − x‖2G(x)

for some ` > 0. Since the space of square symmetric n× n-matrices Sn
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is a vector space, we may write

〈η, x− y〉G(y) − 〈η, x− y〉G(x) = 〈η, x− y〉G(y)−G(x)

which is a slight abuse of notation since 〈·, ·〉G(y)−G(x) is not necessarily
positive definite and therefore does not induce a norm. Nevertheless, any
map of the form (u, v,G) 7→ 〈u,w〉G where G ∈ αn2 is linear in u, v and
in G (e.g., (u, v,G) 7→ 〈u,w〉λG = λ 〈u,w〉G for any λ ∈ R). Therefore,
using Cauchy-Schwarz on 〈G(y)η −G(x)η, x− y〉 there exists ` > 0 such
that∣∣∣〈η, x− y〉G(y)−G(x)

∣∣∣ ≤ ‖η‖‖G(y)−G(x)‖Sn‖x− y‖G(x) ≤ `‖x− y‖2G(x) ,

where ‖ · ‖Sn denotes the induced norm on the vector space Sn, and the
second inequality follows directly from the local Lipschitz continuity of
G. Hence, we can conclude that

〈η, x− y〉G(x) ≤ 〈η, x− y〉G(y) +
∣∣∣〈η, x− y〉G(y)−G(x)

∣∣∣
≤ (α′ + `)‖y − x‖2G(x) ,

which completes the proof.

Lemma 4.4 allows us to establish the following one-sided Lipschitz prop-
erty of projected vector fields.

Proposition 4.1. Let C ⊂ Rn and let f : C → Rn and G : C → Sn+ be
C0,1 maps. Then, for every x ∈ C there exists ` > 0 such that for all
y ∈ C in a neighborhood of x we have〈

ΠG
C [f ] (y)−ΠG

C [f ] (x), y − x
〉
G(x) ≤ `‖y − x‖

2
G(x) .

Proof. Using Lemma 4.1, we can decompose ΠG
C [f ] into f and a normal

vector, and write〈
ΠG
C [f ] (y)−ΠG

C [f ] (x), y − x
〉
G(x)

= 〈f(y)− f(x), y − x〉G(x) + 〈ηy, x− y〉G(x) + 〈ηx, y − x〉G(x) , (4.6)
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where ηy ∈ NG
y C = N̄G,`

y C and ηx ∈ NG
x C = N̄G,`

x for some ` > 0.
For the first term, we get

〈f(y)− f(x), y − x〉G(x) ≤ ‖f(y)− f(x)‖G(x)‖y − x‖G(x)

by applying Cauchy-Schwarz. Since f is locally Lipschitz and using the
equivalence of norms there exists `a > 0 such that ‖f(y)− f(x)‖G(x) ≤
`a‖y − x‖G(x) for all y ∈ C in a neighborhood of x. Thus, we have
〈f(y)− f(x), y − x〉G(x) ≤ `a‖y − x‖2G(x).
For the second and third term in (4.6) we have

〈ηy, x− y〉G(x) ≤ `
′‖y − x‖2G(x)‖ηy‖G(y)

〈ηx, y − x〉G(x) ≤ `‖y − x‖
2
G(x)‖ηx‖G(x)

by Lemma 4.4 and the definition of a `-proximal normal vector, respec-
tively.
By Lemma 4.1 we know that ‖ηy‖G(y) ≤ ‖f(y)‖G(y) and ‖ηx‖G(x) ≤
‖f(x)‖G(x). Since G and f are continuous (hence locally bounded)
we can choose M > 0 such that ‖f(z)‖G(z) ≤ M for all z ∈ C in a
neighborhood of x. Thus, (4.6) can be bounded by〈

ΠG
C [f ] (y)−ΠG

C [f ] (x), y − x
〉
G(x) ≤ (`a + `′M + `M)‖y − x‖2G(x)

which completes the proof.

Using Proposition 4.1 we can now prove our main uniqueness results
for PDSs using standard contraction ideas, e.g. [100]. To reiterate, the
following statement extends the uniqueness result in [68] which had
identified prox-regularity as a key component, but not considered the
implications of oblique projection directions induced by a variable metric.

Theorem 4.2 (uniqueness of solutions). Let C ⊂ Rn be prox-regular
and let f : C → Rn and G : C → Sn+ be C0,1 maps. Then (4.1) admits a
unique Carathéodory solution for every initial condition x0 ∈ C (which
is also the unique Krasovskii solution).

Proof. Because our definition of prox-regularity implies Clarke regular-
ity, and local Lipschitz continuity implies continuity, every Krasovskii
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solution is a Carathódory solution according to Theorem 4.1 under the
given assumptions on C, f , and G.
Let x, y : [0, T ] → C be two Carathódory solutions of (4.1) with

y(0) = x(0) = x0 ∈ C. Using Proposition 4.1, there exists ` > 0 and a
neighborhood V of x0 such that

d
dt

(
1
2‖y(t)− x(t)‖2G(x0)

)
=
〈
ΠG
C [f ] (y(t))−ΠG

C [f ] (x(t)), y(t)− x(t)
〉
G(x0)

≤ `||y(t)− x(t)||2G(x0)

(4.7)

for all t in some non-empty subinterval [0, T ′) ⊂ [0, T ] for which x(t) and
y(t) remain in V . Next, consider the non-negative, absolutely continuous
function q : [0, T ′)→ R defined as q(t) := 1

2‖y(t)−x(t)‖2G(x0)e
−2`t. Note

that q(0) = 0. Furthermore, using (4.7) and applying the product rule
we have

d
dtq(t) =

( 〈
ΠG
C [f ] (y(t))−ΠG

C [f ] (x(t)), y(t)− x(t)
〉
G(x0)

− `||y(t)− x(t)||2G(x0)

)
e−2`t

and since y(0) = x(0) it follows that d
dtq(t) ≤ 0 for t ≥ 0. However, since

q is non-negative and absolutely continuous, we conclude that x(t) = y(t)
for all t ∈ [0, T ′) thus finishing the proof of uniqueness.

4.5 Coordinate Invariance

We can now phrase the main result of this chapter which states that
PDSs are invariant under sufficiently smooth, nonlinear coordinate trans-
formations.

For this purpose, we take inspiration from basic differential geometry
and use so-called pullback metrics and pushforward vector fields along a
coordinate transformation φ. However, the set-valued and discontinuous
nature of the project vector field ΠG

C [f ] and its Krasovskii regularization
introduce several technicalities.
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Also recall Lemma 2.2 on Page 53 which states that Clarke regularity
is preserved by a C1 coordinate transformation and Proposition 3.4 on
Page 70 which guarantees that prox-regularity is preserved by a C1,1

coordinate transformation.

Theorem 4.3. Let V,W ⊂ Rn be open and consider a C1 diffeo-
morphism φ : V → W. Let C ⊂ V be closed (in Rn). Further, let
G : φ(V)→ Sn+ be locally weakly bounded and let φ∗G : V → Sn+ denote
the pullback metric along φ, i.e.,

〈v, w〉φ∗G(x) := 〈Dxφ(x)v,Dxφ(w)〉G(φ(x)) (4.8)

for all x ∈ V and v, w ∈ TxRn. Further, let f : C → Rn be a locally
bounded vector field and define the pushforward vector field of f along
φ−1 as f∗ : φ(C) → Rn such that f∗(y) := Dxφ(f(x)) for all y ∈ φ(C)
and x : φ−1(y).

Then, x : [0, T ] → C for some T > 0 is a Krasovskii (Carathéodory)
solution of

ẋ ∈ Πφ∗G
C [f ] (x) , x ∈ C , (4.9)

if and only if y := φ ◦ x : [0, T ] → φ(C) is a Krasovskii (Carathéodory)
solution of

ẏ ∈ ΠG
φ(C) [f∗] (y) , y ∈ φ(C) . (4.10)

For the proof of Theorem 4.3 we require [211, Thm. 4.26] which reads
as follows:

Lemma 4.5. For a sequence of sets {Ck} in V ⊂ Rn and a continuous
map f : V → Rm, one has

f

(
lim inf
k→∞

Ck

)
⊂ lim inf

k→∞
f(Ck) , f

(
lim sup
k→∞

Ck

)
⊂ lim sup

k→∞
f(Ck) .

Namely, Lemma 4.5 makes a statement about how inner and outer limits
of sequences of sets commute with continuous functions.

Proof of Theorem 4.3. First, note that since x is absolutely continuous
and φ is differentiable, y := φ◦x is absolutely continuous [212, Ex. 6.44].
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Second, it holds that y(t) ∈ φ(C) for all t ∈ [0, T ). Third, using (2.10)
which states that tangent cones of C are mapped to tangent cones of φ(C)
through Dφ, we can express ΠG

φ(C) [f∗] for every x ∈ C and y := φ(x) as

ΠG
φ(C) [f∗] (y) = arg min

w∈Tyφ(C)
‖w −Dxφ(f(x))‖G

= arg min
w∈Dxφ(TxC)

‖w −Dxφ(f(x))‖G

= Dxφ

(
arg min
v∈TxC

‖Dxφ(v)−Dxφ(f(x))‖G
)
,

where for the last equality we introduce the transformation w := Dxφ(v)
for v ∈ TxC. Hence, using the definition of the pullback metric (4.8) we
continue with

ΠG
φ(C) [f∗] (y) = Dxφ

(
arg min
v∈TxC

‖v − f(x)‖φ∗G
)

= Dxφ
(

Πφ∗G
C [f ] (x)

)
.

Consequently, if x is a Carathéodory solution of (4.9) and hence ẋ(t) ∈
Πφ∗G
C [f ] (x(t)) holds almost everywhere, then φ ◦ x satisfies

d
dty(t) = d

dt (φ ◦ x) ∈ Dxφ
(

Πφ∗G
C [f ] (x)

)
= ΠG

φ(C) [f∗] (φ ◦ x(t))

almost everywhere and hence y is a Carathéodory solution to (4.10).
It remains to prove that the statement is also true for Krasovskii

solutions. For this, we need to show that Dxφ(K
[
Πφ∗G
C [f ]

]
(y)) ⊂

K
[
ΠG
φ(C) [f∗]

]
(y) for all x ∈ C and y = φ(x). Expanding the definition

of the Krasovskii regularization we get

K
[
ΠG
φ(C) [f∗]

]
(y) = co lim sup

ỹ→y
ΠG
φ(C) [f∗] (ỹ)

= co lim sup
x̃→x

Dx̃φ
(

Πφ∗G
C [f ] (x̃)

)
= co lim sup

x̃→x
Dxφ

(
Πφ∗G
C [f ] (x̃)

)
,

where the last equation is due to the fact that Dxφ is continuous in x.
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Next, since Dxφ is a linear map we have

K
[
ΠG
φ(C) [f∗]

]
(y) = co lim sup

x̃→x
Dxφ

(
Πφ∗G
C [f ] (x̃)

)
⊃ co Dxφ

(
lim sup
x̃→x

Πφ∗G
C [f ] (x̃)

)
= Dxφ

(
co lim sup

x̃→x
Πφ∗G
C [f ] (xk)

)
= Dxφ

(
K
[
Πφ∗G
C [f ]

]
(x)
)
.

Namely, ⊃-inclusion follows since Dxφ continuous (as a linear map xφ :
Rn → Rn) and therefore we can apply Lemma 4.5. The subsequent
equality follows because Dxφ, as a linear map, commutes with taking
the convex closure.
To conclude we can proceed similar to the case of Carathéodory so-

lutions. Let x be a Krasovskii solution to (4.9) and y := φ ◦ x. Then,
ẏ(t) = d

dt (φ ◦ x)(t) = Dx(t)φ(ẋ(t)) holds for almost all t ∈ [0, T ) and we
have that

ẏ(t) ∈ Dx(t)

(
K
[
Πφ∗G
C [f ]

]
(x(t))

)
⊂ K

[
ΠG
φ(C) [f∗]

]
(y(t))

for almost all t ∈ [0, T ), and thus y is a Krasovskii solution of (4.10).
Because φ is diffeomorphism, it follows that the pullback metric φ∗G

is locally weakly bounded and the pushforward vector field f∗ is locally
bounded. Therefore, the entire setup can be reverted to prove the
converse statement and arrive at the if-and-only-if statement to complete
the proof.

Applying Corollary 4.4, we can also make the analogous statement
about solutions of DVIs:

Corollary 4.6. Consider the same setup as in Theorem 4.3 and, in ad-
dition, assume that C is Clarke regular and that f and G are continuous.
Then, x : [0, T ] → C for some T > 0 is a solution of ẋ ∈ f(x) −Nφ∗G

C ,
x ∈ C if and only if y := φ ◦ x : [0, T ] → φ(C) is a solution of
ẏ ∈ f∗(y)−NG

φ(C), y ∈ φ(C).
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Concerning the uniqueness, we make the following important observation:
Because Theorem 4.3 works both ways, if solutions of (4.9) are unique,
then so are the solutions of (4.10) and vice versa.
Theorem 4.2 guarantees the uniqueness of solutions of (4.9) if C is

prox-regular, f is locally Lipschitz, and φ∗G is locally Lipschitz. If
we assume that φ is a C1,1 diffeomorphism, then the metric G and f∗
of (4.10) are locally Lipschitz, and Proposition 3.4 implies that φ(C)
is prox-regular. Consequently, if the requirements for uniqueness are
met for (4.9) and φ is a C1,1 diffeomorphism, then the requirements for
uniqueness are met for (4.10).

4.6 Existence & Uniqueness on Manifolds

As a final, consolidating result of this chapter we define PDSs on ab-
stract manifolds and show existence and uniqueness of solutions. We give
only a sketch of this construction though, since Corollaries 4.1 and 4.3
and Theorem 4.2 derived in the previous sections are slightly simpli-
fied and not entirely suitable for this purpose. For the full set general
statements the reader is referred to [Ha2].
The key enabling results for this section are Lemma 2.2 and Propo-

sition 3.4, which state that Clarke regularity and prox-regularity are
preserved by C1 and C1,1 coordinate transformations, as well as Theo-
rem 4.3 which proves that PDSs and their solutions can subjected to a
change of coordinates.

Recall that a (topological) manifold is defined as a locally Euclidean,
second-countable Hausdorff space4 [162]. In particular, for every point
x on a manifold V, there exists an open set V ⊂ M with x ∈ V and
a continuous map φ : U → Rn. In particular, φ is a homeomorphism

4A second-countable space is defined as a space with a countable base. That is,
there exists a countable family of open subsets such that any open subset can be
written as a union of elements of the family. A Hausdorff space is such that for any
two distinct points there exist neighborhoods of each point which are disjoint from
each other. As a consequence, in a Hausdorff space, any sequence converges to at
most one point [162].
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onto its image, i.e., φ is continuous and has a continuous inverse φ−1 :
φ(V)→ V. The tuple (V, φ) is called a coordinate chart.

A Ck-manifold is, additionally, equipped with a Ck-structure5 which
essentially means that any two coordinate charts (V, φ) and (W, ψ) with
overlapping domains define a change of coordinates φ◦ψ−1 : ψ(V∩W)→
φ(V ∩W) that is a Ck map. In addition, we the require the less common
notion of a C1,1 manifold, which is defined analogously to Ck manifolds
but with coordinate transformations that are C1,1.
Any Ck manifold with k ≥ 1 admits a tangent space TxM at every

point x ∈ M which is a linear space isomorphic to Rn. A Ck (Rie-
mannian) metric G is a map that assigns to every point x ∈ M an
inner product on the tangent space TxM. These objects the standard
definitions given in [162]. In particular, we note that the notion of a
Riemannian metric on M expressed in local coordinates is equivalent
to our definition of a metric (in Section 3.1) as a variable inner product
on a subset of Rn (represented by a map Rn → Sn+). Also, if M is
embedded in Rn, then the tangent space TxM of M as a manifold is
equivalent to the tangent cone ofM as a set [211, Ex. 6.8].
In general, to define an object or property on a manifold it needs to

be invariant under coordinate transformations. More precisely, one can
usually carry definitions from Rn to manifolds, if they are independent
of a particular coordinate representation.
For instance, a curve γ : [0, T ) →M on a C1 manifold is absolutely

continuous if its restriction to any chart domain is absolutely continuous
in local coordinates [54, Def. 3.3]. This follows, since absolute continuity
is preserved by C1 coordinate transformations [212, Ex 6.44]. Similarly,
a vector field on a subset C ⊂ M is locally bounded at x ∈ C if it is locally
bounded in any choice of local coordinates, and a metric onM is locally
weakly bounded at x if its locally weakly bounded in local coordinates.

Further, we define (Clarke) tangent cones on a manifold as follows:

Definition 4.2. Given a C1 manifoldM, let C ⊂ M be locally compact.
The (Clarke) tangent cone TxC (TCx C) is the subset of TxM such that

5Strictly speaking, a Ckstructure on a manifold is an equivalence class of Ck
atlases.
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Dxφ(TxC) (Dxφ(TCx C)) is the (Clarke) tangent cone of φ(C ∩ V) at φ(x)
for any coordinate chart (V, φ) defined at x.
The set C is Clarke regular at x ∈ C if it is Clarke regular in any

local coordinate domain defined at x. The set C is Clarke regular if it is
Clarke regular at all x ∈ C.

In fact, the notion of (Clarke) tangent cones on C1 manifolds is well-
defined because of Lemma 2.2 which states that tangent cones are pre-
served by C1 coordinate transformations. To see this, consider the
following setup: Let (V, φ) and (W, ψ) denote two coordinate charts
at x and let N ⊂ V ∩ W be open and x ∈ N . Consider the tangent
cone Tφ(x)φ(C ∩ V) of the set φ(C ∩ V) at the point φ(x). Since V and
N are open, x ∈ N ⊂ V and φ is continuous, we have Tφ(x)φ(C ∩
V) = Tφ(x)φ(C ∩ N ). Similarly, we have in the chart domain W that
Tψ(x)ψ(C ∩W) = Tψ(x)ψ(C ∩ N ).
Next, we may apply Lemma 2.2 by considering the C1 coordinate

transformation ψ ◦ φ−1 : φ(V ∩W)→ ψ(V ∩W) and conclude that

Tψ(x)ψ(C ∩ N ) = Dφ(x)(ψ ◦ φ−1)
(
Tφ(x)φ(C ∩ N )

)
.

The same argument holds for Clarke tangent cones. That definition of
TxC in Definition 4.2 does not depend on the choice of chart (V, φ).

Analogously, we can apply Lemma 3.5 that states that prox-regularity
is preserved by C1,1 coordinate transformations. Hence, we define a
prox-regular set on a C1,1 manifold in terms of local coordinates:

Definition 4.3. LetM be a C1,1 manifold and consider a locally com-
pact subset C ⊂ M is prox-regular at x ∈ C if it is prox-regular in
any local coordinate domain defined at x and C is prox-regular if it is
prox-regular at all x ∈ C.

With these definitions it follows that for a subset C ⊂ M of a C1

manifold equipped with a metric G, the projection operator ΠG
C [w](x) of

the vector w ∈ TxM onto the tangent cone TxC ⊂ TxM is well-defined
(i.e., independent of the specific coordinate representation), and can be
used to define the dynamical system

ẋ ∈ ΠG
C [f ](x) x ∈ C , (4.11)
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4.6 Existence & Uniqueness on Manifolds

where f is a vector field on C.
Assume for now that C is closed and can be covered by single coor-

dinate chart(V, φ), i.e., C ⊂ V. Then, we say that x : [0, T ] → V is a
(Carathéodory; Krasovskii) solution of (4.11) if φ ◦ x : [0, T ] → φ(V)
is a solution of (4.11) in the local coordinate representation. For this
case Corollaries 4.1 and 4.3 guarantee the existence of Krasovskii and
Carathéodory solutions, respectively. Most importantly, however, The-
orem 4.3 states that if x a solution in the local coordinated defined by
(V, φ), then it is a solution in any other coordinate chart (W, ψ) for which
C ⊂ W . Hence, this definition of a solution is, again, coordinate-free and
hence well-defined on manifolds.

The assumption that C can be covered by a single coordinate domain
V is clearly too restrictive. To relax it, one may consider a PDS (in local
coordinates) on the set φ(C ∩V) and “stitch together” local solutions on
different coordinate domains. However, because V is open, the set φ(C ∩
V) is, in general, locally compact, but not closed. Hence, Corollaries 4.1
and 4.3 and Theorem 4.2 derived previously do not apply. Instead, we
need to consider the corresponding results in [Ha2] which work for locally
compact domains. These results lead to the following statements:

Theorem 4.4 (existence on manifolds). Let M be C1 manifold, G a
locally weakly bounded Riemannian metric, C ⊂ M locally compact, and
f a locally bounded vector field on C. Then for every x0 ∈ C there
exists a Krasovskii solution x : [0, T ) → C for some T > 0 that solves
ẋ(t) ∈ ΠG

C [f ] (x(t)) with x(0) = x0. Furthermore, if C is Clarke regular,
and if f and G are continuous, then every Krasovskii solution is a
Carathéodory solution and vice versa.

For uniqueness, we require stronger conditions. Apart from the fact
that prox-regularity is preserved by C1,1 coordinate transformations
(Lemma 3.5), we also note that local Lipschitz continuity of a metric
and of vector fields is preserved under C1,1 coordinate transformations.

Theorem 4.5 (uniqueness on manifolds). LetM be C1,1 manifold, G
a C0,1 Riemannian metric, C ⊂ M is prox-regular, and f a C0,1 vector
field on C. Then, for every x0 ∈ C there exists a unique Carathéodory
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Chapter 4. Coordinate-Free Projected Dynamical Systems

f G C M

Existence of
Krasovskii solutions LB LWB closed6 C1 Corollary 4.1

Theorem 4.4

Existence of
Carathéodory solutions C0 C0 C. regular C1 Theorem 4.1

Theorem 4.4

Uniqueness of solutions C0,1 C0,1 prox-regular C1,1 Theorem 4.2
Theorem 4.5

Table 4.1: Summary of results: regularity requirements for PDSs for a
vector field f , metric G, feasible domain C and regularity of the manifold
M. (LB: locally bounded; LWB: locally weakly bounded)

solution x : [0, T ) → C for some T > 0 that solves ẋ(t) ∈ ΠG
C [f ] (x(t))

with x(0) = x0.

4.7 Summary

The regularity assumption required for the main existence and unique-
ness results of this chapter are summarized in Table 4.1. To reiterate,
the requirements on the vector field f and the set C to guarantee exis-
tence and uniqueness of Carathéodory solutions have essentially been
known since [68]. The results in this chapter provide a substantial gen-
eralization by considering the use of a variable metric and consequently
defining PDS on abstract manifolds.

For future reference, we provide the following statement as a conden-
sation of most important results in this chapter:

Theorem 4.6. Consider (4.1) and let C be Clarke regular, and f and G
be continuous. Then, (4.1) admits a (Carathéodory) solution for every
initial condition x(0) ∈ C.

If there exists κ > 0 such that supx∈C λmax
G(x)/λ

min
G(x) ≤ κ and f is

Lipschitz on C, then (5.2) admits a complete solution for every x(0) ∈ C.
If C is prox-regular, and if f and G are locally Lipschitz, then (4.1)

admits a unique solution for every initial condition x(0) ∈ C.
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CHAPTER 5

Anti-Windup Approximation of PDS

In the context of feedback-based optimization one aims at reducing
the need for model information in the control design as much as possible.
When it comes to constraints on the control inputs, one would like to
exploit physical saturation to enforce them. However, the cascade of
an (integral) controller with a saturation element is well-known to be
prone to integrator windup. In this scenario, anti-windup schemes are a
well-established and effective remedy.

In this chapter we rigorously show how high-gain anti-windup con-
trollers can be used to approximate projected dynamical systems. More
precisely, we show uniform convergence and semiglobal practical asymp-
totic stability. The forthcoming Chapter 9 will revisit this type of anti-
windup approximation (AWA) of PDS and provide additional results for
specific optimization dynamics.
The primary advantage of this type of constraint enforcement is the

fact that the set of feasible inputs does not need to be known. Instead,
one relies on the physical system to saturate inputs, in other words,
to project them onto the set of feasible inputs. This feature is highly
desirable in a setting with variable, intermittent input capabilities such
as the time-varying availability of renewable energy in power systems.

The material presented corresponds to the first part of [Ha4]. Theorems 5.1
and 5.2 and their respective corollaries constitute the main technical results of this
chapter. Simplified results can also be found in [Ha6].
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Chapter 5. Anti-Windup Approximation of PDS

From a technical viewpoint, we focus on the (unconstrained) inclusion

ẋ ∈ FK(x) := f(x, PC(x))− 1
KG

−1(PC(x))
(
x− PC(x)

)
, (5.1)

where C ⊂ Rn is a closed set, f : Rn×C → Rn is a continuous vector field,
G : C → Sn+ is a continuous metric, and K > 0 is a constant parameter.
Because PC is in general not single-valued (unless C is convex), (5.1) has
to be treated as a differential inclusion.

We study the behavior of solutions of (5.1) as K → 0+ and show that
under appropriate assumption on C, f , G, and for an initial condition
x(0) ∈ C, these solutions converge uniformly to solutions of the projected
dynamical system

ẋ = ΠG
C

[
f̂
]

(x) , x ∈ C , (5.2)

where we use f̂(x) := f(x, PC(x)). Further, we show that a compact gas
set of (5.2) is spas for (5.1) in K.
The key idea for studying (5.1) is to exploit α-prox-regularity of C

which, according to Proposition 3.1, guarantees that PC(x) is single-
valued for all

x ∈ C◦α := C + 1
2α intB .

Hence, on C◦α, (5.1) reduces to an ODE. Furthermore, under appropriate
conditions on the problem parameters and for small enough K, tra-
jectories starting in C remain in C◦α. These insights will be rigorously
established in Section 5.1. In Section 5.2 we then show that (5.1) cor-
responds to a σ-perturbation of (5.2) as a function of K. Standard
results from [118] can then be applied to establish uniform convergence
and semiglobal practical asymptotic stability in Sections 5.3 and 5.4,
respectively.
The following example shows how systems of the form (5.1) arise

in the context of anti-windup control for feedback loops with integral
controllers and thus motivates the name “anti-windup approximation”.
Example 5.1. We show how (5.1) models physical systems and how anti-
windup implementations can be used in the context of feedback-based
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1
K G̃(u)

∫
PU

k(·, u, u) ζ̇ = f̃(ζ, ·)

+

−

u

u := PU (u)

−

+

Figure 5.1: Feedback loop with anti-windup (dependence of k and G̃ on
u, u is not drawn)

optimization to approximate closed-loop optimization dynamics which
are formulated as projected dynamical systems.
First, consider the feedback control loop illustrated in Figure 5.1.

Namely, we study a plant controlled by an integral feedback controller
that is subject to input saturation modeled as an Euclidean projection.
An anti-windup scheme is in place to avoid integrator windup. Formally,
we consider a dynamical system of the form

ζ̇ = f̃(ζ, PU (u)) x ∈ Rm (5.3a)
u̇ = k(ζ, u, PU (u))− 1

K G̃
−1(PU (u))(u− PU (u)) u ∈ Rp , (5.3b)

where U ⊂ Rp is uniformly prox-regular, f̃ : Rm × U → Rm and
k : Rm × Rp × U → Rp are continuous vector fields, G̃ : U → S+

p is a
continuous metric, and K > 0 a tuning parameter.
The system (5.3) can be brought into the form (5.1) with n = m+ p

by defining

x :=
[
ζ

u

]
C := Rm × U and G(x) :=

[
I 0
0 G̃(u)

]
.

Thus, we further have

PC(x) =
[

ζ

PU (u)

]
and f(x, PC(x)) :=

[
f̃(ζ, PU (u))
k(ζ, u, PU (u))

]
.
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Chapter 5. Anti-Windup Approximation of PDS

With these definitions, the projected dynamical system (5.2) takes the
form

ẋ = f̃(ζ, u) x ∈ Rm

u̇ = ΠG̃
U [k(ζ, u, u)] (u) u ∈ U ,

where we can ignore the projection onto U , because any solution needs
to be viable (i.e., remain in U). �

Remark 5.1. Figure 5.1 shows one limitation of our problem setup: Com-
pared to existing work on anti-windup control [264, 245], we do not model
any proportional controller subject to input saturation. This is moti-
vated, on one hand, by theoretical necessity. On the other hand, for
our application scenario of feedback-based optimization, stability of the
physical plant is usually considered a prerequisite (see Chapter 11 on
timescale separation requirements in feedback-based optimization). �

5.1 Existence, Boundedness, and Equicon-
tinuity

As a first step in studying (5.1), we prove the following lemma for future
reference:

Lemma 5.1. Let C ⊂ Rn be closed and f : Rn×C be continuous. Then,
x 7→ f̂(x) := f(x, PC(x)) is locally bounded and osc. Furthermore, if C
is α-prox-regular for α > 0, then f̂ is single-valued and continuous for
all x ∈ C◦α.

Proof. The projection PC : Rn ⇒ C is osc and locally bounded [211,
Ex. 5.23], and PC(x) is non-empty and closed for all x ∈ Rn (since C is
closed). By continuity of f it follows that f̂ is osc and locally bounded,
since both properties are preserved under addition and composition [211,
Prop. 5.51 & 5.52]. Using Proposition 3.1 it follows that f̂ is single-valued
(hence continuous) for x ∈ C◦α.

Lemma 5.1 and Proposition 3.1 imply that, on C◦α, FK is single-valued
and continuous. Consequently, standard results for ODEs guarantee
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5.1 Existence, Boundedness, and Equicontinuity

that (5.1) admits a (local) solution for every initial condition x(0) ∈ C◦α.
However, outside of C◦α, (5.1) is a differential inclusion for which the
existence of solutions is not immediately guaranteed. Nevertheless, one
can establish the existence of Krasovskii solutions (Section 4.1 or [118,
Ch. 5]).
For the main result of this section we consider the following (local)

setup:

Assumption 5.1. Consider (5.1) and x0 ∈ C. Let M,ν, µ, α, ε > 0 be
such that

‖f(x, PC(x))‖ ≤M and µI � G−1(PC(x)) � νI (5.5)

hold for all x ∈ (x0 + εB) ∩ C◦α, and C is α-prox-regular at every x ∈
(x0 + εB) ∩ Z.

Parameters M,µ, ν, ε that satisfy (5.5) can always be found for any
x0 ∈ C since x 7→ f(x, PC(x)) is locally bounded by Lemma 5.1, G is
continuous, and PC is single-valued on (x0 + εB) ∩ C◦α.

Assumption 5.1 allows us to formulate the following proposition which
combines the existence of truncated solutions, the invariance of a neigh-
borhood of C, and equicontinuity (i.e. uniform Lipschitz continuity):

Proposition 5.1. Let Assumption 5.1 be satisfied for x0 ∈ C. Given any
T > 0 and K < µ

2αM , there exists a (T, ε)-truncated solution x for (5.1)
with x(0) = x0 (where ε stems from Assumption 5.1). Furthermore, x
satisfies, for almost all t ∈ dom x,

x(t) ∈ C + KM
µ B and ‖ẋ(t)‖ ≤

(
1 + ν

µ

)
M .

Proof. First, we consider the existence of solutions: As mentioned,
Lemma 5.1 and Proposition 3.1 imply that, on (x0 + εB) ∩ C◦α, (5.1)
reduces to a continuous ODE which is a well-posed inclusion (trivially).
Hence, Theorem 2.4 guarantees the existence of a maximal solution
which is either complete or given by x : [0, T ′]→ (x0 + εB)∩ C◦α starting
at x0 and with x(T ′) on the boundary of (x0 + εB) ∩ C◦α.
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Chapter 5. Anti-Windup Approximation of PDS

Next, by Proposition 3.1, we have ∇d2
C(x)T = 2(x − PC(x)) for all

x ∈ C◦α. Hence, the Lie derivative of d2
C along FK for all x ∈ (x0+εB)∩C◦α

is well-defined and satisfies

LFK
( 1

2d
2
C(x)

)
= (x− PC(x))T

(
f(x, PC(x))− 1

KG
−1(PC(x))(x− PC(x)

)
≤ dC(x)‖f(x, PC(x))‖

− 1
K (x− PC(x))TG−1(PC(x)) (x− PC(x))

≤ dC(x)‖f(x, PC(x))‖ − µ
K d

2
C(x)

= dC(x)(M − µ
K dC(x)) .

It follows that LFK
( 1

2d
2
C(x)

)
< 0 whenever dC(x) > KM

µ . Since K <
µ

2αM and using an invariance argument, it follows that x(t) ∈ C+KM
µ B ⊂

C◦α for all t ∈ [0, T ′].
In other words, for small enough K, any solution of (5.1) starting at

x0 remains within a neighborhood of C on which the projection PC is
single-valued.
Since x(T ′) lies on the boundary of (x0 + εB) ∩ C◦α, but at the same

time x(T ′) ∈ C+ KM
µ B, it follows that ‖x(T ′)−x0‖ = ε. In other words,

x(T ′) lies on the boundary of x0 + εB (rather than the boundary of C◦α).
Hence, (after restricting x to [0, T ] if T ′ > T ) it can be concluded that
x is a (T, ε)-truncated solution of (5.1).

Finally, we have that for all x ∈ (C + KM
µ B) ∩ (x0 + εB) it holds that∥∥ 1

KG(x)−1(x− PC(x))
∥∥ ≤ 1

K ν
KM
µ ≤M ν

µ .

It then follows from the definition of M and the triangle inequality that
‖FK(x)‖ ≤M +M ν

µ , thus establishing the bound on ‖ẋ(t)‖.

The proof of Proposition 5.1 suggests that the prox-regularity assumption
on C is primarily required for d2

C(x) to have a single-valued derivative
in a neighborhood of C. The following example shows, however, that
prox-regularity is a more fundamental requirement which, in general,
cannot be avoided.
Example 5.2. Consider the set C := {(x1, x2) ∈ R2 | |x2| ≥ max{0, x1}κ}
for any 1

2 < κ < 1. Further assume that G(x) = I and f(x) = (1, 0)
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5.1 Existence, Boundedness, and Equicontinuity

κ = 0.65

C

(a)

v

C

PC(x0)

(b)

Figure 5.2: Non-prox-regular set for Example 5.2: (a) non-uniqueness of
projection for every (x1, 0) (b) construction of Krasovskii regularization,
namely v ∈ coFK(x0).

for all x ∈ Rn. Hence, we can choose M = ν = µ = 1 and any ε > 0
to satisfy Assumption 5.1. Note, however, that C is not prox-regular
at (0, 0). Namely, every point on the positive x1-axis has a non-unique
projection onto C as illustrated in Figure 5.2a.
We claim that for every K > 0 there exists a Krasovskii1 solution

(i.e., a solution of the inclusion x ∈ coFK(x)) starting on the x1-axis
that leaves the set C + KM

µ B established in Proposition 5.1. This can
be deduced graphically from Figure 5.2b. Namely, let x0 = (x01, 0) be
such that dC(x0) = K. Then, there exists v = (v1, 0) with v1 > 0 in the
Krasovskii regularization of FK(x0), i.e., v ∈ coFK(x0). In other words,
on the boundary of C +KB, the vector v points out of the (supposedly)
invariant set. This, in turn, can be used to rigorously establish that
the set C + KB is not invariant, illustrating that the conclusion of
Proposition 5.1 does not hold without prox-regularity of C, even when
considering more general Krasovskii solutions. �

1We cannot rely on the existence of Carathéodory solutions because C is not
prox-regular and Proposition 5.1 does not apply, but every Carathéodory solution (if
it exists) is a Krasovskii solution.
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Chapter 5. Anti-Windup Approximation of PDS

5.2 Anti-Windup Approximations as Per-
turbed PDS

As a key technical result, we establish that solutions of the AWA (5.1)
are also solutions of a σ-perturbation of the PDS (5.2). To prove this
fact, we need to revisit the equivalence between PDS and differential
variational inequalities from Section 4.3.

Namely, similarly to Corollary 4.4, we can show that solutions of (5.2)
are equivalent to solutions of the truncated differential variational in-
equality

ẋ ∈ F (x) := f̂(x)−NG
x C ∩ γB x ∈ C , (5.6)

where γ ≥ supx∈C ‖f(x)‖G(x) (assuming supx∈C ‖f(x)‖G(x) < ∞). The
advantage of this latter inclusion is that the mapping F is bounded.

Proposition 5.2. If C is Clarke regular and x 7→ ‖f(x)‖G(x) is bounded,
then, x : [0, T ]→ C with T > 0 is a solution of (5.2) if and only if it is
a solution of (5.6).

The proof of Proposition 5.2 is the same as for Corollary 4.4, except for
the additional boundedness assumption. For an explicit proof the reader
is referred to [Ha4].

Lemma 5.2. If f and G are continuous and C Clarke regular, (5.6) is
well-posed.

Proof. Non-emptiness and convexity of F (x) are immediate because
NG
x C ∩ γB is non-empty (in particular, 0 ∈ NG

x C) and convex for all
x ∈ C (and f is single-valued). For outer semicontinuity recall that for a
Clarke regular C and continuous G the mapping x 7→ NG

x C is osc [Ha2,
Lem. A.6]. It then follows that the truncation NG

x C∩γB is osc and locally
bounded [211, p.161]. Finally, since f is continuous and single-valued,
x 7→ f(x)−NG

x C ∩ γB is osc and locally bounded.

Next, consider x0 ∈ C, and let M,µ, ν, α, ε > 0 be such that Assump-
tion 5.1 is satisfied. From Proposition 5.2 it follows that, for some T > 0,
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5.2 Anti-Windup Approximations as Perturbed PDS

every (T, ε)-truncated solution x : [0, T ′] → (x0 + εB) of the PDS (5.2)
with x(0) = x0 is also a (T, ε)-truncated solution of the inclusion

ẋ ∈ F̂ (x) := f(x, PC(x))−NG
x C ∩ γB where γ := max

{
M√
µ ,

ν
µM

}
(5.7)

and vice versa. This choice of γ will be convenient in the proof of
Proposition 5.3 below. For now, note that using Cauchy-Schwarz, it
holds that

sup
x∈x0+εB

‖f(x, PC(x))‖G(x) ≤ sup
x∈x0+εB

√
‖G(x)‖︸ ︷︷ ︸
≤1/√µ

‖f(x, PC(x))‖︸ ︷︷ ︸
≤M

≤ γ ,

thus satisfying the condition on γ in (5.6) and Proposition 5.2.
Furthermore, given x0 ∈ C, let Assumption 5.1 hold with some ε > 0.

By Lemma 5.1 we have that x 7→ f(x, PC(x)) is continuous on x ∈ C◦α
and hence uniformly continuous on the bounded set C◦α ∩ (x0 + εB). As
a consequence of uniform continuity there exists ω ∈ K∞ such that, for
all x, x′ ∈ C◦α ∩ (x0 + εB), we have

‖f(x, PC(x))− f(x′, PC(x′))‖ ≤ ω(‖x− x′‖) . (5.8)

Proposition 5.3. Consider x0 ∈ C and let Assumption 5.1 hold with
M,ν, µ, α and ε. Further, let K < µ

2αM . Then, for some T > 0, every
(T, ε)-truncated solution x : [0, T ′] → (x0 + εB) of (5.1) is a solution
of the σ-perturbation of (5.7) with σ := max

{
KM
µ , ω

(
KM
µ

)}
, where

ω ∈ K∞ satisfies (5.8).

Proof. We need to show that the (T, ε)-truncated solution x satisfies

ẋ(t) ∈ F̂σ(x(t)) , x(t) ∈ Cσ (5.9)

for almost all t ∈ [0, T ′], where Zσ := C + σB and F̂σ(x) := co F̂ ((x +
σB) ∩ C) + σB for all x ∈ Cσ and with F̂ defined in (5.7). Note that for
x ∈ Cσ we have that

PC(x) ⊂ (x+ σB) ∩ C . (5.10)
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Chapter 5. Anti-Windup Approximation of PDS

Proposition 5.1 guarantees that x(t) ∈ C + KM
µ B, and since σ ≥ KM

µ

it follows that x(t) ∈ Cσ for all t ∈ [0, T ′]. For the remainder of the proof
we omit the argument of x(t) to simplify notation. All statements hold
for almost all t ∈ [0, T ′].

Since x−PC(x) ⊂ NPC(x)C for all x ∈ Rn [211, Ex. 6.16] and using (3.2)
we have

1
KG(PC(x))−1 (x− PC(x)) ∈ NG

PC(x)C . (5.11)

Furthermore, since x ∈ C + KM
µ and using γ as defined in (5.7) we have

that ∥∥ 1
KG(PC(x))−1 (x− PC(x)

∥∥ ≤ 1
K ν

KM
µ = νM

µ ≤ γ. (5.12)

Combining (5.11) and (5.12) we have

ẋ ∈ f(x, PC(x))−NG
PC(x)C ∩ γB . (5.13)

Note that, in contrast to (5.7), the normal cone is evaluated at PC(x).
Next, using the fact that ω, as defined in (5.8), is strictly increasing,

and exploiting the definition of σ, we have

‖f(x, PC(x))− f(PC(x), PC(x))‖ ≤ ω (‖x− PC(x)‖) ≤ ω
(
KM
µ

)
≤ σ .
(5.14)

Therefore, in summary, using (5.14) on (5.13), as well as (5.10), we
have that

ẋ ∈ f(x, PC(x))−NG
PC(x)C ∩ γB

⊂ f(PC(x), PC(x)) + σB−NG
PC(x)C ∩ γB

= F̂ (PC(x)) + σB ⊂ F̂ ((x+ σB) ∩ C) + σB ⊂ F̂σ(x) .

Hence, x(·) satisfies (5.9) which completes the proof.

5.3 Uniform Convergence

We establish the graphical/uniform convergence of solutions of the anti-
windup approximation (5.1) to solutions of the projected dynamics (5.2).
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5.3 Uniform Convergence

This proof requires two arguments: On the one hand, we need to show
that a graphically convergent sequence of solutions of (5.1) converges to
a solution of (5.2). On the other hand, we need that such a graphically
convergent sequence exists.

Starting with the latter requirement, we first recall that from a boun-
ded sequence of sets, we can always extract a graphically convergent
subsequence [118, Thm. 5.7]. This applies in particular to a sequence of
(uniformly) truncated solutions:

Lemma 5.3. Consider a sequence Kn → 0+ and x0 ∈ C. Given T, ε > 0,
any sequence {xn} of (T, ε)-truncated solution of (5.1) with K = Kn

and xn(0) = x0 has a graphically convergent subsequence.

Lemma 5.3 is purely set-theoretic and does not imply that the limit
gph limn→∞ xn is a single-valued map. Hence, we need the following
simplification2 of [118, Thm. 5.29]:

Lemma 5.4. Let the inclusion (2.12) be well-posed and x0 ∈ C. Further,
given any T, ε, ρ > 0 and δi → 0+, let xi : [0, Ti] → Xi denote a (T, ε)-
truncated solution of the δiσ-perturbation of (2.12). If the sequence {xi}
converges graphically, then convergence is to a solution x : [0, T ] → X
of (2.12), where T = limi→∞ Ti.

Remark 5.2. In the context of Lemma 5.4, graphical convergence implies
uniform convergence to x on every subinterval of [0, T ) [118, Lem. 5.28].
Furthermore, if Ti ≥ T for all i, then convergence is uniform on [0, T ]. �

Next, we require the following lemma about K∞-functions [229, Cor.
10]:

Lemma 5.5. Given ω ∈ K∞, there exist σ1, σ2 ∈ K∞ with ω(rs) ≤
σ1(r)σ2(s) for all r, s ≥ 0.

Since, by Proposition 5.3, solutions of (5.1) are solutions of a σ-pertur-
bation of an alternate form PDS (5.7) we can use Lemma 5.4 to establish
the following result:

2We require only the first of the two statements of the original theorem. Further,
we consider the case where ρ is constant. Finally, we work with truncated solutions
which have, by definition, a compact domain (and thus are trivially locally eventually
bounded [118, Def. 5.24]).
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Proposition 5.4. Given x0 ∈ C, let Assumption 5.1 be satisfied. Con-
sider T > 0 and a sequence Ki → 0+, and assume that a sequence
of (T, ε)-truncated solutions xi of the AWA (5.1) with K = Ki and
xi(0) = x0 for all i converges graphically. Then, the limit is a (T, ε)-
truncated solution of the PDS (5.2).

Proof. Let M,µ, ν > 0 and ω ∈ K∞ be defined as in Assumption 5.1
and (5.8), respectively. Using Lemma 5.5, there exist σ1, σ2 ∈ K∞
such that ω(rs) ≤ σ1(r)σ2(r) for all r, s ≥ 0. Hence, we define δi :=
max{Ki, σ1(Ki)} and ρ := max

{
M
µ , σ2

(
M
µ

)}
.

Proposition 5.3 states that for everyKi, the solution xi of (5.1) is also a
solution of the σ-perturbation of (5.7) with σ := max

{
Ki

M
µ , ω

(
Ki

M
µ

)}
.

It follows that xi is also a solution of every σ′-perturbation of (5.7) with
σ′ ≥ σ. In particular, we can set

σ′ := δiρ = max{Ki, σ1(Ki)}max
{
M
µ , σ2(Mµ )

}
≥ σ ,

and thus we have that xi is a solution of the δiρ-perturbation of (5.7).
Since, by assumption, {xi} converges graphically to x it follows from

Lemma 5.4 that x is a solution of (5.7), and, by Proposition 5.2, x is a
solution of (5.2).
Finally, we need to show that x : [0, T ′] → (x0 + εB) is a (T, ε)-

truncated solution. Namely, we need to show that either T = T ′ or
‖x(T ) − x0‖ = ε. This requirement is equivalent to (T ′, x(T ′)) lying
on the boundary of the cylinder X := [0, T ] × (x0 + εB). Since, by
definition, for every i, xi is a (T, ε)-truncated solution of (5.1) we have
that (Ti, xi(Ti)) ∈ ∂X for all i. Since ∂X is closed, it follows that the
limit also lies in ∂X .

Now, we can immediately combine Lemma 5.3 and Proposition 5.4 to
arrive at our first main result about the graphical convergence of trun-
cated solutions (i.e., local) solutions of anti-windup approximations to
a projected dynamical system:

Theorem 5.1. Let Assumption 5.1 be satisfied for some x0 ∈ C. Given
any T > 0 (and ε > 0 from Assumption 5.1), consider a sequence
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Kn → 0+ and let {xn} denote a sequence of (T, ε)-truncated solutions
of the AWA (5.1) with K = Kn and xn(0) = x0. Then, there exists
a subsequence of {xn} that converges graphically to a (T, ε)-truncated
solution of the PDS (5.2).

Under certain circumstances, it can be useful to know that, rather than
a subsequence of gains {Kn}, any sequence Kn → 0+ will lead to a
converging sequence of solutions. This is guaranteed if it is known that
the PDS (5.2) has a unique solution:

Corollary 5.1. Let Assumption 5.1 be satisfied for some x0 ∈ C. Given
any T > 0 (and ε > 0 from Assumption 5.1), assume that the PDS (5.2)
admits a unique (T, ε)-truncated solution x with x(0) = x0. Then,
any sequence {xn} of (T, ε)-truncated solutions of the AWA (5.1) with
xn(0) = x0 and K = Kn with Kn → 0+ converges graphically to the
(unique) (T, ε)-truncated solution of the PDS (5.2).

Proof. Assume, for the sake of contradiction, that {xn} does not con-
verge to the unique solution x of (5.2). This implies that there exists
ν > 0 and a subsequence {xm} of {xn} such that d∞(gph xm, gph x) ≥ ν
for all m where d∞ denotes the Hausdorff distance between two sets.
(In particular, since x is a truncated solution gph x is compact and
thus graphical convergence is equivalent to convergence with respect to
d∞ [211, Ex. 4.13].) However, by Lemma 5.3, the sequence {xm} has
a convergent subsequence that converges to some limit x̃. By Proposi-
tion 5.4, x̃ is a solution of (5.2), but we also have ‖x̃− x‖∞ ≥ ε which
contradicts the uniqueness of x.

Finally, we can state the following ready-to-use result about uniform
convergence in the case when the existence of unique complete solutions
is guaranteed:

Corollary 5.2. Consider the AWA (5.1), let C be uniformly prox-regular,
f globally Lipschitz, and there exist µ, ν > 0 such that µI � G−1(x) � νI
for all x ∈ Rn. Given x0 ∈ C and a sequence Kn → 0+, every sequence
of complete solutions xn of the AWA (5.1) with initial condition x0 and
K = Kn converges uniformly to the unique complete solution of the
PDS (5.2) on every compact interval [0, T ].
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Proof. Note that the assumptions on C, G, and f guarantee that for
every initial condition (5.2) admits a unique complete (Carathéodory)
solution (Theorem 4.6).

Hence, given any T > 0, let x : [0, T ]→ C denote the unique solution of
the PDS (5.2) and define ε > supt∈[0,T ] ‖x(t)−x0‖. Since f is continuous
and hence bounded over a compact set, Assumption 5.1 is satisfied with
ν, µ, α and by choosing M := maxx∈x0+εB ‖f(x, PC(x))‖. Theorem 5.1
guarantees convergence of a subsequence to the (T, ε)-truncated solution
x : [0, T ′]→ X of (5.2). Moreover, for the same reason as in Corollary 5.1
the sequence itself converges.
Finally, by definition of ε, we have that x is defined on [0, T ′] with

T ′ = T and ‖x(T ) − x0‖ < ε and, in this case, graphical convergence
of (T, ε)-truncated solutions implies their uniform convergence on [0, T ]
(see Remark 5.2).

Remark 5.3. Theorem 5.1 and its corollaries can be slightly generalized,
albeit at the expense of additional technicalities. For instance, instead
of considering a single initial condition x0 ∈ C, it is in general possi-
ble to consider a sequence of initial conditions (under some additional
restrictions) that converges to x0. �

5.4 Semiglobal Practical Robust Stability

Since anti-windup approximations can be seen as perturbations of pro-
jected dynamical systems, we can establish semiglobal practical asymp-
totic stability in K with the following simplification3 of [118, Lem. 7.20]:

Lemma 5.6. Let the inclusion (2.12) be well-posed and let A ⊂ X
be a compact and asymptotically stable set for (2.12), i.e., dA(x(t)) ≤
β(dA(x(0)), t) for all t ≥ 0 holds for some β ∈ KL and any (complete)

3We consider only global asymptotic stability, which allows us to use the distance
function instead of more general indicator functions. Further, we limit ourselves to ρ
being a positive constant instead of a function. As noted in Remark 2.2, compactness
and stability of A guarantee the existence of complete solutions since finite-time
escape is not possible.
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solution x of (2.12). Then, for every ρ > 0, every compact B ⊂ Rn,
and every ζ > 0 there exists δ ∈ (0, 1) such that every solution xδ of
the δρ-perturbation of (2.12) starting in B ∩ Cδρ satisfies dA(xδ(t)) ≤
β(dA(xδ(0)), t) + ζ for all t ≥ 0.

Hence, using Proposition 5.3, we arrive at the following second main
result:

Theorem 5.2. Consider a PDS (5.2) where C is Clarke regular, f and
G are continuous, and for which the compact set A ⊂ C is gas, i.e., there
is β ∈ KL such that for every solution x it holds that

dA(x(t)) ≤ β(dA(x(0)), t) ∀t ≥ 0 .

Then, for every ζ > 0 and every compact B ⊂ C there exists K? > 0
such that for all K ∈ (0,K?) every solution xK of the AWA (5.1) with
xK(0) ∈ B satisfies

dA(xK(t)) ≤ β(dA(xK(0)), t) + ζ ∀t ≥ 0 .

Proof. First, we establish that Assumption 5.1 holds for every x0 ∈ B.
Since B is compact, let β := maxx∈B β(dA(x), 0). Since β is strictly
increasing and unbounded, and, since A is compact, the set V :=
{x |β(dA(x), 0) ≤ β} is compact. Hence, we can choose ε > 0 such
that V ⊂ B + εB. It follows that any solution of (5.2) starting in B
remains in B + εB. By continuity over the compact set B + εB, we
can further choose and M,µ, ν > 0 such that ‖f(x, PC(x))‖ ≤ M and
µI � G−1(x) � νI holds for all x ∈ B + εB. Thus, Assumption 5.1
is satisfied for all x0 ∈ B. Further, every (complete) solution of the
PDS (5.2) starting in B remains in B + εB and hence can be written in
its alternate form (5.7). Next, fix any ρ > 0. Lemma 5.6 implies that for
every ζ > 0 and every compact B ⊂ C there exists δ ∈ (0, 1) such that
the δρ-perturbation is ζ-practically pre-asymptotically stable. Given
such a δ, we conclude that there exists K? > 0 that, for all K ′ < K?,
max{K ′Mµ , ω(K ′Mµ )} ≤ δρ since ω is strictly increasing and ω(0) = 0.
Thus, Proposition 5.3 states that the solution of (5.1) with K = K ′ is a
solution of the σ-perturbation of (5.7) with σ = max{K ′Mµ , ω(K ′Mµ )}.
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Moreover, it is also solution to any σ′-perturbation with σ′ ≥ σ and, in
particular, for σ′ = δρ.

Since the asymptotic stability of A can often be established with a
smooth Lyapunov function (see [118, Thm. 3.18]), we can also state the
following corollary:

Corollary 5.3. Consider the PDS (5.2) where C is Clarke regular, f
and G are continuous. Further, consider a compact set A ⊂ C for which
there exists a Lyapunov function4. Then, for every ζ > 0 and every
compact set B ⊂ Rn, there exists K? such that for all K ∈ (0,K?) every
solution of (5.1) converges to a subset of A+ ζB.

5.5 Notes & Comments

Although the design of AWA for PDS is inspired by anti-windup con-
trollers which are ubiquitous in practical control applications, the ap-
proach presented in this chapter is almost entirely unrelated to other
works in this field, which, in the last decades, has mostly focused on
LMI-based approaches [264, 245].

On the one hand, our modeling remains limited because, with respect
to the standard use of anti-windup control, we have considered only a
very simple type of static anti-windup controller in contrast to more
general dynamic compensators. On top of that, as stated in Remark 5.1,
we consider only pure integral controllers without any (saturated) pro-
portional control component.

On the other hand, we deal with general nonlinear systems (as opposed
to the anti-windup literature which seems to mostly focus on LTI plants)
and we have used a generalized notion of saturation as projection onto
a closed set (instead of componentwise saturation onto closed intervals).

4Namely, V : Rn → R≥0 is a Lyapunov function for A if it is differentiable
everywhere on C, there exist α, α ∈ K∞ such that α(dA(x)) ≤ V (x) ≤ α(dA(x))
for all x ∈ C, and ∇V (x)ΠGC [f ] (x) ≤ −α(x) for all x ∈ C where α : Rn → R≥0 is
continuous and positive definite with respect to A, i.e., α(x) > 0 for all x /∈ A and
α(x) = 0 for all x ∈ A.

116



CHAPTER 6

A Feedback-Enabled Discretization
of PDS

Besides driving a plant to a cost-minimizing steady state, a key task
that can be addressed with feedback-based optimization is the satisfac-
tion of constraints on the plant outputs. Unfortunately, satisfying these
output constraints is more challenging than handling input constraints
which can be enforced directly, e.g., using the anti-windup schemes pre-
sented in the previous chapter.

In this chapter we therefore introduce a new discretization of projected
dynamical systems that can be implemented as a closed-loop system for
the purpose of enforcing output constraints asymptotically.

The structure of this chapter is analogous to the previous one. Namely,
we show that (interpolated) trajectories of our iterative scheme converge
uniformly to solutions of a projected dynamical system as we let the
step-size go to zero. Furthermore, we establish semiglobal practical
asymptotic stability and other robustness properties of our new dis-
cretization.

This chapter slightly generalizes the algorithm in [Ha1] and presents new theo-
retical results that were unpublished by the time of writing. Preliminary results for
this chapter resulted from a collaboration with V. Häberle.
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Unless noted otherwise, we consider a feasible set C ⊂ Rn of the form

C := {x | g(x) ≤ 0, k(x) ≤ 0} , (6.1)

where g : Rn → Rp and k : Rn → Rq are continuously differentiable and
we define U := {x | g(x) ≤ 0}.

In addition, we consider a metric G : U → Sn+ and a vector field
f : U → Rn. Together with some α > 0, these objects allow us to
define the map ΣGC [f ] : U ×R→ Rn as the solution of the parametrized
optimization problem

ΣGC [f ](x, α) := arg min
w∈Rn

‖f(x)− w‖2G(x) (6.2a)

subject to x+ αw ∈ U (6.2b)
k(x) + α∇k(x)w ≤ 0 . (6.2c)

We claim that, for small α and under various assumptions, the discrete-
time system

x+ = x+ αΣGC [f ](x, α) (6.3)

approximates the projected dynamical system

ẋ = ΠG
C [f ] (x) , x ∈ C . (6.4)

More precisely, we will show in the following that interpolated solutions
of (6.3) converge uniformly to a solution of (6.4) as α→ 0+ and we show
that a gas set of (6.4) is spas with respect to the discrete approximation
(6.3).

The key idea behind the constraint structure of C is that, in a feed-
back setup, U denotes constraints on plant inputs that can be enforced
directly. On the other hand, constraints on the outputs (or possibly joint
constraints on inputs and outputs) can be enforced only approximately
due to disturbances and model uncertainty, hence, it is reasonable to
linearly approximate these output constraints as a best guess. We there-
fore refer to (6.3) as a linearized output projection (LOP) discretization
of (6.4). The following example illustrates how constraints on a physical
system can be brought into the form (6.1).
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Example 6.1. Consider an algebraic plant with a steady-state input-to-
output map h : U → Rm and let U ⊂ Rn denote the set of admissible
inputs. Further, assume that outputs y (and inputs u) need to satisfy
the constraints g̃(y, u) ≤ 0, where g̃ : Rm × Rn → Rq is continuously
differentiable. Define k : Rn → Rq as k(u) := g̃(h(u), u). Thus, we arrive
at a set C of the form (6.1) that combines constraints on the inputs and
joint constraints on the inputs and outputs.

Next, let f be of the form f(u) = f̃(h(u), u) where f̃ : U × Rm → Rn.
Together with the metric G : U → Sn+, the vector field f̃ defines a desired
(unconstrained) control law. For example, f might be the negative
gradient of an objective function to be minimized (Chapter 10).
With these definitions, we can write (6.3) equivalently as an integral

control law
u+ = u+ α Σ̃GC (y, u, α) y = h(u) (6.5)

with Σ̃GC (y, u, α) as the measurement-based evaluation of (6.2), i.e.,

Σ̃GC (y, u, α) := arg min
w∈Rn

‖w − f̃(y, u)‖2G(u)

subject to u+ αw ∈ U

g̃(y, u) + α∇g̃(y, u)
[
∇h(u)

In

]
︸ ︷︷ ︸

∇k(u)

w ≤ 0 ,

where y = h(u) is the measured system output. In particular, the
evaluation of Σ̃GC (y, u, α) does not directly rely on h. Instead, it is
enough to know ∇h.
Furthermore, note that Σ̃GC (y, u, α) = 0 implies that u ∈ U and

g̃(y, u) ≤ 0. In other words, any equilibrium point of the closed-loop
system has to satisfy both the constraints on the inputs as well as the
joint constraints on the inputs and outputs. �

Remark 6.1 (Related Work on Discretizations of PDS). The numerical
integration of ODEs is a classical, well-studied topic with wide-ranging
results [236]. Similarly, numerical methods for unconstrained inclusions
have been studied extensively [84]. However, for constrained inclusions
and projected dynamical systems in particular, there seem to be much

119



Chapter 6. A Feedback-Enabled Discretization of PDS

fewer results. A few general methods are proposed in [18]. Besides
that, [186] seems to deliver the most comprehensive results for PDS.

Namely, one well-established approach to discretize projected dynam-
ical system such as (6.4) (but only for G ≡ I and C convex) is the
projected Euler integration of the form

x+ = PC (x+ αf(x)) , (6.6)

where an unconstrained forward Euler step is followed by a projection
onto the feasible set.

Similarly, one can also generalize Runge-Kutta methods and other nu-
merical integration schemes to approximate projected dynamical systems.
For these methods, uniform convergence of (interpolated) solutions to the
trajectories of (6.4) is well-known has been established in [186]. Finite-
difference methods for constrained inclusions have also been sketched in
[18]. However, none of these schemes can be implemented as feedback
control loops. For instance, in the context of Example 6.1, the projected
Euler method takes the form

u+ = PC

(
u+ αf̂(y, u)T

)
y = ĥ(u). (6.7)

This approach, however, is not practical for feedback optimization, be-
cause it requires the controller to perform a projection on C which might
not tractable unless C is convex. In addition, full knowledge of k is
required to evaluate PC (as opposed to the evaluation of Σ̂GC (u, y, α)
which requires only ∇h) and generally results in a lack of robustness
and entails performance degradation. �

6.1 Continuity of Approximate Projections

To establish the properties of the LOP discretization, we first need to
establish properties of the approximate projection operator ΣGC [f ]. For
this purpose we need to make several assumptions on the problem setup.

Assumption 6.1. Given the discrete-time system (6.3) with C of the
form (6.1), the set C is non-empty and satisfies LICQ. Further, ∇k, ∇g,
f and G are locally Lipschitz.
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In particular, under Assumption 6.1 and by Proposition 3.2, the set C is
prox-regular and Theorem 4.2 guarantees the existence and uniqueness
of solutions of (6.4).
Furthermore, we make the following assumption:

Assumption 6.2. Given the discrete-time system (6.3) with C of the
form (6.1), the set U = {x | g(x) ≤ 0} is compact.

Assuming that U is compact is both practically relevant and technically
convenient: On one hand, since no realistic physical system can handle
unbounded inputs, it is reasonable to assume that the set of admissi-
ble inputs is always bounded. On the other hand, compactness of U
simplifies our analysis because continuous maps on U are automatically
uniformly continuous, have upper and lower bounds, etc. and local Lips-
chitz continuity implies (global) Lipschitz continuity on U . Nevertheless,
the compactness assumption can presumably be relaxed using similar
ideas as in Chapter 5 by passing to a local setup (see Assumption 5.1).

Hence, by applying Corollary 4.2, we note that under Assumptions 6.1
and 6.2 the PDS (6.4) admits unique complete solutions.

Corollary 6.1. Under Assumptions 6.1 and 6.2 the continuous-time
PDS (6.4) admits a unique complete (Caratheódory) solution for every
initial condition x(0) ∈ C.

Moreover, for (6.3) to be well-defined, we make the following assumption:

Assumption 6.3. The set U = {x | g(x) ≤ 0} is convex and, for all
x ∈ U and all α > 0, the feasible set of (6.2) defined as

C̃(x, α) := {w | g(x+ αw) ≤ 0, k(x) + α∇k(x)w ≤ 0}

is non-empty and satisfies LICQ.

Remark 6.2. Although the LICQ requirement in Assumption 6.3 is in
general not obvious to verify, it is commonly made in the study of
sequential quadratic programming (SQP) algorithms [250, 191, 31]. Fur-
thermore, presumably, the genericity of LICQ for parametrized feasible
sets can be exploited to weaken Assumption 6.3. �
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Invariance of U under (6.3) is immediate if Assumption 6.3 holds:

Lemma 6.1. Under Assumption 6.3 we have x+ ∈ U for all x ∈ U ,all
α > 0 x+ as in (6.3).

Furthermore, under Assumptions 6.1 and 6.3, ΣGC [f ](x, α) is single-
valued for all x ∈ U and all α > 0 since U (and hence C̃(x, α)) is
convex and non-empty, and the objective is strongly convex. Moreover,
ΣGC [f ] is continuous:

Lemma 6.2. Under Assumptions 6.1 and 6.3, ΣGC [f ](x, α) is continuous
in (x, α) and the map of Lagrange multipliers of (6.2) is continuous.
Further, for all x ∈ C it holds that

lim
α→0+

ΣGC [f ](x, α) = ΠG
C [f ](x) . (6.8)

Thus, (6.8) offers a first glimpse at why the LOP discretization (6.3)
approximates the PDS (6.4).

Proof. We can apply the sensitivity result Corollary 2.2 for parametrized
convex problems. Namely, (6.2) is parametrized in (x, α), the problem
is feasible and C̃(x, α) satisfies LICQ for all (x, α) by Assumption 6.3.
The objective of (6.2) is strongly convex (in w) for all (x, α) and C̃(x, α)
is convex as a set (by linearization of k and convexity of U). Continuity
of ΣGC [f ] and the associated Lagrange multipliers follows directly from
Corollary 2.2.
To show (6.8) holds, we reformulate (6.2) as

ΣGC [f ](x, α) := arg min
w∈Rn

‖f(x)− w‖2G(x) (6.9a)

subject to w ∈ (U − x)/α (6.9b)
∇k(x)w ≤ − 1

αk(x) . (6.9c)

For (6.9b) we recall that the definition of the tangent cone of the Clarke
regular set U as TxU := limα→0+

1
α (U −x) (Definition 2.4) and therefore

conclude that w ∈ TxU as α→ 0+.
Next, for α small enough, we can split (6.9c) into active and inactive

constraints. For instance, if k(x) = 0, then we have, as α → 0+, that
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∇k(x)w = 0. On the other hand, if k(x) < 0 (recall that x ∈ C, by
assumption), the constraint is relaxed to infinity as α → 0+ and can
be omitted in the limit. Consequently, we have ∇kI(x)(x)w ≤ 0 where
I(x) := {i | ki(x) = 0} denotes the indices of the active constraints ki
at x. Since LICQ holds for Y := {x | k(x) ≤ 0} ⊂ C it follows from the
explicit expression for the tangent cone in Example 2.2 that w ∈ TxY
for α→ 0+.
Hence, in the limit we have w ∈ TxU and w ∈ TxY. Using the fact

that under LICQ we have TxC = Tx (U ∩ Y) = TxU ∩ TxY [211, Thm
6.42] it follows that, limα→0+ ΣGC [f ](x, α) is a projection of f(x) onto
TxC with respect to G.

6.2 Linearized Output Projection as Per-
turbed PDS

Similarly to Section 5.2 in the previous chapter, we show that the LOP
system (6.3) can be interpreted a perturbed PDS. The details of this
process are different from Section 5.2 because we have to pass from
a discrete-time to a continuous-time system. But the key arguments
leading to uniform convergence and semiglobal practical asymptotic
stability are the same.
We start this proof with the key technical result that states that the

distance to a set defined by inequality constraints can be locally upper
bounded by the constraint violation:

Proposition 6.1. Consider a set X := {x | b(x) ≤ 0} where b : Rn → Rr

is continuously differentiable. Let X be compact and satisfy LICQ. Then,
there exist α, γ > 0 such that for all x ∈ X + α intB it holds that
dX (x) ≤ γ ‖max{b(x), 0}‖.

The proof of Proposition 6.1 is conceptually simple but technically te-
dious: The main idea is to locally “straighten” the set X by applying
local coordinate transformations that map subsets of X to the non-
negative orthant. The distance of any point to the non-negative orthant
can be expressed explicitly, and, because the coordinate transformation
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has a Lipschitz inverse, the distance dX (x) in the original domain can
be bounded.

Proof sketch. Recall that equality-constrained sets of the form Xeq =
{x | b(x) = 0} with b : Rn → Rr are smooth n− r-dimensional subman-
ifolds of Rn if b has constant rank on X [48, Thm. 5.8]. Namely, for
every y ∈ Xeq the exists a chart (U , φ) where U ⊂ Rn is open, y ∈ U ,
and φ : U → Rn is such that φ(y) = 0 and φ(U ∩ Xeq) ⊂ {x |xr+1 =
. . . = xn = 0}. This fundamental result is a consequence of the rank
theorem [48, Thm 7.1].

Similarly, a set of the form X := {x | b(x) ≤ 0} for which LICQ holds,
defines a submanifold with corners [162, Ch. 16]. In particular, around
every point x̂ ∈ X there exists a neighborhood U of x̂ such that for all
x ∈ U we have bi(x) < 0 for all i /∈ Î := I(x̂) and ∇bÎ(x) has full rank.
In particular, on U , no constraint is active other than those active at x̂
and the constraints active at x̂ have full rank on the entire neighborhood.
Furthermore, there exists a C1,1 chart φ : U → Rn such that φ(x̂) = 0
and, for all x ∈ U , we have

x ∈ U ∩ X ⇔ φ(x) ∈ R|Î|≥0 × Rn−|Î| .

In other words, φ maps the feasible set U∩X to the non-negative orthant,
as illustrated in Figure 6.1a. Furthermore, without loss of generality, we
may assume that for all x ∈ U we have

[φ(x)]1:|Î| = −bÎ(x),

i.e., the first |Î| components of φ corresponds to the negative constraint
values −bÎ(x).

Next, consider an open ball V := ε intB with radius ε > 0 in the co-
domain of φ such that clV = εB ⊂ φ(U). Any point inside of V can be
easily projected onto the (transformed) feasible set W := φ(X ∩ U) ∩ V .
Namely, consider x ∈ φ−1(V) and define y := φ(x) ⊂ V . The projec-

tion of y onto W is given by PW(y) =
(

max{y1:|Î|, 0}, y|Î|:n
)
. Namely,

the first |Î| components of y are projected onto the non-negative orthant
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(a)

(b)

Figure 6.1: Illustrations for proof sketch of Proposition 6.1: (a) co-
ordinate neighborhoods and transformations (b) finite subcover and
α-neighborhood of X

and the remaining components are unaffected. This insight, allows us
to write

‖y − PW(y)‖ =
∥∥∥y1:|Î| −max

{
y1:|Î|, 0

}∥∥∥
=
∥∥∥min

{
y1:|Î|, 0

}∥∥∥ =
∥∥max

{
bÎ(x), 0

}∥∥ .
Next, recall that φ is a C1 diffeomorphism on U . Consequently, φ−1

is `-Lipschitz on the compact set εB (and hence on the set ε intB) for
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some ` > 0. Therefore, we have

‖φ−1(y)− φ−1(PW(y))‖ ≤ `‖y − PW(y)‖
= `

∥∥max
{
bÎ(x), 0

}∥∥ = `‖max{b(x), 0}‖ ,

where the last equality holds because on U , by definition, bi(x) < 0 for
all i /∈ Î.
Since, φ−1(y) = x and φ−1(PW(y)) ∈ X , we conclude that for all

x ∈ φ−1(V) we have dX (x) ≤ ` ‖max {b(x), 0}‖.
This construction of a (restricted) chart (φ−1(V), φ) is possible around

every point x̂ ∈ X . Hence, let (φ−1
x̂ (Vx̂), φx̂) denote such a chart centered

at x̂ and note that the union of all φ−1
x̂ (Vx̂) forms an open cover of X ,

i.e., X ⊂
⋃
x̂∈X φ

−1
x̂ (Vx̂).

Since X is assumed to be compact and by the definition of compactness,
there exists a finite subcover {φ−1

x̂i
(Vx̂i)}Mi=1 of chart domains that covers

X (Figure 6.1b). Moreover, because
⋃M
i=1 φ

−1
x̂i

(Vx̂i) is open, there exists
α > 0 such that X + α intB ⊂

⋃M
i=1 φ

−1
x̂i

(Vx̂i). Finally, we can choose
γ = maxi=1,...,M `x̂i where `x̂i is the Lipschitz constant of φ−1

x̂i
on Vx̂i .

To summarize, every x ∈ X +α intB lies in at least one chart domain
φ−1
x̂i

(Vx̂i). On this chart domain it holds that

dX (x) ≤ `x̂i‖max{b(x), 0}‖ ≤ γ‖max{b(x), 0}‖ .

For our problem setup we need to modify Proposition 6.1 as follows:

Corollary 6.2. Under Assumptions 6.1 and 6.2 there exist δ, γ > 0
such that for all x ∈ U for which ‖max{k(x), 0}‖ < δ it holds that
dC(x) ≤ γ ‖max{k(x), 0}‖.

Proof. Starting from Proposition 6.1, define

δ := min
x∈U\(X+α intB)

‖max{b(x), 0}‖ > 0 ,

i.e., δ is the smallest constrained violation outside of X + α intB. This
minimum exists by compactness of U \ (X + α intB) and is positive
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because it is over a set that does not contain any feasible point. Con-
sequently, for all x ∈ U for which ‖max{b(x), 0}‖ < δ it follows that
x ∈ U ∩ (C + α intB and dX (x) ≤ γ‖max{b(x), 0}‖ applies.

The following result is a generalization of Lemma 3.5 to vector-valued
functions. The proof in [198] generalizes directly and is provided for
completeness only.

Lemma 6.3. Let V ⊂ Rn be open and let g : V → Rm be C1,1 and let
∇g be `-Lipschitz. Then,

‖g(x′)− g(x)−∇g(x)(x′ − x)‖ ≤ 1
2`‖x

′ − x‖2 .

Proof. By defining v := x′ − x and the curve γ : [0, 1] → R as γ(t) :=
g(x + tv), we may write

∫ 1
0 〈∇g(x+ τv), v〉 dτ =

∫ 1
0 γ(τ)dτ = γ(1) −

γ(0) = g(x′)− g(x). Hence, we have

g(x′)− g(x)−
∫ 1

0
〈∇g(x), v〉 dτ =

∫ 1

0
〈∇g(x+ τv)−∇g(x), v〉 dτ ,

and by taking the norm on both sides and using the `-Lipschitz continuity
of ∇g we get∥∥∥g(x′)− g(x)−

∫ 1

0
〈∇g(x), v〉︸ ︷︷ ︸

=〈g(x),x′−x〉

∥∥∥
=
∥∥∥ ∫ 1

0
〈∇g(x+ τv)−∇g(x), v〉︸ ︷︷ ︸
≤‖∇g(x+τv)−∇g(x)‖‖v‖≤`‖v‖2τ

dτ
∥∥∥ ≤ 1

2`‖x
′ − x‖2

which completes the proof.

Lemma 6.3 allows us to bound the constraint violation of every iterate
of (6.3):

Lemma 6.4. Under Assumptions 6.1 and 6.3 and x ∈ U , the itera-
tion (6.3) satisfies∥∥max{k(x+), 0}

∥∥
≤ 1

2`α
2 ∥∥ΣGC [f ](x, α)

∥∥2
.
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Proof. Applying the vector-valued Descent Lemma (Lemma 6.3) we have∥∥k(x+)− (k(x) +∇k(x)(x+ − x))
∥∥

≤ 1
2`‖x

+ − x‖2 = 1
2`
∥∥αΣGC [f ](x, α)

∥∥2
.

Using the fact that k(x) +∇k(x)(x+ − x) ≤ 0 (by definition of x+ and
ΣGC [f ] in (6.3) and (6.2), respectively) we have∥∥k(x+)− (k(x) +∇k(x)(x+ − x))

∥∥
≥
∥∥∥max

{
k(x+)− (k(x) +∇k(x)(x+ − x))︸ ︷︷ ︸

≤0

, 0
}∥∥∥

≥
∥∥max

{
k(x+), 0

}∥∥ .
To see that the second inequality holds, consider a, b ∈ R with b ≤ 0.
Then, we have

(i) if a ≥ 0, then a − b ≥ a ≥ 0 and therefore |max{a − b, 0}| ≥
|max{a, 0}|,

(ii) if a ≤ 0 and a− b ≥ 0, we have max{a, 0} = 0 and thus max{a−
b, 0} ≥ max{a, 0}, and

(iii) if a ≤ 0 and a − b < 0, then trivially, we have max{a − b, 0} =
max{a, 0} = 0.

This argument applies componentwise to the inequality above with a =
ki(x+), b = ki(x) +∇ki(x)(x+ − x) and finishes the proof.

Since x ∈ U and U is compact by Assumption 6.2,
∥∥ΣGC [f ](x, α)

∥∥ is
bounded and therefore the constraint violation in Lemma 6.4 can be
upper bounded by a function of α.
Next, we combine Lemma 6.4 and Corollary 6.2:

Lemma 6.5. Consider the discrete-time system (6.3) and let Assump-
tions 6.1, 6.2, and 6.3 hold. Then, there exist σ ∈ K∞ and α? > 0 such
that for all α ∈ (0, α?) and for every iterate x+ = x+ αΣGC [f ](x, α), we
have that dC(x+) ≤ σ(α).

128



6.2 Linearized Output Projection as Perturbed PDS

Proof. By compactness of U and continuity of ΣGC [f ] in x (Lemma 6.2)
there exists, for every α > 0, an upper bound ζα > 0 such that
‖ΣGC [f ](x, α)‖2 ≤ ζα for x ∈ U . From Lemma 6.4 it thus follows that
‖max{k(x+), 0}‖ ≤ `ζαα2.
By Corollary 6.2, dC(x+) ≤ γ‖max{k(x+), 0}‖ ≤ γζα`α

2 holds for
some γ > 0 and whenever `ζαα2 ≤ δ for some δ > 0. Hence, we define
σ such that σ(α) ≥ ζα`γα

2 for all α < α? :=
√
ζα`γ/δ to finish the

proof.

Finally, we can prove the key result that ΣGC [f ] is perturbation of ΠG
C [f ]:

Proposition 6.2. Consider the discrete-time system (6.3) and let As-
sumptions 6.1, 6.2, and 6.3 hold. Then, there exist ρ ∈ K∞ and α? > 0
such that for all α ∈ (0, α?) we have

ΣGC [f ](x, α) ⊂ co ΠG
C [f ] ((x+ ρ(α)B) ∩ C) + ρ(α)B . (6.10)

Furthermore, the set C◦α := (C + ρ(α)B) ∩ U is invariant for (6.3).

Proof. The invariance of C◦α is immediate from Lemma 6.5. In particular,
independently of the initial condition, the solution of (6.3) enters C◦α
after at most one iteration.
To show (6.10) we first recall that ΣGC [f ] is continuous in (x, α)

(Lemma 6.2). In particular, since U is compact, ΣGC [f ] is uniformly
continuous on any compact set U × [0, α̂] with α̂ > α? large enough.
Namely, there exists a modulus of continuity ω ∈ K∞ such that∥∥ΣGC [f ](x′, α′)− ΣGC [f ](x, α)

∥∥ ≤ ω (∥∥∥[ x′−x
α′−α

]∥∥∥)
for all x′, x ∈ U and all α′, α ∈ [0, α̂]. Let σ ∈ K∞ as in Lemma 6.5.
Then, we have

ΣGC [f ](x, α) ∈ ΣGC [f ](PC(x), 0) + ω

(√
d2
C(x) + α2

)
B (6.11)

⊂ ΠG
C [f ] ((x+ σ(α)B) ∩ C) + ω

(√
σ(α)2 + α2

)
B (6.12)

⊂ co ΠG
C [f ] ((x+ ρ(α)B) ∩ C) + ρ(α)B , (6.13)
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where ρ(α) := max
{
σ(α), ω

(√
σ(α)2 + α2

)}
. The relation (6.11) fol-

lows directly from the definition of ω. Note that PC(x) is a set, however
for every x̂ ∈ PC(x) it holds that ‖x̂ − x‖ = dC(x). The inclusion
(6.12) follows from Lemma 6.2, the fact that PC(x) ⊂ (x+ dC(x)B) ∩ C,
the fact that dC(x) ≤ σ(α) according to Lemma 6.5, and the fact that
b 7→ ω(

√
(b2 + α2) is monotonically increasing. The relation (6.13) fol-

lows by definition of ρ and the fact that the convex hull of a set always
contains the set itself.
Finally, we have ρ ∈ K∞ because of the following facts [229]: If

σ ∈ K∞, then σ2 ∈ K∞. In addition the sum of two K∞-functions is
K∞ and therefore α 7→ σ(α)2 + α2 is K∞. Next, the square root is a
K∞ and therefore the composition α 7→

√
σ(α2) + α2 is K∞. Finally,

the maximum of two K∞-functions is a K∞-function.

6.3 Uniform Convergence

We can now show that solutions of the LOP discretization (6.3) approx-
imate the continuous-time PDS (6.4). Given a solution xα : N → U
of (6.3) for some α > 0, let the interpolation of xα be defined as
x̂α : R≥0 → U with

x̂α(t) := xα[k] + t−αk
α (xα[k + 1]− xα[k]) ∀t ∈ [αk, α(k + 1)) .

For this purpose, we need the following result which we derive from
Lemma 5.4 on Page 111, but which can also be obtained from simplifying1
[216, Thm. 5.2].

Lemma 6.6. Consider C ⊂ Rn and H : Rn ⇒ Rn and let the inclusion

ẋ ∈ H(x) , x ∈ C (6.14)

be well-posed and let C be a viability domain for H. Further, consider a
class of discrete-time systems, parametrized in δ > 0, and given by

x+ = Hδ(x) x ∈ Cδ (6.15)
1The original result applies to hybrid inclusions and possibly incomplete, non-

unique (hybrid) trajectories.
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with Cδ ⊂ Rn and Hδ : Cδ → Cδ. Assume that there exists ρ ∈ K∞ and
δ? > 0 such that for all δ ∈ (0, δ?) it holds that Cδ ⊂ C + ρ(δ)B and for
every x ∈ Cδ we have

Hδ(x) ⊂ x+ δ coH((x+ ρ(δ)B) ∩ C) + δρ(δ)B . (6.16)

Given a sequence δi → 0+, let x̂δi denote the interpolated solution of
(6.15) starting at x0 ∈ C. Then, for any T, ε > 0, if the sequence
{gph x̂δi ∩ (x0 + εB)× [0, T ]} converges graphically, then its convergence
is to a (T, ε)-truncated solution x : [0, T ]→ C of (6.14).

Proof. First, we need to show that for a given δ with 0 < δ < δ?, the
interpolated solution x̂δ of (6.15) is a solution of a δρ-perturbation of
(6.14). For this purpose, let t ∈ (δk, δ(k + 1)) for some k ≥ 0. Then xδ
satisfies ˙̂xδ(t) = (xδ[k + 1]− xδ[k])/δ and therefore, by (6.16), we have

˙̂xδ(t) = 1
δ (Hδ(xδ[k])− xδ[k]) ⊂ coH(xδ[k] + ρ(δ)) ∩ C) + ρ(δ)B .

Next, we limit ourselves to the (T, ε)-truncation of x̂δ, i.e., we consider
the map x̂′δ : T ′ → x0 + εB such that gph x̂′δ = gph x̂δ and either T ′ = T

or ‖x̂′δ(T ′)− x0‖ = ε. Define

σ′(δ) := sup
x∈x0+εB

‖coH((x+ ρ(δ)B) ∩ C) + ρ(δ)‖ .

This allows us establish the bound ‖xδ[k]−x̂′δ(t)‖ ≤ ‖xδ[k]−xδ[k+1]‖ ≤
δσ′(δ) for all t ∈ [0, T ′] (and k such that t ∈ [δk, δ(k+1)]). Therefore, for
all t ∈ [0, T ′] and all δ < δ?, we have x̂′δ(t) ∈ {x |x+ δσ′(δ)B ∩ Cδ 6= ∅}
as well as

˙̂x′δ(t) ∈ coH(x̂′δ(t) + (δσ′(δ) + ρ(δ))B) + ρ(δ)B
⊂ coH(x̂′δ(t) + δσB) + δσB ,

where σ > 0 is such that δσ′(δ) + ρ(δ) ≤ σδ for all δ ≤ δ?. Hence, for
all δ ≤ δ?, every (T, ε)-truncated interpolated solution of (6.15) is a
(T, ε)-truncated solution of

ẋ ∈ H(x+ δσB) + δσB , x ∈ C + δσB

which is the δσ-perturbation of (6.14). Lemma 5.4 thus yields the desired
graphical convergence as δi → 0+.
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Now, we can combine Lemma 6.6 and Proposition 6.2 to arrive at our first
main result about the graphical convergence of truncated solutions (i.e.,
local solutions) of anti-windup approximations to a projected dynamical
system:

Theorem 6.1. Let Assumptions 6.1, 6.2, and 6.3 be satisfied for the
LOP discretization (6.3). Consider a sequence αn → 0+ and let {xn}
denote the sequence of complete interpolated solutions of (6.3) with α =
αn and xn(0) = x0. Then, then {xn} converges uniformly to the unique
solution of (6.4) on every compact subinterval of [0,∞).

Proof. First, note that the PDS (6.4) is not a well-posed inclusion. In-
stead, for Lemma 6.6 to apply, we need to consider the Krasovskii regular-
ization K

[
ΠG
C [f ]

]
of ΠG

C [f ]. However, since ΠG
C [f ] (x) ⊂ K

[
ΠG
C [f ]

]
(x)

for all x ∈ C, we can adapt (6.10) to have

ΣGC [f ](x, α) ⊂ K
[
ΠG
C [f ]

]
((x+ ρ(α)B) ∩ C) + ρ(α)B . (6.17)

It then follows, that the map Hα(x) := x + αΣGC [f ](x, α) satisfies
(6.16), i.e.,

Hα(x) ⊂ x+ α
(
K
[
ΠG
C [f ]

]
((x+ ρ(α)B) ∩ C)

)
+ αρ(α)B .

and using Lemma 6.6 we conclude uniform convergence to Krasovskii
solutions of (6.4).
More precisely, every sequence of bounded solutions of (6.3) has a

graphically convergent subsequence. To apply Lemma 6.6 we need to
show that the LOP discretization (6.3) satisfies (6.16) with respect to
the PDS (6.4).

Theorem 6.1 does not exploit the full generality of Lemma 6.6. In par-
ticular, Assumptions 6.1, 6.2, and 6.3 guarantee the existence of unique
complete solutions for both the PDS (6.4) and the LOP discretization
(6.3). Hence, there is no need for more fine-grained results (for local
solutions) as presented in Section 5.3 for anti-windup approximation of
PDS.
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6.4 Semiglobal Practical Robust Stability

Analogously to Lemma 6.6, we prove the following lemma about semi-
global practical asymptotic stability of discrete approximations starting
from Lemma 5.6. Albeit the same result can be obtained from simplify-
ing [216, Thm. 5.3].

Lemma 6.7. Consider C ⊂ Rn and H : Rn ⇒ Rn and let the inclusion

ẋ ∈ H(x) , x ∈ C (6.18)

be well-posed, let C be a viability domain for H, and assume that A ⊂ C
is a compact GAS set for (6.18), i.e., there exists β ∈ KL such that
dA(x(t)) ≤ β(dA(x(0)), t) holds for some and any (complete) solution
x and all t ≥ 0. Further, consider a class of discrete-time systems,
parametrized in δ > 0, and given by

x+ = Hδ(x) x ∈ Cδ (6.19)

with Cδ ⊂ Rn and Hδ : Cδ → Cδ. Assume that there exists ρ ∈ K∞ and
δ? > 0 such that for all δ < δ? it holds that Cδ ⊂ C+ρ(δ)B and for every
x ∈ Cδ we have

Hδ(x) ⊂ x+ δ coH((x+ ρ(δ)B) ∩ C) + δρ(δ)B . (6.20)

Then, A is SPAS for (6.19). Namely, for every compact B ⊂ Rn and
every ζ > 0 there exists δ′ < δ? such that for every δ < δ′, every solution
xδ of (6.19) starting in B ∩ Cδ satisfies dA(xδ[k]) ≤ β(dA(xδ[0], δk) + ζ

for all k ∈ N.

Proof. Using the same ideas as in the proof of Lemma 6.6, we know that
any (T, ε)-truncated interpolated solution of (6.19) is a (T, ε)-truncated
solution of the δσ-perturbation of (6.18) which is given by

ẋ ∈ H(x+ δσB) + δσB x ∈ C + δσB .

Hence, Lemma 5.6 applies directly and guarantees that dA(x̂δ(t)) ≤
β(dA(x̂δ(0), t) + ζ for all t ≥ 0, and in particular, for all t = δk with
k ∈ N.
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Theorem 6.2. Let Assumptions 6.1, 6.2, and 6.3 be satisfied for the
LOP discretization (6.3). Further, let A ⊂ C be compact and globally
asymptotically stable for the PDS (6.4), i.e., there is β ∈ KL such that
for every solution x it holds that

dA(x(t)) ≤ β(dA(x(0)), t) ∀t ≥ 0 .

Then, for every ζ > 0 and every compact B ⊂ C there exists α? > 0
such that for all α ∈ (0, α?) every solution xα of the LOP (6.3) with
xα(0) ∈ B satisfies

dA(xα[k]) ≤ β(dA(xα[0]), αk) + ζ ∀k ≥ 0 .

Proof. The proof is analogous to the proof of Theorem 6.1. Namely,
note that the PDS (6.4) is not well-posed. However, the Krasovskii
regularization is well-posed and C is a viability domain. Moreover, since
C is assumed to be prox-regular (hence Clarke regular), and f and G

are continuous, every Krasovskii solution is a (Carathéodory) solution
of (6.4) by Corollary 4.4. Importantly, this means that if A is gas for
Carathéodory solutions then A is gas for Krasovskii solutions. Fur-
thermore, (6.17) holds, as before, and from Lemma 6.7 we conclude
practical stability of A for the parametrized class of LOP discretizations
(6.15).

6.5 Notes & Comments

The idea of linearizing constraints around a current iterate and then
computing a (descent) direction by solving a quadratic program is well-
established and, in fact, the key feature of SQP methods in numerical
optimization [250, 191, 31]

With the LOP discretization presented in this chapter, we can recover
this kind of SQP methods by choosing the vector field f to be the nega-
tive gradient of a cost function. However, our method has a more general
scope because it can approximate any kind of projected dynamics.
Moreover, the results presented in this chapter seem to be the first

rigorous study of the continuous-time limit of this kind of algorithm and
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bring together three key components: sensitivity analysis for programs,
uniform convergence arguments (generally used to prove existence of
solutions for ODEs and differential inclusions), and oblique projected
dynamical system.
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CHAPTER 7

Preliminaries on Gradient Flows

In this second part of the thesis, we turn to projected dynamical systems
for solving constrained optimization problems. In particular, we explore
the possibilities of implementing (or approximating) projected gradient
flows as the feedback control system’s closed-loop behavior. For this
purpose, we study algorithms that are based on projected gradient flows
of the form

ẋ ∈ ΠG
C [− gradG Φ] (x) , (7.1)

where C ⊂ Rn is closed and G : C → Sn+ is a locally weakly bounded
metric. Further, Φ : Rn → R is an objective function, continuously
differentiable in a neighborhood of C, and gradG Φ(x) := G−1(x)∇Φ(x)T
is its gradient at x ∈ C with respect to G.1

The results of Chapter 4 can be used to guarantee the existence and
uniqueness of (Carathéodory or Krasovskii) solutions of (7.1) under
appropriate conditions on C, G and Φ. In fact, (7.1) is well-defined even
on subsets of abstract C1-manifolds.
Dynamics of the form (7.1) serve to find local optimizers to the opti-

mization problem

minimize Φ(x) subject to x ∈ C . (7.2)
1This definition of a gradient is inspired by Riemannian geometry where

gradG Φ(x) is the unique vector that satisfies 〈gradG Φ(x), w〉G(x) = DxΦ(w) for
all w ∈ TxRn, where DxΦ denotes the differential of Φ at x and TxRn is the tangent
space of Rn at x (which is isomorphic to Rn).
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Note that the metric G is a property of the dynamical system (7.1) only
and does not affect the optimizers of (7.2). Furthermore, it is reasonable
(but important to note) that, in general, the metric that defines the
gradient has to be the same metric required for the projection.

In the remainder of this chapter, we discuss two topics that are infor-
mative for the behavior of projected gradient flows and allow us to make
connections to existing work: First, in Section 7.1 we review basic results
for unconstrained gradient flows. In particular, we discuss pathologies
that can occur and how to avoid them. However, our discussion of this
topic is very limited since we will not pursue it further in the context
of projected gradient flows. Second, in Section 7.2, we consider convex
constrained optimization problems and show how particular discretiza-
tions of projected gradient flows recover special cases of well-established
“proximal” optimization algorithms.

The remaining chapters of this part of the thesis are structured as
follows: In Chapter 8 we establish stability and convergence properties of
the basic, yet general, projected gradient flow (7.1). In Chapters 9 and 10
we then study the convergence features of anti-windup approximations
and LOP discretizations of (7.1). Finally, in Chapters 11 and 12 discuss
timescale separation requirements and tracking performance for time-
varying optimization problems. Both of these subjects are of particular
importance in feedback-based optimization.

7.1 Unconstrained Gradient Flows

We quickly review unconstrained gradient flows in Rn in the Euclidean
metric G ≡ I to illustrate the basic convergence properties and possible
pathologies, such as non-pointwise convergence or unstable minimizers.

Let Φ : Rn → R be continuously differentiable with compact sublevel
sets, i.e., for every ` ∈ R let S` := {x |Φ(x) ≤ `} be compact. Then,

ẋ = −∇Φ(x)T (7.3)

admits a complete solution for every initial condition x(0) ∈ Rn and the
set of weak equilibria coincides with the critical points of Φ, i.e., the
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points for which ∇Φ(x) = 0.
This fact can be seen as follows: By continuity of ∇Φ, (7.3) admits a

(local) solution for every initial condition. Furthermore, we have

d
dtΦ(x(t)) = −∇Φ(x(t))∇Φ(x(t))T ≤ 0 .

It follows that Φ is non-increasing along trajectories of (7.3) and therefore
the sublevel sets S` are invariant. By compactness of S` we conclude
that trajectories of (7.3) cannot escape in finite time and therefore must
be complete. Moreover, from Theorem 2.5 we know that the limit set
of every trajectory lies on a level set {x |Φ(x) = r} of Φ for some r
intersected with the set of critical points {x | ∇Φ(x) = 0}.
This reasoning about the limit behavior of gradient flows is easily

generalized to more general settings, e.g., on Riemannian manifolds [126,
Chap. C.12].
Although solutions of (7.3) converge the set of critical points of Φ,

(i) a trajectory of (7.3) may not converge to a singleton, i.e., a single
critical point of Φ, and

(ii) minimizers of Φ may not be stable.

For instance, in [194], the authors give an example of a gradient flow
with trajectories that are not pointwise convergent. Namely, the ω-
limit set of any trajectory is the entire unit circle. The same example
is also documented in [72]. Moreover, the possibility of non-pointwise
convergence can also occur in discrete-time gradient methods [1].

In [2], the authors show, using a counterexample, that minimizers of Φ
are not necessarily stable and strict local minimizers are not necessarily
asymptotically stable.

Both of these counterexamples are highly pathological. However, they
can both be ruled out if the so-called Lojasciewicz inequality holds (see
below).
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7.1.1 Pointwise Convergence

Pointwise Convergence under Convexity/Monotonicity

Suppose that Φ is strictly convex (and has compact sublevel sets) or
Φ is strongly convex (which implies that Φ has compact sublevel sets).
In that case, there exists a unique critical point x?, which is also the
unique global minimizer of Φ. Hence, convergence of any trajectory of
(7.3) is necessarily to x?.

If, on the other hand, we assume that Φ is convex with compact
sublevel sets, the set of minimizers is not necessarily a singleton (but
it is connected and convex). Nevertheless, we can conclude pointwise
convergence.

Proposition 7.1. Let Φ : Rn → Rn be convex with compact sublevel
sets. Then, every trajectory of (7.3) with G ≡ I converges to a point
that is a global minimizer of Φ.

Proof. For the sake of contradiction, let x̂1, x̂2 ∈ Ω(x0) be two different
limit points of the trajectory starting at x0. Since all trajectories of (7.3)
converge to the largest invariant subset of critical points of Φ and since
every critical point of a convex function is a global minimizer, it follows
that x̂1, x̂2 are both global minimizers of Φ.

Next, we can define Vx̂i(x) := 1
2‖x− x̂i‖

2 for i ∈ {1, 2} and note that

d
dtVx?i (x) = ∇Φ(x(t))(x(t)− x̂i) ≤ 0 .

In particular, we have that ‖x(t′) − x̂i‖ ≤ ‖x(t) − x̂i‖ for all t′ ≥ t

and i ∈ {1, 2}, i.e., the distance to either point is non-increasing.
Since x̂1 is a limit point, there exist a monotonically increasing se-

quence {t1k} with t1k →∞ and such that x(t1k)→ x̂1.
Let ε < 1

2‖x̂1 − x̂2‖. There exists K ∈ N such that ‖x(t1k) − x̂1‖ ≤ ε

for all k ≥ K and consequently ‖x(t) − x̂1‖ ≤ ε for all t ≥ tK . This,
however, implies that there cannot exist a sequence {t2k} with t2k →∞
and such that x(t2k) → x̂2. Therefore, x̂2 cannot be a limit point of
x.
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The arguments in the proof of (7.1) have been applied, implicitly or
explicitly, to prove pointwise convergence of monotone dynamics such
as saddle-point flows [234, 58, 59, 117].

Whether the same line of reasoning can be extended to gradient flows
with a variable metric remains open.

Pointwise Convergence under Real Analycity

If Φ is not convex, we can still prove pointwise convergence by showing
that trajectories of the gradient flow (7.3) have finite length.2 This is
particularly true for real analytic functions for which the Lojasiewicz
inequality holds. Namely, if Φ is real analytic and x̂ is a critical point of
Φ, then there exist θ ∈ [ 1

2 , 1) and C > 0 such that

|Φ(x)− Φ(x̂)|θ ≤ C‖∇Φ(x)‖ (7.4)

for all x in neighborhood N of x̂.
Next, let x : [0,∞) → Rn be a trajectory of the gradient flow (7.3)

such that x(t) ∈ N for all t ≥ 0. Then, we have

− C
1−θ

d
dt

(
Φ(x(t))1−θ) = −C

(
Φ(x(t))−θ

)
∇Φ(x(t))ẋ(t)

= C
(
Φ(x(t))−θ

)
‖∇Φ(x(t))‖2

≥ ‖∇Φ(x(t))‖ = ‖ẋ(t)‖ .

Hence, the length of the trajectory x can be bounded as∫ ∞
0
‖ẋ(t)‖dt ≤ C

1−θΦ(x(0))1−θ <∞

and it follows that the ω-limit set of x is the singleton x̂.
The Lojasciewicz inequality (7.4) is the starting point for the field of

tame optimization [136, 45] which also extends to non-smooth objects.
We will not pursue this avenue further for projected gradient flows.

Instead, note that non-pointwise convergence of gradient flows is a pos-
sibility (at least theoretically), and powerful tools exist to rule out this
kind of pathology.

2The content of this subsection is inspired by [113, 72].
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7.1.2 Stability of Minimizers

From the viewpoint of numerical optimization, minimizers of an optimiza-
tion problem can be distinguished from other critical points by applying
second-order optimality conditions such as the SSOSC (Definition 2.3).

Because we want to implement projected gradient flows as the closed-
loop behavior of a physical control system, we are interested in iden-
tifying minimizers by their stability properties. In other words, if we
can show that the only (asymptotically) stable equilibria are minimizers,
we do not have worry about converging to critical points that are not
minimizers. However, the relation between stability and optimality is
not trivial as the following result from [2] shows:

Theorem 7.1. For a critical point of (7.3) the following relations hold:

ILM SLM LM

LMICP ASE SE

where (S)LM stands for (strict) local minimizer, (A)SE for (asymptoti-
cally) stable equilibrium, ILM for isolated local minimizer, and LMICP
for local minimizer & and isolated critical point.
If, in addition, Φ is real analytic (or, more precisely, the Lojasiewicz

inequality (7.4) holds), then

ILM SLM LM

LMICP ASE SE

In particular, a local minimizer of Φ is not generally a stable equilibrium,
and a strict local minimizer is not necessarily asymptotically stable. The
following example, simplified from [2] illustrates this last point.

Example 7.1. Consider the function h : R → R defined as Φ(x) :=
e−1/x2(x2 + 1 + sin 1

x2 ) for all x ∈ R \ {0} and Φ(0) = 0. In particular,
it can be shown that Φ is continuously differentiable with d

dtΦ(0) = 0.
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Figure 7.1: Qualitative behavior of Φ in Example 7.1

Figure 7.1 illustrates Φ qualitatively. Notice that x = 0 is a strict
(global) minimizer of h, however, it is not isolated. Hence, in every
neighborhood of 0 there exist infinitely many (local) minimizers, each
of which is a stable equilibrium of the gradient flow ẋ = −∇Φ(x)T .
Consequently, x = 0 cannot be asymptotically stable. �

7.2 Related Work: Discretizations of Pro-
jected Gradient Flows

It is interesting to note that different discretizations of projected gradient
flows result in special cases of well-established proximal optimization
algorithms [23, 196, 21] such as the proximal-point algorithm [21, Ch.
27.1], proximal gradient descent [23, 25], proximal Newton methods [160],
and mirror descent [150, 24, 188].
Our discussion of this topic is fairly superficial. It merely serves to

illustrate how these optimization algorithms have continuous-time limits
that can be captured by a single yet general model of oblique projected
gradient flows.
For detailed results and theoretical guarantees (e.g., on the conver-

gence rate) for iterative optimization algorithms, the reader is referred
to the respective papers.
All of the algorithms considered in this section apply primarily to
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convex optimization problems. Hence, we limit ourselves to the problem

minimize Φ(x) subject to x ∈ C , (7.5)

where C is closed convex and Φ : Rn → R is a proper closed and convex
(i.e., Φ has a non-empty, closed convex epigraph epi Φ := {(x, y) | y ≥
Φ(x)}).

Furthermore, a recurring object in this section in the proximal operator
proxf defined by

proxf (x) := arg min
y

(
f(y) + 1

2‖x− y‖
2)

for a proper closed convex function Rn → R. For a comprehensive
treatment of the proximal mappings and related algorithms, the reader
is referred to [196, 211].

7.2.1 Implicit Euler Discretization & Proximal Min-
imization

Arguably the simplest proximal optimization algorithm is the proximal-
point algorithm ([196, Ch. 4.1] or [21, Ch. 27.1]) which is given by

x+ = proxΦ(x) , (7.6)

where Φ : Rn → R is a convex function with non-empty closed epigraph.
If Φ has a minimizer, then any solution of (7.6) converges to the set of
minimizers of Φ.

In [196] it was noted that if Φ is continuously differentiable (7.6) can
be interpreted as an implicit Euler integration of the unconstrained
gradient flow ẋ = −∇Φ(x)T .
It turns out that this analogy extends to projected gradient flows:

Define the convex function ΦC := Φ + IC where IC : Rn → R ∪ {∞}
denotes the indicator function of C (i.e., IC(x) = 0 for all x ∈ C and
IC =∞ otherwise). Hence, ΦC is a proper closed convex function with
non-empty closed epigraph. We can reformulate the definition of proxΦC
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as

proxΦC (x) = arg min
y∈Rn

{
Φ(y) + IC(y) + 1

2α‖y − x‖
2}

= arg min
y∈C

{
Φ(y) + 1

2α‖y − x‖
2} .

Note that y? := proxΦC (x) satisfies the KKT conditions

−∇Φ(y?)T − 1
α (y? − x) ∈ Ny?C

which can be rearranged to yield

(x− α∇Φ(y?)T )− y? ∈ Ny?C . (7.7)

However, (7.7) is also satisfied by the (unique) solution of

minimize ‖(x− α∇Φ(y)T )− y‖2 subject to y ∈ C

and therefore satisfies y? = PC
(
x− α∇Φ(y?)T

)
. Hence, the iteration

x+ = proxΦC (x) can rewritten implicitly as

x+ = PC
(
x− α∇Φ(x+)T

)
which, in turn, can be interpreted as implicit Euler integration of the
(Euclidean) projected gradient flow

ẋ = ΠC
[
−∇ΦT

]
(x) x ∈ C .

Note that, for general PDS an implicit Euler integration is usually not
practical as it requires solving the implicit relation x+ = PC(x−αf(x+))
where f : Rn → Rn is a vector field. The proximal-point algorithm
marks a special case in which solving this system amounts to solving a
(simple) convex optimization problem.

7.2.2 Forward Euler Discretizations

Projected/Proximal Gradient Method

As second proximal optimization algorithm we consider the proximal
gradient method ([23, Ch. 10] or [196, Ch. 4.2]) which, in our case,
reduces to a simple projected gradient descent.
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Proximal gradient descent is primarily suited for minimizing a compos-
ite objective Ψ := Φ + Λ where Φ,Λ : Rn → [−∞,∞] are proper closed
and convex, and, in addition, Φ is continuously differentiable. Then, the
proximal gradient method takes the form

x+ = proxΛ
(
x− αk∇Φ(x)T

)
, (7.8)

where αk denotes the step-size (chosen to be fixed or determined, e.g.,
by backtracking line search). If Λ := λ‖ · ‖1 with λ > 0 is an `1-
regularization, (7.8) is also known as iterative shrinkage-thresholding
algorithm (ISTA) [25].

If we choose Λ := IC as the indicator function of the non-empty closed
convex set C, then the proxIC reduces to a simple Euclidean projection
onto C and we recover a simple projected gradient descent

x+ = proxIC
(
x− αk∇Φ(x)T

)
= PC

(
x− α∇Φ(x)T

)
which a simple forward Euler integration (see also Remark 6.1) of the
projected gradient flow

ẋ = ΠC
[
−∇ΦT

]
(x) x ∈ C .

This connection is not surprising and has been documented previously
in [23, 186] and others.

Newton Gradient Flows & Proximal Newton Methods

More interesting than the Euclidean projected gradient descent/flow
are algorithms that use the possibility of a variable metric. In this
context, proximal Newton methods [160] have been developed to achieve
superior convergence rates of the Newton method for the minimization
of a composite objective function with a non-smooth cost component.

To describe this Newton-type method, we first define the scaled prox-
imal operator as

proxQf (x) := arg min
y

(
f(y) + 1

2‖x− y‖
2
Q

)
,
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where Q ∈ Sn+ is a fixed positive definite matrix. Then, a simplified ver-
sion (with fixed step-size) of the proximal Newton method for minimizing
Φ + Λ takes the form

x+ = proxG(x)
Λ

(
−αG(x)−1∇Φ(x)T

)
,

where G(x) = ∇2Φ(x) is the Hessian of Φ at x (assuming that Φ is twice
continuously differentiable).
As before, we choose Λ = IC to be the indicator function of C and

hence we have

proxG(x)
IC

= arg min
y∈C

{
1
2‖x− αG(x)−1∇Φ(x)T − y‖2G(x)

}
= P

G(x)
C (x− α gradG(x)) ,

where PQC denotes the projection onto C with respect to the metric
induced by Q, i.e.,

PQC (x) := arg min
y∈C
‖x− y‖Q .

Lemma 7.1. Given a closed convex set C ⊂ Rn, a metric G : C → Sn+,
and a vector v ∈ Rn we have, for every x ∈ C that

lim
δ→0+

P
G(x)
C (x+ δv)− x

δ
= ΠG

C [v] (x) .

Proof. The statement follows directly from the analogous result for
the Euclidean case, i.e., limδ→0+

PC(x+δv)−x
δ = ΠC [v] (x) [130, Prop.

III.5.3.5], after applying the linear transformation x̂ = G(x)1/2x.

Hence, the proximal Newton method with Λ = IC can be seen as a
forward Euler discretization of the continuous-time projected Newton
flow

ẋ = ΠG
C [− gradG Φ] (x) x ∈ C .

Note that, to make this connection rigorous, having a proper definition
of oblique PDS as introduced in [Ha2] (i.e, Chapter 4) is essential.

Further note that, in practical applications, proximal Newton methods
are often implemented as “inexact” methods where only an approxima-
tion of G(x) = ∇2Φ(x) and G(x)−1 is evaluated at every iteration.
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7.2.3 Mirror Descent

Mirror Descent is an optimization algorithm for convex optimization
going back to [188] where it was described as a descent algorithm in
which gradient steps are performed in the dual space of Rn and a corre-
spondence between Rn and its dual is established via a so-called mirror
map.

Later, in [23, 24], a new interpretation of mirror descent as a gen-
eralized projected subgradient method was given. In this context, the
Bregman divergence of the mirror map serves as a non-Euclidean norm.
This statement will be made more precise below.

In the following, we conjecture that mirror descent is a discretization
of a projected gradient flow in the metric defined by the Hessian of the
mirror map. Although our analysis is not rigorous, it leads us to an
intriguing subclass of projected gradient flows, which defies some of our
previous characterizations in Chapter 4.

Mirror descent requires a so-called mirror map ψ : Rn → [0,∞] with a
convex domain X := {x |ψ(x) <∞} and ψ(∂X ) =∞, i.e., ψ reaches ∞
at the boundary of the domain. Furthermore, ψ is β-strongly convex and
continuously differentiable on intX . Hence, mirror descent is defined by
the iteration

x+ = arg min
y∈C

{
Φ(x) +∇Φ(x)(y − x) + 1

αBψ(y, x)
}
, (7.9)

where C ⊂ Rn is closed convex and Bψ denotes the Bregman divergence
of ψ given by

Bψ(x, z) := ψ(x)− ψ(z)− 〈∇ψ(z), x− z〉 . (7.10)

For an appropriate step-size rule, (7.9) is guaranteed to converge to a
minimizer of the convex optimization problem

minimize Φ(x) subject to C ∩ X . (7.11)

If ψ is twice continuously differentiable and ‖x − z‖ is small, we have
that

Bψ(x, z) ≈ (x− z)T∇2ψ(z)(x− z)
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which we can use to approximate (7.9) as

x+ = arg min
y∈C

{
Φ(x) +∇Φ(x)(y − x) + 1

αBψ(y, x)
}

≈ arg min
y∈C

{〈
α(∇2ψ(x))−1∇Φ(x)T , y − x

〉
∇2ψ(x) + ‖y − x‖2∇2ψ(x)

}
= arg min

y∈C

∥∥y − x+ α
2 grad∇2ψ Φ(x)

∥∥2
∇2ψ(x)

= arg min
y∈C

∥∥y − (x− α
2 grad∇2ψ Φ(x)

)∥∥2
∇2ψ(x)

= P∇
2ψ

C
(
x− α

2 grad∇2ψ Φ(x)
)
.

Using Lemma 7.1 we therefore conjecture that the continuous-time
limit of (7.9) as α→ 0+ is given by the projected gradient flow

ẋ = Π∇
2ψ
C

[
− grad∇2ψ Φ

]
(x) x ∈ C ∩ intX . (7.12)

The system (7.12) is itself very interesting, even without considering
a potential connection to mirror descent. Namely, because ψ is a mirror
map, ∇2ψ is well defined only on intX , the domain of C. For this reason,
(7.12) is well-defined only on C ∩ intX .

While Corollaries 4.1 and 4.3 guarantee the existence of local solutions
of (7.12) for any initial condition in C ∩ intX , the existence of complete
solutions cannot be easily guaranteed, since a solution may reach the
boundary of X in finite time.

Moreover, because (7.12) is a projected gradient flow it can be shown
(in the forthcoming Chapter 8) that Φ is non-increasing along trajectories
of (7.12). This fact is, however, not enough to apply the invariance
principle Theorem 2.5 which requires the existence of complete solutions.
Therefore, one cannot easily conclude that trajectories of (7.12) converge
to critical points of (7.11), although for unconstrained gradient flows
this appears to be the case [8].
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CHAPTER 8

Convergence of Projected Gradient
Flows

Recall that for a differential inclusion ẋ ∈ F (x), x̂ is a weak equilibrium
if x(t) = x̂ for all t ≥ 0 is a solution. Hence, x̂ is a weak equilibrium if
and only if 0 ∈ F (x̂). The point x̂ is a strong equilibrium if x(t) = x̂ for
all t ≥ 0 is the only solution starting at x̂.
When considering the projected gradient flow (7.1) we need to dis-

tinguish between equilibrium points for Carathódory and Krasovskii
solutions. In particular, we say that x? is a weak (strong) K-equilibrium,
if it is a weak (strong) equilibrium of the Krasovskii-regularized inclusion.
Analogously, x? is a weak (strong) C-equilibrium if it is an equilibrium for
Carathéodory solutions (i.e., solutions of the unregularized inclusion).

Since every Carathéodory solution of (7.1) is also a Krasovskii solution,
it follows that every strong K-equilibrium is also a strong C-equilibrium.
On the other hand, a weak C-equilibrium is a weak K-equilibrium. Fur-
thermore, recall from Definition 2.8 that a critical point of the optimiza-
tion problem (7.2) is a point x? ∈ C satisfying

∇Φ(x?)w ≥ 0 for all w ∈ Tx?C . (8.1)

The results in this chapter generalize previous statements from [Ha15] and [Ha2,
Sec. 5]. The main technical results are Proposition 8.1 and Theorem 8.1.
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Lemma 8.1. Every critical point of (7.2) and, in particular, every
minimizer of (7.2), is a weak K-equilibrium of (7.1) and every weak
C-equilibrium of (7.1) is a critical point of (7.2).

Proof. We can reformulate (8.1) as 〈− gradG Φ(x?), w〉G(x?) ≤ 0 for all
w ∈ Tx?C. Furthermore, by Lemma 4.3 we have, for all x ∈ C,

〈− gradG Φ(x), w〉G(x) ≥ ‖w‖
2
G(x) ∀w ∈ K

[
ΠG
C [− gradG Φ]

]
(x) .

Combining these two statements we have

0 ≥ 〈− gradG Φ(x?), w〉G(x?) ≥ ‖w‖
2
G(x?)

∀w ∈ Tx?C ∩K
[
ΠG
C [− gradG Φ]

]
(x?) .

We know that TxC ∩ K
[
ΠG
C [− gradG Φ]

]
(x) 6= ∅ for all x ∈ C since C

is a viability domain for ΠG
C [− gradG Φ]. Therefore, we conclude that

w = 0 ∈ K
[
ΠG
C [− gradG Φ]

]
(x?).

Consider a weak C-equilibrium x? ∈ C, i.e., 0 ∈ ΠG
C [− gradG Φ] (x?).

If x? is not a critical point of (7.2), then there exists v ∈ Tx?C such that
〈− gradG Φ(x), v〉 > 0. This means that 0 /∈ ΠG

C [− gradG Φ] (x?). To
see this, note that the projection of u onto v is given by w := 〈u,v〉

‖v‖2 v.
Using the triangle inequality to the right triangle {0, u, w}, we have
‖u−w‖ < ‖u−0‖. Hence, 0 cannot be a projection of u onto Tx?C since
it does not achieve the minimal the distance to Tx?C.

Lemma 8.2. Along Krasovskii solutions of (7.1), Φ is nonincreasing.
Moreover, the sublevel sets of Φ on C, i.e., S` := {x |Φ(x) ≤ `} ∩ C for
` ∈ R, are invariant for Krasovskii solutions.

Proof. Given any Krasovskii solution x : [0, T ] → C of (7.1), we have,
for almost all t ∈ [0, T ]

d
dtΦ(x(t)) = Dx(t)Φ(w) = 〈gradG Φ(x), w(t)〉G(x(t))

for some w(t) ∈ K
[
ΠG
C [− gradG Φ]

]
(x(t)). By Lemma 4.3 on Page 84,

we then have

d
dtΦ(x(t)) = Dx(t)Φ(w) = −〈− gradG Φ(x(t)), w〉G(x(t))

≤ −‖w(t)‖2G(x(t)) ≤ 0 . (8.2)
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Thus Φ is non-increasing along Krasovskii solutions of (7.1) and hence
S` is invariant.

Lemma 8.3. Minimizers of (7.2) are strong K-equilibria of (7.1).

Proof. By Corollary 4.1 there exists a Krasovskii solution x : [0, T ]→ C
of (7.1) starting at the minimizer x? ∈ C of (7.2). Assume for the sake
of contradiction that x(0) = x? but x(T ) 6= x?.
The sublevel set S`? with `? = Φ(x?) is invariant and x(t) ∈ S`? for

all t ∈ [0, T ] by Lemma 8.2. Since x? ∈ C is a minimizer there exists a
neighborhood N ⊂ C of x? such that Φ(x′) ≥ Φ(x?) for all x′ ∈ N . If
necessary, restrict the solution x such that x : [0, T ] → N . It follows
that Φ(x(t)) = Φ(x?) for all t ∈ [0, T ] and therefore d

dtΦ(x(t)) = 0 for
almost all t ∈ [0, T ] which implies that

0 = d
dtΦ(x(t)) = −〈− gradG Φ(x(t)), ẋ(t)〉G(x) ≤ −‖ẋ(t)‖ ,

where the inequality follows from Lemma 4.3. Consequently, we have
ẋ(t) = 0 for almost all t ∈ [0, T ] and thus x(t) =

∫ t
0 ẋ(t)dt = x0 which

establishes the contradiction.

Hence, Lemmas 8.1 and 8.3 together with Theorem 4.1 can be summa-
rized in the following statements:

Proposition 8.1. Consider the projected gradient flow (7.1) and the
problem (7.2). If C is closed, G is locally weakly bounded and Φ is
continuously differentiable in a neighborhood of C, then the following
inclusions hold:

minimizer ⊂ strong K-eq. ⊂ strong C-eq.
⊂ weak C-eq. ⊂ crit. pt. ⊂ weak K-eq.

If, in addition, C is Clarke regular and G is continuous, then we have

minimizer ⊂ strong eq. ⊂ weak eq. = crit. pt.

As an example of a critical point that is a weak (C-)equilibrium, but not
a strong (C-)equilibrium, we refer back to Example 4.2, which illustrates
this case for a prox-regular set that induces non-unique solutions.
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If solutions of (7.1) are unique, we do not have to distinguish between
weak and strong equilibria, and Proposition 8.1 simplifies further to the
fact that critical points are equivalent to equilibria.
Unfortunately, convergence is generally guaranteed only to weak K-

equilibria as the following application of the invariance principle Theo-
rem 2.5 shows.

Proposition 8.2. Consider (7.1) and let Φ : Rn → R have compact
sublevel sets on C, i.e., for every ` ∈ R the set S` := {x |Φ(x) ≤ `}∩C is
compact. Then, (7.1) admits a complete Krasovskii solution x : [0,∞)→
C for every initial condition x(0) ∈ C. Furthermore, for some r ∈ Φ(S`),
x converges to the largest weakly invariant subset of weak K-equilibrium
points on Φ−1(r) ∩ C. If, in addition, C is Clarke regular and G is
continuous, then convergence is to the set of critical points of (7.2).

Proof. As before, the compactness and invariance of the level sets S` of
Φ on C implies that solutions cannot escape in finite time and therefore
must be complete. Hence, Theorem 2.5 guarantees convergence to the
largest weakly invariant subset for which d

dtΦ(x(t)) = 0 (and which lies
on a level set of Φ relative to C) Using (8.2), we know that every limit
point x̂ of x satisfies 0 ∈ K

[
ΠG
C [− gradG Φ]

]
(x̂), i.e., x̂ is a weak K-

equilibrium of (7.1). Finally, under Clarke regularity of C and continuity
of G, Proposition 8.1 implies that every weak equilibrium is a critical
point.

Although convergence is, in general, only to the set of weak equilibria,
the following theorem establishes stability of minimizers analogously to
Theorem 7.1, albeit for projected gradient flows and sets of minimizers
(instead of individual points). Namely, in the following theorem X̂ ⊂ C
is a (strict) minimizer of (7.2) if Φ(x) = Φ(x′) for all x, x′ ∈ X̂ and
Φ(y) ≥ (>)Φ(x) for all y /∈ X̂ (but y ∈ C).

Theorem 8.1. (stability of minimizers) Consider (7.1) and let Φ have
compact sublevel sets on C as in Proposition 8.2. Let X̂ ⊂ C be a
connected component of the set of weak K-equilibria and a subset of
{x |Φ(x) = r} for some r. Then, the following statements hold:
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(i) If X̂ is asymptotically stable for (7.1), then it is a strict minimizer
of (7.2).

(ii) If X̂ is a strict minimizer of (7.2) then it is stable for (7.1).

Proof. Recall from Proposition 8.2 that the compactness of the sublevel
sets guarantees the existence of complete solutions.
To show (i), let V ⊂ C be a neighborhood of X̂ such any solution

x : [0,∞)→ C of (7.1) with x(0) ∈ V converges to X̂ . Since Φ is C1 and
x is absolutely continuous, Φ ◦ x is absolutely continuous, and we may
write

lim
t→+∞

(Φ ◦ x)(t) = Φ(x0) +
∫ +∞

0
DxΦ(ẋ(t))dt = r .

Since DxΦ(ẋ(t)) ≤ 0 holds for almost all t ≥ 0, we can establish∫ +∞
0 DxΦ(ẋ(t))dt ≤ 0 and hence r ≤ Φ(x(t)) ≤ Φ(x0) for all t ≥ 0.
Because this reasoning applies to all x0 in the region of attraction of X̂ ,
it follows that X̂ is a local minimizer of Φ.

To see that X̂ is a strict minimizer, assume for the sake of contradiction
that for some x̃ in the region of attraction of X̂ it holds that Φ(x̃) ≤ r.
Every solution y to (7.1) with y(0) = x̃ nevertheless converges to X̂ by
assumption. Therefore, it must hold that

∫ +∞
0 DyΦ(ẏ(t)) = 0 and since

DyΦ(ẏ(t)) ≤ 0, it follows that DyΦ(ẏ(t)) = 0 for almost all t ≥ 0. But
as a consequence of Proposition 8.2, all points x in the limit set are weak
K-equilibrium points, this holds in particular for x̃, and therefore X̂
cannot be asymptotically stable. For (ii), assume that X̂ 6= C (otherwise
stability is trivial). Hence, consider a bounded (relative) neighborhood
W ⊂ C of X̂ in which X̂ is a strict minimizer. Next, we construct a
neighborhood V ⊂ W such that all trajectories starting in V remain in
W . Namely, let α be such that r < α < minx∈∂WΦ(x) where ∂W is the
boundary of W relative to C. Define V := {x ∈ W |Φ(x) ≤ α} ⊆ W
which has a non-empty interior because r < α. Since for any trajectory,
we have DxΦ(ẋ(τ)) ≤ 0 we conclude that V is strongly invariant and
consequently remains in V, thus establishing stability.
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CHAPTER 9

Robust Convergence of Anti-Windup
Approximations

In this chapter we revisit the anti-windup approximations introduced
in Chapter 5. Namely, we consider the special case of (5.1) when f

depends only on PC(x), i.e., we study the system

ẋ ∈ FK(x) := f(PC(x))− 1
KG

−1(PC(x))(x− PC(x)) , (9.1)

where, as before, C ⊂ Rn is α-prox-regular, G : C → Sn+ is a continuous
metric, K > 0 is a scalar, and f : C → Rn is a continuous vector field.
All of the previous results from Chapter 5 for (5.1) also apply to (9.1).
In particular, as K → 0+, trajectories of (9.1) converge uniformly to
solutions of the PDS (5.2), i.e., to solutions of

ẋ = ΠG
C [f ] (x) , x ∈ C . (9.2)

Also, the practical stability results of Section 5.4 apply, but we show in
this chapter that stronger results can be derived for (9.1). In particular,
we prove three results:

(i) We show in Section 9.1 that equilibria of (9.2) coincide with pro-
jected equilibria of (9.1), i.e., equilibrium points after projection

The material presented in this chapter corresponds to the second part of [Ha4]
and Section 9.3 corresponds to [Ha5]. Theorems 9.1, 9.2, and 9.3 constitute the main
technical results of this chapter.
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onto C.

(ii) In Section 9.2 we prove that for strongly monotone f , convex C,
G ≡ I, and K small enough, trajectories of (9.1) converge to the
unique projected equilibrium point of (9.2).

(iii) When f is a gradient vector field, C is prox-regular, and G ≡ I, we
prove in Section 9.3 that (projected) trajectories of (9.1) converge
to the set of minimizers of the potential function on C, i.e., solution
of the underlying optimization problem.

Finally, in Sections 9.4 and 9.5 we give four control designs that fall
into the class of (9.1). We provide simulations confirming our theoretical
results and formulate open questions.

9.1 Preservation of Equilibria

An important advantage of (9.1) over the more general system (5.1)
is that equilibria of (9.2) are preserved in the following sense (which
generalizes [Ha6, Prop. 4]):

Proposition 9.1. If x? ∈ C is a weak equilibrium of the PDS (9.2),
then there exists K? > 0 such that for all K ∈ (0,K?) there exists a
weak equilibrium point x?K ∈ x? + Nx?C ∩ 1

2α intB for the AWA (9.1).
Conversely, if x?K ∈ C◦α is a weak equilibrium of (9.1) for some K, then
PC(x?) is a weak equilibrium of (9.2).

Proof. Given a weak equilibrium x? ∈ C of (9.2), let x?K := x? −
KG(x?)f(x?). For K ∈ (0,K?) := 1/(2α‖G(x?)f(x?)‖), we have
x?K ∈ C◦α.

Since x? is an equilibrium of (9.2) (by assumption) and by Lemma 4.1,
we have f(x?) ∈ −NG

x?C. It follows from (3.2) that −KG(x?)f(x?) ∈
Nx?C and consequently x?K ∈ x? +Nx?C. By Proposition 3.1, it follows
that PC(x?K) = x? and therefore

FK(x?K) = f(x?)− 1
KG

−1(x?) (x? −KG(x?)f(x?)− x?) = 0 .
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9.2 AWA of Monotone Dynamics

Thus, x?K is a weak equilibrium of (9.1). The converse case follows the
same ideas.

Although equilibria of the PDS (9.2) are preserved by the AWA (9.1)
(after projection), it is not clear whether convergence properties are
preserved, especially since we are primarily interested in the convergence
of t 7→ PC(x(t)) rather than the convergence of the solution x of (9.1).
Theorem 5.2 suggests that, in general, convergence is only within a
neighborhood of asymptotically stable equilibria of the PDS (9.2).
However, as we shown below, under additional conditions on f,G

and C, the projected solutions t 7→ PC(x(t)) do indeed converge to an
equilibrium of (9.2).

9.2 AWA of Monotone Dynamics

Next, we show that if −f is strongly monotone and G ≡ I, then −FK ,
as defined in (9.1), is strictly monotone for small enough K. This, in
turn, allows us to conclude asymptotic stability for anti-windup approx-
imations of the form (9.1).

Since we require only monotonicity of −f , the following results can be
used not only when f is chosen as the gradient of a convex cost function,
but also for saddle-point flows (see Section 9.5), and pseudo-gradients
for Nash-equilibrium seeking [73, 186].
Given a set C ⊂ Rn, recall that a map F : C ⇒ Rn is (strictly; β-

strongly) monotone if for all x, x′ ∈ C and all v ∈ F (x) and v′ ∈ F (x′)
it holds that

〈v − v′, x− x′〉 ≥ 0 (> 0;≥ β‖x− x′‖2) .

Further, if C is α-prox-regular, the map x 7→ NxC has a hypomonotone
localization (Lemma 3.4), i.e., for all x, x′ ∈ C, all η ∈ NxC ∩ B, and all
η′ ∈ Nx′C ∩ B we have

〈η − η′, x− x′〉 ≥ −2α‖x− x′‖2 .
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In particular, if C is convex, we have 〈η′ − η, x′ − x〉 ≥ 0 and x 7→ NxC
is monotone.

Proposition 9.2. Consider FK as defined in (9.1) with G ≡ I and
C is assumed to be α-prox-regular. Let −f be β-strongly monotone
and globally `-Lipschitz. Then −FK is strictly monotone on C◦α for all
0 < K < 4(β − 2α)/`2.

Proof. Given any x, x′ ∈ C◦α, let x := PC(x) and x′ := PC(x′). Further,
let η := x − x ∈ NxC and η′ := x′ − x′ ∈ Nx′C. We can work directly
with the monotonicity of f , the hypomonotocity of x 7→ NxC, and
Cauchy-Schwarz to derive

〈x− x′, FK(x)− FK(x′)〉
=
〈
x− x′, f(x)− f(x′)− 1

K (x− x) + 1
K (x′ − x′))

〉
=
〈
x− x′ + η − η′, f(x)− f(x′)− 1

K (η − η′)
〉

= 〈x− x′, f(x)− f(x′)〉 − 1
K 〈η − η

′, η − η′〉
+ 〈η − η′, f(x)− f(x′)〉︸ ︷︷ ︸

`‖η−η′‖‖x−x′‖

− 1
K 〈x− x

′, η − η′〉︸ ︷︷ ︸
≥−2α‖x−x′‖2

≤ −(β − 2α)‖x− x′‖2 + `‖x− x′‖‖η − η′‖ − 1
K ‖η − η

′‖2 .

A sufficient condition for the right-hand side to be negative for all
x 6= x′ is that β − 2α > 0 and that the determinant 1

K (β − 2α)− 1
4`

2 is
positive, i.e., if 0 < K < 4(β − 2α)/`2.

This leads us the following result which establishes convergence of anti-
windup approximations for strongly monotone dynamics on convex sets:

Theorem 9.1. Consider the AWA (9.1) with G ≡ I and let C be closed
convex. Assume that −f is β-strongly monotone and globally `-Lipschitz.
Then, for all K < 4β/`2, every trajectory of (9.1) converges to an
equilibrium point x? (which is unique) such that PC(x?) is the unique
equilibrium of the PDS (9.2).

Proof. Because of convexity of C, PC(x) is single-valued and continuous
for all x ∈ Rn and globally 1-Lipschitz (i.e., non-expansive). As a
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consequence, FK is globally Lipschitz continuous and there exists a
unique complete solution of (9.1) for every initial condition x(0) ∈ Rn.
Furthermore, since K < 4β/`2 and C is convex (which lets us take
α→ 0+), Proposition 9.2 guarantees that −FK is strictly monotone on
Rn.
Next, recall that the strong monotonicity of −f and convexity of C

imply that (9.2) has a unique equilibrium x? [186, Thm. 2.3]. Con-
sequently, Proposition 9.1 guarantees the existence of an equilibrium
point x? of (9.1) such that PC(x?) = x?. Furthermore, x? is unique
by [186, Thm. 2.2]. In particular, strict monotonicity of −FK implies
that V (x) := 1

2‖x− x
?‖2 is a Lyapunov function for (9.1) which can be

used to establish global asymptotic stability of x?.

Theorem 9.1 can, presumably, be generalized to prox-regular sets as well
as general metrics G. However, in that case, additional restrictions on
x(0) are required, the threshold value for K is less easily quantifiable,
and convergence is likely only local.

9.3 Robust Convergence of Anti-Windup
Gradient Flows

Although Theorem 9.1 establishes robust convergence for monotone dy-
namics with a quantitative bound on the anti-windup gain K, we show
next that, in the special case of an AWA of a projected gradient flow,
robust convergence is guaranteed under significantly weaker assumptions.
More precisely, we consider the optimization problem

minimize Φ(x) subject to x ∈ C (9.3)

for which we make the following assumption:

Assumption 9.1. Let C ⊂ Rn be α-prox-regular. Further, let Φ : Rn →
R be differentiable in a neighborhood of C with compact sublevel sets
S` := {x ∈ C |Φ(x) ≤ `}.
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Under Assumption 9.1, x? ∈ C is a critical point of (9.3) (i.e., 1st-order
optimal) if ∇Φ(x?)T ∈ −Nx?C. Namely, local optimizers of (9.3) are
critical [211, Thm. 6.12].
To solve (9.3), we consider the anti-windup gradient inclusion

ẋ ∈ F (x) := −∇Φ(PC(x))T − 1
K (x− PC(x)) (9.4)

which falls into the class of (9.1). In particular, we consider only the
case G ≡ I. Since PC is not necessarily single-valued outside C+ 1

2α intB,
(9.4) has to be treated as an inclusion. However, we will not concern
ourselves with potential solutions outside of C + 1

2α intB. Instead, we
define the sets of admissible initial conditions (which we later show to
be invariant) as

C` :=
{
x ∈ C + 1

2α intB |PC(x) ∈ S`
}

which is the pre-image of S` restricted to C + 1
2α intB.

Remark 9.1. Note that the system (9.4) bears similarities with the gra-
dient flow

ẋ = −∇Φ̃(x)T = −∇Φ(x)T − 1
K (x− PC(x)) , (9.5)

where Φ̃(x) := Φ(x) + 1
2K d

2
C(x) and dC denotes the point-to-set distance

to C. Namely, Φ̃ is a cost function augmented with a term penalizing the
distance from the feasible set C. However, the inconspicuous difference
between (9.4) and (9.5) in the argument of ∇Φ leads to two important
contrasts: First, if x? is an equilibrium of (9.4), then PC(x?) is a opti-
mizer of (9.3) (see Proposition 9.1). This is not the case for equilibria
of (9.5); equilibria of (9.5) are minimizers of Φ̃ but not necessarily op-
timizers of (9.3). Second, convergence to the set of global minimizers
of Φ̃ can be easily established for (9.5). However, proving convergence
of solutions of (9.4) to optimizers of (9.3) is more challenging and the
main topic of this section. �

To study (9.4) it is convenient to think in terms of projected trajecto-
ries, i.e., the trajectory obtained from the (pointwise) projection of a
solution of (9.4) as illustrated in Section 9.3. Although these projected
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x(t)

PC(x(t))

Figure 9.1: Construction of a projected trajectory

trajectories are not the solution of a dynamical system in the form of a
differential inclusion, their limit behavior can be studied.
Our main result in this section guarantees that there always exists

K > 0 such that the projected trajectories of the anti-windup gradient
flow (9.4) converge to the critical points of (9.3), although, K may
depend on the choice on ` and thereby on the set of initial conditions.

Theorem 9.2. Under Assumption 9.1 and given ` ∈ R, there exists
K? > 0 such that (9.4) admits a complete solution x : [0,∞) → C` for
all K ∈ (0,K?) and all initial conditions x(0) ∈ C`. Further, for any
such solution, the projected trajectory x := PC ◦ x converges to the set of
critical points of (9.3).

Theorem 9.2 also applies to convex C since convex sets are α-prox-regular
for any α > 0. However, we can derive a stronger result without restric-
tions on the initial condition or on K.

Theorem 9.3. If Assumption 9.1 holds and C is closed convex, (9.4)
admits a complete solution x for all K > 0 and all x(0) ∈ Rn. Further,
for any such solution, the projected trajectory x := PC ◦ x converges to
the set of critical points of (9.3).

The proofs of Theorems 9.2 and 9.3 are relatively involved, but ultimately
an application of the invariance principle Theorem 2.5 based on the fact
that x 7→ Φ(PC(x)) is non-increasing along trajectories of (9.4). To make
this argument rigorous, we proceed as follows: First, we prove several
properties of the directional derivative of PC in Section 9.3.1. Then, in
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Section 9.3.2 we show that the projected trajectories x 7→ PC(x(t)) of
(9.4) are well-defined and absolutely continuous. In Section 9.3.3, we
establish convergence to the largest invariant set for which d

dtPC(x(t)) =
0 and in Section 9.3.4 we show that this largest invariant subset is
equivalent to the set of critical points of (9.3), thus proving Theorem 9.3.
Finally, in Section 9.3.5 we show the modifications that are required to
prove Theorem 9.3.

9.3.1 Directional Derivatives of Projection Maps

Given a closed set C ⊂ Rn, we establish properties of the directional
derivative of the projection PC .

The differentiability of PC has been studied extensively, albeit—to the
best of the author’s knowledge—only for convex sets C. Even if C is
convex, PC is in general not differentiable unless C has a smooth bound-
ary [102]. Further, PC is not generally directionally differentiable [220,
153] unless second-order regularity assumptions on C are satisfied [221,
47]. An up-to-date review of this subject including detailed examples can
also be found in [254]. We avoid these technicalities because we require
directional differentiability only along a trajectory (c.f. Lemma 9.8).
Hence, recall that the directional derivative of PC at x ∈ Rn in direc-

tion v ∈ Rn is defined as

DPC(x; v) := lim
δ→0+

PC(x+ δv)− PC(x)
δ

. (9.6)

The classical result [130, Prop. III.5.3.5] states that for convex C,
DPC(x; v) exists for all x ∈ C and all v ∈ Rn and is given as the
projection of v onto the tangent cone at x. Its generalization to α-prox-
regular sets is straightforward.

Lemma 9.1. Let C ⊂ Rn be α-prox-regular for some α > 0. Then,
DPC(x; v) exists for all x ∈ C and all v ∈ Rn and is given by

DPC(x; v) = ΠC [v] (x) = lim
δ→0+

PC(x+ δv)− x
δ

.
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Characterizing DPC(x; v) at x /∈ C is harder and directional differen-
tiability is in general not guaranteed (see [220, 153]). However, the
forthcoming Lemma 9.7 guarantees that, along an absolutely continuous
trajectory, the directional derivative of PC exists for almost all t.

Assuming that DPC(x; v) exists, one can establish various properties.
First of all, it immediately follows from the definition of the tangent
cone that DPC(x; v) is viable:

Lemma 9.2. If C ⊂ Rn is α-prox-regular, x ∈ C + 1
2α intB, v ∈ Rn,

and if DPC(x; v) exists, then DPC(x; v) ∈ TPC(x)C.

The next two lemmas exploit basic properties of PC .

Lemma 9.3. Consider an α-prox-regular set C ⊂ Rn and let x ∈ C +
1

2α intB and v ∈ Rn be such that v := DPC(x; v) exists. Then, we have
〈v, v〉 ≥ 0.

Proof. Recall that for a closed set C, the projection PC is monotone [211,
Cor. 12.20]. It follows that this property also holds in the limit by
continuity of PC (Lemma 3.3), i.e.,

〈v, v〉 = lim
h→0+

〈PC(x+hv)−PC(x),(x+hv)−x〉
h2 ≥ 0 .

Lemma 9.4. Let C ⊂ Rn be α-prox-regular, x ∈ C + 1
2α intB, v ∈ Rn,

and assume that v := DPC(x; v) exists. Then, it holds that

〈v, x− PC(x)〉 = 0 .

Proof. Define the map φ(h) := x+hv for all h ≥ 0. Using Proposition 3.1
and the chain rule, we know that

∇
(
d2
C ◦ φ

) ∣∣∣
h=0

= 2 〈v, x− PC(x)〉 .

On the other hand, we can apply the chain rule to d2
C(φ(h)) = ‖φ(h)−

PC(φ(h))‖2 to arrive at

∇
(
‖φ(h)− PC(φ(h))‖2

) ∣∣∣
h=0

= 2 〈v − v, x− PC(x)〉 .

The difference of the expressions yields the result.
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Lemmas 9.2 and 9.4 yield that DPC(x; v), if it exists, lies in K(x) :=
TxC ∩ {v | 〈v, x− x〉 = 0} which is known as the critical cone at x. This
observation is in agreement with [221] and generalizes this insight from
convex to prox-regular sets.

For the next crucial lemma we exploit the hypomonotone localization
of x 7→ NxC according to Lemma 3.4.

Lemma 9.5. Let C ⊂ Rn be α-prox-regular, x ∈ C + 1
2α intB, v ∈ Rn,

and assume that v := DPC(x; v) exists. Then,

〈v, v〉 = 0 ⇐⇒ v = 0 .

Proof. (⇐) is trivial. For (⇒), consider h > 0 such that xh := x+ hv ∈
C + 1

2α intB. Further, let xh = PC(xh) and x := PC(x), as well as
η := x − x and ηh = xh − xh. Recall that η ∈ NxC and ηh ∈ NxhC
(Lemma 3.2). Using these facts and the definition of v = DPC(x; v)
in (9.6) we can write

〈v, v〉 = lim
h→0+

1
h2 〈xh − x, xh − x〉

= lim
h→0+

1
h2 〈xh + ηh − x+ η, xh − x〉

= ‖v‖2 + lim
h→0+

1
h 〈ηh − η, xh − x〉 .

Since, by assumption, x ∈ C + 1
2α intB, there exists ε > 0 such that

x, xh ∈ C + 1
2α+ε for small enough h. Therefore, ‖η‖ and ‖ηh‖ are both

upper bounded by 1
2α+ε .

To apply Lemma 3.4 we rescale η̂ := (2α+ ε)η and η̂h := (2α+ ε)ηh
which satisfy η̂, η̂h ∈ B. It follows that

〈v, v〉 = ‖v‖2 + lim
h→0+

1
(2α+ ε)h2 〈xh − x, η̂h − η̂〉︸ ︷︷ ︸

≥−2α‖xh−x‖2

≥ ‖v‖2 − lim
h→0+

2α
(2α+ ε)h2 ‖xh − x‖

2

=
(

1− 2α
2α+ε

)
‖v‖2 .

Since ε > 0, we have 2α
2α+ε < 1 and thus 〈v, v〉 = 0 implies that v = 0

which completes the proof.
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If C is closed convex, Lemmas 9.2-9.5 simplify to the following facts (see
also [221, 102], and others):

Lemma 9.6. Let C ⊂ Rn be closed convex and let x ∈ Rn and v ∈ Rn

be such that v := DPC(x; v) exists. Then,

(i) v ∈ TPC(x)C ∩ {w | 〈w, x− PC(x)〉 = 0},

(ii) 〈v, v〉 ≥ 0, and

(iii) 〈v, v〉 = 0 ⇐⇒ v = 0.

9.3.2 Projected Trajectories

As mentioned before, establishing directional differentiability of PC , i.e.,
the existence ofDPC(x; v) for all x ∈ Rn and all directions v ∈ Rn is a ma-
jor challenge and in general not possible without additional assumptions
on C. For our purposes, we do not require directional differentiability of
PC everywhere and in all directions because we consider only projected
trajectories that come with a priori guarantees on the existence of their
time derivative.

Lemma 9.7. Consider an α-prox-regular set C ⊂ Rn and an absolutely
continuous map x : [0, T ] → C + 1

2α intB for some T > 0. Then, x :=
PC ◦x is single-valued and absolutely continuous. Furthermore, ẋ(t) and
ẋ(t) exist and satisfy ẋ(t) = DPC(x(t); ẋ(t)) for almost all [0, T ].

Proof. Since C is α-prox-regular, Lemma 3.3 guarantees that PC is Lips-
chitz in every closed neighborhood of C that is a subset of C+ 1

2α intB (in
particular x([0, T ]) is compact by continuity of x). Since the composition
of a Lipschitz map and an absolutely continuous function is absolutely
continuous [212, Ex. 6.44], it follows that x is absolutely continuous and
hence differentiable almost everywhere.
Since x and x are differentiable everywhere except on zero measure

sets Ξx,Ξx ⊂ [0, T ], respectively, it follows that ẋ(t) and ẋ(t) both exist
except on the zero-measure set Ξx∪Ξx and ẋ(t) = DPC(x(t); ẋ(t)) holds
by definition of the time derivative of x.
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Remark 9.2. The existence of ẋ(t) is in general independent of the
existence of ẋ(t). On one hand, even if ẋ(t) exists, ẋ(t) might not exist
because of a lack of directional differentiability. On the other hand, ẋ(t)
might exist, even though ẋ(t) does not. This can occur, for instance, if
C = {0} in which case x ≡ 0 is trivially differentiable everywhere. �

9.3.3 Convergence to Invariant Set

We use Theorem 2.5 by showing that t 7→ Φ(PC(x(t))) is non-increasing
along any solution of (9.4). Then, we prove that the limit set contains
only critical points of (9.3).

Throughout this section (and the next) we use the notation x := PC(x)
for points and x := PC ◦ x for trajectories.
Prox-regularity of C and continuity of ∇Φ guarantee the existence of

solutions of (9.4) in a neighborhood of C:

Lemma 9.8. Under Assumption 9.1, there exists a solution of (9.4) for
every initial condition x(0) ∈ C + 1

2α intB. More precisely, there exists
a differentiable function x : [0, T ] → C + 1

2α intB for some T > 0 that
satisfies for all t ∈ [0, T ]

ẋ(t) = −∇Φ(PC(x(t)))T + 1
K (x(t)− PC(x(t))) .

Proof. From Lemma 3.3 it follows that PC is single-valued and continuous
for all x ∈ C+ 1

2α intB. Further, since ∇Φ is continuous, F is continuous.
Hence, standard results for continuous ODEs guarantee the existence of
a local solution for every initial condition on the open set C+ 1

2α intB.

To show that Φ is non-increasing along projected trajectories of (9.4)
we use the lemmas in Section 9.3.1. Further, to apply Theorem 2.5 we
need to show that (unprojected) trajectories of (9.4) are complete and
bounded, which is possible, in general, only for small enough K (unless
C is convex).

Lemma 9.9. Let Assumption 9.1 hold. Given a solution x : [0, T ] →
C + 1

2α intB of (9.4) for some T > 0, the map t 7→ Φ(x(t)) is non-
increasing for all t ∈ [0, T ].
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Proof. Lemmas 9.3, 9.4, and 9.7 yield, for almost all t ∈ [0, T ],
d
dtΦ(x(t)) = ∇Φ(x(t))ẋ(t)

=
〈
∇Φ(x(t))T + 1

K (x(t)− x(t)), ẋ(t)
〉

=
〈
−ẋ(t), ẋ(t)

〉
≤ 0 ,

and we conclude that Φ ◦ x is non-increasing.

Lemma 9.10. Under Assumption 9.1, C` is bounded ∀` ∈ R.

Proof. The set C` is as the pre-image of S` under PC restricted to C +
1

2α intB. From Lemma 3.2 it follows that for any x ∈ C we have P−1
C (x) =

x+NxC∩ 1
2α intB ⊂ x+ 1

2α intB. Since S` is compact, C` ⊂ S`+ 1
2α intB

is bounded.

Proposition 9.3. Let Assumption 9.1 hold. Given ` ∈ R, there exists
K? > 0 such that (9.4) admits a complete solution x : [0,∞) → C` for
every x(0) ∈ C` and for all K ∈ (0,K?).

Proof. First, note that Lemma 9.8 guarantees the existence of a (local)
solution x : [0, T ] → C + 1

2α intB for any initial condition x(0) ∈ C` ⊂
C + 1

2α intB and for some T > 0.
Since Lemma 9.9 guarantees that Φ(x(t)) ≤ Φ(x(0)) ≤ ` for all t ∈

[0, T ], it follows that x(t) ∈ S` for all [0, T ].
By compactness of S`, there exists M > 0, such that ‖∇Φ(y)‖ ≤ M

for all y ∈ S`. Now, consider the Lie derivative of d2
C along (9.4). For

x ∈ C` we have

LF d2
C(x) =

〈
x− x,−∇Φ(x)T − 1

K (x− x)
〉

≤ dC(x)‖∇Φ(x)‖ − 1
K d

2
C(x)

≤ dC(x)
(
M − 1

K dC(x)
)
.

It follows that LF d2
C(x) < 0 for all x ∈ C` for which dC(x) > KM . In

particular, if K < K? := 1
2αM , any solution x of (9.4) starting in C`

cannot leave the neighborhood C+ 1
2α intB on which PC is single-valued.

In addition, x = PC(x) remains in S`. Hence C` is invariant. Together
with the boundedness of C`, finite-time escape is precluded and thus
guaranteeing the existence of a complete solution.
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Proposition 9.4. Under Assumption 9.1 any complete solution x :
[0,∞)→ C` of (9.4) converges to the largest weakly invariant subset S
ofM := cl{x ∈ C` |DPC(x;F (x)) = 0}.

Proof. Note that Φ ◦PC is continuous on C + 1
2α intB by continuity of Φ

and Lemma 3.3. Hence, to apply Theorem 2.5, let V : Rn → R be any
continuous function such that V (y) = Φ(PC(y)) for all y ∈ C + 1

2α intB.
Further, let U := C`. The trajectory x is complete by assumption and
bounded by Lemma 9.10. Hence, according to Theorem 2.5, x converges
to the largest weakly invariant subset of V −1(r)∩U ∩ cl u−1(0) for some
r and where we have

u−1(0) = {x ∈ U | 〈F (x), DPC(x;F (x))〉 = 0}
= {x ∈ U |DPC(x;F (x)) = 0} ,

where the second equality follows from Lemma 9.5.

It is important to note that cl{x ∈ C` |DPC(x;F (x)) = 0} is not, in
general, invariant itself. There can exist compact intervals [t1, t2] on
which x is constant (and hence ẋ(t) = 0 for all t ∈ [t1, t2]), but on which
x is not stationary. For example, in Figure 9.2, this is the case when
x(t) = PC(x(t)) is stuck in one of the vertices of the feasible polyhedron
C, while x is evolving outside of C, moving “around the corner”.

9.3.4 Characterization of Invariant Limit Set

Next, we show that the largest weakly invariant subset S in Proposi-
tion 9.4 is equivalent to the critical points of (9.3).

Lemma 9.11. Consider the same setup as in Proposition 9.4 and let
x : [0,∞) → S be a complete solution of (9.4) evolving on the weakly
invariant set S. Then, x(t) = x(0) holds.

Proof. Since x is absolutely continuous, it follows that x(τ) − x(0) =∫ τ
0 ẋ(t)dt. However, ẋ(t) = 0 holds for almost all t ≥ 0 since, by
invariance, x(t) ∈ S ⊂M and therefore x(τ) = x(0).
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9.3 Robust Convergence of Anti-Windup Gradient Flows

Proposition 9.5. Consider the setup of Proposition 9.4. Then, every
x? ∈ PC(S) is a critical point of (9.3).

Proof. Consider a trajectory x : [0,∞) → S evolving on the weakly
invariant set S. By Lemma 9.11, we have that x(t) = x(0) =: y for
all t ≥ 0. Therefore, x evolves on the pre-image P−1

C (y) which, using
Lemma 3.2, is given by y + NyC. In other words, x(t) ∈ y + NyC for
all t ≥ 0. In particular, x satisfies ẋ(t) = −∇Φ(y)T − 1

K (x(t) − y) for
all t ≥ 0. Thus, x is also the solution of an asymptotically stable linear
system and converges to a point x̂ such that −∇Φ(y)T = 1

K (x̂−y) ∈ NyC
and PC(x̂) = y hold. In other words, y is a critical point.

Theorem 9.2 now follows directly since Proposition 9.3 yields the exis-
tence of a complete solution and Propositions 9.4 and 9.5 guarantee the
convergence of x to the set of critical points.

9.3.5 Proof Sketch for the Convex Case

Theorem 9.3 does not directly derive from Theorem 9.2 by letting α→
0+, because limα→0+ C` is not bounded. Instead, we need to adapt
Proposition 9.3 as follows:

Proposition 9.6. Let Assumption 9.1 hold and let C be convex. Then,
(9.4) admits a complete and bounded solution for every initial condition
x(0) ∈ Rn and all K > 0.

Proof. The proof is analogous to the proof of Proposition 9.3. In partic-
ular, we have LF d2

C(x) < 0 for all x ∈ C` for which dC(x) > KM . How-
ever, since PC is globally single-valued, K does not need to be chosen
small enough to guarantee the invariance of a neighborhood C+ 1

2α intB.
Instead, we have

x(t) ∈ C + γB ∀t ∈ [0, T ]

for all t ≥ 0 with γ > max{KM, dC(x(0))}. More precisely,

x(t) ∈ Cγ` := {y ∈ C + γB |PC(y) ∈ S`} ,
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for all t ≥ 0 and where ` := Φ(PC(x(0))). This follows from Lemma 9.9
since t 7→ Φ(PC(x(t))) is non-increasing. Using the same argument as
for Lemma 9.10, we can show that Cγ` is bounded.

Finally, Propositions 9.4 and 9.5 can be adapted using Cγ` instead of C`
and Theorem 9.3 follows similarly to Theorem 9.2.

9.4 Feedback-Based Gradient Schemes for
Quadratic Programs

To illustrate the design opportunities for feedback-based optimization,
we present three anti-windup schemes that approximate projected gra-
dient flows for a quadratic program (QP). We consider the relatively
simple problem of solving a QP as it allows for a concise presentation,
easy implementation, and comparability. However, needless to say, our
theoretical results in the previous sections cover much more general
setups.
Our goal is to design a feedback controller that steers a plant to a

steady state that solves the optimization problem

minimize Φ(x) := 1
2x

TQx+ cTx+ d

subject to x = h(u) := Hu+ w

u ∈ U := {v |Auv ≤ bu} ,
(9.7)

where x ∈ Rm and u ∈ Rp denote the system state and control input,
respectively, and Q ∈ Sm+ , Au ∈ Rr×p and the remaining parameters
are of appropriate size. The map h denotes the steady-state input-to-
state map of the plant subject to the disturbance w.1 The set U defines
constraints which are enforced by physical saturation.

1In contrast to (5.3), we assume for (9.7) that the physical plant is described
by an steady-state input-to-state map x = h(u) that satisfies f̃(h(u), u) = 0 for
all u ∈ U . This approximation can be motivated by singular perturbation ideas in
Chapter 11 and [Ha3, Ha13] which stipulate that the interconnection of fast decaying
plant dynamics and slow optimization dynamics is asymptotically stable.
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For solving (9.7) we aim at approximating the projected gradient
flow u̇ = ΠG

U

[
− gradG Φ̂

]
(u), where we have defined Φ̂(u) := Φ(h(u))

to eliminate the state variable x. In particular, we have ∇Φ̂(u)T =
HT∇Φ(h(u))T . In the following, the metric G will be either G ≡ I or
G ≡ Q (the latter yielding a projected Newton flow).

To approximate u̇ = ΠG
U

[
− gradG Φ̂

]
(u), we consider three systems

that fall into the class of anti-windup approximations defined by (5.1),
two of which can be implemented in a feedback loop as in Figure 5.1.
Their convergence behavior for the same problem instance and varying
K is illustrated in Figure 9.2 and discussed below.

i) Penalty Gradient Flow: As a reference system we consider the
gradient flow of the potential function Ψ(u) := Φ̂(u) + 1

2K d
2
U (u)

which is given by

u̇ = −∇Ψ(u)T = −HT∇Φ(h(u))T − 1
K (u− PU (u)) . (9.8)

In this case, we have G ≡ I and K > 0 takes the role of a penalty
parameter for the soft penalty term d2

U that approximately en-
forces the input constraint u ∈ U .2 The system (9.8) is a spe-
cial case of the AWA (5.1) and, as a consequence, Theorems 5.1
and 5.2 (uniform convergence and robust practical stability) and
their corollaries apply as K → 0+. However, (9.8) is not of the
special form (9.1) and convergence to the optimizer of the prob-
lem (9.7) is not guaranteed for positive K > 0. Neither does (9.8)
lend itself to a feedback implementation, because ∇Φ is evaluated
at h(u) rather than at h(PU (u)) (which is the actual system state
for the saturated input).

ii) Anti-Windup Gradient Scheme: As a second type of dynamics we

2The penalty d2
U is illustrative in the context of feedback-based optimization,

however, it is not generally practical for numerical optimization, because evaluating
∇d2
U requires computing PU . Instead, in numerical applications, it is more common

to use a penalty ‖max{Auu− bu, 0}‖2.
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consider

u̇ = −HT∇Φ(x)T − 1
K (u− u)︸ ︷︷ ︸

controller

u := PU (u) x := h(u)︸ ︷︷ ︸
physical system

(9.9)

which can be implemented in closed loop because the quantities u
and x are “evaluated” by the physical system at no computational
cost (and are assumed to be measurable), which is one of the key
features of feedback-based optimization.
Further, because U is convex and Φ is strongly convex (which im-
plies strong monotonicity), Theorem (9.1) is applicable and guar-
antees that x = (u, x) converges to the optimizer of (9.7). This is
confirmed in Figure 9.2.

iii) Anti-Windup Newton Scheme: As the final gradient-based anti-
windup scheme we consider an anti-windup approximation with
G ≡ Q and which is given by

u̇ = −Q−1 (HT∇Φ(x)T − 1
K (u− u)

)︸ ︷︷ ︸
controller

u := PU (u) x := h(u)︸ ︷︷ ︸
physical system

.

(9.10)

The system (9.10) can be implemented in closed loop with a physi-
cal plant and approximates a projected Newton flow [Ha2, Ex. 5.6].
This fact is noteworthy, because, in general, projected Newton
flows do not lend themselves to an easy implementation (e.g., as
an iterative algorithm, c.f. Section 7.2).
Even though, as seen in Figure 9.2, u converges to the optimizer
of (9.7), strictly speaking, Theorem (9.1) is not directly applicable
because Q 6= I.

The anti-windup gradient and Newton schemes defined above illustrate
some of the key features of feedback-based optimization and anti-windup
implementations:

3The anti-windup dynamics are simulated with MATLAB using a fixed-step-size
forward Euler scheme. The projection on U is evaluated using quadprog. The
nominal PDS is approximated using a projected forward Euler scheme as uk+1 =
PU (uk +αf(uk)) which is guaranteed to converge uniformly as α→ 0+ (Remark 6.1
and Section 7.2 and [186].
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Figure 9.2: Convergence behavior of (9.8), (9.9), and (9.10) for a problem
instance of (9.7) with p = 100 (input dimension) and r = 300 (# of
input constraints).3

i) Under the conditions of Theorem 9.1, the actual system state and
saturated control input converge to the optimizer u? of (9.7), even
though the internal control variable u does not in general converge
to u?.

ii) In a feedback implementation exploiting input saturation, neither
the set U nor the steady-state disturbance w needs to be known (or
estimated). The only model information required is H. Further-
more, recent preliminary theoretical [67] and experimental results
for power systems [Ha9] suggest that these feedback schemes are
robust against uncertainties in H.
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iii) The simulations in Figure 9.2 suggest that the convergence rate of
the “projected trajectory” of (9.9) is not affected by the value of K
and is equivalent to the convergence rate of the nominal projected
gradient flow. In contrast, the convergence rate of the anti-windup
Newton scheme (9.10) does depend on K, and one can recover
the rate of projected Newton flow only in the limit K → 0+. An
analysis of this observation remains, however, outside the scope of
this thesis.

9.5 Anti-Windup Saddle-Point Flows

In feedback-based optimization, constraints on the system state (or
output) cannot be directly enforced because they are not directly con-
trollable and often subject to disturbances affecting the physical plant
(e.g., an unknown value of w). To enforce state or output constraints,
projected saddle-point flows have been proven effective [Ha9, 71, 242].
In this section, we indicate how anti-windup approximations can be
combined with this type of dynamical system, even though this leads
us slightly outside the scope of our theoretical results. We consider
quadratic program

minimize Φ(x)
subject to x = h(u), u ∈ U

x ∈ X := {x |Axx ≤ bx} ,
(9.11)

where Φ, h, and U are defined as in (9.7) and X denotes a set of state
constraints with Ax ∈ Rs×m and bx ∈ Rs. To solve (9.11), we consider
the projected saddle-point flow

u̇ = ΠU
[
−HT∇Φ(h(u))T −HTATxµ

]
µ̇ = ΠRs≥0

[Axh(u)− bx] ,
(9.12)

where µ ∈ Rs denotes the dual multipliers associated with the output
constraints. The system (9.12) (and special cases in which either primal
or dual variables are not projected) has been extensively studied and
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9.5 Anti-Windup Saddle-Point Flows

convergence is guaranteed, for instance, under strict convexity of Φ. We
refer the reader to [58, 117] and references therein.
We approximate (9.12) with a (partial) anti-windup implementation

as

u̇ = −HT∇Φ(x)T −HTATxµ− 1
K (u− u)

µ̇ = ΠRs≥0[Axx− bx]︸ ︷︷ ︸
controller

u := PU (u) x := h(u)︸ ︷︷ ︸
physical system

.

(9.13)

We do not approximate the projected integration of the dual variables
with an anti-windup term since the dual variables are often internal
variables of the controller, and the projection on the non-negative orthant
is easily implementable.
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Figure 9.3: Convergence behavior of (9.13) (and the PDS (9.12)) for a
problem instance of (9.11) with p = 3 (input dimension), m = 5 (state
dimension), r = 10 (# of input constraints), and s = 5 (# of state
constraints).

Figure 9.3 illustrates the behavior of (9.12) and (9.13). Similarly to
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the results for the gradient anti-windup approximations, we observe that
u does not, in general, converge to its optimal value. However, the
saturated control input PU (u) (and thereby the actual system state) and
the dual variable µ converge to the solution of (9.11).
Theorem 9.1 (robust convergence) does not apply to (9.13). First,

while the projected saddle-flow (9.12) is monotone, strong monotonicity
is usually not guaranteed [58, 117]. Second, by applying only a par-
tial anti-windup approximation, the vector field remains discontinuous
because of the projection of µ on Rs≥0.
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CHAPTER 10

Convergence of LOP Gradient
Descent

In this short chapter we revisit the LOP discretization introduced in
Chapter 6 and apply it to projected gradient flows of the form (7.1). Our
primary concern is the convergence of trajectories of the LOP-discretized
system to the minimizers of the underlying optimization problem. In
particular, we aim at strengthening the practical stability results of
Section 6.4 in the case of projected gradient flows.
For convenience, we recall all required objects and assumptions: We

consider a feasible set

C := {x | g(x) ≤ 0, k(x) ≤ 0} , (10.1)

where g : Rn → Rp and k : Rn → Rq are continuously differentiable
and we have U := {x | g(x) ≤ 0}. Further, we consider a metric G :
U → Sn+ and a cost function Φ : Rn → R continuously differentiable in
a neighborhood of U .
We study the discrete-time LOP gradient system

x+ = x+ αΣGC [− gradG Φ](x, α) , (10.2)

The content of this chapter and, in particular, the main result Theorem 10.1 is
based on [Ha1]. The work in this chapter is a collaboration with V. Häberle.
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where α > 0 is a fixed step-size and ΣGC [f ] : U × R→ Rn is defined as

ΣGC [f ](x, α) := arg min
w∈Rn

‖f(x)− w‖2G(x) (10.3a)

subject to x+ αw ∈ U (10.3b)
k(x) + α∇k(x)w ≤ 0 . (10.3c)

The central claim of this chapter is that solutions of (10.2) converge
to optimizers of

minimize Φ(x) subject to x ∈ C (10.4)

under the following assumptions (Assumptions 6.1, 6.2, and 6.3):

Assumption 10.1. For (10.2), the set C is non-empty and satisfies
LICQ. Further, ∇k, ∇g, ∇Φ and G are locally Lipschitz.

Assumption 10.2. For (10.2), the set U = {x | g(x) ≤ 0} is compact.

Assumption 10.3. The set U = {x | g(x) ≤ 0} is convex and, for all
x ∈ U and all α > 0, the feasible set of (10.3) defined as

C̃(x, α) := {w | g(x+ αw) ≤ 0, k(x) + α∇k(x)w ≤ 0}

is non-empty and satisfies LICQ.

Recall that under Assumption 10.3, the system (10.2) is well-defined and
U is invariant (Lemma 6.1). Further, ΣGC [f ](x, α) is continuous in (x, α)
and the map of Lagrange multipliers of (6.2) is continuous (Lemma 6.2).

Hence, the following main result of this chapter guarantees convergence
of solutions of (10.2) to the set of critical points of (10.4) and mirrors
the stability properties of minimizers from the continuous-time case
(Theorem 8.1).

Theorem 10.1. Under Assumptions 10.1, 10.2, and 10.3, there exists
an α? > 0 such that for all α ∈ (0, α?) we have that

(i) every solution of (10.2) starting in U converges to the set of critical
points of (10.4),
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(ii) every asymptotically stable equilibrium of (10.2), it is a strict local
minimizer of (10.4).

Similarly to Theorem 8.1, one can also show that every strict local
minimizer of (10.4) is a stable equilibrium of (10.2).

Proof of Theorem 10.1

For (i) we apply Theorem 2.6 and for (ii) we can proceed similarly as in
the proof of Theorem 8.1.

Lyapunov Function

Given x ∈ U , let µ?i (x) be the Lagrange multiplier of (10.3) for the i-th
constraint of (10.3b) with i = 1, . . . , l. Since µ?i (x) is continuous on the
compact set U (by Lemma 6.2), there exists γ ≥ supx∈U ;i=1,...,l{µ?i (x)}.
We may consider the function V : Rn → R, defined as

V (x) = Φ(x) + γ
[∑l

i=1 max{0, k(x)}
]

(10.5)

which we show next to be non-increasing along solutions of (6.3).
To prove this claim, note that the optimization problem (10.3) under-

lying ΣGC [f ](x, α) is equivalent to solving

arg min
w∈Rn

α
2w

TG(x)w + α∇Φ(x)w (10.6a)

subject to g(x+ αw) ≤ 0 (10.6b)
α∇k(x) ≤ −k(x) , (10.6c)

where we have multiplied the objective with α and ignored the constant
term in the objective.
Since the feasible set C̃(x, α) is convex and satisfies LICQ, the KKT

conditions are necessary and sufficient to certify optimality of a solution
w of (10.6). Namely, w ∈ Rn is a solution if (10.6b)-(10.6c) are satisfied
and, for some dual multipliers ν ∈ Rp≥0 and µ ∈ Rq≥0, stationarity

αwTG(x) + α∇Φ + ανT∇g(x+ αw) + αµT∇k(x) = 0 (10.7)

183



Chapter 10. Convergence of LOP Gradient Descent

holds and complementary slackness is satisfied, i.e., for all j = 1, ..., p
and i = 1, ..., q, we have

νjgj(x+ αw) = 0
µi(k(x) + α∇k(x)) = 0 .

(10.8)

Lemma 10.1. Under Assumptions 10.1, 10.2, and 10.3, let V be as
in (10.5), where γ is an upper bound of the Lagrange multipliers of
ΣGC [− gradG Φ](x, α) for all (u, α) ∈ U × [0, α′] for some α′ > 0. Further,
assume that ∇Φ is `-Lipschitz and ∇ki is `i-Lipschitz for all i = 1, ..., q
on U . Then, V (x[k+1]) ≤ V (x[k]) is satisfied for every solution of (10.2)
with x[0] ∈ C if

α < α? := min
{
α′, 2λmin

`+γ
∑q
i=1 `i

}
, (10.9)

where λmin := minx∈U λmin
G (x).

Proof. The proof is inspired by [22, Lemma 10.4.1]. In the following let
w := ΣGC [− gradG Φ](x, α). With the Descent Lemma (Lemma 3.5) we
can establish

Φ(x+)− Φ(x) ≤ α∇Φ(x)w + `
2 ||αw||

2 . (10.10)

Further, from Lemma 6.4, we have, for all i = 1, . . . , q,

max{ki(x+), 0} ≤ `i
2 ||αw||

2 . (10.11)

Next, we take the inner product of (10.7) and w, which results in

α∇Φ(x)w = −αwTG(x)w −
∑p
j=1 ανj∇g(x+ αw)w

−
∑q
i=1 αµi∇ki(x)w .

Using (10.8), we replace the summands, i.e.,

α∇Φ(x)w = −αwTG(x)w +
∑p
j=1 νj(gj(x+ αw)

− α∇gi(x+ αw)) +
∑q
i=1 µiki(x) ,

184



which can be upper bounded by

α∇Φ(x)w ≤ −αwTG(x)w +
∑q
i=1 µiki(x)

+
∑p
j=1 νj(gj(x+ αw)− α∇gi(x+ αw)︸ ︷︷ ︸

≤gi(x)≤0

)

≤ −αwTG(x)w +
∑q
i=1 µi max{ki(x), 0} , (10.12)

where we have exploited the convexity of gi and the fact that x ∈ U and
therefore gi(x) ≤ 0.
Finally, we can combine (10.10), (10.11) and (10.12) to obtain

V (x[k + 1])− V (x[k]) ≤ −αλmin‖w‖2 + α2

2 [`+ γ
∑q
i=1 `i] ‖w‖

2

−
∑q
i=1(γ − µi) max{k(x[k]), 0} , (10.13)

where we have used the fact that x[0] ∈ C and thus max{ki(x[0], 0} = 0.
Choosing α as in (10.9) guarantees V (x[k + 1]) ≤ V (x[k]).

Convergence to critical points

To show (i) in Theorem 10.1, we can apply Theorem 2.6. Namely,
Lemmas 6.1 and 6.2 guarantee that H(x) := x+ αΣGC [− gradG Φ](x, α)
is continuous in x and that U is invariant.

By Lemma 10.1, for the given α satisfying (10.9), the continuous func-
tion V : U → R in (10.5) is non-increasing along the solution of (10.2)
for all x ∈ U . Since U is compact and invariant, any solution of (10.2)
is bounded and can be chosen to be complete. Hence, any solution
of (10.2) converges to the largest invariant subset of V −1(r) ∩ {x ∈
U |V (x+)− V (x) = 0} for some r ∈ V (U).
To show that convergence is to the set of equilibrium points, we

simply show that V (x+) − V (x) = 0 implies x+ = x. Namely, for
V (x+)− V (x) = 0, (10.13) reduces to

0 ≤
(
α
2 [`+ γ

∑q
i=1 `i]− λmin

)
α||w||2 −

∑q
i=1(γ − µi)max{ki(x[0]), 0} .

(10.14)
For α as in (10.9), the right-hand side of (10.14) is negative for all w 6= 0.
Therefore, V (x+) − V (x) = 0 implies that w = 0 and k(x) ≤ 0, i.e.,
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x+ ∈ C, and hence x is a feasible equilibrium. Note that, an uncertainty
in ∇h does not affect the feasibility of equilibria (consider (10.6) for
w = 0).
Finally, if w? = 0 solves (10.6) at x?, and ν?, µ? are the associated

Lagrange multipliers, then (x?, ν?, µ?) satisfies the KKT conditions of
(10.4). In particular, x? is feasible for (10.4) and given LICQ1, the KKT
conditions are satisfied for (10.4).

Strict optimality of asymptotically stable equilibria

For (ii), consider the neighborhood N (x?) ⊂ U of x? ∈ C, such that
any solution x : N≥0 → U of (10.2) starting at x[0] ∈ N (x?) converges
to x?. For the given α satisfying (10.9), by Lemma 10.1, we have
V (x[0]) ≥ V (x?), which implies either Φ(x[0]) ≥ Φ(x?), x[0] /∈ C, or
both.
Hence, if x[0] ∈ C, we have V (x[0]) = Φ(x[0]) and Φ(x[0]) ≥ Φ(x?)

follows. Since this reasoning applies to all x[0] ∈ N (x?) ∩ C, it follows
that x? is a local minimizer of (10.4).
To see that x? is a strict local minimizer of (10.4), assume for the

sake of contradiction that for another minimizer x̂ 6= x? in the region of
attraction N (x?) of x?, such that x̂ ∈ N (x?)∩C. We have Φ(x̂) = Φ(x?)
because x̂ is a minimizer. Consequently, by feasibility we also have
V (x̂) = V (x?). Nevertheless, the solution x′ : N≥0 → U starting at
x′[0] = x̂ converges to x? by assumption. Since V is non-increasing
along the trajectory of (6.3), it follows V (x′[k]) = V (x̂) = V (x?) for all
k. However, as shown in the proof of (i), V (x[k + 1]) = V (x[k]) implies
that x[k] ∈ C and that x[k] is an equilibrium. Consequently, x? cannot
be asymptotically stable on N (x?) which completes the contradiction.

1Assumption 6.3 implies LICQ of C for all x ∈ C. This can be verified for y = h(x)
for w = 0 and x ∈ C.
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CHAPTER 11

Timescale Separation in
Feedback-Based Optimization

One of the unique features of feedback-based optimization, compared
to numerical optimization, is the interconnection with a physical system
subject to various disturbances and uncertainties. So far, we have as-
sumed that this physical system can be characterized by an algebraic
steady-state input-to-output map, thus treating it simply as another
constraint in our optimization problem.
In this chapter, we relax this assumption and study a plant with

dynamics. More precisely, we consider slow optimization dynamics in-
terconnected with fast, but exponentially stable plant dynamics, and
we apply ideas from singular perturbation analysis to derive sufficient
conditions for closed-loop stability.
Hence, in the remainder of this chapter we consider a physical plant

modeled as

ζ̇ = f̃(ζ, u) , (11.1)

where ζ ∈ Rm is the system state, u ∈ U ⊂ Rp where U is a non-empty
The results presented in this chapter have evolved from [Ha3]. Preliminary

results in [Ha13] were a collaboration with S. Menta. The main result Theorem 11.1
generalizes [Ha3, Thm 3.2] by considering projected gradient flows and not requiring
unique and complete solutions.
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set of admissible inputs, and f̃ : Rm × U → Rn is a vector field.
We will assume that (11.1) is exponentially stable for any fixed u ∈ U

and admits a steady-state input-to-state map h : U → Rm such that
f(h(u), u) = 0 for all u ∈ U .

Hence, given a continuously differentiable cost function Φ : Rm×Rp →
R we want to steer the plant (11.1) to a steady-state that is the solution
of the problem

minimize Φ(ζ, u)
subject to ζ = h(u)

u ∈ U .
(11.2)

For this purpose, we consider projected gradient dynamics, which
define a reduced system

u̇ = ΠG̃
U
[
− gradG̃ Φ̃

]
(u) , (11.3)

where G̃ : U → Sm+ is a metric, and Φ̃(u) := Φ(h(u), u) holds for all
u ∈ U .
Assuming that G̃ is continuous, that U is Clarke regular, and that Φ

is continuously differentiable with compact sublevel sets with respect to
U , it follows from Proposition 8.2 that (11.3) admits a complete solution
for every initial condition u(0) ∈ U and that every complete solution
converges to the set of critical points of (11.2).
However, in this chapter, we consider the interconnection of (11.3)

with (11.1). To realize this closed-loop system we replace any evaluation
of h(u) in the computation of − gradG̃ Φ̃(u) with the measurement of
the system state ζ. Namely, applying the chain rule, we have

− gradG̃ Φ̃(u) = −G̃(u)−1H(u)T∇Φ(h(u), u)T ,

where H(u)T :=
[
∇h(u)T I

]
. Hence, the interconnection of (11.3) with

(11.1), illustrated in Figure 11.1, is given by

ζ̇ = f̃(ζ, u) (11.4a)

u̇ = ΠG̃
U
[
−G̃(u)−1H(u)T∇Φ(ζ, u)T

]
(u) . (11.4b)
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ΠG̃
U [·] (u)

∫
−H(u)T∇Φ(·, u)T ζ̇ = f(ζ, ·)

u

ζ

Figure 11.1: Interconnection of projected gradient controller and dy-
namic plant (dependence of ∇Φ, H and ΠG̃

U [·] on u is not drawn)

In the remainder of this chapter, we show that trajectories of (11.4)
converge to steady states of (11.1) that are critical points of (11.2)
whenever the eigenvalues of G̃ are small enough. In other words, we
consider G̃ as a design parameter and (matrix-valued) control gain.

Throughout the chapter, we limit ourselves to projected gradient flows.
Results for other types of algorithms, such as momentum methods and
saddle-point flows, can be found in [Ha3]. However, we do generalize
the results from [Ha3] by considering a general metric for the projected
gradient flow.
Remark 11.1. The feedback law (11.4b) does not need to be implemented
as a state-feedback controller. Assume that only output measurements
y = g(ζ) are available, where g : Rm → Rq is continuously differentiable.
This gives rise to a differentiable input-output steady-state map hio(u) :=
g(h(u)). Further, instead of (11.2), consider the problem

minimize
y,u

Φio(y, u)

y = hio(u)
u ∈ U ,

where Φio is a cost function depending only on the system output and
the control input.

Then, by substituting y with hio(u) in the objective function, as before,
and computing the gradient of the reduced cost function, one arrives at
the output-feedback law

u̇ = ΠG̃
U
[
−G̃(u)−1HT

io(u)∇Φio(y, u)T
]

(u) ,
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where HT
io(u) :=

[
∇hio(u)T Ip

]
.

If, moreover, g(ζ) = Cζ + d is an affine map, this feedback con-
troller is equivalent to (11.4b). To see this, note that ∇hio(u)T =
∇h(u)T∇g(h(u))T with ∇g(h(u))T = CT and therefore

HT
io(u)∇Φio(g(ζ), u)T = H(u)T

[
CT 0
0 Ip

]
∇Φio(g(ζ), u)T︸ ︷︷ ︸
∇Φ(ζ,u)T

,

where Φ(ζ, u) := Φio(g(ζ), u).
Consequently, although (11.4b) is formulated in terms of the state ζ,

it is not necessarily a state feedback controller and can be implemented
as an output feedback law. The formulation in terms of the internal
state is nevertheless important for the forthcoming stability analysis. �

11.1 Assumptions & Preliminaries

First, we formalize the assumption that the fast system dynamics are
exponentially stable and admit a well-defined steady-state map:

Assumption 11.1. Given the system (11.1), f̃ is continuously differen-
tiable, `ζ-Lipschitz in ζ, and `u-Lipschitz in u. There exists a differen-
tiable, `-Lipschitz continuous map h : U → Rm such that f̃(h(u), u) = 0
for all u ∈ U . Finally, there exist τ,K > 0 such that for every initial
condition ζ0 ∈ Rn and every constant û ∈ U it holds that

‖ζ(t)− h(û)‖ ≤ K‖ζ0 − h(û)‖e−τt ,

where ζ(t) is a solution to (11.1) with u(t) := û.

The existence of a well-defined steady-state map can, for instance, be
guaranteed if f̃ is continuously differentiable and ∇ζ f̃(ζ, u) is invertible
for all ζ ∈ Rm and all u ∈ U . In this case, the Implicit Function Theorem
guarantees the existence of h : U → Rm such that f̃(h(u), u) = 0 for
all u ∈ U . Lipschitz continuity of h is guaranteed since f̃ is Lipschitz
continuous and if all eigenvalues of ∇ζ f̃(ζ, u) are bounded away from 0
with some minimal distance for all (ζ, u) ∈ Rm × U .
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Proposition 11.1. Let Assumption 11.1 hold for (11.1). Then, for any
fixed u ∈ U there exists a Lyapunov function W : Rn × U → R and
parameters α, β, γ, ω > 0 such that

α‖ζ − h(u)‖2 ≤W (ζ, u) ≤ β‖ζ − h(u)‖2

Ẇ (ζ, u) ≤ −γ‖ζ − h(u)‖2

‖∇uW (ζ, u)‖ ≤ ω‖ζ − h(u)‖ .

Proposition 11.1 is a condensation of a standard converse Lyapunov
theorem for exponentially stable systems. Only the definition of ω
(which captures a Lipschitz-type property of W with respect to u) is
non-standard and requires the Lipschitz continuity of h and f̃ .

Proof. We use the change of coordinates z := ζ − h(u) such that (11.1)
can be written as

ż = g(z, u) := f̃(z + h(u), u) . (11.5)

By Lipschitz continuity of f̃ (in z and u) and h, we have

‖∇zg‖ = ‖∇ζ f̃‖ ≤ `ζ
‖∇ug‖ = ‖∇ζ f̃∇h+∇uf̃‖ ≤ `ζ`+ `u =: `′ ,

where the last bound follows from the triangle inequality and Cauchy-
Schwarz. Let ϕ(t, z, u) denote the solution of (11.5) at time t that starts
in z for fixed u. Define

V (z, u) :=
∫ T

0
‖ϕ(t, z, u)‖2dt

with T = 1
2τ ln(2K2). Analogously to the proof of [143, Th. 4.14], it

can be shown that V (z, u) satisfies

α‖z‖2 ≤ V (z, u) ≤ β‖z‖2

V̇ (z, u) ≤ −γ‖z‖2

‖∇zV (z, u)‖ ≤ δ‖z‖
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with α = 1
2`ζ (1−e−2`ζT ), β = K2

2τ (1−e−2τT ), γ = 1/2, and δ = 2K
τ−`ζ (1−

e(`ζ−τ)T ).
Next, we proceed similarly as in the proof of [143, Lem. 9.8]. The

sensitivity function ϕu := ∇uϕ(t, z, u) of the solution ϕ with respect to
changes in u [143, Ch. 3.3], satisfies the ODE

ϕ̇u = ∇zg(ϕ(t, z, u), u)ϕu +∇ug(ϕ(t, z, u), u)

with ϕu(0, z, u) = 0. Using Lipschitz continuity of g we get

‖ϕu(t, z, u)‖ ≤
∫ t

0
`ζ‖ϕu(s, z, u)‖ds+

∫ t

0
`′ds

=
∫ t

0
`ζ‖ϕu(s, z, u)‖ds+ `′t .

Applying a special case of the Gronwall inequality [9, Cor. 6.2] (be-
cause `′t is monotone increasing) yields the bound ‖ϕu(t, z, u)‖ ≤ `′te`ζt,
and we have

‖∇uV (z, u)‖ =

∥∥∥∥∥
∫ T

0
2ϕ(t, z, u)ϕu(t, z, a)dt

∥∥∥∥∥
≤
∫ T

0
2K‖z‖e−τt`′te`ζtdt = ω′‖z‖ ,

where we have used ‖ϕ(t, z, u)‖ ≤ K‖z‖e−τt by exponential stability
and ω′ := 2K`′

(`ζ−τ)2

(
(`ζT − τT − 1)e(`ζ−τ)T + 1

)
.

Finally, we can reverse the coordinate change by defining W (ζ, u) :=
V (ζ − h(u), u). We immediately have the desired bounds

α‖ζ − h(u)‖2 ≤W (ζ, u) ≤ β‖ζ − h(u)‖2

and the time derivative of W with respect to (3) as

Ẇ (ζ, u) = V̇ (z, u) ≤ −γ‖ζ − h(u)‖2 .

For the final bound, note that we have

‖∇uW‖ = ‖ − ∇zV∇h+∇uV ‖ ≤ δ`‖z‖+ ω′‖z‖ = ω‖z‖ ,

where ω := δ`+ ω′. This completes the proof.
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Next, we need to assure that (11.4) is well-posed by making the fol-
lowing assumption:

Assumption 11.2. For (11.4) under Assumption 11.1, the set U is
Clarke regular, G̃ is continuous, f is continuous, Φ is continuously
differentiable, and u 7→ Φ̃(u) = Φ(h(u), u) has compact sublevel sets
S` := {u ∈ U | Φ̃(u) ≤ `}.

As a first consequence, Assumption 11.2 guarantees that the reduced
PDS (11.3) admits complete solutions that converge to critical points of
(11.2) by Proposition 8.2.

Secondly, similar to Example 5.1, the system (11.4) can be expressed
as a general PDS, i.e., as a constrained differential inclusion of the form
ẋ ∈ ΠG

C [f ] (x), x ∈ C with C := Rm × U ,

x :=
[
ζ

u

]
, G(x) :=

[
I 0
0 G̃(u),

]
and

f(x) :=
[

f̃(ζ, u)
−G̃(u)−1H(u)T∇Φ(ζ, u)T

]
.

Under Assumption 11.2, the set C is Clarke regular, G is continuous
and f is continuous. Therefore, by Corollary 4.3, (11.4) admits a (local
Carathéodory) solution for every initial condition (ζ(0), u(0)) ∈ Rm×U .
Thirdly, under Assumption 11.2, equilibria of (11.4) coincide with

critical points of (11.2):

Proposition 11.2. Every critical point of (11.2) is a weak equilibrium
of (11.4) and every weak equilibrium (y?, u?) with y? = h(u?) is a critical
point of (11.2).

Proof. First, by Lemma 2.1, every critical point of (11.2) is also a critical
point of

minimize Φ̃(u) subject to u ∈ U . (11.6)
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Hence, if (ζ?, u?) is a weak equilibrium with ζ? = h(u?) (which might
not be the case if f̃ admits multiple steady states for the same input u?)
we have

0 ∈ ΠG̃
U
[
−G̃(u?)−1H(u?)T∇Φ(ζ?, u?)T

]
(u?) = ΠG̃

U [− gradG̃ Φ] (u?) .

Consequently, − gradG̃ Φ(u?) ∈ N G̃
u?U and therefore u? is a critical point

of (11.6) by Proposition 8.1. The reverse implication follows similarly.

Finally, we need the following Lipschitz-like assumption on H and Φ:

Assumption 11.3. Under Assumption 11.1, for the objective function
Φ and the steady-state map h in (11.2) there exists L > 0 such that∥∥∥H(u)T (∇Φ(ζ ′, u)−∇Φ(ζ, u))T

∥∥∥ ≤ L‖ζ ′ − ζ‖ (11.7)

for all ζ ′, ζ ∈ Rm and all u ∈ U .

Assumption 11.3 is, for instance, satisfied if ∇Φ is L̃-Lipschitz continuous,
in which case L can be chosen as L := `L̃ where ` is the Lipschitz constant
of H(u) (which exists by Assumption 11.1). However, in practice, a
tighter bound can often be established by exploiting the structure of
H(u) and Φ(ζ, u).
In Section 11.3 we will discuss the non-example of a subgradient

flow interconnected with a dynamic plant. This setup does not satisfy
Assumption 11.3 and is not asymptotically stable, thus illustrating the
necessity of Assumption 11.3.

11.2 Main Stability Result

In the following main result of this chapter we consider the metric G̃
as a design parameter. In particular, the forthcoming stability bound
illustrates the trade-off between the decay properties of the fast physical
system and the gain of the slow optimization dynamics. This behav-
ior will also be illustrated in Section 11.3 with the help of numerical
examples. The following result is generalized from [Ha3, Thm 3.2]:
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Theorem 11.1. Consider (11.4) and let Assumptions 11.1, 11.2, and
11.3 hold. Assume that

sup
u∈U

∥∥G̃(u)−1∥∥ < γ

ωL
(11.8)

holds, where L > 0 is a constant satisfying (11.7). Furthermore, γ and ω
are constants associated with a Lyapunov function W (ζ, h(u)) for (11.1)
according to Proposition 11.1.

Then, (11.4) admits a complete solution for every initial condition
(ζ(0), u(0)) ∈ Rm × U and every complete solution converges to the set
of critical points of (11.2).

Furthermore, the following statements hold:

(i) Every minimizer of (11.2) is a strong equilibrium point of (11.4).

(ii) An asymptotically stable critical point of (11.4) is a strict mini-
mizer of (11.2).

(iii) Every minimizer of (11.2) is stable for (11.4).

In particular, combining Proposition 11.2 and Theorem 11.1 we recover
the same relations between minimizers, critical points and equilibria of
(11.2) and (11.4) as in Proposition 8.1:

minimizer strong eq. crit. pt. weak eq.

In many practical applications, the right-hand side of (11.8) can be
estimated. The parameter L can be derived from model information.
The parameters γ and ω can often be deduced from measurements of
the decay rate of the open-loop system without explicitly formulating a
Lyapunov function [217, Thm. 5.17].
More importantly, however, Theorem 11.1 guarantees that there al-

ways exist a small enough control gain such that the interconnected
system is asymptotically stable. For instance, if G̃(u)−1 = εG−1 where
G � 0 is constant, the bound (11.8) expresses a design condition on the
global control gain ε > 0.
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Corollary 11.1. Consider the same setup as in Theorem 11.1 and
assume G̃−1 ≡ εIn. Then, for all ε < ε? := γ

ωL the system (11.4) is
asymptotically stable.

Remark 11.2. If the integrator of the controller is grouped with the
plant to make the feedback law purely proportional, then ω

γ is an es-
timate of the input-to-state (ISS) gain of the augmented plant and
supu∈Rp ‖G̃(u)‖ · L is the ISS gain of the proportional feedback law.
Hence, the condition (11.8) can also be interpreted as a small gain re-
sult: The product of the two gains has to be less than unity. �

Proof of Theorem 11.1

Our proof is inspired by ideas from singular perturbation analysis [143,
146, 215] and we work towards an application of the invariance principle
Theorem 2.5. For this, we consider functions of the form

V (ζ, u) = (1− δ)Φ̃(u) + δW (ζ, u) ,

where 0 < δ < 1 is a convex combination coefficient that is to be
determined. In this context, recall that Φ̃(u) := Φ(h(u), u) and that
W (ζ, u) is of the form W (ζ, u) := W (ζ − h(u), u), where ζ − h(u) is
referred to as boundary-layer error coordinates in singular perturbation
terminology and measures the deviation from the steady state.
First, we establish the requirement for V to be non-increasing along

the trajectories of (11.4). We then show that the level sets of V are
compact (and hence invariant), and therefore the invariance principle
is applicable. Finally, we prove the connection between stability and
optimality of equilibria.

Asymptotic Convergence

Throughout the rest of this section let Q(u) := G̃
1
2 (u) be the unique

positive definite square root of G̃(u) ∈ Sm+ for all u ∈ U and define
κ := supu∈U ‖Q(u)−1‖.
We first establish the key condition for V to be non-increasing along

trajectories of (11.4) which is adapted from [Ha3, Lem 3.1]:
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Lemma 11.1. If for some δ ∈ (0, 1), the 2-by-2-matrix

Λ :=
[

−(1− δ) 1
2 (κL(1− δ) + κωδ)

1
2 (κL(1− δ) + κωδ) −γδ

]
(11.9)

is negative definite, then d
dtV (ζ(t), u(t)) ≤ 0. Furthermore, if Λ ≺ 0

then d
dtV (ζ, u) = 0 implies that ζ = h(u) and, omitting the argument t,

that 0 = ΠG̃
U
[
−G̃(u)−1H(u)T∇Φ(ζ, u)T

]
.

Proof. By absolute continuity of any solution (ζ, u) : [0, T ] → Rm+p

of (11.4), the time derivative of V along (ζ, u) exists for almost all
t ∈ [0, T ] and is given by

d
dt (ζ(t), u(t)) = (1− δ)∇Φ̃(u)g(ζ, u)

+ δ∇ζW (ζ, u)f̃(ζ, u) + δ∇uW (ζ, u)g(ζ, u) , (11.10)

where we have omitted the argument t for brevity and defined

g(ζ, u) := ΠG̃
U
[
−G̃(u)−1H(u)T∇Φ(ζ, u)T

]
= v − η

with v = −G̃(u)−1H(u)T∇Φ(ζ, u)T and η ∈ N G̃
u U . In particular, the

decomposition of g(ζ, u) into v and η exists according to Lemma 4.1.
Each of the terms in (11.10) can be bounded. Namely, for the first

term we can do a rearrangement, apply Cauchy-Schwarz (first inequality
below), and use the definition of ‖ · ‖G̃(u) and Assumption 11.3 (second
inequality below) to write

∇Φ̃(u)g(ζ, u)
= −∇Φ(h(u), u)H(u)g(ζ, u)
= − (∇Φ(h(u), u)−∇Φ(ζ, u))H(u)Q(u)−1Q(u)g(ζ, u)

−∇Φ(ζ, u)H(u)g(ζ, u)

≤
∥∥∥H(u)T (∇Φ(h(u), u)−∇Φ(ζ, u))T

∥∥∥ ∥∥Q(u)−1∥∥ ‖Q(u)g(ζ, u)‖

− ∇Φ(ζ, u)H(u)g(ζ, u)
≤ κL‖ζ − h(u)‖‖g(ζ, u)‖G̃(u) −∇Φ(ζ, u)H(u)g(ζ, u) .
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Next, according to Lemma 4.3 it we have 〈v, g(ζ, u)〉G̃(x) ≥ ‖g(ζ, u)‖2
G̃(u)

and therefore it holds that

∇Φ̃(u)g(ζ, u)
≤ κL‖ζ − h(u)‖‖g(ζ, u)‖G̃(u) −∇Φ(ζ, u)H(u)G̃(u)−1G̃(u)g(ζ, u)

= κL‖ζ − h(u)‖‖g(ζ, u)‖G̃(u) − v
T G̃(u)(v − η)

≤ κL‖ζ − h(u)‖‖g(ζ, u)‖G̃(u) − ‖g(ζ, u)‖2
G̃(u) .

Thus, the first term in (11.10) is bounded in ‖ζ−h(u)‖ and ‖g(ζ, u)‖G̃(u).
The second term in (11.10), is bounded, by Proposition 11.1, as

∇ζW (ζ, u)f̃(ζ, u) ≤ −γ‖ζ − h(u)‖2 .

Finally, for the third term in (11.10) we can apply Cauchy-Schwarz,
the definition of ‖ · ‖G̃(u), and the fact that ‖∇uW (ζ, u)‖ ≤ ω‖ζ − h(u)‖
from Proposition 11.1 to arrive at

∇uW (ζ, u)g(ζ, u) = ∇uW (ζ, u)Q(u)−1Q(u)g(ζ, u)
≤ ‖∇uW (ζ, u)‖

∥∥Q(u)−1∥∥ ‖Q(u)g(ζ, u)‖
≤ κω‖ζ − h(u)‖‖g(ζ, u)‖G̃(u) .

Combining these three bounds, the time derivative of V along trajec-
tories of (11.4) is bounded almost everywhere by a quadratic function
that can be rewritten in matricial form (and omitting the argument t)
as

d
dtV (ζ, u ≤

[
‖g(ζ, u)‖G̃(u)
‖ζ − h(u)‖

]T
Λ
[
‖g(ζ, u)‖G̃(u)
‖ζ − h(u)‖

]
,

where Λ is given by (11.9). Clearly, if Λ ≺ 0, then d
dtV (ζ(t), u(t)) ≤ 0.

Finally, we note that if Λ ≺ 0, then d
dtV (ζ(t), u(t)) = 0 holds if and

only if ‖ζ(t) − h(u(t))‖ = 0 and ‖g(ζ(t), u(t))‖ = 0. In other words,
when the system (11.4) is at steady state. This, in turn, implies by
Proposition 11.2 that the system is at a critical point of (11.2) which
completes the proof of Lemma 11.1.

In order to choose an appropriate δ that guarantees Λ ≺ 0 and therefore
V̇ (t) ≤ 0, we require the following result [146, pp.296]:
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11.2 Main Stability Result

Lemma 11.2. Consider a 2× 2-matrix defined as

Λ :=
[

−(1− δ)α1
1
2 ((1− δ)β1 + δβ2)

1
2 ((1− δ)β1 + δβ2) −δ(α2 − ξ)

]
,

where β1, β2, ξ ∈ R, δ ∈ (0, 1), and α1, α2 > 0. If α1α2
α1ξ+β1β2

> 1 and
δ = β1

β1+β2
, then Λ is negative definite.

By setting α1 = 1, α2 = γ, ξ = 0, β1 = κL and β2 = κω, we conclude
that in our case Λ ≺ 0 whenever we choose

γ

κ2ωL
> 1 and δ = ω

ω + L
,

thus recovering the bound (11.8) in Theorem 11.1 which guarantees that
V is non-increasing along trajectories of (11.4).
Next, we show that the sublevel sets of V are compact.

Lemma 11.3. Consider a system (11.1) satisfying Assumption 11.1
with a Lyapunov function W : Rm × Rp → R and a steady-state map
h : Rp → Rm. Further, let V (ζ, u) := (1 − δ)Φ(u) + δW (ζ, u) where
Φ : Rp → R is continuous and has compact level sets, and δ ∈ (0, 1).
Then, V has compact sublevel sets.

Proof. Consider a sublevel set Ωc := {(ζ, u) |V (ζ, u) ≤ c}, for some c ∈
R. Since we have W (ζ, u) ≥ 0, (ζ, u) ∈ Ωc implies that (1− δ)Φ(u) ≤ c.
But since Φ has compact sublevel sets, there exist U such that ‖u‖ ≤ U
for all (ζ, u) ∈ Ωc.
On the compact set {u | ‖u‖ ≤ U} the continuous function (1 −

δ)Φ(u) is also lower bounded by some value L. We therefore have
that δW (ζ, u) ≤ c − L in Ωc. As W is positive definite, we must have
that ‖ζ − h(u)‖2 ≤ (c− L)/γ. We then have

‖ζ‖ ≤ ‖ζ − h(u)‖+ ‖h(u)‖

≤

√
c− L
γ

+ ‖h(u)− h(0)‖+ ‖h(0)‖

≤

√
c− L
γ

+ `(U − 0) + ‖h(0)‖ ,
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Chapter 11. Timescale Separation in Feedback-Based Optimization

where ` is the Lipschitz constant of h, and therefore ‖ζ‖ is also bounded
for all (ζ, u) ∈ Ωc.

It follows from Lemma 11.3 and if (11.8) holds, that the compact sublevel
sets of V are invariant and consequently, solutions of (11.4) cannot
escape to the horizon in finite time which guarantees the existence of
complete solutions.
Furthermore, we can apply Theorem 2.5 and conclude that all com-

plete solutions of (11.4) converge to the closure of the largest invariant
subset for which d

dtV = 0. This, in turn, coincides with the set of critical
points of (11.2) by Lemma 11.1.

Relation between Stability and Optimality

The proofs of (i), (ii), and (iii) in Theorem 11.1 are analogous to the
proofs of the corresponding properties in Proposition 8.1.
For (i), let (ζ?, u?) be a minimizer of (11.2) and hence a weak equi-

librium of (11.4) by Proposition 11.2. Assume for the sake of con-
tradiction there exists a solution (ζ, u) : [0, T ] → Rm+p such that
(ζ(0), u(0)) = (ζ?, u?) but (ζ(t), u(t)) 6= (ζ?, u?) for some t ∈ [0, T ]. The
sublevel set S`? of V with `? = V (ζ?, u?) is invariant and x(t) ∈ S`? for
all t ∈ [0, T ] by Lemma 11.1 as long as (11.8) holds. If (ζ?, u?) is a min-
imizer of (11.2), it is also a minimizer of V on Rm ×U since ζ? = h(u?).
Since V is non-increasing, it follows that V (ζ(t), u(t)) = V (ζ?, u?) for
all t ∈ [0, T ], thus d

dtV (x(t)) = 0 for almost all t ∈ [0, T ] which implies
that ζ̇(t) = 0 and u̇(t) = 0 for almost all t ∈ [0, T ] by Lemma 11.1, thus
completing the contradiction.

To show (ii), let (ζ̂, û) be an asymptotically stable point of (11.4) and
let N ⊂ Rm × U such any solution (ζ, u) : [0,∞) → Rm × U of (11.4)
with (ζ(0), u(0)) ∈ N converges to (ζ̂, û). Note, that V is non-increasing
along (ζ, u) and V (ζ̂, û) ≤ V (ζ(0), u(0)) for any (ζ(0), u(0)) ∈ N and
therefore (ζ̂, û) is a minimizer of V on Rm×U . However, any minimizer
of V satisfies ζ̂ = h(û) and is therefore a minimizer of (11.2).
To see that (ζ̂, û) is a strict minimizer of (11.2), assume for the sake

of contradiction that for some (ζ̃, ũ) ∈ N with ζ̃ = h(ũ) in the re-
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11.3 Gradient-Based Controllers and LTI Systems

gion of attraction of (ζ̂, û) it holds that Φ(ũ) ≤ r. Every solution
(ζ ′, u′) : R≥0 → Rm × U to (11.4) with (ζ ′(0), u′(0)) = (ζ̃, ũ) neverthe-
less converges to (ζ̂, û) by assumption. Therefore, it must hold that∫ +∞

0
d
dtV (ζ ′(τ), u′(τ))dτ = 0 and since d

dtV (ζ ′(t), u′(t)) ≤ 0, it follows
that d

dtV (ζ ′(t), u′(t)) = 0 for almost all t ≥ 0. But as a consequence of
Lemma 11.1, all points (ζ, u) in the limit set are weak equilibria points,
this holds in particular for (ζ̃, ũ) and therefore (ζ̂, û) cannot be asymptot-
ically stable. For (iii), i.e., to show that strict local minimizers of (11.6)
are stable, let V ⊂ Rm × U be any compact (relative) neighborhood of
(ζ?, u?) in which u? is a strict minimizer of Φ̃(u). In particular, without
loss of generality assume that {u | (ζ, u) ∈ V} is not a singleton. Other-
wise, stability is trivially guaranteed by Assumption 11.1. We construct
a neighborhood W ⊂ Rm × U of (ζ?, u?) such that every trajectory
starting in W remains in V, thus proving stability.
Hence, consider the function V in the previous section, and let α be

such that V (ζ?, u?) < α < min(ζ,u)∈∂V V (ζ, u) where ∂V denotes the
boundary of V (relative to Rm × U). Define W := {(ζ, u) ∈ Rm ×
U |V (ζ, u) ≤ α} ⊂ V which has a non-empty (relative) interior because
V (ζ?, u?) < α. Furthermore, as a sublevel set of V , the setW is invariant
since V̇ (ζ, u) ≤ 0 (with the proper choice of δ according to Lemma 11.1).
This establishes stability of (ζ?, u?).

Hence, the proof of Theorem 11.1 is complete.

11.3 Illustration of Gradient-Based
Controllers and LTI Systems

In the following, we consider variations and extensions of the intercon-
nected projected gradient flow (11.4) and discuss the stability bound in
Theorem 11.1. For simplicity, throughout this section, instead of (11.1),
we consider an linear time-invariant (lti) plant of the form

ζ̇ = Aζ +Bu+ d , (11.11)

where A ∈ Rm×m, B ∈ Rm×p and d ∈ Rm. Whenever A is Hurwitz,
(11.1) is satisfied and parameters β, γ, ω of a quadratic Lyapunov func-
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tion according to Proposition 11.1 can be easily computed.
Furthermore, for (11.11), the steady-state input-output map is given

by

h(u) := −A−1Bu−A−1d

and thus ∇h(u) ≡ −A−1B is constant.

Unconstrained Gradient Flows

In general, the conservativeness of the bound (11.8) depends largely on
the specific problem. Figures 11.2a and 11.2b illustrate this fact based
on two random problem instances for an unconstrained gradient flow
(i.e., U = Rp). In both examples, we consider, for simplicity, the case
where G̃ ≡ εIn (i.e., as in Corollary 11.1), the cost function Φ is convex
quadratic, and the plant is lti. In each case, we have n = 20 (state
dimension) and p = 5 (input dimension).
In both cases, the interconnected gradient system (11.4) is stable for

values of ε larger than ε? = γ
ζL . For ε = ε?, the feedback interconnec-

tion illustrated in Figure 11.2a exhibits a similar convergence rate as
the reduced system. However, for ε larger than 10ε? instability of the
interconnected system occurs.
For the second example (Figure 11.2b), the stability bound on ε is

more conservative. For ε = 200ε?, the interconnected system is stable.
However, the convergence rate compared to the reduced system signif-
icantly deteriorates. For this problem instance, instability occurs for
values of ε larger than 290ε?.

These examples illustrate the variable degree of conservativeness of
our stability bound and the gradual performance degradation as the
stability limit of the interconnected system is reached.

Projected Gradient Flows

One of the surprising aspects of Theorem 11.1 is the fact that the stability
bound (11.1) is independent of whether the reduced system (11.3) is an
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(a) ε = ε? (according to Corollary 11.1). Both, the reduced gradient
flow (11.3) (dashed) and the system (11.4) (solid) converge to the
unique optimizer of (11.2) with similar convergence rate.
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(b) ε = 200ε?. Both, the reduced (11.3) (dashed) and the intercon-
nected system (11.4) (solid) converge. However, the convergence rate
of is significantly worse for the interconnected system.

Figure 11.2: Examples of continuous-time unconstrained feedback gradi-
ent flow illustrating the varying degrees of convervativeness of ε? (Corol-
lary 11.1) for two different problem instances.

unconstrained or a projected gradient flow.1 Figure 11.3 illustrates this
1In fact, considering an unconstrained gradient flow makes Assumption 11.1 more

restrictive, because a (nonlinear) plant needs to be exponentially stable for any fixed
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fact by comparing a random instance of the interconnected system (11.4)
(with stable LTI plant) in two cases: with U = Rp (i.e., resulting in an
unconstrained gradient flow), and with U = [−1, 1]p. The bound ε? in
Corollary 11.1 is the same in both cases.
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(a) Unconstrained feedback gradient flow.
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(b) Projected feedback gradient flow where u is constrained to the unit cube.

Figure 11.3: Comparison between an unconstrained and projected feed-
back gradient flow for the same LTI system, cost function, and the same
ε = ε? (according to Corollary 11.1). The right panels show the compo-
nents of the unsaturated and saturated control signal, respectively.

In particular, the simulations in Figure 11.3 indicate that the stability
of the projected feedback gradient flow implementation does not deterio-
rate compared to the unconstrained feedback gradient flow. If anything,
the saturation of the control signal u onto [−1, 1]p reduces transient
oscillations.

input u ∈ Rp.
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11.3 Gradient-Based Controllers and LTI Systems

Newton Gradient Flows

The classical Newton method finds widespread application in numerical
optimization as a second-order method (i.e., requiring information about
second-order derivatives) with superlinear convergence [191, Ch. 3.3].
The continuous-time limit of the Newton method is given by a simple
gradient flow of the form (11.3) (with U = Rp), namely,

u̇ = −ε grad∇2Φ̃ Φ̃(u) = −ε(∇2Φ̃(u))−1∇Φ̃(u)T , (11.12)

where ε > 0 serves to adjust the convergence rate.
For (11.12) to be well-defined, we assume that Φ̃ is µ-strongly convex

and twice continuously differentiable such that the metric ∇2Φ̃(u) is well-
defined for all u ∈ Rp. Hence, convergence to the unique equilibrium
is exponential and moreover isotropic, i.e., trajectories approach the
equilibrium from all directions with the same speed. In other words, the
linearization around the equilibrium u? is given by u̇ = −ε(u− u?).
In terms of stability, Newton flows are well-suited for the implemen-

tation as feedback controllers. Although the evaluation (or estimation)
of the inverse Hessian of Φ̃ can be computationally demanding.

Theorem 11.1 can be directly applied to give a condition for asymptotic
stability in closed loop. Namely, since Φ̃ is µ-strongly convex, we have
that supu∈Rp ‖ε(∇2Φ̃(u))−1‖ ≤ ε/µ and therefore the following holds.

Corollary 11.2. Consider the same setup as in Theorem 11.1 and as-
sume that Φ̃ is µ-strongly convex and twice continuously differentiable.
With the metric G̃(u) := ε∇2Φ̃(u), the closed-loop system (11.4) is
asymptotically stable and converges to the set of critical points of (11.6)
whenever

ε <
γµ

ωL
.

Corollary 11.2 applies, in fact, to projected Newton flows (as already
encountered in Section 7.2). If, addition, U is convex then convergence
is to the unique minimizer of (11.6).
Compared to the previous results, the above bound on ε is invariant

for a uniform scaling of Φ̃ by a constant α > 0 since α scales both L and
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µ by the same factor. Furthermore, the requirement that Φ̃ is strongly
convex implies the optimizer’s uniqueness, but it does not necessarily
require that the problem (11.6) is itself convex.

Figure 11.4 illustrates, similarly to Figures 11.2a and 11.2b, the inter-
connection of an LTI plant with a Newton flow for a quadratic function.
In this case G̃ ≡ ε(∇2Φ)−1 is constant. As before, the interconnected
system is stable even for ε larger than the theoretical bound in Corol-
lary 11.2. However, the convergence rate gradually worsens compared
to the reduced system.

Subgradient Flow (Non-Example)

Subgradient flows are the continuous-time version of subgradient descent
and generalize gradient flows to the case where Φ̃ is not differentiable.
Namely, assuming that Φ̃ is convex, its subgradient at u ∈ Rp is defined
as the set

∂Φ̃(u) := {η ∈ Rp | ∀v ∈ Rp : f̃(v)− f̃(u) ≥ ηT (v − u)} .

As a set-valued map, ∂Φ̃ gives rise to a dynamical system in the form

0 20 40 60 80 100
100

101

102
Φ(ξ(t), u(t))− Φ(ξ?, u?)

0 20 40 60 80 100
100

100.5

101
‖ξ(t)− ξ?‖

Figure 11.4: Continuous-time unconstrained feedback Newton flow with
ε = γµ

ωL (according to Corollary 11.2). Both, the reduced Newton gradi-
ent flow (11.12) (dashed) and the system (11.4) (solid) converge to the
unique optimizer of (11.2) with similar convergence rate.
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of a differential inclusion u̇ ∈ −∂Φ̃.
Subgradient inclusions are well-defined (i.e., existence of generalized

solutions is guaranteed under technical assumptions), and convergence
to critical points is also assured. However, subgradient flows are, in
general, not appropriate for feedback-based optimization.
Apart from issues relating to the physical implementability, Theo-

rem 11.1 is not applicable since Assumption 11.3 is in general not sat-
isfied. Namely, if Φ̃ is not continuously differentiable, then its gradient
cannot be Lipschitz continuous.
In fact, subgradient flows in closed loop with a dynamical system

are in general not asymptotically stable. To see this, consider a one-
dimensional physical system in the form

ζ̇ = −aζ + bu ,

with a > 0 and steady-state map ζ = h(u) = b
au. Further, as an

objective we consider the absolute value Φ(ζ) := |ζ| that gives rise to a
subgradient control law

u̇ ∈ −∇h(u)∂Φ(ζ) = − b
a


1 if ζ > 0
−1 if ζ < 0
[−1, 1] if ζ = 0

.

It is easy to see that this control law exhibits a bang-bang behavior
that will not allow the closed-loop system to converge to the optimizer
ζ? = 0.
Figure 11.5 illustrates this behavior for a higher dimensional setup

where we minimize an objective function Φ(ζ, u) := Φ(ζ, u) + ρ‖ζ‖1
with an `1-regularization term in an attempt to promote sparsity of the
minimizing state variables.

11.4 Notes & Comments

The statements presented in this chapter are only a subset of the results
in [Ha3] where other algorithms such as momentum methods and saddle-
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Figure 11.5: Subgradient flow induced by an `1-regularization on ζ.
While the reduced dynamics (dashed) converge to ζ?, the interconnection
with a dynamical plant (solid) is not asymptotically convergent.

point flows where analyzed from a singular perturbation perspective.
However, the proof of Theorem 11.1 was only sketched in [Ha3].
In contrast to LMI-based stability certificates [66, 187], the stability

bounds presented in this chapter and based on singular perturbations,
may be more conservative. However, they apply to a broader range
of optimization algorithms (including non-convex problems), nonlinear
plants, and non-smooth controllers (such as projected gradient flows).
Moreover, these bounds guarantee the stability for small enough control
gains, thus providing guidance for control design.
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CHAPTER 12

Tracking for Time-Varying
Constrained Optimization

In this chapter, we turn our attention to time-varying optimization
problems of the form

minimize Φ(x, t) subject to x ∈ X (t) , (12.1)

where Φ : Rn × R≥0 → Rn is continuously differentiable in x and X :
R≥ ⇒ Rn maps every t ≥ 0 to a closed non-empty set.
Time-varying optimization problems are clearly of high interest for

feedback-based optimization schemes, where physical plants are subject
to (slowly) time-varying perturbations. In this context, one generally
wishes to bound the tracking performance of a running algorithm, i.e.,
give a bound on the distance between the actual system/algorithm state
and the (instantaneous) optimizer of the underlying optimization prob-
lem at time t.
In this chapter, we ask whether projected dynamical systems can be

adapted for time-varying optimization. This inquiry will lead us to con-
sider perturbed sweeping processes, which we use to define sweeping gra-

This chapter is based on the second part of [Ha10]. The work in this chapter
was performed in collaboration with I. Subotić. The main technical results are
Proposition 12.1 and Theorem 12.2.
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dient flows, a generalization of projected gradient flows to time-varying
optimization.

Sweeping gradient flows are of conceptual importance since they can be
interpreted as the continuous-time limit of an online projected gradient
descent [178, 269]. Moreover, sweeping processes of this type, which
essentially model a continuously evolving projection onto a time-varying
set, have been considered in feedback optimization [Ha4, Ha12, 242]
where constraint enforcement may rely on input saturation in physical
plants.
Although sweeping processes are extremely well-studied (see [6, 90,

248, 154, 55, 184] and references therein), known formulations cannot
(yet) accommodate a variable metric as introduced for PDSs in Chap-
ter 4. This seems to remain an open problem. Moreover, existence and
uniqueness results for sweeping processes are more involved because they
generally require additional assumptions on the time-varying nature of
the set X (t). For these reasons, our results in this chapter on sweeping
gradient flows are relatively specific, and there is, presumably, room for
major generalizations.

To establish meaningful guarantees on the asymptotic tracking perfor-
mance of sweeping gradient flows, we derive a tracking result that applies
to any continuous-time algorithm with absolutely continuous trajecto-
ries that satisfy a common monotonicity-like property. Although the
same property has previously been exploited for specific algorithms, our
tracking result is more general since it does not require any additional
assumptions on the (running) algorithm. For instance, our performance
bound can be applied to algorithms whose trajectories are Krasovskii
(Chapter 4 or [118, Ch. 5]) or Filippov [100] solutions of differential
inclusions.

Another key point is that this tracking result is particularly powerful
in combination with the quantitative sensitivity bounds for nonlinear
optimization problems presented in Appendix A, which can be used
to bound the rate of change of time-varying nonlinear optimization
problems.
Hence, in Section 12.1, we first establish our general tracking result
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before applying it to sweeping gradient flows, which we introduce in
Section 12.2. In Section 12.3 we present two computational examples,
illustrating our results.

12.1 Tracking under Monotonicity

Generally, in this section, we consider a time-varying optimization prob-
lem (12.1) for which we make the following assumption:

Assumption 12.1. The problem (12.1) admits a unique (global) op-
timizer for every t ∈ R≥0 and the solution map x̃? : R≥0 → Rn is
`-Lipschitz.

The following proposition guarantees the bounded asymptotic behavior
of the running algorithm, i.e., the distance ‖x(t) − x̃?(t)‖ between the
trajectories of the running algorithm x(t) and instantaneous optimizer
x̃?(t) is asymptotically bounded.

Proposition 12.1. Consider (12.1) and let Assumption 12.1 be satisfied.
Furthermore, let x : R≥0 → Rn be absolutely continuous and assume that

〈ẋ(t), x(t)− x̃?(t)〉 ≤ −a‖x(t)− x̃?(t)‖2 (12.2)

holds for almost every t ∈ R≥0 where a ∈ R>0. Then, lim
t→∞

sup ‖x(t) −
x̃?(t)‖ ≤ `

a holds. Moreover, if ‖x(0)−x̃?(0)‖ ≤ `
a , then ‖x(t)−x̃?(t)‖ ≤

`
a holds for all t ≥ 0.

In the next section, we provide the necessary technical results and the
proof of Proposition 12.1.

12.1.1 Proof of Tracking Bound

Before we prove the proposition, we derive a key technical result from
Barbalat’s lemma [101, 143]. Recall that the function Φ : S → R is said
to be uniformly continuous on S ⊆ R if and only if for all ε > 0 there
exists δ > 0 such that for all x′, x ∈ S we have

|x′ − x| < δ =⇒ |Φ(x′)− Φ(x′)| < ε .
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Hence, Barbalat’s lemma [143, Lemma 8.2] reads as follows:

Lemma 12.1 (Barbalat). Let W : R≥0 → R be uniformly continuous.
If limt→∞

∫ t
0 W (τ)dτ exists and is finite, then limt→∞W (t) = 0.

Moreover, we also require the following lemma:

Lemma 12.2. If W : R≥0 → R is continuous, lower bounded, and
non-increasing, then W is uniformly continuous.

Proof. Let L = inft≥0W (t) and consider any ε > 0. Let T > 0 be
such that W (t) ≤ L + ε for all t > T . Since a continuous function is
absolutely continuous on a compact interval, W is uniformly continuous
on the compact interval [0, T ′] with T ′ > T . In particular, for the given ε,
there exists δ > 0 such that |t−τ | ≤ δ implies |W (t)−W (τ)| ≤ ε for any
t, τ ∈ [0, T ′]. Without loss of generality, let δ < T ′ − T . Next, note that
for any t, τ ∈ [T,∞) (and, in particular, for |t − τ | ≤ δ), we have that
|W (t)−W (τ)| ≤ ε. Therefore, for any t, τ ≥ 0 with |t− τ | ≤ δ we have
|W (t)−W (τ)| ≤ ε. Since ε is arbitrary, W is uniformly continuous.

Finally, we can present the key technical result necessary for the proof
of Proposition 12.1:

Lemma 12.3. Let y : R≥0 → Rn be absolutely continuous such that for
almost every t ≥ 0, some a > 0, and b ≥ 0 it holds

〈ẏ(t), y(t)〉 ≤ −a‖y(t)‖2 + b‖y(t)‖ . (12.3)

Then, lim sup
t→∞

‖y(t)‖ ≤ b
a holds. Moreover, if ‖y(T )‖ ≤ b

a holds for some

T ≥ 0, then ‖y(t)‖ ≤ b
a holds for all t ≥ T .

Proof. First we note that the absolutely continuous function on a com-
pact interval has a bounded variation and hence, it is differentiable
almost everywhere. Moreover, we define V : R≥0 → R≥0 as

V (t) := max
{ 1

2
(
‖y(t)‖2 − ( ba )2) , 0} ,

and let W : R≥0 → R≥0 be given as

W (t) := max
{
a‖y(t)‖

(
‖y(t)‖ − b

a

)
, 0
}
.
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Note that both V and W are absolutely continuous. Furthermore,
V (t) > 0 and W (t) > 0 holds for all t for which ‖y(t)‖ > b

a and
V (t) = W (t) = 0 otherwise. Moreover, for almost all t ≥ 0 for which
‖y(t)‖ ≥ b

a we have

V̇ (t) = 〈ẏ(t), y(t)〉 ≤ −a‖y(t)‖2 + b‖y(t)‖ = −W (t) ≤ 0 .

Otherwise, for almost all t for which ‖y(t)‖ < b
a , we have V̇ (t) = W (t) =

0. Hence, the growth of V is bounded by V̇ (t) ≤ −W (t) ≤ 0 for almost
all t ≥ 0.

To prove the lemma, we apply Lemma 12.1 to W . Hence, we need to
show that (i) the integral lim

t→∞

∫ t
0 W (τ)dτ exists and is finite, and that

(ii) W is uniformly continuous.
To show (i), we exploit the fact that the growth of V is bounded by
−W to establish the bound∫ t

0
W (τ)dτ ≤ −

∫ t

0
V̇ (τ)dτ = V (0)− V (t) ≤ V (0) ,

where the last inequality follows from the fact that V (t) is non-negative
for all t ∈ R≥0, by definition. Further, the left-hand side integral is
non-decreasing in t (since W (t) ≥ 0 for all t). Hence, as t → ∞, the
limit exists and is finite.

For (ii) it suffices to show that W is non-increasing itself. Then, since
W is continuous and lower bounded, it follows from Lemma 12.2 that
W is uniformly continuous.

For this purpose, simply note that, for almost all t for which ‖y(t)‖ ≤
b/a, we have Ẇ (t) = 0 and, for almost all t for which ‖y(t)‖ > b/a, it
holds that

Ẇ (t) =
(

2a− b
‖y(t)‖

)
︸ ︷︷ ︸

≥a>0

〈ẏ(t), y(t)〉︸ ︷︷ ︸
=V̇ (t)<0

< 0 .

Hence, we have shown that W is uniformly continuous and that
lim
t→∞

∫ t
0 W (τ)dτ exists. Therefore, from Lemma 12.1, it follows that

W (t) → 0 for t → ∞ and consequently, from the definition of W , we
have lim sup

t→∞
‖y(t)‖ ≤ b/a.
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We show the last part of the lemma by contradiction. Assume that
there exists T ≥ 0 such that ‖y(T )‖ ≤ b

a and that there exists t1 ≥ T

such that ‖y(t1)‖ > b
a . That means V (t1) > V (T ) = 0, but V̇ (T ) = 0,

hence V (T + δ) = 0, for all δ ≥ 0. Consequently V (t1) = 0 which is
contradiction to V (t1) > V (T ), hence ‖y(t)‖ ≤ b

a , for all t ≥ T .

Note that the second part of Lemma 12.3, that guarantees the invariance
of baB, is essentially a consequence of Nagumo’s theorem [18, Thm. 1.2.1].
Likewise, Lemma 12.3 and its proof relate to Lyapunov functions, barrier
functions, etc.
Lastly, to show that Proposition 12.1 follows from Lemma 12.3, we

first note x and x̃? are both (individually) differentiable for almost all
t ≥ 0 and thus they are (jointly) differentiable for almost all t ≥ 0
(since the union of two zero-measure sets has measure zero). Hence,
the instantaneous optimizer trajectory x̃? satisfies Assumption 12.1 for
almost all t ≥ 0, and therefore, by Cauchy-Schwarz, it holds that
|〈 ˙̃x?(t), x(t)− x̃?(t)〉| ≤ `‖x(t)− x̃?(t)‖ for almost all t ≥ 0. Using (12.2)
and letting y(t) := x(t) − x̃?(t) (which is absolutely continuous) and
b := `, the inequality (12.3) is satisfied and the proof of Proposition 12.1
follows immediately.
The strong monotonicity property (12.2) is, for example, satisfied

with a = α for an unconstrained gradient flow ẋ = −∇xΦ(x, t) if Φ is
α-strongly convex for all t ≥ 0, which is further detailed in Section 12.3.1.

12.2 Sweeping Gradient Flows

12.2.1 Perturbed Sweeping Processes

Sweeping processes [248, 154, 184] have originally been formulated to
describe the sweeping effect of a moving, impenetrable boundary on a
mobile object. When the object itself is subject to a perturbation (e.g.,
a force), we can consider a perturbed sweeping process [90, 55] which is
formally defined as

ẋ(t) ∈ f(x, t)−NxX (t), with x(0) ∈ X (0) , (12.4)
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where f : Rn × R → Rn is a time-varying vector field, and, for every
t ≥ 0, X (t) ⊂ Rn is a non-empty closed, convex set. The idea behind
(12.4) is that x evolves according to f in the interior of X (t) (where
NxX (t) = {0}), but when x touches the boundary, a normal “force” is
exerted on x to keep the state feasible, even as set X (t) varies.
A solution of (12.4) is an absolutely continuous map x : [0, T ]→ Rn

for some T > 0 such that, for almost all t ∈ [0, T ] (12.4) is satisfied, and
x(t) ∈ X (t) holds for all t ∈ [0, T ]. A complete solution of (12.4) in an
absolutely continuous map x : R≥0 → Rn such that the restriction to
any compact interval [0, T ] for T > 0 is a solution of (12.4).
The following theorem is based on [90, Thm. 1] and simplified1 for

our specific purposes.

Theorem 12.1. For some T > 0, let X : [0, T ]⇒ Rn satisfy

(i) X (t) is nonempty, closed and convex for all t ∈ [0, T ],

(ii) `X > 0 exists such that for any z ∈ Rn and t′, t ∈ [0, T ],

|dX (t′)(z))− dX (t)(z))| ≤ `X |t′ − t| . (12.5)

Further, let f : [0, T ]× Rn → Rn be measurable in t and

(iii) there exists an integrable function γ : [0, T ]→ R≥0 such that

‖f(x, t)− f(y, t)‖ ≤ γ(t)‖x− y‖

holds for all t ∈ [0, T ] and any x, y ∈ Rn.

Then, for any initial condition x(0) ∈ X (0), the perturbed sweeping
process

ẋ ∈ f(x, t)−NxX (t) x ∈ X (t)

admits a unique solution x : [0, T ]→ Rn.
1The original result applies to prox-regular sets in a Hilbert space instead of

convex sets in Rn. Furthermore, in the original theorem (ii) is more general and
requires X to vary in a absolutely continuous way instead of a Lipschitz continuous
way. Finally, in the original statement (iii) is split into a local Lipschitz and linear
growth condition. For simplicity, we assume global Lipschitz continuity to meet both
requirements.
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12.2.2 Sweeping Gradient Flows

As a new running algorithm for constrained time-varying optimization
we consider a perturbed sweeping process of the form (12.4) where
f(x, t) := −∇xΦ(x, t)T is the negative gradient of a time-varying cost
function Φ : Rn × R → R, thus the resulting sweeping gradient flow is
given by

ẋ(t) ∈ −∇xΦ(x, t)T −NxX (t) , x(0) ∈ X (0) . (12.6)

In the following, in order to be able to provide an explicit bound on the
asymptotic tracking performance, we consider sweeping gradient flows
for the special problem structure Corollary A.3 in Appendix A for which
we can give easy-to-interpret results. However, (12.6) is well-defined for
much more general setups.2

The key insight from this section is that our sensitivity bounds and
the generalized tracking results of the previous sections can be applied to
non-trivial discontinuous optimization dynamics involving time-varying
constraints. Namely, we establish the following result:

Theorem 12.2. Consider the problem

minimize Φ̂(x− c(t))
subject to Ux ≤ v(t) ,

(12.7)

where t ≥ 0. Define X̂ (t) := {x |Ux ≤ v(t)} and let

(i) Φ̂ : Rn → R be twice continuously differentiable, α-strongly convex,
and ∇Φ̂ is β-Lipschitz,

(ii) c : R≥0 → Rn and v : R≥0 → Rm be `c- and `v-Lipschitz continu-
ous,

2For instance, existence of trajectories for sweeping gradient flows is guaranteed
even if X is not convex, but prox-regular, as long as ∇xΦ is measurable in t, X (t) is
non-empty for all t ≥ 0 and, roughly-speaking, X varies in an absolutely continuous
way [90]. To guarantee a global asymptotic bound on the tracking error, however, we
generally require Assumptions A.2, A.3, A.4, and A.5 to hold such that Corollary A.2
and Proposition 12.1 can be applied.
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12.2 Sweeping Gradient Flows

(iii) U ∈ Rn×m and ω > 0 such that for every ξ ∈ Ξ and ever x ∈ X̂ (ξ)
one has ω2I � UIξx

UT
Iξx
.

If X̂ (t) := {x |Ux ≤ v(t)} 6= ∅ for all t ≥ 0, then the sweeping gradient
flow

ẋ ∈ −∇Φ̂(x− c(t))T −NxX̂ (t) (12.8)

admits a complete solution x : R≥0 → Rn for every initial condition
x(0) ∈ X̂ (0) and it holds that

lim sup
t→∞

‖x(t)− x?(t)‖ ≤ `t
α

:= β1/2

α3/2

(
β`c
α

+ `v
ω

)
, (12.9)

where x?(t) is the unique optimizer of (12.7) at time t.
Furthermore, if ‖x(0) − x?(0)‖ ≤ `t

α , then ‖x(t) − x?(t)‖ ≤ `t
α holds

for all t ≥ 0.

To show Theorem 12.2 we first need to prove the existence of complete
solutions for (12.6).

Lemma 12.4. Given the setup of Theorem 12.2, (12.8) admits a unique
complete solution for any initial point x(0) ∈ X̂ (0).

Even though Lemma 12.4 is an existence result, we can prove it using
the sensitivity results in Appendix A.

Proof. The proof is an application of Theorem 12.1. In order to apply
Theorem 12.1 to (12.8), note that for the setup in Theorem 12.2 the
requirements (i) in Theorem 12.1 (non-empty closed convex X̂ (t)) and
(iii) (Lipschitz vector field) hold by assumption on any compact interval
[0, T ] ⊂ R≥0. Also, ∇Φ(x, t)T = ∇Φ̂(x− c(t))T is measurable in t since
it is continuous in t. It remains to show (ii) by establishing (12.5).
For this purpose, we consider d(z,X (t)) as the solution of the para-

metrized optimization problem

minimize
y

1
2‖y − z‖

2
2,

subject to Uy ≤ v(t) ,
(12.10)

217



Chapter 12. Tracking for Time-Varying Constrained Optimization

where t varies but z is fixed. As a problem parametrized in t, (12.10)
falls into the class of problems to which Corollary A.3 applies. Namely,
we have α = β = 1 (since Φ̂(x) := 1

2‖x‖
2), `c = 0 (since c ≡ 0), and ω as

defined in Theorem 12.2. Further, by the assumption in Theorem 12.2,
the feasible set of (12.10) (which is equivalent to X̂ (t)) is non-empty for
all t ≥ 0.
Therefore, by Corollary A.3, the solution map t 7→ y?z(t) of (12.10)

is Lipschitz continuous with a bound on the Lipschitz constant that
is independent of z and given by `y? = `v/ω. Therefore, we have
|y?z(t′) − y?z(t)| ≤ `y? |t′ − t| for any z ∈ Rn and t, t′ ≥ 0, and (ii) in
Theorem 12.1 holds on any compact interval [0, T ].

Hence, Theorem 12.1 guarantees the existence of a unique solution
of (12.8) for every initial condition x(0) ∈ X̂ (0), and for every compact
interval [0, T ] and hence, by definition, a complete solution on R≥0.

Proof of Theorem 12.2. By Corollary A.3, (12.7) admits a unique primal
solution x?(t) for every t ≥ 0. In particular, the solution map t 7→
x?(t) of (12.7) is `t-Lipschitz with `t :=

√
β
α

(
β`c
α + `v

ω

)
. Consequently,

Assumption 12.1 is satisfied. Furthermore, Lemma 12.4 guarantees the
existence of a unique complete solution x : R≥0 → Rn of (12.8) for every
initial condition x(0) ∈ X̂ (0). Next, we verify that (12.2) holds, i.e., we
show that 〈ẋ(t), x(t)− x?(t)〉 ≤ −α‖x(t)− x?(t)‖2.
In the following let Φ(x, t) := Φ̂(x− c(t)). Recall that, for almost all

t ≥ 0, we have ẋ(t) = −∇xΦ(x(t), t)T − η(t) for some η(t) ∈ Nx(t)X̂ (t).
Further, because x?(t) solves (12.7), it satisfies the KKT conditions
which is equivalent to saying that −∇xΦ(x?(t), t)T − η?(t) = 0 for some
η?(t) ∈ Nx?(t)X̂ (t). Putting these two insights together, we have that

ẋ(t) = −∇xΦ(x(t), t)T − η(t) +∇xΦ(x?(t), t)T + η?(t) .

Next, we omit the argument t for x, x̃?, η, η? and X̂ . By definition of
the normal vectors η ∈ NxX̂ and η? ∈ Nx?X̂ , for X̂ , we have 〈η, x−x?〉 ≥
0 and 〈η?, x? − x〉 ≥ 0, respectively. Since Φ is α-strongly convex we
have 〈

∇Φ(x, t)T −∇Φ(x?, t)T , (x− x?)
〉
≥ α‖x− x?‖2 . (12.11)
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Combining these facts, we get

〈ẋ, x−x?〉=
〈
−(∇Φ(x, t)T−∇Φ(x?, t)T )−(η−η?), x−x?

〉
=−〈η, x−x?〉−〈η?, x?−x〉
−
〈
∇Φ(x, t)T−∇Φ(x?, t)T , x−x?

〉
≤−α‖x− x?‖2 .

Consequently, by taking a = α, (12.2) holds. Thus, Proposition 12.1
is applicable and yields the desired asymptotic tracking bound and
completes the proof.

In the forthcoming Section 12.2, we require the generality of this result
for our novel discontinuous sweeping gradient flow.

12.3 Numerical Examples

In this section, we provide two numerical examples to illustrate our
results for simple time-varying optimization setups. First, we consider
an unconstrained optimization problem in one dimension, with non-
smooth change in time to demonstrate our bound’s tightness in that case.
Second, we consider a constrained time-varying optimization problem
to illustrate the behavior of sweeping gradient flows.

12.3.1 Time-Varying Unconstrained Optimization

Consider the problem of minimizing Φ(x, ξ̃(t)) = ‖x− ξ̃(t)‖2, where ξ̃ is
a triangular wave (hence non-smooth) with period τ = 4s. That is, for
all n ∈ N, ξ̃ is defined as

ξ̃(t) =
{

(t− τ(n− 1))− 1, t ∈ [τ(n− 1), τ(n− 0.5)
−(t− τ(n− 1)) + 3, t ∈ [τ(n− 0.5), τn) .

In particular, in reference to (A.16) we have ψ = t and Φ(x, ξ) := ‖x−ξ‖2
is α-strongly convex with α = 2. Furthermore, the solution map given
by x̃?(t) = ξ̃(t) is `ξ̃-Lipschitz with `ξ̃ = 1. From (A.11) we have
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(a) Gradient trajectory x(t) (solid) and the optimizer x?(t) (dashed).
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(b) Tracking error ‖x(t)− x?(t)‖ (solid) and upper bound `t
α

(dashed).

Figure 12.1: Gradient flow for time-varying unconstrained optimization

supξ∈[−1,1]‖∇2
ξ̃x

Φ‖ = 2, the solution trajectory x? is `x?-Lipschitz with
respect to ξ, where `x? = 1. Therefore, the solution trajectory x̃? is
`t-Lipschitz continuous in t with `t := `x?`ξ̃ = 1.
For all t ≥ 0, the unconstrained gradient flow is given by

ẋ(t) = −∇xΦ(x(t)T , ξ̃(t)) = −2(x(t)− ξ̃(t)) .

Finally, combining the zero cost function gradient, at the uncon-
strained optimizer (i.e., ∇xΦ(x̃?(t), ξ̃(t))T = 0) with the α-strongly
convex property (12.11), for almost all t ≥ 0 we have

〈ẋ, x(t)− x̃?(t)〉 ≤ −α‖x(t)− x̃?(t)‖2 .

Hence, from Proposition 12.1, lim supt→∞‖x(t)− x̃?(t)‖ ≤ 0.5.
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Figure 12.1a shows the trajectory x(t) (solid) obtained from the gra-
dient descent algorithm with initial condition x(0) = 5 and the instan-
taneous optimizer trajectory x̃?(t) (dashed).

Figure 12.1b shows the distance between the trajectories ‖x(t)−x̃?(t)‖
(solid), and the analytical sensitivity bound `t

α = 0.5 (dashed). Easily,
it can be noticed that as t → ∞, the distance always stays within
the analytical sensitivity bound. Additionally, in this example, the
analytical sensitivity bound is indeed tight. Moreover, this example
perfectly illustrates the invariance property of a ball of radius `t

α around
the time-varying unconstrained optimizer x̃?(t). Namely, the algorithm
trajectory never perfectly tracks the unconstrained optimizer trajectory,
yet always stays within `t

α from the optimizer.

12.3.2 Time-Varying Constrained Optimization

In this example, we consider the same problem setup as in Theorem 12.2
with smooth changes in time. Namely, let

Q :=
[

12 −8
−8 10

]
� 0, P (t) := −

[
3 sin(t+ 3) + 1.3t

2 tanh(t− 3) + 0.71t

]
,

let c(t) := − 1
2Q
−1P (t), and the cost function is defined as

Φ̂(x(t)− c(t)) = (x(t) + 1
2Q
−1P (t))TQ(x(t) + 1

2Q
−1P (t)).

In particular, Φ̂ is α-strongly convex with α = 2σmin(Q), and gradient
∇Φ̂T is β-Lipschitz with β = 2σmax(Q). Furthermore, we can compute
`c = supt≥0‖Ṗ (t)‖.
Next, the constraint set is given by

X̂ (t) = {x(t) ∈ Rn | Ux(t) ≤ v(t)},

where v(t) := (V1t+ V2) and

U :=


−2 1
1 −1

0.5 1
−3 −1

 , V1 :=


−0.05
−0.3
0.25
−0.5

 , V2 :=


−2
5
4
3

 .
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(a) Tracking error ‖x(t)−x?(t)‖ (solid), and upper bound `t
α

(dashed).

(b) Sweeping gradient trajectory x(t) (solid), instantaneous optimizer
trajectory x?(t) (dashed), and time-varying feasible set.

Figure 12.2: Sweeping gradient flow for constrained problem

In particular, we have `v = σmax(V1) and in this special case, we can
determine ω by inspection.
Hence, we can compute the bound on the Lipschitz constant of the

constrained optimizer x̃? as `t =
√

β
α

(
`p
α + `C

ω

)
, and we can compute

the analytical tracking bound as `t
α ≈ 0.5302.

Figure 12.2a presents the tracking error ‖x(t)− x̃?(t)‖ (solid) and the
tracking error upper bound `t

α ≈ 0.5302 (dashed). It can be seen that
the tracking error is always within the bound and that it is decreasing
within the considered time interval.

In contrast to the unconstrained time-varying optimization, for the
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constrained time-varying optimization, the movement of both the cost
function and the constraint set has to be considered. Figure 12.2b illus-
trates the sweeping gradient flow trajectory x(t) (solid), instantaneous
optimizer trajectory x?(t) (dashed) and the time-varying constraint set
X̂ (t) (blue, solid), captured in a different time steps, i.e., t = 0s, t = 3.95s,
t = 7.95s, t = 11.95s, and t = 16s. Note, however, that contrary to the
theoretical requirement, the problem becomes eventually infeasible with
X̂ (t) collapsing to an empty set.

12.4 Conclusions

In this chapter, we have illustrated how projected gradient flows have a
natural generalization to time-varying problems in terms of perturbed
sweeping processes. However, we do not (yet) reach the same level of
generality as in the previous chapters.
Namely, using a variable metric to induce oblique projections for

sweeping processes has not been studied, thus limiting their application
to Euclidean setups.

Although, the tracking bound Proposition 12.1 exploits the monotonic-
ity found in strongly convex problems, it is more general than previous
work [223, 207, 222, 201] because it applies to general continuous-time
systems, including constrained differential inclusions such as sweeping
gradient flows.
Finally, the tracking guarantees in this chapter, as shown in Theo-

rem 12.2, work very well in combination with the sensitivity results in
Appendix A which can be used to express the rate of change of an opti-
mizer in terms of cost and constraint variations, rather than assuming
an a-priori bound.
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Part III

Feedback-Based Online
Optimization for Power
System Operations
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CHAPTER 13

Nonlinear Power System Modeling

In this third part of the thesis, we turn our attention to the feedback-
based optimization of power systems. Our emphasis is on establishing a
strong connection between the abstract theoretical results of the previous
parts and their application to the power systems context. Further,
we illustrate the design opportunities and pitfalls for feedback-based
optimization schemes for power system operations, we provide simulation
results to showcase both characteristic as well as pathological behavior,
and finally we discuss some potential use cases in the conclusions of the
thesis. First, however, in this chapter, we review modeling basics of
power systems at steady state.

13.1 Notational Conventions

For the remaining chapters, we adopt a slightly different notation to
conform to conventions in power systems analysis, yet retain some con-
sistency with the notation in Parts I and II. In particular, we continue
to denote the inputs, and outputs of an (abstract) physical plant by u
and y, respectively, and use x as a generic variable (often denoting the
power system steady state) where necessary.
Otherwise, calligraphic letters like M, C, etc. continue to denote

(uncountable) sets (e.g., subsets of Rn) and bold capital letters V,E
denote (finite) index sets or matrices, like the admittance matrix Y.
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In the following j :=
√
−1 is reserved for the imaginary unit, e denotes

Euler’s number, and (·)∗ denotes the complex conjugate. Operations
such as sin(·), cos(·), e(·), | · |, etc. apply component-wise.
Constant physical quantities such as impedances, admittances, sus-

ceptance, turn ratios, etc. are denoted by roman (non-italic) symbols,
e.g., z, y, b, n, etc.

Most electrical quantities are in per unit [p.u.], all angles are in radians
[rad], and cost is measured in [$/h], even if it does not necessarily express
an economic quantity.

13.2 AC Power Flow

An electricity grid is modeled as a connected directed graph (V,E)
where V denotes the set of vertices and E denotes the set of edges with
cardinality N = |V| and M = |E|, respectively. Nodes are denoted by
integers from 1 ≤ k ≤ N and edges are denoted by tuples km := (k,m)
describing an edge from node k to node m. Furthermore, Ef(k) and
Et(k) denote the outgoing and incoming edges of node k, respectively.
The neighbors of node k, i.e., the nodes connected to k by either an
incoming or outgoing line, are denoted by N(k).
We consider only balanced power flow conditions and therefore re-

duce the grid to its single-phase equivalent. Furthermore, unless noted
otherwise, we assume that (V,E) is connected (in the sense that any
two nodes can be connected by an undirected path). Although parallel
transmission lines are common in reality, we assume, for simplicity, that
any two nodes are directly connected by at most one line.
Hence, each node k ∈ V has an associated voltage phasor ek :=

vk∠θ ∈ C where vk ≥ 0 and θk ∈ [−π, π) denote the voltage magnitude.
Furthermore, at every node k, the apparent power sk = pk + jqk ∈ C
is injected into the grid, where pk, qk ∈ R denote the real and reactive
power components, respectively.
Each edge km ∈ E from node k to m has an associated from-current

ifkm ∈ C denoting the current flowing out of node k into the line, and
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a to-current itkm ∈ C which is the current flowing out of node m into
the line. Note that, in general, ifkm 6= −itkm (unless line shunts and
tap-changing transformers can be ignored, as explained in Section 13.2.1
below).
Throughout, e, s ∈ CN , it, if ∈ CM , and v, θ, p, q ∈ RN , etc. denote

vectors obtained from stacking the respective variables and parameters.
The flow of power and current through in the electricity grid at steady

state can be captured entirely by the bus admittance matrix Y ∈ CN×N

and the line admittance matrices Yf ,Yt ∈ CM×N . Namely, the quanti-
ties s, p, q, e, v, θ, if , it are related by the algebraic equations

s = p+ jq = diag(e)(Ye)∗ if = Yfe it = Yte . (13.1)

We refer to (13.1) as the AC power flow (ACPF) equations. The fol-
lowing subsection details the construction of these admittances matrices
from the parameters of power transmission lines.

13.2.1 Line Models & Admittance Matrices

We model tap-changing and phase-shifting transformers and power trans-
mission lines using a unified branch model based on a Π-equivalent circuit.
We follow the modeling and the conventions used in Matpower [268]
since this software package was used for most simulations in this thesis.
The reader is also referred to [181, Chap. 2] for alternative representa-
tions of the same model.
Every branch km ∈ E is modeled, as illustrated in Figure 13.1, by a

line admittance ykm which can be decomposed into a line conductance
gkm and a line susceptance bkm. Equivalently, the line admittance can
be expressed as the inverse of the line impedance which can, in turn, be
decomposed into the line resistance rkm and the line reactance xkm. A
charging susceptance bsh

km is split between both branch ends.
Furthermore, an ideal phase-shifting transformer with tap ratio nkm >

0 and phase shift θshift
km ∈ [−π, π) is located at the from-bus, i.e., at bus

k. If the branch models a simple power line without transformer, then
nkm = 1 and θshift

km = 0.
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Figure 13.1: Unified branch model

Hence, the line currents for a line km ∈ E are given by

ifkm := ykm
n2

(
ek − emne−jθ

shift
)

+ j
2n2 bsh

kmek

and

itkm := ykm
(
em − ek 1

ne−jθ
shift
)

+ j
2bsh

kmem .

The line flow admittance matrices Yf and Yt follow directly by noting
that it and if are linear in e.

Finally, we assume that every bus k has a shunt admittance ysh
k which

may be used to model fixed capacitor banks for voltage support or
constant impedance loads.

Given these parameters for every transmission line in the network, we
may write the bus admittance matrix1 as

[Y]km :=


ysh
k +

∑
kl∈Ef(k)

1
n2
kl

(
ykl + j

bsh
kl
2

)
+

∑
lk∈Et(k)

(
ylk + j

bsh
lk
2

)
if k = m

− ykm
nkm

ejθ
shift
km if km ∈ E

− ykm
nkm

e−jθ
shift
km if mk ∈ E

0 otherwise,

where [Y]km denotes the component of Y in the k-th row and m-th
column.

1Note that, without shunts (ysh = 0, bsh = 0), resistances (g = 0) and without
transformers (n = 1, θshift = 0), Y reduces to a weighted graph Laplacian of (V,E).

230



13.3 Canonical AC Optimal Power Flow

13.3 Canonical AC Optimal Power Flow

Throughout the remaining chapters, we will usually consider a standard
AC optimal power flow (ACOPF) problem

minimize Φ(v, θ, p, q) (13.2a)
subject to diag(e)(Ye)∗ = p+ jq (13.2b)

p ≤ p ≤ p (13.2c)
q ≤ q ≤ q (13.2d)
v ≤ v ≤ v (13.2e)
|Yfe| ≤ i |Yte| ≤ i , (13.2f)

where p, q ∈ RN denote the real and reactive power injection at each
bus, and Φ : R4N → R is a differentiable objective function.
The problem (13.2) is an abstraction and simplification of practical

ACOPF problems, although widely accepted as a benchmark problem
structure in academic research [181, 179, 105].
The power flow equations (13.2b), although written here as a set of

2N complex equations, are usually split into 4N real-valued equations
for numerical computations.
Furthermore, (13.2c–f) denote upper and lower limits on real and

reactive power injection, bus voltage magnitudes, and line currents,
respectively. Fixed power loads at each bus can be modeled by offsetting
the power injection constraints (13.2c–d) accordingly. More precisely,
we generally assume limits of the form

p := pG − pL p := pG − pL q := qG − qL q := qG − qL , (13.3)

where pL, qL denote fixed power loads and pG, qG, pG, qG denote limits
on the generation capacity. Without loss of generality, if no generator
is placed at node i, we have pG = qG = pG = qG = 0.

Although from a physical perspective, it is more natural to formulate
constraints on the power generation rather than on power injections
into the grid, the latter will be more convenient for the discussion in
Chapter 14.
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Note that (13.2) falls within the class of nonlinear optimization prob-
lems discussed in Section 2.2. In particular, if constraint qualifications
such as LICQ hold, every (local) optimizer of (13.2) satisfies the KKT
conditions and KKT points that satisfy the SSOSC are local minimizers
of (13.2).
Although (13.2) is a non-convex optimization problem and generally

intractable, it is still routinely solved. In particular, off-the-shelf (local)
solvers often perform well [106, 107, 268] and convex relaxation tech-
niques have recently been studied extensively to certify global optimality
of solutions [169, 180, 182, 92, 157].
The requirement that constraint qualifications have to hold is often

overlooked in the study of ACOPF because degenerate constraints do
not seem to pose a problem in practice. This phenomenon has been
rigorously explained in [Ha11] using the notion of generic transversality
from differential topology. In particular, it was shown that the feasi-
ble set of (13.2) satisfies LICQ generically (i.e., for almost all problem
instances) under very mild assumption.
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CHAPTER 14

A Geometric Perspective
on AC Power Flow

This chapter provides a geometric interpretation of the nonlinear steady-
state power flow model described in the previous chapter. In particular,
we discuss how power system models can be seen as embeddings or
parametrizations of an abstract power flow manifold (PFM), which rep-
resents all physically possible steady states of a power system in the
given modeling framework.

This insight then allows us to rigorously apply the results from Parts I
and II in the power systems context. In particular, we discuss two
projected gradient flows on the PFM, which both define a desired closed-
loop behavior for feedback-based optimization schemes. We will propose
numerical implementations in the subsequent chapter.

In this chapter, we also identify three metrics on the PFM, which lead
to different algorithm variations to which the same theoretical results
apply. Each of these metrics has been used implicitly in the design
of existing algorithms, although they have not been identified as such.
With a small example, we also illustrate how the choice of metric can
dramatically affect the algorithms’ behavior when the problem is ill-
conditioned, and the grid is close to voltage collapse.
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14.1 Preliminaries on Smooth Manifolds

We quickly review some important notions from differential geometry.
Although we will use the following terms fairly loosely, they have rigorous
definitions that can be found in standard texts on differential geometry
like [162, 48].
A smooth n-dimensional manifold M is a set of points that satisfies

certain technical properties and, more importantly, around every point
x ∈ M,M is locally Euclidean. That is, around x,M “looks like” Rn.
This concept is captured by the notion of a chart, which maps a chart
domain U ⊂ M to a subset of Rn and back (similar to a map of a
geographic area which is a one-to-one representation of a small portion
of the earth’s surface). A set of charts that cover the entire manifold
and which are “compatible” form an atlas. By compatibility, we mean a
smooth coordinate transformation between any two chart domains that
overlap.
The definition of a manifold in terms of local charts is very general

and is particularly useful to extend definitions of objects that are well-
defined locally on Rn to manifolds. In particular, this approach has been
taken in Chapter 4 to define oblique projected dynamical systems on
manifolds.

However, smooth manifolds are often visualized and treated as “hyper-
surfaces” embedded in a higher dimensional vector space. In this context,
the most relevant result is that level sets of smooth functions with con-
stant rank are smooth manifolds. More precisely, if F : Rm → Rn is
continuously differentiable and ∇F (x) has rank k ≤ n for all x for which
F (x) = r, then the setM := {x |F (x) = r} is a smooth (C1) manifold
of dimension m−−k [48, Thm. 5.8].

Embeddings can be local in the sense that if ∇F (x) has rank k for all
x in an open set V ⊂ Rn, thenM := {x ∈ V |F (x) = r} is a manifold
(albeit an “open” manifold).

Embeddings also make it easy to visualize the tangent space TxM of
a manifold M at x ∈ M: Namely, for M := {x ∈ V |F (x) = r} the
tangent space at x is simply given by the kernel of ∇F , i.e., TxM =

234



14.2 The Power Flow Manifold

ker∇F (x) = {v | ∇F (x)v = 0} [211, Ex. 6.8].
Concerning the topology of manifolds, we say that two manifolds are

homeomorphic if there exists a continuous bijection, i.e., an invertible
one-to-one map between the two manifolds.

14.2 The Power Flow Manifold

Given the bus admittance matrix Y, we define the power flow manifold
as the (abstract) set of all steady states of the power system that are
consistent with the power flow model of the previous chapter. For
instance, the following may define a point on the power flow manifold:

(i) A complex N -dimensional vector e ∈ CN of voltage phasors: Given
e, we can immediately compute real and reactive power injections
p, q ∈ RN , the line currents if , it ∈ CM (using Yf ,Yt), as well as
other quantities such as line power flows, power factors, etc.

(ii) A point (v, θ, p, q) ∈ R4N that satisfies the ACPF (13.1).

(iii) Two N -dimensional vectors p, q ∈ RN of real and reactive power
injections, if there exist vectors v, θ ∈ RN such that (13.1) is
satisfied.

Point (i) above allows us to draw the following conclusion: The
(steady) state of a power system is uniquely determined by the complex
N -dimensional vector e of voltage phasors. Conversely, every vector
e ∈ CN describes a physical state of the power system at steady state.
Hence, the PFM is homeomorphic to CN , and consequently to R2N .1
In particular, the PFM has dimension 2N and per se does not have any
holes or a boundary. The map M → R2N that maps every point of
the power flow manifold to the real and imaginary part of its voltage
phasors constitute a global chart for the manifold.

1The equivalence to R2N is stems from a Cartesian decomposition of any complex
number. Polar coordinates are not suitable to establish this equivalence, because
a polar representation maps C to [0,∞) × [0, 2π) which is (1) not R2, and (2) not
one-to-one because 0 ∈ C has no unique polar representation.
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Point (ii) hints at an embedding of the PFM in R4N : By defining

F (v, θ, p, q) :=
[
Re {diag(e)(Ye)∗}
Im {diag(e)(Ye)∗}

]
−
[
p

q

]

the PFM can be represented as the level set {(v, θ, p, q) |F (v, θ, p, q) = 0}.
In the forthcoming section we will study this formulation further by
showing that F has full rank (and thus, indeed, defines an embedded
manifold) and by deriving the expression for the tangent space.
Point (iii) above corresponds to a classical AC power flow calcula-

tion: Given the power injections at every bus, we need to compute the
corresponding voltage magnitude and angles at every bus. This setup,
however, does not correspond to a clear description of the power flow
manifold:

First, if (v, θ) is a voltage phasor satisfying (13.1), then every voltage
phasor v∠(θ+δ1) satisfies (13.1). This rotational symmetry is commonly
eliminated by designating a slack bus to serve as an angle reference.
Second, even with a fixed angle reference, (13.1) often has multiple

admissible voltage profiles for a given set of power injections. This
property is well-known and simply due to the fact that, as a nonlinear
system of equations in (v, θ), (13.1) may admit multiple solutions or
none.

Finally, the bus admittance matrix Y is generally very ill-conditioned,
which makes it difficult to solve (13.1) numerically. In particular, in
the absence of any (nodal or line) shunts impedances and with purely
inductive lines, Y reduces to a weighted Laplacian of the graph (V,E)
which is naturally rank-deficient. As a remedy, in numerical power flow
simulations, the slack bus serves not only as an angle reference but also
as a voltage reference with a fixed voltage. Consequently, the real and
reactive power injections at the slack bus cannot be fixed in advance
and need to be treated as variables for (13.1) to be a well-posed system
of 2N equations with 2N variables.
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14.3 A Simple PFM Embedding

As noted in the previous section, the N complex equations that make up
the AC power flow equations (13.1) can be split into 2N real equations
and written in the implicit form

0 = F (v, θ, p, q) :=
[
Re {diag(e)(Ye)∗}
Im {diag(e)(Ye)∗}

]
−
[
p

q

]
,

where F : R4N → R2N .
It is straightforward to see that ∇F =

[
∇(v,θ)F −I2N

]
∈ R2N×4M

has full rank 2N , and therefore the set

M := {(v, θ, p, q) |F (v, θ, p, q) = 0}

is indeed an embedding of the 2N -dimensional PFM in R4N . Henceforth,
for simplicity, we will thus refer toM⊂ R4M as the PFM (although it
is, strictly speaking, only an embedding of the abstract PFM).
The tangent space ofM at x ∈M is given by the linear space

TxM := {v | ∇F (x)v = 0} .

An explicit expression for ∇(v,θ)F was derived in [41] and takes the form

∇(v,θ)F (v, θ, p, q) =
(
bdiag(Ye)?e+ bdiag(e?)e

[ IN 0
0 −IN

]
bYe

)
R(e) ,
(14.1)

where e = v∠θ, b·e is a “realification”-operator given by

bAe :=
[
ReA − ImA

ImA ReA

]
,

and where we have defined

R(e) :=
[
diag(cos θ) − diag(v) diag(sin θ)
diag(sin θ) diag(v) diag(cos θ)

]
.

Choosing e = 1 (which is always possible) leads to the flat-voltage
solution. In the absence of phase-shifting transformers (i.e., n = 1 and
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θshift = 0) and shunts (i.e. ysh = 0 and bshkl = 0 for all kl ∈ E) we further
have diag(1∠0)(Y(1∠0))∗ = p + jq = 0. In other words, no power is
injected into or extracted from the grid.

For this case, it was noted in [41] that, at the flat-voltage solution, we
have

∇F (1, 0, 0, 0) =
[
Re Y − Im Y −I 0
Im Y Re Y 0 −I

]
.

The system of equations ∇F (1, 0, 0, 0)w = 0 hence corresponds to the
linear coupled power flow model introduced in [44]. If we further neglect
line resistances (i.e., r = 0) we arrive at

∇F (1, 0, 0, 0) =
[

0 − Im Y −I 0
Im Y 0 0 −I

]
which corresponds to the common DC power flow model [235].

Remark 14.1. The embedding presented in this chapter is by far not the
only representation of the PFM. On one hand, one can switch between
Cartesian and polar coordinates for both voltages and powers [181, 105].
On the other hand, for radial grids, one can also express the same
physical laws using the DistFlow model [49, 19, 20], or even as the
submanifold of rank-1 matrices of CN×N as a starting point for a convex
relaxation [169].
Since we have shown in Chapter 4 that projected dynamical systems

are coordinate-free, we can state that any projected gradient flow on
the PFM can be expressed in any valid coordinate representation listed
above. �

14.4 Input-Output Map & Singularities

We have seen in the previous section that the 2N -dimensional PFM
has a straightforward embedding M ⊂ R4N . To perform closed-loop
optimization on the PFM, we need to identify an input-output map of
the power system.
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For this purpose, we need to partition the state vector x := (v, θ, p, q)
into three subvectors, each containing a specific type of variable. Namely,
xc ∈ Rr denotes the controllable variables, and xd ∈ Rs contains all
variables that are governed by external processes, but that are not con-
trollable. Together xc and xd form the exogenous variables xex. As a
fact, we always have r + s = 2N . That is, the number of exogenous
variables matches exactly the dimension of the PFM. The remaining 2N
variables are called endogenous and denoted by xend.

The partition of the state variables into xc, xd, and xend is done by
bus type, as summarized in Table 14.1. For a PQ bus i with flexible
generation, active and reactive power injections pi and qi are controllable
variables since they can be controlled directly via appropriate set-points,
whereas vi and θi will adapt autonomously to the current state of the
grid. Hence, they are endogenous. Similarly, for a PV bus i (with
flexible generation) the controllable variables are pi and vi while qi and
θi are endogenous. For a PQ load bus without generation p and q are
uncontrollable, but exogenous.

Finally, one node (without loss of generality, we choose Bus 1) will act
as the slack bus of the system. The voltage v1 is controllable whereas θ1
is uncontrollable since it will serve as the angle reference and be set to
0. Consequently, p1 and q1 are strictly speaking endogenous because by
definition the slack bus power injection compensates for power imbalance
rather than following a set-point.

Table 14.1: Partition of state variables by bus type

Exogenous Endogenous

Controllable Uncontrollable

PQ generation pi, qi vi, θi
PQ load pi, qi vi, θi
PV generation pi, vi qi, θi
slack bus v1 θ1 p1, q1

From the input-output perspective we consider the exogenous variables
as inputs, i.e., u = xex, even though some inputs are fixed and cannot

239



Chapter 14. A Geometric Perspective on AC Power Flow

be adjusted. This applies in particular to the angle reference θ1 = 0 and
the power injection at a PQ load bus i, which is given by pi = p

i
= pi

in view of (13.2). The endogenous variables form the system outputs
y = xend.
Given these definitions of the inputs u and the output variables y,

we can apply the Implicit Function Theorem [213] to conclude the local
existence of an input-output map h whenever ∇yF (y, u) ∈ R2N×2N has
full rank.
More precisely, for every (y, u) ∈ M for which ∇yF (y, u) has full

rank, there exists a neighborhood V of u, a neighborhood W of y, and
a continuously differentiable map h : V → W such that F (h(u), u) = 0
for all u ∈ V . Moreover, the Jacobian of h is given by

∇h(u) := − (∇yF (y, u))−1∇uF (y, u) .

Since ∇yF (y, u) has generally full rank in a neighborhood of the
flat-voltage solution we can define h around this point. The largest
(connected) neighborhood of the flat-voltage solution on which an input-
output map exists will be referred to as the high-voltage PFM Mhigh.
More precisely,Mhigh is defined as the largest connected component of
{(y, u) ∈ M| rank∇yF (y) = 2N} containing the flat-voltage solution.
The setMhigh is itself a manifold as a (relatively) open subset ofM.

In the subsequent chapters, we will study projected gradient flows and
other dynamical systems on M and Mhigh. As we can see already, a
dynamical system defined onMhigh is not guaranteed to admit complete
solutions because trajectories may reach the boundary ofMhigh in finite
time, resulting in the loss of a well-defined input-output map.
From a power systems perspective, we will refer to ∇yF (y, u) as the

power flow Jacobian, which is dependent on the bus types. A singular
power flow Jacobian (also referred to as an algebraic singularity) is
generally associated with voltage collapse conditions [83, 252]. The
subset of M on which ∇yF (y, u) is singular has been referred to as
impasse surface [128, 155] as it splits M into multiple submanifolds,
but it cannot generally be crossed. The following well-known example
illustrates this idea.
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Figure 14.1: 2-bus system with shunt capacitor

Example 14.1 (2-bus grid / Nose Curve). Consider the 2-bus system in
Figure 14.1 which is inspired by [251]. Namely, we consider a generator
at Bus 2 connected to the rest of the grid (represented by Bus 1) through
a lossy transmission line (without line shunt impedance). Bus 1 serves
as the angle reference and exhibits a constant voltage magnitude of
v1 = 1.0. At the generator bus, a fixed shunt capacitor is installed.

Unlike the classical 2-bus system studied in [252, Ch 2], we consider a
lossy transmission line and include a shunt capacitance at the terminal
bus. Furthermore, for consistency with the sign convention, instead
of a load connected to the terminal bus, we consider a generator. In
particular, a positive value of p2 refers to real power injected into the
grid.
The power flow equations for the generator bus are given by

p2 = −v1v2(g cos θ + b sin θ) + gv2
2

q2 = −v1v2(g sin θ − b cos θ)− (b + bsh)︸ ︷︷ ︸
b̃

v2
2 . (14.2)

We can solve these equations for v2. For this, we rearrange terms and
square both sides of each equation, which yields

(p2 − gv2
2)2 = v2

1v
2
2(g2 cos2 θ + b2 sin2 θ + 2gb cos θ sin θ)

(q2 + b̃v2
2)2 = v2

1v
2
2(g2 sin2 θ + b2 cos2 θ − 2gb cos θ sin θ) .
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Adding up both equations and using sin2 θ + cos2 θ = 1, we get

p2
2 − 2gp2v

2
2 + g2(v2

2)2 + q2
2 + 2b̃q2v

2
2 + b̃2(v2

2)2 = v2
1v

2
2(g2 + b2)

which is a quadratic function in v2
2 . After reorganizing the terms, we get

(g2 + b̃2)(v2
2)2 − (2gp2 − 2b̃q2 + v2

1(g2 + b2))v2
2 + p2

2 + q2
2 = 0 ,

and we see that (14.2) admits a solution if and only if

(2gp2 − 2b̃q2 + v2
1(g2 + b2))2 ≥ 4(g2 + b̃2)(p2

2 + q2
2) (14.3)

holds. More precisely, the points (p2, q2) which satisfy (14.3) with equal-
ity define the impasse line of the grid. Whenever, (14.3) is strictly
satisfied, (14.2) admits two solutions corresponding to the two voltage
surfaces separated by the impasse line. In this case, v2 can be explicitly
computed as

v2
2 = 1

2(g2+b̃2)

(
(2gp2 − 2b̃q2 + v2

1(g2 + b2))

±
√

(2gp2 − 2b̃q2 + v2
1(g2 + b2))2 − 4(g2 + b̃2)(p2

2 + q2
2)
)
.

In Figure 14.2, this parametrization of v2 as a function of (p2, q2)
is illustrated. In particular, one can clearly identify the two voltage
surfaces separated by the impasse line. Each voltage set is an open
submanifold of the PFM. The observation that low-voltage manifold
exhibits an “kink” at the point (p2, q2, v2) = (0, 0, 0) does not contradict
this fact because Figure 14.2 does not show an embedding of the PFM
but merely a parametrization of the voltage magnitude. �

Remark 14.2. The assignment of input and output variables according
to Table 14.1 is very basic, yet it captures the main source of algebraic
singularities.
First, since the variables xd are uncontrollable (and assumed to be

fixed) we may as well consider a reduced input-output map y = ĥ(xc)
mapping xc to the outputs. In other words, we have F (ĥ(xc), xc, xd) = 0.
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Figure 14.2: Voltage Surfaces of 2-bus example with impasse surface
(red) and upper voltage surface (dashed voltage level curves) and lower
voltage surface (dotted voltage level curves).

The existence of ĥ depends on the non-singularity of ∇yF (y, xc, xd) as
before, and the Jacobian of ĥ is given by

∇ĥ(xc) := − (∇yF (y, xc, xd))−1∇xcF (y, xc, xd) ,

and therefore the domain of ĥ is the same as for h.
Second, one can define an augmented output ŷ composed of y and

quantities that can be explicitly computed from u and y. One such
example are the line currents if = Yfe and it = Yte. Defining new
output variables in this way, does not affect the existence of the input-
output map. �

14.5 Projected Gradient Flows on the PFM

We now discuss why and under which conditions projected gradient flows
on the PFM are well-defined, thus establishing the connection to the
results in Parts I and II. At this point, we are not concerned about the
feedback control design, but only about whether the desired closed-loop
dynamics are well-posed.
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Since we are interested in steering the physical grid to an optimal
steady state instead of directly solving (13.2), we face a reachability
problem: Assume that we actuate slowly enough not to excite any under-
lying dynamics, and, consequently, the grid is fully characterized by the
steady-state ACPF equations. Further, assume that bus types are fixed
and that inputs and outputs are separated according to Table 14.1. If the
initial grid state is the flat-voltage solution, we cannot hope to steer the
system outside ofMhigh. Trying to do so would require passing through
an algebraic singularity at which the steady-state input-to-output map
is not well-defined.
For this reason, instead of the ACOPF problem (13.2), we consider

the optimal steady-state problem

minimize Φ(y, u)
subject to y = h(u)

u ∈ U
(y, u) ∈ X
u ∈ Uhigh ,

(14.4)

where U collects all the constraints on the input variables, e.g., the real
and reactive power injection at PQ buses, and X ⊂ R4N combines the
remaining (engineering) constraints which may depend on a combination
of the input and output variable such as line flow limits.

More precisely, departing from (13.2), we generally have the structure

U := {u |u ≤ u ≤ u} , (14.5)

where u, u combine components from p, q, v, p, q, v, respectively, and
incorporate the angle reference constraint 0 ≤ θ1 ≤ 0. The engineering
constraints X take the form

X :=
{

(y, u) | y ≤ y ≤ y, it(y, u) ≤ i, if(y, u) ≤ i
}
, (14.6)

where y, y combine the remaining components from p, q, v, p, q, v, respec-
tively. The notation it(y, u) emphasizes the fact that the branch currents
are a function of u and y.
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Furthermore, in (14.4) the set

Uhigh := {u ∈ R2N | ∃y : (y, u) ∈Mhigh}

defines the open set on which h is well-defined.
Next, we can reduce (14.4) by replacing y with h(u), which results in

minimize Φ̃(u) := Φ(h(u), u)
subject to u ∈ U ∩ h−1(X ) ∩ Uhigh ,

(14.7)

where h−1(X ) := {u ∈ Uhigh | (h(u), u) ∈ X}.
Note that every (local) optimizer of the ACOPF problem (13.2) re-

stricted toMhigh is a (local) optimizer of (14.4) (and (14.7)) and vice
versa. However, because Uhigh is an open set, (14.4) is not generally
well-posed: It can happen (as we will see in the forthcoming illustrative
examples) that a minimum of Φ is reached on the boundary of Uhigh, i.e.,
at a voltage collapse point. More precisely, although Φ has an infimum
over the feasible set of (14.4), it might not have a minimum.
For this reason, it is convenient, if not necessary, to introduce the

following no-collapse assumptions:

Assumption 14.1 (strong no-collapse condition). The problem (14.4)
satisfies U ⊂ Uhigh.

Assumption 14.2 (weak no-collapse condition). The problem (14.4)
satisfies (U ∩ h−1(X )) ⊂ Uhigh and (U ∩ h−1(X )) is closed.

In other words, under the strong no-collapse assumption, for every admis-
sible input u ∈ U , the steady-state map h exists and the feasible set of
(14.4) (and (14.7)) is closed. Under the weak no-collapse assumption, the
same is true for any feasible state (y, u) (i.e., u ∈ U and (h(u), u) ∈ X ).
This distinction between weak and strong no-collapse conditions is rel-
evant when discussing control designs: If one can guarantee that no
transient constraint violations of X and U can occur, then the weak
no-collapse assumption is sufficient to ensure well-posedness, i.e., that
trajectories do not leaveMhigh. However, if one can only guarantee that
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the input constraints U are enforced at all times, but the remaining engi-
neering constraints may be violated temporarily, the strong no-collapse
assumption is required.

Under normal operating conditions, a well-designed power grid with ef-
fective engineering constraints will satisfy (at least) the weak no-collapse
condition. In particular, constraints on the bus voltage magnitudes
guarantee that voltage collapse cannot occur. However, under critical
conditions, e.g. after line failures, these no-collapse assumptions might
not be satisfied anymore [251, 252].
At this point, we can introduce two types of optimization dynamics

based on projected gradient flows onMhigh. These dynamics define the
closed-loop behavior that we implement in the next chapter with appro-
priate feedback controllers. The purpose of this section is to summarize
the fact that these dynamics are mathematically well-posed and exhibit
desirable convergence and stability properties.
A first model will approximately enforce the engineering constraint

set X with a penalty function while the second approach incorporates
both U and X directly into the projected gradient flow.

14.5.1 Penalty-Relaxed Projected Gradient Flows

Let the strong no-collapse condition (Assumption 14.1) hold. Then,
(14.7) is equivalent to

minimize Φ̃(u)
subject to u ∈ C := U ∩ h−1(X ) .

(14.8)

Further, let ΨX :Mhigh → R be an appropriate penalty function for
the engineering constraints X . We will assume that ΨX is a quadratic
penalty on constraint violations, i.e., in view of (14.6), we define

ΨX (y, u) := ‖max{0, y − y}‖2 + ‖max{0, y − y}‖2

+ ‖max{0, it(y, u)− i}‖2 + ‖max{0, if(y, u)− i}‖2 . (14.9)
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This allows us to approximate (14.8) by

minimize Φ̃(u) + ρΨ̃X (u) subject to u ∈ U , (14.10)

where ρ > 0 is a penalty parameter and Ψ̃X (u) := ΨX (h(u), u). Given
a continuous metric U → S2N

+ , we consider the projected gradient flow

u̇ = ΠG
U
[
− gradG(Φ̃ + ρΨ̃X )

]
(u) . (14.11)

Note that any solution u : [0, T ] → C with T > 0 of (14.11) defines a
trajectory on the PFM by the fact the outputs at time t are given by
y(t) = h(u(t)) and consequently (y(t), u(t)) = (v(t), θ(t), p(t), q(t)) ∈M.

For the system (14.11), we can apply the results from previous chapters
and summarize their consequences as follows:

Statement 1. Consider the projected gradient flow (14.11) derived
from the ACOPF problem (13.2). If Assumption 14.1 (strong no-
collapse condition) is satisfied the following hold:

(i) The system (14.11) admits a complete solution for every ini-
tial condition u(0) ∈ U .
Reason: Because Corollaries 4.2 and 4.3 apply. In particular,
U is defined by box constraints according to (14.5), hence it is
compact and (trivially) Clarke regular.

(ii) Every trajectory of (14.11) converges to the KKT points of
(14.10), but only minimizers can be stable, and asymptotic
stability of a limit point implies strict minimality.
Reason: Because Proposition 8.1 and Theorem 8.1 apply.

(iii) Assume that the power system (and low-level control) dynam-
ics ζ̇ = f(ζ, u) are exponentially stable for fixed u. Fur-
ther, let the input-output map y = h(u) result from combi-
nation the steady-state map of ζ̇ = f(ζ, u) and an output map
y = h′(ζ, u).
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Then, trajectories of the feedback interconnection of (14.11)
and ζ̇ = f(ζ, u) with a scalar control gain ε converge to the
KKT points of the ACOPF problem (14.10) for all ε smaller
than some threshold ε?. However, only minimizers can be
stable, and asymptotic stability implies strict minimality.
Reason: Because Theorem 11.1 applies.

(iv) The system (14.11) (as well as the interconnection with a
dynamical plant ζ̇ = f(ζ, u)) can be approximated in terms
of uniform convergence and semiglobal practical asymptotic
stability with an anti-windup implementation as in Chapter 5.
Reason: Because Corollary 5.2 and Theorem 5.2 apply.

(v) Independently of the anti-windup gain K, any equilibrium
point of the anti-windup implementation of (14.11) corre-
sponds the power grid being at a KKT point of (14.10). More-
over, if G ≡ I is the identity matrixa, then trajectories of
the anti-windup implementation converge to the set of these
equilibrium points for any K > 0.
Reason: Because Proposition 9.1 and Theorem 9.3 apply.

aPresumably, the assumption that G ≡ I can be relaxed in Theorem 9.3.

Statement 1 can be strengthened in several ways. For instance, under
pertinent Lipschitz assumptions, solutions of (14.11) are unique.

Further, the constraint structure of U can be generalized as long as U
remains compact, Clarke regular, prox-regular, or convex, depending on
the specific statement. For example, the box constraints on power injec-
tion can be replaced with more general capability curves incorporating
field and stator current limits of synchronous machines, or power factor
and apparent power constraints of inverters.

14.5.2 Fully Projected Gradient Flow

As a second desirable closed-loop behavior, we incorporate the engineer-
ing constraints X into the projected gradient dynamics. This choice
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allows us to reach slightly different conclusions.
First, we weaken the no-collapse assumption. Namely, note that (14.8)

is equivalent to

minimize Φ̃(u)
subject to u ∈ C := U ∩ h−1(X )

(14.12)

under the weak no-collapse condition (instead of the strong no-collapse
condition).
Given a continuous metric G : C → S2N

+ , we can therefore consider
the projected gradient flow

u̇ = ΠG
C
[
− gradG Φ̃

]
(u) (14.13)

to solve (14.12) instead of the penalty-relaxed problem (14.10).

Statement 2. Consider the projected gradient flow (14.13) derived
from the ACOPF problem (13.2). If the weak no-collapse assump-
tion is satisfied the following hold:

(i) The system (14.13) generically admits a complete solution for
every initial condition u(0) ∈ C.
Reason: Because Corollaries 4.2 and 4.3 apply, as before, if
C is compact and Clarke regular. Compactness is guaranteed
because C ⊂ U and U is compact. Clarke regularity is guar-
anteed if C satisfies LICQ (as seen in Example 2.2). LICQ
is, however, generically satisfied for ACOPF problems of the
form (13.2) as shown in [Ha11].

(ii) Every trajectory of (14.13) starting in U converges to the
KKT points of (13.2) which are “high-voltage” solutions. Only
minimizers can be stable, and asymptotic stability of a limit
point implies strict minimality.
Reason: Because Proposition 8.1 and Theorem 8.1 apply.

Under the weak additional assumption that the “linearized output
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sets” satisfy LICQ (cf. Assumption 6.3), the following hold:

(iii) The system (14.13) can be approximated in terms of uniform
convergence and semiglobal practical asymptotic stability with
an LOP discretization as proposed in Chapter 6.
Reason: Because Theorems 6.1 and 6.2 apply.

(iv) Moreover, for all step-sizes α smaller than some threshold α?,
the solutions of the LOP discretization converge to critical
points of (13.2) onMhigh and asymptotic stability of a limit
point implies strict minimality.
Reason: Because Theorem 10.1 applies.

14.6 Riemannian Metrics on the PFM

We have seen that the projected gradient flows (14.11) and (14.13) ex-
hibit the properties in Statements 1 and 2 for any continuous metric G
on U and C, respectively. It remains to discuss viable choices for G.
In the following, we present three different metrics that have been

considered in the literature (although they have not been identified as
such). With a small example on the 2-bus test case, we then illustrate
the metrics’ different behavior with respect to algebraic singularities.
This investigation is motivated by the fact that feedback-based op-

timization schemes have been proposed to manage curative actions in
critical operating conditions after contingencies [144, 174]. Therefore,
it is natural to ask whether feedback-based algorithms exhibit a robust
behavior against voltage collapse in these challenging situations. Even
though our insights are very preliminary, they indicate that the choice
of metric is crucial for this purpose.

Explicit Euclidean Metric

A straightforward choice for the metric G is the identity matrix I2N ,
which refer to as the explicit (Euclidean) metric GE. Clearly, since
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GE ≡ I2N is constant, Statements 1 and 2 hold for the penalty-relaxed
partially projected gradient flow (14.11) as well as the fully projected
gradient flow (14.13), respectively.
By using the explicit metric, we fully accept the viewpoint that we

can formulate the ACOPF problem in the space of inputs u ∈ R2N .
The penalty-relaxed partially projected gradient flow (14.11) can conse-
quently be discretized as a standard projected gradient descent scheme
(see Remark 6.1) of the form

u+ = PU
(
u− α∇Φ̃(u)

)
= PU

(
u− αH(u)T∇Φ(h(u), u)T

)
,

where α > 0 is a step-size and H(u)T =
[
∇h(u)T I2N

]
. This approach

has been pursued, for example, in [111] with a barrier instead of a penalty
function.
Apart from its simplicity, one particular advantage of this metric is

that it preserves sparsity and is therefore well-suited for distributed
implementations. Although, for this to work, other requirements have
to be met. E.g., U and Φ̃ need to decomposable and ∇h(u) needs to be
approximated with a sparse matrix. In particular, if U = U1 × . . .× UN
decomposes into N sets, each associated with a single bus, the projection
onto U can be performed locally at each bus.
The “explicit” viewpoint, i.e., considering a problem purely in the

input space, has been adopted not only for projected gradient schemes,
but also for constrained saddle-point approaches [29, 57, 71] and dual
methods [43, 42].

Newton Metric

Alternatively to the explicit Euclidean metric, if Φ is strongly convex
and twice continuously differentiable, one can choose

GN (u) := ∇2
uuΦ̃(u) = H(u)T∇2

xxΦ(h(u), u)H(u) � 0

resulting in a projected Newton flow in the input variables u. Hence
we refer to GN as the Newton metric on the PFM. At least in the
unconstrained case, this metric yields superlinear convergence when
discretized.
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If a penalty function is used to enforce the engineering constraints X ,
the Hessian of the penalty-augmented cost function Φ̃ + ρΨ̃ should
be used. However, since a penalty function like (14.9) is not twice
continuously differentiable, additional theoretical considerations have to
be made to guarantee well-posedness.
This approach has been taken in [241], where a time-varying setup

was considered, and a quasi-Newton method was used to approximate
the Hessian of a penalty-augmented cost function and yield a distributed
implementation.

One drawback of the Newton metric is the fact that it puts additional
requirements on the cost function and does, in general, not allow for con-
stant cost function terms, e.g., renewable generation with zero marginal
cost of generation.

Implicit Metric

As a final possibility, we consider the implicit Euclidean metric defined
by

GI(u) := H(u)TH(u) � 0 .

This metric has been used in [Ha14, Ha15] and results from project-
ing the ambient gradient ∇Φ(v, θ, p, q) ∈ R4N onto the tangent space
TxM⊂ R4N , i.e., gradGI Φ(u) is given by the solution of

minimize
w

1
2‖∇Φ(x)T − w‖2 subject to ∇F (x)w = 0 . (14.14)

To motivate the expression for GI, note that w can be decomposed
into wu and wy according the input-output assignments. Consequently,
we may write ∇F (x)w = 0 as

wy = − (∇yF (x))−1∇uF (x)wu = ∇h(u)wu .

Hence, using w = H(u)wu, we can rewrite (14.14) as

minimize
wu

1
2‖∇Φ(x)T −H(u)wu‖2 , (14.15)
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(a) (b)

Figure 14.3: Construction of explicit (left) and implicit (right) gradient
from the ambient Euclidean gradient ∇Φ(x). The explicit gradient is
given by gradGE Φ = ∇uΦ+∇h∇yhΦ (omitting arguments) whereas the
implicit gradient is obtained from a projection of ∇Φ onto the tangent
space TxM.

and we conclude that w?u = gradGI Φ(x) satisfies

∇Φ(x)T = H(u) gradGI Φ(u) .

Multiplying both sides with (H(u)TH(u))−1H(u)T yields the fact that
GI has to be defined as GI(u) = H(u)TH(u).

Although it is more involved in its (algebraic) construction, the implicit
metric can be shown to be well-defined the entire PFMM rather than
just onMhigh. In particular, trajectories of the projected gradient flow
models (14.11) and (14.13) are independent of the choice of input and
output variables.
This fact is illustrated in Figure 14.3, where the definition of the

implicit metric is compared to the construction of the explicit gradient.
In particular, we can see that the implicit gradient is well-defined for
any linearization point x onM and its geometric construction does not
rely on the existence of h. The explicit gradient, on the other hand,
requires ∇h(x) to map the gradient component ∇yΦ into the input
space. Namely, we have gradGE(x)Φ = ∇xΦ(x)T +∇h(x)T∇yΦ(x)T .
Similarly to the implicit metric, the Newton metric also enjoys the
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property of being well-defined on all of M independently of the input-
output assignment. However, for the Newton metric to be well-defined,
the additional requirement that Φ is twice continuously differentiable
and strongly convex (in R4N ) needs to be satisfied.
With the implicit or Newton metric used in the full input-output

projection model (14.13) it is therefore possible, in theory, to swap of
input and output variables during runtime. However, we will see in the
next section that the Newton metric, nevertheless, has shortcomings
with respect to avoiding algebraic singularities.

14.7 Numerical Illustration: 2-Bus Case

To illustrate the effect of different metrics, we study unconstrained gradi-
ent descent on the power flow manifold of the 2-bus test case introduced
in Example 14.1.
We ignore all constraints such as voltage limits, line ratings, etc. ex-

cept for the power flow equations. Namely, we consider unconstrained
gradient flows onMhigh in the input coordinates the form

u̇ = − gradG Φ̃(u) = −G(u)−1∇Φ̃(u)T

= −G(u)−1H(u)T∇Φ(h(u), u)T ,
(14.16)

where H(u)T =
[
∇h(u)T I2N

]
holds with h being the steady-state map

on Uhigh, as before. Clearly, (14.16) is well-defined only on Uhigh, but
neither the strong nor the weak no-collapse assumption hold.

In order to simulate (14.16), we perform a simple forward Euler integra-
tion where we use the standard ACPF solver shipped with Matpower
to evaluate h(u). The step-size in the following simulations has been
chosen for each metric separately, and results are not representative of
convergence speed.
The cost is a convex quadratic function in (p2, q2) with a minimizer

outside of Uhigh. The minimizer subject toM lies on the impasse surface.
More concretely, the cost function promotes power delivery at Bus 2 and
has a minimum for a larger power output than the maximum power that
the line can deliver.
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Figure 14.4: Trajectories for explicit (top), Newton (middle), and im-
plicit gradient descent (bottom) on the 2-bus “nose curve”; The green
diamond represents the constrained minimizer.
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Figure 14.5: Conditioning of power flow Jacobian for explicit (left),
Newton (middle), and implicit gradient descent (right)

Figure 14.4 illustrates the behavior of a gradient descent on the PFM
for each of the three proposed metrics for the 2-bus grid from Exam-
ple 14.1.
The explicit and Newton gradient descents ignore the nonlinearity

of the power flow equations. This becomes particularly apparent in
the p − q-plane (right-hand panels in Figure 14.4): The trajectory of
the explicit gradient descent crosses level curves in a normal direction
(which is a classical feature of gradient flows in Rn). The Newton method
approaches the unconstrained optimizer in the p− q-plane in a straight
line since the cost is quadratic (in p2 and q2). These methods reach
and cross the impasse line after few iterations upon which the numerical
integration fails because no valid power flow solution exists anymore.
The trajectory based on the implicit metric, on the other hand, also

approaches the impasse surface but slows down in its vicinity since ∇h
is almost singular.

The difference between the three algorithm variations becomes partic-
ularly apparent when comparing the evolution of the singular values of
the power flow Jacobian in Figure 14.5. While the trajectories based on
the explicit and Newton metrics experience a sharp drop in the lower
singular value right before reaching the impasse line, the trajectory for
the implicit metric experiences a slower decrease and does not cross the
impasse line within a reasonable number of iterations.
The fact that this phenomenon persists when decreasing the step-
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size indicates that this type of collapse is not a numerical artifact but
an inherent property of these iterative schemes for the setup under
consideration.
Also, note that only the implicit metric produces a trajectory that

converges to the constrained minimizer on the PFM, indicated by the
green diamond shape in Figure 14.4. The trajectories based on the
explicit and the Newton metric, on the other hand, move towards the
unconstrained optimizer, essentially ignoring the fact the constrained
optimizer has to lie onMhigh.

14.8 Notes & Comments

Dynamical systems subject to algebraic constraints are common in power
systems analysis. These differential-algebraic equations appear naturally
due to timescale separation and singular perturbation considerations,
where fast dynamics are approximated by their steady-state relation. In
our case, these algebraic constraints are given by the ACPF equations
and lower-level controllers.

Interpreting these constraints as a differentiable manifold has allowed
us to consider our optimal steady-state control problem from a different
perspective: Rather than designing a feedback controller directly, given
an input-output map of a system, we first define the desired closed-loop
dynamics in the form of a dynamical system on the PFM.
By doing so, we have been able to identify families of possible opti-

mization dynamics by their constraint enforcement mechanism and the
(Riemannian) metric defined on the manifold.

Importantly, this geometric viewpoint has also allowed us to conceive
dynamics independent of the particular choice of input and output vari-
ables. This formulation opens the door to study “switched” controllers,
which dynamically change the set controllable variable, e.g., switch-
ing between voltage-controlled and reactive-power-controlled generation
modes.

Our investigation of three possible metrics on the PFM remains very
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preliminary. From a theoretical viewpoint, it is clear that the implicit
and Newton metrics are well-defined on the entire PFM, independently
of the input-output assignments. In contrast, the explicit metric is
defined only on the high-voltage components of the PFM induced by a
particular configuration of bus types.
The choice of metric appears to significantly affect algorithm perfor-

mance in situations where the power flow Jacobian is ill-conditioned, e.g.,
close to algebraic singularities. Besides the simulations in Section 14.7,
this behavior is also supported by the fact that, for the larger grids
studied in the forthcoming chapter, algorithms using the explicit metric
are much more difficult, if not impossible, to tune.
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CHAPTER 15

Numerical Simulations

We can now illustrate the different behaviors of three feedback-based op-
timization schemes in a more realistic power system setup. We consider
the following control designs:

(i) A projected Euler discretization of the penalty-relaxed partially
projected gradient flow (14.11), which we refer to as penalty scheme,

(ii) An extension of the penalty scheme with an integrator for the
constraint violations. We refer to this design as primal-dual scheme,
since it is technically based on a saddle-point flow.

(iii) A LOP discretization of the fully projected gradient flow (14.13)
as studied in Chapters 6 and 10.

For all three algorithms we consider only the implicit Euclidean metric
since, for the test case under consideration, the explicit and Newton met-
rics lead to satisfactory performance only after additional regularization
and extensive tuning.

In terms of computational complexity, each of the algorithms requires
the solution of a QP at each iteration. Moreover, these QPs scale linearly
with the number of buses and nodes in the network.

Recall that solving such a convex (and often sparse) QP is compu-
tationally very efficient since specialized solvers with strong theoretical
performance guarantees are available.
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In contrast, a “feedforward” scheme that attempts to solve the non-
convex ACOPF problem directly relies on more sophisticated (and, ar-
guably, more fragile) solvers which do not come with the same level of
theoretical guarantees and often require the solution of QPs as a sub-
routine at every iteration. On top of that, feedforward schemes require
more data than just an estimate of the input-output sensitivities and
measurements. They may produce solutions that “jump” between sam-
pling instants. In other words, feedforward methods do not come with
the same robustness guarantees as developed for feedback-based schemes
in the previous parts of this thesis.
For the simulations, we consider a challenging scenario using a modi-

fied version of the IEEE 30-bus system with large solar and wind plants.
In particular, we simulate a time horizon of 24 h in which power con-
sumption and the availability of renewable energy varies. The objective
is to autonomously track the solution of a time-varying ACOPF and, in
particular, to enforce the various constraints on voltage, line flows, and
generator output.

Besides their capability to track the solution of the underlying ACOPF
and to enforce constraints, we also investigate the effects of time delays
and the impact of inexact input-output sensitivities on the three schemes.

15.1 30-Bus Test System

Our forthcoming simulations are based on a modified version of the
IEEE 30-bus system [268, 205] illustrated in Figure 15.1. This modified
setup has previously been used in [Ha14].
The grid topology, line parameters, and shunt capacitors correspond

to the original IEEE 30-bus model. The transformer tap ratios, as well
as the placement of the synchronous condensers, were taken from [205].
The placement of the generators at Bus 1 and 2 is original, but their
capacity has been adjusted to better fit the new context. Similarly, the
load distribution has been slightly changed. Voltage limits are slightly
relaxed from [268] to [0.94, 1.06] p.u.. For easier visualization, line
ratings are ignored except for the two lines connecting Bus 6 and 8 and
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Figure 15.1: modified IEEE 30-bus test system

Bus 24 and 25, respectively.
Two large renewable plants have been added to the system: On one

hand, a large solar plant is connected to Bus 8, and, on the other hand,
a wind farm feeds power into the grid at Bus 25. Furthermore, an addi-
tional conventional generator has been added to Bus 15 to demonstrate
the effects of a generator outage.
Unless noted otherwise, the objective function is a sum of quadratic

cost terms associated to each generator i of the form Ci(pi) = aip
2
i +bipi.

The cost parameters and other generator data are given in Table 15.1.
Voltage limits at all nodes are at 0.94 p.u. and 1.06 p.u.. The objective is
loosely based on the economic cost of each generator. For instance, the
power produced by the wind and solar plants has close to zero marginal
cost of production and should be used whenever available.
We will consider the steady-state power flow in this 30-bus grid over

a 24-h period sampled in 1-minute intervals, and we try to track
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Figure 15.2: Load, solar, and wind profiles for 30-bus test case

the solution of the ACOPF problem (13.2). The main sources of time-
variability are power consumption (which is assumed to be inflexible)
and the availability of wind and solar energy (which can be curtailed).
The corresponding profiles are illustrated in Figure 15.2. Besides time-
varying loads and renewable generation, we also consider an outage of
Generator 3 at 4:00, which puts the grid into a stressed state for the
remainder of the simulation horizon.

Unit Type Node # ai bi p̄G
i pG

i
q̄G
i qG

i

G1 Gen.1 slack 1 0.1 0.9 100 0 50 -50
G2 Gen.2 PV 2 0.04 0.5 120 0 50 -50
G3 Gen.3 PQ 15 0.02 0.2 100 0 50 -50
C1 Cond.1 PV 5 0 0 0 0 50 -50
C2 Cond.2 PV 11 0 0 0 0 50 -50
C3 Cond.3 PV 13 0 0 0 0 50 -50
S Solar PQ 8 0 0 p̄s(t) 0 50 -50
W Wind PQ 25 0 0 p̄w(t) 0 50 -50

Table 15.1: Cost coefficients a and b in [$/MW2h] and [$/MWh], re-
spectively. Active power generation limits in [MW] and reactive power
generation limits in [MVAr]. The system base power is fixed to 100MVA.

The optimal cost and power flow solution of an offline ACOPF com-
putation for the entire time horizon are given in Figures 15.3 and 15.4,
respectively. Note that this solution does not constitute a “feedforward”
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strategy but rather a sequence of ACOPF solutions. Individual solutions
might not be connected by a continuous transition (as it would be the
case for a physical system). Furthermore, this offline solution does not
incorporate any delay between measurement, computation, and actua-
tion. Hence, Figures 15.3 and 15.4 represent the ground truth optimal
solution rather than a feedforward control.
Further, note the following points about Figures 15.3 and 15.4:

• The ACOPF problem (13.2) is feasible for the entire simulation
horizon.

• The outage of Generator 3 is immediately compensated mostly by
Generator 2, which is cheaper to operate than Generator 1.

• Solar and wind generation have to be curtailed between 10:00-13:00
and 17:00-21:30 in order not to overload the line between Buses
6-8 and 24-25, respectively.

• The optimal response to the dip in solar generation around 11:00
is a coordinated action, adjusting both real and reactive power
generation to satisfy voltage limits and meet the demand.

• Around 13:00, the offline solution is volatile and changes signifi-
cantly between sampling instances, particularly, with respect to
reactive power and voltage magnitude. This volatility is due to
the absence of any regularizing cost component on reactive power
generation. As a consequence the objective function is very “flat”
in the q-v-dimension and thus sensitive to perturbations.

15.2 Feedback-Based Online Optimization
Schemes

To track the ACOPF solution of the 30-bus test setup as illustrated in
Figure 15.4, we study the three feedback-based optimization schemes
presented in the following
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Figure 15.3: A-posteriori offline ACOPF optimal cost for 30-bus case

15.2.1 Penalty Scheme

As a first algorithm we consider a projected forward Euler discretization
of (14.11) featured in [Ha14] and given by

uk+1 = P
GI(uk)
Uk

(
uk − αGI(uk)−1H̃(yk, uk)∇ (Φ + ρΨX ) (yk, uk)T

)
yk+1 = h

(
PUk+1(uk+1)

)
,

(15.1)

where ΨX is the penalty function from (14.9), α > 0 is a step-size, and

P
GI(uk)
Uk (w) := arg min

v∈Uk
‖w − v‖2GI(uk)

is the projection onto the set of admissible inputs Uk at iteration k with
respect to the norm induced by GI(uk) ∈ S2N

+ . Note that X is stationary
since it does not express any time-varying constraints because solar and
wind power generation constraints are exclusively part of U .

Furthermore, H̃(yk, uk) replaces H(u) from the nominal scheme, be-
cause the time-varying loads perturb the power flow equations (13.1)
and therefore, the input-output sensitivities ∇h are not solely a function
of u. However, by using the measurement yk, we know the full state, and
we can evaluate the linearization of the power flow equations according
to (14.1). By doing so, we do not need to explicitly estimate the loads.
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Figure 15.4: A-posteriori offline ACOPF computation for 30-bus case
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Remark 15.1. Notice that the set Uk varies over time due to the time-
varying availability of the solar and wind plants. The computed control
input uk+1 lies in Uk. However, the physical system does not simply
“evaluate” h(uk+1), but also performs the input saturation onto the true
feasible set Uk+1 at time k + 1. The underlying assumption is that the
control algorithm at time k has access only to Uk and uses this set as
the best estimate for Uk+1. The fact that all three proposed schemes
perform well despite this “double projection” (once algorithmically on Uk
and once physically onto Uk+1) is another indication of the robustness
of feedback-based optimization.
At least from a theoretical perspective, the solution to this kind of

problem are AWAs which were studied in Chapters 5 and 9. A simple
discretization of an AWA of (15.1) is given by

uk+1 = uk − αGI(uk)−1
(
H̃(yk, uk)T∇ (Φ + ρΨX ) (yk, uk)T

− 1
K (uk + PUk(uk))

)
yk+1 = h

(
PUk+1(uk+1)

)
,

where K > 0 is the inverse anti-windup gain and PUk(uk) is the (mea-
sured) saturated control input at iteration k. In particular, notice that
the control algorithm does not require an explicit model for Uk.

Although this type of implementation is theoretically well-motivated,
at the time of writing, the AWA methods have not been tested on the
power system examples. �

15.2.2 Primal-Dual Scheme

In order to achieve asymptotic constraint satisfaction for the engineering
constraints X (e.g., line current limits), we amend the penalty-relaxed
partially projected gradient descent by integrating constraint violations
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over time. This is achieved by the system

uk+1 = P
GI(uk)
Uk

(
uk − αGI(uk)−1H̃(yk, uk)T∆k

)
where ∆k := ∇ (Φ + ρΨX ) (yk, uk)T + µk∇gX (yk, uk)

µk+1 = PRr≥0

(
µk + ηk(yk, uk)

)
yk = h(uk) ,

(15.2)

where η > 0 is a dual integration gain and gX : R2N × Rr → Rr defines
the engineering constraint set X , i.e., X = {(y, u) | gX (y, u) ≤ 0}.

Hence, technically, (15.2) is a discretization of a projected saddle-point
flow for the partial Lagrangian L : U × Rr≥0 → R given by

L(u, µ) := Φ(h(u), u) + ρΨ̃X (u) + µT gX (h(u), u) .

More precisely, (15.2) is a discretization of

u̇ = ΠGI

U [−α gradGI L(·, µ)] (u)
µ̇ = ΠRn≥0

[η gradI L(u, ·)] (µ) .
(15.3)

Strictly speaking, no known results guarantee the convergence of (15.3)
to a primal-dual solution pair of the underlying optimization problem.
This lack of theoretical guarantees is primarily due to the non-convexity
of h and the non-Euclidean metric GI. For this reason, [29, 71, 244]
use an additional regularization of the dual variables which modifies the
equilibria, but allows for convergence (and tracking) guarantees even for
non-convex problems.

We do not this type of dual regularization. Nevertheless, in our simula-
tion context, and for small η > 0, we observe the desired convergence to
local optimizer of the ACOPF problem, including asymptotic constraint
satisfaction (which is not guaranteed by the penalty scheme).

15.2.3 Linearized Output Projection Scheme

As a final scheme, we consider the LOP discretization of the fully pro-
jected gradient flow (14.13). The implementation follows (6.5) without
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any modification other than accounting for the time-varying nature of
the problem. Namely, we implement

uk+1 = uk + αΣG
I

Ck [− gradGI(Φ + ρΨX )](uk, α)
yk+1 = h

(
PUk+1(uk+1)

)
,

where we define

ΣGCk [f ](uk, α) := arg min
w∈Rn

∥∥−GI(uk)−1H̃(yk, uk)T∆k − w
∥∥2
GI(uk)

subject to uk + αw ∈ Uk

gX (yk, uk) + αH̃(yk, uk)T∇g(yk, uk)w ≤ 0

with ∆k := ∇(Φ + ρΨX )(yk, uk)T .

15.3 Simulation Results

Figures 15.5, 15.6, and 15.7 show the evolution of the various state
variables for each of the three feedback-based optimization schemes
applied to the 30-bus test setup.

The simulations were performed by computing the control value uk+1

for the respective scheme and evaluating h
(
PUk+1(uk+1)

)
using the AC

power flow solver of the Matpower software package.
It is worth noting that parameter values are uniform across all three

algorithms. In particular, the step-size α is the same for all three meth-
ods, and the penalty parameter ρ is the same for the penalty and the
primal-dual scheme.

Remark 15.2. Interestingly, this type iterative simulations can also be
interpreted in the framework of optimization on manifolds [4, 3] in
the sense that we optimize over the manifold Mhigh embedded in a
high dimensional vector. At every iteration, we compute a descent
direction on the tangent space ofMhigh. A finite step in this direction
will generally result in a point that is not on Mhigh. However, the
computation of an AC power flow solution acts as a so-called retraction,
which “projects” the point back ontoMhigh.
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Our setup, however, is more demanding than in [3] because we incor-
porate complex constraints (which is, so far, not within the scope of this
field of research), andMhigh is not a closed manifold. �

15.3.1 Tracking Performance

We first consider how well each of the three feedback-based optimization
schemes can track the solution of the ACOPF problem (13.2).
Although we cannot provide explicit theoretical tracking guarantees,

we can see from Figure 15.8 that all of the three schemes manage to
track the optimum in terms of cost almost perfectly. The only exception
is the penalty approach, which achieves a lower-than-optimal cost from
17:00 to 21:30 by slightly violating a line flow and voltage constraint.
This behavior is expected since the use of penalty functions implies that
constraints can be violated both during run-time and upon convergence.

Apart from the economic cost and real power generation, the trajecto-
ries for the voltages and reactive power in-feed in Figures 15.5, 15.6, and
15.7 differ significantly from the optimal trajectory in Figure 15.4. This
deviation is mainly because no cost is associated with reactive power gen-
eration, making different voltage/reactive power configurations almost
equally costly.
This phenomenon should not be considered as a flaw of feedback-

based schemes. Instead, comparing the voltage profiles at about 13:00,
we can see the (offline) optimal solution is very volatile. In contrast, the
all of the feedback schemes achieve relatively smooth profiles without
sacrificing cost optimality. The latter behavior is preferable in practice.
Finally, note that the generator outage at 4:00 triggers a spike in

output of Generator 1, which serves as the slack generator. A more
realistic modeling framework including this type of contingency would
lead to a response by multiple generators and would be better modeled
by distributed slack generation. The critical thing to note is that all three
feedback-based schemes experience this compensation by the slack bus.
This unilateral response contrasts with the offline solution in Figure 15.4,
which does not exhibit this spike in real power generation at the slack
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Figure 15.5: Penalty scheme applied to the 30-bus test case
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Figure 15.6: Primal-dual scheme applied to the 30-bus test case
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Figure 15.7: LOP scheme applied to the 30-bus test case
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bus. This behavior is not a shortcoming of the feedback approach, but
only due to the fact that the feedback schemes do not anticipate the
generator outage.

15.3.2 Constraint Enforcement

The main difference between the proposed feedback-based optimization
schemes lies in enforcing the engineering constraints X . Figure 15.9
illustrates the characteristic behavior of each algorithm with respect to
the line flow constraint for the line connecting Buses 24 and 25. This
line is quickly at full capacity once the wind generation at Bus 25 ramps
up around 17:00. Namely, Figure 15.9 shows Detail A1 in Figures 15.5,
15.6, and 15.7.

As expected, the penalty scheme allows for a small but significant
constraint violation up to the point where the effect of the penalty is
strong enough to compensate for the cost and other penalty terms, e.g.,
from voltage constraints which are also active (i.e., violated) in the given
time interval.
The primal-dual scheme improves this behavior by integrating the

constraint violation and eventually driving it to zero, resulting in an
asymptotically feasible state (in the time-invariant case). However, the
tuning of the dual gain η is challenging and different types of constraints
may require other gains. A control gain that is too small will not drive
the constraint violation back to zero quickly enough, whereas a high
gain leads to oscillations around the constraint surface.
Finally, the LOP scheme performs exceedingly well with almost no

discernible constraint violations. This behavior is due to the fact that
the LOP scheme anticipates the violation of output constraints based
on the linearization around the current operating point and curtails the
set-point update accordingly to avoid (or minimize) constraint violations
in advance. Technically, constraint violations can happen, but the re-
sults from Chapter 6 indicate that they are bounded and vanish upon

1Details B and C are not discussed here because they are less interesting from a
constraint enforcement perspective.
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Figure 15.8: Cost value compared to a-posteriori offline solution
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Figure 15.9: Enforcement of line flow constraint for the feedback-based
optimization schemes (Detail A in Figures 15.5, 15.6, and 15.7)

convergence.

15.3.3 Robustness against Time Delays

Next, we consider the effect of time delays in the feedback loop. For
this purpose, we adopt a very simple model which applies the computed
set-points with a delay of dk iterations (i.e., dk minutes). This delay
is applied on top of the one iteration delay between measurement and
implementing new set-points, which we have implicitly applied so far.
More precisely, to compute set-points for iteration k + 1, each of the

three proposed schemes has access only to Uk−dk , uk−dk , and yk−dk . For
the primal-dual scheme, we assume that µ, as an internal variable, is
not affected by the time delay, and µk−1 is available. This assumption
is motivated by the fact that µ is generally an internal variable of the
controller, easily computed, and not subject to communication delays.
The simulation results for the three proposed schemes for different

values of dk are illustrated in Figures 15.10, 15.11, and 15.12 which show
Details A, B, and C as defined before. The complete simulations can be
found in Appendix B.
To assess the effect on constraint enforcement, we consider Detail A,
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i.e., the line current around 17:00 from Bus 24 to Bus 25. Comparing
the left columns of Figures 15.10, 15.11, and 15.12, we observe that the
constraint enforcement of all three schemes is not significantly affected
by the feedback delay.
The effect of time delays on the tracking in terms of the cost is best

seen through Details B and C, which show how solar generation is
recovering after a drop in availability (e.g., due to cloud cover). In this
situation, all three schemes experience a slowed recovery of solar in-feed.
However, it should be stressed that the investigated model for time

delays is very crude and does not reflect more complex situations en-
countered in practice such as heterogeneous delays. Nevertheless, the
simulations suggest that the mechanisms for enforcing constraints suffer
relatively little from time delays. In contrast, cost optimality seems to
be more directly impacted.

15.3.4 Robustness against Model Uncertainty

Finally, in practical situations, it is not always possible to get an accurate
estimate of the input-output sensitivities ∇h, which are required to com-
pute the control action. Therefore, we study the effect of a linearization
that does not correspond to the current state of the system.
Although an inexact linearization can have many different reasons

(such as modeling uncertainty, noisy measurements, etc.) that produce
an inexact state estimate, we limit ourselves to the use case where the
linearization is simply not updated at every iteration. Instead, we will
assume that the sensitivities are computed every 60 iterates (i.e., every
60 minutes) at every full hour and kept constant for the next 59 iterates.

The resulting behavior for the three proposed schemes is summarized
in Figures 15.13, 15.14, and 15.15 with the complete simulations in
Appendix B. Again, we are interested in the effect on both constraint
enforcement and optimality.

As before, we observe that the deferred linearization does not impact
the capacity to enforce output constraints for any of the three schemes
in Detail A. All three methods display roughly the same behavior as
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Figure 15.10: Impact of communication delays on penalty scheme; from
top to bottom: dk = {0, 2, 5} min
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Figure 15.11: Impact of communication delays on primal-dual scheme;
from top to bottom: dk = {0, 2, 5} min
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Figure 15.12: Impact of communication delays on LOP scheme; from
top to bottom: dk = {0, 2, 5} min
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Figure 15.13: Details of “lazy linearization” for penalty scheme

with the exact linearization. Although, as can be seen in Figure 15.16,
the LOP scheme does suffer from temporary line flow limit violations
between 11:00 and 13:00.

Concerning optimality, we observe that the penalty scheme is almost
unaffected by the inexact linearization in response to the dip in solar
power around 11:00. Solar power generation recovers quickly after the
drop in availability.
However, the primal-dual and the LOP schemes are both impacted

by an inexact linearization. Detail B provides a particularly illustrative
example: Between 11:00 and 12:00, the optimal solution calls for an
increase in the real power generation of the solar plant. However, both
the primal-dual and the LOP scheme decrease solar in-feed again after
an initial increase, thus remaining suboptimal (right-hand panels in
Figures 15.14 and 15.15).
After an update of the input-output sensitivities at 12:00, both al-

gorithms start increasing solar generation immediately. A look at the
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Figure 15.14: Details of“lazy linearization” for primal-dual scheme
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Figure 15.15: Details of “lazy linearization” for LOP scheme
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Figure 15.16: “lazy linearization” of LOP scheme (update every 60min)
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reactive power in-feed and voltage in Figure 15.16 also reveals a complete
reversal in reactive power generation at the solar plant right after 12:00.
The new linearization is critical for the system to leave a subopti-

mal equilibrium point and impacts the input-output sensitivities to the
extent that the new equilibrium point far from the previous (inexact)
equilibrium state.

15.4 Summary

Although the simulations presented in this chapter rely on a simplistic
model for power systems, they illustrate the robustness of feedback-based
optimization schemes based on projected gradient flows, irrespective of
the particular discretization or implementation.

Besides the ability to track time-varying optimizers, these schemes also
do well under time delays and inexact linearizations of the steady-state
map. Although the tracking performance with respect to the a-posteriori
optimal solution may suffer under these imperfections, the capacity to
enforce constraints is retained by all of the proposed schemes to an
extensive degree and under challenging conditions.
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CHAPTER 16

Conclusions

In this thesis, we have studied novel, non-smooth multi-input-multi-
output controllers to track solutions of constrained, non-convex opti-
mization problems. We have backed these control designs with rigorous
theoretical guarantees by starting from fundamental mathematical mod-
els for discontinuous dynamical systems. Their capability to enforce
complicated constraints with little model information makes these new
feedback-based optimization methods a promising approach for the real-
time optimal operation of future power grids.
The control designs presented in this thesis are based on projected

gradient flows due to their generality, robustness, and various implemen-
tation possibilities. To emphasize this fact, note the following:

• Projected gradient flows work out-of-the-box: Their trajectories
converge to local minimizers for non-convex objectives and non-
convex feasible sets under minimal technical assumptions, without
regularization, and with little tuning (Chapters 4 and 8).

• Projected gradient flows, despite their non-smooth nature, can
be implemented as feedback controllers. The concepts of
anti-windup approximations and linearized output projection dis-
cretizations, introduced in this thesis, are two possibilities towards
this end (Chapters 5, 6, 9, and 10).

• Projected gradient flows have many of the same properties as
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unconstrained gradient flows. For example, when intercon-
nected with a dynamical system, the same stability threshold ap-
plies to projected and unconstrained gradient flows (Chapter 11).

• Projected gradient flows are part of a set of methods for constrained
optimization that can be easily “mixed and matched”, while
still retaining many theoretical guarantees: We have seen three
methods to enforce constraints (by penalty function, by dualization,
and by projection). We have also identified the freedom to choose
a metric, and we have studied anti-windup approximations and
LOP discretizations as a means of implementing general projected
dynamical systems (Chapter 14).

Nevertheless, many open problems and possibilities remain unexplored.
Hence, in the following, we formulate open theoretical problems, possible
power system modeling extensions, and potential use cases.

16.1 Open Theoretical Questions

Parts I and II provide extensive results on projected dynamical systems,
their implementation as feedback controllers, and applications to non-
linear optimization. However, various cross-connections remain to be
explored.

For instance, the combination of AWA and LOP schemes has not yet
been studied but appears to be a plausible possibility since AWAs are
used to enforce input constraints whereas LOP discretizations excel at
enforcing output constraints. Furthermore, both can be analyzed with
the same type of analysis based on perturbed differential inclusions.
Also, stability conditions analogous to Chapter 11 quantifying the

need for timescale separation have yet to be developed for AWAs and
LOP discretizations of projected gradient flows.

Extensions to time-varying problems, as presented in Chapter 12, are
still in their early stage. This is mainly because perturbed sweeping
processes have not yet reached the same level of generality as projected
dynamical systems in terms of a coordinate-free formulation.

286



16.2 Power Systems Modeling Possibilities

Furthermore, the robustness against time delays and model uncer-
tainty, illustrated in Chapter 15, has yet to be analyzed theoretically.
Another aspect, very relevant in the power systems context, is incor-

porating discrete decisions through a hybrid systems formalism.
Finally, in this thesis, we have not touched upon stochastic aspects,

e.g., the influence of process and measurement noise. But also, the design
of stochastic control designs is a potential future research direction.

16.2 Power Systems Modeling Possibilities

Because the methods presented in this thesis apply to general problems
of the form

minimize Φ(u, y)
subject to y = h(u)

u ∈ U
(u, y) ∈ X ,

(16.1)

the simple power systems model used in Part III can be significantly
generalized to incorporate more realistic objectives, constraints and ac-
tuation capabilities.

One relatively straightforward possibility is to consider more realis-
tic constraints on power generation instead of simple box constraints.
For instance, one could easily consider field and stator current limits
for synchronous machines, whereas, for inverters, one can impose con-
straints on the power factor and apparent power output. Most of our
technical assumptions on the constraint sets (such as Clarke regularity)
would be satisfied for these models.

Another easy extension is the use of more complicated load mod-
els. For instance, loads pL(v, θ) + jqL(v, θ) may be voltage-dependent,
have a constant current component, or follow an exponential model. As
long as ∇pL and ∇qL can be estimated, this knowledge can be incorpo-
rated into the control design.
Yet another possibility is the control of FACTS devices, such as
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Static Var Compensators (SVC) or Thyristor Controlled Series Compen-
sators (TCSC). These can be modeled as a variable shunt susceptance or
line reactance, respectively, subject to engineering constraints. In both
cases, it is possible to compute the sensitivities with respect to these
variable grid parameters and incorporate them as inputs into the control
design. Similarly, our framework also allows us to model HVDC-links.
Thus, it becomes possible to use these devices to dynamically optimize
the power flow in a transmission grid in real time.

Next, since we have not made any strong assumptions on the objective
function, we can replace the generic cost of generation considered in
Chapter 15 with more sophisticated objectives. Choices may include
cost terms that directly promote voltage stability, e.g., by penalizing
the distance to voltage collapse. As another example, in the restoration
phase after a contingency, it might be necessary to align voltage angles
to reconnect a line between two buses. This temporary objective can
also be easily included in our problem setup.
All in all, the generality of (16.1) paves the way to consider many

power system operation challenges and make more efficient use of modern
devices to improve the reliability and optimality of power transmission
and delivery.

16.3 Potential Power System Use Cases

Throughout Part III, we have adopted a simple, yet general, load flow
model which can be used to model both transmission as well as dis-
tribution grids. However, the ideas in this thesis are presumably more
interesting for transmission-level applications because transmission grids
exhibit more challenging grid topologies, more complicated actuation
capabilities, and, at the same time, reliable monitoring and state esti-
mation is available. As of today, the active management of distribution
systems, on the other hand, faces different challenges. Apart from eco-
nomic considerations, a lack of monitoring infrastructure, privacy issues,
and other aspects, the limited number of controllable devices does not,
generally, motivate the deployment of a completely integrated control
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infrastructure.
On the transmission level, a feedback-based optimization approach

is well-suited to overhaul secondary and tertiary frequency control and
include more complex functionality such as congestion-aware redispatch,
thus rethinking many classical ancillary services [63]. Work in this
direction is already well on its way (see the relevant references in [179]).
However, methods developed in this thesis due to their generality and
modeling possibilities (discussed in Section 16.2 above), are potentially
instrumental to study even more complicated scenarios that have not
been previously considered.
Another possible use case for closed-loop optimization is the fast,

coordinated voltage control in transmission systems. Namely,
the control of reactive power and voltages at the transmission level has
been identified as a critical aspect of future power systems operations [61,
195]. Although several transmission system operators already perform
this type of secondary voltage control [197], the concept is still not widely
adopted or based on relatively simple models. The tools presented
in this thesis are very well suited to provide a structured approach
for designing such voltage control schemes and supporting them with
theoretical statements.
Moreover, the adequate response to contingencies and emer-

gencies is expected to become ever more crucial as the complexity of
power systems grows [62]. In this context, a lack of situational awareness
and subsequent poor decisions have been identified as a critical factor in
recent emergencies and blackouts [64]. Therefore, it is crucial to provide
operational strategies or even fully automated emergency systems that
can address this challenge by enabling well-informed actions in the face
of extreme events to sustain a highly reliable electricity supply. Again,
feedback-based optimization approaches such as those presented in this
thesis provide new but well-motivated possibilities for designing such
strategies and systems.
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APPENDIX A

Quantitative Sensitivity Bounds for
Nonlinear Optimization Problems

In this chapter, we study how the sensitivities of optimizers for a
general class of nonlinear optimization problems can be quantified. These
types of results are particularly interesting for establishing tracking
guarantees for time-varying optimization schemes as in Chapter 12.
In the following, using the classical sensitivity results [99, 139, 98,

210], we establish sufficient conditions under which the optimizer and
its dual variables of parametrized nonlinear optimization problems are
continuous functions of a perturbation (not necessarily time), and, more
importantly we derive quantitative bounds on their Lipschitz constants.
Moreover, we provide and discuss special cases of constrained para-
metrized optimization problems for which the sensitivities of optimizers
and dual variables take a simple and easy-to-interpret form.

The results in this chapter build directly upon the definitions in Chap-
ter 2 and, in particular, extend Section 2.2.1. In the remainder of the
chapter, we particularly refer to paremtrized nonlinear optimization

This chapter is based on the first part of [Ha10]. The main technical results are
Proposition A.1, Theorem A.2, and Corollary A.2. This work is a collaboration with
I. Subotić.
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problems of the form (2.3), i.e.,

minimize
x

Φ(x, ξ),

subject to h(x, ξ) = 0
g(x, ξ) ≤ 0 ,

(A.1)

where ξ ∈ Ξ is a perturbation parameter and Ξ ⊂ Ro. Furthermore,
Φ : Rn×Ξ→ R, h : Rn×Ξ→ Rm, and g : Rn×Ξ→ Rp are continuously
differentiable in x.
Moreover, our results in this chapter will extend Theorem 2.3 [138,

Thm. 2.3.2 & 2.3.3], which we repeat hereafter for convenience.

Theorem A.1. Consider (A.1) and assume that Φ and g are twice con-
tinuously differentiable in x, and that Φ, h, g, ∇xΦ,∇xh,∇xg,∇2

xxΦ,
∇2
xxh, and ∇2

xxg are continuous in ξ. Further, let x̄? be a regular mini-
mizer of (2.2) for ξ̄ with multipliers (λ̄?, µ̄?). Then, on a neighborhood
N ⊂ Ξ of ξ̄, there exist continuous maps x? : N → Rn, λ? : N → Rm

and µ? : N → Rp such that

(i) x?(ξ̄) = x̄?, λ?(ξ̄) = λ̄?, and µ?(ξ̄) = µ̄?,

(ii) for all ξ ∈ N , LICQ is satisfied at x?(ξ), and (x?(ξ), λ?(ξ), µ?(ξ))
is a KKT point for which SSOSC holds,

(iii) for all ξ ∈ N , x?(ξ) is a local minimizer for (2.2) and (λ?(ξ), µ?(ξ))
are the corresponding Lagrange multipliers.

If, in addition, Φ, h and g are twice continuously differentiable in (x, ξ),

(iv) x?, λ? and µ? are locally Lipschitz at ξ̄.

The chapter is structured as follows: Appendix A.1 deals with quanti-
fying the local differentiability and Lipschitz continuity of the solution
maps for nonlinear programs like (A.1). Then, in Appendix A.2, we in-
troduce and discuss assumptions that allow for global statements about
solution maps and their sensitivities. Finally, these findings are discussed
in Appendix A.3, using illustrative special cases.
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A.1 Quantifying the Lipschitz Continuity
of Solution Maps

Theorem A.1 and similar results in [139, 98, 210] guarantee the Lipschitz
continuity of the solution map x?, however, they do not quantify the
Lipschitz constants of x? and µ?.
Hence, in this section, we refine these results and give quantitative

bounds on the rate of change of x?. The key insight for this purpose,
also used in [139, 98], is that a KKT point (x?, µ?) ∈ X (ξ)×Rm≥0 solves
the system

F (x?, µ?, ξ) :=

∇xL(x?, µ?, ξ)T
h(x?, ξ)

diag(µ?)g(x?, ξ)

 = 0 ∈ Rn+p+m. (A.2)

Under additional assumptions, the implicit function theorem can be
applied to (A.2), to express (x?, µ?) as a function of ξ.

Throughout the remainder of this section, we consider the same setup
as in Theorem A.1. Hence, existence and local Lipschitz continuity of
x? : N → Rn and µ? : N → Rm for some neighborhood N ⊂ Ξ around
ξ̄, for which (x̄?, µ̄?) is a regular optimizer, are guaranteed. Further, we
use the shorthand notations I?(ξ) := Iξx?(ξ), Ī?(ξ) := Īξx?(ξ), and, for all
ξ ∈ N , we define

A(ξ) := ∇2
xxL(x?(ξ), λ?(ξ), µ?(ξ), ξ)) ∈ Rn×n ,

B(ξ) :=
[
∇xh(x?(ξ), ξ)
∇xgI?(ξ)(x?(ξ), ξ)

]
∈ R(p+|I?|)×n ,

L?(ξ) := ∇2
ξxL(x?(ξ), λ?(ξ), µ?(ξ), ξ) ∈ Rn×r ,

G?(ξ) :=
[
∇ξh(x?(ξ), ξ)
∇ξgI?(ξ)(x?(ξ), ξ)

]
∈ R(p+|I?|)×r .

If (2.2) does not have any equality constraints and I?(ξ) = ∅ we follow
the convention that B(ξ) = 0 and G?(ξ) = 0.

In the following, unless there is any ambiguity, we drop the argument
from any map whose sole argument is ξ.
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Finally, we make one simplifying assumption that can, presumably,
be slightly relaxed in future work:

Assumption A.1. In the context of Theorem A.1, the matrix A(ξ) is
positive definite for all ξ ∈ Ξ.

In particular, Assumption A.1 is satisfied for convex optimization prob-
lems with strongly convex objective – though one can perceive also
scenarios with weaker regularity assumptions. Furthermore, the as-
sumption is common in multi-parametric programming, when the KKT
system needs to be solved explicitly (e.g., [249]). This assumption will be
made in forthcoming sections to provide global bounds on the Lipschitz
constants of x? and (λ?, µ?).
To quantify the Lipschitz constant of the solution map we have to

distinguish between two cases related to constraints becoming active or
inactive when varying ξ. Namely, if every active constraint is associated
with a positive multiplier (which we refer to as strict complementarity
below), these constraints remain active for small variations in ξ. In this
case, the solution maps x? and µ? are differentiable. However, when a
constraint is active but its multiplier is zero, then differentiability is in
general not guaranteed. In this case, we need to make a careful case
distinction considering the constraint as being either active or inactive.

A.1.1 Sensitivity under Strict Complementarity

Given a KKT-point (x?, λ?, µ?) of (2.2) for a given ξ ∈ Ξ, we define the
sets of strongly active inequality constraints as

Is(x?, µ?, ξ) := {i ∈ Iξx? |µ?i > 0}

and we say that (x?, λ?, µ?) satisfies strict complementary slackness
(SCS) if Is(x?, µ?, ξ) = Iξx? , i.e., if all active inequality constraints are
strongly active.
Under strict complementary slackness, the solution maps x? and

(λ?, µ?) are continuously differentiable in a neighborhood of ξ̄. The
following result gives an explicit expression for the respective deriva-
tives.
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Proposition A.1. Consider the same setup as in Theorem A.1 and let
SCS and Assumption A.1 hold at (x̄?, λ̄?, µ̄?). Then, in a neighborhood
N ⊂ Ξ of ξ̄, the maps x? : N → Rn and (λ?, µ?) : N → Rp × Rm≥0 are
continuously differentiable with

∇ξx? = −ΠA−1L? − ΣB†G? ∈ Rn×r ,

∇ξ
[
λ?

µ?I?

]
= B†

T
AΣ

(
A−1L? −B†G?

)
∈ R(p+|I?|)×r (A.3)

(and ∇ξµ?Ī? = 0), where B† := BT (BT )−1 ∈ Rn×(p+|I?|) is the pseudoin-
verse of B, and Σ,Π ∈ Rn×n are given by

Σ := A−1BT (BA−1BT )−1B and Π := I− Σ .

If (2.2) has only inequality constraints and none of them are active at
ξ̄, then we have B†G? = 0.

For the proof we require the following matrix inversion lemma [30, Ch.
2.17]:

Lemma A.1. Let A ∈ Rn×n, B,CT ∈ Rn×m and D ∈ Rm×m. If A is
non-singular, then the inverse

M−1 =
[
M1 M2
M3 M4

]
of M :=

[
A C

B D

]
exists if and only if D −BA−1C is invertible. Then, we have

M1 = A−1 +A−1C(D −BA−1C)−1BA−1 ,

M2 = −A−1C(D −BA−1C)−1 ,

M3 = −(D −BA−1C)−1BA−1 ,

M4 = (D −BA−1C)−1 .

Proof of Proposition A.1. We follow the same procedure as in [138, 98].
However, Assumption A.1, the matrix inversion Lemma A.1 in the ap-
pendix, and some attention to details allow us to derive the explicit
expressions (A.3) for the derivative of the solution map.
For the moment let z? = (x?, λ?, µ?). The implicit function theo-

rem [213, Ch. 9] applied to (A.2) states that ∇ξz? = − (∇zF )−1∇ξF .
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Hence, without loss of generality, assume that the first |I?| constraints
are (strongly) active and, by SCS, the remaining constraints are inactive.
Then, ∇F can be written as

∇zF :=

 A BT B̄T

DµB 0 0

0 0 Dḡ

 , ∇ξF :=

 L?

DµG
?

0

 ,
where we partitioned and regrouped the matrices according to the order-
ing (x?, [λ?, µ?I? ], µ?Ī?), and used B̄(ξ) := ∇xgĪ?(ξ)(x?(ξ), ξ). Further, we
have used Dµ := diag([1Tp µTI? ]) and Dḡ := diag(gĪ?). Denote the upper
left part of ∇zF by

M :=
[
A BT

DµB 0

]
.

Then, using Lemma A.1 (and assuming for the moment that M is in-
vertible), we have that

(
∇(x,µ)F

)−1 =
[
M−1 ?

0 ?

]
,

where ? denotes non-zero, but irrelevant components.
Hence, we can already conclude from the expression for ∇ξz? that
∇ξµ?Ī? = 0 for the inactive constraints.
Note that A is invertible by Assumption A.1, and the Schur comple-

ment of M given by −DµBA
−1BT is invertible because Dµ in invertible

by SCS. Hence, M is nonsingular, and its inverse can be computed
according to Lemma A.1 as

M−1 =
[
M1 M2
M3 M4

]
,
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where

M1 =
(
I−A−1BT (DµBA

−1BT )−1DµB
)
A−1

= (I−A−1BT (BA−1BT )−1B)A−1 = ΠA−1 ,

M2 = A−1BT (DµBA
−1BT )−1 =

= A−1BT (BA−1BT )−1D−1
µ

= A−1BT (BA−1BT )−1D−1
µ DµB

†D−1
µ︸ ︷︷ ︸

=I

= ΣB†D−1
µ ,

M3 = (DµBA
−1BT )−1DµBA

−1

= B†
T
A−1BT︸ ︷︷ ︸
I

(BA−1BT )−1BA−1 = B†
T
AΣA−1 ,

M4 = −(DµBA
−1BT )−1 = −(BA−1BT )−1D−1

µ

= −B†TA−1BT (BA−1BT )−1D−1
µ DµB

†D−1
µ

= −B†TAΣB†D−1
µ .

Finally, recalling ∇ξz? = − (∇zF )−1∇ξF , we get∇ξx?∇ξλ?
∇ξµ?I?

 = −
[
M−1 ?

]
∇ξF

which yields the desired expressions.

We defer an in-depth discussion of (A.3) to Appendix A.3, where we ex-
plore special cases. One special feature of (A.3) that we require though is
the fact that Π and Σ can be interpreted as (oblique) projections onto the
kernel of B and its orthogonal complement, respectively. Consequently,
exploiting non-expansivity, their norm can be bounded independently
of B:

Lemma A.2. Consider the setup of Proposition A.1. For all ξ ∈ N , it
holds that

max{‖Π(ξ)‖, ‖Σ(ξ)‖} ≤
√
λmax
A(ξ)/λ

min
A(ξ) .
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Proof. As before, we drop the argument ξ. Consider

minimize
w

1
2 (v − w)TA(v − w) subject to Bw = 0 . (A.4)

Since A is positive definite for all ξ ∈ Ξ by Assumption A.1, (A.4) can
be rewritten as

minimize
w̃

1
2‖Qv − w̃‖

2 subject to B̃w̃ = 0 (A.5)

where Q := A1/2 is the unique symmetric positive definite matrix such
that A = Q2, w̃ := Qw, and B̃ := BQ−1.

Since (A.5) is a Euclidean projection onto the kernel of B̃, its solution
can be stated explicitly as [175, eq. 5.13.3]

w̃? = Qv − B̃T (B̃B̃T )−1B̃Qv

= Q(I−A−1BT (BA−1BT )−1B)v = QΠv .

By non-expansivity of an orthogonal projection onto a subspace, we have
‖w̃?‖ ≤ ‖Qv‖, and therefore we can write

λmin
Q ‖Πv‖ ≤ ‖QΠv‖ = ‖w̃?‖ ≤ ‖Qv‖ ≤ λmax

Q ‖v‖ .

Rearranging the leftmost and rightmost terms together with the fact that
λmax
A = (λmax

Q )2 and λmin
A = (λmin

Q )2 yields the desired bound for ‖Π‖.
The projection on the orthogonal complement of ker B̃ is given by

Σ := I−Π [175, eq. 5.13.6]. The same bound as for ‖Π‖ holds for ‖Σ‖
since Σ is also non-expansive.

Lemma A.2 allows us to bound (A.3) and thereby establish bounds for
the local Lipschitz constants of x? and µ? at ξ̄.

Corollary A.1. Consider the setup of Proposition A.1. Then,

∥∥∇ξx?(ξ̄)∥∥ ≤ `x? and
∥∥∥∇ξ [ λ?µ? ]∥∥∥ ≤ `(λ?,µ?)
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holds for all ξ ∈ N where

`x? :=

√√√√λmax
A(ξ̄)

λmin
A(ξ̄)

(
‖L?(ξ̄)‖
λmin
A(ξ̄)

+ ‖G
?(ξ̄)‖

σmin
BT (ξ̄)

)
,

`(λ?,µ?) :=
λmax
A(ξ̄)

3/2

σmin
BT (ξ̄)λ

min
A(ξ̄)

1/2

(
‖L?(ξ̄)‖
λmin
A(ξ̄)

+ ‖G
?(ξ̄)‖

σmin
BT (ξ̄)

)
.

(A.6)

Proof. Using singular value decomposition BT = V TΛTU , where BT
(i.e., ΛT ) has a full rank since the columns of B are linearly independent.
Next we note that B† = V TΛ†U also has a full rank and corresponds
to the right pseudoinverse of B, where Λ† is the right pseudoinverse
of Λ. Comparing the expressions for BT and B† we have that for the
minimal and maximal singular values σmax

B† = 1/σmin
BT and σmin

B† = 1/σmax
BT

hold. Consequently, ‖B†‖ = 1/σmin
BT (ξ̄) holds. Finally, the bounds in

(A.6) follows from applying the triangle inequality, Cauchy-Schwarz,
and Lemma A.2 to (A.3).

A.1.2 Sensitivity of General Regular Optimizers

If the SCS assumption in Proposition A.1 does not hold, then at least one
constraint i is weakly active, i.e., gi(x?(ξ)) = 0 but µ?i (ξ) = 0. Weakly
active constraints occur, for example, when the unconstrained minimizer
of f lies exactly on a constraint surface. In this case, the constraint is
active, but is not “pushing” the optimizer inwards.
Whenever we vary ξ and a constraint changes from being strongly

active to inactive (or vice versa), the constraint is momentarily weakly
active for some ξ. This is a consequence of the continuity of (x?, µ?).
For values of ξ, for which some constraints are weakly active, the

map (x?, λ?, µ?) might not be differentiable, i.e., (A.3) might not apply.1
Consequently, the best we can hope for in the general case where SCS
does not hold, is a bound on the Lipschitz constant of (x?, λ?, µ?).

1However, it is generally possible to compute directional derivatives of (x?, λ?, µ?)
at any point in any direction ∆ξ.
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To deal with weakly active constraints, we follow the approach in [138].
For this purpose, consider the same setup as in Proposition A.1 and let
(x̄?, λ̄?, µ̄?) be a regular optimizer for (2.2) for ξ̄ ∈ Ξ, satisfying LICQ at
x̄?, KKT, and SSOSC but not necessarily SCS. Further, let R be any
index set satisfying

Is(x̄?, µ̄?, ξ̄) ⊂ R ⊂ I?(ξ̄) , (A.7)

that is, R includes all strongly active constraints and an arbitrary subset
of weakly active constraints at (x̄?, λ̄?, µ̄?, ξ̄). Next, consider the equality-
constrained problem

minimize f(x, ξ)
subject to h(x, ξ) = 0

gR(x, ξ) = 0 .
(A.8)

By considering (A.8) we make a choice for every constraint that is weakly
active at (x̄?, λ̄?, µ̄?) to consider it like a strongly active constraint (by
including it in R) or to ignore it.

Note that Proposition A.1 and Corollary A.1 can be applied to (A.8).
In particular, the SCS condition is vacuous because (A.8) does not have
any inequality constraints. Hence, let x?R : NR → Rn and (λ?R, µ?R) :
NR → R(p+|R|) denote the primal and dual solution map of (A.8) in a
neighborhood NR of ξ̄.
In the proof of [138, Thm 2.3.2] it was established2 that for every ξ

in a neighborhood N ⊂
⋂

RNR of ξ̄ the following holds: If the point
(x?(ξ), λ?(ξ), µ?(ξ)) is a regular optimizer of (2.2), then there exists an
index set R satisfying (A.7) such that (x?(ξ), λ?(ξ), µ?R(ξ)) is a regular
optimizer of (A.8). In particular, we have x?(ξ) = x?R(ξ), λ?(ξ) = λ?R(ξ),
and µ?i (ξ) = 0 for all i /∈ R.
Note that the set R for which this equivalence of solutions between

(2.2) and (A.8) holds, depends on ξ and there does in general not exist
a single set R that works for the entire neighborhood N of ξ̄.

2To establish this equivalence the author passes through an exact penalty refor-
mulation, which is beyond the scope of this chapter.
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This key insight can be used to establish bounds on the Lipschitz
constants of x? and µ? at ξ̄ in the absence of SCS:

Theorem A.2. Consider the same setup as in Theorem A.1 and let
Assumption A.1 hold at (x̄?, λ̄?, µ̄?). Then, x? : N → Rn and (λ?, µ?) :
N → Rp+m are locally Lipschitz at ξ̄ with bounds for the Lipschitz
constants given by `x? and `(λ?,µ?) as in (A.6).

The difference in (A.6) for Corollary A.1 and Theorem A.2 lies in the
fact that for Corollary A.1 the set I? (required for A,B,L? and G?)
contains only strictly active constraints, whereas for Theorem A.2 it
may also contain weakly active constraints.

Proof. Given R satisfying (A.7), let x?R : N → Rn, λ?R : N → Rm, and
µ?R : N → R|R| the solution maps of (A.8) in a neighborhood N of ξ̄.
Consequently, we apply Corollary A.1 to (A.8) for every R satisfying
(A.7), and we let `R

x? and `R
(λ?,µ?) denote the respective bounds on the

Lipschitz constant of x?R and (λ?R, µ?R) at ξ̄ according to (A.6). Similarly,
let AR(ξ̄), BR(ξ̄), L?R(ξ̄) and G?R(ξ̄) denote the corresponding quantities
for (A.8), evaluated at ξ̄.

Since, for every ξ ∈ Ξ the solution (x?(ξ), µ?(ξ)) is equal to the point
(x?R(ξ), µ?(ξ)) for some R satisfying (A.7), we can upper bound the local
Lipschitz constants of x? and (λ?, µ?) at ξ̄ by maximizing over all (finite)
possibilities of R satisfying (A.7). Namely, for x? we have

sup
ξ→ξ̄

‖x?(ξ)−x?(ξ̄)‖
‖ξ−ξ̄‖ ≤ max

R
sup
ξ→ξ̄

‖x?R(ξ)−x?(ξ̄)‖
‖ξ−ξ̄‖ ≤ max

R
`R
x? ,

and the case for (λ?, µ?) follows analogously.
In particular, we claim that this maximum is achieved exactly for the

choice R = I?(ξ̄) where all strongly and weakly active constraints are
considered.
To see this, note the following: Since lifting a vector to higher di-

mensions by adding components can only increase its 2-norm, we have
‖G?R(ξ̄)‖ ≤ ‖G?I?(ξ̄)(ξ̄)‖ for any R satisfying (A.7). Analogously, we
have σmin

BTR(ξ̄) ≥ σmin
BT

I?(ξ̄)
since adding columns to BT can only reduce its

minimum singular value.
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Next, at ξ̄ we that µ?(ξ̄) = µ?R(ξ̄) for any R satisfying (A.7). Further,
since µ?i (ξ̄) = 0, for all weakly active constraints with index i, we have
L?(ξ) = L?R(ξ) = L?I?(ξ̄)(ξ) and A(ξ̄) = AR(ξ̄) = AI?(ξ̄)(ξ̄). In other
words, at ξ̄ the weakly active constraints do not affect the quantities A
and L? which are derivatives of the Lagrangian.
Applying these facts to (A.6), it follows that, for all R satisfying

(A.7), it holds that `R
x? ≤ `

I?(ξ̄)
x? and `R

(λ?,µ?) ≤ `
I?(ξ̄)
(λ?,µ?) and thus we have

`x? = maxR `R
x? = `

I?(ξ̄)
x? and `(λ?,µ?) = maxR `R

(λ?,µ?) = `
I?(ξ̄)
(λ?,µ?) which

completes the proof.

A.2 Conditions for Global Solution Maps

Theorem A.2 provides bounds on the local Lipschitz constants for x?
and µ? at ξ̄. Next, we provide a set of assumptions to give global bounds
on the sensitivity. Naturally, some of these assumptions are restrictive,
but they provide important intuition and use cases for the general result
in Theorem A.2.

For simplicity, instead of (2.2), we focus on problems with only inequal-
ity constraints which require a more careful investigation than equality
constraints as shown in the previous analysis, i.e., we consider

minimize
x

f(x, ξ)

subject to g(x, ξ) ≤ 0 ,
(A.9)

for the remainder of this section. All of the following statements and
assumptions can be generalized.
First, it is necessary that (A.9) admits a solution for every ξ:

Assumption A.2. The problem (A.9) is feasible for all ξ ∈ Ξ.

Next, in order to guarantee that the solution map x? : Ξ→ Rn is single-
valued for all ξ ∈ Ξ, it is convenient, if not necessary, to assume (strong)
convexity:
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Assumption A.3. For (A.9), let f be α-strongly convex and have a β-
Lipschitz gradient ∇xf in x for all ξ ∈ Ξ. Further, for all i = 1, . . . ,m,
let gi be convex and ∇xg be `i-Lipschitz in x for all ξ ∈ Ξ.

Assumption A.3 guarantees not only that (2.2) admits a unique optimizer
for every ξ ∈ Ξ, it also implies that any KKT point of (A.9) (trivially)
satisfies the SSOSC since ∇2

xxL is positive definite for all (x, µ, ξ) ∈ Rn×
Rm≥0 × Ξ. Assumption A.3 also implies the lower bound λmin(A(ξ)) ≥ α
for all ξ ∈ Ξ and thus replaces Assumption A.1. Lipschitz continuity of
∇xf and ∇xg is required to upper bound λmax(A) as discussed below.
Moreover, we generally require the active constraints to have uniformly
full rank:

Assumption A.4. Given (A.9), there exists ω > 0 such that, for all
ξ ∈ Ξ and all x ∈ X (ξ) such that Iξx 6= ∅, we have

ω2I � ∇xgIξx
(x, ξ)∇xgIξx

(x, ξ)T .

In particular, Assumption A.4 guarantees that LICQ is satisfied at all
x ∈ X (ξ), for all ξ ∈ Ξ, and that σmin

BT (ξ) ≥ ω in (A.6) is lower bounded
away from zero whenever at least one constraint is active. Note that
Assumption A.4 is independent of the choice of the cost function.

Further note that, under Assumptions A.3 and A.4, (A.9) has a unique
regular optimizer for every ξ ∈ Ξ. Hence, by Theorem A.1, continuous
solution (and multiplier) maps exist around every ξ ∈ Ξ. This implies
that the maps x? : Ξ→ Rn and µ? : Ξ→ Rm exist globally on all of Ξ
and are continuous.

Finally, because A = ∇2
xxf+

∑
i µi∇xxg and L? = ∇ξxf+

∑
i µi∇2

ξxg

are weighted sums over µ, we generally require an upper bound on the
dual multiplier µ?.

Assumption A.5. There exist ζi > 0 such that, for all ξ ∈ Ξ and
every KKT point (x?(ξ), µ?(ξ)) of (A.9), we have µ?i (ξ) ≤ ζi for all
i = 1, . . . ,m.

Finding (tight) upper bounds on the dual multipliers is tricky and de-
pends on the problem structure.
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If ‖∇xf(x, ξ)‖ ≤ Bf and ‖∇xgi(x, ξ)‖ ≤ Bgi are uniformly bounded
for all ξ ∈ Ξ, all x ∈ X (ξ) and all i = 1, . . . ,m, then it is easy to see
that µ?i ≤ ζi := Bf/Bgi .
Another possibility, documented in [33, p.647], applies specifically to

convex optimization problems (i.e., under Assumption A.3). Namely, if
for all ξ ∈ Ξ a strict lower bound f̃?ξ (i.e., f̃?ξ < f(x, ξ) for all x ∈ X (ξ))
and a strictly feasible point x̃ξ (i.e., g(x̃ξ, ξ) < 0) are known, then we
can choose

ζi = sup
ξ∈Ξ

f(x̃ξ, ξ)− f̃?ξ
−gi(x̃ξ)

.

Combining Assumptions A.3 and A.5 we can guarantee that

A = ∇2
xxf +

∑m

i=1
µ?i∇2

xxg �
(
β +

∑
i
ζi`i

)
I .

In other words, we have λmax(A(ξ)) ≤ β +
∑
i ζi`i.

The assumptions made so far can be summarized in the following
statement:

Corollary A.2. Under Assumptions A.2, A.3, A.4, and A.5 the primal
and dual solution maps x? : Ξ → Rn and µ? : Ξ → Rm of (A.9) are
single-valued and Lipschitz continuous (on Ξ) with respective Lipschitz
constants

`x? :=
√
β +

∑
i ζi`i

α

(
L̄?

α
+ Ḡ?

ω

)
,

`µ? :=
(β +

∑
i ζi`i)3/2

α1/2ω

(
L̄?

α
+ Ḡ?

ω

)
,

(A.10)

where L̄? := sup
ξ∈Ξ
‖L?(ξ)‖ and Ḡ? := sup

ξ∈Ξ
‖G?(ξ)‖ are upper bounds on L?

and G? over Ξ, respectively.

It remains to establish bounds on L? and G?. Such bounds, however,
are highly problem dependent, and therefore we consider only special
cases in the next section.
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(a) (b)

Figure A.1: Evolution of the optimizer for (a) stationary constraints and
perturbed cost function; (b) fixed objective and linear constraint with
righthand side perturbation.

A.3 Discussion of Sensitivity Bounds

We now discuss special cases for the established sensitivity bounds and
how to relax the differentiability of f and g.

A.3.1 Special Cases

Stationary Constraints

We first assume that the constraints are stationary and only the cost
function is perturbed, i.e., we consider the problem

minimize f(x, ξ) subject to g(x) ≤ 0

and assume that Assumptions A.2, A.3, A.4, and A.5 are satisfied. Let
(x̄?, µ̄?) be a regular optimizer for ξ̄ for which SCS holds, and therefore
Proposition A.1 is applicable.

In this case, G?(ξ) is vacuous and we have L? = ∇2
xξL = ∇2

xξf . Hence,
the evolution of x? and µ? around ξ̄ is governed by the first terms in (A.3).
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In particular, we have ∇ξx? = −ΠA−1L?, which is independent of B†
(and hence of σmin

BT ). In other words, the conditioning of the constraints
(as quantified by Assumption A.4) does not affect the sensitivity of x?
(however, it does affect the sensitivity of µ?).

In this context, we can also make sense of the operator Π which
projects the quantity A−1L? onto kerBT which is the tangent space of
the surface of (strongly) active constraints. In other words, Π guarantees
that x? can change only along the surface spanned by the (strongly)
active constraints, which is plausible since the constraints are stationary.
Figure A.1a illustrates this effect.
If we further assume that no constraints are active at x̄?, we find

ourselves in a situation of unconstrained optimization. In this case,
(A.3) reduces to ∇ξx? = −

(
∇2
xxf(ξ)

)−1∇2
ξxf . This results can also

be derived by a direct application of the implicit function theorem, for
which `x? reduces to

`x? := `f
α
, where `f := sup

ξ′∈Ξ
‖∇2

ξxf(x?(ξ′), ξ′)‖ . (A.11)

In particular, for unconstrained time-varying optimization, the assump-
tion that ∇xf is β-Lipschitz is not required.

Translational Perturbation of Objective

A particular class of objective functions is when the perturbation is in
the form of a translation, i.e., we consider

minimize f̂(x− c(ξ)) subject to g(x) ≤ 0 , (A.12)

where f̂ : Rn → R is α-strongly convex and β-smooth and c : Rr → Rn

is continuously differentiable and `c-Lipschitz. Otherwise, let Assump-
tions A.2, A.3, A.4, and A.5 hold. Considering f(x, ξ) = f̂(x−c(ξ)), the
structure of (A.12) implies that ∇xf(x, ξ) = ∇f̂(x−c(ξ)), and therefore
∇2
ξxf(x, ξ) = −∇2

xxf̂(x − c(ξ))∇c(ξ), and therefore ‖L?‖ ≤ β`c (since
∇ξxg = 0). In fact, c does not need to be continuously differentiable,
but only Lipschitz as discussed in the forthcoming Appendix A.3.2.
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Right-hand Constraint Perturbations

Next, we consider a stationary cost function and a constraint parame-
trization that takes the form of a right-hand side perturbation, i.e.,

minimize f(x) subject to u(x) ≤ v(ξ) , (A.13)

where u : Rn → Rm and v : Ξ → Rm are twice continuously differen-
tiable, and Assumptions A.2, A.3, A.4, and A.5 hold.
Let (x̄?, µ̄?) be a regular optimizer for ξ̄ and let SCS hold, such that

x? and µ? are differentiable at ξ̄.
Exploiting the structure of (A.13), we have ∇2

ξxg ≡ 0, and ∇2
ξxf ≡ 0,

and thus L? ≡ 0. Consequently, according to Proposition A.1 it holds
that ∇ξx? = −ΣB†G?.
Recall from Lemma A.2 and its proof, that Σ denotes an orthogo-

nal projection onto the space spanned by Q−1∇gi(ξ) for all i ∈ I?(ξ)
where Q := A1/2. Roughly speaking, as the constraints vary according
to (A.13), the optimizer can move only Q−1-orthogonally to the sur-
face spanned by the active constraints. This behavior is illustrated in
Figure A.1b.

Linear Constraints

Yet, a more special case is to assume that X (ξ) is a polyhedron, that is,
to consider

minimize f(x) subject to Ux ≤ v(ξ) , (A.14)

where U ∈ Rm×n is assumed to have full row rank (thus satisfying
Assumption A.4). The fact that in this case we have that ∇2

xxg = 0
(and that L? = ∇2

ξxf) obviates the need for Assumption A.5, i.e., there
is no need to estimate the upper bound of the dual multipliers. Hence,
the bounds `x? and `µ? , in Corollary A.2 simplify to

`x? :=
√
β

α

`v
ω

and `µ? := β3/2

α1/2
`v
ω2 , (A.15)

where `v := sup
ξ∈Ξ
‖∇v(ξ)‖ is the Lipschitz constant of v.
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A.3.2 Relaxation of Differentiability Assumption

All results thus far require f and g, from (A.9), to be twice continuously
differentiable in (x, ξ). Whether it is possible to directly relax this
(possibly restrictive) assumption without losing Lipschitz continuity is
still an open question.

However, this issue sometimes can be circumvented by a perturbation
mapping that isolates the non-smoothness. Namely, assume that there
exist a map ξ̃ : Rp → Rr that is `ξ̃-Lipschitz. Then, based on (A.9), we
consider the problem

minimize
x

f(x, ξ̃(ψ)),

subject to g(x, ξ̃(ψ)) ≤ 0
(A.16)

parametrized in ψ. If (A.9) admits a `x?-Lipschitz solution map with
respect to ξ, then (A.16) admits a `x?`ξ̃-Lipschitz solution map x̃?, in
ψ. This holds since the composition of Lipschitz maps is also Lipschitz.
Based on the special problem classes discussed in the previous sub-

section, we can also derive the following result which incorporates non-
differentiable perturbations with tighter bound on the Lipschitz constant
than derived from (A.16):

Corollary A.3. Consider the problem

minimize f̂(x− c(ξ))
subject to Ux ≤ v(ξ)

(A.17)

where ξ ∈ Ξ ⊂ Rr. Define X̂ (ξ) := {x |Ux ≤ v(ξ)} and let

(i) f̂ : Rn → R be twice continuously differentiable, α-strongly convex,
with β-Lipschitz ∇f̂ ,

(ii) c : Ξ → Rn and v : Ξ → Rm be `c- and `v-Lipschitz, respectively,
and

(iii) U ∈ Rn×m and ω > 0 such that for every ξ ∈ Ξ and ever x ∈ X̂ (ξ)
one has ω2I � UIξx

UT
Iξx
.
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If X̂ (t) 6= ∅ for every ξ ∈ Ξ, then the primal and dual solution maps
x? : Ξ → Rn and µ? : Ξ → Rm of (A.17) are Lipschitz with respective
bounds on Lipschitz constants

`x? =
√
β

α

(
β`c
α

+ `v
ω

)
and `µ? = β3/2

α1/2ω

(
β`c
α

+ `v
ω

)
.

Proof. The key point about Corollary A.3 is the fact that c and v are
Lipschitz continuous, but not twice differentiable. To address this issue,
consider, instead of (A.17), the problem

minimize f̂(x− c) subject to Ux ≤ v (A.18)

parametrized in (c, v). Under the stated assumptions, the parametrized
objective (x, c) 7→ f̂(x − c) and constraint function (x, v) 7→ Ux − v

are twice continuously differentiable in (x, c) and (x, v), respectively.
Therefore, the solution map (c, v) 7→ x̂?(c, v) of (A.18) is Lipschitz by
Corollary A.2. In fact, by considering the reasoning for translational
perturbations of the objective and righthand perturbations of polyhedra
in the previous subsection, we know that x̂? is Lipschitz in c and v with
Lipschitz constants ( βα )3/2 and

√
β
α

1
ω , respectively.

Moreover, replacing c with c(ξ) and using `c-Lipschitz continuity of c
we have, for all c′, c ∈ Rn and all v ∈ Rm,

‖x̂?(c(ξ′), v)− x̂?(c(ξ), v)‖ ≤
√

β
α
β
α`c‖ξ

′ − ξ‖ (A.19)

Similarly, replacing v with v(ξ) we have

‖x̂?(c, v(ξ′))− x̂?(c, v(ξ))‖ ≤
√

β
α

1
ω `v‖ξ

′ − ξ‖ (A.20)

for all c ∈ Rn and all v′, v ∈ Rm.
The mutual uniformity of the these Lipschitz constants, i.e., the fact

that (A.19) and (A.20) are independent of v and c, respectively, allows
us to write

‖x?(ξ′)− x?(ξ)‖ ≤
√

β
α

(
β`c
α + `v

ω

)
‖ξ′ − ξ‖ ,
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where x?(ξ) = x̂?(c(ξ), v(ξ)) and thus the solution map x? : Ξ→ Rn of
(A.17) is Lipschitz with the desired Lipschitz constant. The Lipschitz
constant for µ? follows analogously.
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Complete Simulation Results
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Figure B.1: Penalty scheme under nominal conditions
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Figure B.2: Penalty scheme with delay of 2min
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Figure B.3: Penalty scheme with delay of 5min
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Figure B.4: Penalty scheme with linearization update every 60min
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Figure B.5: Primal-dual scheme under nominal conditions
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Figure B.6: Primal-dual scheme with delay of 2min
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Figure B.7: Primal-dual scheme with delay of 5min
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Figure B.8: Primal-dual scheme with linearization update every 60min
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Figure B.9: LOP scheme under nominal conditions
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Figure B.10: LOP scheme with delay of 2min
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Figure B.11: LOP scheme with delay of 5min
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Figure B.12: LOP scheme with linearization update every 60min
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