
Diss. ETH No. 19715

Consistent Integrators for Non-Smooth
Dynamical Systems

A dissertation submitted to

ETH ZURICH

for the degree of
Doctor of Sciences

presented by

MICHAEL HEINER MÖLLER
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Abstract

Non-smooth mechanical models with set-valued force laws of normal cone type are very
well suited for the analysis of the dynamics of mechanical systems with unilateral contacts
and Coulomb friction. In a non-smooth formulation, discontinuous velocities and impul-
sive forces may occur, which allows to describe not only structural changes like stick-slip
transitions but impacts as well. Like the force laws, also impact laws can be formulated
as normal cone inclusion. For the numerical integration of the dynamics of non-smooth
models, event capturing time-stepping schemes based on Moreau’s midpoint rule in com-
bination with a reformulation of the normal cone inclusions as proximal point problems
have been proven to be very robust. Usually these time-stepping integrators use a fully
implicit discretization of all non-smooth forces, while integrating all classical and smooth
forces as well as displacements related to unilateral contacts with an explicit scheme.
If the time steps cannot be chosen small enough (e.g. for performance reasons), this
can lead to an unstable integration, drift in the energy balance or drift in the unilateral
constraints.

In this work, different variants of consistent integrators for non-smooth mechanical sys-
tems are developed. The integrators discretize all terms with an implicit scheme, which
allows to achieve an energetically consistent integration. This means, if the total energy
was preserved or strictly decreasing in the model, then the difference scheme used for
integration only allows approximations which have this property as well. Similarly drift
problems with unilateral contacts and bilateral constraints are addressed. The integra-
tors are based on one- or two-step schemes and allow for inertial and potential forces,
bilateral constraints and set-valued force laws of normal cone type. The set-valued force
laws can be equipped with impact laws of Newton-type. The consistency properties of
the integrators are useful for increasing the overall robustness of the integration.

When formulating consistent integrators based on equations of motion in differential-
algebraic form, one has to be careful not to increase the number of equations too dras-
tically, or otherwise performance will suffer. To address this problem, a scalable body
model with three translational, three rotation and one uniform scaling degree of freedom
is introduced in this work. The rotational and scaling degrees of freedom are parametrized
with an unconstrained quaternion. To the scalable body a perfect bilateral constraint is
added, restricting the quaternion to unit length and making the body rigid. This way a
quaternion based differential algebraic equation formulation for the dynamics of a rigid
body is obtained, where the mass matrix is regular and the unit length restriction of the
quaternion is enforced by a mechanical constraint.
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The completely implicit discretization of the equations of motion yields a set of coupled
nonlinear equations and normal cone inclusions that has to be solved for every time
step. Normal cone inclusion problems with linear equations, as obtained for Moreau’s
midpoint rule, can be solved with a projected Jacobi iteration or a projected Gauss-
Seidel iteration. For the nonlinear case, a projected Newton iteration is proposed in this
work. The iterative methods for the solution of normal cone inclusions rely on an efficient
implementation of the proximal point functions for the corresponding convex sets. To help
with this, a transformation technique for proximal point iterations is developed. This can
be used for multidimensional normal cone inclusion problems using convex sets with a
complex shape that can be simplified through a linear transformation. The properties of
the consistent integrators and solution methods developed in this work are demonstrated
on some examples of non-smooth systems.
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Zusammenfassung

Nicht-glatte mechanische Modelle mit mengenwertigen Kraftgesetzen vom Typ Normalke-
gel sind sehr gut für die Analyse der Dynamik von mechanischen Systemen mit einseitigen
Kontakten und Coulomb-Reibung geeignet. In der nicht-glatten Formulierung können dis-
kontinuierliche Geschwindigkeiten und impulsive Kräfte auftreten, was es erlaubt nicht nur
strukturelle Veränderungen wie Haft-Gleit-Übergänge sondern auch Stösse zu beschrei-
ben. Die Stossgesetze können genau wie die Kraftgesetze auch als Normalkegelinklusion
formuliert werden. Time-Stepping-Verfahren basierend auf Moreau’s Mittelpunktsregel in
Kombination mit der Umformulierung der Normalkegelinklusionen als Prox-Gleichung ha-
ben sich als sehr robuste Methode für die numerische Integration der Dynamik von nicht-
glatten Modellen erwiesen. Normalerweise verwenden diese Time-Stepping-Integratoren
eine vollständig implizite Diskretisierung aller nicht-glatten Kräfte, während alle klassi-
schen und glatten Kräfte sowie die Auslenkungen der einseitigen Kontakte mit einem
expliziten Schema integriert werden. Falls die Zeitschritte nicht klein genug gewählt wer-
den können (z.B. aus Performance-Gründen), kann dies zu einer instabilen Integration,
zu Drift in der Energiebilanz oder zu Drift in den einseitigen Bindungen führen.

In dieser Arbeit werden verschiedene Varianten konsistenter Integratoren für nicht-glatte
mechanische Systeme entwickelt. Die Integratoren diskretisieren alle Terme mit einem im-
pliziten Schema, wodurch eine energetisch konsistente Integration erreicht werden kann.
Das heisst, wenn die Gesamtenergie im Model erhalten bleibt oder monoton fällt, so
erlaubt das Differenzenschema des Integrators nur Approximationen welche diese Eigen-
schaft ebenfalls haben. In ähnlicher Art und Weise können auch Driftprobleme bei einsei-
tigen Kontakten und bilateralen Bindungen behandelt werden. Die Integratoren basieren
auf Ein- oder Zweischritt-Schemen und können Trägheitskräfte, Potentialkräfte, bilaterale
Bindungen und mengenwertige Kraftgesetze vom Typ Normalkegel berücksichtigen. Die
mengenwertige Kraftgesetze können mit Newton-Stossgesetzen ausgerüstet werden. Die
Konsistenzeigenschaften der Integratoren sind nützlich für die Erhöhung der Robustheit
der Integration.

Bei der Formulierung konsistenter Integratoren basierend auf Bewegungsgleichungen in
differential-algebraischer Form muss darauf geachtet werden, dass die Anzahl der Glei-
chungen nicht zu stark erhöht wird, da sonst die Performance leidet. Um dieses Problem
anzugehen wird in dieser Arbeit das Modell eines skalierbaren Körpers eingeführt, welcher
drei translatorische, drei rotatorische und einen uniform skalierenden Freiheitsgrad hat.
Die rotatorischen und skalierenden Freiheitsgrade werden mit einer uneingeschränkten
Quaternion parametrisiert. Dem skalierbaren Körper wird eine perfekte bilateralen Bin-
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dung hinzugefügt, welche die Quaternion auf Einheitslänge einschränkt und das Modell
auf einen Starrkörper reduziert. Auf diesem Weg erhält man eine auf Quaternionen basier-
te differential-algebraische Formulierung für die Dynamik eines Starrkörpers für welche die
Massenmatrix regulär ist und die Einheitslänge des Quaternions von einer mechanischen
Bindung erzwungen wird.
Die komplett implizite Diskretisierung der Bewegungsgleichungen ergibt ein System von
nichtlinearen Gleichungen und Normalkegelinklusionen, welches für jeden Zeitschritt nu-
merisch gelöst werden muss. Normalkegelinklusionen mit linearen Gleichungen, wie man
sie mit Moreau’s Mittelpunktsregel erhält, können mit einer projizierten Jacobi-Iteration
oder einer projizierten Gauss-Seidel-Iteration gelöst werden. Für den nichtlinearen Fall
wird in dieser Arbeit eine projizierte Newton-Iteration vorgeschlagen. Die iterativen Me-
thoden zur Lösung von Normalkegelinklusionen setzen auf eine effiziente Implementierung
der Prox-Funktionen für die entsprechenden konvexen Mengen. Um die Effizienz zu verbes-
sern wurde eine Transformationsmethode für Prox-Iterationen entwickelt. Diese Methode
kann für mehrdimensionale Normalkegelinklusionen verwendet werden, sofern die konve-
xe Menge durch eine lineare Transformation vereinfacht werden kann. Die Eigenschaften
der in dieser Arbeit entwickelten konsistenten Integratoren und Lösungsverfahren werden
anhand von einigen Beispielen nicht-glatter mechanischer Systeme veranschaulicht.
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Chapter1
Introduction

This first chapter starts with a short introduction and motivation for the thesis. After a
literature survey in Section 1.2, the aim and scope of the thesis is presented in Section 1.3.
An outline of the chapters of this thesis is given in Section 1.4.

1.1 Motivation

Unilateral constraints and friction are present in many mechanical systems. Sometimes
unilateral constraints can be replaced with bilateral formulations and the influence of
friction can be neglected. This is no surprise, as most technical realizations of what in
mechanics is considered a bilateral constraint rely on a special arrangement of unilat-
eral contacts with reduced friction. Perfect bilateral constraints have a long tradition
in mechanics, and according methods are very well developed. Still one is occasionally
confronted with unilateral contacts or friction that can not be replaced with perfect bi-
lateral constraints. For these cases, one approach is to use smooth force laws for the
description of the unilateral contacts with friction in a regularized form. Depending on
the situation, this can have disadvantages, like adding unnecessary parameters to the
model or numerical difficulties associated with stiff differential equations. An alternative
approach is to describe unilateral constraints and friction in an idealized way. In the last
decades this lead to a very well developed framework for the formulation of non-smooth
mechanical models with unilateral contacts and friction. The word non-smooth refers to
the fact, that the displacements may not be differentiable everywhere, the velocities can
be discontinuous, and the forces can even contain Dirac impulses.
In a non-smooth mechanical model, the unilateral contacts and friction can be described
with set-valued force and impact laws of normal cone type. The formulation as normal
cone inclusion provides a very general structure for a large class of force laws, even clas-
sical bilateral constraints can be formulated as normal cone inclusion. Time-stepping
schemes based on Moreau’s midpoint rule in combination with a reformulation of the
normal cone inclusions as proximal point problems have been proven to be very useful
for the numerical integration of the dynamics of non-smooth models. Moreau’s midpoint
rule uses an implicit discretization of all set-valued force laws, while all classical forces
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2 Chapter 1. Introduction

are discretized in an explicit way. For larger time steps, the explicit discretization can
lead to an unstable integration. For systems where high frequency dynamics is created
by classical forces this can force Moreau’s midpoint rule to very small time steps in order
to avoid instabilities of the integrator. This could be avoided with a completely implicit
scheme. The progress on conserving integrators in recent years suggests not to use just
a random kind of implicit discretization, but one that yields an energetically consistent
integration. This means, if the total energy was preserved or strictly decreasing in the
model, then the difference scheme used for integration only allows approximations which
have this property as well. The consistency with respect to the total energy guarantees
by itself that the numerical solution does not diverge to infinity. In this context also
drift problems of unilateral contacts caused by the usual discretization on velocity level
could be addressed. Beside stability and robustness enhancements, a differential-algebraic
equations based integrator formulation could be useful for larger mechanical systems with
a more complicated structure. Differential-algebraic formulations are good for systems
where the number of degrees of freedom or kinematic loops make a minimal coordinates
based approach difficult. Beyond their direct use for the analysis of non-smooth mechan-
ical applications, consistent integration schemes can be interesting for the interpretation
and understanding of the properties of time-stepping schemes closer to Moreau’s original
midpoint rule.

1.2 Literature Survey

In this section, a short literature survey on non-smooth dynamical systems and consistent
integrators is given. The intent of this section is not to give a complete overview on the
relevant literature, but to give some references which might be helpful in getting more
detailed information and background knowledge on the topic.

1.2.1 Non-smooth Dynamical Systems

There exists a large number of publications on the modeling and numerical simulation of
non-smooth dynamical systems. A review of the main techniques and algorithms for the
numerical simulation of non-smooth multibody systems is given in [16]. In the book [3] by
Acary and Brogliato a detailed collection of numerical methods for non-smooth dynamical
systems in the field of mechanics and electronics is given. The methods discussed in the
book include the different non-smooth formulations, numerical time-integration schemes
and non-smooth problem solvers.

The non-smooth formulation of the dynamics of mechanical systems and their numerical
solution has been pioneered by the work of Moreau [60, 61] and Jean [38, 39]. The frame-
work developed by Moreau and Jean is based on convex analysis [72]. It formulates the
dynamics as a measure differential inclusion on velocity level. The midpoint rule published
in [60] is a first event capturing (or time-stepping) integrator, that allows to handle all
non-smooth events occurring in a time interval with one difference scheme. Non-smooth
events are for example slip-stick transitions or impacts. In contrast to event capturing
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integrators, an event driven integrator splits the dynamics into non-smooth events and
smooth parts. Both parts are then handled separately. An event capturing integrator
avoids the difficulties that can occur in an event driven integrator at accumulation points
of non-smooth events.

In the work of Glocker [23] and the book by Pfeiffer and Glocker [71], the formulation
of dynamical problems with friction and impacts in a linear complementarity framework
has been developed. The equations of motion are formulated on acceleration level and
integrated with an event driven integrator. A very detailed presentation of the linear
complementarity problem (LCP) and numerical solution methods for it can be found in
the book of Cottle et al. [19] and in the book of Murty [63]. In [9] Baraff presents a nonlin-
ear extension of the LCP for frictional contact problems and a correspondingly modified
version of Dantzig’s algorithm [18] for the solution of LCPs. With the linear complemen-
tarity problem based formulations one is limited to one-dimensional friction or one has to
use pyramidal approximation of the friction cone [24, 41] for the multidimensional case.
The approximation of the friction cone can be avoided by using a normal cone based
formulation of the friction law as described in the book by Glocker [25]. In the book [25]
a detailed framework for set-valued force laws on different kinematic levels and their rep-
resentation by non-smooth potentials is given. Beside this, also the non-smooth extension
of classical principles in dynamics is described. An introduction to impact constitutive
laws formulated in terms of set-valued maps can be found in [23, 27].

Based on Moreau’s midpoint rule, many variants of event capturing integrators have been
developed. These include the θ-method by Jean [39], a formulation on displacement
level by Paoli and Schatzman [67, 68] or the methods by Anitescu, Stewart and Trinkle
[8, 76]. In [81, 78] Studer developed a time-stepping method with step size adjustment and
extrapolation. Beside this, in [78] also a review of many of the event capturing integrators
can be found. Numerical methods for the time integration of higher order non-smooth
dynamical systems have been developed by Acary and Brogliato in [2, 4].

The one-step problem arising from the discretization of normal cone inclusion based for-
mulations can be solved by an augmented Lagrangian approach resulting in an iterative
projection method. The augmented Lagrangian approach for contact problems has been
described by Alart and Curnier [6] and by Simo and Laursen [74]. The iterative pro-
jection method has been applied to dynamic mechanical problems by Leine and Glocker
[47, 48, 29]. A detailed discussion of the augmented Lagrangian approach and the result-
ing iterative methods for the solution of normal cone inclusions as well as some analysis
on convergence of the iteration has been published by Studer [80, 78].

Using an implicit discretization of the classical forces in a scheme based on Moreau’s
midpoint rule yields a one-step problem that consists of nonlinear equations and inclusions.
In general these can be difficult to solve, especially if the one-step problem approximates
impacts as well. With jumps in the velocities, one might not have a starting point for a
Newton-type iteration that is close to the solution. One way to circumvent this problem,
is to apply a time-splitting method as developed in [64]. The integration is split into a
smooth nonlinear part that can be solved with a Newton-type method and a non-smooth
inclusion based part that can be solved with a proximal point iteration.

Examples of the application of the non-smooth formulations for mechanical systems are
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the simulation of the woodpecker toy by Glocker [23, 30], the analysis of the curve squeal-
ing mechanism of railway vehicles by Cataldi-Spinola [17], the design and simulation of
a passively actuated robot manipulator by Welge-Lüßen [86] or the simulation of a snake
robot by Transeth et al. [82]. The non-smooth formulations have been successfully applied
as well to electrical systems by Glocker and Möller [26, 56, 57] as well as Acary et al. [1].

1.2.2 Consistent Integrators

The energy and momentum conserving integrators for particle system by LaBudde and
Greenspan [43, 44] are early works on this topic. In [75] Simo and Wong describe an inte-
grator for rigid body dynamics based on the Newton-Euler equations that preserves energy
and momentum for force free motion. An important building block for the consistent inte-
grators formulated in this work is the discrete derivative introduced by Gonzalez [31, 32].
It allows to approximate a partial derivative with a discrete version that yields exactly the
difference in function values when multiplied with the difference of the arguments used
to construct it.
In [32] a conserving integrator for Hamiltonian systems is developed that preserves the
total energy and certain first integrals arising from symmetry. The integrator is based
on the discrete derivative technique. In [33] Gonzalez develops a conserving integrator
for mechanical systems subject to holonomic constraints where the equations of motion
are formulated in differential-algebraic form. The integrator preserves the total energy,
the constraints on displacement level and integrals arising from symmetry like the linear
and angular momentum. The induced constraints on velocity are not preserved in the
approximation of the integrator, which leads to oscillations in the velocities [33].
Inspired by the method of Gear at al. [22], Betsch and Steinmann [14] developed a conserv-
ing integrator based on a Hamiltonian differential-algebraic equation formulation, which
not only preserves the total energy and momentum but also enforces consistent constraints
on displacement and velocity level. The director based rigid body formulation described
in [14] leads to a system of nonlinear equations with a rather large number of unknowns.
To reduce the number of unknowns, Betsch developed the discrete null space method for
consistent integrators in [10, 11]. The discrete null space method allows to eliminate the
discrete Lagrange multipliers present after the discretization of the equations of motion in
differential-algebraic form. The discrete null space method has been extended for flexible
multibody systems by Leyendecker et al. [52, 53]. Unfortunately, the integrator devel-
oped in [10] enforces the bilateral constraints on displacement level only, and assumes a
constant mass matrix.
A consistent integrator using a decomposed mass matrix has been developed by Lens et
al. [51]. For a decomposed mass matrix, the kinetic energy can be expressed in terms of a
constant matrix and an appropriate set of generalized velocities. In [51] also an example
with two pendulums interacting with one contact is considered. Some kind of contact law
is formulated by introducing a slack variable, but without formulating a complementarity
condition which would guarantee compressive-only forces at the unilateral contact. Be-
side this, no impact law is formulated. In [51] the bilateral constraints are enforced on
displacement level only, which leads as well to oscillations of the velocities. An attempt to
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reduce the oscillations with additional numerical dissipation has been developed by Lens
and Cardona in [50].

In the work of Hesch [36] consistent integrators for the dynamics of deformable bodies with
frictionless unilateral contacts are developed. An impact constitutive law is not stated
explicitly. Many modeling techniques for consistent integrators based on the discrete null
space method are developed in the work of Uhlar [83]. This includes formulations for rigid
and flexible bodies as well as null space matrices for closed loop systems, the formulation
of control constraints and the modeling of dissipation. In [83] also a nice collection of
example systems and applications is presented.

1.3 Aim and Scope

The aim of this thesis is the development of consistent integrators for the dynamics of
non-smooth mechanical systems. The focus lies on the consistency of the integrators with
respect to the total energy and to the kinematics of unilateral and bilateral constraints.
Other consistency properties like the preservation of generalized momenta associated with
symmetries of the system are not considered. The motivation for the energy consistency
are the inherent stability properties. A consistent discretization of bilateral constraints on
displacement level is required as resolving drift problems with projections after each time
step is not feasible for energy consistent integrators. For the combination with impacts
also a consistent discretization of bilateral constraints on velocity level is required. For
unilateral constraints only a reduced form of kinematic consistency is considered. The
consistent integrators considered in this work are using the discrete derivative approxi-
mation of partial derivatives in order to preserve properties of the equations of motion in
the discretized formulation.

Basic support for rigid multibody formulations is an essential requirement, in order to
be able to formulate any model that goes beyond simple point masses. The rigid body
formulation requirement together with the consistency of bilateral constraints on dis-
placement and velocity level can lead to formulations that use a rather large number of
unknowns. This problem is addressed with the development of a quaternion based rigid
body formulation in differential-algebraic form suitable for the construction of consistent
integrators.

In this work, the non-smooth forces are described with set-valued force laws of normal
cone type. This allows for models with unilateral contacts and one- or multidimensional
Coulomb friction. The impact-free dynamics is described with equations of motion and
set-valued force laws in terms of the time derivatives of the generalized coordinates and
velocities. The impacts are described with separate impact equations and impact laws
relating the pre- and post-impact magnitudes. In order to keep the argumentation and
notation simple, no differential measures based formulation is used. The combination of
the continuous differential inclusions and the impact mappings into one differential mea-
sure inclusion formulation creates additional problems which are not further investigated
here.

The discretization of the integrator yields a one-step inclusion problem that has to be
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solved for every time step. In this work a few solution methods for normal inclusion
problems with linear equations are discussed. The one-step inclusion problems resulting
from the completely implicit discretization of a consistent integrator consist of coupled
normal cone inclusions and nonlinear equations in general. For this problem a projected
Newton iteration is proposed in this work. In the context of proximal point iteration
methods also a few improvements for multidimensional force laws are developed.

The properties of the consistent integrators are demonstrated for a few examples of non-
smooth systems. The detailed integration order and convergence properties of the con-
sistent integrators are not analyzed in this work. This is mainly, because the discussion
of the uniqueness and existence of solutions of non-smooth problems is difficult already.
Correspondingly, a sound analysis of the convergence of an approximation towards such
a solution can be even more complicated. The integration order of non-smooth event
capturing integrators is just equal to one in general, if no additional measures are taken
to locate the impact events more precisely.

1.4 Outline

In Chapter 2, an introduction to normal cone inclusions on convex sets and the relation
to proximal point problems is given. The reformulation of a normal cone inclusion prob-
lem as a proximal point problem can be used for the iterative solution of the inclusion
problem. Two proximal point based iteration methods for the combined solution of linear
equations and normal cone inclusions are discussed. The linear transformation of normal
cone inclusions and the recovering strategy for multidimensional convex sets presented in
the following can be used for the efficient numerical solution of ellipsoid based normal
cone inclusions. Finally the Newton based iterative method for the solution of coupled
nonlinear equations and normal cone inclusions is proposed.

In Chapter 3, the formulation of the equations of motion of non-smooth mechanical sys-
tems is described. This chapter starts with the classical principles of virtual work and
virtual power, the reduction to generalized coordinates and the reformulation using gener-
alized velocities. As preparation for the consistent integrators, two special representations
of the inertial forces in the equations of motion are discussed. In the following, different
classes of force laws and the most important set-valued force laws of normal cone type are
presented. The chapter concludes with a short introduction to impacts and a discussion
of the different contributions to a total energy balance.

In Chapter 4, two rigid body formulations in differential-algebraic form are described.
The first part of the chapter is a short summary of the affine body based formulation
using twelve degrees of freedom and 6 bilateral constraints. In the second part a detailed
discussion of the scalable body based rigid body formulation is presented. The scalable
body uses an unconstrained quaternion and a translation vector as coordinates. Adding
one perfect bilateral constraint reduces the scalable body to a rigid body.

In Chapter 5, the event capturing integrator based on Moreau’s midpoint rule is described
as a reference for the consistent integrators. After a short summary on the discrete
derivative, the different consistent integrators based on differential-algebraic equations
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are developed. This includes a discussion of the consistency of bilateral constraints on
displacement and velocity level. Also for each integrator the consistency with respect
to the total energy is shown. The chapter concludes with a quaternion based consistent
integrator that uses the Newton-Euler formulation of rigid body dynamics.
The numerical solution for a few examples of non-smooth mechanical systems are pre-
sented in Chapter 6. The examples demonstrate the properties of the consistent inte-
grator formulations developed in Chapter 5. Also the efficient evaluation of a Coulomb-
Contensou friction approximation is shown, using the normal cone transformation tech-
nique from chapter Chapter 2.
In Chapter 7, a few conclusions are presented and the main contributions of this thesis are
summarized. Finally, some of the remaining open questions are discussed in an outlook.





Chapter2
Normal Cone Inclusions

In this chapter an introduction to normal cones, proximal points and the solution of nor-
mal cone inclusion problems is given. Normal cone inclusions can be used to formulate
non-smooth force laws like the unilateral contact law or Coulomb’s friction law. In the
numerical integration of the resulting equations of motion, these force laws of normal cone
type give rise to normal cone inclusion problems, which have to be solved numerically.
In Section 2.1 a short introduction to the terminology and notation used for convex sets,
indicator functions and the subdifferential is given. For more details on the subject the
reader is referred to [72, 23, 46]. In Section 2.2 the normal cone and its connection to
the proximal point function is described. Some basic proximal point functions are given
in Section 2.3. The linear transformation of normal cone inclusions is described in Sec-
tion 2.4. In Section 2.5 some iterative methods for the solution of normal cone inclusions
are described. Parts of this chapter related to the normal cone and its transformation are
based on the conference proceeding [59] of the author.

2.1 Convex Sets and Convex Functions

A set C ⊆ Rn is convex if for all x ∈ C and y ∈ C also λx + (1 − λ)y ∈ C holds for
all λ ∈ [0, 1]. An application of this definition is shown in Figure 2.1.

Figure 2.1: Convex set C and non-convex set S.

9
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The indicator function ΨC : Rn → R of a set C is defined as

ΨC(x) =

{
0, x ∈ C
+∞, x /∈ C (2.1)

An illustration of the indicator function of a one-dimensional convex set is shown in
Figure 2.2.

Figure 2.2: Indicator function ΨC of a convex set C.

The epigraph of a function f : D ⊆ Rn → R is the set of points lying on or above the
graph of f ,

epi(f) = {(x, y) | x ∈ D, y ∈ R, y ≥ f(x)} . (2.2)

If the epigraph of a function f is a convex subset of Rn+1, then the function f is convex.
Note that the indicator function of a convex set is always a convex function. For a convex
functions f the subdifferential is defined as

∂f(x) =
{
y | f(x∗) ≥ f(x) + yT(x∗ − x), ∀x∗

}
. (2.3)

The epigraph and the subdifferential of a convex function is illustrated in Figure 2.3.

Figure 2.3: Epigraph and supporting hyperplanes of a convex function f(x).
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2.2 Normal Cones and Proximal Points

The normal cone NC(x) to a convex set C ⊆ Rn at the point x ∈ C is the set of all
vectors y ∈ Rn which do not form an acute angle to any vector x∗−x for all points x∗ ∈ C,
i.e.

NC(x) := {y | yT(x∗ − x) ≤ 0, ∀x∗ ∈ C}. (2.4)

If x is in the interior of C, then the normal cone contains only the 0-element NC(x) = {0}.
An illustration of the normal cone for a two-dimensional convex set is shown in Figure 2.4.
The normal cone NC(x) to a convex set C is identical to the subdifferential ∂ΨC(x) of the

Figure 2.4: Normal cone.

indicator function of the convex set,

∂ΨC(x) ≡ NC(x). (2.5)

The normal cone is related to the problem of finding the proximal point to a convex set.
For the definition of a proximal point a norm is required. With a symmetric and positive
definite (PD) matrix R ∈ Rn×n, the inner product of two vectors can be defined as

〈x,y〉 := xTR y, R = RT, R PD. (2.6)

This inner product naturally defines the norm ‖x‖R of a vector x ∈ Rn as

‖x‖R =
√
〈x,x〉 =

√
xTRx. (2.7)

The proximal point proxRC (x) of a point x ∈ Rn to the convex set C ⊆ Rn is the closest
point in C to x with respect to the norm ‖ · ‖R,

proxRC (x) := argmin
x∗ ∈ C

‖x− x∗‖R. (2.8)
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If x is in the set C, then the proximal point proxRC (x) is x itself. The proximal point
function proxRC is invariant to scaling of the matrix R of the associated norm ‖ · ‖R by a
positive scalar α,

proxRC (x) = proxαRC (x), α ∈ R+. (2.9)

The function proxC(x) denotes the proximal point function for the special case of the
Euclidean norm which is obtained for R = I,

proxC(x) := proxIC(x). (2.10)

If a point x is the proximal point to the convex set C of the point z, then the vector z−x
is an element of the normal cone NC(x) as shown in Figure 2.5. This means a normal

Figure 2.5: Proximal point and normal cone.

cone inclusion can be reformulated equivalently as a proximal point problem,

z − x ∈ NC(x) ⇔ x = proxC(z). (2.11)

In the more general case where the proximal point function proxRC (x) is used, this rela-
tionship becomes

y ∈ NC(x) ⇔ x = proxRC (x+R−1y). (2.12)

To obtain this relationship, the proximal point function in the equation x = proxRC (x +
R−1y) is written as a minimization problem restricted to the convex set C by using the
definition (2.8). Then, the restriction is replaced by adding the indicator function ΨC(x∗)
of the convex set C to the objective function of the minimization problem. If x is a
point at which the minimum of f(x∗) is attained, then 0 has to be an element of the
subdifferential ∂f . The subdifferential ∂ΨC(x) of the indicator function is just the normal
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cone NC(x) and one obtains the equivalent inclusion y ∈ NC(x):

x = proxRC (x+R−1y)

⇔ x = argmin
x∗ ∈ C

‖x+R−1y − x∗‖R

⇔ x = argmin
x∗ ∈ C

1

2
‖x+R−1y − x∗‖2

R

⇔ x = argmin
x∗

(
1

2
‖x+R−1y − x∗‖2

R + ΨC(x
∗)

)
⇔ x = argmin

x∗

(
1

2
(x− x∗)TR(x− x∗) + yT(x− x∗) + ΨC(x

∗)

)
f(x∗) :=

1

2
(x− x∗)TR(x− x∗) + yT(x− x∗) + ΨC(x

∗)

⇔ x = argmin
x∗

f(x∗)

⇔ 0 ∈ ∂f(x∗)
∣∣
x∗=x

⇔ 0 ∈
(
−R(x− x∗)− y + ∂ΨC(x

∗)
)
x∗=x

⇔ 0 ∈ −y + ∂ΨC(x)

⇔ y ∈ NC(x).

(2.13)

Using this relationship, a normal cone inclusion can be formulated as a nonlinear equation,
where the matrix R can still be chosen freely as long as it is symmetric and positive
definite.

2.3 Basic Proximal Point Functions

The proximal point functions for one-dimensional convex sets are very simple to evaluate.
If the point is in the set, then the proximal point is the point itself, otherwise it is the
point on the corresponding boundary. For the convex set R−0 the proximal point function
can be written as

proxR−
0

(x) = min(x, 0) =

{
x, x ≤ 0

0, x > 0
. (2.14)

For the one-dimensional interval [a, b] one gets the following proximal point function:

prox[a,b](x) = max(min(x, b), a) =


b, x > b

x, a ≤ x ≤ b

a, x < a

. (2.15)

Note that the function prox[a,b] also includes the function proxR−
0

for a = −∞ and b =
0. An illustration of these functions is shown in Figure 2.6. The Euclidean proximal
point function for multidimensional convex sets obtained as Cartesian product of (left- or
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Figure 2.6: The proximal point functions proxR−
0

and prox[a,b].

right-unbounded) one-dimensional intervals can be calculated component-by-component
using (2.15). This means, for a multidimensional interval given by

[a, b] = {x ∈ Rn | ai ≤ xi ≤ bi} (2.16)

the corresponding proximal point function can be evaluated as

prox[a,b](x) =


...

prox[ai,bi]
(xi)

...

 . (2.17)

The n-dimensional closed Euclidean ball with radius r can be described as

Sr = {x ∈ Rn | ‖x‖ ≤ r} (2.18)

where ‖·‖ denotes the Euclidean norm. In the two-dimensional case the set Sr is a circular
disc. The proximal point function for the set Sr is given by

proxSr(x) =

x, ‖x‖ ≤ r
r

‖x‖x, ‖x‖ > r
. (2.19)

All the proximal point functions listed in this section are formulated in explicit form
yielding an efficient numerical implementation. This is important for the iterative methods
presented in Section 2.5.

2.4 Transformation of Normal Cone Inclusions

In this section, the transformation of normal cone inclusions and proximal point prob-
lems under linear mappings of the underlying convex sets are discussed. For a convex
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set C ⊆ Rn and a nonsingular linear mapping A ∈ Rn×n, det(A) 6= 0 the transformed
set A C consists of all the vectors Ax with x ∈ C. The inverse mapped set

A−1C = {y |Ay ∈ C} (2.20)

contains all the vectors which are mapped by A to the set C. The relationship between
the normal cone to the set C and the normal cone to the set A−1C is given by

NC(x) = A−TNA−1C(A
−1x), (2.21)

for all x ∈ C. Of course, (2.21) can be written in the simpler form

NC(x) = ATNAC(Ax), (2.22)

but (2.21) is used in the following to keep all relations in this section between the set C and
the inverse mapped set A−1C. The relationship (2.21) can be obtained by injecting the
identity matrix I = AA−1 into the definition of the normal cone (2.4) and manipulating
the expression such that one part transforms the argument and the set of the normal
cone, and the other transforms the normal cone

NC(x) = {y | yT(x∗ − x) ≤ 0, ∀x∗ ∈ C}
= {y | yTA︸︷︷︸

=: zT

A−1(x∗ − x) ≤ 0, ∀x∗ ∈ C}

= {A−Tz | zT(A−1x∗ −A−1x) ≤ 0, ∀A−1x∗ ∈ A−1C}
= A−T{z | zT(x◦ −A−1x) ≤ 0, ∀x◦ ∈ A−1C}
= A−T NA−1C(A

−1x).

(2.23)

The proximal point function to the convex set C in a norm ‖ · ‖R can be expressed with
the proximal point function to the set A−1C in the norm ‖ · ‖ATRA

proxRC (x) = A proxA
TRA

A−1C (A−1x). (2.24)

This equation can be verified using the definition of the proximal point function (2.8)

proxRC (x) = argmin
x∗ ∈ C

‖x− x∗‖R

= {x∗ | ‖x− x∗‖R ≤ ‖x− y‖R, ∀y ∈ C, x∗ ∈ C}
= {Ax◦ | ‖x−Ax◦‖R ≤ ‖x−Az‖R, ∀Az ∈ C, Ax◦ ∈ C}
= A {x◦ | ‖x−Ax◦‖R ≤ ‖x−Az‖R, ∀z ∈ A−1C, x◦ ∈ A−1C}
= A argmin

x◦ ∈A−1C
‖x−Ax◦‖R

= A argmin
x◦ ∈A−1C

‖A(A−1x− x◦)‖R

= A argmin
x◦ ∈A−1C

‖A−1x− x◦‖ATRA

= A proxA
TRA

A−1C (A−1x).

(2.25)
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Figure 2.7: Transformation of the proximal point function.

Note that starting with a proximal point function using the Euclidean norm and apply-
ing the transformation (2.24) yields a proximal point function which uses no longer the
Euclidean norm. This is illustrated for the example of an elliptical set in Figure 2.7. A
normal cone inclusion y ∈ NC(x) can be transformed into a normal cone inclusion on the
inverse mapped set A−1C using (2.21),

y ∈ NC(x) ⇔ ATy ∈ NA−1C(A
−1x). (2.26)

This can be used for example to transform a normal cone inclusion on an elliptical set to
a normal cone inclusion on a circular set as illustrated in Figure 2.8.

Figure 2.8: Transformation of the normal cone inclusion.

Now, instead of directly rewriting the normal cone inclusion on C as a proximal point
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equation (cf. Section 2.2),

y ∈ NC(x) ⇔ x = proxRC (x+R−1y), (2.27)

the normal cone inclusion using the inverse mapped setA−1C can be rewritten. To achieve
this, the right hand side of (2.26) is transformed into a proximal point equation by using
the equivalence (2.27) which yields

ATy ∈ NA−1C(A
−1x) ⇔ A−1x = proxR̂A−1C(A

−1x+ R̂
−1
ATy). (2.28)

Here again the matrix R̂ can be chosen freely as long as it is symmetric and positive
definite. If the right hand side of (2.27) is transformed to the inverse mapped set A−1C
by using (2.24), one obtains the equation

x = A proxA
TRA

A−1C (A−1x+A−1R−1y). (2.29)

With the special choice
R = A−TR̂ A−1, (2.30)

equation (2.29) yields exactly the right hand side of (2.28). This means that we can
transform the original normal cone inclusion y ∈ NC(x) either to a normal cone inclusion
on the inverse mapped setA−1C and then rewrite it as proximal point equation, or rewrite
it directly into an equation and transform then the obtained proximal point problem to
the set A−1C. This can be illustrated as:

y ∈ NC(x) ⇔ ATy ∈ NA−1C(A
−1x)

m m
x = proxRC (x+R−1y) ⇔ A−1x = proxR̂A−1C(A

−1x+ R̂
−1
ATy).

(2.31)

It has to be noted that the constraint (2.30) on R and R̂ is only required for the identity

proxRC (x+R−1y) = A proxR̂A−1C(A
−1x+ R̂

−1
ATy), (2.32)

where just a general proximal point problem is transformed without exploiting the special
structure of the normal cone inclusion (2.28) or its equivalent in a proximal point equation.
The symmetric and positive definite matrices R and R̂ can be chosen freely in (2.31),
because the structure of the normal cone inclusion is available there. By renaming the
transformed vectors and sets

x = Ax̂, C = AĈ, ŷ = ATy (2.33)

one can recognize that the structure of the problem remains exactly the same for both
the formulations based on C and those based on the inverse mapped set A−1C.

y ∈ NC(x) ⇔ ŷ ∈ NĈ(x̂)

m m
x = proxRC (x+R−1y) ⇔ x̂ = proxR̂Ĉ (x̂+ R̂

−1
ŷ)

(2.34)
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2.5 Solving Normal Cone Inclusions

This section describes the solution of normal cone inclusion problems with iterative meth-
ods. Beside the normal cone inclusion, there are a few other formulations for non-smooth
problems, like the linear complementarity problem for example. And for all the different
formulations there is a large variety of solution methods, mostly specialized for certain
types of problems. An overview on different formulations and methods is given in [3]. The
iterative methods presented in this section are based on the works [6, 47, 48, 55, 78, 80]. In
Section 2.5.1 the projected Jacobi iteration for the solution of normal cone inclusion prob-
lems with linear equations is described. In Section 2.5.2 the transformation of proximal
point iteration problems as presented by the author in [59] is described. This transforma-
tion is useful for the solution of normal cone inclusion problems using multidimensional
convex sets with a complex shape that can be simplified through a linear transformation.
In Section 2.5.3 a modification of the projected Jacobi iteration is presented, which allows
to recover the performance of the original Jacobi iteration for problems based on multi-
dimensional convex sets. With a small modification to the projected Jacobi iteration one
gets the projected Gauss-Seidel iteration [78, 79], which can be used as well for solving
normal cone inclusions with linear equations. The projected Gauss-Seidel iteration is de-
scribed in Section 2.5.4. For normal cone inclusion problems with nonlinear equations,
an iteration scheme based on Newton’s method is proposed.

2.5.1 Projected Jacobi Iteration

In this section we consider a system of normal cone inclusions and linear equations of the
form

ξi ∈ NCi(−λi), ξi =
∑
j ∈ I

Gijλj + ci, i ∈ I (2.35)

which is to be solved for the unknown vectors ξi ∈ Rni and λi ∈ Rni with i ∈ I. For
each index in the set I there is one normal cone inclusion on the convex set Ci ⊆ Rni

and ni linear equations. The matrices Gij ∈ Rni×nj and the vectors ci ∈ Rni are constant.
In this section, the matrix G obtained by assembling all Gij into one matrix is assumed
to be symmetric and positive definite. Note that normal cone inclusions obtained from
mechanical applications often have a matrix G that is only positive semidefinite, but this
is not considered in this section. In order to solve the problem (2.35), the normal cone
inclusions are rewritten as proximal point equations by applying (2.12). This yields

−λi = proxCi(−λi + riξi), ξi =
∑
j ∈ I

Gijλj + ci, i ∈ I (2.36)

where the matrix Ri has been chosen as 1
ri
I to keep the proximal point function proxCi

in the Euclidean norm. All the factors ri can be chosen independently in R+. After
eliminating ξi, one obtains the system of nonlinear equations

−λi = proxCi(−λi + ri
∑
j ∈ I

Gijλj + ri ci), i ∈ I. (2.37)
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which has to be solved for the vectors λi. Once a solution for λi is found, the ξi can
be calculated directly from the linear equations in (2.35). The system of nonlinear equa-
tions (2.37) can be transformed into the iterative scheme

λν+1
i = −proxCi(−λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci), i ∈ I (2.38)

where the iteration step is denoted by ν. Whether this iterative scheme converges to a
fixed point depends on Ci,Gij, ci and on the factors ri. To get convergence for given Ci,Gij

and ci, a good choice of the factors ri has to be made. Considering the special case Ci = R
the iterative scheme (2.38) reduces to

λν+1
i = λνi − ri

(∑
j ∈ I

Gijλ
ν
j + ci

)
, i ∈ I (2.39)

because proxR is the scalar identity function. The fixed point of the iteration (2.39) is
given by the system of linear equations∑

j ∈ I
Gijλj + ci = 0, i ∈ I. (2.40)

The relaxed Jacobi iteration for solving this system of linear equations is given by

λν+1
i = λνi −

α

Gii

(∑
j ∈ I

Gijλ
ν
j + ci

)
, i ∈ I (2.41)

where α is the relaxation parameter. Comparing (2.39) with (2.41) shows that both
schemes are identical for ri = α/Gii. As shown in [73], the relaxed Jacobi iteration
converges if the matrix Gij is strictly diagonal dominant and 0 < α ≤ 1. The idea behind
the Jacobi iteration can be seen directly from (2.41): The value

eνi =
∑
j ∈ I

Gijλ
ν
j + ci (2.42)

is the error in the i-th linear equation in iteration ν. If this i-th equation is dominated
by Gii and λi, then the error eνi can be reduced by subtracting eνi /Gii from λνi to get the
new approximation λν+1

i . If the matrix is strictly diagonal dominant, then any correction
on other lines does not increase the error more than it is lowered by adjusting the diagonal
term. Considering the slightly more general case Ci = Rni of the iterative scheme (2.38)
one gets

λν+1
i = λνi − ri

(∑
j ∈ I

Gijλ
ν
j + ci

)
, i ∈ I (2.43)

Obviously the underlying problem to this iteration scheme is still a system of linear equa-
tions, but when comparing with (2.39) we now have only one factor ri for the complete i-th
block of equations. If one considers only the special case Ci = Rni then one could intro-
duce again one ri per equation, but this is not possible in the original problem (2.37) while
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keeping the Euclidean norm for the proxCi functions. To make sure that no equation is
overcorrected by (2.43), the largest diagonal of the matrix Gii has to be used to calculate
the factor ri, i. e.

ri =
α

max
k

(Giikk)
(2.44)

In this equation Giikk denotes the k-th diagonal entry of the matrix Gii. Choosing a
correction factor smaller than the one suggested by the non-relaxed Jacobi iteration should
not remove convergence, although it is expected to be slower. The key for the convergence
of an iterative scheme is the contractivity of the iteration function (cf. Banach’s fixed
point theorem). When comparing (2.43) with (2.38), the only difference in the iteration
function is the subsequent projection in (2.38). Since the proximal point function is
non-expansive, the contractivity is not destroyed. This means that the iterative scheme

λν+1
i = −proxCi(−λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci), ri =

α

max
k

(Giikk)
, i ∈ I (2.45)

is expected to converge if there is convergence for the associated Jacobi iteration. For a
convergence proof and further background the reader is referred to [78, 55]. In [78, 55] also
alternative motivations for the projected Jacobi iteration and the choice of the factors ri
can be found. Of course, if the iteration (2.45) converges, then one gets a solution to
the problem (2.37), which again is equivalent to the original problem (2.35). In practice,
relaxation parameters in the range 0 < α ≤ 2 have shown to be useful. Also the convex
sets Ci have been assumed constant in this section, weak dependencies of Ci on λ, for
example caused by a Coulomb friction problem, still yield convergent iterations mostly.
To check if convergence has been reached in an implementation of the iteration scheme,
one can use for example the stopping criterion

‖λν+1
i − λνi ‖ ≤ εri ‖λν+1

i ‖+ εai, i ∈ I (2.46)

where εri is a relative tolerance and εai is an absolute tolerance. Note that the relative
tolerance εri is dimensionless, while the absolute tolerance εai has to be chosen with the
same dimensions as the corresponding λi.
In this section only proximal point functions based on the Euclidean norm have been
considered. While using arbitrary norms for the proximal point functions in (2.37) is
possible and can lead to equations which are explicit in λi, the evaluation of proximal
point functions with respect to arbitrary norms is itself a non-trivial problem [78].

2.5.2 Transformation of Proximal Point Iterations

In Section 2.5.1, the projected Jacobi iteration (2.45) for the solution of the normal
cone inclusion problem (2.35) has been described. For each step in the projected Jacobi
iteration scheme, the proximal point functions proxCi have to be evaluated. In general,
calculating the nearest point in a set involves the solution of a minimization problem
or an implicit function. This is not very efficient and it has to be done for every step
of the fixed point iteration. The first idea is to transform the proximal point functions
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in the equations (2.45) from the sets Ci to simpler sets A−1
i Ci with respect to proximal

points. For example, if the set Ci is an ellipse, then the matrix Ai can be chosen such
that A−1

i Ci is a circular disc. The Euclidean proximal point function for a circular disc
can be implemented very efficiently (see Section 2.3). Unfortunately, the transformation
of the proximal point function in 2.5.1 with the help of (2.24) yields the iteration

λν+1
i = −Ai prox

AT
i Ai

A−1
i Ci

(−A−1
i λ

ν
i + ri A

−1
i

∑
j ∈ I

Gijλ
ν
j + ri A

−1
i ci) (2.47)

which contains a proximal point function to the simplified set A−1
i Ci but in the ‖ · ‖AT

i Ai

norm. Evaluating the proximal point function to the set A−1
i Ci in the norm ‖ · ‖AT

i Ai
is

not more efficient than evaluating the original proximal point function to the set Ci in
the Euclidean norm. The problem here is, that we try to transform a general proximal
point problem without using the fact that it originates from a normal cone inclusion.
The special structure of the problem can be exploited by applying the transformation
directly to the normal cone inclusion and then reformulating the transformed inclusion as
a proximal point equation as outlined in Section 2.4. This means that relationship (2.31)
is applied to the inclusion (2.35), yielding

ξi ∈ NCi(−λi) ⇔ −A−1
i λi = proxR̂i

A−1
i Ci

(−A−1
i λi + R̂

−1

i A
T
i ξi). (2.48)

After choosing R̂i as 1
r̂i
I one obtains the equation

−λi = Ai proxA−1
i Ci(−A

−1
i λi + r̂i A

T
i

∑
j

Gijλj + r̂i A
T
i ci) (2.49)

which now uses an Euclidean proximal point function to the inverse mapped set A−1
i Ci.

Before iterating this equation for a fixed point it is useful to introduce the definitions

ξ̂i := AT
i ξi, λ̂i := A−1

i λi, Ĝij := AT
i GijAj ĉi := AT

i ci, (2.50)

simplifying equation (2.49) to

−λ̂i = proxA−1
i Ci(−λ̂i + r̂i

∑
j

Ĝijλ̂j + r̂i ĉi) (2.51)

which has again the same structure as equation (2.37). The projected Jacobi iteration
scheme then becomes

λ̂
ν+1

i = −proxA−1
i Ci(−λ̂

ν

i + r̂i
∑
j

Ĝijλ̂
ν

j + r̂i ĉi), r̂i =
α

max
k

(Ĝiikk)
, i ∈ I (2.52)

where Ĝiikk denotes the k-th diagonal element of the matrix Ĝii. After a solution for λ̂i
has been found, the solution for the original unknown λi can be calculated as

λi = Aiλ̂i. (2.53)

Note that the iteration (2.52) together with (2.53) yields the same solution as the non-
transformed projected Jacobi iteration (2.45), but only after the iteration has converged.
In general, the ν-th iteration λνi obtained with (2.52) and (2.53) is different from the one
obtained with (2.45).
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2.5.3 Recovering the Jacobi Iteration

The projected Jacobi iteration for the solution of a normal cone inclusion has the form

λν+1
i = −proxCi(−λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci), ri =

α

max
k

(Giikk)
, i ∈ I (2.54)

as described in Section 2.5.1. For every multidimensional convex set Ci there is only one
factor ri, while in the corresponding Jacobi iteration for systems of linear equations one
has an individual factor ri for each equation. This reduced number of correction scaling
factors ri can lead to very slow convergence of the iteration in certain situations, when
compared with the Jacobi iteration. To show this we assume that the argument of the
proximal point function in (2.54) is in the set Ci, i. e.

−λνi + ri
∑
j ∈ I

Gijλ
ν
j + ri ci ∈ Ci. (2.55)

This will happen always after some point in the iteration if the actual solution is in the
inner of Ci. In this case the iteration (2.54) becomes

λν+1
i = λνi −

α

max
k

(Giikk)

(∑
j ∈ I

Gijλ
ν
j + ci

)
, i ∈ I. (2.56)

In cases where the diagonal elements of the matrix Gii are of different order of magnitude
the convergence of the iteration can be slow compared to the original Jacobi iteration.
Lets assume the system consists only of one two-dimensional inclusion with the following
values

Gii =

(
104 0
0 1

)
, ci =

(
1
1

)
, α = 1. (2.57)

The iteration (2.56) requires more than 105 steps for a solution with a relative accuracy
of 10−9 starting from zero. The corresponding Jacobi iteration is given by

λν+1
i = λνi − αD−1

ii

(∑
j ∈ I

Gijλ
ν
j + ci

)
, Dii = diag(Gii) i ∈ I, (2.58)

where Dii is the diagonal part of the matrix Gii. For the example (2.57), the Jacobi
iteration (2.58) needs just one step for the same accuracy starting from zero. To address
this slow convergence problem of the projected Jacobi iteration we go back to the proximal
point equations

−λi = proxCi(−λi + ri
∑
j ∈ I

Gijλj + ri ci), i ∈ I (2.59)

as given in (2.37). Bringing −λi in (2.59) from the left to the right, premultiplying
everything from the left with the negative of a regular matrix Qi ∈ Rni and adding λi to
both sides yields the equations

λi = λi −Qi

(
proxCi(−λi + ri

∑
j ∈ I

Gijλj + ri ci) + λi

)
, i ∈ I (2.60)
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which have exactly the same solution as (2.59). From (2.60) one can construct the iterative
scheme

λν+1
i = λνi −Q ν

i

(
proxCi(−λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci) + λνi

)
, i ∈ I (2.61)

which is identical with the projected Jacobi iteration (2.54) for Q ν
i = I. If we choose

Q ν
i =

α

ri
diag−1(Gii) (2.62)

then (2.61) reduces to the original Jacobi iteration (2.58) for cases where the proximal
point function is non-projecting. This idea can be combined into the complete iteration
scheme

λν+1
i = λνi −Q ν

i

(
proxCi(−λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci) + λνi

)

Q ν
i =


α

ri
diag−1(Gii), −λνi + ri

∑
j ∈ I

Gijλ
ν
j + ri ci ∈ Ci

I, else

ri =
α

max
k

(Giikk)
,

(2.63)

which recovers the performance of the original Jacobi iteration in the non-projecting case
while keeping the properties of the projected Jacobi iteration in projecting situations. And
of course, this iteration scheme has the same fixed point as (2.54) since the matrix Qi

is always regular. The implementation of this scheme is almost as simple as the original
projected Jacobi iteration. From evaluating the proximal point function one knows al-
ready, whether the argument is in the convex set or not. If it is outside the convex set,
then the iteration step can be finished like the Jacobi iteration. Otherwise the matrix Qi

as given by (2.62) has to be applied before finishing the iteration step.
An alternative to the method presented in this section is applying a linear transformation
to the proximal point iteration as discussed in Section 2.5.2. With the right transformation
one can get a resulting matrixGii where all the diagonal elements are equal and one single
factor ri is optimal for all components. This method has been suggest in [78]. A drawback
of the transformation approach is, that also the convex sets Ci get transformed, which can
result in more complex proximal point functions. Obviously, transforming the proximal
point iteration in order to get equal diagonal entries in Gii is not an orthogonal method
to transforming the iteration with the goal of simplifying the proximal point functions.
A second alternative to the recovering method (2.63) is to use dynamic factors ri. The
iteration is started with a value of ri based on the largest Giikk in a multidimensional
proximal point equation. Once the error in the equation associated with the largest Giikk

is small enough, the factor ri could be increased to accelerate the reduction of the error
in the next equation. Unfortunately this approach would need a very good strategy for
the dynamic adaption of the factors ri, in order to avoid running into an overall unstable
iteration.
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2.5.4 Projected Gauss-Seidel Iteration

The Gauss-Seidel method for solving systems of linear equations consists of modified
Jacobi iterations, where the updates for each equation are done sequentially and every
update uses the most up-to-date values available. This means, if the Jacobi iteration is
given by

λν+1
i = λνi −

α

Gii

( n∑
j= 1

Gijλ
ν
j + ci

)
(2.64)

then the corresponding Gauss-Seidel iteration has the form

λν+1
i = λνi −

α

Gii

( i−1∑
j= 1

Gijλ
ν+1
j +

n∑
j= i

Gijλ
ν
j + ci

)
. (2.65)

As can be seen from (2.65), the calculation of the component λν+1
i uses all the values λν+1

j

with j < i, while the Jacobi iteration relies only on the values from the last iteration.
Applying this concept to the proximal point equations

−λi = proxCi(−λi + ri
∑
j ∈ I

Gijλj + ri ci), i ∈ I (2.66)

from Section 2.5.1 yields the projected Gauss-Seidel iteration

λν+1
i = −proxCi(−λνi + ri

∑
j < i

Gijλ
ν+1
j + ri

∑
j≥ i

Gijλ
ν
j + ri ci), i ∈ I. (2.67)

For the factors ri the same values

ri =
α

max
k

(Giikk)
(2.68)

as for the projected Jacobi iteration can be used. Of course a converged solution of the
projected Gauss-Seidel iteration still solves the proximal point equations (2.66), which
themselves are equivalent to the original normal cone inclusion problem (2.35). The convex
set transformation described in Section 2.5.2 and the performance recovering strategy
described in Section 2.5.3 can be applied as well to the projected Gauss-Seidel iteration.
The Gauss-Seidel iteration for linear equations converges on a wider class of matrices.
The same is to be expected for the projected Gauss-Seidel iteration. Also experience
shows, that the projected Gauss-Seidel iteration usually requires less iteration steps than
the projected Jacobi iteration.

2.5.5 Projected Newton Iteration

In Section 2.5.1, the solution of normal cone inclusions coupled with linear equations have
been discussed. While solving inclusion problems with linear equations can be difficult
already, sometimes one is required to solve inclusions coupled with nonlinear equations. In
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this section one iterative scheme which can be useful for the solution of systems of normal
cone inclusions and nonlinear equations is described. The iterative scheme is based on
proximal point iteration and Newton’s method. We consider a problem of the form

gi(x) ∈ NCi(−λi), f(x,λ) = 0, i ∈ I (2.69)

which is to be solved for the unknown vectors x ∈ Rm and λi ∈ Rni with i ∈ I. The
vector λ is the assembled version of all vectors λi. For each index in the set I there is one
normal cone inclusion on the convex set Ci ⊆ Rni . The nonlinear equations are given by
the function f : Rm+

∑
ni → Rm. The function f is assumed to be differentiable at least

once and to have a nonsingular partial derivative with respect to x. As a first step, the
normal cone inclusion in (2.69) is reformulated as proximal point equation using (2.12).
This yields

λi = −proxCi (−λi + ri gi(x)) , f(x,λ) = 0, i ∈ I. (2.70)

For a given approximation λν , a better approximation for the vector xν can be found
using Newton’s method

xν+1 = xν −
(
∂f

∂x

)−1

f(xν ,λν). (2.71)

A detailed discussion of Newton’s method can be found in [40]. Coupling the Newton
iteration (2.71) with a proximal point iteration yields the projected Newton iterationx

ν+1 = xν −
(
∂f

∂x

)−1

f(xν ,λν)

λν+1 = −proxCi
(
−λνi + ri gi(x

ν+1)
). (2.72)

For the factor ri used in the proximal point iteration, the values

ri =
α

max
k

[
∂gi
∂x

(
∂f

∂x

)−1
∂f

∂λi

]
kk

(2.73)

obtained by similar arguments as for the projected Jacobi iteration can be used. Of
course, a converged result of (2.72) is also a solution of the original problem (2.69). In
contrast to the original Newton method, the convergence is not expected to be quadratic
due to the coupling with a proximal point iteration. Therefore it can be a good idea to
evaluate the inverse of the Jacobian ∂f/∂x as well as the factors ri only once using the
initial values of the iteration, or to use only approximations for the partial derivatives to
reduce the numerical costs per iteration. Note that in case of the linear functions

fi(x,λ) = xi −
∑
j ∈ I

Gijλj − ci, gi(x) = xi, i ∈ I (2.74)

the projected Newton iteration reduces exactly to the projected Jacobi iteration. The
Newton method has only local convergence, that means in general one gets a convergent
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iteration only when starting close enough to the solution. Giving any useful conver-
gence results for the projected Newton iteration is very difficult at best. Nevertheless,
for problems close enough to the linear problem discussed in Section 2.5.1 one would
expect properties similar to the projected Jacobi iteration. In the projected Newton iter-
ation (2.72), the Newton method is applied only to the differentiable nonlinear equations
and not to the proximal point equations. This approach has been chosen, because ap-
plying the Newton method to all equations does not yield a good iteration method in
general (see also [55]).



Chapter3
Equations of Motion

In this chapter, the building blocks for the formulation of the equations of motion of a
non-smooth mechanical system are described. Section 3.1 gives a short summary on the
principle of virtual work and the principle of virtual power. The principle of virtual work
is then used in Section 3.2 to formulated the equations of motion for a finite-dimensional
mechanical model in terms of generalized coordinates. The result are equations close
to Lagrange’s equations of the second kind, but formulated as variational equations and
with an additional force term. For rigid body systems, also an approach based on the
projected Newton-Euler equations could be used for formulating the equations of motion
in generalized coordinates, but this is not described here. In Section 3.3, the principle
of virtual power is used to replace the derivative of the generalized coordinates with a
generalized velocity, while optionally adding additional bilateral kinematic constraints
to the model. In Section 3.4, the partial derivatives of the kinetic energy occurring in
the equations of motion are further evaluated under the assumption of a mass matrix
depending only on the generalized coordinates. With the additional assumption of a
constant mass matrix with respect to generalized velocities, the inertial terms in the
equations of motion are further simplified in Section 3.5. The simplifications made in
Section 3.4 and Section 3.5 are in preparation for the construction of energy consistent
integrators in Chapter 5. Up to Section 3.6 only the inertial forces and forces from
generalized bilateral constraints on displacement and velocity level are considered in detail.
All other additional forces are kept in the form of a remaining generalized force. In order
to specify any additional forces, different abstract classes of generalized force laws are
discussed in Section 3.6. In Section 3.7, a few examples of set-valued force laws of normal
cone type are summarized. These set-valued force laws can be used for example to model
unilateral contacts or Coulomb friction. The process of equipping the set-valued force
laws with an impact law is summarized in Section 3.8. The contribution of different force
laws to the total energy balance of a mechanical system is discussed in Section 3.9.

27
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3.1 Principles of Virtual Work and Virtual Power

In this section, a short summary of the principle of virtual work and the principle of virtual
power is given. For more background on the subject the reader is referred to [69, 25, 15, 34].
The virtual work of an infinite-dimensional mechanical system is classically given by

δW :=

∫
S
δxT(ẍ dm− dF ), (3.1)

where dm is the mass distribution and x ∈ R3 describes the displacement at each point
of the system S as depicted in Figure 3.1. The force distribution acting on the system is
described by dF ∈ R3.

Figure 3.1: Mechanical System S.

The virtual displacement δx of each point is given by

δx(t) :=
∂x̂

∂ε
(t, ε0) δε (3.2)

where x̂(t, ε) denotes a family of varied displacements parametrized by ε. The actual
curve is obtained for ε = ε0, i.e.

x(t) = x̂(t, ε0). (3.3)

Note that the variation in (3.2) is done at fixed time. The equations of motion of the
mechanical system S can be described with the principle of virtual work

δW = 0, ∀ δx, (3.4)

which states that the virtual work δW has to vanish for all virtual displacements δx at
all times. The symbol δP is introduced for the time derivative of the virtual work,

δP :=
d

dt
(δW ) =

∫
S
δẋT(ẍ dm− dF ) + δxT d

dt
(ẍ dm− dF ). (3.5)

The equivalent of the equations of motion (3.4) can be formulated by setting δP = 0 for
all δẋ with vanishing virtual displacements δx, i. e.

δP = 0, ∀ δẋ | δx = 0. (3.6)
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One might conclude incorrectly that from δx = 0 also δẋ = 0 has to follow. But all
the variations are done at a fixed time, so for each time a different family of varied
displacements can be chosen where δx = 0 and δẋ 6= 0. To simplify (3.6), classically the
virtual velocity δẋ is defined as

δẋ := δẋ |δx=0. (3.7)

The virtual velocity δẋ considers only variations of ẋ where the virtual displacements δx
are still zero. Accordingly the virtual power δP of a mechanical system is defined as

δP := δP |δx=0 =

∫
S
δẋT(ẍ dm− dF ). (3.8)

The classical principle of virtual power then reads

δP = 0, ∀ δẋ, (3.9)

which is equivalent to the principle of virtual work (3.4).

3.2 Generalized Coordinates

In this section, the equations of motion of a finite-dimensional mechanical model are
derived in terms of generalized coordinates. The finite-dimensional model is obtained by
imposing perfect bilateral constraints on the infinite-dimensional model of the continuum.
The equations of motion of the continuum are given by the principle of virtual work as
discussed in Section 3.1:

δW =

∫
S
δxT(ẍ dm− dF ) = 0, ∀ δx. (3.10)

The force distribution dF is composed of the constraint forces dFz and some remaining
forces dFq, i.e.

dF = dFz + dFq. (3.11)

All perfect bilateral geometric constraints acting on a mechanical system may implicitly
be taken into account by a minimal parametrization of the f surviving degrees of freedom
via generalized coordinates q ∈ Rf . If the constraints are bilateral and perfect, they fulfill
by definition the principle of d’Alembert-Lagrange which reads

x = ξ(%, q, t),

∫
S
δxTdFz = 0, δx =

∂ξ

∂q
δq, ∀ δq. (3.12)

The vector % ∈ R3 is used to address each point of the system by its position in a reference
configuration. The function ξ returns the actual position of a point addressed by % when
the system is displaced according to the generalized coordinates q at time t. The principle
of d’Alembert-Lagrange is the force law of the perfect bilateral constraints that restrict
the motion to the remaining degrees of freedom taken into account by q. It states that the
virtual work of the constraint forces has to vanish for any virtual displacements compatible
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with the constraint. If the variation δx is restricted to variations induced by δq, then the
constraint forces dFz disappear in (3.10) and one gets the variational equations of motion

δqT
∫
S

(
∂ξ

∂q

)T
ξ̈ dm− δqT

∫
S

(
∂ξ

∂q

)T
dFq︸ ︷︷ ︸

=: fq

= 0, ∀ δq (3.13)

for the system in terms of the coordinates q. Classically, the acceleration terms in (3.13)
are reformulated as a difference(

∂ξ

∂q

)T
ξ̈ =

d

dt

[(
∂ξ

∂q

)T
ξ̇

]
− d

dt

(
∂ξ

∂q

)T
ξ̇ (3.14)

by using Leibniz’s law. The partial derivatives of ξ in (3.14) can be expressed as partial
derivative of the absolute velocity,

∂ξ

∂q
=
∂ξ̇

∂q̇
,

d

dt

(
∂ξ

∂q

)
=
∂ξ̇

∂q
, (3.15)

where the absolute velocity function ξ̇ is given by

ξ̇(%, q̇, q, t) :=
∂ξ

∂q
q̇ +

∂ξ

∂t
. (3.16)

The left equation in (3.15) follows directly from (3.16). The right equation in (3.15) can
be verified by using index notation,[ d

dt

(
∂ξ

∂q

)]
i

=
d

dt

(
∂ξ

∂qi

)
=

∂2ξ

∂qi∂qj
q̇j +

∂2ξ

∂qi∂t

=
∂

∂qi

(
∂ξ

∂qj
q̇j +

∂ξ

∂t

)
=
∂ξ̇

∂qi
=
[ ∂ξ̇
∂q

]
i
.

(3.17)

Combining (3.13), (3.14) and (3.15) yields the variational equations of motion

δqT
d

dt

∫
S

(
∂ξ̇

∂q̇

)T
ξ̇dm− δqT

∫
S

(
∂ξ̇

∂q

)T
ξ̇dm− δqTfq = 0, ∀ δq (3.18)

in terms of the absolute velocity ξ̇ and its derivatives. Instead of using the absolute
velocity ξ̇ one can introduce the kinetic energy

T (q̇, q, t) :=
1

2

∫
S
ξ̇
T
ξ̇dm, (3.19)
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and replace the partial derivatives in (3.18) by partial derivatives of the kinetic energy,

δqT
d

dt

(
∂T

∂q̇

)T
− δqT

(
∂T

∂q

)T
− δqTfq = 0, ∀ δq. (3.20)

This variational equation of motion describes the dynamics of a mechanical system with
kinematics ξ(%, q, t) enforced by perfect bilateral constraints of d’Alembert-Lagrange
type. The variational equations (3.13) and (3.18) describe exactly the same dynamics
as equation (3.20) but in terms of the function ξ and its derivatives. Equation (3.20) is
very close to Lagrange’s equations of the second kind, except that it is formulated as a
variational equation and it still contains a general force term fq, in which any additional
forces can be considered.

3.3 Generalized Velocities

In Section 3.2, the equations of motion have been formulated in terms of the generalized
coordinates and its derivatives. In this section the classical transition to a formulation
making use of a dedicated set of generalized velocities u instead of the derivative q̇ is
described. As the introduction of additional perfect bilateral kinematic constraints during
this transition is very natural, this more general case will be considered.
The equation of motion (3.20) can be written in the form

δqTM̂ (q, t)q̈ − δqTgq(q, q̇, t)− δqTfq = 0, ∀ δq, (3.21)

after evaluating the partial derivatives of the kinetic energy and grouping the resulting
terms into the mass matrix M̂ (q, t) ∈ Rf×f and the vector gq(q, q̇, t) ∈ Rf . Taking the
time derivative of (3.21) and introducing the generalized virtual velocity

δq̇ := δq̇ |δq=0 (3.22)

yields the equations of motion in the form of the principle of virtual power

δq̇TM̂ (q, t)q̈ − δq̇Tgq(q, q̇, t)− δq̇Tfq = 0, ∀ δq̇ (3.23)

as described in Section 3.1. As next step one defines the bilateral kinematic constraint

q̇ = F (q, t)u+ β(q, t) (3.24)

with a matrix F ∈ Rf×k and a vector β ∈ Rf . The kinematic constraint (3.24) reduces
the degrees of freedom on velocity level to the k degrees of freedom described by the
generalized velocities u ∈ Rk. For the corresponding constraint forces the generalized
force fk is introduced

fq = fk + fr (3.25)

where the vector of remaining forces fr is kept for any additional forces one might like
to consider in a later step. The force law for the perfect bilateral kinematic constraint is
given by the principle of Jourdain∫

S
δẋTdFk = 0, ∀ δẋ admissible, (3.26)
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which states that the virtual power of the constraint forces has to vanish for any admissible
virtual velocities. In generalized terms the principle of Jourdain reads

δq̇Tfk = 0, ∀ δq̇ admissible. (3.27)

The admissible generalized virtual velocities are obtained by evaluating (3.22) with (3.24),
i.e.

δq̇ = δq̇ |δq=0

= (δF (q, t)u+ F (q, t)δu+ δβ(q, t)) |δq=0

=

(
∂F

∂qi
(q, t)δqi u+ F (q, t)δu+

∂β

∂q
δq

)∣∣∣
δq=0

= F (q, t)δu.

(3.28)

The complete kinematic constraint is now given by the constraint equation (3.24) and the
force law

δq̇Tfk = 0, δq̇ = F (q, t)δu, ∀ δu. (3.29)

Reducing the variation in (3.23) to those induced by δu and replacing all occurrences of q̇
with u yields the equation of motion

δuT F TM̂F︸ ︷︷ ︸
=: M (q, t)

u̇− δuT F T
(
gq(q,Fu+ β, t)− M̂Ḟu− M̂β̇

)
︸ ︷︷ ︸

=: gu(q,u, t)

−δuT F Tfr︸ ︷︷ ︸
=: fu

= 0, ∀ δu

(3.30)
for the system with kinematic constraints. Note that the constraint forces disappeared
thanks to the principle of Jourdain. Regrouping all classical forces from fu and the
gyroscopic accelerations gu into a function h while keeping all other forces in fλ one gets
the equations of motion in the form

M (q, t)u̇− h(q,u, t)− fλ = 0, q̇ = F (q, t)u+ β(q, t). (3.31)

Of course this formulation also includes the trivial case F = I, β = 0 or the simple
mapping with a quadratic and regular matrix F , where no kinematic constraints are
involved.

3.4 Coordinate Dependent Mass Matrix

The equations of motion of a mechanical system can be formulated in generalized coordi-
nates using Lagrange’s equations of the second kind with an additional generalized force
term fq as described in Section 3.1, i. e.

δqT
d

dt

(
∂T

∂q̇

)T
− δqT

(
∂T

∂q

)T
− δqTfq = 0 ∀ δq. (3.32)

To further evaluate the partial derivatives of the kinetic energy we assume in this section,
that the kinetic energy is a quadratic form in q̇ with a symmetric and positive definite
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mass matrix M (q) ∈ Rf×f depending only on the generalized coordinates. So the kinetic
energy function in this section is given by

T (q̇, q) :=
1

2
q̇TM (q)q̇. (3.33)

The partial derivative (
∂T

∂q̇

)T
= M (q)q̇ (3.34)

can be obtained directly from the quadratic form of the kinetic energy. Inserting (3.34)
into (3.32) and evaluating the time derivative yields

δqT
(
M (q)q̈ + Ṁ (q)q̇ −

(
∂T

∂q

)T
− fq

)
= 0, ∀ δq. (3.35)

The velocity dependent inertial forces can be split into a vector of gyroscopic forces and a
remaining term expressed as partial derivative of the kinetic energy. Using index notation
one gets [

Ṁ (q)q̇ −
(
∂T

∂q

)T]
k

=

=
∂Mki

∂qj
q̇j q̇i −

1

2

∂Mji

∂qk
q̇j q̇i

=

(
∂Mki

∂qj
− ∂Mji

∂qk

)
q̇i︸ ︷︷ ︸

=: Gkj(q̇, q)

q̇j +
1

2

∂Mji

∂qk
q̇j q̇i

=
[
G(q̇, q)q̇ +

(
∂T

∂q

)T]
k
.

(3.36)

The gyroscopic forces are expressed with the help of the gyro matrix G(q̇, q) ∈ Rf×f .
The gyro matrix is skew symmetric,

G(q̇, q) = −GT(q̇, q), (3.37)

as can be seen directly from its definition. This property will be important for the
construction of an energy consistent integration scheme in Section 5.2.3. Inserting (3.36)
into (3.35) finally yields the variational equation of motion

δqT
(
M(q)q̈ +G(q̇, q)q̇ +

(
∂T

∂q

)T
− fq

)
= 0, ∀ δq (3.38)

for the case of a quadratic kinetic energy with a coordinate dependent mass matrix. After
evaluating the variation in (3.38) one gets

M (q)q̈ +G(q̇, q)q̇ +

(
∂T

∂q

)T
− fq = 0 (3.39)

as equation of motion.
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3.5 Decomposed Mass Matrix

Under the assumptions made in Section 3.4 the resulting equations of motion still contain
a partial derivative of the kinetic energy. In this section, in order to get an equation of
motion without this partial derivative, a decomposition of the kinetic energy of the form

T (q̇, q) :=
1

2
q̇TQT(q)MQ(q)q̇ (3.40)

is used. This means, the kinetic energy is not only assumed to be a quadratic form
in q̇ with a symmetric and positive definite mass matrix, but also that a decomposition
matrix Q(q) ∈ Rf×f is given in analytical form. The matrix Q(q) is assumed to be
regular while M ∈ Rf×f is constant, symmetric and positive definite. The matrix M is
the mass matrix with respect to the generalized velocities u ∈ Rf defined as

u := Q(q)q̇. (3.41)

This becomes obvious if the kinetic energy is expressed in terms of the generalized veloc-
ities u, i.e.

T (q̇, q) =
1

2
uTMu. (3.42)

The starting point for the derivation of the equations of motion is again Lagrange’s equa-
tions of the second kind with an additional generalized force term fq (see Section 3.2):

δqT
d

dt

(
∂T

∂q̇

)T
− δqT

(
∂T

∂q

)T
− δqTfq = 0, ∀ δq. (3.43)

Evaluating the partial derivative of the kinetic energy with respect to q̇ yields(
∂T

∂q̇

)T
= QT(q)MQ(q)q̇ = QT(q)Mu, (3.44)

and after applying the time derivative one gets

d

dt

(
∂T

∂q̇

)T
= QT(q)Mu̇+ Q̇T(q)Mu = QT(q)Mu̇+ Q̇T(q)MQ(q)q̇. (3.45)

As a preparation for the next steps, the u in the last term of (3.45) has been replaced
with the expression in q̇ once more. Inserting (3.45) into (3.43) results in the following
variational equation of motion:

δqT
(
Q(q)TMu̇+ Q̇T(q)MQ(q)q̇ −

(
∂T

∂q

)T
− fq) = 0, ∀ δq. (3.46)
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The velocity dependent inertial forces are now further simplified using index notation[
Q̇TMQq̇ −

(
∂T

∂q

)T]
k

=

=
∂Qik

∂qn
q̇nMijQjmq̇m −

1

2
q̇n
∂Qin

∂qk
MijQjmq̇m −

1

2
q̇mQjmMji

∂Qin

∂qk
q̇n

= MijQjmq̇m

(
∂Qik

∂qn
− ∂Qin

∂qk

)
q̇n

= Mijuj

(
∂Qik

∂qn
− ∂Qin

∂qk

)
q̇n

=
[
Mu

]
i

(
∂Qik

∂qn
− ∂Qin

∂qk

)
︸ ︷︷ ︸

=: Hkn(u, q)

q̇n

=
[
H(u, q)q̇

]
k

(3.47)

The result is a gyro matrix H(u, q) ∈ Rf×f times the derivative q̇ of the generalized
coordinates. With the definition of the function

p(u, q) := Q(q)TMu (3.48)

one can as well write the gyro matrix as difference of two partial derivatives

H(u, q) =

(
∂p

∂q

)
−
(
∂p

∂q

)T
. (3.49)

This can be verified by applying index notation

Hkn(u, q) =
∂pk
∂qn
− ∂pn
∂qk

=
∂Qik

∂qn

[
Mu

]
i
− ∂Qin

∂qk

[
Mu

]
i

=
[
Mu

]
i

(
∂Qik

∂qn
− ∂Qin

∂qk

)
.

(3.50)

The gyro matrix is skew symmetric,

H(u, q) = −H(u, q)T, (3.51)

as can be seen from its definition. Note that the gyro matrix H does not directly cor-
respond to the matrix G from Section 3.4, although the two objects are similar. In this
section, some of the velocity dependent inertial forces are considered as part of the accel-
eration term already, while at the same time there is no partial derivative of the kinetic
energy anymore. Inserting (3.47) into (3.46) yields the following variational equations of
motion:

δqT
(
Q(q)TMu̇+H(u, q)q̇ − fq

)
= 0, ∀ δq, −Q(q)q̇ + u = 0. (3.52)
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In this form the equation of motion is formulated based on projections associated with q,
while the acceleration term is formulated using generalized velocities u. This results in
the matrix Q(q)TM in front of the accelerations u̇ which is not symmetric. Taking the
time derivative of (3.52) and setting variations δq equal to zero yields

δq̇T
(
Q(q)TMu̇+H(u, q)q̇ − fq

)
= 0, ∀ δq̇. (3.53)

With the help of the inverse

F (q) := Q−1(q) (3.54)

of the matrix Q one can express the variations δq̇ in terms of variations δu,

δq̇ = F (q)δu. (3.55)

Inserting this into (3.53) and replacing any occurrence of q̇ with F (q)u yields

δuT
(
Mu̇+ F T(q)H(u, q)F (q)u− F T(q)fq

)
= 0, ∀ δu, −q̇ + F (q)u = 0. (3.56)

In this formulation based on projections associated with u only the symmetric mass ma-
trixM is left in front of the accelerations u̇. Note that also the matrix F T(q)H(u, q)F (q)
is skew symmetric.

3.6 Generalized Forces

In this section, three classes of abstract force laws and their integration into the equations
of motion are described. The three classes are: Local force laws on displacement level,
local force laws on velocity level and scalar potential force laws. For further details on
the subject the reader is referred to [25].

3.6.1 Local Force Laws on Displacement Level

The class of local force laws on displacement level consists (by definition) of any force law
that can be written in the form

g(q, t) ∈ D(−λ), δW = δgTλ, (3.57)

where δW is the contribution of the force to the virtual work of the system. The basis
for the force law is a function g(q, t) of the generalized coordinates q and time t, which
measures a displacement in the mechanical model. The displacement has to be understood
in a generalized sense, for example it can be a distance or an angle. The force λ is acting
in the direction associated with variations of the displacement g by setting the virtual
work δW of the force equal to the product of λ and the variation δg of the displacement.
The (possibly set-valued) function D determines the characteristics of the force law. The
generalized force fq required for the integration of the force law into the equations of
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motion can be obtained by setting the virtual work of fq equal to the virtual work of λ.
One gets

δW = δqTfq = δgTλ, δg =
∂g

∂q
δq, ∀ δq (3.58)

which can be simplified to

δqT
(
fq −

(
∂g

∂q

)T
λ
)

= 0, ∀ δq. (3.59)

Evaluating the variation finally yields the generalized force

fq =

(
∂g

∂q

)T
λ. (3.60)

The vector given by

w :=

(
∂g

∂q

)T
(3.61)

is called the generalized force direction of the scalar force law (see [25]). Accordingly, a
matrix of generalized force directions

W :=

(
∂g

∂q

)T
(3.62)

can be introduced for the multidimensional case, which allows to write the generalized
force as

fq = Wλ. (3.63)

An example of a force law of this class is show in Figure 3.2. The scalar displacement

Figure 3.2: Scalar force law.
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function g(q, t) is the distance between the points P and Q. If n(q, t) is a unit vector in
the direction of rPQ(q, t) then g is given by

g = nT(rOQ − rOP ) (3.64)

where rOP (q, t) and rOQ(q, t) are the position vectors of P and Q respectively. The forces
in the points P and Q are given by

FP = −nλ, FQ = nλ. (3.65)

The force law is completed with a relation between the scalar displacement function and
the scalar force

g(q, t) ∈ D(−λ). (3.66)

The contribution of the force λ to the virtual work is equal to

δW =

∫
S
δxTdF

= δrTOQnλ− δrTOP nλ
= (δrOQ − δrOP )Tnλ.

(3.67)

To verify that the force law given by (3.64), (3.65) and (3.66) is of the type (3.57) we first
calculate the variation δg of the distance, i. e.

δg =
∂g

∂q
δq = δnT(rOQ − rOP ) + nT(δrOQ − δrOP ). (3.68)

Since n is a unit vector and parallel to rPQ,

nTn = 1 ⇒ δnTn = 0

n ‖ rPQ = rOQ − rOP

}
⇒ δnT(rOQ − rOP ) = 0, (3.69)

the first summand in (3.68) is equal to zero. For the product δg λ we get

δg λ = nT(δrOQ − δrOP )λ (3.70)

which is exactly the same as we obtained in (3.67). This means, the force law formulated
with the displacement (3.64), the forces (3.65) and the inclusion (3.66) is a local force law
on displacement level as defined in (3.57).

3.6.2 Local Force Laws on Velocity Level

The basis for the local force laws on velocity level is a function ġ(q̇, q, t) which measures
a velocity in the mechanical model. The velocity ġ can be a time derivative of some
displacement g, but an underlying displacement g is not a requirement. All force laws
that can be written in the form

ġ(q̇, q, t) ∈ D(−λ), δP = δ ġTλ (3.71)



3.6. Generalized Forces 39

then define the class of local force laws on velocity level. With δP the contribution of
the force to the virtual power of the system is denoted. The force λ is acting in the
direction associated with variations δ ġ of the velocity by setting the virtual power δP of
the force equal to the product of λ and the variation δ ġ. The function D, which can be
set-valued, determines the characteristics of the force law. If a (possibly reduced) vector
of generalized velocities u is used,

q̇ = F (q, t)u+ β(q, t), (3.72)

then the local velocity function ġ can be replaced with the function

γ(u, q, t) = ġ (F (q, t)u+ β(q, t), q, t) (3.73)

which is using u as argument. The local force law on velocity level than has the following
form:

γ(u, q, t) ∈ D(−λ), δP = δγTλ. (3.74)

To get the generalized force fq required for the integration into the equations of motion,
one can set the virtual power contribution of the generalized force fq equal to the virtual
power contribution of the force λ, i.e.

δP = δq̇Tfq = δ ġTλ, δ ġ =
∂ġ

∂q̇
δq̇, ∀ δq̇. (3.75)

Eliminating δ ġ from (3.75) yields

δq̇T
(
fq −

(
∂ġ

∂q̇

)T
λ
)

= 0, ∀ δq̇, (3.76)

from which one gets the generalized force

fq =

(
∂ġ

∂q̇

)T
λ (3.77)

after evaluating the variation. For the corresponding matrix of generalized force directions
the abbreviation W is introduced,

W :=

(
∂ġ

∂q̇

)T
. (3.78)

which allows to write the generalized force as

fq = Wλ. (3.79)

The matrix W is the same as the one given in (3.62) in case the function ġ is obtained by
differentiating a displacement function g with respect to time. If the equations of motion
are formulated based on δu, then a corresponding generalized force fu is required for the
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integration into the equations of motion. As with fq the contribution of fu to the virtual
power is set equal to the contribution of λ,

δP = δuTfu = δγTλ, δγ =
∂γ

∂u
δu, ∀ δu, (3.80)

but now by using variations δγ. After simplifying to

δuT
(
fu −

(
∂γ

∂u

)T
λ
)

= 0, ∀ δu, (3.81)

and evaluating the variation one gets the generalized force fu based on δu:

fu =

(
∂γ

∂u

)T
λ = F T

(
∂ġ

∂q̇

)T
λ = F TWλ. (3.82)

Of course one can replace γ as well with ġ when calculating the generalized force fu as has
been done in the above equation. For the matrix of generalized force directions associated
with fu the abbreviation Ŵ is introduced,

Ŵ :=

(
∂γ

∂u

)T
, (3.83)

which allows to write the generalized force as

fu = Ŵλ. (3.84)

Note that, in general, the generalized force directions based on u are different from those
based on q̇. If the matrix F is square and regular, then the function ġ can be expressed
in terms of γ, i.e.

ġ(q̇, q, t) = γ(F−1(q̇ − β), t). (3.85)

This can be used to express the generalized force fq in terms of the function γ. Inserting
the function (3.85) into (3.77) yields

fq = F−T
(
∂γ

∂u

)T
λ. (3.86)

Usually, the velocity functions ġ and γ are linear in q̇ and u respectively. This means
they can be written in the form

ġ(q̇, q, t) = W T(q, t) q̇ + χ(q, t),

γ(u, q, t) = Ŵ
T
(q, t)u+ χ̂(q, t),

(3.87)

using the definitions (3.78) and (3.83).
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3.6.3 Potential Force Laws

The class of potential force laws consists of any force law that can be written in the form

fq = −
(
∂V

∂q

)T
, (3.88)

where fq is the associated generalized force and V (q, t) the scalar potential function. An
example for a potential force law is the gravitational force

dF = g dm (3.89)

where g is the gravitational acceleration and dm the mass distribution. An illustration
of the force law is shown in Figure 3.3. Using the definition (3.13), the generalized force

Figure 3.3: Gravitation.

becomes

fq =

∫
S

(
∂ξ

∂q

)T
g dm. (3.90)

We can verify that this is a potential force law with the potential function

V (q, t) = −gT
∫
S
ξ dm. (3.91)

Inserting (3.91) into (3.88) yields exactly the same generalized force as calculated in (3.90).
The potential V associated with the gravitational force can be written also in terms of
the position rOC of the center of mass C and the mass m of the system,

rOC(q, t) =
1

m

∫
S
ξ dm, m =

∫
S

dm. (3.92)

The potential function for the gravity force law then reads

V (q, t) = −m gTrOC(q, t). (3.93)
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3.7 Set-Valued Force Laws of Normal Cone Type

Set-valued force laws of normal cone type can be used to describe many of the impor-
tant non-smooth interactions like unilateral contact, one-dimensional Coulomb friction or
spatial Coulomb friction [25, 29]. At the same time it can describe also classical inter-
actions like perfect bilateral constraints. A set-valued force law of normal cone type on
displacement level has the form of the normal cone inclusion

g ∈ NC(−λ), δW = δgTλ, (3.94)

where g is a displacement function and λ its associated force. It is a special case of the
force laws on displacement level (3.57). A set-valued force law of normal cone type on
velocity level makes use of a velocity function γ and has the form

γ ∈ NC(−λ), δP = δγTλ. (3.95)

This is a special case of the force laws on velocity level (3.74). The characteristics of a
force law of normal cone type is given by its convex set C. The set C is to be seen as a
force reservoir containing all values that −λ is allowed to assume. When −λ is in the
interior of C then g or γ respectively is equal to zero and the force law acts as an ideal
constraint. When −λ reaches the boundary of C then g or γ respectively is allowed to
assume a value different from zero, such that −λ can remain in the set C.
In Section 3.7.1 the formulation of a bilateral constraint as a normal cone inclusion is
shown. The set-valued force law for unilateral contacts is discussed in Section 3.7.2. In
Section 3.7.3, Section 3.7.4 and Section 3.7.5 one- and multidimensional force laws for
Coulomb friction are described.

3.7.1 Bilateral Constraint

The force law for perfect bilateral constraints can be expressed as normal cone inclusion.
If the convex set C forming the force reservoir is given by all real numbers

C = R, (3.96)

then the normal cone NC reduces to the set containing just zero,

NC = NR = {0}. (3.97)

This can be used to write the bilateral constraint on displacement level as a normal cone
inclusion

g = 0, λ ∈ R ⇔ g ∈ NR(−λ), (3.98)

where g is the constraint function. Of course the same can be done on velocity level as
well

γ = 0, λ ∈ R ⇔ γ ∈ NR(−λ). (3.99)

The kinematic constraint is described by the function γ in this case. The virtual work as
given in (3.94) is equal to zero for any admissible virtual displacements, which is exactly
the principle of d’Alembert-Lagrange. Any admissible virtual velocity yields a virtual
power equal to zero in (3.95), which is the principle of Jourdain.
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3.7.2 Unilateral Contact

The force law of a perfect unilateral contact can be formulated as complementarity

gN≥ 0, λN≥ 0, gNλN = 0 (3.100)

between the scalar gap function gN and the scalar contact force λN . The gap function gN
measures the distance between the two objects that are potentially in contact. The gap
function gN and the contact force λN can be introduced as discussed in Section 3.6.1. An
example of a contact between two bodies is shown in Figure 3.4.

Figure 3.4: Contact between two bodies.

A closed contact has a gap function gN equal to zero, while the contact force λN can
assume any positive value. The force λN of a closed contact prevents the gap function
from decreasing to values below zero. Opening the contact to gN > 0 results in a contact
force equal to zero. This set-valued force law is illustrated in Figure 3.5.

Figure 3.5: Unilateral contact.
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For a normal cone based formulation of the force law the convex set

CN = R−0 (3.101)

containing all non-positive real numbers is used. Note that the force reservoir CN contains
all possible values of −λN . Since λN is always positive, the set of all −λN is R−0 . With
the set CN we can now formulate the force law of a unilateral contact as normal cone
inclusion

gN ∈ NCN (−λN), (3.102)

which is identical to the complementarity formulation (3.100). The force law (3.102) can
be expressed also with a normal cone inclusion on velocity level

gN > 0 : λN = 0

gN = 0 : γN ∈ NCN (−λN)
(3.103)

as derived in [25]. Note that one still needs to distinguish whether the contact is open
on displacement level. A force law which contains only the inclusion on velocity level
from (3.103) would correspond to the force law of a sprag clutch.

3.7.3 Coulomb Friction

One dimensional Coulomb friction can be described using a scalar tangential relative
velocity γT and a scalar tangential friction force λT . With a scalar normal force λN and
a friction coefficient µ the force reservoir for −λT is given by

CT = [−µλN , µ λN ] . (3.104)

If the friction force λT is in the inner of the set CT then the relative velocity is zero
(sticking). Sliding occurs once the force λT reaches the upper or lower boundary of the
set CT . With a value λT = µλN one gets sliding with a negative relative velocity, while
sliding with a positive relative velocity is obtained for λT = −µλN . This Coulomb friction
law can be described with the force law

γT ∈ NCT (−λT ) (3.105)

of normal cone type. The graph of this force law is depicted in Figure 3.6. The normal
force λN used in the Coulomb friction law can be a constant normal force or the normal
force associated with a unilateral contact (see Section 3.7.2). The combined force law for
the unilateral contact with friction then becomes

gN ∈ NCN (−λN), γT ∈ N[−µλN ,µλN ](−λT ). (3.106)

If the unilateral contact is formulated on velocity level one gets

gN > 0 : λN = 0, λT = 0

gN = 0 : γN ∈ NCN (−λN), γT ∈ NCT (λN )(−λT ).
(3.107)
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Figure 3.6: Coulomb friction.

Note that when combining the force reservoirs in normal and tangential direction into the
convex set

CNT =
{

(λN , λT )T | λN ≥ 0, |λT | ≤ µλN
}

(3.108)

and formulating a force law with the corresponding normal cone inclusion

gN > 0 : (λN , λT )T = 0

gN = 0 : (γN , γT )T ∈ NCNT

(
−(λN , λT )T

) (3.109)

is not identical with (3.107). To get a correct formulation based on the set CNT , a nonlinear
transformation has to be added to the relative velocities. As derived in [20], the force law

gN > 0 : (λN , λT )T = 0

gN = 0 : (γN + µ |γT |, γT )T ∈ NCNT

(
−(λN , λT )T

) (3.110)

is identical with (3.107) and correctly describes a normal contact with Coulomb friction.
In the formulation (3.110) a constant convex set CNT and a nonlinear transformation of
the relative velocity is used. In contrast, the formulation (3.107) uses directly the relative
velocity, but the set CT (λN) is not constant. An illustration of the formulations (3.107)
and (3.110) is shown in Figure 3.7.
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Figure 3.7: Formulations of the force law for normal contact with Coulomb friction.

3.7.4 Spatial Coulomb Friction

The force law for spatial Coulomb friction can be used to model the frictional contact of a
point on a plane when there is no prescribed direction for the frictional interaction. With
the one dimensional friction law described in section 3.7.3 the direction of the friction is
known a priori and is not determined by the force law itself. Since the direction is not
known, two orthogonal relative velocities γT1 and γT2 are introduced, measuring the two
components of the relative velocity in the tangent plane. And for each relative velocity
there is an associated tangential force λT1 and λT2 respectively. Both components are
collected into two-dimensional vectors,

λT :=

(
λT1

λT2

)
, γT :=

(
γT1

γT2

)
. (3.111)

The force reservoir for the spatial Coulomb friction law is given by the circular disk with
radius µλN ,

CT =
{
λT ∈ R2 | ‖λT‖ ≤ µλN

}
, (3.112)

where λN is the normal force and µ the friction coefficient. The contact is sticking if the
norm of the force vector λT is smaller than µλN . If the force is on the boundary of CT
then the contact is sliding into the direction of −λT . This behavior can be described with
the following normal cone inclusion:

γT ∈ NCT (−λT ). (3.113)

An illustration of the spatial Coulomb friction law is shown in Figure 3.8.
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Figure 3.8: Spatial Coulomb friction.

For an anisotropic Coulomb friction law, the friction force reservoir (3.112) can be replaced
with an ellipse

CT =

{(
λT1

λT2

)
|
(

λT1

µ1 λN

)2

+

(
λT2

µ2 λN

)2

≤ 1

}
(3.114)

with the semi-axes µ1 λN and µ2 λN . In this case one gets a friction coefficient µ1 in the
direction of γT1 and a friction coefficient µ2 in the direction of γT2. Note that in this case,
the sliding direction is not always identical with the direction of −λT . The force law for
anisotropic Coulomb friction is depicted in Figure 3.9.

Figure 3.9: Anisotropic spatial Coulomb friction.
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3.7.5 Coulomb-Contensou Friction

The set-valued force law for Coulomb-Contensou friction can be used to model a contact
with Coulomb friction and drilling friction torque [47]. The drilling friction force is the
result of an area with distributed Coulomb friction. The force law is formulated by using
two translational scalar friction forces λT1, λT2 and a scalar friction moment λτ as shown
in Figure 3.10. Each of the scalar forces λT1, λT2 and λτ has it corresponding relative

Figure 3.10: Coulomb-Contensou friction forces.

velocity γT1, γT2 and γτ . The translational forces and velocities are grouped into vectors
to simplify the notation,

λT :=

(
λT1

λT2

)
, γT :=

(
γT1

γT2

)
. (3.115)

The scalar force λN is provided by the associated normal force law. As parameters,
the Coulomb friction coefficient µ and an average friction radius R̄ are used. For pure
translational Coulomb friction, this results in a maximal friction force of µλN , while pure
rotational friction gives a maximum friction moment of R̄µλN . In general, the three
friction forces and relative velocities are not independent, especially the drilling friction
interacts with the translational friction. In [47] a force law of the form(

γT
γτ

)
∈ NBF

(
−
(
λT
λτ

))
(3.116)

has been derived for a contact with a circular contact area on which a Coulomb friction
interaction is formulated in each point and the normal force λN is parabolically dis-
tributed (Hertz contact model). A more general approach to the reduction of distributed
set-valued force laws and their application to Coulomb-Contensou friction can be found
in [28]. In the case of parabolic normal force distribution, the average friction radius R̄ is

R̄ =
3π

16
R ≈ 0.589R, (3.117)

where R is the radius of the assumed circular contact area. The functions

bT (u) :=


3πµλN

32
(−u3 + 4u), u ≤ 1

3µλN
16

(
(−u3 + 4u) arcsin

(
1

u

)
+

1

u
(u2 + 2)

√
u2 − 1

)
, u > 1

(3.118)
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and

bτ (u) :=


R̄µλN

8
(3u4 − 8u2 + 8), u ≤ 1

R̄µλN
4π

(
(3u4 − 8u2 + 8) arcsin

(
1

u

)
+ (−3u2 + 6)

√
u2 − 1

)
, u > 1

(3.119)

give a parametric description of the boundary of the set BF used in the force law (3.116).
The set BF is then described by the implicit formulation

BF :=

{(
λT
λτ

)
| ‖λT‖ ≤ bT (u), |λτ | ≤ bτ (u), u ∈ [0,∞)

}
. (3.120)

The set is rotationally symmetric around the λτ -axis and has the cross-section and shape
shown in Figure 3.11. The normal cone inclusion (3.116) together with the set BF gives
the exact condensed force law for a contact with perfectly circular contact area, parabolic
Hertz normal pressure distribution and a distributed Coulomb friction law. Unfortunately,
calculating the proximal point to this set in the Euclidean norm is complicated and time-
consuming. The simplest approximation of the set BF would be a cylindrical set ZF with
the λτ -axis as axis of symmetry, a radius equal to µλN and a height of 2R̄µλN

ZF :=

{(
λT
λτ

)
| ‖λT‖ ≤ µλN , |λτ | ≤ R̄µλN

}
. (3.121)

For the set ZF , the proximal point function proxZF
is very simple and the projection can

even be decoupled in λτ and λT direction. But exactly this decoupling is not desired,
because the interaction between drilling friction and the translational friction is an im-
portant property of the model. A better approximation is an ellipsoidal set EF with one
semi-axis of R̄µλN and the other two of µλN (cf. Figure 3.11),

EF :=

{(
λT
λτ

)
|
(‖λT‖
µλN

)2

+

(
λτ

R̄µλN

)2

≤ 1

}
. (3.122)

Further approximations for Coulomb-Contensou friction and a comparison with experi-
mental results can be found in [37]. The elliptical set (3.122) can be transformed to a
sphere SF with radius µλN by introducing the matrix

A =

1 0 0
0 1 0
0 0 R̄

 , (3.123)

and applying the inverse mapping

A−1EF = SF . (3.124)

The resulting set

SF :=

{(
λT
λτ

)
| ‖λT‖2 + λ2

τ ≤ µ2λ2
N

}
(3.125)

allows then for an explicit closed form description of the proximal point function which
can be evaluated very efficiently (see Section 2.3).
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BF

EF
ZF

BF

EF

ZF

Figure 3.11: Approximations of Coulomb-Contensou friction.
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3.8 Impacts

In a non-smooth mechanical model with unilateral contacts and friction, the velocities
can get discontinuous. A discontinuity in the velocity can occur for example when there
is a collision in a unilateral contact. Since the velocities remain finite, the generalized
coordinates will always be continuous. To describe the discontinuities in the velocities,
the non-smooth set-valued force laws have to be equipped with an impact law and the
equations of motion have to be completed with impact equations. A detailed description
of this process can be found in [23, 27, 29]. In the following only a short summary is
presented.
The equations of motion of a non-smooth mechanical model can be obtained by extend-
ing (3.31) with forces λi of set-valued force laws from Section 3.7. This yields an equation
of motion of the form

M (q, t)u̇− h(q,u, t)−
∑

i ∈ I(q,t)

W i(q, t)λi = 0, q̇ = F (q, t)u+ β(q, t), (3.126)

together with set valued force laws

γi ∈ NCi(−λi), γi = W T
i (q, t)u+ χi(q, t), i ∈ I(q, t) (3.127)

formulated on velocity level. For unilateral contacts formulated on displacement level
and transferred to velocity level as in (3.103), the set I contains only the indices i of the
contacts that are closed on displacement level. The impact equations can be obtained
by integrating the equations of motion over a singleton in time. This yields the impact
equations

M(q, t)(u+ − u−)−
∑

i ∈ I(q,t)

W i(q, t)Λi = 0 (3.128)

where u− and u+ are the pre- and post-impact velocities respectively. The pre- and
post-impact velocities are the right and left limits

u−(t) := lim
τ↑0
u(t+ τ), u+(t) := lim

τ↓0
u(t+ τ) (3.129)

at the impact time t. Note that the vector of classical forces h disappears in the impact
equations, as it is assumed to be free from impulsive forces. The impact-impulses Λi have
to be understood as time integral of the forces λi over the impact time. Since the gener-
alized coordinates are continuous, no distinction between pre- or post-impact coordinates
is made. While the impact equations can be derived directly from the equations of mo-
tion, the formulation of an impact law involves making additional modeling assumptions.
An impact law describes the relation between the impact-impulse, the local pre-impact
velocity and the local post-impact velocity. The local pre- and post-impact velocity can
be obtained from the local velocities

γi = W T
i (q, t)u+ χi(q, t), (3.130)
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by taking the right and the left limit

γ±i = W T
i (q, t)u± + χi(q, t). (3.131)

If the force law is given by
γi ∈ NCi(−λi), (3.132)

then one can formulate the associated impact law as

γ+
i + εiγ

−
i ∈ NDi

(−Λi), (3.133)

when Newton’s impact law in inclusion form is assumed. In the impact law the set Di
is the reservoir of all impact-impulses compatible with the force law. The scalar param-
eter εi ∈ [0, 1] is the coefficient of restitution. For εi = 0 one gets a maximal dissipative
impact behavior, while εi = 1 yields an elastic impact. Instead of Newton’s impact law
one can use also Poisson’s impact law in inclusion form [23, 77]. For a detailed discussion
of impact laws the reader is referred to [5, 23, 27, 70, 77].

3.9 Total Energy

In this section, the total energy of a mechanical system is discussed for a few special cases.
In the first subsection the development of the total energy during impact-free motion is
analyzed, and in the second subsection the changes of the kinetic energy during an impact
is discussed. In this section, only the time-autonomous case is considered.

Impact-Free Motion

We assume that the kinetic energy of the mechanical system is a quadratic form in q̇ with
a symmetric and positive definite mass matrix M (q) depending only on the generalized
coordinates,

T (q̇, q) =
1

2
q̇TM (q)q̇. (3.134)

Beside the inertial forces described by T (q̇, q), we allow potential forces created by the
potential V (q). In this case the total energy is equal to the sum of the kinetic and the
potential energy,

E(q̇, q) := T (q̇, q) + V (q). (3.135)

As described in Section 3.2, the equations of motion of the system are given by

d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
+

(
∂V

∂q

)T
− fq = 0 (3.136)

where the generalized force fq can be used to add further force laws. Multiplying (3.136)

from the left with q̇T yields

d

dt

(
∂T

∂q̇

)
q̇ − ∂T

∂q
q̇ +

∂V

∂q
q̇ − fT

q q̇ = 0. (3.137)
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The expression with the partial derivative of the potential V is obviously just the time
derivative of the potential

∂V

∂q
q̇ =

d

dt
V (q). (3.138)

All terms in which the kinetic energy is used can be simplified as follows:

d

dt

(
∂T

∂q̇

)
q̇ − ∂T

∂q
q̇ =

d

dt

(
∂T

∂q̇
q̇

)
− ∂T

∂q̇
q̈ − ∂T

∂q
q̇

=
d

dt

(
∂T

∂q̇
q̇

)
− d

dt
T (q̇, q)

=
d

dt

(
∂T

∂q̇
q̇ − T (q̇, q)

)
=

d

dt
T (q̇, q)

(3.139)

In the last line of (3.139) the simplification

∂T

∂q̇
= q̇TM (q) ⇒ ∂T

∂q̇
q̇ = 2T (q̇, q) (3.140)

has been used. Inserting (3.138) and (3.139) into (3.137) yields

d

dt
(T (q̇, q) + V (q))− fT

q q̇ = 0. (3.141)

This means that the time derivative of the total energy is given by

Ė(q̇, q) = fT
q q̇. (3.142)

If there are no additional forces then the time derivative of the total energy is zero. In
this case the total energy is conserved. Considering additional forces from geometric,
scleronomic and perfect bilateral constraints of the form

g(q) = 0, fq =

(
∂g

∂q

)T
λ (3.143)

does not provide any additional contribution to fT
q q̇. The total energy is still preserved

as follows directly from the force law

g(q) = 0 ⇒ ∂g

∂q
q̇ = 0 ⇒ fT

q q̇ = 0. (3.144)

A perfect unilateral constraint that depends only on the generalized coordinates q is given
by the force law

g(q) ∈ NR−
0

(−λ), fq =

(
∂g

∂q

)T
λ. (3.145)
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If the contact is open, then the force of the unilateral contact is zero

g(q) > 0 ⇒ λ = 0 ⇒ fT
q q̇ = 0 (3.146)

and the total kinetic energy remains unchanged. For situations where the contact is closed
we get the same situation as for the perfect bilateral constraint, i.e.

g(q) = 0 ⇒ ∂g

∂q
q̇ = 0 ⇒ fT

q q̇ = 0. (3.147)

This means the total energy is preserved in systems with perfect unilateral constraints of
the above type as well. A simple kinematic force law of normal cone type has the form

W T(q, t) q̇ ∈ NC(−λ), fq = W (q, t)λ. (3.148)

For convex sets C that contain the zero element, we get a (not strictly) dissipative system.
This can be verified using the definition (2.4) of the normal cone

0 ∈ C, W T(q, t) q̇ ∈ NC(−λ) ⇒ λTW T(q, t) q̇ ≤ 0 ⇒ fT
q q̇ ≤ 0. (3.149)

A force law of the form (3.148) is for example the Coulomb friction law discussed in
Section 3.7.3.

Impacts

In this subsection the relation between pre- and post-impact kinetic energy of a non-
smooth mechanical system is discussed for a few special cases. For more details on the
subject the reader is referred to [5, 27, 46, 49, 70, 77]. We assume a system with an impact
equation and impact laws of the form

M (u+ − u−)−
∑
i ∈ I

W iΛi = 0

i ∈ I : W T
i (u+ + εiu

−) ∈ NCi(−Λi).

(3.150)

The dependencies of the mass matrix M and the matrices of generalized force direc-
tions W i on time t and generalized coordinates q are neglected here, as both are constant
for an impact. The kinetic energy of the system (3.150) is given by

T (u) =
1

2
uTMu. (3.151)

The difference of the pre- and post-impact kinetic energy can be reformulated using the
impact equation (first equation in (3.150)). One obtains the relation

T (u+)− T (u−) =
1

2
u+T

Mu+ − 1

2
u−

T
Mu−

=
1

2
(u+ − u−)TM (u+ + u−)

=
1

2

∑
i ∈ I

ΛT
iW

T
i (u+ + u−)

(3.152)
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which shows that the difference in kinetic energy is the product of the average local
velocity W T

i (u+ +u−)/2 and the impact-impulses Λi. The impact laws can be rewritten
to use only the sum and the difference of the pre- and post-impact generalized velocities

W T
i (u+ + εiu

−) ∈ NCi(−Λi)

⇔ 1

2
W T

i

(
(1 + εi)(u

+ + u−) + (1− εi)(u+ − u−)
)
∈ NCi(−Λi)

⇔ W T
i

(
(u+ + u−) +

1− εi
1 + εi

(u+ − u−)
)

︸ ︷︷ ︸
=: ξi

∈ NCi(−Λi)

⇔ ξi ∈ NCi(−Λi).

(3.153)

In the third line of (3.153) the invariance of a cone to scaling with a positive number has
been used. The product of the vector ξi introduced in (3.153) with the impact-impulses Λi

is always negative if the convex set Ci contains the zero element. This follows directly

0 ∈ Ci, ξi ∈ NCi(−Λi) ⇒ ξTi Λi ≤ 0. (3.154)

from the definition of the normal cone (2.4). To exploit the inequality (3.154) in the
further analysis of (3.152), we will rewrite the sum W T

i (u+ + u−) of local velocities
using ξi. One gets

W T
i (u+ + u−) = ξi − δiW T

i (u+ − u−)

= ξi − δiW T
iM

−1
∑
j ∈ I

W jΛj
(3.155)

where the definition of the dissipation index

δi :=
1− εi
1 + εi

(3.156)

has been used to simplify the notation. Inserting (3.155) into (3.152) yields

T (u+)− T (u−) =
1

2

∑
i ∈ I

(
ΛT
i ξi − δiΛT

iW
T
iM

−1
∑
j ∈ I

W jΛj

)
=

1

2

∑
i ∈ I

ΛT
i ξi −

1

2

∑
i ∈ I

∑
j ∈ I

δiΛ
T
iW

T
iM

−1W jΛj.
(3.157)

As next step, the vectors ξi and Λi are assembled into global vectors ξ and Λ, and the
products W T

iM
−1W j are combined into one large Delassus matrix G, where the ij-th

sub-block is given by
Gij = W T

iM
−1W j. (3.158)

The resulting Delassus matrix G is symmetric and at least positive semidefinite. For the
dissipation indices a matrix

∆ij =

{
δiI, i = j

0, i 6= j
(3.159)
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is introduced. Using these assembled objects, the kinetic energy difference can be written
as

T (u+)− T (u−) =
1

2
ΛTξ − 1

2
ΛT∆GΛ. (3.160)

The first term ΛTξ is lower or equal to zero as shown in (3.154). If the matrix ∆G is
positive semidefinite, then the second term in (3.160) is always lower or equal to zero as
well. In that case the inequality T (u+) ≤ T (u−) holds. Whether ∆G is at least positive
semidefinite depends on the coefficients of restitution and the Delassus matrix G. A
discussion of sufficient conditions for positive definite matrix ∆G can be found in [46].
A simple case is using equal coefficients of restitution ε ∈ [0, 1] for all impact laws. This
simplifies the matrix of dissipation indices to

∆ =
1− ε
1 + ε

I, (3.161)

which yields a positive semidefinite product ∆G, since G is at least positive semidefinite.
From (3.160) then follows the inequality

T (u+) ≤ T (u−) (3.162)

guaranteeing that the kinetic energy after an impact is never larger then before it, if all
coefficients of restitution are equal.
In the remaining part of this section we will discuss a simple example where an impact
could lead to an increase in total energy if the coefficients of restitution are not chosen
carefully. We consider the mechanical system shown in Figure 3.12, consisting of a wall,
two masses, a sprag clutch, and a unilateral contact.

Figure 3.12: Sprag clutch and unilateral contact.

We assume a situation where the unilateral contact is closed on displacement level. The
impact equations for the system are then given by(

m 0
0 m

)(
u+

1 − u−1
u+

2 − u−2

)
−
(

1 −1
0 1

)(
Λ1

Λ2

)
= 0. (3.163)

For both elements an impact law of Newton type in inclusion form is assumed

u+
1 + ε1u

−
1 ∈ NR−

0
(−Λ1)

(u+
2 − u+

1 ) + ε2(u−2 − u−1 ) ∈ NR−
0

(−Λ2).
(3.164)
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The coefficient of restitution ε1 of the sprag clutch has to be zero, because any value
larger than zero could lead to kinematically inconsistent post impact velocities. For the
unilateral contact we assume a perfect elastic impact behavior, i.e.

ε1 = 0, ε2 = 1. (3.165)

We consider a situation where the left mass is moving right and the right mass is moving
left before the impact

u−1 > 0, u−2 < 0. (3.166)

As can be easily verified, the solution to the impact problem is given by

u+
1 = 0, u+

2 = u−1 − u−2 , Λ1 = −2mu−2 , Λ2 = m(u−1 − 2u−2 ). (3.167)

After the impact, the left mass is resting and the right mass moves to the right. For the
change in kinetic energy caused by the impact we get

T+ − T− =
m

2
(u−1 − u−2 )2 − m

2
(u−1

2
+ u−2

2
) = −mu−1 u

−
2 > 0. (3.168)

Obviously the kinetic energy has increased, while the system itself is passive. The problem
can be solved either by using a different impact law (e.g. Poisson’s impact law), or by
making ε2 smaller. For ε2 = 0 both coefficient of restitution are identical and the kinetic
energy does not increase during an impact, as shown above.





Chapter4
Rigid Body Formulations

In this chapter, different formulations for the equations of motion of a rigid body are
described. These formulations can then be used with the energy consistent integration
schemes derived in Chapter 5. Beside this, the aim of this chapter is also to provide some
mechanical interpretation for these rigid body formulations.

The equations of motion of a rigid body can be formulated as a set of ordinary differential
equations (ODE) in the form of the Newton-Euler equations. For a complete description,
these are equipped with a parametrization of finite rotations in the form of a differential
equation linking the angular velocity to the derivative of the rotation parameters. Well
known concepts for the parametrization of rotations are Euler and Kardan angles, unit
quaternions (also known as Euler parameters), Rodrigues parameters, rotation vectors and
components of the rotation matrix. The Euler and Kardan angles use three parameters
for the three rotational degrees of freedom of a rigid body. The mapping of the derivatives
of the rotation parameters to the angular velocity of the body can become singular for
three parameter formulations. In these cases the derivative of the parameters can not be
determined from the angular velocity, which is of course a disadvantage.

The four parameter formulations like the unit quaternions, Rodrigues parameters or ro-
tation vectors, as well as the six or nine parameter formulations based on the components
of the rotation matrix don’t have the singularity problem. Since more parameters than
degrees of freedom are used, the parameters are subject to additional constraints. The ad-
ditional constraints, which are enforced only on velocity level, can lead to drift problems in
an ODE formulation. To prevent drift in numerical simulations, the rotation parameters
have therefore to be projected back to pure rotations after each integration step (e.g. as
in [45] for quaternions) or, alternatively, a discretization scheme which preserves the pure
rotation constraints has to be employed. One way to achieve the latter is to formulate
the equation of motion of a rigid body as a set of differential-algebraic equations (DAE).
In the DAE formulation the algebraic equations restrict the rotation parameters to the
subset that describe pure rotation.

In this chapter, DAE formulations for the dynamics of a rigid body are derived using the
following approach: First, the infinite dimensional dynamics of the underlying continuum
is reduced to a body with the full degrees of freedom created by the rotation parameters.

59
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When the components of the rotation matrix are used as rotation parameters, then the
finite-dimensional body is the affine body discussed in Section 4.2. The scalable body
described in Section 4.3 is obtained when a quaternion is used as rotation parameter.
To the model of a body with the full degrees of freedom of the rotation parameters,
a set of perfect bilateral constraints is added, constraining the rotation parameters to
pure rotation. This then yields a DAE formulation for the dynamics of a rigid body
where the Lagrange multipliers have the meaning of constraint forces, and where the mass
matrix is nonsingular. As a preparation for the affine body discussed in Section 4.2 and
the scalable body discussed in Section 4.3, some definitions to characterize the mass
distribution in a body are given in Section 4.1.

4.1 Mass Distribution

In this section, the definition for the total mass, the classical inertia tensor and Binet’s
inertia tensor are given. These integrals capture the most important properties of a mass
distribution on a body. The mass distribution dm shall be given as a function of the
location % of each point of the body B (cf. Figure 4.1). The location % is measured

Figure 4.1: Mass distribution.

starting from the point C, which is chosen to be identical with the center of mass of the
mass distribution. This means that the integral∫

B
% dm = 0 (4.1)

is always zero. Note that the point C remains the center of mass, even if the body is
deformed linearly ∫

B
A% dm = A

∫
B
% dm = 0. (4.2)

The total mass m of the body is obtained by integrating dm over the complete body, i.e.

m :=

∫
B

dm. (4.3)

The definition for the classical inertia tensor with respect to point C is given by

Θ :=

∫
B
−%̃2 dm (4.4)
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where %̃ denotes the skew-symmetric matrix associated with the cross product. For a
vector a = (a1 a2 a3)T, the skew-symmetric matrix ã ∈ R3×3 associated with the cross
product is given by

ã =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (4.5)

It holds that ãb = a × b for any a, b ∈ R3. Binet’s inertia tensor, also known as Euler
tensor, can be defined as

E :=

∫
B
%%Tdm. (4.6)

The classical inertia tensor and Binet’s inertia tensor capture the same information about
the mass distribution on a body. Both tensors are formulated with respect to the center
of gravity and both are symmetric. With the identity

−%̃2 ≡ %T%I − %%T, (4.7)

which follows from the vector triple product expansion (Lagrange’s formula) and the
relation

%T% = Tr(%%T) =
1

2
Tr(−%̃2) (4.8)

one can derive directly the formulas

Θ = Tr(E)I −E, E =
1

2
Tr(Θ)I −Θ (4.9)

to calculate the classical inertia tensor from Binet’s inertia tensor and vice versa.

4.2 Affine Body

The mechanical model of an affine body has twelve degrees of freedom. The kinematics of
an affine body can be described with an affine mapping in three dimensions as discussed
in Section 4.2.1. The mass matrix of an affine body is constant when the generalized coor-
dinates are formed by a translation vector and the components of a 3× 3 transformation
matrix. The resulting equations of motion of an affine body have a very simple form as
derived in Section 4.2.2. In Section 4.2.3, additional perfect bilateral constraints are added
to the model in order to make the body rigid. The resulting simple DAE description for
the dynamics of a rigid body is useful for the construction of energy consistent integration
schemes as discussed in Chapter 5. In the literature this rigid body DAE formulation can
be found for example in [13].

4.2.1 Kinematics

The affine body model has three translational, three rotational and six linear deforma-
tional degrees of freedom. A vector % ∈ R3 (% = const.) is used to address each point P ′ of
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Figure 4.2: Affine body kinematics.

the affine body in a reference configuration (cf. Figure 4.2), where % starts at a reference
point C ′. The actual position P of a point in the displaced configuration is described with
the vector ξ ∈ R3 relative to the inertial point O. The actual position C of the reference
point is identical to the displacement r ∈ R3. The vector ξ can be obtained by applying
a linear and nonsingular transformation A ∈ R3×3 to the vector % and adding it to the
displacement r. This yields the kinematic relation

ξ = A%+ r (4.10)

for an affine body. The linear transformation A is parametrized with three direction
vectors d1, d2 and d3 ∈ R3,

A = d1e
T
1 + d2e

T
2 + d3e

T
3 , (4.11)

and the help of the constant and orthonormal basis {e1, e2, e3}. The three direction
vectors together with the displacement r are grouped into a generalized coordinates vector

q :=


r
d1

d2

d3

 . (4.12)

Writing (4.10) in terms of the generalized coordinates q yields

ξ = d1e
T
1%+ d2e

T
2%+ d3e

T
3%+ r

=
(
I %Te1I %Te2I %Te3I

)
q

(4.13)

The absolute velocity ξ̇ of a point of the body is obtained by differentiating (4.13) with
respect to time. This yields

ξ̇ =
(
I %Te1I %Te2I %Te3I

)
q̇ (4.14)

for the absolute velocity ξ̇ in terms of the derivative of the generalized coordinates q̇.
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4.2.2 Equations of Motion

The equations of motion of an affine body can be obtained using the variational formula-
tion (3.20) of Lagrange’s equations of the second kind. With the help of the kinematics
from Section 4.2.1 one can evaluate the kinetic energy. This yields

T =
1

2

∫
B
ξ̇
T
ξ̇dm

=
1

2
q̇T
∫
B


I %Te1I %Te2I %Te3I

%Te1I eT1%%
Te1I eT1%%

Te2I eT1%%
Te3I

%Te2I eT2%%
Te1I eT2%%

Te2I eT2%%
Te3I

%Te3I eT3%%
Te1I eT3%%

Te2I eT3%%
Te3I

 dm

︸ ︷︷ ︸
=: M

q̇

=
1

2
q̇TMq̇,

(4.15)

where M is the mass matrix of the affine body. Choosing the reference point C ′ identical
with the center of mass of the mass distribution in the reference configuration yields an
integral ∫

B
% dm = 0 (4.16)

which is always zero. The two abbreviations for the mass and Binet’s inertia tensor

m =

∫
B

dm, E =

∫
B
%%T dm (4.17)

introduced in Section 4.1 represent the mass distribution in the body. For the components
of Binet’s inertia tensor we introduce the following abbreviation

Eij := eTi Eej. (4.18)

Using these abbreviations one gets the mass matrix

M =


mI 0 0 0
0 E11I E12I E13I
0 E21I E22I E23I
0 E31I E32I E33I

 , (4.19)

for an affine body. With the constant mass matrix M , the evaluation of (3.20) yields

Mq̈ − fq = 0 (4.20)

as equation of motion of the affine body.
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4.2.3 Rigidity Constraints

This section is used to add perfect bilateral constraints to the affine body model, in order
to get a rigid body model. First the remaining generalized forces fq are split up

fq = fg + fe (4.21)

into the generalized constraint forces fg formulated in this section, and the additional
generalized external forces fe. To obtain a rigid body, the six constraints

g(q) =



dT
1d1 − 1

dT
2d2 − 1

dT
3d3 − 1

dT
2d3

dT
1d3

dT
1d2

 = 0 (4.22)

are imposed. The first three enforce a unit length of the direction vectors, while the
last three guarantee that the direction vectors are pairwise orthogonal. The force law
is completed by requiring that the virtual work of the constraint forces vanishes for any
virtual displacements induced by δq that are compatible with the constraints, i.e.

δqTfg = 0 ∀ δq | δg = 0. (4.23)

This is a perfect bilateral constraint of d’Alembert-Lagrange type. The variations δg of
the constraints are related to the variations δq of the generalized coordinates by

δg =
∂g

∂q
δq. (4.24)

Inserting this into the variational formulation of the force law yields

δqTfg = 0 ∀ δq | δqT
(
∂g

∂q

)T
= 0. (4.25)

From (4.25) one gets the generalized constraint forces fg by evaluating the variation.
The generalized constraint forces lie in the linear subspace spanned by the columns
of (∂g/∂q)T, i.e.

fg =

(
∂g

∂q

)T
λ, λ ∈ R6. (4.26)

The partial derivative ∂g/∂q yields

∂g

∂q
=



0 2dT
1 0 0

0 0 2dT
2 0

0 0 0 2dT
3

0 0 dT
3 dT

2

0 dT
3 0 dT

1

0 dT
2 dT

1 0

 . (4.27)
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Inserting the generalized constraint force fg into the equations of motion of the affine
body and completing the set of equations with the constraint equations yields the DAE
description

Mq̈ −
(
∂g

∂q

)T
λ− fe = 0

g(q) = 0

(4.28)

of the dynamics of a rigid body. Note that in this formulation all gyroscopic forces of a
rigid body are generated by the forces λ of the rigidity constraints.

4.3 Scalable Body

The mechanical model of a scalable body has three translational, three rotational and
one uniform scaling degree of freedom. The displacement of the center of mass and
an unconstrained quaternion are used as generalized coordinates. By introducing an
additional perfect bilateral constraint one can force the scalable body to become a rigid
body, i.e. the scaling degree of freedom is suppressed by this constraint. Without reducing
the set of coordinates, this yields naturally a DAE description of the dynamics of a rigid
body where the 7 × 7 mass matrix is positive definite and the unit length restriction is
enforced by a mechanical constraint. This section is based on the article to be published
as [58].
In [65, 66] the Newton-Euler equations of a rigid body in terms of the translational and
angular velocity is used as a starting point for the derivation of a quaternion based rigid
body DAE formulation. Subsequently, the derivative of the unit quaternion is related to
the angular velocity, and the equations of motion are extended to a DAE. Unfortunately,
this approach yields a cumbersome formulation for which the Lagrange multiplier and
the equation enforcing the unit length of the quaternion have no direct physical meaning.
Additionally, the resulting mass matrix is either singular or uses an arbitrarily chosen
mass. Similarly, in [54, 62] a singular or in parts arbitrary mass matrix is obtained by
starting as well with a unit quaternion and the angular velocity of a rigid body.
In contrast to previous works [12, 54, 62, 65, 84], the quaternion in this work is not assumed
to be of unit length while deriving the equations of motion. The unit length restriction
is added only in a last step in the form of a perfect bilateral constraint to reduce the
scalable body to a rigid body. Besides deriving the non-singular 7× 7 mass matrix for a
quaternion based rigid body formulation we also discuss the associated mechanical model
in the form of the unconstrained scalable body.
In the recent work by Betsch and Siebert [12] the assumption of a unit length quaternion
is introduced right at the beginning, but still a non-singular 7×7 mass matrix is obtained.
This is achieved by using a director-based formulation for the kinetic energy of a rigid
body [13], which is identical to the kinetic energy of an affine body with all twelve affine
degrees of freedom. This kinetic energy still contains the contributions from the scaling
degree of freedom, contrary to the kinetic energy based on the angular velocity. By
reducing the directors based generalized coordinates to a unit quaternion – without using
the unit length property in a harmful way – a non-singular 7× 7 quaternion based rigid
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body mass matrix is obtained. This mass matrix is identical to the one associated with
the full unrestricted quaternion degrees of freedom of a scalable body, but the link to the
mechanical model of a scalable body is not shown in [12]. When formulating the inverse
mass matrix, [12] uses a simplification valid only for unit quaternions. This leads to a
DAE formulation where the Lagrange multiplier is not the mechanical scaling constraint
force: Setting the multiplier to zero does not recover the full dynamics of a scalable body.
Beside this, in [12] the Lagrange multiplier is always zero for a free rigid body, even
when the body is rotating. For a rotating rigid body one would expect a non-zero scaling
constraint force preventing the body from getting larger.
In the work by Vadali [84], the quaternion unit length restriction is not imposed every-
where in the derivation of the equations of motion, but still the kinetic energy of the rigid
body is used as a starting point. This kinetic energy based on the angular velocity does
not contain the contributions from the scaling degree of freedom anymore, thus it is valid
only under the quaternion unit length assumption. The result is a singular 4 × 4 mass
matrix for the rotational dynamics of a rigid body and a Lagrange multiplier which is
always zero.
This section is organized as follows: In section 4.3.1, an overview on quaternions and their
matrix and vector representation is given. The parametrization of rotations and uniform
scaling with quaternions is described in section 4.3.2. The kinematics of the scalable
body on displacement and velocity level is derived in section 4.3.3. In section 4.3.4 the
variational equations of motion from section 3.2 are evaluated with the kinematics of the
scalable body from section 4.2.1. To the resulting equations of motion, a perfect bilateral
constraint is added in section 4.3.5, yielding the DAE formulation of a rigid body. In
section 4.3.6, the derivative of the quaternion is replaced by a scaling velocity and a
generalized angular velocity, giving the DAE a form which can be directly linked to the
Newton-Euler equations of motion of a rigid body.

4.3.1 Quaternions

In this section, a brief introduction to quaternions is given. For more background on
quaternions the reader is referred to [35, 7, 42, 85].
A quaternion A ∈ H is a hypercomplex number with one real and three imaginary
parts. The imaginary parts are formed with three real coefficients and three imaginary
units i, j, k, i.e.

A = a0 + a1i+ a2j + a3k ∈ H, ai ∈ R. (4.29)

In this work, the notation A = (a0,a) for a quaternion is used, where a0 is the real part
and a = (a1 a2 a3)T ∈ R3 is a vector consisting of the three coefficients of the imaginary
part. The conjugate A∗ of a quaternion is defined as

A∗ = (a0,−a) . (4.30)

The addition of two quaternions is associative and is done component-by-component. The
real part Re(A) and the imaginary part Im(A) of a quaternion is given by

Re(A) = (a0, 0) =
1

2
(A+ A∗) = a0, Im(A) = (0,a) =

1

2
(A− A∗). (4.31)
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All possible products of the imaginary units can be determined from the definition

i2 = j2 = k2 = ijk = −1 (4.32)

as formulated in [35]. This gives the rule

AB = (a0,a) (b0, b) = (a0 b0 − aTb, a0 b+ b0 a+ ãb) (4.33)

for the multiplication of two quaternions, where ã ∈ R3×3 is the real skew-symmetric
matrix associated with the cross product, so that ãb = a × b for any a, b ∈ R3. The
quaternion multiplication is not commutative in general. The product of a real number
and a quaternion is commutative and yields a quaternion scaled component-by-component

αA = Aα = (α, 0)A = A (α, 0) = (α a0, αa) . (4.34)

For the addition and multiplication of quaternions the distributive law holds. The conju-
gate of a quaternion product is the product of the conjugates in inverse order, i.e.

(AB)∗ = B∗A∗. (4.35)

The norm of a quaternion is defined by

|A| =
√
a2

0 + aTa. (4.36)

The norm of a quaternions and its conjugate are identical,

|A| = |A∗|, (4.37)

as is obvious from the definition. The norm of the product of two quaternions equals the
product of the norm of each, i.e.

|AB| = |A||B|. (4.38)

The product of a quaternion and its conjugate is equal to the square of the norm of the
quaternion, i.e.

AA∗ = (|A|2, 0) = |A|2. (4.39)

This can be used to form the inverse of a quaternion as

A−1 =
A∗

|A|2 (4.40)

for any non-zero quaternion. A quaternion can be mapped to a real 4 × 4 matrix with
the function

ϕ : H→ R4×4, ϕ((a0,a)) =

(
a0 −aT

a a0I + ã

)
. (4.41)

Note that the matrix of a quaternion is equal to the sum of the diagonal matrix a0I and
a skew symmetric matrix formed with the imaginary part of the quaternion, i.e.

ϕ((a0,a)) = a0I +

(
0 −aT

a ã

)
. (4.42)
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From this splitting one can directly see, that the matrix of a conjugated quaternion is the
transposed of the matrix of a quaternion, i.e.

ϕ(A∗) = ϕT(A). (4.43)

The matrix of a product of two quaternions is equal to the product of the matrices of the
quaternions

ϕ(AB) = ϕ(A)ϕ(B). (4.44)

The matrix of a quaternion sum is equal to the sum of the matrices of each quaternion
summand

ϕ(A+B) = ϕ(A) +ϕ(B), (4.45)

because the matrix of a quaternion is linear in the coefficients of the quaternion. The
inverse of the matrix of a quaternion can be obtained by mapping the inverse of the
quaternion to a matrix or by normalizing the transposed of the matrix

ϕ−1(A) = ϕ(A−1) =
1

|A|2ϕ
T(A). (4.46)

Sometimes it is useful to interpret a quaternion as a real 4-dimensional vector, for which
the function

ψ : H→ R4, ψ((a0,a)) =

(
a0

a

)
(4.47)

is introduced. The vector representation of the product of two quaternions is then equal to
the product of the matrix of the first quaternion and the vector of the second quaternion,
i.e.

ψ(AB) = ϕ(A)ψ(B). (4.48)

Obviously the vector of a quaternion sum is equal to the sum of the vectors of each
quaternion summand

ψ(A+B) = ψ(A) +ψ(B). (4.49)

The vector of a conjugated quaternion can be obtained by multiplying the vector of the
quaternion with the matrix

T :=

(
1 0
0 −I

)
(4.50)

which yields

ψ(A∗) = T ψ(A). (4.51)

4.3.2 Rotation and Scaling

In this section, the parameterization of rotations and uniform scaling by using quaternions
is shown. As a starting point we note, that the product of a quaternion A ∈ H, a purely
imaginary quaternion (0,x) generated by a vector x ∈ R3, and the conjugate A∗ of the
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first quaternion always evaluates to a purely imaginary quaternion. This property can be
formulated as

(0,y) = A (0,x)A∗ (4.52)

and follows directly with the help of equation (4.31):

Re(A (0,x)A∗) =
1

2
(A (0,x)A∗ + A (0,−x)A∗) =

1

2
A((0,x) + (0,−x))A∗ = 0. (4.53)

The product in equation (4.52) can be rewritten by using equation (4.35),

(0,y) = A(A (0,x)∗)∗, (4.54)

and after applying (4.47), (4.48) and (4.51) one obtains the linear relation(
0
y

)
= ϕ(A)T ϕ(A)T

(
0
x

)
(4.55)

in vector notation. Multiplication of (4.55) by
(
0 I

)
from the left yields

y =
(
0 I

)
ϕ(A)︸ ︷︷ ︸(

a a0I + ã
)T ϕ(A)T

(
0 I

)T︸ ︷︷ ︸ aT

a0I + ã


x. (4.56)

By using the abbreviations

R :=
1

|A|2
(
a a0I + ã

)( aT

a0I + ã

)
, s := |A|2, |A| 6= 0 (4.57)

equation (4.56) finally becomes
y = sRx. (4.58)

The matrix R is a rotation matrix as it has the properties

RRT = RTR = I, Det(R) = 1, (4.59)

which can be verified by using the definition (4.57) and the identity

x̃ỹ ≡ yxT − xTy I. (4.60)

The identity (4.60) is the vector triple product expansion, also known as Lagrange’s
formula, written in matrix notation. It follows that the product A (0,x)A∗ evaluates to a
quaternion (0,y) for which the vector y is the result of rotating and scaling the vector x
by R and s, respectively. As a consequence, for any quaternion A ∈ H, A 6= 0 there exists
a rotation matrix R ∈ SO(3) and a scaling factor s ∈ R+ such that

A (0,x)A∗ = (0, sRx) , ∀ x ∈ R3. (4.61)
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To deduce the inverse, we take an arbitrary rotation matrix R ∈ SO(3) and show the
existence of a quaternion A ∈ H such that (4.61) holds. Any rotation matrix R ∈ SO(3)
may be represented as

R = I + ñ sinϕ+ ñ2(1− cosϕ) (4.62)

with n ∈ R3 being the axis of rotation (|n| = 1) and ϕ the rotation angle. Since

(0, sR) = (0, s(I + ñ sinϕ+ ñ2(1− cosϕ))) = A (0,x)A∗, ∀ x ∈ R3 (4.63)

is fulfilled for any of the two quaternions

A = ± (
√
s cos

ϕ

2
,n
√
s sin

ϕ

2
) , (4.64)

one already has proven this assertion, i.e. that for any rotation matrix R ∈ SO(3) and
scaling factor s ∈ R+ there exists a quaternion A ∈ H such that

(0, sRx) = A (0,x)A∗, ∀ x ∈ R3. (4.65)

It has to be noted that the associated mapping sR → A is not unique, because the two
quaternions A and −A yield the same rotation and scaling.

4.3.3 Kinematics

In this section, the kinematics of the scalable body with three translational, three ro-
tational and one uniform scaling degree of freedom is described. Every point P ′ of the
scalable body in a reference configuration can be addressed by a fixed vector % ∈ R3 (% =
const.) starting from a reference point C ′ (cf. Figure 4.3). The actual position P of a

Figure 4.3: Scalable body kinematics.

point in a displaced configuration is described by the vector ξ ∈ R3 starting at the in-
ertial point O. The vector ξ can be obtained by applying a rotation R ∈ SO(3) and a
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scaling s ∈ R+ on the vector % and adding a displacement r ∈ R3 for the translational
degrees of freedom. This yields the kinematic relation

ξ = sR%+ r (4.66)

for the scalable body. To parametrize the rotation R and the scaling s a quaternion

A = (a0,a) ∈ H, |A| 6= 0 (4.67)

is used, which allows to reformulate the kinematic relation (4.66) in quaternion notation

(0, ξ) = A (0,%)A∗ + (0, r) (4.68)

by using the results from Section 4.3.2. The displacement r and the components of the
quaternion A are grouped into a generalized coordinates vector

q :=

 ra0

a

 . (4.69)

The absolute velocity ξ̇ of a point on the body is obtained by differentiating equa-
tion (4.68) with respect to time,

(0, ξ̇) = Ȧ (0,%)A∗ + A (0,%) Ȧ∗ + (0, ṙ)

=
AA∗

|A|2 Ȧ (0,%)A∗ + A (0,%) Ȧ∗
AA∗

|A|2 + (0, ṙ)

=
A

|A|
(

(0,%) Ȧ∗A− A∗Ȧ (0,−%)
) A∗
|A| + (0, ṙ)

=
A

|A| Im
(

(0,%) (2A∗Ȧ)∗
) A∗
|A| + (0, ṙ) .

(4.70)

Here it is useful to introduce new variables

v := ṙ, (ν,ω) := 2A∗Ȧ (4.71)

for the terms containing the derivatives of the generalized coordinates. A geometric
interpretation of v, ν and ω is given at the end of this section. The new variables v, ν
and ω can then be taken to define the vector of generalized velocities as

u :=

vν
ω

 =

(
I 0
0 2ϕ(A∗)

)
︸ ︷︷ ︸

=: Q

q̇ (4.72)

and relate them to the derivative of the generalized coordinates as shown. The ma-
trix Q ∈ R7×7 is regular for any A 6= 0 and can be obtained by rewriting (4.71) with the
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help of (4.48). In terms of the generalized velocities u, equation (4.70) becomes

(0, ξ̇) =
A

|A| Im ((0,%) (ν,−ω))
A∗

|A| + (0,v)

=
A

|A| Im
(
(%Tω,%ν − %̃ω)

) A∗
|A| + (0,v)

=
A

|A| (0,%ν − %̃ω)
A∗

|A| + (0,v)

= (0,R%ν −R%̃ω) + (0,v)

= (0, (I R% −R%̃)u) ,

(4.73)

where the quaternion product has been removed with the help of (4.61). Two purely
imaginary quaternions are equal when their imaginary components are equal. This yields
the equation

ξ̇ = (I R% −R%̃)Qq̇ (4.74)

relating the absolute velocity ξ̇ of a point of the scalable body to the derivative of the
generalized velocities q̇.
The generalized velocity defined in (4.72) consists of the vector v, the scalar ν and the
vector ω. The velocity v is the absolute velocity of the point C, which can be seen directly
from the definition. To get an interpretation of ν and ω, their definition (4.71) can be
reformulated in terms of ṡ and Ṙ. First, the absolute velocity ξ̇ expressed in ṡ and Ṙ is
obtained by differentiating (4.66) with respect to time, yielding

ξ̇ = ṙ + ṡR%+ sṘ%

= ṙ +R(ṡ%+ sRTṘ%).
(4.75)

On the other hand, the absolute velocity ξ̇ in terms of ν and ω can be obtained from the
last line of (4.73),

ξ̇ = v +R(ν%+ ω̃%). (4.76)

Of course, both representations of the velocity field have to be equal for any point of the
body, i.e.

v +Rν%+Rω̃% = ṙ +Rṡ%+RsRTṘ%, ∀ % ∈ R3. (4.77)

Solving this variational equation for % = 0 and % 6= 0 yields

v = ṙ, ν = ṡ, ω̃ = sRTṘ. (4.78)

Obviously ν is the scalar scaling velocity associated with the scaling factor s. The absolute
angular velocity Ω associated with a rotation R is given by

Ω̃ := ṘRT. (4.79)

Expressing ω̃ in terms of Ω̃,

ω̃ = sRTṘ = sRTṘRTR = sRTΩ̃R, (4.80)
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together with the rotational invariance of the cross product

(Rx)˜ = Rx̃RT, ∀ x ∈ R3, R ∈ SO(3) (4.81)

yields the matrix relation
ω̃ = s(RTΩ)˜. (4.82)

Removing the cross product operator one gets the equation

ω = sRTΩ. (4.83)

This means the vector ω is the angular velocity Ω associated with the rotation R, scaled
by the factor s and rotated withRT from the displaced configuration back to the reference
configuration.

4.3.4 Equations of Motion

The variational equations of motion described in Section 3.2 can be combined with the
kinematics from Section 4.3.3 to obtain the equations of motion of the scalable body.
In the following the variational formulation (3.20) based on the kinetic energy will be
used to derive the equations of motion. Alternatively one could also use equation (3.13)
or equation (3.18) directly. As a first step the definition of the kinetic energy (3.19) is
evaluated with the absolute velocity (4.74), which yields

T =
1

2

∫
B
ξ̇
T
ξ̇dm

=
1

2
q̇TQT

∫
B

 I R% −R%̃
%TRT %T% 0
%̃RT 0 −%̃2

 dm

︸ ︷︷ ︸
=: M

Qq̇

=
1

2
q̇TQTMQq̇.

(4.84)

The arbitrary reference point C ′ introduced in Section 4.3.3 is chosen now to be identical
with the center of mass of the mass distribution in the reference configuration. This means
that the integral ∫

B
% dm = 0 (4.85)

is always zero. The two abbreviations for the mass and classical inertia tensor

m =

∫
B

dm, Θ =

∫
B
−%̃2 dm (4.86)

introduced in Section 4.1 represent the mass distribution in the body. The remaining
integral ∫

B
%T% dm =

1

2
TrΘ (4.87)
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is half the trace of the classical inertia tensor Θ as can be verified easily. This finally
yields the constant and symmetric mass matrix

M =

mI 0 0
0 1

2
TrΘ 0

0 0 Θ

 . (4.88)

If the classical inertia tensor Θ of the body is positive definite, then the mass matrix M
is positive definite as well. For the lower right submatrix of M the abbreviation

Θ̂ :=

(
1
2

TrΘ 0
0 Θ

)
(4.89)

is introduced. The kinetic energy T as given in (4.84) is a quadratic form in q̇, from
which the partial derivative ∂T/∂q̇ can be obtained directly. To calculate the partial
derivative ∂T/∂q it is useful to note that in this case the kinetic energy can be formulated
as the sum of a quadratic form in q plus a term not depending on q. One gets

T =
1

2
q̇TQTMQq̇

=
m

2
ṙTṙ + 2ψT(Ȧ)ϕ(A) Θ̂ ϕT(A)ψ(Ȧ)

=
m

2
ṙTṙ + 2ψT(A)ϕ(Ȧ) T TΘ̂ T ϕT(Ȧ)ψ(A)

=
m

2
ṙTṙ + 2ψT(A)ϕ(Ȧ) Θ̂ ϕT(Ȧ)ψ(A)

=
m

2
ṙTṙ +

1

2
qTQ̇TMQ̇q

(4.90)

where the identity

ϕT(A)ψ(B) = ψ(A∗B) = ψ((B∗A)∗) = T ψ(B∗A) = T ϕT(B)ψ(A) (4.91)

has been used. Using these two representations of the kinetic energy one obtains(
∂T

∂q̇

)T
= QTMQq̇,

(
∂T

∂q

)T
= Q̇TMQ̇q (4.92)

for the partial derivatives. Inserting them into the variational equations of motion (3.20)
yields

δqT(
d

dt
(QTMQq̇)− Q̇TMQ̇q − fq) = 0 ∀ δq. (4.93)

By evaluating the time derivative and the variation one gets the equations of motion

QTMQq̈ +QTMQ̇q̇ + Q̇TM(Qq̇ − Q̇q)− fq = 0 (4.94)

of the scalable body. The only thing that remains to do, is to specify the force distribu-
tion dFq and to calculate from it the associated generalized force fq,

fq =

∫
B

(
∂ξ

∂q

)T
dFq. (4.95)
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Before doing this, the force distribution is split up once more

dFq = dFe + dFg (4.96)

into a portion dFe and a force distribution dFg which will be used in Section 4.3.5 to realize
an additional perfect bilateral constraint that makes the scalable body rigid. According
to (4.95), the generalized force associated with dFg is denoted by

fg :=

∫
B

(
∂ξ

∂q

)T
dFg. (4.97)

The partial derivative occurring in (4.95) can be obtained via relation (3.15) and the
absolute velocity (4.74),

∂ξ

∂q
=
∂ξ̇

∂q̇
=
(
I R% −R%̃

)
Q. (4.98)

The three integrals that result for dFe when putting (4.98) into (4.95) are

F :=

∫
B

dFe, SC :=

∫
B
%TRTdFe, MC :=

∫
B
%̃RTdFe (4.99)

and have the following meaning: The vector F is the resultant external force and the
vector MC is the resultant moment with respect to the point C. The scalar SC is the re-
sultant scaling force with respect to point C. The resultant scaling force and the resultant
moment are formed by rotating the external forces with RT back from the displaced con-
figuration to the reference configuration. With these abbreviations one gets the complete
generalized force (4.95) as

fq = QT

 F
SC
MC

+ fg. (4.100)

Setting the resultant forces and the additional generalized force fg equal to zero results
in a generalized force fq which is equal to zero as well. In this case the equations of
motion (4.94) would describe the dynamics of a free scalable body.

4.3.5 Scaling Constraint

In this section, an additional perfect bilateral constraint is applied on the scalable body
in order to make it rigid. The scaling is the only additional degree of freedom that makes
the scalable body different from a rigid body. For a rigid body the scaling s as introduced
in Section 4.3.3 is always equal to one. The corresponding constraint equation can be
written by (4.57) as

g(q) = |A|2 − 1 = 0. (4.101)

A force law of d’Alembert-Lagrange type

δqTfg = 0 ∀ δq | δg = 0 (4.102)
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will now be formulated to complete the description of the perfect bilateral constraint.
The product δqTfg is the virtual work done by the constraint force (cf. Section 3.2). The
virtual work has to vanish for any virtual displacements induced by δq that are compatible
with the constraint (i.e. δg = 0). A simplified illustration of this situation is shown in
Figure 4.4. The relation between variations δg of the constraint and variations δq of the

Figure 4.4: Constraint.

generalized coordinates is classically given by

δg =
∂g

∂q
δq. (4.103)

Combining this with the force law (4.102) yields

δqTfg = 0 ∀ δq | δqT
(
∂g

∂q

)T
= 0. (4.104)

Evaluating the variation reveals that the generalized constraint force fg lies in the linear
subspace spanned by the vector (∂g/∂q)T. This can be formulated with (4.69) and (4.47)
as

fg =

(
∂g

∂q

)T
λ =

(
0

2ψ(A)

)
λ, λ ∈ R, (4.105)

where λ is the scalar constraint force associated with the constraint. Inserting the gener-
alized constraint force fg into the equation (4.94) finally yields with the help of (4.100)
the DAE description

QTMQq̈ +QTMQ̇q̇ + Q̇TM (Qq̇ − Q̇q)−QT

 F
SC + λ
MC

 = 0, |A|2 = 1 (4.106)

of the dynamics of a rigid body. In this formulation the unit length restriction of the
quaternion is explicitly contained as algebraic constraint. The associated constraint
force λ is mechanically consistent, as setting it to zero and dropping the constraint equa-
tion restores the unrestricted dynamics of the scalable body.
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4.3.6 Generalized Velocities

The DAE formulation of the dynamics of a rigid body obtained in the last section can
be further simplified by replacing the derivative of the generalized coordinates q̇ with
the generalized velocities u as introduced in Section 4.3.3. As a first step the equations
of motion (4.93) based on the principle of virtual work are replaced by an equivalent
formulation based on the principle of virtual power

δq̇T(
d

dt
(QTMQq̇)− Q̇TMQ̇q − fq) = 0 ∀ δq̇. (4.107)

Next, the kinematic relation (4.72) is solved for the derivative of the generalized coordi-
nates

q̇ = Q−1u. (4.108)

The inverse Q−1 can be obtained by inverting each block on the diagonal of Q. With the
help of relation (4.46) one gets

Q−1 =

(
I 0
0 1

2|A|2ϕ(A)

)
. (4.109)

Equation (4.108) applies in the same form for the virtual velocities,

δq̇ = Q−1δu (4.110)

as follows directly from (3.22). Inserting (4.108) and (4.110) into (4.107) yields

δuTQ−T
d

dt
(QTMu)− δuTQ−TQ̇TMQ̇q − δuTQ−Tfq = 0 ∀ δu. (4.111)

After having carried out the derivatives with respect to time one gets

δuTMu̇+ δuTQ−TQ̇TM (u− Q̇q)− δuTQ−Tfq = 0 ∀ δu. (4.112)

To further simplify this equation, the product Q−TQ̇T is evaluated in terms of the gener-
alized velocities u and the generalized coordinates q. The matrix Q−T can be obtained
by transposing (4.109) and applying relation (4.43). Transposing the time derivative
of (4.72) yields the matrix Q̇T. For the product one obtains

Q−TQ̇T =

(
I 0
0 1

2|A|2ϕ(A∗)

)(
0 0

0 2ϕ(Ȧ)

)
=

1

2|A|2
(

0 0

0 ϕ(2A∗Ȧ)

)

=
1

2|A|2
(

0 0
0 ϕ((ν,ω))

)
=

1

2|A|2

 0 0 0
0 ν −ωT

0 ω νI + ω̃

 (4.113)

by using relations (4.41) and (4.44) as well as the kinematic relation (4.71) in quaternion
notation. Similarly the product Q̇q can be evaluated

Q̇q =

(
0 0

0 2ϕ(Ȧ∗)

)(
r

ψ(A)

)
=

(
0

ψ(2Ȧ∗A)

)
=

(
0

ψ((ν,ω)∗)

)
=

 0
ν
−ω

 . (4.114)
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Combining the results from (4.113) and (4.114), one gets the simplification

Q−TQ̇TM (u− Q̇q) =

=
1

2|A|2

 0 0 0
0 ν −ωT

0 ω νI + ω̃

mI 0 0
0 1

2
TrΘ 0

0 0 Θ

 v
0

2ω


=

1

2|A|2

 0 0 0
0 ν −ωT

0 ω νI + ω̃

 mv
0

2Θω

 =
1

|A|2

 0
−ωT

νI + ω̃

Θω
(4.115)

for the product occurring in (4.112). Inserting the simplification (4.115) and the gener-
alized force (4.100) together with the constraint force (4.105) into equation (4.112) one
gets the variational equation

δuTMu̇+ δuT 1

|A|2

 0
−ωT

νI + ω̃

Θω − δuT

 F
SC + λ
MC

 = 0 ∀ δu. (4.116)

Eliminating the variation and completing the set of equations with the kinematic rela-
tion (4.108) and the constraint equation (4.101), one gets the full DAE formulation for
the dynamics of a rigid body

mv̇ = F
1

2
TrΘν̇ − 1

|A|2ω
TΘω = SC + λ

Θω̇ +
1

|A|2 (νI + ω̃)Θω = MC

,

ṙ = v

Ȧ =
1

2|A|2A (ν,ω)
, |A|2 = 1 (4.117)

in terms of the generalized velocities v, ν, and ω. This formulation is equivalent to equa-
tions (4.106). If the constraint force λ is set to zero and the constraint equation |A|2 = 1
is removed one recovers the full seven degree of freedom dynamics of the scalable body.
The rigid body DAE (4.117) can be simplified to the classical Newton-Euler equations
when the constraint is differentiated twice

s = |A|2 = 1 ⇒ ṡ = ν = 0, ν̇ = 0 (4.118)

and all occurrences of |A|2, ν and ν̇ are eliminated. One then gets the ODE of a rigid
body {

mv̇ = F

Θω̇ + ω̃Θω = MC

,

ṙ = v

Ȧ =
1

2
A (0,ω)

(4.119)

and an equation to calculate the scaling constraint force as

λ = −ωTΘω − SC . (4.120)

The scaling constraint force λ has to balance the external resultant scaling force SC and a
term depending on the angular velocity. If there is no external resultant scaling force SC
and the body is not rotating, then a scalable body is identical to a rigid body.
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Note that while it is very simple to reduce the rigid body DAE formulation (4.117) to the
rigid body ODE formulation (4.119), the inverse way going from the ODE to the DAE
based on the scalable body is not directly possible. In the Newton-Euler equations used in
the ODE description of a rigid body, the scaling dynamics is no longer present. Exactly
this scaling dynamics and its coupling to the Newton-Euler equations is missing when
one tries to recover the scalable body based DAE of a rigid body from the Newton-Euler
equations. Correspondingly the mass term 1/2 TrΘ associated with the scaling dynamics
in the second equation of (4.117) can be replaced by any other value if only the rigid body
dynamics is to be described correctly.
The mechanical model of a scalable body itself might be rarely used in a technical ap-
plication, due to the fact that a scalable body is rather complicated to build in reality.
Nevertheless, the equations of motion of a scalable body can be valuable for the interpre-
tation of the quaternion based rigid body DAE. The regular 7× 7 mass matrix used in
the rigid body DAE formulation is exactly the mass matrix of the scalable body. The La-
grangian multiplier associated with the quaternion unit length constraint has the meaning
of a constraint force, preventing the scaling body from changing its size. While already
equation (4.106) completely describes the dynamics of a rigid body in DAE form, it is
difficult to see the connection to the Newton-Euler equations (4.119). This is the rea-
son why the equations of motion of a scalable body have been reformulated to (4.117)
using angular and scaling velocities. The rigid body DAE formulation (4.117) can be
directly recognized as a DAE generalization of the Newton-Euler equations (4.119), while
at the same time being the complete description of the dynamics of a scalable body when
removing the explicitly contained constraint.
Note that the 7× 7 mass matrix obtained in this section for the scalable body is decom-
posable as assumed in Section 3.5. In the formulation for the equations of motion derived
in Section 3.5 one can directly include scalable bodies, and with additional quaternion
unit length constraints also rigid bodies can be described.





Chapter5
Integrators

The equations of motion of a mechanical system can be solved with a numerical integration
scheme. The numerical integration with respect to time can be formulated as the following
time step problem: For given initial time tB, initial generalized coordinates qB := q(tB)
and initial generalized velocities uB := u(tB) find approximates of the generalized coor-
dinates qE := q(tE) and generalized velocities uE := u(tE) at the end of a chosen time
interval [tB, tE]. The length of the time step is denoted with ∆t = tE− tB. Concatenating
many time steps then yields an approximation of the solution over a longer time interval.
The approximation of the end time generalized coordinates qE and end time generalized
velocities uE has to be made such that in the limit of vanishing time steps ∆t → 0
the approximation converges to the exact solution. In Section 5.1 an integrator based
on Moreau’s midpoint rule is described. This integrator will be used as reference for
the consistent integrators. Different variants of consistent integrators are developed in
Section 5.2.

5.1 Moreau’s Midpoint Rule

In this section, the numerical integration of the dynamics of a non-smooth mechanical
system with an integrator based on Moreau’s midpoint rule is described. Moreau’s mid-
point rule is an event capturing time-stepping scheme developed by Moreau in [60, 61].
In an event capturing time-stepping scheme all non-smooth events in a time step, like for
example impacts or stick-slip transitions, are handled with an implicit inclusion based dis-
cretization scheme, which does not resolve the exact point in time where the events occur.
In contrast to this, event driven-methods try to separate the integration into piecewise
smooth parts and discrete switching points for the non-smooth events. The equations of
motion of the non-smooth mechanical system are assumed to have the form

M(q, t)u̇− h(q,u, t)−
∑

i ∈ I(q,t)

W i(q, t)λi = 0, q̇ = F (q, t)u+ β(q, t)

γi = W T
i (q, t)u+ χi(q, t), γi ∈ NCi(−λi), i ∈ I(q, t).

(5.1)

81
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This is a combination of the equations of motion (3.31) derived in Section 3.2 and Sec-
tion 3.3 with set-valued force laws of normal cone type as described in Section 3.7. The
force laws in (5.1) are formulated on velocity level. If the model contains unilateral con-
tacts on displacement level, then they can be considered by keeping only the indices i of
contacts that are closed on displacement level gi(q, t) = 0 in the set I of active force laws.
The equations of motion are completed with an impact equation and Newton impact laws
in inclusion form

M (q, t)(u+ − u−)−
∑

i ∈ I(q,t)

W i(q, t)Λi = 0

γ±i = W T
i (q, t)u± + χi(q, t), γ+

i + εiγ
−
i ∈ NDi

(−Λi), i ∈ I(q, t).

(5.2)

The equations of motion in inclusion form (5.1) and the impact inclusions (5.2) constitute
together the model of the non-smooth mechanical system.

Moreau’s midpoint rule uses one difference scheme to approximate both the equations
of motion in inclusion form (5.1) and the impact inclusions (5.2). For the generalized
coordinates a midpoint rule is used, while the velocities are discretized with a partially
implicit Euler step. Starting from a known state uB = u(tB) and qB = q(tB) at the
time tB of a time step ∆t, the coordinates qM = q(tM) at the midpoint are calculated

qM := qB +
∆t

2
(F (qB, tB) uB + β(qB, tB)), tM = tB +

∆t

2
. (5.3)

Using the midpoint coordinates qM and the velocities uB from the beginning of the time
step one calculates M(qM , tM), h(qM ,uB, tM), W i(q

M , tM), χi(q
M , tM) and sets up the

index set I(qM , tM). As a next step one has to solve the inclusion

M (uE − uB)− h∆t−
∑
i ∈ I

W iΛi = 0,

γBi = W T
i u

B + χi, γEi = W T
i u

E + χi,

γEi + εiγ
B
i ∈ NDi

(−Λi),

(5.4)

which approximates the equations of motion and the impact inclusions over a time step ∆t,
for the end time velocities uE and and the discrete impulses Λi. Note that the Λi in the
discrete problem (5.4) approximate the sum of the impact-impulses and the time integral
of the forces λi. As a result of (5.4) one obtains the end time velocities uE. Finally the
end time coordinates have to be calculated

qE := qM +
∆t

2
(F (qM , tM) uE + β(qM , tM)), tE = tM +

∆t

2
. (5.5)

The core problem of an integration step is the solution of the inclusion (5.4). By intro-
ducing the abbreviations

ξi := γEi + εiγ
B
i , Gij := W T

iM
−1W j, ci := W T

iM
−1h∆t+ (1 + εi)γ

B
i (5.6)
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it can be rewritten as an inclusion problem of the form

ξi ∈ NDi
(−Λi), ξi =

∑
j ∈ I

GijΛj + ci, i ∈ I (5.7)

which has to be solved for the discrete impact-impulses Λi. The end time velocities can
then be calculated in an explicit way as

uE = uB +M−1h∆t+M−1
∑
i ∈ I

W iΛi. (5.8)

The inclusion problem (5.7) consists of a normal cone inclusion and a linear equation
for each set-valued force law. A numerical solution for the normal cone inclusions and
linear equations (5.7) can be obtained with the iterative methods described in Section 2.5.
An analysis of the convergence of Moreau’s midpoint rule and a comparison with other
time-stepping methods can be found in [78].

5.2 Consistent Integrators

The numerical integration of the dynamics of a mechanical system yields an exact solution
in general only in the limit of a vanishing time step. If the mechanical system conserves
the total energy (see Section 3.9), then this property is usually lost in a solution obtained
by numerical integration. This means at some points in the numerical integration process
errors are introduced into the solution that destroy the property. One such point is the
numerical solution of a difference scheme. The difference scheme is solved only up to a
certain tolerance and it is solved by using floating point numbers with a finite number of
digits. In general, this finite precision error does not depend on the length of the time
step and it can be controlled quite well. Unfortunately, the finite precision error is not the
only source of errors. Assuming the difference scheme of the numerical integrator could
be solved without error, one would still not get a numerical solution that exhibits all
properties of the exact solution. The reason is the discretization errors introduced when
replacing the differential formulation of the equations of motion with a difference scheme.
In the consistent integrators discussed in this work, the aim is to preserve properties of
the exact solution in the discretization process, so that they are present in exact solutions
of the difference scheme as well. The finite precision errors are not addressed specifically
in this work and they are not part of any consistency consideration.
An integrator that is consistent with respect to the total energy, preserves an energy
conservation property in the difference scheme if that property is present in the differential
formulation. This means, for a mechanical system with the property

Ė(u, q) = 0, E(u+, q) = E(u−, q) (5.9)

an energy consistent integration scheme has the property

E(uE, qE) = E(uB, qB). (5.10)
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Of course this property has to be given not only for a vanishing time step, but for all
lengths of time steps. Identically, if the mechanical system is dissipative

Ė(u, q) ≤ 0, E(u+, q) ≤ E(u−, q) (5.11)

then an energy consistent integration scheme has the dissipation property

E(uE, qE) ≤ E(uB, qB) (5.12)

as well. For a non-smooth mechanical system with unilateral contacts one can define that
the consistent discretization of

g(q) = 0 : ġ(q̇, q) ≥ 0 (5.13)

has to have the property
g(qB) ≤ 0 : g(qE) ≥ g(qB). (5.14)

This can be seen as a consistency condition for unilateral contacts on velocity level. It
does not guarantee g(q) ≥ 0 for a numerical solution, but it makes sure that once a
contact is closed, the interpenetration does not further increase. A consistency condition
can be formulated as well for bilateral constraints on displacement and on velocity level,
where they guarantee that also in a numerical approximation the constraints are fulfilled
exactly at the end of a time step. Some consistent integrators also preserve momentum
properties (see for example [13]), but this is not considered in this work.
This section is organized as follows: In Section 5.2.1, the discrete derivative introduced
by Gonzalez in [31, 32] is described. The discrete derivative is an important concept that
is used in the following sections for the construction of consistent integration schemes.
In Section 5.2.2, energy consistent integration schemes based on a constant mass matrix
formulation are developed. In Section 5.2.3, an energy consistent integrator based on
the coordinate dependent mass matrix formulation from Section 3.4 is given. Using the
equations of motion based on the decomposed mass matrix from Section 3.5, a non-
smooth and consistent integration scheme is formulated in Section 5.2.4. A quaternion
based non-smooth and consistent integrator is described in Section 5.2.5.

5.2.1 Discrete Derivative

The discrete derivative as introduced by Gonzalez in [31, 32] is an important concept for
the design of consistent integration schemes. Given a function f : Rn → R, the discrete
derivative is a mapping Df/Dx : Rn × Rn → Rn which can be used to approximate the
partial derivate ∂f/∂x : Rn → Rn. If the arguments of the discrete derivative are a
and b, then it approximates the partial derivate at the midpoint (a+b)/2. Besides being
an approximation of the partial derivative at the midpoint, the discrete derivative of the
points a and b yields exactly the difference f(b)− f(a) of the functions values of f when
multiplied with the difference vector b−a. This directionality property can be written as

Df

Dx
(a, b)(b− a) = f(b)− f(a), ∀ a, b. (5.15)
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As in [31, 32], the consistency property ensuring a good approximation is formulated as

Df

Dx
(a, b) =

∂f

∂x

(a+ b

2

)
+O(‖b− a‖), ∀ a, b (5.16)

where ‖ · ‖ is the standard Euclidean norm. Note that the discrete derivative has to
be evaluated with two arguments and that the exact difference of the function values
is obtained only when multiplying with the difference of the points used as arguments.
When multiplying with the difference to other points one gets only an approximation for
the difference of the function values,

Df

Dx
(a, b)(x− a) ≈ f(x)− f(a), (5.17)

as when multiplying the partial derivative with a difference vector

∂f

∂x
(a)(x− a) ≈ f(x)− f(a). (5.18)

An illustration of the discrete derivative and the partial derivative of a function is given
in Figure 5.1.

Figure 5.1: Discrete derivative and partial derivative.

For any smooth function f , the discrete derivative can be constructed with the relation

Df

Dx
(a, b) =

∂f

∂x

(a+ b

2

)
+
f(b)− f(a)− ∂f

∂x

(
a+b

2

)
(b− a)

‖b− a‖2
(b− a)T. (5.19)

To verify that this construction always has the directionality property (5.15) we multi-
ply (5.19) with (b− a) from the right and obtain

Df

Dx
(a, b)(b− a) =

∂f

∂x

(a+ b

2

)
(b− a) +

f(b)− f(a)− ∂f
∂x

(
a+b

2

)
(b− a)

‖b− a‖2
‖b− a‖2

=
∂f

∂x

(a+ b

2

)
(b− a) + f(b)− f(a)− ∂f

∂x

(
a+ b

2

)
(b− a)

= f(b)− f(a).
(5.20)
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To verify that the construction (5.19) has the consistency property (5.16) we use the
Taylor series of the function f , i.e.

f(x) = f(y) +
∂f

∂x
(y)(x− y) +

1

2
(x− y)T

∂2f

∂x2
(y)(x− y) +O(‖x− y‖3). (5.21)

We introduce the abbreviations

µ =
a+ b

2
, σ =

b− a
2

(5.22)

for the midpoint µ and half the difference σ between a and b to simplify the notation.
With these we can now write the Taylor series of a and b based on the midpoint

f(a) = f(µ− σ) = f(µ)− ∂f

∂x
(µ)σ +

1

2
σT ∂

2f

∂x2
(µ)σ +O(‖σ‖3)

f(b) = f(µ+ σ) = f(µ) +
∂f

∂x
(µ)σ +

1

2
σT ∂

2f

∂x2
(µ)σ +O(‖σ‖3).

(5.23)

Subtracting the first equation from the second yields

f(b)− f(a) = 2
∂f

∂x
(µ)σ +O(‖σ‖3). (5.24)

Replacing µ and σ we get the estimate

f(b)− f(a)− ∂f

∂x

(a+ b

2

)
(b− a) = O(‖b− a‖3) (5.25)

for the expression occurring above the fraction bar in (5.19). Inserting (5.25) into (5.19)
one obtains

Df

Dx
(a, b) =

∂f

∂x

(a+ b

2

)
+
O(‖b− a‖3)

‖b− a‖2
(b− a)T

=
∂f

∂x

(a+ b

2

)
+O(‖b− a‖)(b− a)T

=
∂f

∂x

(a+ b

2

)
+O(‖b− a‖2).

(5.26)

As one can see, the fraction in (5.19) is well behaved, as the numerator vanishes before
the denominator. The construction (5.19) also fulfills the consistency property (5.16).
If the function is quadratic

g(x) =
1

2
xTGx+ cTx+ d, GT = G (5.27)

then the discrete derivative is identical with the partial derivative at the midpoint

Dg

Dx
(a, b) =

∂g

∂x

(a+ b

2

)
=

1

2
(a+ b)TG+ cT (5.28)

as the second summand in (5.19) vanishes.
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For vector functions f : Rn → Rm the discrete derivative can be assembled component-
by-component

Df

Dx
(a, b) =


Df1

Dx
(a, b)

...
Dfm
Dx

(a, b)

 (5.29)

yielding a discrete Jacobi matrix.

5.2.2 Constant Mass Matrix

In this section, a first consistent integration scheme for mechanical systems with a constant
mass matrix is formulated. The equations of motion in differential-algebraic form are given
by

Mu̇+

(
∂V

∂q

)T
−
(
∂g

∂q

)T
λ = 0

− q̇ + u = 0

g(q) = 0.

(5.30)

The mass matrix M ∈ Rf×f is assumed to be constant, symmetric and positive definite.
This yields inertial forces that consist only of the term Mu̇. Beside the inertial forces,
there are potential forces described by a potential function V : Rf → R. The potential V
is a function of the generalized coordinates q ∈ Rf . The geometric bilateral constraints g
considered in the equations of motion (5.30) are assumed to be perfect and scleronomic.
As follows from the discussion in Section 3.9, the total energy is preserved in this system.
Note that the affine body based DAE formulation of the equations of motion of a rigid
body from Section 4.2 fits exactly into the form of (5.30). Within the form of (5.30) one
can still formulate a multibody system with potential forces and additional geometric,
scleronomic and perfect bilateral constraints. Based on the conserving integration scheme
suggested by Gonzalez [32], we create a conserving integrator by direct discretization of
the DAE (5.30)

M (uE − uB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

Dg

Dq
(qB, qE)

)T
λ̂ = 0

qB − qE +
∆t

2
(uB + uE) = 0

g(qE) = 0

(5.31)

where the partial derivatives from the DAE have been replaced with discrete deriva-
tives (see Section 5.2.1). As in Moreau’s midpoint rule, a force time integral λ̂ is intro-
duced as discrete variables for the constraint forces λ. This should improve the condi-
tioning of the Jacobian matrix as it occurs in a Newton iteration used for the numerical
solution of the discrete equations (5.31). Except for the scaling of the discrete constraint
forces with ∆t, the integration scheme (5.31) is identical to the one proposed by Betsch in
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the beginning of [10, 11] as basis for the discrete null space method. The integrator (5.31)
is an implicit integration scheme resulting in a set of equations which is nonlinear in gen-
eral. The consistent discretization of the bilateral constraints on displacement level can
be seen directly from the equations (5.31). The equations guarantee that the bilateral
constraints are fulfilled at the end of every time step. To verify that the integrator (5.31)
is conserving the total energy, we multiply the first and second equation in (5.31) from
the left with (qE − qB)T and (uE − uB)TM respectively and sum up the result. One
obtains

(qE − qB)T
[
M (uE − uB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

Dg

Dq
(qB, qE)

)T
λ̂

]
+ (uE − uB)TM

[
qB − qE +

∆t

2
(uB + uE)

]
= 0.

(5.32)

The sum of the two mixed products (qE−qB)TM (uE−uB) and (uE − uB)TM(qB − qE)
disappears, because the mass matrix is symmetric. The discrete derivatives can be re-
placed with a difference of the corresponding functions by applying the directionality
property (5.15), yielding

∆t
(
V (qE)− V (qB)

)
+

∆t

2
(uE − uB)TM (uB + uE) +

(
g(qB)− g(qE)

)T
λ̂ = 0. (5.33)

The bilateral constraints are fulfilled at the end of every time step. If the integration is
started with compatible initial conditions, then we can assume

g(qB) = 0, g(qE) = 0 (5.34)

for all time steps. Canceling also the remaining ∆t yields

V (qE)− V (qB) +
1

2
(uE − uB)TM(uB + uE) = 0. (5.35)

The quadratic form in (5.35) is just the difference of the kinetic energy between beginning
and end of the time step. This means the total energy is preserved

V (qE) + T (uE) = V (qB) + T (uB) (5.36)

and the integrator (5.31) is consistent with respect to the total energy. The geometric
bilateral constraints in (5.30) give rise to constraints on velocity level

g(q) = 0 ⇒ ∂g

∂q
(q)u = 0 (5.37)

which are perfectly fulfilled for an exact solution of (5.30). From the constraint equations
at the beginning and the end of the time step it follows, that the difference qE − qB is
orthogonal to the discrete derivative of the constraint

g(qB) = 0, g(qE) = 0 ⇒ Dg

Dq
(qB, qE)(qE − qB) = 0. (5.38)
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Replacing the difference qE − qB with the help of the second equation from (5.31) yields

Dg

Dq
(qB, qE)(uB + uE) = 0. (5.39)

Comparing this with the velocity constraint (5.37) shows, that in the discrete approxima-
tion the velocity constraints are fulfilled only for the average velocity of a time step. This
is illustrated in Figure 5.2. A consistent velocity at the beginning of a time step does in

Figure 5.2: Velocities in the discrete approximation.

general not yield a consistent velocity at the end of the step,

∂g

∂q
(qB)uB = 0 ;

∂g

∂q
(qE)uE = 0, (5.40)

as only the average velocity is forced to be consistent. A violation of the velocity constraint
at the beginning results in a violation at the end, which is approximately of the same size,
but into the opposite direction. In numerical simulations this usually results in velocities
oscillating around the correct value with amplitudes that can increase over time. The
oscillations of the velocities has been described for a similar integration scheme as well by
Gonzalez [33]. One of the sources of this problem is the discretization

qE − qB =
∆t

2
(uB + uE) (5.41)

of the kinematic equation q̇ = u used in the scheme (5.31). This discretization is too
restrictive and imposes constraints on qE and uE which might be incompatible with the
bilateral constraints. For example in a situation as depicted in Figure 5.3, enforcing the
difference qE − qB to be exactly parallel to the velocities is not compatible with the
bilateral constraints. The problem of inconsistent velocities could be solved by replacing
the geometric bilateral constraints with kinematic bilateral constraints. This would yield
automatically consistent velocities. Unfortunately, such an approach results in drift of
the constraints on displacement level, which again can’t be repaired, without changing
the discretization (5.41). Note that removing the drift problem with a projection to
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Figure 5.3: Velocities and position differences.

valid generalized coordinates is difficult when energy and other consistency conditions
should not be broken. For example, given the drifted generalized coordinates qE which
do not fulfill the constraint, i.e. g(qE) 6= 0, one would have to find a corrected generalized
coordinate qC that fulfills the constraint equation while the value of the potential functions
remains unchanged, i.e.

g(qC) = 0, V (qC) = V (qE). (5.42)

Depending on the situation there might be no solution to (5.42). Imagine for example a
mass point in R3 which is constraint to the surface of a sphere and which is subject to a
gravity potential force. If the mass point has drifted below the lowest (with respect to the
gravity potential) point of the sphere, then the problem (5.42) can’t be solved, because
any point on the sphere has a larger potential energy. In this case also a modification of
the velocities would be required in order to preserve the total energy.
The constraint consistency problem could be solved by adding the geometric and the
induced kinematic bilateral constraints to the DAE (5.30), while inserting additional
multipliers into the kinematic equation as suggested by Gear at al. [22]. Inspired by the
method of Gear at al., Betsch and Steinmann developed a variant to this method in [14]
for a Hamiltonian based formulation. The method by Betsch and Steinmann allows not
only to enforce consistent constraints on both levels, but also preserves the total energy.
In the following we will apply this method to the DAE (5.30). In contrast to [14] we
will still use generalized velocities instead of generalized momenta. First we introduce a
function

γ(u, q) =
∂g

∂q
u (5.43)

to express the induced kinematic bilateral constraint as γ(u, q) = 0. Then the DAE (5.30)
is extended with the kinematic constraint and an additional multiplier κ in the kinematic
equation and the equations of motion

Mu̇+

(
∂V

∂q

)T
−
(
∂g

∂q

)T
λ−

(
∂γ

∂q

)T
κ = 0

− q̇ + u−M−1

(
∂γ

∂u

)T
κ = 0

g(q) = 0

γ(u, q) = 0.

(5.44)

Adding the induced kinematic constraint equation to the set of equations does not change
the solution, as it is contained in the geometric constraint equation already. The extended
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DAE (5.44) is identical to the original DAE (5.30) if the multiplier κ is always zero. To
verify that this is always the case, we note that a solution of (5.44) fulfills the geometric
constraint equation g(q) = 0 at all times, from which follows

∂g

∂q
q̇ = 0. (5.45)

Inserting the second equation of (5.44) into (5.45) yields

∂g

∂q
u−

(
∂g

∂q

)
M−1

(
∂γ

∂u

)T
κ = 0 (5.46)

As the first term in (5.46) is always zero, one gets(
∂g

∂q

)
M−1

(
∂g

∂q

)T
κ = 0 (5.47)

as equation for the multiplier κ. If the bilateral constraints are linearly independent, then
the Delassus matrix in (5.47) is regular and the only solution is

κ ≡ 0. (5.48)

An integration scheme based on the extended DAE (5.44) can be obtained again by direct
discretization using the discrete derivative

M (uE − uB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

Dg

Dq
(qB, qE)

)T
λ̂−

(
Dγ

Dq
(uE, qB, qE)

)T
κ̂ = 0

M (qB − qE) +
∆t

2
M(uB + uE)−

(
∂γ

∂u
(qB)

)T
κ̂ = 0

g(qE) = 0

γ(uE, qE) = 0.

(5.49)

Note that the partial derivative ∂γ/∂u is identical to the discrete derivative Dγ/Du, be-
cause the function γ is linear in u. The second equation in (5.49) has been multiplied with
the regular mass matrix M in order to remove the M−1. While there was no difference
between the exact solution of the original DAE (5.30) and the extended DAE (5.44), we
get a different approximation from the extended integrator (5.49) when compared with
the original one (5.31). The extended integrator (5.49) guarantees the consistency of the
constraints on displacement level and on velocity level. This is achieved by weakening the
original discretization of the kinematic equation (5.41) with additional degrees of freedom
introduced by κ̂. In the discretization, the multipliers κ̂ should be small, but they are no
longer zero in general. At this point we can see why an additional κ-term has been added
not only to the kinematic equation but also to the first equation in (5.44). Without it
there would be no chance of maintaining the energy consistency, as the additional κ-term
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in the kinematic equation alone would destroy the total energy balance. For the difference
in total energy between end and beginning of a time step we introduce the abbreviation

∆E := E(uE, qE)− E(uB, qB) = V (qE)− V (qB) + T (uE)− T (uB). (5.50)

To verify that the integrator (5.49) is consistent with respect to the total energy, we multi-
ply the first and second equation in (5.49) from the left with (qE − qB)T and (uE − uB)T

respectively and sum up the result. One gets the differences of the potential and the
kinetic energy as above plus the terms in κ̂, i.e.

∆t∆E = (qE − qB)T
(

Dγ

Dq
(uE, qB, qE)

)T
κ̂+ (uE − uB)T

(
∂γ

∂u
(qB)

)T
κ̂

=
(
γ(uE, qE)− γ(uE, qB) + γ(uE, qB)− γ(uB, qB)

)T
κ̂

= 0

(5.51)

In the last step of (5.51) the equations γ(uE, qE) = 0 and γ(uB, qB) = 0 have been
used by assuming that the integration is started with compatible initial conditions. As
a next step one could add perfect unilateral contacts into this formulation, but we will
omit that as there is still another problem: The formulation is often very inefficient in
terms of the number of unknowns and number of equations. The constant mass matrix
assumption does not allow to use a set of minimal coordinates in most models. To
simulate one rigid body one needs to use the affine body based DAE formulation from
Section 4.2. This results in q ∈ R12, u ∈ R12, λ ∈ R6 and κ ∈ R6 which makes a
total of 36 unknowns and equations just for one rigid body. In some situations the much
simpler mass point model might be sufficient to represent inertial forces, but in general
the lack of an efficient rigid body model is a problem. The number of unknowns could
be reduced by using the discrete null space method developed by Betsch et al. in [10, 11,
52, 53]. Unfortunately, the bilateral constraints are enforced only on displacement level
when applying the discrete null space method, which cause difficulties especially when
considering unilateral constraints with impacts.

5.2.3 Coordinate Dependent Mass Matrix

In this section, an attempt at solving the problems from the previous section is discussed.
The aim is to reduce the number of unknowns and equations in a consistent integrator
while keeping bilateral constraints enforced on displacement and velocity level. The basis
for this section is the equations of motion using a coordinate dependent mass matrix

M(q)u̇+G(u, q)u+

(
∂T

∂q

)T
− fq = 0, q̇ = u (5.52)

which has been described in Section 3.4. The kinetic energy has the form

T (u, q) =
1

2
uTM (q)u. (5.53)
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The skew symmetric gyro matrix is given by

Gij(u, q) =

(
∂Mik

∂qj
− ∂Mjk

∂qi

)
uk. (5.54)

With a coordinate dependent mass matrix, many perfect bilateral constraints can be
eliminated by using an appropriate set of generalized coordinates. A rigid body for ex-
ample can be described with seven generalized coordinates and one additional bilateral
constraint using a DAE formulation based on the scalable body (see Section 4.3). For a
constant mass matrix formulation of a rigid body (as required in Section 5.2.2) one was
restricted to the affine body based DAE formulation using twelve generalized coordinates
and six bilateral constraints. Beside the inertial forces already present in (5.52) we con-
sider potential forces and a set of geometric, scleronomic and perfect bilateral constraints.
This yields the following DAE formulation:

M (q)u̇+G(u, q)q̇ +

(
∂T

∂q

)T
+

(
∂V

∂q

)T
−
(
∂g

∂q

)T
λ = 0

− q̇ + u = 0

g(q) = 0.

(5.55)

As in Section 5.2.2, the DAE is extended with additional multipliers κ and the kinematic
bilateral constraints

γ(u, q) =
∂g

∂q
u = 0 (5.56)

induced by the geometric bilateral constraints. One gets the extended DAE

M (q)u̇+G(u, q)q̇ +

(
∂T

∂q

)T
+

(
∂V

∂q

)T
−
(
∂g

∂q

)T
λ−

(
∂γ

∂q

)T
κ = 0

− q̇ + u−M−1(q)

(
∂γ

∂u

)T
κ = 0

g(q) = 0

γ(u, q) = 0.

(5.57)

which is equivalent to (5.55) by the same argument as discussed in Section 5.2.2. A
consistent integrator for the equations of motion (5.57) can be constructed again by
direct discretization. We replace all time derivatives with a difference and all the partial
derivatives with the discrete derivative. The discretization of the κ terms are chosen such
that the integrator is consistent with respect to the total energy. The consistent integrator
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for (5.57) is given by

M(qB)(uE − uB) +G(uB, qB)(qE − qB) + ∆t

(
DT

Dq
(uE, qB, qE)

)T
+ ∆t

(
DV

Dq
(qB, qE)

)T
−
(

Dg

Dq
(qB, qE)

)T
λ̂−

(
Dγ

Dq
(uE, qB, qE)

)T
κ̂ = 0

M(qB)(qB − qE) +
∆t

2
M (qB)(uB + uE)−

(
∂γ

∂u
(qB)

)T
κ̂ = 0

g(qE) = 0

γ(uE, qE) = 0.

(5.58)

When comparing with the integration scheme (5.49) from Section 5.2.2 one can see that
the main differences are the additional gyro matrixG, the discrete derivative of the kinetic
energy and the mass matrix evaluated at the beginning of the time step. Obviously the
integrator (5.58) is consistent with respect to the bilateral constraints on displacement
level and on velocity level. The consistency with respect to the total energy can be verified
by multiplying the first and second equation in (5.58) with (qE − qB)T and (uE − uB)T

respectively and summing up the products. One gets the following:

0 = (qE − qB)TM (qB)(uE − uB) + (qE − qB)TG(uB, qB)(qE − qB)

+ ∆t (qE − qB)T
(

DT

Dq
(uE, qB, qE)

)T
+ ∆t (qE − qB)T

(
DV

Dq
(qB, qE)

)T
− (qE − qB)T

(
Dg

Dq
(qB, qE)

)T
λ̂− (qE − qB)T

(
Dγ

Dq
(uE, qB, qE)

)T
κ̂

+ (uE − uB)TM(qB)(qB − qE) +
∆t

2
(uE − uB)TM(qB)(uB + uE)

− (uE − uB)T
(
∂γ

∂u
(qB)

)T
κ̂.

(5.59)

The sum of the products (qE −qB)TM (qB)(uE −uB) and (uE − uB)TM(qB)(qB − qE)
is zero, because the mass matrix M is symmetric. The product formed with the gyro
matrixG is equal to zero as well, becauseG is skew symmetric. Simplifying the remaining
expressions in (5.59) one gets

0 = ∆t
(
T (uE, qE)− T (uE, qB) + V (qE)− V (qB) + T (uE, qB)− T (uB, qB)

)
−
(
γ(uE, qE)− γ(uE, qB) + γ(uE, qB)− γ(uB, qB)

)T
κ̂

−
(
g(qB)− g(qE)

)T
λ̂

(5.60)

The bilateral constraints are fulfilled at the beginning and at the end of the time step

γ(uE, qE) = 0, γ(uB, qB) = 0, g(qE) = 0, g(qB) = 0. (5.61)
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Inserting (5.61) into (5.60) finally yields the consistency

T (uE, qE) + V (qE) = T (uB, qB) + V (qB) (5.62)

of the integrator (5.58) with respect to the total energy. For rigid body models, the con-
sistent integrator described in this section reduces the number of variables and equations
compared to the integrator based on the constant mass matrix. With the coordinate
dependent mass matrix, one can use the rigid body DAE based on the scalable body.
This results in q ∈ R7, u ∈ R7, λ ∈ R and κ ∈ R which makes a total of 16 unknowns
and equations for one body (compared to 36 with a constant mass matrix approach).
The disadvantage of the formulation presented in this section lies in the additional terms
for the inertial forces. Besides the gyro matrix there is as well a partial derivative of
the kinetic energy. The partial derivative of the kinetic energy can result in complicated
expressions already. Constructing a discrete derivative from this is possible, but increases
the complexity even further. Already for smaller mechanical systems, formulating the Ja-
cobi matrix required for solving the nonlinear equations of the integrator with a Newton
method becomes impracticable in closed form. For this reason we will omit the steps re-
quired for adding further force laws like unilateral contacts to this integrator formulation.

5.2.4 Decomposed Mass Matrix

In this section, we will formulate a consistent integrator based on the equations of motion
using a decomposed mass matrix (see Section 3.5). The kinetic energy of the mechanical
system is assumed to have the form

T (q̇, q) =
1

2
q̇TQT(q)MQ(q)q̇. (5.63)

The mass matrix with respect to q̇ ∈ Rf can be decomposed using a regular ma-
trix Q(q) ∈ Rf×f . The constant, symmetric and positive definite matrix M ∈ Rf×f

is the mass matrix with respect to the generalized velocities

u = Q(q)q̇. (5.64)

obtained by transforming q̇ withQ. Beside the inertial forces, we consider potential forces
described by the potential V (q) and geometric, scleronomic and perfect bilateral con-
straints described by gS(q). With these additional forces, the equations of motion (3.52)
then become the following DAE:

QT(q)Mu̇+H(u, q)q̇ +

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS = 0

−Q(q)q̇ + u = 0

gS(q) = 0.

(5.65)

The total energy function for this system is given by

E(u, q) =
1

2
uTMu+ V (q). (5.66)
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In contrast to the previous sections, the DAE (5.65) is formulated in terms of q and u,
where q̇ 6= u in general, but the equations of motion are still formulated based on pro-
jections associated with q. Note that the constant mass matrix approach discussed in
Section 5.2.2 is contained as special case for Q(q) = I in the approach discussed in this
section. The idea for the formulation (5.65) is based on the work by Lens et al. [51], but
here generalized velocities are used instead of generalized momenta. Also the discretiza-
tion developed in the following will be different from [51]. A direct discretization of (5.65)
would also show the constraint velocity consistency problem discussed in Section 5.2.2.
To avoid this, the DAE is extended with additional multipliers κS and the kinematic
bilateral constraints

γS(u, q) =
∂gS
∂q
Q−1(q)u = 0 (5.67)

induced by the geometric bilateral constraints. The extension is done by the same ap-
proach as in Section 5.2.2. The extended DAE has the form

QT(q)Mu̇+H(u, q)q̇ +

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS −

(
∂γS
∂q

)T
κS = 0

−Q(q)q̇ + u−M−1

(
∂γS
∂u

)T
κS = 0

gS(q) = 0

γS(u, q) = 0.

(5.68)

The extended DAE (5.68) is identical to the original DAE (5.65) for κS = 0, because the
additional induced kinematic constraint equation is already contained in the geometric
constraint equation. From gS(q) = 0 at all times it follows

∂gS
∂q
q̇ = 0. (5.69)

Solving the second equation of (5.68) for q̇ and inserting it into (5.69) yields

∂gS
∂q
Q−1(q)u︸ ︷︷ ︸

= γS(u, q) = 0

− ∂gS
∂q
Q−1(q)M−1

(
∂γS
∂u

)T
κS = 0. (5.70)

This can be simplified to the equation(
∂γS
∂u

)
M−1

(
∂γS
∂u

)T
κS = 0. (5.71)

If the constraints are linearly independent, then the Delassus matrix in (5.71) is regular
and κS ≡ 0 is the only solution. From this it follows that the extended DAE (5.68) has
the same solution as the original DAE (5.65). A consistent integrator for the extended
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DAE (5.68) can be created by direct discretization

QT(qB)M (uE − uB) +H(uB, qB)(qE − qB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

DgS
Dq

(qB, qE)

)T
λ̂S −

(
DγS
Dq

(uE, qB, qE)

)T
κ̂S = 0

MQ(qB)(qB − qE) +
∆t

2
M(uB + uE)−

(
∂γS
∂u

(qB)

)T
κ̂S = 0

gS(qE) = 0

γS(uE, qE) = 0

(5.72)

where the partial derivatives have been replaced with discrete derivatives and the time
derivatives with differences. The integrator (5.72) is consistent with respect to the bilat-
eral constraints on displacement and velocity level. This follows directly from the last two
equations in (5.72). The total energy balance of the integrator is obtained by multiplying
the first and second equation in (5.72) from the left with (qE − qB)T and (uE − uB)T

respectively and summing up the result. The product formed with the gyro matrix

(qE − qB)TH(uB, qB)(qE − qB) = 0 (5.73)

is equal to zero, because H is skew symmetric. The resulting sum

(qE − qB)TQT(qB)M(uE − uB) + (uE − uB)TMQ(qB)(qB − qE) = 0 (5.74)

vanishes, because the mass matrix M is symmetric. The remaining terms are

0 = ∆t
(
V (qE)− V (qB) +

1

2
(uE − uB)TM (uE − uB)

)
−
(
γS(uE, qE)− γS(uE, qB) + γS(uE, qB)− γS(uB, qB)

)T
κ̂S

−
(
gS(qE)− gS(qB)

)T
λ̂S

(5.75)

With consistent initial conditions, the following it true for every time step:

γS(uE, qE) = γS(uB, qB) = 0, gS(qE) = gS(qB) = 0. (5.76)

Inserting this into (5.75), canceling the remaining ∆t and using the total energy func-
tion (5.66) yields

E(uE, qE) = E(uB, qB) (5.77)

which is exactly the energy consistency condition for the integrator (5.72). The constant
mass matrix based integrator from Section 5.2.2 required in general the affine body based
rigid body formulation for three-dimensional multibody system. The integrator (5.72)
allows the usage of the scalable body formulation from Section 4.3 as well, which helps
reducing the number of variables and equations. At the same time the complexity of the
integrator from Section 5.2.3 is avoided.
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Rigid Body

In the following, the gyro matrix and the constraint functions used in the integrator (5.72)
will be evaluated for the rigid body formulation from Section 4.3, which is based on the
scalable body. As described in Section 4.3.3, the generalized coordinates and generalized
velocities of the body are given by

qi =

ria0i

ai

 , ui =

viνi
ωi

 . (5.78)

The regular matrix

Qii(q) =

(
I 0
0 2ϕ(Ai

∗)

)
=

 I 0 0
0 2a0i 2aT

i

0 −2ai 2a0iI − 2ãi

 (5.79)

describes the transformation between q̇i and ui as defined in (4.72). There is no direct
connection to any other generalized velocities, i.e.

Qij(q) = 0, Qji(q) = 0, j 6= i. (5.80)

The regular mass matrix of the scalable body

M ii =

miI 0 0
0 1

2
TrΘi 0

0 0 Θi

 , M ij = 0, j 6= i (5.81)

has been given in (4.88). We will use the formula (3.49) to evaluate the gyro ma-
trix H ii(u, q) of the body. This requires the function pi(u, q) defined in (3.48), which
can be simplified as follows

pi(u, q) = Qii(q)TM iiui

=

(
I 0
0 2ϕ(Ai)

)(
mi vi

ψ
(

(1
2

TrΘi νi,Θiωi)
))

=

(
mi vi

ψ
(
Ai (TrΘi νi, 2Θiωi)

))
=

(
mi vi

T ϕ
(

(TrΘi νi,−2Θiωi)
)
T ψ(Ai)

)
.

(5.82)

Inserting the partial derivative

∂pi
∂qi

=

(
0 0
0 T ϕ

(
(TrΘi νi,−2Θiωi)

)
T

)
,

∂pi
∂qj

= 0, j 6= i (5.83)

into the formula (3.49) yields

H ii(u, q) =

(
∂pi
∂qi

)
−
(
∂pi
∂qi

)T
=

(
0 0
0 T ϕ

(
(0,−4Θiωi)

)
T

)
. (5.84)
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After evaluating the quaternion matrix function we get the skew-symmetric gyro matrix

H ii(u, q) =

 0 0 0
0 0 −4ωT

i Θi

0 4Θiωi −4(Θiωi)˜
 , H ij(u, q) = 0, j 6= i (5.85)

for the scalable body. The constraint

gSi(q) = a2
0i + aT

i ai − 1, (5.86)

reduces the scalable body to a rigid body. For the induced kinematic constraint function
as defined by (5.67) one gets

γSi(u, q) = νi. (5.87)

The partial derivatives of the geometric constraint function

∂gSi
∂qi

=
(
0 2 a0i 2ai

)
,

∂gSi
∂qj

= 0, j 6= i,
DgSi
Dq

(a, b) =
∂gSi
∂q

(
a+ b

2

)
(5.88)

and the kinematic constraint function

DγSi
Dq

= 0,
∂γSi
∂ui

=
(
0 1 0

)
,

∂γSi
∂uj

= 0, j 6= i (5.89)

complete the collection of expressions required for using rigid body models with the
integrator (5.72). Beside three-dimensional rigid bodies, also point masses and two-
dimensional rigid bodies can be considered as primitives in the decomposed mass ma-
trix based formulation. Also for certain minimal coordinates formulations an analytical
decomposition of the mass matrix can be found.

Unilateral Constraints

As a next step we add a collection of geometric, scleronomic and perfect unilateral con-
straints to the equations of motion (5.68). The force law for one unilateral contact is
given by

gNi(q) ∈ NR−
0

(−λNi), fq =

(
∂gNi
∂q

)T
λNi. (5.90)

The vector

wNi(q) :=

(
∂gNi
∂q

)T
(5.91)

is introduced for the generalized force direction of a contact. All generalized force direction
of the unilateral contacts are collected in the matrix

WN(q) :=

(
∂gN
∂q

)T
. (5.92)
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Here the generalized force directions based on variations of q are used. Extending the
equations of motion (5.68) with the force laws of the unilateral contacts on velocity level
yields the following set of equations and inclusions:

QT(q)Mu̇+H(u, q)q̇ +

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS −

(
∂γS
∂q

)T
κS −WN(q)λN = 0

−Q(q)q̇ + u−M−1

(
∂γS
∂u

)T
κS = 0

gS(q) = 0

γS(u, q) = 0

gNi(q) > 0 : λNi = 0

gNi(q) = 0 : wT
Ni(q) q̇ ∈ NR−

0
(−λNi).

(5.93)

Impacts can occur at unilateral contacts, for example when there is a collision. To describe
the discontinuity of the velocities at an impact, the equations of motion (5.93) have to
be equipped with impact equations and for the unilateral contacts an impact law has to
be formulated (see Section 3.8). For the contacts a perfectly elastic Newton impact law
in inclusion form is used. The impact equations are obtained by integrating (5.93) over a
singleton in time. Together with the impact laws we obtain the following inclusion:

QT(q)M (u+ − u−)−
(
∂gS
∂q

)T
ΛS −WN(q)ΛN = 0

γS(u+, q) = 0

gNi(q) > 0 : ΛNi = 0

gNi(q) = 0 : wT
Ni(q)Q−1(q)(u+ + u−) ∈ NR−

0
(−ΛNi)

(5.94)

Note that also the bilateral constraints have to be considered, as they can propagate
impact-impulses as well. Since the generalized force directions wNi(q) are formulated
based on variations of q, the additional transformation Q−1 from q̇ to u occurs in the
impact laws of the unilateral contacts. As integration scheme we use

QT(qB)M (uE − uB) +H(uB, qB)(qE − qB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

DgS
Dq

(qB, qE)

)T
λ̂S −

(
DγS
Dq

(uE, qB, qE)

)T
κ̂S −WN λ̂N = 0

MQ(qB)(qB − qE) +
∆t

2
M(uB + uE)−

(
∂γS
∂u

(qB)

)T
κ̂S = 0

gS(qE) = 0

γS(uE, qE) = 0

gNi(q
B) > 0 : λ̂Ni = 0

gNi(q
B) ≤ 0 : wT

Ni(q
E − qB) ∈ NR−

0
(−λ̂Ni)

(5.95)
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which approximates both (5.93) and (5.94). For the generalized force directions in the
integrator (5.95) one can use either a variant based on the partial derivative

WN =

(
∂gN
∂q

(qB)

)T
(5.96)

or one based on the discrete derivative

WN =

(
DgN
Dq

(qB, qE)

)T
. (5.97)

But of course the same approximation should be used in the first and last line of (5.95).
The discrete variable λ̂N approximates the sum of the impact-impulses ΛN and the inte-
gral of the contact forces λN over a time step. The total energy balance can be obtained
with the same approach as for the integrator (5.72). Already using the simplifications
discussed above one gets

∆t
(
E(uE, qE)− E(uB, qB)

)
−
∑
i

(qE − qB)TwNi λ̂Ni = 0. (5.98)

The contact forces λ̂Ni are zero for all open contacts (gNi(q
B) > 0), resulting in a zero

contribution in (5.98). For the contacts that are closed at the beginning of a time step,
the inclusion in (5.95) or the equivalent complementarity

(qE − qB)TwNi λ̂Ni = 0, wT
Ni(q

E − qB) ≥ 0, λ̂Ni ≥ 0 (5.99)

holds. It follows that the contribution of the unilateral constraints in (5.98) is zero for all
closed contacts. Canceling the ∆t in (5.98) yields

E(uE, qE) = E(uB, qB), (5.100)

which shows that the total energy is preserved by the integrator (5.95). This means the
integrator (5.95) is consistent with respect to the total energy, because the mechanical
system described by (5.93) and (5.94) preserves the total energy as well. The matrix of
generalized force directions given in (5.96) is usually simple to implement and is good
enough for an energy consistent integrator. The more complicated variant given by (5.97)
can be used to achieve a weak form of unilateral constraint consistency. From the last
line of the integrator (5.95) we have the relation

gNi(q
B) ≤ 0 : wT

Ni(q
E − qB) ≥ 0. (5.101)

Inserting wNi as given by (5.97) into (5.101) yields

gNi(q
B) ≤ 0 :

DgNi
Dq

(qE, qB) (qE − qB) ≥ 0 (5.102)

This can be simplified to

gNi(q
B) ≤ 0 : gNi(q

E) ≥ gNi(q
B) (5.103)
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which is exactly the consistency condition for unilateral contacts on velocity level discussed
at the beginning of Section 5.2.
The integrator (5.95) has been formulated for perfectly elastic impacts only. While adding
coefficients of restitution to the impact inclusions (5.94) is trivial, finding a one-step dis-
cretization similar to (5.95) with consistent dissipation seems to be difficult, even if the
consistency condition for unilateral contacts on velocity level would be dropped. The dif-
ficulties arise mainly from the additional multipliers κS and the combined approximation
of impacts and impact-free motion in one set of inclusions.

Normal Cone Inclusions

The restriction of set-valued force laws to perfect unilateral constraints as in (5.95) can
be very limiting for applications. To remove this limitation, we extend (5.68) with set-
valued force laws of normal cone type (for examples see Section 3.7). We get the following
equations of motion:

QT(q)Mu̇+H(u, q)q̇ +

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS −

(
∂γS
∂q

)T
κS −

∑
i ∈ I(q)

W i(q, t)λi = 0

−Q(q)q̇ + u−M−1

(
∂γS
∂u

)T
κS = 0

gS(q) = 0

γS(u, q) = 0

i ∈ I(q) : W T
i (q, t) q̇ ∈ NCi(−λi)

(5.104)

The convex sets Ci are assumed to contain zero, which leads to a (not strictly) dissipative
system. The set-valued force laws of normal cone type in (5.104) are formulated on velocity
level. The set I(q) can be used to consider scleronomic geometric unilateral constraints
by keeping only the indices i in the set I(q) where the gap function gi(q) is equal to zero.
The equations of motion (5.104) are equipped with impact equations and impact laws

QT(q)M(u+ − u−)−
(
∂gS
∂q

)T
ΛS −

∑
i ∈ I(q)

W i(q, t)Λi = 0

γS(u+, q) = 0

i ∈ I(q) : W T
i (q, t)Q−1(q)(u+ + εiu

−) ∈ NDi
(−Λi).

(5.105)

The impact laws are of Newton type in inclusion form. The coefficients of restitution are
denoted by εi. To get an energy consistent integrator, a two-step scheme is employed. At
the beginning of a time step an impact inclusion of the form

QT(qB)M (uC − uB)−
(
∂gS
∂q

(qB)

)T
ΛS −

∑
i ∈ I(qB)

W i(q
B, tB)Λi = 0

γS(uC , qB) = 0

i ∈ I(qB) : W T
i (qB, tB)Q−1(qB)(uC + εiu

B) ∈ NDi
(−Λi)

(5.106)
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is solved, where the generalized coordinates are kept constant. Starting with the begin-
ning state (qB,uB) this yields the post impact state (qB,uC). From the intermediate
point (qB,uC), a time step approximating the impact-free dynamics is made. This time
step is described by

QT(qB)M (uE − uC) +H(uC , qB)(qE − qB) + ∆t

(
DV

Dq
(qB, qE)

)T
−
(

DgS
Dq

(qB, qE)

)T
λ̂S −

(
DγS
Dq

(uE, qB, qE)

)T
κ̂S −

∑
i ∈ I(qB)

W i(q
B, tB) λ̂i = 0

MQ(qB)(qB − qE) +
∆t

2
M(uC + uE)−

(
∂γS
∂u

(qB)

)T
κ̂S = 0

gS(qE) = 0

γS(uE, qE) = 0

i ∈ I(qB) : W T
i (qB, tB)(qE − qB) ∈ NĈi(−λ̂i)

(5.107)

and yields the end time state (qE,uE). A complete time step of the integrator consists
of (5.106) and (5.107). The two-step formulation allows to overcome the difficulties of
a combined approximation of impacts and impact-free motion in one set of inclusions.
The downside of using a two-step scheme is the increased computational effort required
to solve two sets of inclusions per time step.
In the following, we will discuss the consistency of the integrator (5.106) and (5.107) with
respect to the total energy. As follows from the discussion in Section 3.9, the total energy
of the mechanical system described by (5.104) is remaining constant or decreasing for
impact-free motion, i.e.

Ė(u, q) ≤ 0. (5.108)

For the impacts described by (5.105), we assume that the coefficients of restitution εi are
chosen such that the inequality

E(u+, q) ≤ E(u−, q) (5.109)

holds. This means the total energy is assumed to remain constant or decrease for all im-
pacts. The first step (5.106) of the integrator has exactly the same structure as the impact
inclusions (5.105). Since (5.109) is assumed to hold for the impact inclusions (5.105), we
get automatically the condition

E(uC , qB) ≤ E(uB, qB) (5.110)

for the first integrator step (5.106). To get an energy balance for the second integra-
tor step (5.107), we multiply the first and second equation of (5.107) with (qE − qB)T

and (uE − uC)T respectively. Using the simplifications discussed above, one gets

∆t
(
E(uE, qE)− E(uC , qB)

)
=
∑

i ∈ I(qB)

(qE − qB)TW i(q
B, tB) λ̂i. (5.111)
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In the simplifications we have used the guaranteed fulfillment of the bilateral constraints
on velocity and displacement level

γS(uE, qE) = γS(uC , qB) = 0, gS(qE) = gS(qB) = 0 (5.112)

for the states (uE, qE) and (uC , qB) as given by (5.106) and (5.107). From the normal
cone inclusions in (5.107) it follows that all contributions from the λ̂i in (5.111) are
negative

W T
i (qB, tB)(qE − qB) ∈ NĈi(−λ̂i), 0 ∈ Ĉi ⇒ (qE − qB)TW i(q

B, tB) λ̂i ≤ 0. (5.113)

Inserting (5.113) into (5.111) and canceling the remaining ∆t yields

E(uE, qE) ≤ E(uC , qB). (5.114)

By combining (5.110) and (5.114) one gets the inequality

E(uE, qE) ≤ E(uB, qB) (5.115)

for the total energy at the beginning and the end of a time step. The inequality (5.115) is
consistent with the properties (5.108) and (5.109) of the exact solution. This means the
integrator (5.106) and (5.107) is consistent with respect to the total energy. Considering
only unilateral constraints with perfect elastic impact laws yields an equality in (5.108)
and (5.109). Of course in this case an equality holds in (5.110), (5.113) and (5.114), from
which follows that the total energy is preserved in the integrator. So in this special case,
the integrator (5.106) and (5.107) is consistent with respect to the total energy even for
the stricter consistency criterion.

The matrices of generalized force directions are approximated with W i(q
B, tB) in the

second step (5.107) of the integrator. For unilateral constraints, also an approximation

WN =

(
DgN
Dq

(qB, qE)

)T
(5.116)

based on the discrete derivative of the gap function gN can be used. With the discrete
derivative based approximation, one gets again the consistency condition for unilateral
constraints on velocity level. The consistency is obtained for the second step (5.107) of
the integrator with the same arguments as discussed above for the integrator (5.95). In
the first step (5.106) of the integrator the generalized coordinates qB remain unchanged,
accordingly the consistency condition for geometric unilateral constraints remains unaf-
fected. Note that using the approximation (5.116) instead of WN(qB) does not affect the
consistency with respect to the total energy.

The problems (5.106) and (5.107) formulated for the two steps of the integrator have to
be solved numerically in each time step. The problem (5.106) of the first integrator step
can be simplified analytically by eliminating uC and ΛS first. Solving the first equation
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in (5.106) for uC and introducing the variables ξi for the normal cone inclusion yields

uC = uB +M−1

(
∂γS
∂u

(qB)

)T
ΛS +M−1Q−T(qB)

∑
i ∈ I(qB)

W i(q
B, tB)Λi = 0

∂γS
∂u

(qB)uC = 0

i ∈ I(qB) : ξi = W T
i (qB, tB)Q−1(qB)(uC + εiu

B), ξi ∈ NDi
(−Λi).

(5.117)

In (5.117) the bilateral constraint has been rewritten to make the linear dependency in uC
explicit. After inserting uC from the first equation into the second equation in (5.117)
one gets

∂γS
∂u

(qB)M−1

(
∂γS
∂u

(qB)

)T
︸ ︷︷ ︸

=: GSS

ΛS + γS(qB,uB)︸ ︷︷ ︸
= 0

+
∂γS
∂u

(qB)M−1Q−T(qB)
∑

i ∈ I(qB)

W i(q
B, tB)Λi = 0.

(5.118)

This equation can be solved for the bilateral constraint impulses, yielding

ΛS = −G−1
SS

∂γS
∂u

(qB)M−1Q−T(qB)
∑

i ∈ I(qB)

W i(q
B, tB)Λi. (5.119)

Next, the equation (5.119) is inserted into the first equation of (5.117), which itself is
used to replace uC in the definition of ξi. This reduces the problem (5.117) of the first
integrator step to the normal cone inclusion with linear equations of the form

i ∈ I(qB) : ξi =
∑

j ∈ I(qB)

Gij(q
B)Λj + ci(q

B), ξi ∈ NDi
(−Λi) (5.120)

where the matrices Gij are given by

Gij := W T
i (qB, tB)Q−1(qB)M−1Q−T(qB)W j(q

B, tB)

−W T
i (qB, tB)Q−1(qB)M−1

(
∂γS
∂u

(qB)

)T
G−1
SS

∂γS
∂u

(qB)M−1Q−T(qB)W j(q
B, tB)

(5.121)
and the vectors ci are defined as

ci := (1 + εi)W
T
i (qB, tB)Q−1(qB)uB. (5.122)

The problem (5.120) can be solved for Λi with the projected Jacobi iteration or the
projected Gauss-Seidel iteration discussed in Section 2.5. The solution can be substituted
back into (5.119) and (5.117) to get the solution for uC required for the second step
(5.107) of the integrator. The second step contains in general also nonlinear equations
beside the normal cone inclusions. It can be solved with the projected Newton iteration
discussed in Section 2.5.5.
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Classical Dissipation

Beside the dissipation based on force laws of normal cone type, one can also consider
damping forces of the generalized form

fq = −D(u, q, t)q̇ (5.123)

where D(u, q, t) ∈ Rf×f is a positive semidefinite damping matrix. The contribution to
the time derivative of the total energy (see Section 3.9) is then given by

fT
q q̇ = −q̇TD(u, q, t)q̇ ≤ 0. (5.124)

As expected the forces of the type (5.123) are (not strictly) dissipative. To consider these
damping forces in the equations of motion, the first equation in (5.104) has to be replaced
with

QT(q)Mu̇+H(u, q)q̇ +D(u, q, t)q̇ +

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS −

(
∂γS
∂q

)T
κS −

∑
i ∈ I(q)

W i(q)λi = 0.

(5.125)

Since the damping forces (5.123) are never impulsive they have to be considered only in
the second step of the integrator by replacing the first equation of (5.107) with

QT(qB)M(uE − uC) +H(uC , qB)(qE − qB) +D(uC , qB, tB)(qE − qB)

+ ∆t

(
DV

Dq
(qB, qE)

)T
−
(

DgS
Dq

(qB, qE)

)T
λ̂S −

(
DγS
Dq

(uE, qB, qE)

)T
κ̂S

−
∑

i ∈ I(qB)

W i λ̂i = 0.

(5.126)

Considering the additional force term D(uC , qB, tB)(qE−qB) of the second integrator in
the energy balance (5.111) yields the following relation:

∆t
(
E(uE, qE)− E(uC , qB)

)
= −(qE − qB)TD(uC , qB, tB)(qE − qB)︸ ︷︷ ︸

≤ 0

+
∑

i ∈ I(qB)

(qE − qB)TW i(q
B, tB) λ̂i︸ ︷︷ ︸

≤ 0

(5.127)

From this the inequality E(uE, qE) ≤ E(uC , qB) follows, which makes the integrator with
damping force energetically consistent as well.
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5.2.5 Quaternion Based Formulation

In this section, a quaternion based consistent integrator for non-smooth rigid body systems
will be formulated. In this formulation, the quaternion based rigid body ODE (4.119) will
be used as basis. Instead of replacing this ODE with the scalable body based rigid body
DAE as in the previous sections, we will use a discretization of the kinematic equation,
which preserves the unit length of the quaternion exactly. The discretization is specialized
for the quaternion unit length constraint, and can not be used for other constraints in
general.
Some of the complexity of the integrators from Section 5.2.2-5.2.4 is caused by the enforce-
ment of the perfect bilateral constraints on displacement and velocity level. But removing
the perfect bilateral constraints from these integrators would also remove the support for
rigid body formulations, as affine and scalable body based rigid body DAE formulations
require bilateral constraints. With the ODE based integrator described in this section,
the general support for enforcing additional bilateral constraints on displacement level
will be dropped, as it is not required for rigid body systems. This will allow to formulate
a non-smooth consistent integrator with less complexity. Beside the rigid body model,
we will consider potential forces and set-valued force laws of normal cone type. For each
rigid body there is one vector of generalized coordinates

qi =

(
ri

ψ(Ai)

)
(5.128)

where ri ∈ R3 is the location of the center of mass and ψ(Ai) ∈ R4 the vector of the
quaternion describing the orientation of the body. The complete generalized coordinates q
are obtained by assembling all qi ∈ R7 into one vector. The generalized velocities for a
body are given by

ui =

(
vi
ωi

)
. (5.129)

The vector vi ∈ R3 is the time derivative of ri. The angular velocity of the body is
described by ωi ∈ R3. Assembling all ui ∈ R6 into one vector yields the complete vector
of generalized velocities u. The equations of motion of the mechanical system have the
form

Mu̇+H(u)u+ F T(q)

(
∂V

∂q

)T
−
∑

i ∈ I(q)

Wi(q, t)λi = 0

q̇ = F (q)u

i ∈ I(q) : W i(q, t)
Tu ∈ NCi(−λi).

(5.130)

This is an assembled version of the equations of motion of each rigid body given by the
ODE (4.119). The mass matrix M is obtained by assembling the blocks

M ii =

(
miI 0

0 Θi

)
, M ij = 0 ∀ i 6= j (5.131)

into one matrix. The mass of the i-th body is abbreviated with mi. The classical inertia
tensor of the i-th body is denoted by Θi. The complete mass matrix M is constant,
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symmetric and positive definite. To express the inertial forces ω̃iΘiωi occurring in the
Newton-Euler equations, the skew symmetric gyro matrix H is introduced. The blocks
to assemble H are given by

H ii(u) =

(
0 0
0 ω̃iΘi +Θiω̃i

)
, H ij(u) = 0 ∀ i 6= j, HT(u) = −H(u). (5.132)

The product

H ii(u)ui =

(
0

ω̃iΘiωi

)
(5.133)

then yields exactly the inertial forces occurring in the Newton-Euler equations. For the
kinematic equation of each body (see right hand side of (4.119)) the matrix F is introduced

F ii(q) =

(
I 0

0
1

2
ϕ(Ai)

)I 0
0 0
0 I

 , F ij(q) = 0 ∀ i 6= j. (5.134)

This allows to write all kinematic equations as q̇ = F (q)u. The matrices of generalized
force directions of the set-valued force laws are formulated with respect to the generalized
velocities u. One gets

W i(q) = F T

(
∂gi
∂q

)T
. (5.135)

for an originally geometric force law and

W i(q, t) =

(
∂γi
∂u

)T
(5.136)

for a kinematic force law. For geometric unilateral constraints, the set I(q) of active force
laws can be used to disable the constraints on velocity level when the constraints are open
on displacement level. The impact equations and impact laws associated with (5.130) are
given by

M(u+ − u−)−
∑

i ∈ I(q)

Wi(q, t)Λi = 0

i ∈ I(q) : W T
i (q, t)(u+ + εiu

−) ∈ NDi
(−Λi).

(5.137)

A Newton impact law in inclusion form with a coefficient of restitution εi is used for each
force law. Before discretization, we will reformulate the impact laws

W T
i (q, t)(u+ + εiu

−) ∈ NDi
(−Λi)

1

2
W T

i (q, t)((1 + εi)(u
+ + u−) + (1− εi)(u+ − u−)) ∈ NDi

(−Λi)

W T
i (q, t)(u+ + u− +

1− εi
1 + εi

(u+ − u−)) ∈ NDi
(−Λi)

(5.138)
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in terms of the sum u+ + u− and the difference u+ − u− as in Section 3.9. Solving the
impact equation for the pre- and post-impact difference

u+ − u− = M−1
∑

i ∈ I(q)

Wi(q, t)Λi (5.139)

and inserting it into the impact law (5.138) yields the formulation

W T
i (q, t)(u+ + u− +

1− εi
1 + εi

M−1
∑

j ∈ I(q)

Wj(q, t)Λj) ∈ NDi
(−Λi). (5.140)

which is still equivalent to the one used in (5.137). The reformulation of the impact laws
will allow a one-step discretization that is consistent with respect to the total energy. As
direct discretization of the equations of motion (5.130), the impact equations (5.137) and
the impact laws (5.140) we propose the following difference scheme:

M(uE− uB) +
∆t

2
H

(
uE+ uB

2

)
(uE+ uB) + ∆tF T

(
qE+ qB

2

)(
DV

Dq
(qB, qE)

)T
−
∑

i ∈ I(qB)

Wiλ̂i = 0

qE − qB =
∆t

2
F

(
qE+ qB

2

)
(uE+ uB)

i ∈ I(qB) : W T
i (uE + uB +

1− εi
1 + εi

M−1
∑

i ∈ I(qB)

Wiλ̂i) ∈ NDi
(−λ̂i).

(5.141)

In this integrator again the partial derivative of the potential energy is approximated
using the discrete derivative. The vectors λ̂i approximate the time integral of λi over the
time step plus the impact-impulses Λi. For the discrete approximation of the matrices of
generalized force directions, a value

W i = W i(q
B, tB) (5.142)

based on the state at the beginning of a time step can be used. An alternative for the
generalized force directions of unilateral contacts is the approximation

W i = F T

(
qE+ qB

2

)(
Dgi
Dq

(qE, qB)

)T
. (5.143)

based on the discrete derivate of the gap function. With a coefficient of restitution εi equal
to one, the inclusion in (5.141) and the generalized force direction approximation (5.143)
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can be simplified as follows:

W T
i (uE + uB) ∈ NDi

(−λ̂i)

⇔ Dgi
Dq

(qE, qB)F

(
qE+ qB

2

)
(uE+ uB) ∈ NDi

(−λ̂i)

⇔ Dgi
Dq

(qE, qB)(qE − qB) ∈ NDi
(−λ̂i)

⇔ gi(q
E)− gi(qB) ∈ NDi

(−λ̂i)

(5.144)

From (5.144) we get directly the consistency condition on velocity level for perfect elastic
unilateral contacts discussed at the beginning of Section 5.2.

In the following, we will verify that the discretization of the kinematic equation q̇ = F (q)u
used in the integrator (5.141) preserves the unit length of a quaternion exactly. The
discrete kinematic equation from (5.141) concerning the quaternion of the i-th rigid body
can be written as

ψ(AEi )−ψ(ABi ) =
∆t

4
ϕ

(
AEi + ABi

2

)(
0

ωEi + ωBi

)
(5.145)

by inserting (5.134) into the second equation of (5.141). Premultiplying (5.145) from the
left with ψT(AEi + ABi ) and simplifying the resulting equation yields

ψT(AEi + ABi )
(
ψ(AEi )−ψ(ABi )

)
=

∆t

8
ψT(AEi + ABi )ϕ(AEi + ABi )

(
0

ωEi + ωBi

)
(
ψT(AEi ) +ψT(ABi )

)(
ψ(AEi )−ψ(ABi )

)
=

∆t

8
ψT(AEi + ABi )ϕ(AEi + ABi )

(
0

ωEi + ωBi

)
|AEi |2 − |ABi |2 =

∆t

8
ψT((AEi + ABi )

∗
(AEi + ABi ))

(
0

ωEi + ωBi

)
|AEi |2 − |ABi |2 =

∆t

8

(
|AEi + ABi |2 0

)( 0
ωEi + ωBi

)
|AEi |2 − |ABi |2 = 0.

(5.146)
From (5.146) then follows the equation

|AEi | = |ABi |. (5.147)

A unit quaternion |ABi | = 1 at the beginning of a time step yields a quaternion AEi at the
end of the time step which has exactly unit length as well.

The total energy E(u, q) of the rigid body system (5.130) is the sum of the kinetic energy

T (u) =
1

2
uTMu (5.148)
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and the potential energy V (q). The consistency of the integrator (5.141) with respect to
the total energy can be verified by multiplying the first equation of the integrator (5.141)
with (uE + uB)T/2 from the left. This yields the following:

1

2
(uE + uB)TM(uE− uB)︸ ︷︷ ︸

= T (uE)− T (uB)

+
∆t

4
(uE + uB)TH

(
uE+ uB

2

)
(uE+ uB)︸ ︷︷ ︸

= 0

+
∆t

2
(uE + uB)TF T

(
qE+ qB

2

)
︸ ︷︷ ︸

= qE − qB

(
DV

Dq
(qB, qE)

)T
− 1

2
(uE + uB)T

∑
i ∈ I(qB)

Wiλ̂i = 0

(5.149)

The first term is obviously the difference in kinetic energy between the end and the
beginning of the time step. The second term is zero, because the gyro matrix H is skew
symmetric. The expression in front of the discrete derivative of the potential energy
is just the difference qE − qB. Multiplying this difference with the discrete derivative
of the potential energy yields the difference in potential energy between the end and the
beginning of the time step. Replacing the resulting kinetic and potential energy differences
in (5.149) with the difference in total energy yields

E(uE, qE)− E(uB, qB) =
1

2

∑
i ∈ I(qB)

λ̂
T

iW
T
i (uE + uB). (5.150)

If no set-valued force laws are present or all λ̂i are zero, then the total energy is preserved.
This is consistent with the equations of motion (5.130). From the normal cone inclusion
in (5.141) and convex sets Di that contain the zero element, we obtain the inequality

λ̂
T

iW
T
i (uE + uB +

1− εi
1 + εi

M−1
∑

j ∈ I(qB)

Wjλ̂j) ≤ 0. (5.151)

for each index in the set I(qB). Summing up these inequalities over all indices yields∑
i ∈ I(qB)

λ̂
T

iW
T
i (uE + uB) +

∑
i ∈ I(qB)

λ̂
T

i

1− εi
1 + εi

W T
i M

−1
∑

j ∈ I(qB)

Wjλ̂j ≤ 0. (5.152)

One obtains the inequality

E(uE, qE)− E(uB, qB) ≤ −1

2

∑
i ∈ I(q)

∑
j ∈ I(qB)

λ̂
T

i

1− εi
1 + εi

W T
i M

−1Wjλ̂j (5.153)

after inserting (5.150) into (5.152). Assembling the vectors λ̂i and the matrices Wi into
a global vector λ̂ and a global matrix W and using the matrix of dissipation indices ∆
from Section 3.9 simplifies (5.153) to

E(uE, qE)− E(uB, qB) ≤ −1

2
λ̂

T
∆W TM−1Wλ̂. (5.154)
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If the matrix ∆W TM−1W is positive semidefinite, then the total energy is guaranteed
not to increase, which is consistent with the properties of (5.130) and (5.137) shown in
Section 3.9. For example if we use one global coefficient of restitution

∆ =
1− ε
1 + ε

I (5.155)

then the matrix ∆W TM−1W is positive semidefinite because W TM−1W is positive
semidefinite. From (5.154) then follows that the total energy in the integrator (5.141) is
never increasing

E(uE, qE) ≤ E(uB, qB) (5.156)

for this case. The inclusion problem (5.141) for a time step of the integrator contains
beside the normal cone inclusions also equations which are nonlinear in the unknowns.
For the numerical solution the projected Newton iteration described in Section 2.5.5 can
be used.
The integrator (5.141) discussed above formulates one inclusion problem to approximate
both, the impact-free motion and the impacts. Alternatively, also a two-step integrator
as discussed in Section 5.2.4 can be formulated. The first step approximating the impacts
is then given by

M (uC− uB)−
∑

i ∈ I(qB)

Wi(q
B, tB)Λi = 0

i ∈ I(qB) : W T
i (qB, tB)(uC + εiu

B) ∈ NDi
(−Λi).

(5.157)

This impact inclusion yields the transition from the beginning state (qB,uB) to the post
impact state (qB,uC). The second step approximating the impact free motion is formu-
lated as

M (uE− uC) +
∆t

2
H

(
uE+ uC

2

)
(uE+ uC) + ∆tF T

(
qE+ qB

2

)(
DV

Dq
(qB, qE)

)T
−
∑

i ∈ I(qB)

Wiλ̂i = 0

qE − qB =
∆t

2
F

(
qE+ qB

2

)
(uE+ uC)

i ∈ I(qB) : W T
i (uE + uC) ∈ NĈi(−λ̂i)

(5.158)

and yields the end time state (qE,uE) starting from the intermediate state (qB,uC).
The first step (5.157) of the integrator does not change the generalized coordinates. The
consistency with respect to the total energy can be obtained by the same argument as
in Section 5.2.4, since the first step (5.157) has exactly the same structure as the impact
inclusion (5.137). The second step (5.158) approximates the equations of motion (5.130)
and has the same properties as (5.141) for the special case εi = 1. This means the total
energy is consistent with respect to the equations of motion, and also the consistency
for unilateral contacts on velocity level as shown in (5.144) holds. While the two-step
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version of the quaternion based consistent integrator is usually more expensive to evalu-
ate numerically, it allows to get the consistency for unilateral contacts on velocity level
for any coefficients of restitution, and not only for the perfectly elastic contacts like the
one-step integrator (5.141). The inclusion problem of the first step (5.157) can be solved
with the projected Jacobi iteration or the projected Gauss-Seidel iteration discussed in
Section 2.5. The second step (5.158) contains also nonlinear equations beside the nor-
mal cone inclusions. It can be solved with the projected Newton iteration discussed in
Section 2.5.5.





Chapter6
Examples

In this chapter, a few examples of non-smooth mechanical systems are described and their
numerical solution with the integrators from Chapter 5 is discussed.

6.1 Oscillator

In this section, a mass-spring system with a unilateral contact as shown in Figure 6.1 is
considered. The mass m2 is chosen much smaller than the mass m1. The vertical position

Figure 6.1: Oscillator with unilateral contact.

and vertical velocity of the two masses are used as generalized coordinates and generalized
velocities, respectively

q =

(
x1

x2

)
, u =

(
ẋ1

ẋ2

)
, u = q̇. (6.1)

The mass matrix and kinetic energy of the system is given by

M =

(
m1 0
0 m2

)
, T (q̇) =

1

2
q̇TMq̇. (6.2)

115
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The potential function

V (q) =
c

2
(x2 − l)2 + g(m1 x1 +m2 x2) (6.3)

describes the gravitational forces and the force of the spring. The spring has a force free
length equal to l. The gap function for the unilateral contact is just the difference of the
two coordinates

gN(q) = x1 − x2. (6.4)

The generalized force direction of the unilateral contact is obtained as

wN =

(
DgN
Dq

)T
=

(
∂gN
∂q

)T
=

(
1
−1

)
. (6.5)

The equations of motion of the oscillator with unilateral contact are given by

Mu̇+

(
∂V

∂q

)T
−wNλN = 0

− q̇ + u = 0

gN(q) ∈ NR−
0

(−λN)

(6.6)

For the unilateral contact an impact law of Newton type is used. The impact equations
and the impact law have the form

M (u+ − u−)−wNΛN = 0

gN(q) > 0 : ΛN = 0

gN(q) = 0 : wT
N(u+ + εu−) ∈ NR−

0
(−ΛN).

(6.7)

The parameters and initial conditions listed in Table 6.1 are used for the numerical sim-
ulation with the Moreau’s midpoint rule and the consistent two-step integrator given
by (5.106) and (5.107).

Mass m1 = 10 kg
m2 = 10−3 kg

Stiffness c = 4 · 105 N m−1

Force free length l = 0.1 m
Gravitational acceleration g = 9.81 m s−2

Coefficient of restitution ε = 0

Initial coordinates x1(0) = 0.11 m
x2(0) = 0.1 m

Initial velocities ẋ1,2(0) = 0 m s−1

Table 6.1: Parameters and initial conditions.

In Figure 6.2 the results obtained with the consistent two-step integrator and a time step
size equal to 10−3 s are shown. Using larger time steps decreases the accuracy of the
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Figure 6.2: Consistent integrator solution for the oscillator (∆t = 10−3 s).
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Figure 6.3: Solution for the oscillator (∆t = 10−5 s).
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solution, but the consistent integrator remains stable. The total energy as approximated
by the numerical solution is decreasing stepwise, which is consistent with the mechanical
model. An attempt to approximate a solution with the Moreau’s midpoint rule and
the same step size of 10−3 s fails. The integrator becomes unstable and the solution
diverges towards infinity. To get a non-divergent solution with Moreau’s midpoint rule,
a time step size smaller than 10−4 s is required. The reason for this, is the relatively
high eigenfrequency of the mass spring system formed by the mass m2 and the spring.
Moreau’s midpoint rule uses an explicit discretization of the classical forces, which has
a limited stability region. In Figure 6.3 the solution obtained for both integrators at a
time step equal to 10−5 s is shown. In order to remove the small time step requirement
imposed on the integrator one can either remove the high frequency dynamics from the
model or use an integrator which discretizes the relevant parts with an implicit approach,
as for example the consistent integrator. Removing the high frequency dynamics from
the model for all parts of the dynamics could be difficult in general. Note that for the
system discussed in this section, also a variable time step scheme like the one developed
in [78] would not reduce the total number of time steps required.

6.2 Unilateral Double Pendulum

The planar unilateral double pendulum considered in this section consists of two mass
points with mass m, two massless rigid rods of length l and a rigid wall. The rigid rods
connect the mass points to each other and to the wall as illustrated in Figure 6.4. The
pendulum is under the influence of gravity g. The unilateral contacts between mass points

Figure 6.4: Double pendulum with wall.

and wall are assumed to be perfectly elastic. The horizontal and vertical displacements
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of the mass points form the generalized coordinates

q =


x1

y1

x2

y2

 , u =


ẋ1

ẏ1

ẋ2

ẏ2

 , u = q̇. (6.8)

The time derivatives of the generalized coordinates are used as generalized velocities.
With the constant mass matrix

M =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 (6.9)

one can write the kinetic energy of the double pendulum as

T (q̇) =
1

2
q̇TMq̇. (6.10)

The gravitational force are described with the potential function

V (q) = 3mgl −mg (y1 + y2). (6.11)

The potential is chosen such that it is zero in the lowest equilibrium position of the double
pendulum. The perfect bilateral constraints imposed by the rigid rods are described with
the constraint function

gS(q) =
1

2

(
x2

1 + y2
1 − l2

(x2 − x1)2 + (y2 − y1)2 − l2
)
. (6.12)

With the partial derivative

(
∂gS
∂q

)T
=


x1 x1 − x2

y1 y1 − y2

0 x2 − x1

0 y2 − y1

 (6.13)

the constraint function

γS(u, q) =
∂gS
∂q
u =

(
x1ẋ1 + y1ẏ1

(x1 − x2)ẋ1 + (y1 − y2)ẏ1 + (x2 − x1)ẋ2 + (y2 − y1)ẏ2

)
(6.14)

of the kinematic constraints associated with gS can be formulated. The normal con-
tacts between the wall and the pendulum restrict the horizontal displacements to positive
values. To formulate the normal contact force law the gap function

gN(q) =

(
x1

x2

)
(6.15)
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is used. With the help of Chapter 3 one gets the equations of motion

Mu̇+

(
∂V

∂q

)T
−
(
∂gS
∂q

)T
λS −

(
∂gN
∂q

)T
λN = 0

− q̇ + u = 0

gS(q) = 0

gNi(q) ∈ NR−
0

(−λNi)

(6.16)

for the unilateral double pendulum. The impact equations and the impact laws are then
given by

M (u+ − u−)−
(
∂gS
∂q

)T
ΛS −

∑
i∈I(q)

(
∂gNi
∂q

)T
ΛNi = 0

γS(u+, q) = 0

i ∈ I(q) :
∂gNi
∂q

(u+ + εu−) ∈ NR−
0

(−ΛNi)

(6.17)

where the set of active normal contacts is defined as

I(q) = {i | gNi(q) = 0}. (6.18)

After reformulating the unilateral constraints on velocity level, the description (6.16)
and (6.17) has the form used in Section 5.2.4 for the consistent two-step integrator. For the
numerical integration, the partial and discrete derivatives of the potential and constraint
functions are required. One obtains

(
DV

Dq

)T
=

(
∂V

∂q

)T
=


0
−mg

0
−mg

 ,

(
DgN
Dq

)T
=

(
∂gN
∂q

)T
=


1 0
0 0
0 1
0 0

 (6.19)

for the potential and gap function. The function gS is quadratic in the generalized coor-
dinates which yields the discrete derivative

DgS
Dq

(a, b) =
∂gS
∂q

(
a+ b

2

)
(6.20)

as midpoint partial derivative (see Section 5.2.1). For the velocity level constraint function
one gets (

∂γS
∂q

)T
=


ẋ1 ẋ1 − ẋ2

ẏ1 ẏ1 − ẏ2

0 ẋ2 − ẋ1

0 ẏ2 − ẏ1

 ,
DγS
Dq

(u,a, b) =
∂γS
∂q

(u). (6.21)

The parameters and initial conditions listed in Table 6.2 are used for the numerical sim-
ulation. In Figure 6.5, a numerical solution for the rod angles α1 and α2 obtained with
the consistent two-step integrator given by (5.106) and (5.107) is shown as α1C and α2C .
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Point mass m = 0.2 kg
Rod length l = 0.5 m
Gravitational acceleration g = 9.81 m s−2

Coefficient of restitution ε = 1

Initial coordinates x1(0) = 0 m
y1(0) = 0.5 m
x2(0) = 0 m
y2(0) = 1 m

Initial velocities ẋ1(0) = 2.5 m s−1

ẏ1(0) = 0 m s−1

ẋ2(0) = 5 m s−1

ẏ2(0) = 0 m s−1

Table 6.2: Parameters and initial conditions.

As numerical reference, a solution obtained with Moreau’s midpoint rule (see Section 5.1)
is shown as α1M and α2M . For the integration with Moreau’s midpoint rule, a minimal
model based on the angles α1 and α2 has been used. Both numerical solutions are cal-
culated with a relatively large time step ∆t = 0.01 s. In Figure 6.6 the total energy EC
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Figure 6.5: Angles of the double pendulum.

and EM relative to the initial energy E0 is shown for the numerical solutions obtained with
Moreau’s midpoint rule and the consistent two-step integrator. For Moreau’s midpoint
rule we get a significant deviation of the energy from its initial value, although the total
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energy is preserved for an exact solution. With the consistent integrator, the total energy
is preserved up to the numerical precision. Reducing the size of the time step lets both
solutions converge towards the exact solution. Instead of the consistent two-step integra-
tor, also the consistent integrator (5.95) for systems with perfect unilateral constraints
could have been used. Results obtained with (5.95) are very similar (but not identical)
to the results from the consistent two-step integrator.
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Figure 6.6: Total energy of the double pendulum.

6.3 Overbalanced Wheel

The overbalanced wheel was an early attempt at constructing a perpetual motion machine,
dating back at least to the Middle Ages. A version of an overbalanced wheel is shown in
Figure 6.7. It was argued that the lever arms on right side of the wheel axle are longer
than those on the left side. So it was hoped to rotate in clockwise direction ad infinitum
producing free energy. But while the lever arms are really longer on the right side in
general, there are also more levers on the left side. So of course it does not produce
any energy. In this section, we will use the overbalanced wheel just as an example of a
mechanical system which is a bit more complicated than the unilateral double pendulum
from Section 6.2.

The basis of the mechanical system depicted in Figure 6.7 is a wheel with radius a and
moment of inertia θ which is supported at its center by a frictionless bearing. Rigid and
massless rods of length l connect n mass points with mass m to the wheel. The system is
under the influence of gravity g. The rods are assumed to be distributed evenly around
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Figure 6.7: Overbalanced wheel.

the wheel. Starting from the first one, the angle to the frictionless bearing of the i-th rod
is given by

αi =
2π(i− 1)

n
. (6.22)

Each lever is restricted by unilateral constraints to an at most tangential position on
one side, and an at most perpendicular position on the other side (see Figure 6.7). As
generalized coordinates we will use the angle ϕ of the wheel and the horizontal and vertical
displacements of the mass points

q =
(
ϕ x1 x2 . . . xn y1 y2 . . . yn

)T
. (6.23)

The time derivatives of the generalized coordinates are used as generalized velocities

u = q̇, u =
(
ϕ̇ ẋ1 ẋ2 . . . ẋn ẏ1 ẏ2 . . . ẏn

)T
. (6.24)

With the constant mass matrix

M =

(
θ 0
0 mI

)
(6.25)
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we get the kinetic energy of the overbalanced wheel as

T (q̇) =
1

2
q̇TMq̇. (6.26)

The gravitational forces can be described with the potential energy function

V (q) = mg
n∑
i=1

yi. (6.27)

The bilateral constraint function for the i-th rod is given by

gSi(q) =
1

2
(xi − a cos(ϕ+ αi))

2 +
1

2
(yi − a sin(ϕ+ αi))

2 − 1

2
l2. (6.28)

For the unilateral constraints we use the gap functions

gN1i(q) = xi cos(ϕ+ αi) + yi sin(ϕ+ αi)− a
gN2i(q) = −xi sin(ϕ+ αi) + yi cos(ϕ+ αi)

(6.29)

and the unilateral contact law described in Section 3.7.2. A Newton impact law with a
coefficient of restitution ε is used to describe the impacts. With the partial derivative

∂gSi
∂ϕ

= axi sin(ϕ+ αi)− ayi cos(ϕ+ αi)

∂gSi
∂xi

= xi − a cos(ϕ+ αi),
∂gSi
∂xj

= 0, i 6= j

∂gSi
∂yi

= yi − a sin(ϕ+ αi),
∂gSi
∂yj

= 0, i 6= j

(6.30)

of the constraint function gS we can formulate the constraint function

γSi(u, q) =
∂gSi
∂q

u = aϕ̇(xi sin(ϕ+ αi)− yi cos(ϕ+ αi))

+ẋi(xi − a cos(ϕ+ αi))

+ẏi(yi − a sin(ϕ+ αi))

(6.31)

of the kinematic bilateral constraints associated with gS. The complete equations of
motion have the same structure as (6.16) and (6.17) from the double pendulum example.
For the numerical solution of the equations of motion, we will use again the consistent two-
step integrator from Section 5.2.4. The partial derivative of the velocity level constraint
function

∂γSi
∂ϕ

= a(ϕ̇xi − ẏi) cos(ϕ+ αi) + a(ϕ̇yi − ẋi) sin(ϕ+ αi)

∂γSi
∂xi

= aϕ̇ sin(ϕ+ αi) + ẋi,
∂γSi
∂xj

= 0, i 6= j

∂γSi
∂yi

= −aϕ̇ cos(ϕ+ αi) + ẏi,
∂γSi
∂yj

= 0, i 6= j

(6.32)
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and the generalized force directions

∂gN1i

∂ϕ
= −xi sin(ϕ+ αi) + yi cos(ϕ+ αi)

∂gN1i

∂xi
= cos(ϕ+ αi),

∂gN1i

∂xj
= 0, i 6= j

∂gN1i

∂yi
= sin(ϕ+ αi),

∂gN1i

∂yj
= 0, i 6= j

∂gN2i

∂ϕ
= −xi cos(ϕ+ αi)− yi sin(ϕ+ αi)

∂gN2i

∂xi
= − sin(ϕ+ αi),

∂gN2i

∂xj
= 0, i 6= j

∂gN2i

∂yi
= cos(ϕ+ αi),

∂gN2i

∂yj
= 0, i 6= j

(6.33)

of the unilateral constraints will be needed for the consistent integrator. The partial
derivate of the potential function V is constant and serves as well as discrete derivative

DV

Dϕ
= 0,

DV

Dxi
= 0,

DV

Dyi
= mg. (6.34)

The other discrete derivatives are calculated numerically by direct evaluation of (5.19).
The parameters listed in Table 6.3 are used for the numerical simulation. The simulation
is started at the initial position shown in Figure 6.8 and with an initial velocity given by

u = −2 rad s−1 (1 −y1(0) −y2(0) . . . −yn(0) x1(0) x2(0) . . . xn(0))T. (6.35)

The initial velocity corresponds to a clockwise rigid body rotation of the system with an
angular velocity of 2 rad s−1. The numerical integration is performed with a time step
size of ∆t = 10−4 s once for absolute inelastic impacts (ε = 0) and once for perfect elastic
impacts (ε = 1).

Number of levers n = 12
Lever length l = 0.2 m
Lever mass m = 0.1 kg
Wheel radius a = 0.4 m
Wheel moment of inertia θ = 0.16 kg m2

Gravitational acceleration g = 9.81 m s−2

Coefficient of restitution ε ∈ {0, 1}

Table 6.3: Parameters of the overbalanced wheel.

The total energy in the overbalanced wheel is constant for perfect elastic impacts. For the
inelastic impact law the total energy is decreasing stepwise. Both properties are preserved
in the numerical solutions obtained with the consistent integrator as shown in Figure 6.9.
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Figure 6.8: Initial position of the overbalanced wheel.
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Figure 6.9: Total energy.

In Figure 6.10, the first 10 s of the phase space plot for the wheel angle is shown for an
absolute inelastic impact law. The large vertical jumps correspond to the impacts when a
lever drops from its tangential to its perpendicular position. Energy is dissipated in every
impact, which quickly reduces the rotation into a pendular motion. Once the system is
in the pendular motion and no further levers drop on the right side, all the dissipation
comes from small impacts on the left side of the wheel. In Figure 6.11, the traces of all
mass points and an outline of the wheel are shown. Simulating the overbalanced wheel
with the same parameters but a perfect elastic impact law results in the motion shown in
Figure 6.12 and Figure 6.13. Short after starting the wheel, the total energy is distributed
by elastic impacts into a confusing motion of all levers. The phase space plot is dominated
by many impacts.
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Figure 6.10: Wheel angle phase space (ε = 0).
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Figure 6.11: Mass point traces (ε = 0).
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Figure 6.12: Wheel angle phase space (ε = 1).
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Figure 6.13: Mass point traces (ε = 1).
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6.4 Woodpecker

The woodpecker toy is a well known non-smooth mechanical system that shows both
impact and frictional phenomena. In this section we use the woodpecker model based on
linear kinematics as formulated by Glocker [23, 30]. An illustration of the woodpecker toy
is shown in Figure 6.14. It consists of a vertical pole, a sleeve with a hole that is slightly
larger than the diameter of the pole, a spring and the woodpecker. When correctly
started, the woodpecker moves down the pole, performing a pitching motion interrupted
by impacts.

Figure 6.14: Woodpecker toy.

The mechanical model of the woodpecker toy is shown in Figure 6.15. The model has
three degrees of freedom: The rotation of the sleeve, the rotation of the woodpecker and
the vertical displacement of sleeve and woodpecker. As generalized coordinates the sleeve
angle α, the vertical position y and the angle ϕ of the woodpecker are used, i.e.

q =

yα
ϕ

 , u =

ẏα̇
ϕ̇

 , u = q̇. (6.36)

The generalized velocities are just the time derivative of the generalized coordinates. The
center of mass of the sleeve and the woodpecker are at CM and CS, respectively. Based
on linear kinematics, the kinetic energy of the woodpecker toy can be written as

T (q̇) =
1

2

[
mM ẏ

2 + JM α̇
2 +mS(ẏ + lM α̇ + lGϕ̇)2 + JSϕ̇

2
]

(6.37)

where mM , JM and mS, JS are the mass and moment of inertia of the sleeve and wood-
pecker, respectively. All geometrical parameters are shown in Figure 6.15. With the
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Figure 6.15: Model of the woodpecker toy as described in [23, 30].

constant mass matrix

M =

mS +mM mS lM mS lG
mS lM JM +mS l

2
M mS lM lG

mS lG mS lM lG JS +mS l
2
G

 (6.38)

the kinetic energy (6.37) of the woodpecker can be written as

T (q̇) =
1

2
q̇TMq̇. (6.39)

The stiffness matrix

K =

0 0 0
0 c −c
0 −c c

 (6.40)

is introduced for the spring. This allows to formulate the potential function

V (q) =
1

2
qTKq + (g 0 0)Mq (6.41)

to describe the gravitational and spring forces. The woodpecker model uses three contacts
with friction. The first contact is between the beak and the pole. The second and third
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contacts are between the pole and the upper and lower end of the sleeve. The gap functions
based on linear kinematics are given by

gN1(q) = (lM + lG − lS − rO)− hSϕ
gN2(q) = (rM − rO) + hMα

gN3(q) = (rM − rO)− hMα.
(6.42)

The partial derivatives of the gap functions with respect to the generalized coordinates q
yield the generalized force directions

wN1 =

 0
0
−hS

 , wN2 =

 0
hM
0

 , wN3 =

 0
−hM

0

 (6.43)

for the normal direction of the contacts. The generalized force directions for the tangential
friction forces are given by

wT1 =

 1
lM

lG − lS

 , wT2 =

 1
rM
0

 , wT3 =

 1
rM
0

 . (6.44)

The equations of motion have the form

Mu̇+

(
∂V

∂q

)T
−
∑

i ∈ I(q)

(wNiλNi +wT iλT i) = 0

− q̇ + u = 0

i ∈ I(q) : wT
Ni q̇ ∈ NR−

0
(−λNi)

i ∈ I(q) : wT
T i q̇ ∈ N[−µiλNi,µiλNi](−λT i)

(6.45)

where the set of active contacts is defined as

I(q) = {i | gNi(q) = 0}. (6.46)

For the contact friction, a Coulomb friction law formulated as normal cone inclusion is
used (see 3.7.3). The impact equations and the impact laws of Newton type in inclusion
form are given by

M (u+ − u−)−
∑

i ∈ I(q)

(wNiΛNi +wT iΛT i) = 0

i ∈ I(q) : wT
Ni (u

+ + εNiu
−) ∈ NR−

0
(−ΛNi)

i ∈ I(q) : wT
T i (u

+ + εT iu
−) ∈ N[−µiΛNi,µiΛNi](−ΛT i).

(6.47)

The description (6.45) and (6.47) of the dynamics of the woodpecker toy has the form
of (5.1) and (5.2) used for Moreau’s midpoint rule as well as the form of (5.104) and (5.105)
used for the consistent two-step integrator from Section 5.2.4. Since all the generalized
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force directions are constant and there are no bilateral constraints, only the discrete
derivative (

DV

Dq
(a, b)

)T
=

1

2
K(a+ b) +M(g 0 0)T (6.48)

of the potential function V is needed additionally for the numerical integration. Note
that this system has no additional bilateral constraints and all the potential forces are
linear in the generalized coordinates q. In this case both inclusion problems obtained
for the consistent two-step integrator consist only of normal cone inclusions coupled with
linear equations and can be solved with the projected Jacobi iteration or the projected
Gauss-Seidel iteration discussed in Section 2.5. Using a projected Jacobi or Gauss-Seidel
iteration instead of a projected Newton iteration for the second step of the integrator can
greatly reduce the numerical work required for a time step.

For the numerical simulation the parameters and initial conditions in Table 6.4 taken
from [30] are used.

Pole radius r0 = 0.0025 m
Inner sleeve radius rM = 0.0031 m
1/2 sleeve height hM = 0.0058 m
Sleeve-Spring distance lM = 0.010 m
Spring-Woodpecker distance lG = 0.015 m
Woodpecker height hS = 0.02 m
Beak length lS = 0.0201 m

Mass, sleeve mM = 0.0003 kg
Mass, woodpecker mS = 0.0045 kg
Moment of inertia, sleeve JM = 5 · 10−9 kg m2

Moment of inertia, woodpecker JS = 7 · 10−7 kg m2

Spring stiffness c = 0.0056 N m rad−1

Gravitational acceleration g = 9.81 m s−2

Restitution coefficients, normal εN1 = 0.5
εN2 = 0
εN3 = 0

Restitution coefficients, tangential εT1,2,3 = 0
Friction coefficients µ1,2,3 = 0.3

Initial coordinates y(0) = 0 m
α(0) = −0.1036 rad
ϕ(0) = −0.2788 rad

Initial velocities ẏ(0) = −0.3411 m s−1

α̇(0) = 0 rad s−1

ϕ̇(0) = −7.4583 rad s−1

Table 6.4: Parameters and initial conditions.
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In Figure 6.16, the solution obtained with the consistent two-step integrator from Sec-
tion 5.2.4 and a time step ∆t = 10−5 s is shown. The solution obtained with Moreau’s
midpoint rule and the same time step size is identical up to the precision of the shown
figure. A phase space plot of the two angles α and ϕ is shown in Figure 6.17 and Fig-
ure 6.18.
A solution obtained with the consistent two-step integrator for a time step ∆t = 10−3 s
is shown in Figure 6.19. Besides the fact that the solution starts to deviate from the
exact solution visibly at t = 0.12 s, there is also a high frequency oscillation of the ver-
tical velocity ẏ in the time window from 0.025 s to 0.06 s. This time window is the part
of the woodpecker dynamics where the sleeve is sticking. The reason for the oscillation
is the discretization of the friction law in the second step (5.107) of the consistent inte-
grator. In (5.107) the discretization is based on the difference wT

T i(q
E − qB) instead of

using wT
T i(u

E + εiu
B) like in Moreau’s midpoint rule. When the friction law is in sticking

mode, then the wT
T i(q

E−qB) discretization is dissipation free, leading to an oscillation on
velocity level. The oscillation occurs, because the perfect sticking constraint is enforced
only on displacement level. This is the same behavior one can observe when enforcing
bilateral constraints on displacement level only. Moreau’s midpoint rule profits in this
case from the combined discretization of the force and impact law. The tangential coef-
ficient of restitution which is equal to zero in this case, dissipates the remaining energy
when friction is entering the sticking mode, although this happens without impact in the
exact solution. The wT

T i(q
E − qB) discretization approach is used in the consistent two-

step integrator to maintain the consistency of the total energy. The oscillation problem
could be solved (in this case) by weakening the consistency requirement for the consistent
integrator. One could enforce the total energy consistency for example only for the iner-
tial and potential forces, and use a discretization of the normal cone inclusion force laws
similar to Moreau’s midpoint rule. This would still yield exact energetic consistency at
least whenever all the forces of the set-valued force laws of normal cone type are zero (see
equation (5.111)).
In Figure 6.20, a part of the total energy curves are shown as comparison for the consis-
tent two-step integrator and Moreau’s midpoint rule. For both integrators a time step
of ∆t = 10−3 s has been used. The considered time window shows the sticking of the
sleeve and the start of the sliding. As expected, the total energy consistency of the con-
sistent two-step integrator is fulfilled, while the integrator based on Moreau’s midpoint
rule shows also a slightly increasing total energy at times.
Overall there is no real advantage in using a consistent integrator for the numerical inte-
gration of the dynamics of the woodpecker toy. The main source of inaccuracy are badly
approximated impact times. When small enough time step sizes are used to localize the
impacts good enough in time, then also the small energy inaccuracy of Moreau’s midpoint
rule is no longer a problem.
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Figure 6.16: Woodpecker solution with ∆t = 10−5 s.
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Figure 6.17: Sleeve phase space.
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Figure 6.18: Woodpecker phase space.



136 Chapter 6. Examples

−4

−2

0
·10−2

[m
]

y

−0.4

−0.2

0

[m
/s
]

ẏ
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6.5. Tippe Top 137

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

·10−2

−9.55

−9.5

−9.45

−9.4

·10−5

t [s]

[J
]

EC

EM

Figure 6.20: Woodpecker energy.

6.5 Tippe Top

The tippe top is a special kind of spinning top, which turns from the trivial position to an
inverted position if the spinning velocity is high enough. Once the spinning velocity has
decreased due to dissipation it tumbles over back to the trivial position. An illustration of
a tippe top is shown in Figure 6.21. An analysis of the dynamics and stability of the tippe
top can be found in [47]. In this section, the mechanical model of a tippe top will be used
as an example application for the Coulomb-Contensou friction approximation discussed in
Section 3.7.5. The normal cone inclusion problems occurring in the numerical integration
are solved with the methods discussed in Section 2.5.2 and Section 2.5.3. Beside this, the
quaternion based consistent integrator formulation from Section 5.2.5 is applied to the
example of the tippe top.

Figure 6.21: Tippe top.
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Figure 6.22: Tippe top.

The mechanical model of the tippe top is shown in Figure 6.22. The tippe top consists
of one rigid body with center of mass at point C. The rigid body dynamics is described
with the quaternion based ODE formulation from Section 4.3. The position rOC of the
center of mass and a unit quaternion A = (a0,a) form the generalized coordinates

q =

(
rOC
ψ(A)

)
. (6.49)

The unit quaternion describes the rotation of the body from the reference configuration
into the displaced configuration. The corresponding rotation matrix is given by

R = aaT + 2a0ã+ a2
0I + ãã (6.50)

as follows directly from (4.57) for a unit quaternion. The generalized velocities are formed
by the velocity vC of the center of mass and the vector ω, i.e.

u =

(
vC
ω

)
. (6.51)

The vector ω is the angular velocity Ω of the body rotated from the displaced configura-
tion back to the reference configuration

ω = RTΩ. (6.52)

The kinematic relation from the quaternion based rigid body ODE (4.119) can be ex-
pressed as

q̇ = F (q)u (6.53)
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where the matrix F (q) is given by

F (q) =


I 0

0 −1

2
aT

0
a0

2
I +

1

2
ã

 . (6.54)

The mass and gyro matrix

M =

(
mI 0
0 Θ

)
, H(u) =

(
0 0
0 ω̃Θ +Θω̃

)
. (6.55)

are defined as in Section 5.2.5. In the coordinate system {eI1, eI2, eI3}, the inertia tensor is
given by

IΘ =

J1 0 0
0 J1 0
0 0 J3

 . (6.56)

Gravitation is the only potential force in this system. With the normal vector n we get
the potential function

V (q) = nTrOCmg. (6.57)

The contacts are modeled as unilateral contacts with Coulomb-Contensou friction. As
contact geometry, the rigid floor and two spheres with radii r1 and r2 are used. To
formulate the gap functions for the contacts, one needs the vector

rCSi
= ciRn− rin (6.58)

connecting the center of mass with the potential contact points Si. The length ci is the
distance of the center of the sphere from the center of mass (see Figure 6.22). The gap
functions are then given by

gNi(q) = nTrOSi

= nTrOC + nTrCSi

= nTrOC + cin
TRn− rinTn︸︷︷︸

= 1

= nTrOC + ci(n
TaaTn+ 2a0n

Tãn︸ ︷︷ ︸
= 0

+a2
0n

Tn︸︷︷︸
= 1

+nTããn)− ri

= nTrOC + ci(a
2
0 + aT(nnT + ññ)a)− ri.

(6.59)

With the partial derivative of the gap function

∂gNi
∂q

=
(
nT 2ci a0 2ci a

T(nnT + ññ)
)

(6.60)

we can formulate the generalized force direction for the normal contact

wNi(q) = F T(q)

(
∂gNi
∂q

)T
(6.61)
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based on the direction of the generalized velocities u. The Coulomb-Contensou friction
law requires three generalized force directions, two for the translational friction forces and
one for the rotational friction moment (see Section 3.7.5). The two translational friction
forces λT1 and λT2 are introduced in the directions t1 and t2. The friction moment λτ
into the direction of n. The complete Coulomb-Contensou force is then given by

λCi =

λT1

λT2

λτ

 . (6.62)

The associated relative velocity γCi is obtained by projecting the velocity at the contact
points Si into the corresponding direction, i.e.

γCi =

 t
T
1 vSi

tT2 vSi

nTΩ

 = W T
Ci(q)u (6.63)

To determine the matrix of generalized force directionsWCi from equation (6.63), we need
to express the velocities vSi

in term of the generalized velocity u. Using the relation (4.76)
and the rotational invariance of the cross product we get

vSi
= vC +Rω̃(RTrCSi

)

= vC + Rω̃RT︸ ︷︷ ︸
(= Rω)˜rCSi

= vC − r̃CSi
Rω

=
(
I −r̃CSi

R
)
u.

(6.64)

Inserting (6.64) into (6.63) allows to identify the matrix of generalized force directions

WCi(q) =

(
t1 t2 0

RTr̃CSi
t1 RTr̃CSi

t2 RTn

)
(6.65)

of the Coulomb-Contensou force law. The complete equations of motion are then given
by

Mu̇+H(u)u+ F T(q)

(
∂V

∂q

)T
−
∑

i ∈ I(q)

(wNi(q)λNi +WCi(q)λCi) = 0

q̇ = F (q)u

i ∈ I(q) : wNi(q)Tu ∈ NR−
0

(−λNi)
i ∈ I(q) : WCi(q)Tu ∈ NCF (λNi)(−λCi).

(6.66)

The unilateral constraints are formulated on velocity level using the index set of active
contacts

I(q) = {i | gNi(q) = 0}. (6.67)
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The convex set CF (λNi) is the force reservoir of the Coulomb-Contensou force law. One can
use either the set BF or the ellipsoid based approximation EF as described in Section 3.7.5.
The impact equations and impact laws are given by

M(u+ − u−)−
∑

i ∈ I(q)

(wNi(q)ΛNi +WCi(q)ΛCi) = 0

i ∈ I(q) : wNi(q)T(u+ + εNiu
−) ∈ NR−

0
(−ΛNi)

i ∈ I(q) : WCi(q)T(u+ + εCiu
−) ∈ NCF (ΛNi)(−ΛCi).

(6.68)

For the numerical integration we use the parameters and initial conditions listed in Ta-
ble 6.5. The parameters have been taken from [47] and are originally based on [21].
The average friction radius R̄1,2 = 2.945 · 10−4 m corresponds to a circular contact area
with radius R = 5 · 10−4 m and a parabolic normal force distribution as described in [47].
For the quaternion based consistent integrator (5.141) the discrete derivative of the gap

Main sphere distance c1 = 0.003 m
Handle sphere distance c2 = 0.016 m
Main sphere radius r1 = 0.015 m
Handle sphere radius r2 = 0.005 m

Mass m = 0.006 kg
Moments of inertia J1 = 8 · 10−7 kg m2

J3 = 7 · 10−7 kg m2

Friction coefficients µ1,2 = 0.3
Average friction radii R̄1,2 = 2.945 · 10−4 m
Restitution coefficients εN1,2 = 0

εC1,2 = 0

Initial position IrOC(0) = (0 0 1.2015 · 10−2)T m
Initial angle ϕ(0) = 0.1 rad
Initial velocity IvC(0) = (0 0 0)T m s−1

Initial angular velocity Iω(0) = (0 0 180)T rad s−1

Table 6.5: Parameters and initial conditions.

function
DgNi
Dq

(a, b) =
∂gNi
∂q

(
a+ b

2

)
(6.69)

and the discrete derivative of the potential energy(
DV

Dq

)T
=

(
∂V

∂q

)T
=

(
nmg

0

)
(6.70)

are required. Both can be obtained directly from the partial derivative, as both functions
are at most quadratic. In Figure 6.23, the inclination angle ϕ vs. time is shown for the
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tippe top with friction laws based on the set EF and BF . Both curves have been obtained
with Moreau’s midpoint rule and a time step of ∆t = 10−5 s. Of course, the results start
to deviate with time because the system is very sensitive, but still the overall behavior
is preserved with the approximation EF very well. The ellipsoid approximation can make
use of the transformation to a sphere SF in the proximal point iteration. A MATLAB R©

implementation results in a fixed point iteration for the set SF which is about 10.5 times
faster than with BF . Compared to the set EF , the transformed fixed point iteration using
the set SF is about 2.7 times faster. It has to be noted, that the solution obtained
with the set BF is only more correct with respect to the assumptions made about the
contact area and the friction interaction. In general, the geometry of the contact area,
the distribution of the normal force in the contact area and the properties of the friction
interaction are subject to large uncertainties. In this situation, the level of model-detail
of the ellipsoidal set can be more appropriate. The one-step or two-step quaternion based
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Figure 6.23: Tippe top inclination (∆t = 10−5 s).

consistent integrator (5.141) with a time step ∆t = 10−5 s yields a solution which is
identical to the one shown for Moreau’s midpoint rule and the set EF in Figure 6.23 up
to the precision of the plot. An illustration of the dynamics of the tippe top is shown in
Figure 6.24.

Integrating the dynamics of the tippe top with a larger time step leads to drift in the
unilateral constraint for the one-step quaternion based consistent integrator or Moreau’s
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Figure 6.24: Tippe top dynamics.

midpoint rule. The development of the gap functions for the one-step and the two-step
quaternion based consistent integrator as well as Moreau’s midpoint rule is shown in
Figure 6.25 for ∆t = 10−3 s. As expected, the consistent two-step integrator is the only
one that does not show any drift.
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Figure 6.25: Tippe top gap functions (∆t = 10−3 s).

The drifting of Moreau’s midpoint rule could be removed for this example by shifting the
tippe top back to the surface of the floor after each integration step. Obviously this is
not an option for the consistent one-step integrator, as this would change the potential
energy. To improve the situation for the consistent one-step integrator one has to use
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either a smaller time step, or a perfect elastic normal contact, i.e. εNi = 1. This yields a
unilateral contact that is consistent on velocity level for the consistent one-step integrator
as discussed in Section 5.2.5. Of course changing εNi modifies the dynamics of the model,
at least to some extent.
The tippe top example has been implemented also with the decomposed mass matrix
based two-step integrator from Section 5.2.4. The rigid body has been described as scal-
able body based DAE. For this example, the decomposed mass matrix based two-step
integrator yields mostly the same results as the quaternion based two-step integrator.
With larger time steps, the overall accuracy of the solution decreases earlier when com-
pared with the quaternion based two-step integrator. At least some of this is caused by
the explicit discretization of Q and H in the integrator from Section 5.2.4. The situation
can be improved by switching to an implicit midpoint approximation of Q and H , but of
course this also increases the numerical work slightly. Like the quaternion based two-step
integrator, the decomposed mass matrix based two-step integrator does not show any
drift in the unilateral contacts.



Chapter7
Conclusions

In this thesis, different variants of consistent integrators for the dynamics of non-smooth
mechanical systems have been developed. The integrators rely on the discrete derivative
approximation of partial derivatives to achieve consistency with respect to the total energy
and to the kinematics of unilateral and bilateral constraints.

In a first part, some approaches for the formulation of consistent integrators for smooth
multibody systems have been discussed. This included a consistent integrator based on
equations of motion in differential-algebraic form, where the mass matrix is constant.
The equations of motion have been extend with the induced constraints on velocity level
and corresponding multipliers in order to enforce the kinematics of bilateral constraints
on displacement and velocity level. For rigid body dynamics based on the affine body
formulation this leads to a system of nonlinear equations with 36 unknowns per body.
The number of unknowns could be reduced with another integration scheme where a
coordinate dependence of the mass matrix is allowed. Unfortunately, the coordinate
dependence of the mass matrix results in complicated expressions for the discretization
of the inertial forces which are not efficient to evaluate in general. Beside this, minimal
parameterizations of the degrees of freedom of a rigid body with Euler or Kardan angles
also have the singularity problem.

The number of unknowns for a rigid body can be reduced from 36 to 16 by formulat-
ing the equations of motion in differential-algebraic form using the scalable body with a
quaternion based parametrization instead of the affine body based approach. The deriva-
tion of the equations of motion for a scalable body and it’s reduction to a rigid body has
been discussed in detail. The mass matrix of scalable body based rigid bod formulation is
still a function of the generalized coordinates, but it can be decomposed into a constant
matrix and a transformation of the generalized velocities. For equations of motion with
an analytical mass matrix decomposition, a consistent integrator with support for bilat-
eral constraints has been formulated. In a next step, the decomposed mass matrix based
consistent integrator has been extended for perfect unilateral constraints. The extension
to the more general set-valued force laws of normal cone type and dissipative impacts
has been achieved with the formulation of a consistent two-step integrator. The two-step
integrator separates the discretization of the impacts and impact free parts of the dy-
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namics, but it is still an event-capturing approach. The consistent integrators based on
constant and decomposed mass matrices are not limited to rigid body systems. The last
consistent integrator that has been discussed is a quaternion based formulation using a
direct discretization of the Newton-Euler equations. This formulation is limited to rigid
body systems.
The consistent integrators for non-smooth mechanical systems yield a system of coupled
nonlinear equations and normal cone inclusions for each time step, in general. To solve this
one-step problem a projected Newton iteration has been proposed. In certain cases one
gets only linear equations together with the normal cone inclusions, as for example when
the constraint equations and potential forces are linear in the generalized coordinates. In
these cases also the more efficient projected Jacobi or projected Gauss-Seidel iterations can
be used. The linear transformation of normal cone inclusions and proximal point iterations
as well as the recovering strategy for proximal point iterations have been developed in this
work. These techniques can be used to improve the efficiency of the iteration methods for
solving normal cone inclusions on multidimensional convex sets.
The main contributions of this thesis can be summarized as follows:

− Consistent integrators for non-smooth multibody dynamics have been developed
and demonstrated for some example systems. The integrators are based on one-
or two-step schemes and allow for inertial and potential forces, bilateral constraints
and set-valued force laws of normal cone type. The set-valued force laws can be
equipped with impact laws of Newton-type. The integrators are consistent with
respect to the total energy, the bilateral constraints on both kinematic levels and
the unilateral constraints on velocity level.

− The scalable body model associated with the kinematics of an unconstrained quater-
nion has been introduced. The equations of motion of a scalable body have been
derived in different forms directly from the principle of virtual work without mak-
ing any rigid body assumptions. A quaternion based rigid body formulation in
differential-algebraic form has been derived by adding a mechanical quaternion unit
length constraint to the scalable body.

− The projected Newton iteration method has been proposed, which can be used for
solving systems of coupled nonlinear equations and normal cone inclusion. The
method has been applied successfully to some examples.

− Improved methods for the solution of normal cone inclusions on multidimensional
convex sets have been developed. The transformation technique for proximal point
iterations can be applied in cases where the linear transformation of the convex set
leads to a simplification of the associated proximal point function. The recovering
strategy for proximal point iterations can be used to improve the convergence rate
for badly scaled multidimensional normal cone inclusions.

The consistent integration schemes presented in this work are robust for large time steps,
as is to be expected for a completely implicit and energy consistent integrator. The
complete implicit discretization increases the numerical work per time step when compared
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with Moreau’s midpoint rule which uses only a partially implicit discretization. Moreau’s
midpoint rule yields a one-step problem consisting of linear equations and normal cone
inclusions. For the consistent integrators one has to solve a system of coupled nonlinear
equations and normal cone inclusions for each time step. For the consistent two-step
integrators there is additionally the impact inclusion problem that has to be solved. Also
the discrete derivative leads to a higher complexity of the expressions used in the one-step
problem of a consistent integrator in general. It is difficult to gain any overall performance
in the integration process with a consistent integrator, unless the system contains very
fast dynamics that force integrators like Moreau’s midpoint rule to use very small time
steps, in order to remain stable.

Moreau’s midpoint rule can preserve the total energy for certain special cases as well. This
can be seen from a comparison with the consistent integrators, or by deriving the energy
balance with the same approach as for consistent integrators. For example, the total
energy is preserved in Moreau’s midpoint rule for systems with a constant mass matrix,
constant potential forces and scleronomic perfect elastic unilateral contacts. Two dimen-
sional granular media models are examples of such systems, although the discretization
of the non-smooth forces is usually not consistent with respect to the total energy.

Integrators formulated from equations of motion in differential-algebraic form are well
suited for systems with many degrees of freedom and only few constraints. A differential-
algebraic equations formulation is required for systems with kinematic loops. For systems
where most degrees of freedom initially considered by a set of generalized coordinates, are
removed with bilateral constraints, a formulation of the equations of motion in minimal
coordinates (with respect to bilateral constraints) can be more efficient in terms of the
number of equations. Unfortunately, a minimal coordinates based approach is difficult to
realize in an efficient way for consistent integrators.

The consistent integrators developed in this work do not strictly enforce the unilateral
contacts on displacement level. Instead, only the increasing of the interpenetration is
prevented strictly once the contact is closed. An energy consistent strict enforcing of the
unilateral constraint on displacement level is difficult with a fixed time step integrator.
The difficulties are related to the fact, that the complementarity between gap function and
contact force integral is lost when time intervals are considered during which the contact
closes or opens. An event driven integration scheme could make sure that contacts open
or close only at boundaries of a time step, but event driven integrators introduce other
problems.

To achieve the reduced form of consistency for unilateral contacts discussed in this work,
the formulation of a gap function is required. For Moreau’s midpoint rule or consistent
integrators without the consistency of unilateral contacts, only an index function and
a generalized force direction has to be provided. The index function has to determine
whether the contact is closed or not on displacement level. In contrast to this, the gap
function has to provide a measure how far open the contact is as well.

Not all possible combinations of consistent integrators and non-smooth extensions are
discussed in this work. For example, one could extend the consistent integrator based on
a general coordinate dependent mass matrix with non-smooth forces as well. For this,
one can apply the formulation and discretization of the non-smooth forces that have been
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described in detail for the decomposed mass matrix based integrator. Another possibility
is to combine the non-consistent one-step discretization of the non-smooth forces from
Moreau’s midpoint rule with the consistent integration schemes. The consistency of the
resulting integrators would be limited to inertial and potential forces as well as bilateral
constraints. For time steps where the non-smooth forces are zero, one would still get
exact consistency of the total energy. In the same spirit also other elements like kinematic
excitation or other forces (for example dissipation) can be added to the model. Some of
the robustness properties should still be preserved even when an exact consistency of the
total energy is lost or given only when certain forces are zero.
There are still many topics for further research. The problem of momentum consistency
in non-smooth consistent integrators has not been addressed in this thesis. Work on ad-
ditional consistency with respect to momentum and first integrals arising from symmetry
could be started with a Hamiltonian approach and generalized momenta as variables or a
rigid body based approach parametrized with momentum and spin. The consistency on
both kinematic levels for unilateral contacts could be interesting as well, even for integra-
tors without consistency of the total energy. Also convergence of non-smooth consistent
integrators presented in this work should be investigated further. The consistency on both
kinematic levels of bilateral constraints has been achieved by adding a set of artificial mul-
tipliers to the equations of motion. Alternatively, an approach using a projection of the
kinematic equation could be further investigated. Other interesting approaches include
using a semi-implicit discretization of the smooth forces, where a linear approximation
around the beginning of a time step is discretized implicitly. This should enhance the
robustness of the integration scheme without increasing the numerical costs per time step
too much, since the resulting one-step problem would be still a system of coupled linear
equations and normal cone inclusions. The two-step integrators discussed in this work
or non-smooth integrators based on a time-splitting method could be subject for further
research as well. To increase the performance of non-smooth integrators in general, one
could try to reduce the coupling horizon for the contacts in a numerical approximation, for
example by employing time sequential impact laws or inaccurate solutions of the one-step
inclusion problem (while still keeping the scheme convergent). Beside this, any improve-
ment for the solution of normal cone inclusion problems with linear or nonlinear equations
could be valuable for non-smooth integrators.
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