
ETH Library

HyperSLAM: A Generic and
Modular Approach to Sensor
Fusion and Simultaneous
Localization And Mapping in
Continuous-Time

Conference Paper

Author(s):
Hug, David ; Chli, Margarita 

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000444955

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/3DV50981.2020.00108

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4430-3877
https://orcid.org/0000-0001-5611-7492
https://doi.org/10.3929/ethz-b-000444955
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/3DV50981.2020.00108
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


On Conceptualizing a Framework for Sensor Fusion in
Continuous-Time Simultaneous Localization And Mapping

David Hug and Margarita Chli
Vision for Robotics Lab, ETH Zürich

www.v4rl.ethz.ch

Abstract

Within recent years, Continuous-Time Simultaneous
Localization And Mapping (CTSLAM) formalisms have
become subject to increased attention from the scientific
community due to their vast potential in facilitating motion-
corrected feature reprojection and direct unsynchronized
multi-rate sensor fusion. They also hold the promise of
yielding better estimates in traditional sensor setups (e.g.
visual, inertial) when compared to conventional discrete-
time approaches. Related works mostly rely on cubic,
C2-continuous, uniform cumulative B-Splines to exemplify
and demonstrate the benefits inherent to continuous-time
representations. However, as this type of splines gives rise to
continuous trajectories by blending uniformly distributed
SE3 transformations in time, it is prone to under- or
overparametrize underlying motions with varying volatility
and prohibits dynamic trajectory refinement or sparsification
by design. In light of this, we propose employing a more
generalized and efficient non-uniform split interpolation
method in R×SU2×R3 and commence with development of

‘HyperSLAM’, a generic and modular CTSLAM framework.
The efficacy of our approach is exemplified in proof-of-
concept simulations based on a visual, monocular setup.

1. Introduction

Simultaneous Localization And Mapping (SLAM), in
its most elementary and abstracted formulation, addresses
the question of simultaneous ego-motion estimation and
scene reconstruction based on arbitrary sensory input. Due
to their affordability, relatively small size and information-
rich output, monocular, frame-based cameras, operating
in the visible spectrum, have been established as a solid
and suitable choice in applications requiring SLAM with
minimal sensory input, such as in aerial navigation [1].
Within this context, it has become the norm [2] in SLAM
literature to pose the underlying optimization over a

discretized set of camera poses in SE3 (e.g. whenever a
new camera frame arrives). There are, however, known
shortcomings of purely monocular SLAM, which generally,
cannot be easily overcome without using additional sensing
modalities. Specifically, motion blur and highly dynamic
scenes detriment the trajectory estimation significantly, while
any estimates (i.e. of camera poses and landmarks) are
only recoverable up to scale. Hence, to address these issues
it is often essential to incorporate auxiliary sensors (e.g.
stereo visual(-inertial) setups) to augment the performance
and reliability of the SLAM pipeline, especially when
SLAM estimates are used to automate the navigation of
mobile platforms [3, 4]. This, however, implies increased
complexity with respect to sensor fusion and synchronization
issues between the sensors.

Regardless of potentially detrimental effects of
preintegrating arriving measurements (e.g. incoming data
from Inertial Measurement Units (IMUs) or accumulated
event-frames from Dynamic Vision Sensors (DVS)),
most SLAM frameworks opt for a discrete-time SLAM
formulation, due to its simplicity mostly. However, the
assumption of such discrete-time paradigm becomes a
bottleneck when adding more sensors with variable data
rates to the sensor suite requiring more elaborate, generic
and asynchronous fusion. The traditional alternative of
assigning every measurement its own state would cause the
size of the optimization problem to explode. Furthermore,
some sensory updates do not contain sufficient information
to completely determine a pose in SE3 by themselves (e.g.
a single event stemming from an event-based camera).
Within recent years, the concept of formulating the SLAM
problem as a spline-based continuous-time non-linear least
squares optimization gave rise to an elegant way to bound
the state size, whilst allowing completely asynchronous
integration of sensory input. In particular, the formalism of
uniform cumulative B-Splines, which has become the go-to
representation of such problems in the literature, gives rise
to a continuous-time representation, which can be used to
query the estimated trajectory T (t) ∈ SE3 at any possible
instance in time t. This representation was demonstrated to

1



be particularly effective in compensating for rolling-shutter
effects [5] as well as improving the accuracy of event-based
approaches [6, 7].

Despite leveraging the benefits of spline-based methods
to significantly compress the problem’s state size, many
approaches in the literature fail to achieve real-time
performance as the underlying representation exposes
several disadvantages. For instance, some methods pose
the problem as a batch optimization, which is unsuitable for
online operation. Furthermore, a few shortcomings can be
directly accredited to the selection of cumulative B-Splines
to query the continuous-time trajectory. Notably, it demands
the recomputation of many incremental terms and matrix
expressions upon evaluation of the trajectory. Additionally,
uniform B-Splines do not permit dynamic refinement or
sparsification of the underlying trajectory representation
and, hence, are prone to over- or underparametrization.
Driven by these observations and the need for real-time
capable continuous-time frameworks for SLAM, we propose
the use of a split representation [8] that facilitates faster
evaluations, exposes tractable derivatives and allows to
dynamically refine our trajectory representation according
to external requirements. Concisely, the contributions and
augmentations of this paper are the following:

• A fast non-uniform representation in R × SU2 × R3

specifically designed to address CTSLAM problems.

• Required analytic derivatives to efficiently optimize
non-uniform spline bases temporally.

• Development of ‘HyperSLAM’, a generic and modular
continuous-time framework.

• Demonstration of the efficacy of the proposed system
in monocular simulated proof-of-concept experiments.

2. Related Work
Over the years, the mathematical construct of

(cumulative) B-Splines has proven to be a very powerful
concept applicable to many scientific disciplines achieving
continuous inter- or extrapolation. In particular, the
popularity of B-Splines is a result of several, desirable
inherent characteristics, such as having local support, a
high level of smoothness (i.e. C2-continuity) and a compact
mathematical representation [9]. However, it has only been
within recent years that they achieved to broadly claim
their well-deserved place within the field of Robotics and
Computer Vision. Featuring in various works, they were
shown to be a well-suited approach whenever states need to
be represented in a non-discretized, continuous fashion.

Notably, [10] leveraged the use of B-Splines to formulate
the SLAM problem in continuous-time as a Maximum (a
posteriori) Likelihood Estimation (MLE), ultimately aiming
at a reduction in overall state size of multi-sensor setups.

Similarly, in [6] they were utilized to more tightly integrate
the highly asynchronous event-based camera output into a
Non-Linear Least Squares (NLLS) minimization to achieve
ego-motion estimation. The approach was augmented to
incorporate inertial measurements [7] later on. Related
paradigms, specifically a hierarchical wavelet decomposition,
have been explored in [11], where the main novelties
lied with introducing means to adaptively refine trajectory
estimates by superimposing wavelets at different scales atop
a basic, coarse representation.

As explored in [5], B-Splines also turn out to be a
suitable choice to effectively account and compensate for
rolling shutter effects commonly detrimental to SLAM
pipelines. The preconditions to allow efficient loop closing
for CTSLAM problems in large scale environments were
investigated in [12], where it was verified that moving to
a relative representation is advantageous. Furthermore, a
continuous formulation also proves to be of great value
in the context of LIDARs aboard vehicles [13], where it
was deployed to achieve a refined alignment of LIDAR
measurements.

More recent jointly probabilistic and continuous
approaches based on Gaussian processes were presented in
[14]. A recurring shortcoming of previous implementations,
however, is the circumstance that they do not achieve real-
time performance in generic cases, imposing a limit to
their applicability. It was only recently, that [15] addressed
the computational complexity by formulating derivatives in
a recursive manner, which greatly alleviates performance
issues with B-Splines in SE3.

In response to these inherent challenges and limitations
of B-Splines, here we further explore the limitations and
capabilities of alternative continuous-time representations
[8] towards a generic and expandable spline-based CTSLAM
framework allowing straight-forward and swift integration
of synchronized, or even unsynchronized, sensor suites.
Furthermore, the absence of any open-source continuous-
time pipelines specifically tailored to perform SLAM
emboldens us to pursue the development of a publicly
available generic CTSLAM framework in the long run.

3. Methodology
3.1. Preliminaries

Following previous works [5–7, 13], here, in accordance
with Eq. (1), we denote transformations converting homo-
geneous points Xa ∈ R4 in frame a to their equivalents Xb

in frame b, such that Xb ∼ T baXa with T ba ∈ SE3.

T ba =

[
Rba tba
0 1

]
∈ R4×4, with Rba ∈ SO3, t

b
a ∈ R3 (1)

ξ̂ =

[
ω̂ v
0 0

]
, with ω̂> = −ω̂ ∈ R3×3, v ∈ R3 (2)



As is well established, every transformation T ba in SE3

has a corresponding representation ξba ∈ R4×4 (i.e.
twists) in its Lie algebra se3. Conversion between these
representations can be achieved by means of appropriately
defining exponential and logarithmic maps as detailed in
[2]. Thus, omitting all sub- and superscripts for clarity,
ξ̂ = log(T ) and T = exp(ξ̂), where the structure of ξ̂ is
as in Eq. (2). Owing to the special structure of ξ̂, it can
be brought into vector form ξ = [ω; v] ∈ R6 (i.e. twist
coordinates), where ω is found by converting the underlying
skew-symmetric matrix ω̂ to its vector form. Specifically, ω̂
fulfills the condition that ω̂x = ω × x, for any x ∈ R3.

3.2. Cumulative B-Splines in SE3

Due to the local support property of cubic, cumulative B-
Splines, it is sufficient to only consider the placement of four
spline bases to fully determine the trajectory at any given
time. Specifically, a pose query at any time t ∈ [ti, ti+1)
(i.e. a segment of the spline) only relies on the bases located
at times {ti−1, ti, ti+1, ti+2} and the absolute pose of the
spline Tws (t), where w denotes the world and s the spline
coordinate frame, can then be computed:

Tws (t) = Twi−1

i+2∏
j=i

δTj (3)

with δTj = exp
(
λj−i(t)δξ̂j

)
, Λ(t) = MU(t), (4)

M =
1

6

5 3 −3 1
1 3 3 −2
0 0 0 1

 , U(t) =


1
u(t)
u(t)2

u(t)3

 and (5)

δξ̂j := log(exp(ξ̂j−1
w ) exp(ξ̂wj )) = log(T j−1

j ) ∈ se3. (6)

Above, the expression λn(t) refers to the n-th zero-based
element within Λ(t) (i.e. the blending vector). Thus far,
uniform B-Splines are considered, implying time intervals
∆t = ti+1 − ti of equal duration for all valid values of i and
a fixed mixing matrixM . The expression u(t) = (t−ti)/∆t
in Eq. (5) is the normalized time associated with a particular
spline segment.

3.3. Issues and Disadvantages of Cumulative
B-Spline Representations

To our best knowledge, continuous-time SLAM
representations based on cumulative B-Splines relying on
Lie groups were first proposed in [5] and were, de facto, used
as the standard representation in various works [5–7, 13] ever
since. Nonetheless, [10] presented a very efficient approach
to represent a continuous-time trajectory by means of using
superposition-based B-Splines beforehand. However, as
pointed out in [5], the representation in [10] exposes several
disadvantages with respect to inherent singularities at π and

Figure 1: Qualitative comparison of two examples of
trajectory interpolations in SE3 (in magenta) and SU2 × R3

(in green). Although the transformations at the beginning and
end of the two trajectories are identical, the interpolation in
SE3 does not follow an intuitive shortest path, but geodesics
in SE3 without any physical relevance.

non-geodesic interpolations in SO3 due to its underlying
Cayley-Gibbs-Rodrigues parametrization. Contrary, the
cumulative formulation in [5] follows geodesics in SE3,
but its evaluation is considerably more expensive owing
to the necessity of mapping back and forth between the
manifold SE3 and the tangent space se3 as well as due to
requiring concatenated matrix multiplications. In particular,
the evaluation of δTj in Eq. (6) involves many arithmetic
and trigonometric operations, which even its closed-form
expression, the Baker-Campbell-Hausdorff formula, which
avoids explicit computation of exponentials and logarithms,
[16] for elements in so3, se3 respectively, is not able to
alleviate due numerous internal trigonometric evaluations.

Furthermore, by consideration of the closed-form se3
matrix exponential, the rotation matrix R(ω) and the
expression V (ω) in Eq. (7), as defined in [2], one may
observe that the translation and angular components become
inherently coupled as exemplified in Fig. (1). Clearly, said
coupling further increases the computational effort required
upon spline evaluations, but more importantly, gives rise
to complexer Jacobians whose non-block-diagonal nature
necessitates undesirable updates of v on changes in ω.

exp(ξ̂) =

[
R(ω) V (ω) v

0 1

]
(7)

3.4. Split Representation of Uniform B-Splines

In order to address the aforementioned shortcomings
of the prevalently used representation in Eq. (3), and in
order to facilitate the extension to non-uniform B-Splines,
we adopt the split-interpolation-based method of [8] often
deployed in computer graphics with the main difference
that we augment each base with a notion of time. Thus,
our spline bases B, effectively, can be seen as poses in
SEt3 := R × SU2 × R3, where R denotes the temporal



component ti of base bi ∈ B and the remaining component
SU2 × R3 comprises a unit quaternion and a translational
part {qi, xi} ∈ R7 as in [17]. Despite their non-minimality,
operations on elements in the space SEt3 are extremely fast,
the representation itself remains singularity-free and it also
serves the purpose of decoupling translational and angular
components. Owing to the fact that geodesics in SE3, unlike
geodesics in R3 and SO3, do not have any tangible physical
meaning in any case, a decoupled representation grants a
more natural and intuitive interpretation of the interpolated
transformation Tws (t) (see Fig. (1)), which, analogously to
Eq. (3), is defined as:

Tws (t) =

[
R(qws (t)) xws (t)

0 1

]
∈ R4×4, (8)

where qws (t) ∈ SU2 is a unit quaternion and xws (t) ∈ R3

is a translation vector. Both expressions can be evaluated
independently as:

qws (t) = qwi−1

i+2∏
j=i

Γij ∈ SU2, (9)

where Γij := (δqj)
λj−i(t) and δqj = qj−1

w qwj (10)

xws (t) = xwi−1 +

i+2∑
j=i

Υi
j ∈ R3, (11)

where Υi
j := λj−i(t) δxj and δxj = xwj − xwj−1. (12)

Above, λj−i(t) is consistent with its prior definition from
Eq. (4). As concluded in [8, 15], split representations are
a preferential choice for real-time systems due to increased
efficiency. In [18], it was also shown that they are physically
better suited and that they offer a faster convergence rate.
Thus, we adopt a split representation SEt3 (i.e. timed split
transformations) into our framework.

3.5. Generalization to Non-Uniform B-Splines

Another limitation of uniform B-Splines is the necessity
for spline bases bi = {ti, qi, xi} to be spaced equidistantly
in time. However, this may be an undesirable property in
cases, where uniform B-Splines either under- or overfit the
incoming data. For example, a static position of infinite
duration can be represented by a limited number of bases in
the non-uniform formulation, whilst, in the case of uniform
B-Splines, the number of bases tends towards infinity over
time. Conversely, the undergone trajectory might be too
complex to properly be captured by equidistant bases with
interval ∆t, while it could locally be captured perfectly
by a base spacing of ∆t∗ < ∆t. Hence, we extend
existing approaches by moving to a non-uniform spline,
which is able to address this issue by reformulating the
interpolation matrices Λ(t) and M({ti−2, . . . , ti+3}) in Eq.
(4, 5) according to Eq. (13), where time-dependency is

implicitly assumed. In particular, the matrix M i
3(t) is the

cumulative, cubic version of the generic, recursively defined
mixing matrix found in [9] with appropriately chosen entries.
As one observes, the spline evaluation now depends on the
time associated with bases {ki−2, . . . , ki+3}, implying an
additional dependency on bases ki−2 and ki+3. Owing to
the introduced time-dependencies, it also becomes evident
why representing the non-uniform B-Spline as poses in SEt3
is a preferential option, especially with respect to storing
parameters in contiguous memory locations, as well as
generally reducing interdependencies between (individual)
parameter blocks. In Eq. (13), U i3(t) is a generalized, cubic
stacked polynomial vector of normalized times with entries
uin(t) = (t− ti)n/(ti+1 − ti)n analogous to Eq. (5).

Λi3 = M i
3U

i
3 =

1− µ0 3µ0 −3µ0 µ0

µ10 3µ11 3µ12 µ13

0 0 0 µ2

U i3 (13)

This formulation permits dynamic trajectory refinement
where required, offers a significant reduction in state size
for static trajectories, or trajectories with slow dynamics and
can swiftly be augmented to any order. All aforementioned
aspects are advantageous to aid avoiding either redundancy
or overparametrization of the underlying path within the
NLLS optimization and, ultimately, enable us to formulate
a universally applicable spline container that is completely
agnostic to its underlying bases, to its order, and to whether
it is of uniform or non-uniform kind.

3.6. Abstract System Description

Subsequent sections target the treatment of important,
conceptual aspects related to the design of HyperSLAM
and are presented to provide a theoretical introspective
into the aspired system layout. Thus, they also address
potential incorporation of sensors that surpass the scope of
the presented experimental parts of this work.

Throughout the development of HyperSLAM, we adhere
to several fundamental, axiomatic policies: generality,
modularity, expandability and intuitiveness. Thus, all
formulations ought to be independent of traits inherent
to any specific sensory setup, algorithmic approach or
system architecture. Conceptually, our system design
follows principles of established SLAM frameworks [19,
20] and combines them with a rethought systematic top-
down approach as to how components should be designed
hierarchically and interconnected intuitively.

Thus, we commence by posing the SLAM problem in
its most abstract form. Specifically, each SLAM system
s from a collection of systems S (e.g. as in multi-
agent SLAM) processes its data on clusters of available
computational nodes Ns (e.g. CPU cores). Each node ns, in
turn, is responsible for preprocessing a (sub)set of sensory



measurementsMDs , originating from a (sub)collection of
devices Ds associated to system s. Every such measurement
gets processed in a SLAM frontend fs ∈ Fs according
to its type (e.g. event-based, visual, visual-inertial) and
then submitted to some SLAM backend(s) Bs ∈ B (e.g.
for redundancy purposes), which can be operating in the
discrete- or continuous-time realm. Lastly, each backend can
provide feedback and information to some frontend and/or
update properties of some devices. These considerations
directly provide general guidelines for devising an intuitive
modular system structure and inheritance hierarchy. In the
interest of brevity, we, however, omit an in-depth description
of the inner workings at this point.

3.7. Least Squares Problem Formulation

In analogy to [5, 6], we pose the CTSLAM problem
in the backend as a NLLS optimization for the modified
case of non-uniform cumulative B-Splines as presented
in section 3.5. In the following, let M̂D be the model-
based collection of predicted measurements m̂n

D for a set
of connected devices D and let Â denote the collection of
estimated auxiliary states âkD. Furthermore, letMD be the
set of observed measurements mn

D, each associated with
its own timestamp. Hence, assuming a generative data
model, we aim to minimize the accumulated residual error
f(M̂D(ÂD), Â), as in Eq. (15), with respect to M̂D and Â.
Hence, in contrast to analogous discrete-time approaches,
here, we aim to optimized the spline bases themselves
instead of the conventional device poses observed at discrete
times. Trivially, Âd ⊆ ÂD ⊆ Â must hold.

f∗ = argmin f(M̂D(ÂD), Â) (14)

with f(M̂D(ÂD), Â) =
∑
d∈D

∑
mn

d∈Md

‖m̄n
d‖Σd

, (15)

where m̄n
d = rd(m̂

n
d (Âd),mn

d ) (16)

Individual observation residuals m̄n
d are weighted by the

information matrix Σd according to their physical device
specifications and rd(·) denotes an arbitrary error measure
between the estimates m̂n

d and true observations mn
d .

3.7.1 Camera Model

We define the distance measure rC(·) for cameras C ∈ D to
be the on-unit-sphere angular distance between the estimated
m̂n
C ∈ R3 and observed mn

C ∈ R3 landmark bearing vector
as formalized in Eq. (18). Assuming known intrinsics, the
set of auxiliary states Âc for a camera c ∈ C consists of a
subset of estimated homogeneous landmarks and the related
spline bases at the occurrence time of mn

c .

x = 〈m̂n
C ,m

n
C〉, y =

√
1− x2 (17)

rnC := ∠(m̂n
C ,m

n
C) = arctan2 (y, x) (18)

Figure 2: Left: Cost associated with distance measure rC(·)
stated in Eq. (18). Right: Overlay of a unit sphere with
measure function rC(·), where the red dot points to the
direction of an observation with the lowest associated cost.

Contrary to classical approaches, where one would define rC
to be the distance (δu, δv) ∈ R2 on the normalized image
plane, the aforementioned measure rC ∈ R is agnostic to
the specific camera model. Furthermore, its associated cost,
in contrast to the on-image plane distance, is directionally
invariant under rotations, admits a global minimum as
illustrated in Fig. (2), and even correctly handles landmarks
that are observed behind the camera. The predicted camera
measurements m̂n

C are computed by initially bringing the
corresponding, estimated homogeneous landmarks l̂kw ∈
ÂC into the camera frame c, resulting in l̂kc ∈ Ac and
subsequent projection onto the unit-sphere. Assuming a
static transformation T sc , this is done using:

m̂k
c = l̂kc /‖l̂kc ‖, where l̂kc = T csT

s
w(tm)l̂kw. (19)

3.7.2 Inertial Measurement Unit Model

For future reference as well as for the sake of completeness,
here, we also explicitly state the employed IMU model.
In analogy to the previous section, one defines residuals
m̄n
I for the inertial measurements mn

I = [ω, a]nI ∈ R6,
where ω and a denote the instantaneous angular velocity
and the linear acceleration respectively. Assuming a rigid
sensor setup, the set of auxiliary states for IMUs contains
their predicted biases b̂ωI ∈ R3 and b̂aI ∈ R3 (∈ AI),
the jointly estimated direction of gravity ĝw ∈ R3 (∈ A)
and the relevant spline knots for the time of observation.
Furthermore, by virtue of the underlying C2-continuity
of cubic B-Splines, analytic expressions for the IMU
predictions m̂n

I = [ω̂, â]nI are available in closed-form
[15], which may then be compared to observed IMU
measurements mn

I via an adequately chosen distance
measures rI(·), such as rI(m̂I ,mI) = m̂I − mI , or a
more elaborate one.



3.7.3 Other Sensor Models

As stated in preceding sections, formulating the optimization
problem in continuous-time renders the problematic
requirement for temporal alignment, or preintegration of
measurements, obsolete. This, in turn, and irregardless
of data rates, sensor heterogeneity and synchronization,
directly allows a unified treatment of measurements within
the optimization itself. Hence, integrating data stemming
from unsychronized sensors, such as event-based cameras,
LIDARs, (RTK-)GPS receivers or ultrawideband modules,
becomes straight-forward by appropriately incorporating
them into Eq. (14).

3.8. Analytic Derivatives

3.8.1 Temporal Spline Derivatives

We formulate the temporal spline derivatives in a recursive
manner, as presented in [15], to support B-Splines of
any degree k as well as reducing the implementational
complexity. Thus, the angular ωs(t) ∈ R3 and translational
velocity vs(t) ∈ R3 at time t ∈ [ti, ti+1), expressed in the
spline frame s, are evaluated by use of Eqs. (20)-(23). In
Eq. (21), the rotational increment δωn ∈ su2 denotes a pure
quaternion with zero scalar part δ̃ωn and vector component
−→
δωn. This is obtained by taking the quaternion logarithm of
δqn as defined in Eq. (10).

ωs(t) = 2ωi+k−1 (20)

ωn = (δqn−1)
−1
ωn−1 + λ̇in−1

−→
δωn−1, (21)

with ωi = 0 (22)

vs(t) = qsw

i+k−1∑
j=i

λ̇ij−i δxj (23)

Above, the coefficient λii−j represents a specific entry in
the k-th degree, segment-dependent interpolation vector
Λik. It is worth pointing out that the expression ωs(t) in
Eq. (20) is also equivalent to the real part of the pure unit
quaternion 2qsw(t)q̇ws (t). In analogy, the evaluation of the
angular αs(t) and translational acceleration as(t) follows
the same principle and αs(t) is, mathematically speaking,
the vector component of the expression 2qsw(t)q̈sw(t). The
formulae for αs(t) and as(t) are provided below for some
time t ∈ [ti, ti+1) within a spline segment:

αs(t) = 2αi+k−1 (24)

αn=(δqn−1)
−1
αn−1+

(
λ̇in−1ωn×+λ̈in−1

)−→
δωn−1, (25)

with αi = 0 (26)

as(t) = qsw

i+k−1∑
j=i

λ̈ij−iδxj . (27)

3.8.2 Temporal and Spacial Spline Base Derivatives

Temporal: In principle, derivatives with respect to base
times tm are computed by using Eqs. (20)-(22) under
replacement of λ̇ij−1 by its corresponding partial derivative
∂tmλ

i
j−1(t). Obtaining the analytic Jacobians of the Λik

matrix with respect to the temporal components of its bases
tm quickly becomes impractical for higher order splines.
Fortunately, they may also be expressed recursively by
exploiting properties of the k-th degree recurrence formula
for mixing matrices Λik from [9]. We explicitly state them
in Eqs. (28)-(32) below, where Sk ∈ Rk×k is an upper
triangular matrix containing ones.

Λik = [0, Sk] M̃ i
kU

i
k(t) (28)

with M̃ i
n = Πi

n−1M̃
i
n−1, M̃ i

0 = 1 (29)

and Πi
n−1 =

[
Ain−1, 0

]
+
[
0, Bin−1

]
(30)

Hence, it holds that:

∂tmM̃
i
n = ∂tmΠn−1M̃

i
n−1 + Πn−1∂tmM̃

i
n−1 (31)

where ∂tmM̃
i
0 = 0. (32)

Ain−1 and Bin−1 from above are defined as

An−1 =


1− αi0 · · · 0

αi0
. . .

...

0
. . . 1− αin−1

0 · · · αin−1

 (33)

Bn−1 =


−βi0 · · · 0

βi0
. . .

...

0
. . . −βin−1

0 · · · βin−1

 (34)

αij=
ti−ti+j−n+1

ti+j+1−ti+j−n+1
, βij=

ti+1−ti
ti+j+1−ti+j−n+1

. (35)

One may observe that the derivatives of αij and βij with
respect to base time tm can now automatically be evaluated
analytically. Specifically, under consideration of the product
rule, each term within αij and βij either becomes a Kronecker
delta or vanishes, which then ultimately permits analytic
evaluation of ∂tmM̃

i
k and ∂tmΛik as desired.

Angular: The rotational derivatives, expressed as a
recurrence formula, are directly adopted from [15]. Hence,
we forgo restating them at this point, which is largely due to
the requirement for introduction of additional theoretical
preliminaries.

Translational: The expression xws (t) in Eq. (11) only
contains commutative and additive terms, thus, its derivatives



with respect to the translational part of its bases are

∂xix
w
s (t) = (1− λi0)I3, where j = 0 (36)

∂xi+jx
w
s (t) = (λij−i − λij−i−1)I3, with 0 < j < k. (37)

Other: Remaining derivatives, such as angular and linear
velocities Jacobians with respect to base parameters can be
derived in analogous fashion. For the sake of brevity we
refer the reader to [15].

3.9. Stereo Triangulation

We incorporate a modified, bearing-vector-based version
of the inverse depth weighted midpoint algorithm, an
efficient and well suited triangulation method for most cases,
from [21] to initially estimate landmark positions l̂kw. In the
following, let ma and mb be undistorted landmark bearing
vectors as observed by camera a and b respectively. Under
the assumption of static transformations T sa and T sb , an
estimate for the landmark location l̂w can be retrieved by use
of Eqs. (38) through (40).

l̂w = Twa (t)l̂a = Tws (t)T sa l̂a (38)

l̂a =
‖β‖

‖β‖+ ‖γ‖

[
xab +

‖γ‖
‖α‖

(ma +Rabmb)

]
(39)

α = Rabmb ×ma, β = Rabmb × xab , γ = ma × xab (40)

4. EXPERIMENTS
4.1. System Specifications

The proposed containers and framework were
implemented in C++. They provide an extension to
the Sophus library [22] and make use of Ceres [23] for
optimization-related aspects. Furthermore, all experiments
were carried out on a single CPU core (i7-8750H CPU @
2.20 GHz) on a notebook running Ubuntu 20.04.

4.2. Simulation Setup

In order to outline the scaffolding of the proposed
framework and involved, novel spline formulations in
a monocular setup, we simulate trajectories in artificial
environments of visual landmarks. Specifically, we randomly
create n landmarks (n = 30 here), which are contained in
the interior of a spherical shell with inner radius ri and
outer radius ra around the initial starting location of the
trajectory. Here, we use ri = 1 m and ra = 10 m as
a realistic range for this shell. Then, we create random
splines, from which we observe the constructed landmarks
with a simulated monocular camera at 20 Hz and create
corresponding ground-truth measurements. We proceed by
randomly perturbing the measured bearing vectors up to
some maximum to account for detection noise. In particular,
we select a maximum disturbance angle of ±0.006 rad,
which roughly corresponds to a±2 pixel error in the classical

sense (assuming a sensor width of twice the focal length and
reasonable pixel density). In the backend, we initialize the
landmarks using rough guesses stemming from these heavily
perturbed positions of the ground-truth landmarks.

4.3. Results

In the following, we present three different archetypes of
simulated trajectories with different properties. These are
illustrated in Fig. (3) along with their resulting translational
and rotational errors with respect to time.

4.3.1 Trajectory 1: Aggressive Trajectory

Firstly, we consider an intentionally aggressive trajectory,
as shown in Fig. (3, a), in order to evaluate the general
stability and robustness of the optimization. For instance, the
aforementioned trajectory covers an approximate distance
of 30 m within around 10 s, which can be considered to be
a very rapid movement for aerial vehicles. Nonetheless,
the achieved estimates remain accurate. Specifically, a
translational RMSE of 0.0014 m, and a rotational RMSE of
0.0006 rad are achieved.

4.3.2 Trajectory 2: Smooth Markov Trajectory

In the second setup, we evaluate the same metrics for the case
of a Markov spline, whose change in velocity is limited to
some amount within a given time span. This results in a more
realistic and smother trajectory that resembles more typical
trajectories. Similar to the previous setup, the proposed
approach is shown to achieve good estimates and RMSE
of 0.0038 m and 0.0014 rad, respectively. Nonetheless, it
is surprising to observe, that the more confined, aggressive
Trajectory 1 results in a better estimate. This, however, can
be attributed to the fact that the trajectory generally moves
away from the simulated landmarks, which, in turn, may
deteriorate their position estimates as well as yielding weaker
constraints for the optimization. The covered distance in this
setup is approximately 14 m.

4.3.3 Trajectory 3: Hybrid Trajectory

Lastly, we combine aspects of the previous two experiments.
In particular, we combine a smooth Markov spline and
overlay it with rapid movements. This results in a trajectory
that, depending on the degree of perturbation, aims to
capture improperly following a prescribed trajectory due to
external disturbances. Here, we intentionally select a large
disturbance to emphasise the stability of the optimization,
which results in a RMSE of 0.0046 m, 0.00081 rad,
respectively, over a distance of roughly 34 m.

Established, state-of-the-art monocular discrete-time
SLAM frameworks [19, 20] reportedly achieve translational



RMSEs anywhere between 0.004 m and 0.119 m,
depending on the presented experimental setup. In
comparison, the estimates of the proposed HyperSLAM
framework in these proof-of-concept simulated experiments,
indicate that exploiting the continuous-time properties of
the proposed spline representation has great potential in
effective trajectory estimation.

At this point, it is worth emphasizing, that the error plots
in Fig. (3), do not consider some leading and trailing spline
segments as they are notorious for not properly capturing the
trajectory due to unequal amount of measurements compared
to the remaining segments (i.e. they tend to be under-
constrained). Throughout the previous setups, we did not
yet allow for base times ti to be optimized and instead, these
were placed equidistantly every 0.5 s for simplicity. This
generally results in an optimization time of around 5 s on a
single core, which can be further optimized in the future.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented a way to universally extend

uniform spline-based continuous-time representations to
their non-uniform variants of any degree k, implemented
appropriate container extensions to Sophus [22] and posed
the underlying, modified NLLS optimization for the
augmented case. Furthermore, we verified and demonstrated
the efficacy, efficiency and applicability of the framework
and the developed SEt3 parametrizations for the case of
simulated, monocular setup for different archetypes of
trajectories. Future work will investigate the applicability
of HyperSLAM in real world experiments, explore the
effect of dynamic trajectory refinement on performance
and accuracy measures, as well as the expansion of the
proposed pipeline to include other sensor modalities and
configurations with the outlook of publicly releasing our
code for the underlying non-uniform spline containers and
the HyperSLAM framework.

Acknowledgements
This research was supported by the Swiss National

Science Foundation (SNSF, Agreement no. PP00P2157585),
NCCR Robotics and the ETH Mobility Initiative together
with the Swiss Federal Railways (SBB).

References
[1] P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient

centralized collaborative monocular simultaneous localization
and mapping for robotic teams,” Journal of Field Robotics,
vol. 36, no. 4, pp. 763–781, jun 2019. 1

[2] E. Eade, “Lie Groups for 2D and 3D Transformations,” Tech.
Rep., may 2017. [Online]. Available: http://www.ethaneade.
org/lie.pdf 1, 3

(a) Aggressive Trajectory

(b) Smooth Markov Trajectory

(c) Hybrid Trajectory

Figure 3: Left Column: Simulated, randomly generated
ground-truth trajectories (in black) and their corresponding
trajectory estimates after alignment (in green) following
an optimization of the received messages in the backend.
Right Column: Norm of the translation in meters (in black),
and rotation errors in radians (in green) resulting from the
trajectory estimates on the left. The rotation error is defined
as the angle between the estimated and the ground-truth
quaternions.

[3] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous
Localization and Mapping: A Survey of Current Trends in
Autonomous Driving,” pp. 194–220, sep 2017. 1

[4] L. Teixeira, I. Alzugaray, and M. Chli, “Autonomous Aerial
Inspection Using Visual-Inertial Robust Localization and
Mapping,” 2018, pp. 191–204. 1

[5] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline
fusion: A continuous-time representation for visual-inertial
fusion with application to rolling shutter cameras,” in BMVC
2013 - Electronic Proceedings of the British Machine Vision

http://www.ethaneade.org/lie.pdf
http://www.ethaneade.org/lie.pdf


Conference 2013. British Machine Vision Association,
BMVA, 2013. 2, 3, 5

[6] E. Mueggler, G. Gallego, and D. Scaramuzza, “Continuous-
time trajectory estimation for event-based vision sensors,” in
Robotics: Science and Systems, vol. 11. MIT Press Journals,
2015. 2, 5

[7] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza,
“Continuous-Time Visual-Inertial Odometry for Event
Cameras,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1425–1440, dec 2018. 2, 3

[8] A. Haarbach, T. Birdal, and S. Ilic, “Survey of higher
order rigid body motion interpolation methods for keyframe
animation and continuous-time trajectory estimation,” in
Proceedings - 2018 International Conference on 3D Vision,
3DV 2018. Institute of Electrical and Electronics Engineers
Inc., oct 2018, pp. 381–389. 2, 3, 4

[9] K. Qin, “General matrix representations for B-splines,” in
Proceedings - Pacific Conference on Computer Graphics and
Applications. IEEE Computer Society, 1998, pp. 37–43. 2,
4, 6

[10] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-
time batch estimation using temporal basis functions,” in
Proceedings - IEEE International Conference on Robotics
and Automation. Institute of Electrical and Electronics
Engineers Inc., 2012, pp. 2088–2095. 2, 3

[11] S. Anderson and T. D. Barfoot, “Towards relative continuous-
time SLAM,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2013, pp. 1033–1040. 2

[12] S. Anderson, F. Dellaert, and T. D. Barfoot, “A hierarchical
wavelet decomposition for continuous-time SLAM,” in
Proceedings - IEEE International Conference on Robotics
and Automation. Institute of Electrical and Electronics
Engineers Inc., sep 2014, pp. 373–380. 2

[13] D. Droeschel and S. Behnke, “Efficient continuous-time
SLAM for 3D lidar-based online mapping,” in Proceedings -
IEEE International Conference on Robotics and Automation.
Institute of Electrical and Electronics Engineers Inc., sep
2018, pp. 5000–5007. 2, 3

[14] Z. Zhang and D. Scaramuzza, “Rethinking Trajectory
Evaluation for SLAM: a Probabilistic, Continuous-Time
Approach,” Tech. Rep., 2019. [Online]. Available: http:
//rpg.ifi.uzh.ch. 2

[15] C. Sommer, V. Usenko, D. Schubert, N. Demmel,
and D. Cremers, “Efficient Derivative Computation for
Cumulative B-Splines on Lie Groups,” nov 2019. [Online].
Available: http://arxiv.org/abs/1911.08860 2, 4, 5, 6, 7

[16] D. Condurache and I. A. Ciureanu, “Closed Form of the
Baker-Campbell-Hausdorff Formula for the Lie Algebra
of Rigid Body Displacements,” in Computational Methods
in Applied Sciences. Springer, aug 2020, vol. 53,
pp. 307–314. [Online]. Available: https://doi.org/10.1007/
978-3-030-23132-3{ }37 3

[17] N. Dantam, “Quaternion Computation,” Georgia Institute
of Technology, Atlanta, Tech. Rep., oct 2014.
[Online]. Available: http://www.neil.dantam.name/note/
dantam-quaternion.pdf 4

[18] H. Ovrén and P. E. Forssén, “Trajectory representation
and landmark projection for continuous-time structure from
motion,” International Journal of Robotics Research, vol. 38,
no. 6, pp. 686–701, may 2019. 4

[19] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and
Versatile Monocular Visual-Inertial State Estimator,” IEEE
Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, aug
2018. 4, 7

[20] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-D
Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp.
1255–1262, oct 2017. 4, 7

[21] S. H. Lee and J. Civera, “Triangulation: Why Optimize?”
30th British Machine Vision Conference 2019, BMVC 2019,
jul 2019. [Online]. Available: http://arxiv.org/abs/1907.11917
7

[22] H. Strasdat, “GitHub - strasdat/Sophus: C++ implementation
of Lie Groups using Eigen.” [Online]. Available: https:
//github.com/strasdat/Sophus 7, 8

[23] S. Agarwal and K. Mierle, “Ceres Solver — A Large
Scale Non-linear Optimization Library.” [Online]. Available:
http://ceres-solver.org/ 7

http://rpg.ifi.uzh.ch.
http://rpg.ifi.uzh.ch.
http://arxiv.org/abs/1911.08860
https://doi.org/10.1007/978-3-030-23132-3{_}37
https://doi.org/10.1007/978-3-030-23132-3{_}37
http://www.neil.dantam.name/note/dantam-quaternion.pdf
http://www.neil.dantam.name/note/dantam-quaternion.pdf
http://arxiv.org/abs/1907.11917
https://github.com/strasdat/Sophus
https://github.com/strasdat/Sophus
http://ceres-solver.org/

