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ABSTRACT 

 

This paper proposes an optimal survey design method for multiday and multiperiod panels 

that maximizes the statistical power of the parameter of interest. The method addresses 

balances among sample size, survey duration for each wave, and frequency of observation. 

Higher-order polynomial changes in the parameter are also addressed, allowing us to 

calculate optimal sampling designs for nonlinear changes in response to a given policy 

intervention. After developing the survey design method and showing numerical simulation 

results, an empirical analysis is conducted using data from the German Mobility Panel, which 

is an excellent ongoing multiday and multiperiod survey. In the empirical analysis, we 

identify optimal survey designs for capturing the impacts of policy interventions on trip 

generation. One of the most important findings in this study is that variation structure in the 

behavior of interest strongly influences how surveys are designed to maximize statistical 

power, while the type of policy to be evaluated does not influence it so much. We also point 

out several important research issues for the future. 
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1. INTRODUCTION 

 

When a travel (or activity) diary survey is designed, we must determine sampling procedures, 

questionnaire items, financial schemes, and so on. Academic research in the transportation 

field has concentrated more on how to use data (e.g., behavioral modeling) than on how to 

collect it (e.g., survey design). It may be time to pay greater attention to survey design issues, 

because, unlike model development, data collection is often time sensitive. For some 

information, if we miss the opportunity to collect the data (such as information that will only 

be in short-term memory for a limited time), retrospective surveys will not be able to capture 

the detailed behavioral data of interest. Recent travel surveys have often been smaller in scale 

(partly because of financial difficulties), and under such situations, we have to carefully 

consider how to design smaller surveys while minimizing the loss of necessary information. 

This paper approaches such survey design issues from a statistical perspective. 

In the near future, many developed counties will face decreasing populations (indeed, 

countries such as Germany, Italy and Japan already face the problem), which may trigger a 

number of microscopic and macroscopic changes. In this situation, it may not be appropriate 

to apply one-day data to demand forecasting, in which longitudinal trends and changes in 

behavior are extrapolated from cross-sectional data (Kitamura, 1990). Instead, longitudinal 

data would be more appropriate for demand forecasting and policy evaluation, especially for 

cases in which changes are expected over time (see, e.g., Goodwin, 1998). In this context, it is 

known that multiday and multiperiod panel survey data can provide the information we need 

to represent behavioral variations and changes in model development and policy evaluation 

(Pendyala and Pas, 2000). The Dutch Mobility Panel, Puget Sound Transportation Panel, and 

the German Mobility Panel are prominent examples of multiday and multiperiod panel 

surveys. These survey data have been used in a number of studies and have not only 

improved our understanding of activity–travel behavior, but also provided fundamental data 

that have been used to establish new theoretical foundations. However, there are still 

relatively few empirical investigations of multiday and multiperiod panels. The reasons for 

this may include: 1) conducting such longitudinal surveys is seen as more expensive than 

cross-sectional surveys; 2) such surveys may require more complicated institutional 

arrangements; and 3) the advantages and disadvantages of applying such complicated survey 
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data are not clear. Considering these concerns, it would be useful to clarify for a given budget, 

how, for instance, parameter accuracy is changed by shifting from cross-sectional surveys to 

multiday and multiperiod surveys, what kind of trade-off structure exists between survey cost 

reduction and parameter accuracy improvement, and which survey design components 

(number of sample, survey duration, number of waves, etc.) should be changed to reduce 

survey cost while minimizing the loss of parameter accuracy. In other words, the development 

of effective survey design methods could be one way to encourage the use of multiday and 

multiperiod panel surveys, but this possibility has not been well explored because of limited 

methodological considerations and limited empirical applications. 

We should mention here that several transportation studies have focused on developing 

effective travel diary survey designs. Pas (1986) established the optimal length (in days) for 

multiday panel surveys and underscored the substantial benefits of multiday panel surveys for 

reducing data collection costs and/or improving the precision of parameter estimates. 

Kitamura et al. (2003) focused on the design of multiperiod panel surveys in the context of 

discrete travel behaviors, and concluded that continuous behavioral observations are needed 

to detect changes in behavior. This implies that, to identify changes in behavior, we may have 

to explicitly distinguish between short-term variability and long-term changes, especially in 

practical situations (for example, applying one-day data to forecasting involves longitudinal 

extrapolation of cross-sectional variability). Because multiday data contain information on 

short-term variability and multiperiod data contain information on long-term changes, using 

both multiday and multiperiod panel data could be one of the solutions to this problem. 

However, to our knowledge, there is no empirical research on optimal designs (in terms of 

survey cost efficiency) for multiday and multiperiod activity–travel diary surveys. 

Based on the above considerations, this paper attempts to develop a method for 

determining optimal design for multiday and multiperiod panel surveys under a given budget 

constraint, and assuming nonlinear changes in a given parameter. Concretely speaking, we 

describe the trade-offs between 1) the observed duration of each wave (i.e., how many 

consecutive days respondents should report their behavior for each wave), 2) the interval 

between successive waves (i.e., how frequently their behavior is observed), and 3) the number 

of samples, focusing on the statistical power of the parameter estimate. The proposed method 

is based on existing methods developed in other fields. In particular, the methodological 
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framework for managing longitudinal sampling designs developed by Raudenbush and 

Xiao-Feng (2001) is fundamental to the current study. However, a straightforward application 

of this method is hampered by the substantial day-to-day variations in travel behavior—such 

substantial fluctuations of objective variables generally do not appear when this method is 

used in other fields. To handle such fluctuations, we include a multilevel modeling technique 

in the Raudenbush and Xiao-Feng (2001) methodological framework, which allows us to 

distinguish between interindividual and intraindividual variances. This extended method has 

the same structure as “the cluster randomized trials with repeated measures” described by 

Spybrook et al. (2011). In this study, we further extend the methodology by introducing a 

budget constraint. 

We believe that this is the first work to focus on the optimal design of multiday and 

multiperiod travel diary panel surveys. After illustrating the methodological framework for 

optimal panel survey designs and showing some numerical simulation results, we present an 

empirical application, using German Mobility Panel data, that focuses on trip generation 

behavior. Although the findings of this paper are only applicable when the statistical power of 

a particular parameter is the focus of the survey, the clarified trade-offs among several survey 

elements could be a useful guide for policy makers who must make difficult survey design 

decisions. 

The next section reviews previous studies focusing on optimal survey designs. In Section 

3, a method for optimal survey design of multiday and multiperiod panels is described. Then, 

following numerical simulations based on the proposed method, we show the empirical 

results based on the German Mobility Panel. In the final section, key conclusions and future 

tasks are summarized. 

 

 

2. LITERATURE REVIEW 

 

2.1. Methods for Panel Survey Design 

 

Although there are some discussions of optimal panel survey design in the transportation field 

(e.g., Lawton and Pas, 1996; Pendyala and Pas, 2000), there is little methodological research 
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on optimal survey designs for multiday and multiperiod panels. On the other hand, 

methodological studies for panel survey designs have been published in other fields, 

including statistics, psychology, and medical science, as well as in the social, biomedical, and 

educational research fields. One of the important early studies was done by Hansen et al. 

(1953). They proposed an optimal survey design method for cluster sampling (e.g., cluster 

randomized trials). Although cluster sampling is known to be inefficient because the data 

obtained from a given cluster are generally correlated with each other (and thus there is a 

certain loss of information), Hansen et al. showed that this inefficiency may be offset by the 

reduced survey costs associated with collecting data from the same cluster. In fact, the 

optimal travel diary survey design method proposed by Pas (1986) is a straightforward 

extension of Hansen et al.’s method to multiday panel surveys, in which the cluster is an 

individual and each observation is done at the person–day level. Such cluster-sampling-based 

methods have been further developed in a multilevel modeling approach, especially by 

researchers in education and psychology (Hox, 2002; Snijders, 2005; Berger and Wong, 2009; 

Moerbeek et al., 2010). Snijders and Bosker (1993) developed optimal sampling designs for a 

general two-level linear model, and Raudenbush and Liu (1997) presented optimal survey 

designs for identifying the effect of a policy invention at the cluster level. Raudenbush and 

Liu (1997) also showed that a covariate can substantially increase the efficiency of cluster 

sampling. Moerbeek (2006) introduced a cost function to describe trade-offs between using 

covariate and increasing sample size. Cohen (1998) developed optimal multilevel survey 

designs for the estimation of variances of unobserved components, and Cohen (2005) did the 

same for situations in which intraclass correlation was the primary interest. Moineddin et al. 

(2007) simulated the properties of optimal survey designs for multilevel logistic regression. 

The studies reviewed thus far have focused on time-invariant aspects of behavior. 

Schlesseman (1973) conducted an important initial study of optimal survey designs for 

changing behavior by using multiperiod panels. The paper examined the proper balance in a 

longitudinal survey between the frequency of measurements and study duration. The results 

showed that a unit increase in the study duration reduced the standard error of a parameter 

estimate more than did a unit increase in the frequency of measurements. Raudenbush and 

Liu (2001) extended Schlesseman’s approach to include higher-order polynomial effects. 

Bloch (1986) introduced a cost function for optimal multiperiod panel survey designs, and 
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presented optimal survey designs that tried to strike a balance between additional subjects and 

additional measurements for each subject. Winkens et al. (2005) focused on the optimal 

time-points for repeated measurements under various covariance structures and found that the 

commonly used design, with equally spaced measures, is not optimal under certain conditions. 

Basagaña and Spiegelman (2009) claimed that existing longitudinal research has assumed that 

exposure (in our context, policy intervention) is time invariant, and they proposed new survey 

design methods that assumed policy interventions that vary with time. For 

repeated-measurement survey designs, several studies have addressed panel-specific issues, 

including dropouts and missing data (e.g., Muthen and Curran, 1997; Galbraith et al., 2002). 

 

2.2. Application to Activity–Travel Diary Surveys 

 

There is also a history of survey designs in the transportation field, for activity–travel diary 

surveys (Stopher, 2009). In the early period, the sample sizes for home interview surveys 

were generally defined as a percentage of the population, and often ranged from 1% to 3% of 

the population [in Japan, slightly higher percentages are used, with calculations based on the 

idea of Relative Standard Deviation (JSTE, 2008)]. Then, because of increasing survey costs 

and a better understanding of sampling statistics, sample sizes dropped in the 1970s, and they 

were no longer calculated as a percentage of the population. Smith (1979) published one of 

the pioneering works on sample size reduction, claiming that 900–1200 respondents 

constituted a sufficient sample size. From the 1980s on, multiday panel and/or multiperiod 

panel surveys have been popular because they allow us to describe dynamic travel behavior 

with both short- and long-term variability (Pendyala and Pas, 2000). Smart (1984) and Pas 

(1986) discussed optimal survey designs for multiperiod panels and multiday panels, 

respectively. However, to the best of our knowledge, there is no transportation research on 

optimal travel survey designs for multiday and multiperiod panels, although, as mentioned 

above, there are plenty of panel survey design studies in other fields. One of the crucial 

reasons why there is little study of this topic in the transportation field might be that there is 

relatively little data on changes in travel behavior. Such knowledge is generally a prerequisite 

for determining optimal survey designs (e.g., intuitively speaking, we may need more 

behavioral observations when there are substantial changes in behavior). In recent years, with 
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the increasing availability of longitudinal data and the development of modeling methods, a 

number of studies have explored changes in various aspects of behavior (e.g., Pas, 1987; Pas 

and Sundar, 1995; Pendyala, 1999; Kitamura et al., 2006; Chikaraishi et al., 2010, 2011). By 

utilizing these modeling methods, we will conduct empirical studies on optimal survey 

designs for multiday and multiperiod panels, followed by development of a method for the 

optimal design of survey panels. 

 

 

3. OPTIMAL SURVEY DESIGN FOR PANEL SURVEYS 

 

The methodological foundation for the current study was formulated by a series of studies in 

other fields (Schlesseman, 1973; Raudenbush and Liu, 1997; Raudenbush and Xiao-Feng, 

2001; Spybrook et al., 2011). Although applying these methods to optimal designs for 

multiday and multiperiod travel surveys may be worthwhile, we extend this research by 

introducing a cost function—we set an exact maximization problem under a certain budget 

constraint. 

 

3.1. Basic Concept 

 

In this paper, the term “survey design” refers to the design of a multiday and multiperiod 

survey where 1) the observed duration of each wave is denoted by D, 2) the frequency of 

survey is denoted by F, and 3) the number of samples is denoted by N. Note that the 

frequency F is directly related to the overall survey period G and the total number of waves T. 

Concretely, F can be defined as (T–1)/G. For example, when the total number of waves T is 6 

and the survey period G is 10, the frequency F is equal to 1/2, i.e., the survey would be 

conducted once every two years. Thus, when two of these terms are set, the remaining 

element is automatically determined. In this study, for simplicity, G was a given parameter, 

and thus, identifying F is the same as identifying T. Hereinafter, we mainly use T instead of F, 

but essentially there is no difference. 

Based on the above definition of survey design, looking at real examples, in the fourth 

person trip survey in the Tokyo metropolitan region (which is a kind of traditional person trip 
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survey), the survey design {N, T, D} = {883044, 1, 1} was applied. In the same way, 

Mobidrive survey (Axhausen et al., 2002) was conducted with the survey design {N, T, D} = 

{361, 1, 42}, and the German Mobility Panel (Zumkeller, 2009) was conducted with the 

survey design {N, T, D} = {1800, 17, 7} (in this survey, sample refreshment was applied: 

each respondent was asked to report a period of continuous one-week travel behavior over 

each of three years, and thus the sample size fluctuates slightly according to year). The survey 

designs vary from survey to survey, probably depending on the purpose, and thus determining 

the purpose is the initial step in survey design. In this study, we set “capturing nonlinear 

changes in response to a certain policy intervention” as the main purpose of the survey. 

Specifically, we want to maximize statistical power for the parameter that represents the 

degree to which policy intervention affects the average rate of change, rate of acceleration, 

and higher degree polynomial effects. Thus, the term “optimal” survey design refers to a 

survey design {N, T, D} that maximizes the statistical power of the response to policy 

intervention. The basic concept for the multiday and multiperiod survey design is presented in 

Figure 1. 

 

3.2. Assumptions 

 

The main assumptions in this study are as follows. 

 

1. The objective variable is continuous. 

2. Policy intervention is randomly assigned for N/2 individuals. 

3. The survey perfectly follows random sampling procedure. 

4. There are no panel-specific problems, such as panel fatigue, dropouts, etc. 

5. There are equidistant intervals between successive panels. 

6. There is a hierarchical covariance structure (see Subsection 3.3). 

7. There is a time-invariant population. 

 

As mentioned in the previous section, a number of methods could be used to relax these 

assumptions, such as using a logit-type model for Assumption 1 (Moineddin et al., 2007), by 

introducing an autoregressive covariance structure for Assumption 6 (Winkens et al., 2005), 
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etc. However, we use these assumptions to make the discussion simple and clear. Future 

extensions of this method may help to strengthen its practical application to the design of 

similar surveys. 

 

3.3. Model Formula 

 

In this study, the following three-level model is employed: 

 

 tdi

P

p
ptpditdi ecY 

0

 , (1) 

 pdipipdi u  , (2) 

 piipppi vW  10  , (3) 

 

where Ytdi is a dependent variable observed from individual i (= 1, 2,…, N), at day d (= 1, 

2,…, D), in wave t (= 1, 2,…, T). Let etdi, updi, and vpi be normally distributed, with means 0 

and variances 2, p, and p, respectively. These random components can be regarded as 

interwave variation (i.e., variation associated with the repeated measures), intraindividual 

variation and interindividual variation, respectively. Unknown parameters pdi, pi, p0, and p1 

have a hierarchical relation: pdi is the intraindividual-level coefficient, pi is the 

interindividual-level coefficient, and p0 is the grand mean, for the pth-order polynomial 

change parameter cpt. The term p1 is the response to policy intervention Wi, which is a policy 

intervention indicator set at 1/2 for those who have experienced a policy intervention, and 

otherwise at –1/2. Our main interest here is to find optimal survey designs that maximize the 

statistical power of parameter p1. Because the optimal design depends on the order of 

polynomial change p, this study derives three different optimal survey designs [i.e., up to the 

third order of polynomial change (P = 3)]. To do this, we adopt the method used in 

Raudenbush and Xiao-Feng (2001) in which orthogonal polynomial contrast coefficients, 

which allow us to simplify the computations of statistical power, are employed. Specifically, 

we set orthogonal polynomial contrast coefficients cpt as follows: 
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3.4. Statistical Power 

 

As we mentioned above, in this study, the statistical power of the response to policy 

intervention p1 is maximized. We defined the null hypothesis as H0: p1 = 0, and the 

alternative hypothesis as H1: p1 ≠ 0. The variance of p1 is defined as follows (see Spybrook 

et al., 2011): 
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Kp is a constant term, where K1 = 1/12, K2 = 1/720, and K3 = 1/100,800. Here, because 

statistical power is the probability that the test will reject the null hypothesis when the null 

hypothesis is false, we can set the probability as follows: 
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where F0 is the critical value of F(1, N–2), which follows the central F distribution, while F(1, 
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N–2; λ) follows the noncentral F distribution with noncentrality parameter λ. Maximizing eq. 

(10) under a given budget is our main objective here. 

 

3.5. Survey Cost Function 

 

Needless to say, larger sample sizes, longer durations, and more frequent measurements will 

increase statistical power, but they also increase the cost of data collection. Although there are 

many possible cost functions for multiperiod and multiday panel surveys (depending upon the 

costs associated with each of these parameters), in this study, we used the following cost 

function: 

 

 TNCDNCNCCC TDN  0 , (12) 

 

where C is a total survey cost, C0 is the initial setup survey cost, CN is the cost for recruiting 

an individual, CD is the cost for increasing an observed duration per individual, and CT is the 

cost for increasing an observed time point (or wave) per individual. Although we have 

arbitrarily set this cost function, in future research it may be possible to identify survey cost 

functions through, for example, a kind of meta-analysis. 

 

3.6. Maximizing Statistical Power under Budget Constraints 

 

Based on the above-mentioned settings, we set the following maximization problem: 

 

  DTNPMax ,,1   (13) 

 
TNCDNCNCCC

pTDNCBts

TDN 


0

1,0,0,..
, (14) 

 

where B is the total budget that can be used for the survey. The number of waves T should be 

bigger than p+1. This is because when we try to capture a linear change (i.e., p = 1), at least 

two time-point observations are needed. Thus, this constraint represents the minimum number 

of waves required to capture the p-th order polynomial change. The output of this 
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maximization problem is the optimal survey design {N, T, D}. 

We should note here that another optimization problem, i.e., minimizing survey cost while 

achieving a given level of statistical power, can also be developed in a way similar to the 

maximization problem described in eqs. (13) and (14). The choice between these optimization 

methods might depend on the circumstances. In this study, we deal with the situation that a 

certain fixed survey budget is given. 

 

 

4. NUMERICAL SIMULATION 

 

4.1. Basic Settings 

 

Before describing the empirical study, we report numerical simulations we conducted to 

confirm the behavior of each parameter. The basic parameter settings for the simulations are 

shown in Table 1. Here, the degree of the response to policy intervention is defined based on 

the following standardized effect size p: 

 

 
pp

p
p

 





 1 . (15) 

 

We set the standardized effect size as 0.2, resulting in p1 = 0.2  (10)1/2. In the following 

subsections, we change one of the parameters in Table 1, and confirm how the parameters 

affect statistical power. In Subsections 4.2 and 4.3, we calculate statistical power based on eqs. 

(10) and (11) to confirm the impacts of the changes on the parameters, and in Subsection 4.4 

the maximization problem shown in eqs. (13) and (14) is used to check the impacts of 

changes in cost parameters. Finally, the impacts of effect size on optimal survey designs are 

identified in Subsection 4.5. 

 

4.2. Survey Duration, the Number of Waves, and Sample Size 

 

To begin, the impacts of each survey design element on the statistical power are addressed. 
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Figure 2 shows the results by the order of polynomial change. From the results, we can 

confirm first that increases in survey duration, the number of waves and sample size increase 

statistical power. We also confirm that the higher the order of polynomial change, the longer 

the survey duration for each wave, the more waves, and/or the larger sample size needed to 

obtain the same statistical power. This implies that, when a survey is conducted during a 

period when nonlinear changes can be expected, richer behavioral observation is needed to 

obtain a given level of statistical power. In addition, the results show that marginal returns for 

statistical power are basically decreasing with increases in parameters N, T, and D, whereas a 

higher-order of polynomial change still keeps higher marginal returns even when the 

parameters become larger. This indicates that conducting richer multiday and multiperiod 

surveys would be worthwhile, especially when nonlinear changes are expected. 

 

4.3. Unobserved Variations 

 

The impacts of changes in unobserved variations on statistical power are calculated as shown 

in Figure 3. The results indicate that higher interwave, intraindividual, and interindividual 

variations consistently reduce statistical power. We also confirmed that, in case of interwave 

variations, the degree of loss is the greatest with the highest polynomial change (i.e., p = 3). 

On the other hand, for intra- and interindividual variations, the larger impact is observed in 

the lower order of polynomial change under the current parameter settings. Based on these 

results, we can say that, with greater intra- and interindividual variability in behavior, richer 

multiday and multiperiod survey designs are needed (i.e., longer survey durations for each 

wave, more waves, and/or larger sample sizes). In addition, because behavioral variability 

might differ for different aspects of behavior, optimal survey design may strongly depend on 

the specific aspects of behavior studied, emphasizing the need to clearly define behaviors of 

interest before designing the survey. 

 

4.4. Cost Function 

 

To check the impacts of changes in cost parameters, the parameter settings for the cost 

function shown in Table 2 were applied as basic settings. How power and the maximization 
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results vary with cost parameter changes is our interest here. 

The maximization results of statistical power and the optimal survey designs under 

various cost parameters are shown in Figure 4 and Table 3, respectively. From the figure, it 

can be confirmed that, for the higher-order polynomial change, there are marginal changes in 

power, and the increases in survey costs are much higher for CD and CT, compared with CN. 

This implies that, relative to the cost of recruiting individuals, increasing survey durations and 

waves is more sensitive to the costs under the current cost function. On the other hand, for the 

1st-order polynomial change, the sensitivities are not so different among the different types of 

cost parameters. Thus, when the existence of nonlinear changes is expected, how survey costs 

are reduced for increasing durations and time points can be crucial, and depending on the cost 

structure, the optimal survey design could be quite different. This tendency can also be seen 

in Table 3. For example, when CT increases from 100 yen to 1000 yen, the optimal survey 

design shifts from {N, T, D} = {908, 2.0, 4.2} to {473, 2.0, 6.7} for the 1st-order polynomial 

changes, whereas it shifts from {276, 29.1, 13.9} to{139, 7.9, 25.4} for the 3rd-order 

polynomial changes. Of course, such discussions are strongly dependent on the cost structure 

of the survey, which may vary from case to case. Even so, we believe that such theoretical 

considerations of multiday and multiperiod panel survey data can be a useful guide for those 

who are designing multiday and multipanel panel surveys. 

 

4.5. Effect Size 

 

The degree of effect size depends on which policy is introduced. For example, 

regulation-based policies, such as congestion pricing, might have a greater effect size than do 

nonregulation-based measures, such as information provision. To confirm whether the 

optimal survey design varies according to the type of policy being evaluated, the impacts of 

effect size on optimal survey designs are shown in Table 4. From the table, we can confirm 

that the optimal survey designs are not strongly affected by effect size, implying that the type 

of policy evaluated through the survey may not be important for survey designs when there is 

a budget constraint. In other words, the same survey design could be used for evaluating 

multiple policies. 
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5. EMPIRICAL STUDIES 

 

In this section, we present an empirical example of the proposed survey design method 

described in Section 3, focusing on the impacts of policy intervention on trip generation. In 

Subsection 5.1, the empirical data used in this study (from the German Mobility Panel) are 

briefly described. In Subsections 5.2 and 5.3, the model estimation and optimization results 

are explained, respectively. 

 

5.1. Empirical Data 

 

Data from the German Mobility Panel (Zumkeller, 2009), a multiday and multiperiod panel 

survey, are used for the empirical analysis. The German Mobility Panel survey has been 

conducted since 1994. In this survey, each respondent is asked to report a period of 

continuous one-week travel behavior over each of three years. In our empirical analysis we 

excluded data from those who dropped out from the survey. We obtained 93,303 samples 

reported by 4,443 people [i.e., for each respondent, 7 (days) * 3 (waves) = 21 days of travel 

behavior were reported] from 1996 to 2008. Because the total survey period G is 12 years, 

orthogonal polynomial contrast coefficients can be calculated as {c11,…, c1t,…, c113} = {–6, 

–5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6}, {c21,…, c2t,…, c213} = {11, 5.5, 1, –2.5, –5, –6.5, –7, 

–6.5, –5, –2.5, 1, 5.5, 11}, and {c31,…, c3t,…, c313} = {–11, 0, 6, 8, 7, 4, 0, –4, –7, –8, –6, 0, 

11}. 

In this empirical analysis, Ytdi is defined as individual i’s total number of trips on day d at 

wave t and the policy intervention variable is defined by residential location, i.e., downtown 

or outskirts. Although residential location itself is not a kind of policy variable, it could be 

assumed that urban development projects such as TOD (Transit Oriented Development), 

compact city, etc., influence respondents’ mobility levels (represented by trip frequencies) to 

a greater or lesser extent depending upon where they live. Importantly, the primary purpose 

for conducting this empirical analysis was to identify the variation structure of trip 

frequencies. As shown in Subsection 4.5, the degree of the response to this policy variable 

was not important in the optimal survey design. We could give any value to the parameter for 
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the policy intervention variable p1 for the optimal survey designs when the survey budget is 

fixed, although small fluctuations exist. 

 

5.2. Model Estimation Results 

 

The estimation results for the activity generation model are shown in Table 5. They show that 

location was not a significant factor for all polynomial changes, whereas statistically 

significant effects of constant variables are observed for the 1st- and 3rd- order polynomial 

changes, implying that there would be some nonlinear changes in trip frequencies. For the 

estimation results of random effects, intraindividual and interindividual variations become 

smaller as the polynomial order increases. To examine the properties of unobserved variations, 

the following decomposition technique was applied: 
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The calculated ratio of intraindividual variation, interindividual variation, and interwave 

variation to the total variation is 11.9%, 29.8%, and 58.3%, respectively. It can be confirmed 

that, while interindividual variation is higher than intraindividual variation, the biggest 

unobserved variation is for interwave variation, which is variability associated with repeated 

measures. This means that the weekly behavior of wave t differs greatly from that of wave 

t+1, implying that a multiperiod survey could be quite important, especially when nonlinear 

changes are expected (see discussion in Subsection 4.3). 

 

5.3. Optimal Survey Designs for Activity Generation 

 

Based on the identified behavioral variations of the trip generation model shown in the 

previous subsection, here we attempt to derive optimal survey designs with a budget 

constraint. Optimal survey designs are identified with the following given parameters: Total 

budget B = 5,000,000 [Japanese yen]; Initial setup survey cost C0 = 2,000,000 [Japanese yen]; 
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Cost of recruiting an individual CN = 1,000 [Japanese yen]; Cost of increasing an observed 

duration per individual CD = 500 [Japanese yen]; Cost of increasing an observed time point 

per individual CT = 200 [Japanese yen]; Total survey period = 12 [years]; and Standardized 

effect size = 0.2. For the remaining parameters (i.e., parameters for unobserved components), 

the estimation results shown in the previous section are used. Note that, although the 

estimated effect size could also be used, we used a given for that parameter because 1) the 

introduced policy variable (i.e., residential location) was not significant for all polynomial 

changes, and 2) the effect size has little effect on optimal survey design, as shown in 

Subsection 4.5. 

The optimal survey design for the 1st-, 2nd-, and 3rd-order polynomial changes was 

identified as {N, T, D} = {813, 2.00, 4.58}, {690, 4.38, 4.94}, and {550, 7.78, 5.80}, 

respectively, with statistical power = 0.527, 0.421, and 0.373, respectively. As with the 

numerical simulation results shown in the previous section, for higher-order polynomial 

changes, not only are more data collection waves needed, but longer multiday periods of 

behavioral observations per wave are needed as well. Intuitively, this could be understood as 

a need for distinguishing between short-term and long-term behavioral variability. When 

complicated nonlinear changes in response to the policy variable can be expected, the 

behavioral differences between different time-point observations can be explained in two 

ways: 1) fluctuations/dispersions in behavior, and 2) structural changes in behavioral 

mechanisms. To distinguish between these two possibilities, more behavioral information in 

both the near and far term may be needed—that is, making each wave longer (i.e., enrichment 

of variation information) and increasing the number of waves (i.e., enrichment of change 

information). On the other hand, a clear distinction between measurement variations and true 

behavioral changes is very difficult to make, and this may be similar to the ecological fallacy 

(Robinson, 1950). How close together in time do two observations need to be to have any 

differences between them regarded as measurement variability rather than actual changes in 

behavior? Can the temporal averaging of behavior be regarded as typical behavior? This 

temporal version of the ecological fallacy arises when we attempt to distinguish between 

variation and change. Although such effects could be minimized when the temporal 

behavioral rhythms (weekly rhythm, yearly rhythms, etc.) are taken into account, exploring 

this temporal version of the ecological fallacy may be important in future research, especially 
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when the existence of substantial nonlinear changes is expected. To do this, existing studies 

dealing with MAUP (Modifiable Areal Unit Problem), which can be assumed as a geographic 

version of the ecological fallacy, could be a useful guide (see, e.g., Zhang and Kukadia, 

2005). 

 

 

6. CONCLUSION 

 

In designing a multiday and multiperiod survey, there are trade-offs among sample size, 

survey duration of each wave, and the frequency of observations. In this paper we focused on 

adjusting these three survey design components to minimize either total survey costs or error 

in judgment. Specifically, we first developed a survey design method for determining optimal 

sampling designs for multiday and multiperiod panel surveys with a given budget and in 

which statistical power for a given parameter was maximized. Nonlinear changes were also 

taken into account by introducing higher-order polynomial changes. To our knowledge, this is 

the first study to develop a method for optimal sampling design of multiday and multiperiod 

travel diary surveys with nonlinear changes in a given parameter. After developing the survey 

design method and showing numerical simulation results, we conducted an empirical analysis 

using data from the German Mobility Panel, which is an excellent, ongoing, multiday and 

multiperiod survey. In our empirical analysis we identified optimal survey designs for 

capturing the impacts of policy interventions on trip generation. 

There are several important findings in the numerical simulations and empirical results. 

First, we confirmed that when nonlinear changes occur during a survey period, 1) much richer 

behavioral observation is needed to obtain a given level of statistical power, and 2) survey 

costs for increasing survey durations and time points can strongly affect optimal survey 

designs—it could be difficult to decide an optimal survey design without taking into account 

the data collection cost. Second, in designing a multiday and multiperiod survey, the optimal 

survey designs may not be affected very much by the effect size, implying that the type of 

policy to be evaluated would not be important in survey design. Instead, the specific aspect of 

behavior being surveyed might have bigger impacts on optimal survey design. More precisely, 

how the behavior of interest varies and changes might be more important for the survey 
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design with respect to maximizing statistical power. Therefore, because the relationship 

between data collection and behavioral understanding constrain and influence each other 

(Axhausen, 2008), deepening our understanding of behavior based on the existing multiday 

and multiperiod survey data may be an important area for research for the improvement of the 

transportation planning process. For example, our empirical analysis of trip generation 

showed that, for interindividual, intraindividual, and interwave variation, the greatest change 

occurred in interwave variation, implying that weekly behavior at wave t substantially differs 

from that at wave t+1. Such fundamental behavioral understanding could be important for 

survey design. Finally, this study also highlighted the existence of a temporal version of the 

ecological fallacy, which may be relatively new in the transportation field. This temporal 

ecological fallacy may open a new and important future research area, namely, how do we 

distinguish between behavioral variation and behavioral change. This question may be more 

important when there are nonlinear changes in behavior, which may make the relationship 

between variations and changes more complicated. 

Of course, this study has a number of limitations. First, we made assumptions in 

developing our optimal survey designs. Although it may be difficult to eliminate all 

assumptions, it would be necessary to compare the results obtained with different sets of 

assumptions to strengthen our findings or to make modifications in our method. For example, 

addressing panel-specific issues such as attrition bias in the optimal survey design is an 

important future task to be explored. Second, we only set the maximization problem using a 

fixed budget, but sometimes a given level of statistical power may be much more important 

than preserving the budget, such as when the policy intervention is costly, as in road 

investments. In such a case, minimizing survey costs while maintaining statistical power may 

be more appropriate. Third, it would be worth identifying appropriate cost functions based on 

the experiences of existing multiday and multiperiod surveys, perhaps through some form of 

meta-analysis. Finally, in this study, we identified optimal survey designs for a single 

parameter. We could extend the proposed method to a multiobjective optimization problem 

that would incorporate multiple parameters. Such research could strengthen the practical 

application of the proposed survey design methods. 
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Table 1. Basic Parameter settings for numerical simulation 
 

Survey designs (Objective variables)   
Sample size [person] 
Observed duration of each wave [day] 
Total number of waves 
Total survey period [year] 
 

N 
D 
T 
G 

200 
14 
6 

5 (i.e., F=1) 

Parameters in the model   
Unobserved inter-wave variation 
Unobserved intra-individual variation 
Unobserved inter-individual variation 
Response to policy intervention 
 

σ2

τα 
τβ 

γp1 

20 
5 
5 

0.2×(10)1/2 
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Table 2. Parameter settings for cost function 
 

Parameters in the cost function [in Japanese yen] 
Total budget 
Initial set-up survey cost 
Cost for recruiting an individual 
Cost for increasing an observed duration per individual 
Cost for increasing an observed time-point per individual 

B 
C0 
CN 
CD 
CT 

5,000,000 
2,000,000 

1,000 
500 
200 
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Table 3. Optimal survey designs with varying cost parameters 
 

Cost parameter 
Maximization results (optimal survey designs) 

p=1 p=2 p=3 

CN CD CT N D T N D T N D T 

1000 500 100 908  4.2 2.0 576 6.7 8.4 276  13.9  29.1  
1000 500 200 815  4.6 2.0 522 7.2 5.8 222  16.1  22.4  
1000 500 300 740  4.9 2.0 504 7.2 4.5 196  17.8  18.1  
1000 500 400 682  5.2 2.0 468 7.7 4.0 182  19.1  14.8  
1000 500 500 628  5.6 2.0 433 8.2 3.7 171  20.5  12.5  
1000 500 600 587  5.8 2.0 403 8.6 3.5 164  21.6  10.9  
1000 500 700 555  6.0 2.0 379 9.1 3.4 157  22.7  9.7  
1000 500 800 526  6.2 2.0 358 9.4 3.3 151  23.6  8.9  
1000 500 900 498  6.5 2.0 339 9.8 3.3 145  24.5  8.3  
1000 500 1000 473  6.7 2.0 322 10.2 3.2 139  25.4  7.9  
1000 100 200 1279  9.5 2.0 964 14.1 3.5 500  31.2  9.4  
1000 200 200 1067  7.1 2.0 784 10.2 3.9 364  23.4  12.8  
1000 300 200 945  5.9 2.0 677 8.5 4.4 294  19.9  16.2  
1000 400 200 869  5.1 2.0 602 7.5 5.0 252  17.5  19.3  
1000 500 200 815  4.6 2.0 522 7.2 5.8 222  16.1  22.4  
1000 600 200 764  4.2 2.0 489 6.4 6.6 201  14.9  24.9  
1000 700 200 731  3.9 2.0 436 6.2 7.8 186  13.6  28.0  
1000 800 200 698  3.6 2.0 401 5.9 8.7 174  12.8  29.8  
1000 900 200 670  3.4 2.0 375 5.7 9.5 162  12.3  32.1  
1000 1000 200 645  3.2 2.0 359 5.3 10.3 154  11.7  34.2  
200 500 200 1403  3.1 2.0 828 5.1 4.4 255  14.7  21.1  
400 500 200 1171  3.5 2.0 713 5.8 4.6 247  14.9  21.5  
600 500 200 1008  3.9 2.0 642 6.1 5.0 237  15.8  20.9  
800 500 200 898  4.3 2.0 579 6.6 5.3 229  15.7  22.2  

1000 500 200 815  4.6 2.0 522 7.2 5.8 222  16.1  22.4  
1200 500 200 741  4.9 2.0 488 7.4 6.2 214  16.8  22.3  
1400 500 200 677  5.3 2.0 463 7.6 6.4 210  16.5  23.1  
1600 500 200 634  5.5 2.0 426 8.2 6.7 202  17.2  23.1  
1800 500 200 593  5.7 2.0 415 8.1 7.0 200  17.2  23.0  
2000 500 200 557  6.0 2.0 386 8.7 7.3 192  17.9  23.7  
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Table 4. Optimal survey designs with varying effect size 
 

Effect size 
Maximization results (optimal survey designs) 

p=1 p=2 p=3 

δp N D T Power N D T Power N D T Power 

0.01 - - - - - - - - - - - - 
0.02 - - - - - - - - - - - - 
0.03 - - - - - - - - 219 15.8 23.9 0.055  
0.04 802 4.7 2.0 0.079 534 7.3 4.9 0.070 218 15.6 24.8 0.059  
0.05 806 4.6 2.0 0.095 548 7.1 4.7 0.082 222 17.2 19.4 0.064  
0.06 802 4.7 2.0 0.116 545 7.1 4.8 0.096 222 17.5 19.0 0.071  
0.07 810 4.6 2.0 0.141 545 7.0 4.9 0.113 223 17.0 19.6 0.078  
0.08 813 4.6 2.0 0.169 545 7.1 4.9 0.133 221 17.2 20.1 0.087  
0.09 813 4.6 2.0 0.202 550 6.9 4.9 0.156 223 17.0 19.9 0.097  
0.1 809 4.6 2.0 0.238 545 7.0 5.0 0.182 220 17.0 20.4 0.109  

0.11 814 4.6 2.0 0.278 544 7.0 5.2 0.211 225 16.5 20.4 0.122  
0.12 815 4.6 2.0 0.321 537 7.1 5.3 0.242 222 16.8 20.6 0.136  
0.13 816 4.6 2.0 0.367 536 7.0 5.4 0.276 220 16.9 21.1 0.151  
0.14 815 4.6 2.0 0.414 533 7.1 5.4 0.312 225 16.2 21.2 0.168  
0.15 815 4.6 2.0 0.463 538 7.0 5.4 0.350 225 16.2 21.3 0.186  
0.16 815 4.6 2.0 0.513 528 7.0 6.0 0.391 224 16.0 22.0 0.206  
0.17 816 4.5 2.0 0.562 533 7.0 5.7 0.431 225 15.9 22.0 0.226  
0.18 816 4.6 2.0 0.611 535 6.9 5.9 0.474 225 16.0 21.8 0.248  
0.19 814 4.6 2.0 0.658 537 6.9 5.6 0.515 220 16.2 22.6 0.271  
0.2 815 4.6 2.0 0.702 522 7.2 5.8 0.556 222 16.1 22.4 0.295  

Note) “-” means the optimal solution cannot be identified because the power is too small. 
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Table 5. Estimation results of activity generation model 
 

Item     parameter t-value 

Explanatory variables       

c0t constant γ00 3.543  136.4  
living in inner city [D] γ01 0.008  0.220  

c1t constant γ10 -0.015  -2.010  
living in inner city [D] γ11 0.0001) -0.040  

c2t constant γ20 0.005  1.400  
living in inner city [D] γ21 -0.003  -0.510  

c3t constant γ30 -0.008  -2.880  
   living in inner city [D] γ31 0.001  0.310  

Random effects       

 c0t intra-individual variation τα 0.548    
inter-individual variation τβ 0.927  

c1t intra-individual variation τα 0.006  
inter-individual variation τβ 0.019  

c2t intra-individual variation τα 0.0002) 
inter-individual variation τβ 0.006  

c3t intra-individual variation τα 0.0003)  
inter-individual variation τβ 0.004  

   inter-wave variation σ2 3.120    

Initial log likelihood (only constant)   -208,487   
Final log likelihood   -198,033   
Number of sample 93,303 
1) The estimated value is -0.000448. 
2) The estimated value is 0.0000000000846. 
3) The estimated value is rounded to zero in the model estimation. 
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Figure 1. Basic concept of survey designs for multi-day and multi-period panel 
 
 



Chikaraishi et al.   Optimal survey designs for panel      31 
 

 

Observed_duration_of_each_wave

p
o

w
e

r

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

p=1

0 20 40 60 80 100

p=2

0 20 40 60 80 100

p=3

 

Number_of_waves

p
o

w
e

r

0.2

0.3

0.4

5 10 15 20

p=1

5 10 15 20

p=2

5 10 15 20

p=3

 

Sample_size

p
ow

er

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500

p=1

0 500 1000 1500

p=2

0 500 1000 1500

p=3

 
 

Figure 2. Statistical power vs. survey design components  
for each order of polynomial change 
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Figure 3. Statistical power vs. unobserved variations  
for each order of polynomial change 
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Figure 4. Maximization results of statistical power under various cost parameters 
for each order of polynomial change 

 
 
  
 


