
ETH Library

FlockLab 2: Multi-Modal Testing
and Validation for Wireless IoT

Conference Paper

Author(s):
Trüb, Roman ; Da Forno, Reto ; Sigrist, Lukas ; Mühlebach, Lorin; Biri, Andreas ; Beutel, Jan ; Thiele, Lothar

Publication date:
2020-09

Permanent link:
https://doi.org/10.3929/ethz-b-000442038

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6355-2051
https://orcid.org/0000-0002-1591-4978
https://orcid.org/0000-0002-4983-8889
https://orcid.org/0000-0002-1495-3780
https://orcid.org/0000-0003-0879-2455
https://doi.org/10.3929/ethz-b-000442038
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


FlockLab 2: Multi-Modal Testing and Validation for Wireless IoT
Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan Beutel,

Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich

Switzerland
rtrueb@ethz.ch

ABSTRACT
The development, evaluation, and comparison of wireless IoT and
cyber-physical systems requires testbeds supporting inspection of
logical states and accurate observations of physical performance
metrics. We present FlockLab 2, a second generation testbed sup-
porting multi-modal, high-accuracy and high-dynamic range mea-
surements of power and logic timing and at the same time in-situ
debug and trace infrastructure of modern microcontrollers allowing
for reproducible evaluation and benchmarking. We detail the archi-
tecture, provide a characterization and demonstrate the interface,
the supported services and the tools of the FlockLab 2 testbed.

Data Availability Statement. The hardware design and the software
for server and observer of the presented testbed architecture and
the data for the plots in this paper are openly available at
https://flocklab.ethz.ch.

1 INTRODUCTION
The ever-increasing complexity and care for detail that must be
mastered in developing state-of-the-art distributed networked em-
bedded applications requires modern and adequate tool support for
experimentation. In scaling to large distributed applications, simu-
lations can help but cannot replace experiments on real hardware.
Simulation always implies simplifications, significant especially at
the hardware level. The latest microcontrollers and radios used
in wireless Internet of Things (IoT) applications feature numerous
power modes that need to be accurately fine-tuned and orchestrated
for efficiency. The interaction between peripherals and the system
core needs to be well-understood and validated for reliable opera-
tion down to the instruction level. Timing needs to be controlled
at application as well as driver level up to the speed of light, as
recent work on network protocols incorporating the time-of-flight
of radio signals has shown [10].

The development of embedded software is commonly based on
state-of-the-art debug and trace infrastructure integrated into the
hardware of modern microcontroller architectures [15]. This in-situ
infrastructure is supported by a multitude of development tools that
can be used on the user’s desk and also remotely. Today, such tool-
ing is limited to a single device-under-test (DUT), therefore severely
limiting capabilities to develop and test algorithms and systems for
distributed wireless IoT devices. It is exactly this distributed nature

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPS-IoTBench’20, Sept. 25, 2020, London, UK
© 2020 Copyright held by the owner/author(s).

Figure 1: FlockLab 2 observer with 4 target slots.

of many devices, coupled over variable wireless channels and di-
rectly influenced by the embedding environment, that is known to
be a challenging task in designing, implementing and validating IoT
and cyber-physical systems. Therefore, distributed testbeds with
representative hardware deployed in a real environment are widely
used. Such testbeds allow (1) the reuse of the testing infrastructure,
(2) controlled and reproducible testing and validation, and (3) the
comparison of different implementations on a common platform
(benchmarking). A number of testbeds exist that support a subset
of the aspects mentioned above that are required for contemporary
software development and evaluation for wireless IoT devices. An
overview of existing testbeds and their capabilities as well as our
remarks on 8+ years of testbed development and operation is pro-
vided in Sec. 2. However, none of the existing testbeds supports
combined native in-situ debug and trace infrastructure, accurate
timing measurements as well as the detailed assessment of power
consumption over a large dynamic range.

In this work, we present a versatile testbed with capabilities
addressing the aforementioned requirements. In jointly addressing
challenges in power measurement, timing, functional correctness
based on native, in-hardware debug and trace functionality inte-
grated at testbed scale, this work takes the methodological aspect of
developing IoT and cyber-physical systems to the next level. The in-
tegration of native hardware-based debug and real-time tracing into
every observer node allows full testbed-wide access to the ARM real-
time debug and trace collection infrastructure (CoreSight [12, 15]) at
the program execution level. Access is provided remotely in exactly
the same manner as on a single developer’s desk to all devices-
under-test. This alleviates the need for inflexible instrumentation
of the software code run on a DUT as well as invasive run-stop
debugging. In addition, this testbed integrates high fidelity power

https://flocklab.ethz.ch


CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

profiling at nA resolution, dynamic control of the power supply
and highest precision tracing and actuation of a set of DUTs based
on Global Navigation Satellite System (GNSS) time synchroniza-
tion. The testbed features a well-defined and open interface for test
creation and test result fetching. A Python-based library and com-
mand line tool provides support for automated test management
and visualization. This paper contains the following contributions:

• It proposes a testbed architecture that combines state-of-the-
art debug and trace capabilities with accurate high-dynamic
range measurements and actuation.

• Characterization of the system implementation.
• Demonstration of capabilities of FlockLab 2 in a case study.
• Open-source hardware design and software source code.

Sec. 2 gives an overview of the testbed landscape. In Sec. 3, we
discuss the design of FlockLab 2 and characterize its implementation.
In Sec. 4 we demonstrate the capabilities of FlockLab 2.

2 PAST EXPERIENCE AND RELATEDWORK
The design of FlockLab 2 is heavily influenced by 8+ years of ex-
perience in developing and operating the FlockLab 1 testbed [8].
This testbed was based on the very successful target-observer
model [8, 11] with multi-modal capabilities to monitor and influ-
ence devices-under-test at very high precision and fine-grained
resolution. The FlockLab 1 testbed has been operated publicly since
2012. It ran over 70’000 tests by more than 370 users frommore than
130 institutions in 30 countries. In addition, the testbed has been
used by students in hands-on courses and many student projects.

Over time, a number of extensions based on the original concept
of FlockLab 1 have been implemented [9, 10] calling for a revisit of
the original concept with improved performance figures. Existing
competitor testbeds each provide interesting features. However,
none of them combine all three capabilities: (1) in-situ debug and
trace, (2) high-dynamic range power profiling, and (3) accurate
timing. In the following, we give an overview of the current testbed
landscape.

TWIST [6] and Indriya2 [2] are both based on USB interconnects.
Therefore they do not provide elaborate debug and trace features or
accurate observations of hardware behavior like precise timing or
power. On TWIST the power supply can be controlled by turning
the USB interface to the targets on or off. Furthermore, a hierarchical
back-channel using USB and Ethernet allows scalability.

The D-Cube [14] testbed focuses on benchmarking wireless pro-
tocols in pre-defined scenarios with a technique to embed test
parameters directly in the software for the DUT, control RF interfer-
ence and the automated publication of test metrics. In addition to
serial logging, it supports setting and tracing GPIO pins and allows
power consumption measurements. However, it does not support
the use of debug and trace capabilities of modern MCUs.

FIT IoT-Lab [1] supports a wide range of sensor nodes (MSP430
to ARM Cortex-M8) at many different locations. Basic debug and
trace based on JTAG and monitoring of power consumption is
supported. Furthermore, the testbed supports injecting and sniffing
radio packets and monitoring on a single frequency RF channel. To
the best of our knowledge, it does not support accurate timing for
control and measurements.

Observer

Data

BeagleBone
Green

 

 

PPS

UART

USB USB
Hub

GNSS

Segger J-Link
Debug Probe

USB SWD/
SWO

USB

GPIO Tracing

Control

Serial ID

Target
Power
Supply

Voltage and
Current

Measurement

PRU0
Control

UART

MUX

Level Shifter

Slot 3

Slot 4

Target 4

Slot 2

Slot 1

Target 3

Target 2

Target 1

Power
MUX

MUX

Timer

PPS

AM3358
ARM 

Cortex-A8

Ethernet

PHC PRU1

PPS

GPIO Actuation & Reset

Figure 2: FlockLab 2 observer architecture.

Shepherd [5] focuses on recording and replaying energy har-
vesting power traces for research in batteryless IoT devices. The
architecture supports basic debugging and GPIO tracing. Power
measurements are supported up to 50mA which is limiting for
modern long-range radios with high transmit power. Currently,
there is no publicly available instance of the Shepherd testbed.

3 A REAL-TIME TRACING ARCHITECTURE
An IoT testbed needs to support multi-modal distributed interaction
and tracing. We identify the following key requirements for a state-
of-the-art testbed for wireless IoT devices:

• Support for native debug and trace infrastructure.
• Accurate and high-dynamic range powermeasurements (sub-
µA sleep current up to radio TX current of 170mA).

• High-precision timing (sub-µs accuracy) across the distributed
testbed.

The FlockLab 2 testbed architecture consists of a testbed server
hosting data services and the web interface, a set of distributed
observers carrying the instrumentation and providing connectivity
and the devices-under-test (DUTs) also termed the target devices.
In FlockLab 2, multiple targets, typically manifested by different
sensor node architectures, are supported on each observer system.
Each target device is connected to the observer hardware using
a multiplexer crossbar allowing a user to select a distinct target
hardware architecture without physical intervention (see Fig. 2).
Using this multiplexing allows to run tests on different target de-
vice architectures physically collocated, e.g. to compare different
radio architectures side-by-side. The independent and stateful ob-
server, which stores tracing data locally, allows for a strong coupling
between observer and target (see Fig. 3). This enables highest accu-
racy and throughput of the DUT instrumentation especially when
comparing to direct out-of band back-channels of early testbed
architectures [17].

The basic services of FlockLab 1 are continued: actuation and
tracing of serial port and GPIO pins, target programming, power
tracing and adjustable target supply voltage. The new system sup-
ports a native in-situ debug and trace service and generally a higher
fidelity of the aforementioned basic services as well as an extended



FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

testbed layout covering also wide-area distances [16]. The instru-
mentation for measuring the power consumption has been sig-
nificantly improved: nA current measurements resolution, peak
power up to 500mA, a sampling rate of 64 kHz, electrical isolation
of target devices to not perturb low-power measurements.

3.1 Observer Instrumentation Platform
Each observer consists of a Linux host system, a main board and
several target adapter boards hosting up to four different target
devices. The four target slots are connected using a multiplexing
unit that routes all signals on the observer main board.

3.1.1 Linux Single-Board Computer as Observer Host Platform. A
standard Linux single-board computer (SBC), a BeagleBone Green,
is used as host platform for the decentralized stateful observers. All
tracing data is recorded on the observer in order to alleviate the in-
herent bottleneck to the testbed server. The BeagleBone Green SBC
includes a single core ARM Cortex-A8 processor and two single-
cycle Programmable Real-Time Unit (PRU) co-processors for low
latency tracing. It further features an Ethernet interface with inte-
grated hardware support for network-based time synchronization
(NTP/PTP), generic IO extensions and local Flash memory.

3.1.2 Embedded Debug and Trace Integration. The key feature on
the FlockLab 2 observer is an integrated Segger J-Link OB debug
probe. This gives native access to state-of-the-art ARM Cortex-M
CoreSight debug and trace facilities which are built into modern
systems-on-chip (SoC) [12]. This allows to utilize simple halting
debug mode (where architectural state can be observed), single step
execution, breakpoint units and Performance Monitoring Units
(PMUs). CoreSight further provides an Embedded Cross Trigger
mechanism to synchronize or distribute debug requests and profil-
ing information across the SoC. Embedded Trace Macrocells (ETM
trace unit) or Program Trace Macrocells (PTM trace unit) allow to
trace program execution at runtime and without instrumentation
in the code that (i) alters program behavior and (ii) needs to be
adapted for every single analysis step. The trace macrocells can
either be captured using an on-chip trace buffer or accessed via the
generic Serial Wire Debug (SWD) connection implemented on the
J-Link debug probe acting as off-chip trace port analyzer (see Fig. 3).
Dedicated synchronization points and global 64-bit timestamps
across the whole SoC architecture can be enabled in the tracing
architecture to gain accurate temporal context of an application
and its interaction with the underlying hardware at runtime. The
debug and tracing architecture is implementation specific and can
be found in the respective microprocessor documentation.

The use of SWD on FlockLab 2 with the SWDCLK and SWDIO
signals as well as a dedicated Serial Wire Output (SWO) trace port
is a tradeoff between bandwidth and pin count. By using data buffer
exchange capabilities of the debug probe, e.g. with Segger Real Time
Transfer (RTT) software technology that can be easily integrated
with user code, high-speed and little impact data transfer from the
target to the observer is supported. For example, this allows more
efficient printf()-style logging on the target.

Besides the native hardware support for debug and trace, the
main advantage lies in the ability to connect to all standard de-
veloper tools allowing interactive debug sessions on the testbed

Observer fl-01Microcontroller on Target

SWD Segger J-Link
Debug Probe

UART

GPIO
Memory ARM Cortex-M

Core

Power

Local Trace
Storage

Trace
Buffer

Debug Session
from IDE

Server/
Database

Debug & Trace
Unit

Trace
Unit

Break-
point
Unit

fl-01:2331

FlockLab Tools
Interactive trace analysis

Voltage and
Current

Measurement

Figure 3: Tracing instrumentation based on the in-situ de-
bug and trace unit and external capabilities.

directly from a developer’s IDE or use ready made tooling for au-
tomating tasks. A lot of time in sensor networks and IoT research
has been spent in developing custom tooling and a host of scripts
incompatible with industry standard debugging and profiling tools.

3.1.3 Power Tracing. Highly accurate and high-dynamic range
power profiling is based on the RocketLogger embedded measure-
ment device [13]. It combines two measurement principles using
seamless autoranging: a shunt ammeter (high current range), as
well as a feedback ammeter (low current range) provide the nec-
essary precision and range to measure sleep currents (sub-µA and
peak power consumption (100’s ofmA) of modern radios. The mea-
surement circuit allows to measure the current through as well as
the voltage at the target. A careful electrical isolation of all target
IO lines allows to accurately measure on the order of nAs for the
lowest power modes. Measurements are performed by precision
analog-to-digital converters (ADCs) and periodically transferred to
the single-board computer’s storage via PRU0. To compensate for
hardware and manufacturing variations, the voltage and current
measurement circuit on each observer is calibrated before first use.

3.1.4 Serial Logging and Forwarding. Serial port communication
via UART or USB is supported on each observer. This allows logging
of simple printf() based console output and supports interactive
communication with the target during tests by forwarding the serial
port via TCP to the testbed user. To achieve high performance
and accurate timing, logging is implemented in C and events are
timestamped using the GNSS or PTP disciplined system clock.

3.1.5 Logic Actuation and Tracing. On each observer, 5 target GPIO
pins can be captured and 2 target GPIO pins can be actuated. In
FlockLab 2, logic tracing is implemented on the programmable real-
time unit PRU1, which allows to acquire highly accurate timing
trace data. Logic actuation is implemented by a Linux kernel module
and the actuation events are logged by the PRU based logic tracing
as well.

3.1.6 Testbed-wide Time Synchronization. Accurate timing across
all signals for tracing and actuation on a single observer platform
as well as across the whole testbed is one of the most important
success factors of a distributed IoT testbed. With recent advances
in higher system clock rates and ever more timing critical behavior
in advanced communication schemes [10] the requirements for
accurate timing is in the sub-microsecond scale. Since this testbed is
designated to support long-range communication where observers



CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

Start Signal
from Linux

Stop Signal
from Linux

Requested Time for FlockLab Test

GPIO Sampling ON

PPS
 

Busy wait
for PPS

PPS
(not logged)

Delay Delay

PPS
(not logged)

Busy wait
for PPS

PPS
 

PPS
 

...
Time

Cortex-A8

PRU

i=0

1 s 1 s

Event
 

PPS
 

i=1 i=2

Figure 4: Logging of PPS signal alongside the target signals
for accurate time synchronization.

might be distributed over kilometers, synchronization needs to
work independent of other observers and their location.

The local Linux system time referenced to UTC and disciplined
by GNSS serves as time reference for all testbed services. The inte-
grated GNSS receiver (u-blox M8) generates an accurate pulse-per-
second (PPS) signal which is tracked in dedicated hardware timers
on the single-board computer. For accurate timing of the logic trac-
ing, the PPS pulse is logged alongside the target signals (see Fig. 4).
A linear correction factor is calculated for each epoch 𝑖 and applied
to timestamp of the logic tracing event (numbered by 𝑘) once a test
has completed.

𝑡eventGlobal [𝑖, 𝑘] = 𝑡eventPRU [𝑖, 𝑘] ·
𝑡
pps
Global [𝑖 + 1] − 𝑡

pps
Global [𝑖]

𝑡
pps
PRU [𝑖 + 1] − 𝑡

pps
PRU [𝑖]

Observers at locations with limited GNSS signal reception can
use the Precision Time Protocol (PTP) as a fallback solution to dis-
cipline the Linux system clock. A prerequisite for this is a network
infrastructure which fulfills the requirements of the PTP protocol.
The PPS signal required for accurate logic tracing is based on Linux
system time generated by a kernel module. Using hardware as-
sisted timestamping at the PHY and MAC layer of the single-board
computer’s Ethernet interface allows to achieve synchronization
accuracy in the order of ∼1 µs for PTP [7] compared to ∼50 ns for
GNSS [10].

For the debug probe, incoming messages from the SWO trace
port are timestamped using system time. The debug unit can be
configured to export local timestamps via SWO. These can be con-
verted to system time by applying a piece-wise linear regression
similar to the correction factor for logic tracing described earlier.

3.1.7 Target Adapter. The target adapter is mainly a hardware
adapter bridging form-factor and pinout. It may contain configu-
ration options (e.g. jumpers) and extra debug pins depending on
the target platform. Additionally, it contains a serial ID chip for
automated identification of every target connected to an observer.

3.1.8 Power Generation and Reset. The target supply voltage is
generated using an low-dropout (LDO) regulator controlled by a
digital-to-analog converter (DAC) based reference voltage. This
allows to dynamically control the target supply voltage. The target
can be reset either by controlling the reset pin or by a full power-off-
reset (POR). These power and reset capabilities enable to test under
different operating conditions and under most realistic conditions.

3.1.9 Target Programming. Programming of the microcontroller
of the target devices is performed either using a bootloader (BSL)
or native single wire debug (SWD) for ARM based devices.

Target MCU Arch. Radio
Tmote Sky / TelosB MSP430F1611 MSP430 CC2420, 802.15.4, 2.4 GHz
DPP2 CC430 [3] CC430F5147 MSP430 CC430 SoC, CC1101-based, 868MHz
DPP2 LoRa [3] STM32L4 ARM M4 SX1262, LoRa/FSK, 868MHz
nRF52840 Dongle nRF52840 ARM M4 nRF52 SoC, 802.15.4/BLE, 2.4 GHz

Table 1: Target devices supported on FlockLab 2.

3.2 Testbed Management and User Interface
3.2.1 Testbed Infrastructure. The testbed is orchestrated by a server
which executes the scheduled tests, provides a MySQL database,
provides storage space for test results, hosts the web interface and
exposes an API for automated test scheduling and fetching. The
database stores test scheduling information and configuration as
well as the current state of the hardware infrastructure (e.g. which
target is connected to which observer).

3.2.2 API and Visualization. FlockLab 2 focuses on fully autonomous
test execution but also supports live interactions. Tests are config-
ured and scheduled using a single XML file. This test configuration
file allows to (1) select the target platform and the testbed nodes, (2)
enable and configure actuation and tracing services, and (3) include
one or more program images which will then be flashed to the
targets. Real-time interaction during test execution is supported via
the serial communication service (read/write) and via a remote de-
bug session using the integrated Segger J-Link debug probe which
allows to set breakpoints, halt the execution, read processor state
and to retrieve data via SWO.

The results are stored on a server and can be downloaded as
an archive file. Test management (creating and stopping tests, re-
trieving status information, downloading results) as well as an
intuitive visualization of results is supported via web interface or
the flocklab-tools command-line tool executed on the user’s
computer.

3.3 Publicly Available Testbed
The FlockLab 2 testbed is implemented as a public service with
currently 15 active observers (Fig. 1). 12 observers are distributed on
the floor of an office building and 3 observers are installed at remote
long-distance rooftop locations [16]. Additional observer hardware
will extend the testbed to 30+ nodes. The testbed can be publicly
accessed via the website1. where we also publish documentation,
examples, the hardware design and software source code.

Currently, the four target platforms listed in Tab. 1 are avail-
able. Additional target platforms can easily be added thanks to the
generic target interface.

3.4 FlockLab 2 Observer Key Characteristics
We provide a characterization of the FlockLab 2 observer in Tab. 2.

4 USING FLOCKLAB 2 IN PRACTICE
In order to demonstrate the capabilities of FlockLab 2 regarding fea-
tures and performance, we discuss an example of network flooding
based on synchronous transmissions [4] on a FSK/LoRa radio [3].
Building and scaling-up a communication protocol based on syn-
chronous transmissions requires a very careful arbitration of all
1https://www.flocklab.ethz.ch

https://www.flocklab.ethz.ch


FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

Target Power Supply
Voltage range 1.1 - 3.6V
Voltage resolution 13.5mV
Max. current 500mA
Logic Actuation
Timing accuracy <100 µs (typ.)
Power Tracing (see [13] for details)
Max resolution / sampling rate 15.625 µs / 64 kHz
Voltage accuracy 0.37% + 4mV
Current accuracy (low range 0 - 2mA) 0.01% + 60 nA
Current accuracy (high range 2 - 500mA) 0.02% + 48 µA
Logic Tracing
Max resolution / sampling rate 0.1 µs / 10MHz
Max burst event rate (≤ 2000 edges) 10MHz
Max continuous event rate (typ.) 900 kHz
Timing Accuracy (GNSS) <0.25 µs (typ.)
Serial Tracing
Max continuous throughput 460 kbaud
Timing accuracy <10ms (typ.)
Table 2: Characterization of the FlockLab 2 observer.

radio activities and extensive debugging as transmissions and cor-
responding interrupts need to be correctly aligned. It is therefore
a suitable example to showcase the capabilities of FlockLab 2. In
this example, we use the DPP2 LoRa target which consists of an
STM32L433 Cortex-M4 microcontroller and a Semtech SX1262 ra-
dio [3] with a 0.28 µA standby current and 7 µs wake-up latency.

4.1 Simple Synchronous Transmission Protocol
Gloria is an optimized multi-hop network flooding protocol based
on Glossy [4]. As depicted in Fig. 5, all nodes synchronously re-
transmit a received message a pre-defined number of times (3 times
in our example) in subsequent transmission slots. Contrary to
Glossy, Gloria nodes listen to a message only once. For the set-
ting used in this example, the relevant values are InitOverhead =
1.783ms and SlotTime = 4.548ms (see Fig. 5). Both values are fixed
for each specific radio configuration (in this case FSK 250 kbit/s)
and have been determined using the datasheet and measurements.

Slot 0 Slot 1

Initiator Tx

Rx

Slot 2 Slot 3 Slot 4 Slot 5

Relay

Relay

Relay

Listen

Tx Tx

Tx Tx Tx

Rx Tx Tx Tx

Rx Tx Tx Tx

Time

RefTime

Flood
Overhead

SlotTime SlotTime

TxMarker

SyncWordValid Interrupt
RxDone Interrupt

TxDone
Interrupt

Figure 5: Gloria floods use concurrent re-transmission.

4.2 Testing Workflow
4.2.1 Creating a Test. First, the software for the target platform is
compiled using the standard toolchain/IDE. Then, an XML test con-
figuration file is created containing the nodes, images and platform
to be used, test duration, actuation, tracing and debugging services

<testConf xmlns="http://www.flocklab.ethz.ch">

<generalConf>

<name>FlockLab XML template</name>

<schedule><duration>60</duration></schedule>

</generalConf>

<targetConf>

<obsIds>2 4 6 7 9</obsIds>

<voltage>3.3</voltage>

<embeddedImageId>Image_1</embeddedImageId>

</targetConf>

<serialConf>

<obsIds>2 4 6 7 9</obsIds>

<baudrate>115200</baudrate>

</serialConf>

<powerProfilingConf>

<obsIds>2 4</obsIds>

<samplingRate>1000</samplingRate>

</powerProfilingConf>

</testConf>

Listing 1: FlockLab 2 test configuration example.

configuration. A minimalist example is shown in Listing 1. This is
then uploaded to the FlockLab 2 server using the web interface or
the flocklab-tools. On the server, the test is then scheduled. The
server initiates the start of the test at the time specified, distributes
the target images and configures all testbed services.

4.2.2 Interaction During Test Execution. Progress is monitored on
the web interface where information on configuration and status
is available. If the serial forwarding service is used it is possible to
connect to an individual observer for the duration of the test using
a TCP connection, e.g. by using netcat. Likewise an interactive
debug session can be opened from the IDE on the user’s computer
to a GDB debug server running on the observer.

4.2.3 Analyzing Test Results. After the test completes, the server
fetches all results from the observers and combines them into a
single test result archive file that can be used for custom post-
processing or can be visualized using the flocklab-tools (an
example is depicted in Fig. 7).

4.3 Debugging and Analysis of the Protocol
4.3.1 Embedded Debugging at Testbed Scale. In this example, 8
nodes are performing a Gloria network flood. To validate the cor-
rect protocol implementation, we use the debugger functionality
which allows to extract internal variables. Concretely, we want
to verify the correct calculation of the time of the next trans-
mission (TxMarker in Fig. 5). In Figure 6, for each node, radio
activity is shown in the first row (orange bars), the radio inter-
rupts are shown in the second row (black bars). For node 4, the
power trace (black line) is shown as well. A breakpoint has been
set on the first TxDone interrupt of node 9 that can be inspected
using a remote debug session to the target (see Sec. 3.1.2). Since
the breakpoint halts this specific microprocessor, the captured
traces show no more GPIO events after the node reached the
breakpoint. The variables inspected at the breakpoint show e.g.
slot_index = 2; message_size = 30 as expected. The variables
reconstructed_marker and current_tx_marker correspond to
RefTime and TxMarker in Fig. 5, respectively. The extracted time
difference value of 10.879ms conforms with the expected value for



CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

Figure 6: With the debug service, a breakpoint is set on the
first TxDone interrupt on node 9. This allows to extract the
values of the internal variables at that point in time.

Figure 7: The transmissions (TxDone interrupts; green bars)
of different nodes are not aligned because an offset tim-
ing parameter is not set correctly. The logic tracing ser-
vice allows to detect and correct this erroneous behavior at
interrupt-level granularity.

FloodOverhead+2·SlotTime. This confirms the correct calculation
of TxMarker in the synchronous Gloria flood.

4.3.2 Timing Validation using Logic Tracing. In synchronous pro-
tocols, transmissions and corresponding interrupts need to be cor-
rectly aligned. This is traditionally done by instrumenting code
and tracing GPIO pins with the logic tracing service (see Sec. 3.1.5).
In Fig. 6, radio activity with two interrupts (SyncWordValid and
RxDone) corresponds to a message reception and radio activity
with a single interrupt (TxDone) corresponds to a transmission.
Re-transmissions are scheduled based on the timing of received
messages. For this, the SyncWordValid timestamp is used to cal-
culate individual start times on each node. For this, the exact time
offset between the start of the transmission and the SyncWordValid
interrupt needs to be calibrated. In the example in Fig. 7, this offset is
not set correctly and consequently synchronous transmissions are
not aligned. Using logic tracing, this malfunction can be detected
(green lower bars) and the correct value can be determined.

Figure 8: High-dynamic range power tracing is used to vali-
date and optimize low-power behavior.

4.3.3 Optimizing for Low Power Consumption. To maximize the
lifetime of a battery-powered cyber-physical system, careful op-
timization and orchestration of the low-power modes is required.
In this example, we validate the low-power behavior of the Gloria
flood implementation by using the power tracing service (Sec. 3.1.3)
together with the logic tracing capabilities (Sec. 3.1.5). In a simple
implementation communication is executed in a fixed-length active
window (see Fig. 8). In the optimized case a node will transit to
low-power sleep mode immediately after completing a required
action, e.g. sending and receiving data. The difference between
fixed-length and dynamic active window sizes can be seen in Fig. 8
together with the respective radio interrupts.

5 CONCLUSIONS
In this paper, we present the second-generation testbed FlockLab 2
which combines industry standard debug and trace support with
accurate high-dynamic range power and timing measurements.
Relevant design aspects including the distributed testbed-wide time
synchronization and the in-situ debug and logging capabilities have
been demonstrated with real-world applications. These aspects
make the testbed a valuable tool for developing and benchmarking
distributed IoT systems.

REFERENCES
[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
et al. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed. In 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 459–464.

[2] Paramasiven Appavoo, Ebram Kamal William, Mun Choon Chan, and Mobashir
Mohammad. 2018. Indriya2: A heterogeneous wireless sensor network (wsn)
testbed. In Int’l Conf. Testbeds and Research Infrastructures. Springer, 3–19.

[3] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell, Romain
Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. 2019. The Dual Processor
Platform Architecture. In Proc. 18th Int’l Conf. Information Processing in Sensor
Networks (IPSN ’19). ACM, New York, NY, 335–336.

[4] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Ef-
ficient Network Flooding and Time Synchronization with Glossy. In Proc. 10th
ACM/IEEE Int’l Conf. Information Processing in Sensor Networks. IEEE, 73–84.

[5] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
portable testbed for the batteryless IoT. In Proc. 17th Conf. Embedded Networked
Sensor Systems. 83–95.

[6] Vlado Handziski, Andreas Köpke, Andreas Willig, and AdamWolisz. 2006. Twist:
a scalable and reconfigurable testbed for wireless indoor experiments with sensor
networks. In Proc. 2nd Int’l Workshop on Multi-hop Ad-hoc Networks. 63–70.



FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

[7] Antonio Libri, Andrea Bartolini, Michele Magno, and Luca Benini. 2016. Evalua-
tion of Synchronization Protocols for Fine-grain HPC Sensor Data Time-tamping
and Collection. In 2016 International Conference on High Performance Computing
& Simulation (HPCS). IEEE, 818–825.

[8] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. 2013. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In Proc. 12th Int’l Conf.
Information Proc. in Sensor Networks (IPSN ’13). ACM, New York, NY, 153–166.

[9] Roman Lim, Balz Maag, Bernhard Dissler, Jan Beutel, and Lothar Thiele. 2015.
A testbed for fine-grained tracing of time sensitive behavior in wireless sensor
networks. In Proc. IEEE 40th Local Computer Networks Conference. 619–626.

[10] Roman Lim, Balz Maag, and Lothar Thiele. 2016. Time-of-Flight Aware Time
Synchronization for Wireless Embedded Systems.. In EWSN. 149–158.

[11] Roman Lim, Christoph Walser, Federico Ferrari, Marco Zimmerling, and Jan
Beutel. 2012. Distributed and synchronized measurements with FlockLab. In 10th
ACM Conf. on Embedded Networked Sensor Systems (SenSys’ 12). 373–374.

[12] ARM Limited. 2013. CoreSight Technical Introduction. White Paper.

[13] Lukas Sigrist and Andres Gomez and Roman Lim and Stefan Lippuner and
Matthias Leubin and Lothar Thiele. 2017. Measurement and Validation of Energy
Harvesting IoT Devices. In Proc. 2017 Design, Automation & Test in Europe Conf.
& Exhibition (DATE 2017). Lausanne, Switzerland.

[14] Markus Schuß and Carlo Alberto Boano and Manuel Weber and Kay Römer. 2017.
A Competition to Push the Dependability of Low-Power Wireless Protocols to
the Edge. In Proceedings of the 14th International Conference on Embedded Wireless
Systems and Networks (EWSN) (Uppsala, Sweden). Junction Publishing, 54–65.

[15] Neal Stollon. 2010. On-Chip Instrumentation: Design and Debug for Systems on
Chip. Springer Science & Business Media.

[16] Roman Trüb, Reto Da Forno, Tonio Gsell, Jan Beutel, and Lothar Thiele. 2019. A
Testbed for Long-Range LoRa Communication. In Proc. 18th Int’l Conf. Information
Processing in Sensor Networks (IPSN ’19). ACM, New York, NY, 342–343.

[17] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. 2005. Motelab: A
wireless sensor network testbed. In Fourth Int’l Symp. Information Processing in
Sensor Networks (IPSN), 2005. IEEE, 483–488.


