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ABSTRACT
With ever more complex models used to study evolutionary patterns, approaches
that facilitate efficient inference under such models are needed. Metropolis-coupled
Markov chain Monte Carlo (MCMC) has long been used to speed up phylogenetic
analyses and to make use of multi-core CPUs. Metropolis-coupled MCMC
essentially runs multiple MCMC chains in parallel. All chains are heated except for
one cold chain that explores the posterior probability space like a regular MCMC
chain. This heating allows chains to make bigger jumps in phylogenetic state space.
The heated chains can then be used to propose new states for other chains, including
the cold chain. One of the practical challenges using this approach, is to find
optimal temperatures of the heated chains to efficiently explore state spaces. We here
provide an adaptive Metropolis-coupled MCMC scheme to Bayesian phylogenetics,
where the temperature difference between heated chains is automatically tuned to
achieve a target acceptance probability of states being exchanged between individual
chains. We first show the validity of this approach by comparing inferences of
adaptive Metropolis-coupled MCMC to MCMC on several datasets. We then explore
where Metropolis-coupled MCMC provides benefits over MCMC. We implemented
this adaptive Metropolis-coupled MCMC approach as an open source package
licenced under GPL 3.0 to the Bayesian phylogenetics software BEAST 2, available
from https://github.com/nicfel/CoupledMCMC.

Subjects Bioinformatics, Computational Biology
Keywords Bayesian, Phylogenetics, Phylodynamics, Coalescent, Parallel tempering

INTRODUCTION
Phylogenetic methods are being used to study increasingly complex processes. Analyses
using such methods, however, also require an increasingly large amount of computational
resources. One way to still be able to perform these analyses is by making use of multiple
CPU’s, which requires calculations to be able to run in parallel. Tree likelihood calculations
(Suchard & Rambaut, 2009) often assume independent evolutionary processes on different
branch and nucleotide sites and can be easily parallelised (Suchard & Rambaut, 2009).
This can, however, be complex or even impossible for many other parts of such analyses,
most notably tree prior calculations, which are used to infer demographic processes from
phylogenetic trees. A lot of recent development in the field of phylogentics has been
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focused on developing such tree priors that allow us to infer complex population dynamics
from genetic sequence data (Müller, Rasmussen & Stadler, 2018; De Maio et al., 2015),
which are very computationally intensive. This is because, in contrast to tree likelihood
calculations, these models often require solving equations that are dependent on each
other, such as computing the location of lineages from tips to the root of trees (Müller,
Rasmussen & Stadler, 2018; De Maio et al., 2015). As a result, analyses using standard
Bayesian tools, such as Markov chain Monte Carlo (MCMC), can be very time consuming.
This, in turn, limits the datasets that can be studied and the complexity of models that can
be used to do so.

Alternatively, Metropolis-coupled MCMC (MC3) can be used to speed up analyses in
Bayesian phylogenetics (Altekar et al., 2004; Ronquist et al., 2012; Aberer, Kobert &
Stamatakis, 2014; Höhna et al., 2016). This approach is based on running multiple MCMC
chains, each at a different ‘temperature’, which effectively flattens the posterior probability
space (Geyer, 1991; Gilks & Roberts, 1996). This allows heated chains to move faster
through the posterior probability space, and increases the chance to travel between local
optimas (Whidden & Matsen, 2015). After some amount of iterations, two chains are
randomly selected and potentially exchanged in what is essentially an MCMC move.
In such a move, the parameters of the two chains are exchanged, but each chain keeps its
temperatures. While the heated chains do not explore the true posterior probabilities,
the one cold chain does (Geyer, 1991; Gilks & Roberts, 1996). In contrast to MCMC,
however, Metropolis-coupled MCMC requires additional parameters to set up an analysis.
Defining the temperatures of each chain in particular, can be problematic and may require
some amount of testing. Choosing sub-optimal temperatures of chains can lead to
inefficient exploration of the posterior probability space, essentially wasting the additional
computational resources used (Brown & Thomson, 2018).

The problem of finding good temperatures is related to the issue of finding good
variances of proposal distributions in MCMC. One way to deal with this is to automatically
adapt variances in proposal distributions to achieve optimal acceptance probabilities of
moves during an MCMC (Haario, Saksman & Tamminen, 2001). This can be applied to
adaptively tune the temperatures of heated chains in the Metropolis-coupled MCMC
framework (Miasojedow, Moulines & Vihola, 2013). We here employ this adaptive
mechanism to tuning the temperature difference between chains in the Metropolis-coupled
MCMC algorithm. We either use incremental heating (Altekar et al., 2004), or assume the
temperature to be distributed using the quantiles of a beta distribution with a = 1 and
β being a tuning parameter. The amount by which the temperature is updated is increasingly
being reduced during each run, which eventually leads the temperatures of chains to be
approximately constant (Haario, Saksman& Tamminen, 2001). While not beingMarkovian,
this leads the algorithm to be ergodic.

We implemented this adaptive Metropolis-coupled MCMC algorithm in BEAST 2
(Bouckaert et al., 2014), which runs on all popular operating systems, and where a lot
of novel Bayesian phylogenetic model development currently takes place (Bouckaert et al.,
2019). This implementation makes use of multiple CPU cores (potentially on different
computers), allowing virtually any analysis in BEAST 2 to be performed on multi-core
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machines or multiple machines increasing the size of datasets that can be analysed and the
complexity of models that can be used to do so. By default, the implementation adapts the
temperature difference between heated chains to achieve an acceptance probability of
any two chains, on average, being exchanged of 0.234 (Roberts, Gelman & Gilks, 1997;
Roberts & Rosenthal, 2001; Kone & Kofke, 2005; Atchadé, Roberts & Rosenthal, 2011).

We first show the correctness of the adaptive MC3 approach by comparing summary
statistics of multi type tree distributions sampled under the structured coalescent
(Vaughan et al., 2014) to the summary statistics received when using regular MCMC.
Additionally, we show that distributions of posterior probability estimates are constant
over the course of analyses using adaptive MC3, when inferring past population dynamics
of Hepatitis C in Egypt (Ray et al., 2000; Pybus et al., 2003).

Next, we show how automatically tuning the temperature, leads to an acceptance
probability that converges to the target probability from different initial temperatures on
two different datasets.

We then compare MCMC to adaptive MC3 using different levels of heating on two
different datasets. First, we apply it to the Hepatitis C dataset, where we do not expect
regular MCMC to be stuck in local optimas. Then, we apply it to a dataset which has been
described to be easily stuck in local optimas (Lakner et al., 2008; Höhna & Drummond,
2011).

METHODS AND MATERIAL
Background
Metropolis-coupled MCMC makes use of running n different chains i = 1,…,n at different
temperatures (Geyer, 1991; Gilks & Roberts, 1996; Altekar et al., 2004). Each of the different
chains works similar to a regular MCMC chain. In regular MCMC, a parameter space
is explored as follows: Given that the MCMC is currently at state x, we propose a new state
x′ from a proposal distribution g(x′|x) given the current state. At this new state, we
calculate the likelihood P(D|x′) of the dataD given the state and the prior probability of the
new state P(x′) and compare it the to old state. The probability of accepting this new state
is then calculated as follows:

R ¼ min

�
1;
PðDjx0ÞPðx0Þ
PðDjxÞPðxÞ

gðxjx0Þ
gðx0jxÞ

�
(1)

If R is greater than a randomly drawn value between [0,1], the new state x′ is accepted as
the current state, otherwise it is rejected and we remain in the same state. If we keep
proposing new states x′ and accept these using Eq. (1), we eventually explore parameter
space with the frequency at which values of a parameter are visited being its marginal
probability (Geyer, 1991).

One of the issues of using this approach is that acceptance probabilities can be quite low,
which makes it hard to move between different states in parameter space. Alternatively, an
MCMC chain can be heated by using a temperature scaler bi ¼ 1

1þði�1ÞDt, with i being the
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number of the chain (Altekar et al., 2004). Heating of an MCMC chain changes its
acceptance probability Rheated to:

Rheated ¼ min

�
1;

�
PðDjx0ÞPðx0Þ
PðDjxÞPðxÞ

�bi gðxjx0Þ
gðx0jxÞ

�

For a heated chain, the frequency at which a value of a parameter is visited does not
correspond to its marginal probability any more. However, heated chains can be used as a
proposal to update the cold chain by performing what is essentially an MCMC move.
This move proposes to swap the current states of two random chains i and j with the
temperature βi and βj such that βi < βj. Exchanging the states of chains i and j is accepted
with an acceptance probability Rij of:

Rij ¼ min

�
1;
PðxijDÞbjPðxjjDÞbi

PðxijDÞbiPðxjjDÞbj

�

As for a regular MCMC move, swapping the states of the two chains is accepted when a
randomly drawn uniformly distribution value in [0,1] is smaller than Rij.

Additional to randomly swapping states between chains, we also implemented the
possibility to only swap the states of neighbouring chains. That means that we condition
on i = j + 1 instead of randomly sampling both i and j.

Locally aware adaptive tuning of the temperature of heated chains
Choosing an optimal temperature of the different heated chains can be a tedious task,
requiring running an analysis, updating temperatures of the analysis and re-running
everything. Instead, the temperatures of chains can be tuned automatically during the run
itself to achieve a targeted average acceptance probability. Ideally, we would like to adjust
the temperature such that effective sample size (ESS) of parameters of interest is
maximised per unit of time, but ESSs are hard to estimate while running an analysis.
Therefore, optimising for average acceptance probability balances the need for moving
through the MCMC’s state space (at higher acceptance probability), and making bold
moves (at lower acceptance probability), which are two requirements for getting good ESSs
per unit of time. As stated above, we consider the temperatures difference between the n
different chains to be a constant value Δt, which we tune during the analysis.

When updating the temperature based on the global acceptance probability, we
compute pglobal based on all proposed exchanges of states from the start of a run to the
current state. We then iteratively tune the temperature to achieve the target average
acceptance probability ptarget over the course of an analysis as follows. Given pglobal and
ptarget, we update the difference in temperature between chains Δt as follows:

Dtnew ¼ max

�
0;Dtcurrent þ pglobal � ptarget

#exchanges

�
(2)

With # exchanges denoting the total number of proposed exchanges, which increases
throughout the BEAST run. This means that updating the temperature as in Eq. (2),
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leads the tuning of the temperature to become smaller and smaller and eventually
approaches zero.

Tuning Δt is only performed after an initial burn-in period of (by default) 100 proposed
exchanges. By default, the target acceptance probability is set to 0.234, which for many
MCMC proposals can be shown to be an optimal trade-off between as many accepted
moves as possible and as large of a move as possible (Kone & Kofke, 2005;Atchadé, Roberts &
Rosenthal, 2011). Datasets where unfavourable intermediate states are of particular issue
may, however, require higher temperatures and therefore lower acceptance probabilities to
overcome these intermediate states.

Changing the temperature of a heated chain changes the equilibrium distribution of that
chain. There can be a significant time lag between changing the temperature of a chain and
that chain moving to its new equilibrium state. If the temperature is updated too fast,
heated chains may not have reached this new equilibrium yet which in turn can lead to
over-adaptation. This is particularly problematic at the beginning of an analysis whereP

exchanges is relatively small and where large changes in the temperature could occur.
In order to reduce the risk of that, we maximise the difference between Δtcurrent and Δtnew,
that is by how much the temperature can be changed, to be 0.001.

Another issue can arise when the global acceptance probability strongly differs
from the current acceptance probability. In order to avoid that, we made the adaptation
procedure aware of the local acceptance probability. To do so, we compute a local
acceptance probability plocal of the last 100 proposed exchanges. We only update the
temperature if the global and the local acceptance are on the same side of the target
acceptance probability, that is if plocal > ptarget & pglobal > ptarget or plocal < ptarget &
pglobal < ptarget.

Implementation
In this implementation of MC3, we run n different MCMC chains, with each chain
i ∈ [1,…,n] running at a temperature bi ¼ 1

1þði�1ÞDt (Altekar et al., 2004). We additionally
implemented a scenario where the values for βi are given by the quantiles of a beta
distribution, such that bi ¼ 1� cdfð i�1

nr chainsÞ. With cdf being the cumulative density
function of a beta distribution with a = 1 and β being the tuning parameter.

Upon initialisation, we first sample at random at which iteration the states of two chains
with which number are proposed to be exchanged. We then initialise each chain to be
run in its own Java thread using multiple CPU cores, if available. Each chain is then run
until it reaches the time when an exchange of states with another chain will be proposed.
This means than every chain runs independently of each other until an iteration at
which it actually participates in a proposed exchange, minimising the crosstalk between
threads (Altekar et al., 2004).

This is, however, only true for swapping between random chains. When restricting
swaps to only occur between neighbouring chains, we run each chain until the next
possible swap. We then randomly choose between which two chains, a swapping of states
is proposed.
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If the exchange of states between different chains is accepted, we exchange the
temperature of the two chains instead of the states themselves (Altekar et al., 2004;
Ronquist et al., 2012; Aberer, Kobert & Stamatakis, 2014;Höhna et al., 2016). The states can
be quite large and exchanging them across different chains is potentially quite time
consuming. Instead of exchanging the states themselves, we exchange the operators and
loggers, which are the objects that produce the log files. Exchanging the operator
specifications is done such that the individual tuning parameters of operators of a chain
can be optimised to run at specific temperatures. The loggers are exchanged such that each
heated chain logs its states to the log file that corresponds to its temperature and not
the number of the chain.

The temperature is adapted at any potential exchange of states between chains, after an
initial phase of 100 potential exchanges without any adaption. The temperature is updated
simultaneously on all chains, not just the ones participating in the exchange of states,
independent of which iterations they are in.

Adaptive MC3 is implemented, such that runs that were prematurely stopped or didn’t
reach sufficient convergence yet can be resumed. Usually, a graphical user interface
called BEAUti is used to set up BEAST 2 analyses. Setting up analyses with MC3 works
differently depending on whether a BEAUTi template is needed to set up an analysis as
required for some packages. If no such template is needed, an analysis can be set up to
run with MC3 directly in BEAUTi and we provide a tutorial on how to do this on
https://taming-the-beast.org/tutorials/CoupledMCMC-Tutorial/(Barido-Barido-Sottani
et al., 2017). Alternatively, we provide an interface that converts BEAST 2 XMLs set up to
run with MCMC into such that run with adaptive MC3.

Data availability and software
The BEAST 2 package coupledMCMC can be downloaded by using the package
manager in BEAUti. The source code for the software package can be found here:
https://github.com/nicfel/CoupledMCMC. The XML files used for the analysis performed
here can be found in https://github.com/nicfel/CoupledMCMC-Material. All plots were
done using ggplot2 (Wickham, 2016) in R (R Development Core Team, 2013).

Validation
Similar to the validation of MCMC operators, we can sample under the prior to validate
the implementation of the MC3 approach. To do so, we sampled typed trees with five taxa
and two different states under the structured coalescent using the MultiTypeTree
(Vaughan et al., 2014) package for BEAST 2. We did this sampling once using MCMC
and once using MC3. If the implementation of the MC3 algorithm explores the same
parameter space as MCMC, marginal parameter distributions sampled using both
approaches should be equal. In Fig. S1, we compare the distribution of different
summary statistics of typed trees between MCMC and MC3, which shows both methods
are in agreement.
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RESULTS
Ergodicity of the adaptive Metropolis-coupled MCMC algorithm
First, we test if the distribution of posterior probability values using adaptive MC3 algorithm
are consistent over time, that is ergodic. To do so, we ran 100 skyline (Drummond et al.,
2005) analyses of Hepatitis C in Egypt (Ray et al., 2000), with three different target
acceptance probabilities, 0.234 (Kone & Kofke, 2005; Atchadé, Roberts & Rosenthal, 2011),
0.468 (= 2 � 0.234) and 0.117 ð¼ 0:234

2 Þ. The temperature difference between chains Δt is
being adapted during the analyses, particularly during the initial phase (see Fig. 1B).
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Figure 1 Distribution of posterior probability values at different iterations over 100 analyses.
(A) The black line denotes the mean posterior probability estimates (y-axis) over 100 analysis at dif-
ferent iterations (x-axis). The grey area denotes the 95% highest posterior density interval of posterior
probability estimates over these 100 analyses at different iterations. The different subplots show the
results using runs with three different target acceptance probabilities, leading to different temperature
differences between the chains. (B) The black line denotes the mean temperature difference Δt between
chains on the y-axis over 100 analyses at different iterations on the x-axis. The grey area denotes the 95%
highest posterior density interval of Δt over these 100 analyses at different iterations.

Full-size DOI: 10.7717/peerj.9473/fig-1
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We then computed the distribution of posterior probability estimates of the 100
different runs using the posterior probability estimates at different iterations.
The distribution of posterior probability estimates stays constant over the different
iterations (see Fig. 1A), despite the temperature difference between chains being adapted.
This is true for all three different target acceptance probabilities.

Automatic tuning of the temperature of heated chains
Next, we tested how well the adaptive tuning of the temperature of heated chains over the
course of an analysis works starting from different initial values. To do so, we ran two
different datasets, the Hepatitis C dataset (Ray et al., 2000) as well an influenza A/H3N2
analysis using MASCOT as analysed previously (Müller, Rasmussen & Stadler, 2018).
We ran each dataset with four different initial temperatures (0.0001, 0.001, 0.01 and 0.1),
each targeting three different acceptance probabilities, 0.234, 0.468 and 0.117. Additionally,
we used two different frequencies to propose swaps between chains, once proposing
swaps every 100 iterations and once every 1,000. Since the temperature is adapted at every
possible swap, this means that the runs with swaps every 100 iterations adapt Δt 10 times
more frequently than the ones proposing swaps every 1,000 iterations. We kept the
temperature scaler constant for the first 100 potential swaps of states between chains.

As shown in Fig. S2, for any of the here considered initial values of the temperature
scaler, the target acceptance probability is reached quite early in the run and very well
approximated at the end of the run using the Hepatitis C example. The same applies to the
analysis of the influenza A/H3N2 dataset (see Fig. S4).

After an initial phase where the adaption of the temperature difference can overshoot
the optimal value, Δt is adapted such that it approximates the target value better and better
during the run (see Fig. 2 and Fig. S3 for the MASCOT analysis).

A Bswap frequency = 100 swap frequency = 1000

0 5e6 1e7 1.5e7 2e7 0 5e6 1e7 1.5e7 2e7

0.001

0.010

0.100

1.000

iteration

Δ
t

target
acceptance
probability

0.117

0.234

0.468

Figure 2 Automatic tuning of the temperature to achieve different acceptance probabilities. Here, we show how the temperature difference
between chains (y-axis) is adapted during the course of an adaptive MC3 run on the x-axis. Each colour represents runs with different target
acceptance probabilities. For each of the four different target acceptance probabilities, we started runs at four different initial temperatures.
(A) Acceptance probability over the course of a run when swaps of states between chains are proposed every 100 iteration. (B) Acceptance
probability when swaps are proposed every 1,000 iteration. Full-size DOI: 10.7717/peerj.9473/fig-2
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The effect of heating on exploring the posterior
In order to explore how heating affects exploring the posterior probability space, we next
compared ESS values between regular MCMC andMC3 at different temperatures on a dataset
where we do not expect any problems in exploring the posterior space caused by several local
optimas. ESS values denote the number of effective samples if all samples would be drawn
randomly from a distribution and are estimate here using Tracer (Rambaut et al., 2018).

To compare ESS values, we ran the Bayesian coalescent skyline (Drummond et al.,
2005) analysis of Hepatitis C in Egypt (Ray et al., 2000) for 4 � 107 iterations using MCMC
in 100 replicates. We then compare these ESS values to those received when performing
the same analysis using MC3 with four different chains for 1 � 107 iterations using three
different target acceptance probabilities, 0.468, 0.234 and 0.117. We also ran four times
100 additional analysis using different settings for the adaptive MC3 algorithm, all with
a target acceptance probability of 0.234. First, we assume the temperature differences
between chains to be distributed according to the quantiles of a beta distribution.
We next allowed only swapping of states between chains with neighbouring temperature.
Additionally, we estimate ESS values when running the same analysis using 8 and 16
chains for 5 � 106 respectively 2.5 � 106 iterations.

The different chain lengths between MCMC and MC3 are chosen such that the overall
number of iterations over the cold and heated chains is the same for MC3 as for MCMC.
After running all eight times 100 analyses, we computed the ESS values of the posterior
probability estimates using loganalyser in BEAST 2 (Bouckaert et al., 2014).

As shown in Fig. 3A, the average ESS values are highest for the cold scenario when using
MC3 and decrease with lower target acceptance probabilities. Lower target acceptance
probabilities mean higher temperatures of heated chains in those analyses. With an
increasing number of chains, but proportionally less iterations per chain, the ESS values
decreases. This is particularly pronounced when using 16 chains.

We next tested if higher ESS values actually correspond to a run approximating the
distribution of posterior probability values better. To do so, we compared
Kolmogorov–Smirnov (KS) distances between individual runs and the true distribution of
posterior values. The KS distance denotes the maximal distance between two cumulative
density distributions, which is smaller the better two distributions match. Since we can
not directly calculate the true distribution of posterior values, we concatenated the 800
regular and MC3 runs and used the concatenated distribution of posterior values as the
true distribution. While this is technically not an independent run to compare to, each
individual run contributes relatively little to the reference run.

Figure 3B shows the distribution of KS distances between individual runs using regular
and MC3 to what we assume to be the true distribution. In contrast to the comparison of
ESS values, we find that the distribution of KS distances is fairly comparable across all
methods. This indicates that in this analysis, MC3 with four individual chains performs
equally well as MCMC run for four times as long. With an increasing number of chains,
however, this relationship hold less and less true. While the analysis with 8 chains still leads
to a similar distribution of KS values, using 16 chains leads to a higher KS values.
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We additionally tested how well the true tree distribution is recovered. To do so,
we computed for each individual run the posterior clade support and compared it to a
reference run consisting of all 100 runs combined. We then compare the maximal
difference between clade support for each individual run to the reference run and show the
estimated values in Fig. S5. Overall, the same patterns as for the KS distance holds true,
with the analysis with 16 chains performing the worst, while the other analyses performed
comparably.

It also shows that the differences in ESS values between the MC3 runs with different
target acceptance probabilities are indicative of more swaps, rather than a better
approximation of the true posterior probability distribution. Using the quantiles of a beta
distribution instead of incremental heating as spacing between adjecent chains did not
seem to impact the ESS values nor the KS distance. Only swapping states of chains with
neighbouring temperatures performs equal to randomly swapping chains, but with a
lower target acceptance probability. Swaps between neighbouring chains leads to,
on average, hotter chains at the same acceptance probability.
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Figure 3 Convergence of coupled MCMC and regular MCMC using posterior ESS values and Kolmogorov–Smirnov distances. (A) Here, we
show the distribution of effective samples size (ESS) values of the posterior probabilities after 4 � 107 iterations for regular MCMC and after 1 � 107

iterations for MC3 with 4 chains, 5 � 106 iterations for those with 8 and 2.5 � 106 iterations for those with 16 chains, so wall time for MCMC runs was
much larger than for MC3. When running the analyses with MC3, we used three different target acceptance probabilities. (B) Here, we show the
distribution of Kolmogorov–Smirnov distances between individual runs and the concatenation of all individual runs. We assume that all 800 runs
concatenated describe the true distribution of posterior values and then take the KS distance as a measure of how good an individual run
approximates that distribution. The smaller a KS value, the better the true distribution is approximated. Full-size DOI: 10.7717/peerj.9473/fig-3
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We next compared the inference of trees on a dataset (typically referred to as DS1)
that has proved problematic for tree inference using MCMC (Lakner et al., 2008; Höhna &
Drummond, 2011;Whidden & Matsen, 2015;Maturana Russel et al., 2018). This dataset is
essentially made up of different tree islands (Whidden & Matsen, 2015). Transitioning
between the different tree island is highly unlikely due to very unfavourable intermediate
states, making heating necessary to travel between local optima (Höhna & Drummond,
2011; Whidden & Matsen, 2015).

We ran the dataset using MCMC for 5 � 107 iteration and MC3 for 5 � 107 with 4
different chains. We ran MC3 targeting three different acceptance probabilities, that is
0.117, 0.234 and 0.468. As shown previously (Lakner et al., 2008; Whidden & Matsen,
2015) MCMC gets stuck in different local optimas, resulting in differences between
inferred clade probabilities across different runs (see Fig. 4). As above, we additionally
analysed this dataset using the quantiles of a beta distribution as spacing between chains or
restricted swaps to only occur between neighbouring chains. We also ran two analyses with
8 and 16 chains, but with half respectively one quarter of the iterations per individual
chain, such that the overall computations remained constant.
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Figure 4 Inferred clade probabilities between different replicate runs.Here, we compare inferred clade probabilities between one run (y-axis) and
four replicates from different starting points (x-axis) using MCMC (A) and adaptive MC3 run with target acceptance probabilities of 0.468 (B), 0.234
(C) and 0.117 (D). In (E), we show how well the tree space is explored when assuming the temperatures of the heated chains are distributed according
to the quantiles of a beta distribution and a target acceptance probability of 0.234. In (F), we only allow swaps between neighbouring chains and in
(G) and (H), we show the results when using 8, respectively 16 chains, but with only half, respectively a quarter of the iterations.
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The clade probabilities are more comparable when targeting an acceptance probability
of 0.468 and become more consistent between the different runs with acceptance
probabilities of 0.234 and 0.117. At higher target acceptance probabilities (i.e. lower
temperatures), the heating of chains is not sufficient to efficiently travel between local
optimas.

We additionally compared how well the different runs approximate the posterior
probability distribution compared to how long they ran. Consistent with for example
Lakner et al. (2008), several MCMC runs sample from a different posterior probability
distribution compared to MC3 with a low target acceptance probability and a high
temperature (see Fig. S6). When running MC3 with a relatively high target acceptance
probability of 0.468, the KS distance to the reference distribution decreases relatively
slowly with the number of iterations compared to lower acceptance probabilities. This
suggests that at lower temperatures (i.e. higher acceptance probabilities), some of the
chains get stuck in local optimas (Brown & Thomson, 2018).

In all other scenarios using MC3, the KS values steadily decrease, indicating convergence
(see Fig. S6). This suggest that for this dataset, the most important thing is that the
temperature of at least some of the heated chains is high enough to overcome the
unfavourable intermediate states. Once this is achieved there does not seem to be a big
difference between the settings to explore the tree space.

DISCUSSION
Next generation sequencing has lead to ever larger datasets of genetic sequence data being
available to researcher. To study these, more and more complex models are developed,
many of which are implemented in the Bayesian phylogenetic software platform BEAST 2
(Bouckaert et al., 2014). Parallelising these models can often be hard or even impossible
and MCMC analyses often have to be run on single CPU cores.

Alternatively, MC3 can make use of multiple cores, but a full featured version was so far
not available in BEAST 2. Parallel tempering, however, requires choosing optimal
temperatures of heated chains. We here circumvent the issue of choosing optimal
temperatures by adaptively tuning the temperature difference between heated chains to
achieve a target acceptance probability implemented for BEAST 2.5 (Bouckaert et al.,
2019). In order to only have one parameter to tune, we assume that the temperature
difference between heated chains is given by a constant value Δt, which we tune during the
analysis. We show that this adaptive tuning of the temperature difference is targeting
different acceptance probabilities well, starting from various different initial values.
Alternatively, the temperature differences could be defined between individual chains,
which would require tuning the number of chains minus 1 temperatures (Miasojedow,
Moulines & Vihola, 2013). While potentially leading to a more optimal spacing of
temperatures between individual heated chains, we here chose an approach where the
number of parameters that have to be tuned is minimal. We hope that this minimises the
amount of tuning needed and reduces the complexity of setting up an analysis to the same
level as for a regular MCMC analysis and therefore makes it as user friendly as possible.
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We next compared convergence between using different target acceptance probabilities,
different settings of the adaptive MC3 analysis, as well as regular MCMC. We find that
ESS values are comparable between MC3 with N chains and a relatively high target
acceptance probability of 0.468 and regular MCMC that ran N times longer. ESS values
decreased on this dataset when using lower target acceptance probabilities and therefore
higher temperatures.

When comparing how well the true posterior distributions are approximated between
the different target acceptance probabilities, we found that using different target values did
not significantly influence how well the distributions are approximated.

ESS values are estimated by computing the auto-correlation time between samples.
We suspect that swapping the states between chains strongly decreases this auto-correlation.
In turn, this would mean that the more frequently states are exchanged, the shorter this
auto-correlation become, which would increase ESS values. This appearance of convergence
can be particularly problematic when all chains are stuck in local optimas and where
swapping of states can lead (Brown & Thomson, 2018). As suggested in (Brown & Thomson,
2018), using more chains, lower acceptance probabilities (i.e. higher temperatures) and
particularly, running several replicate analyses and checking convergence of heated chains
can help to detect this issue. This implementation allows users to log heated chains as well,
although not by default. Using additional convergence statistics like the scale reduction
factor (Brooks & Gelman, 1998), might help in assessing convergence.

Since the MC3 runs required N times fewer iterations of the cold chain to approximate
the distribution of posteriors values as well, MC3 can potentially help speed up analysis
by a factorN that can be chosen to be proportional to the number of CPU’s used. However,
this is not necessarily a linear relationship. Using 8 or 16 chains but proportionally less
iterations does not lead to the same ESS values as using less chains but longer runs.
This suggest that adding more chains is less and less beneficial and running several
replicate analyses and then combining the runs might be a better use of computational
resources. For datasets where the heating of chains is not needed to explore the posterior
probability space, it might be more computationally efficient to run N independent
MCMC analyses and combining them instead of running a MC3 analysis with N chains.
An added benefit is that it is easier to detect convergence issues with MCMC compared to
MC3. In practice, this means that using MC3 is most beneficial in cases where regular
MCMC shows convergence issues, such as not being able to retrieve the same posterior
distribution starting from different initial values.

The adaptive MC3 algorithm is compatible with other BEAST 2 packages and therefore
works with any implemented model that does not directly affect the MCMC machinery.
This will help analysing larger datasets with more complex evolutionary and
phylodynamic models without requiring additional user specifications other then the
number of heated chains.
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