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Abstract
We revisit the susceptible-infectious-recovered/removed (SIR) model which is
one of the simplest compartmental models. Many epidemological models are
derivatives of this basic form. While an analytic solution to the SIR model is
known in parametric form for the case of a time-independent infection rate, we
derive an analytic solution for the more general case of a time-dependent infec-
tion rate, that is not limited to a certain range of parameter values. Our approach
allows us to derive several exact analytic results characterizing all quantities,
and moreover explicit, non-parametric, and accurate analytic approximants for
the solution of the SIR model for time-independent infection rates. We relate all
parameters of the SIR model to a measurable, usually reported quantity, namely
the cumulated number of infected population and its first and second deriva-
tives at an initial time t = 0, where data is assumed to be available. We address
the question of how well the differential rate of infections is captured by the
Gauss model (GM). To this end we calculate the peak height, width, and posi-
tion of the bell-shaped rate analytically. We find that the SIR is captured by
the GM within a range of times, which we discuss in detail. We prove that the
SIR model exhibits an asymptotic behavior at large times that is different from
the logistic model, while the difference between the two models still decreases
with increasing reproduction factor. This part A of our work treats the original
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SIR model to hold at all times, while this assumption will be relaxed in part B.
Relaxing this assumption allows us to formulate initial conditions incompatible
with the original SIR model.

Keywords: statistical analysis, epidemic spreading, coronavirus, extrapolation,
SIR epidemic model, asymptotic behavior, analytic approximant

(Some figures may appear in colour only in the online journal)

1. Introduction

Several recent studies [1–4] have demonstrated that the normal or Gaussian distribution func-
tion for the temporal evolution of the daily number of new cases (deaths, or alternatively
infections) at time t due to the COVID-19 pandemic disease provides quantitatively correct
descriptions for the monitored rates in many different countries during a single wave. If applied
early enough at the beginning of a pandemic wave, within the regime of non-exponential
growth, the Gauss model (GM) makes realistic and reliable predictions for the future evo-
lution of the first wave. It has been argued that the assumption of a Gaussian time evolution
is well justified by the central limit theorem of statistics [3], an agent-based model [4], a Tay-
lor expansion [4], or as a special case of the SIR (susceptible-infectious-recovered/removed)
model [2]. A motivation of the present manuscript was to provide more rigorous arguments in
favor of using the GM to estimate the characteristics (peak time, height, and width) of a first
epidemic wave well ahead of its climax.

To describe the time evolution of pandemic deceases many models have been developed
which are based on the original deterministic compartmental SIR-model pioneered by Mc-
Kendrick and Kermack [5] and its later variants such as the SEIR-model (for recent review
see Estrada [6]). Important modifications to these mean-field rate equations include stochastic
aspects to account properly both, for strong number fluctuations, driving the continuous phase
transition of the system near the epidemic threshold, and also for spatially correlated clus-
ters and spreading fronts caused by the disease transmission through nearest-contact infection
[7, 8]. It is hoped that with these important modifications the so improved SIR models ulti-
mately provide quantitatively correct descriptions for the forecast of pandemics in many coun-
tries, even beyond the exponential growth phase of the pandemic. The inclusion of the stochas-
tic effects mentioned above is often done by combining numerical computer simulations with
the mean-field rate equations of the SIR- or SEIR-models with constant values of the infection
and reaction rates. Therefore these studies will also profit from more general analytical solu-
tions to the SIR-model equations for time-dependent infection and recovery rates which we
develop here.

On our way we discovered a new analytical solution of the standard SIR-model [5, 9–13]
without vital dynamics describing the temporal evolution of the COVID-19 pandemic dis-
ease that applies to the whole range of parameters. This solution allows for an arbitrary time
dependence of the infection and recovery rates but assumes that the ratio of the two rates is
independent of time. We emphasize that the assumption of a constant value for the ratio k
of the recovery to the infection rate is necessary to deduce an analytical solution for the SIR
model equations. There is no reason why the ratio of these two rates should be constant, as
the recovery rate μ(t) is largely determined by the nature of the disease which is not expected
to change strongly over time, whereas on the other hand, the infection rate a(t) is affected
by many factors, not the least mitigation measures introduced by the government. Even if we
ignore the latter non-pharmaceutical interventions (NPIs) it is not obvious that the infection
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rate varies proportional to the recovery rate. Nevertheless we are convinced that our calcula-
tions based on a constant value of the ratio k are meaningful and important, basically for the
following four reasons: first, our case generalizes earlier treatments where time-independent
infection and recovery rates were adopted. Secondly, as our solution allows for an arbitrary
time dependence of the infection and recovery rates, despite their constant ratio, it is possi-
ble for the first time to model analytically the influence of mitigation measures on the time
evolution of epidemics as done in reference [14]. Thirdly, our analytical solution can serve as
a benchmark for the verification of numerical solutions of the SIR-model and their variants.
Fourthly, if the intrinsic time scales of the pandemic event and the taken mitigation measures
are rapid enough we may use our analytical results derived for a constant value of k to study
slowly time-varying (‘adiabatic’) time-dependences k(t) by inserting these slow time variations
into our final analytical expressions for k. Such a Wentzel–Kramers–Brillouin-approximation
has proven useful in many branches of propagation and transport theory of physics including
quantum mechanics.

Moreover, in contrast to earlier work we will also calculate analytically the daily differen-
tial rate of newly infected persons resulting from the SIR-model which is the key quantity to
compare with the monitored data in different countries, as the size of the currently infected,
and not yet recovered, compartment is usually not known. Its asymptotic behavior, peak time
and peak amplitudes will all be obtained analytically and exactly.

Besides providing analytic expressions for the quantities characterizing the solution of the
SIR model, we derive a simple, accurate approximant that can be used in practice, and shares
all relevant features with the exact solution, as we will show. This is a significant improvement
compared with approaches, where the solution of the SIR model was for example expanded into
a divergent but asymptotic series [15, 16], or where it had been obtained assuming inequalities
that do hold only within a very limited range of SIR parameters, as we will show.

As a side-observation we find that the SIR model exhibits an asymptotic behavior at large
times that is qualitatively different from the logistic model, while the difference between the
two models still decreases with increasing reproduction factor. Because the SIR model is
sometimes used with arbitrary initial conditions, we recall here that initial conditions must
be interrelated if the SIR model is assumed to hold at all times. This is the scenario to be inves-
tigated here, for reasons to be discussed in detail. The present investigation can be extended to
the many variants of the SIR model [17–25].

2. SIR-model

As the dynamics of the COVID-19 pandemic is much faster than the dynamics of births and
deaths, the neglect of these demographic factors is well justified. The SIR system is the simplest
of the compartmental models used for the mathematical modeling of infectious diseases. The
considered population of N � 1 persons is assigned to the three compartments S (susceptible),
I (infectious), or R (recovered/removed). Persons from the population may progress between
these compartments.

2.1. Basic equations

In a fixed population of individuals let S(t), I(t) and R(t) denote the susceptible, infected and
recovered/removed fractions of persons involved in the infection at time t, so that

S(t) + I(t) + R(t) = 1 (1)
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and because S, I, R are fractions, they must all reside within the interval [0,1]. If a(t) and μ(t)
denote the semipositive time-dependent infection and recovery rates, respectively, the SIR-
model is defined with the two dynamical equations [5, 9, 26]

İ(t) = a(t)S(t)I(t) − μ(t)I(t) (2)

Ṡ(t) = −a(t)S(t)I(t). (3)

where the dot here and in the following denotes a derivative with respect to t. The equation for
the dynamics of R(t) follows from the sum constraint (1), i.e.

Ṙ(t) = − d
dt

[S(t) + I(t) − 1] = μ(t)I(t), (4)

where we inserted equations (2) and (3). Equation (3) can be written as

Ṡ(t)
S(t)

=
d ln S(t)

dt
= −a(t)I(t), (5)

so that

I(t) = − 1
a(t)

d ln S(t)
dt

, (6)

implying that equation (4) becomes

Ṙ(t) = −k(t)
d ln S(t)

dt
(7)

with the potentially time-dependent inverse reproduction factor

k(t) =
μ(t)
a(t)

(8)

The solution and its analytic approximant to be derived in this work holds for arbitrary a(t),
as long as μ(t) and a(t) remain proportional to each other. In that case k is a constant, usually
denoted as inverse basic reproduction number, k = 1/r0.

2.2. Initial conditions: all-time versus semi-time SIR

There are two qualitative very different cases to be considered that can be regarded as equally
valid approaches. We refer to these cases as the all-time case (I) and the semi-time case (II).

For the all-time case (I), treated by Kendall [9] and part A of this work, the ratio
k = μ(t)/a(t) is regarded as identically constant at all times, from t = −∞ to t = ∞. This
implies, that one has to use boundary conditions S(−∞) = 1, I(−∞) = 0, R(−∞) = 0 as the
epidemic must not have existed at t = −∞. For the special case of k = 0,μ(t) = 0 and R(t) = 0
at all times according to equation (7), while equations (1)–(3) reduce to I(t) = 1 − S(t) and
the simple logistic differential equation Ṡ(t) = −a(t)S(t)[1 − S(t)] determining all fractions
analytically in terms of a(t) (appendix F).

For constant k > 0, equation (7) implies the important relation [9]

S(t) = S(t′)e[R(t′)−R(t)]/k (9)
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valid for any choice of t and t′. Upon inserting the stated boundary conditions at t′ = −∞ into
equation (9), S(t) and R(t) are simply related via S(t) = e−R(t)/k or R(t) = −k ln S(t). A special
case of this relationship is

S(0) = e−R(0)/k (10)

In view of equation (1), there remains the freedom to just specify one single initial condition at
a certain t = 0, where data may have become available. One may regard the time t = 0 when
the existence of the pandemic wave in the society is realized and monitoring of newly infected
persons starts. Besides k there is thus a second parameter of the SIR model, which we denote
by the positive ε as it usually represents a small number, but our results are valid for any ε. We
define ε via the susceptible fraction of the population at time t = 0,

S(0) = e−ε (11)

There is no freedom for the remaining R(0) and I(0) if k is known. Inserting the above boundary
conditions into equation (10), and making use of equation (1) one has

R(0) = kε, I(0) = fk(ε) (12)

involving a function in fk(ε) that is going to frequently occur in this work

fk(x) = 1 − kx − e−x (13)

Here R(0) and I(0) represent the recovered/removed and infected fractions of the population
at time t = 0. For small ε � 1 one can write I(0) ≈ (1 − k)ε. In turn, if two initial values are
known at t = 0, the basic reproduction number is given by the initial conditions. We prefer
to treat the inverse basic reproduction number k and ε as variables, so that R(0) and I(0) are
determined by this set. Any other choice of two variables from the set k, ε, I(0), and R(0) would
work equally well, as the two remaining ones are then given by equation (12).

It it important to realize that the all-time case (I) has solutions only for a limited range of
k values. While there is no recovery when k = 0 due to equation (7), for k > 1 the number of
infected would drop (proven below) rather than grow from the boundary value I(−∞) = 0,
which is not possible as I ∈ [0, 1]. For k = 1, I(0) = f1(ε) = 1 − ε− e−ε is negative for any
ε > 0, and simply remains at its boundary value I(−∞) = I(0) for ε = 0, and thus I(t) = 0
at all times for k = 1. Finally, because I(0) � 0 must hold, not all values in k ∈ (0, 1) are
compatible with the initial condition (11) at time t = 0. The requirement I(0) � 0 is equivalent
with k � kmax with

kmax =
1 − S(0)

ε
= 1 − ε

2
+ O(ε2) (14)

This is why the remaining meaningful range of k values is k ∈ (0, kmax) for case (I). As the
SIR model is assumed to hold at all times, its solution allows to calculate all fractions at
times before and after t = 0. These two features make case (I) qualitatively very different from
case (II).

In contrast, for the semi-time case (II) treated by Kermack and McKendrick [5] and in
part B of this work, the SIR model is not assumed to hold at all times, but only at times
t � 0, the time for which feed data may be available. In that case the model cannot be used
to calculate fractions at times prior to t = 0, as this would under many circumstances lead to
S > 1 or I /∈ [0, 1] at times prior to the ’observation’ time t = 0. Because the boundary con-
ditions of case (I) must not be respected anymore in that case, one can use arbitrary initial
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conditions incompatible with equation (12). The model in this setup has therefore three inde-
pendent parameters such as k, S(0) and I(0), while the remaining R(0) is given by equation (1).
If one chooses the initial conditions to satisfy equation (12), we are back at case (I). Case (II)
therefore chooses initial conditions incompatible with equation (12) such as S(0) = 1 − ε and
I(0) = ε, implying R(0) = 0. In that case one has moreover the freedom to choose k > 1, as it
does not automatically lead to I /∈ [0, 1].

Case (II) is thus more flexible, but cannot be used to adequately describe the past. While case
(I) can be considered as the solution to the SIR model over the whole time domain, case (II)
can be used to study the future and the case k > 1 of relevance toward the end of an epidemics.
In this work we are going to study case (I) and have to thus assume k ∈ (0, 1) and ε � 0.

2.3. Three important remarks

First, as has been noted before [9], in the three dynamical equations (2), (3) and (6) there
is migration from the S-compartment (susceptible) to the I-compartment (infected) at a rate
proportional to SI, and removal from the I-compartment to the R-compartment (recovered,
dead or isolated) at a rate proportional to I; there is no exit from the R-compartment and no
entry into the S-compartment.

Secondly, it is necessary to start initially at time t = 0 with at least one infected person,
i.e., I(0) = fk(ε) > 0 (see the second initial condition (12)), as the dynamical equation (2)
implies for the initial change İ(t = 0) = 0 if I(t = 0) = 0. Nothing can grow out of nothing; a
situation very similar to kinetic plasma instabilities where seed electromagnetic fluctuations,
often from spontaneous emission [27], are needed for starting the instability. Keeping exact
tract of the initial conditions during the analysis will prove to be essential to avoid mathematical
singularities in the analysis.

Thirdly, the first term on the right-hand side of the dynamical equation (2) denotes the newly
infected population fraction, i.e., the differential rate of the total fraction J(t) of persons that
have ever been infected, i.e.

J̇(t) = a(t)S(t)I(t) = −Ṡ(t), (15)

where the second equality results from equation (3). It is this rate J̇(t) that can be measured, is
usually reported by health agencies along with the cumulative fraction J(t) =

∫ t
−∞ J̇(ξ)dξ, and

that has been modeled by the Gaussian time evolution in our earlier work [3, 4]. Because S(0),
I(0) are usually not reported as they cannot be measured directly, we will show how to replace
SIR parameters k and ε by an initial condition for the typically available J(0) and J̇(0).

3. Results

Throughout this work we use the bar-notation q̃ if we approximate a quantity q.

3.1. Reduced time

We are here assuming that the infection and recovery rates have the same time dependence, so
that their semipositive ratio is time-independent:

μ(t)
a(t)

=
μ0

a0
= k =

1
r0

∈ [0, 1) (16)

corresponding to a SIR-basic reproduction number r0 > 1. We emphasize that this special
case includes the standard case used by most analysis before that the infection and recovery
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rates are constants with respect to time. Equation (16) still allows us to take into account an
arbitrary time-dependence of the infection rate a(t) which, of course, then is identical to the
time dependence of the recovery rate μ(t) due to assumption (16). Then it is convenient to
introduce for arbitrary time dependence of the infection rate a(t) the new dimensionless time
variable τ with τ (0) = 0 via

τ (t) =
∫ t

0
dξa(ξ), (17)

so that

1
a(t)

d
dt

=
d

dτ
(18)

Using the reduced time τ , equations (2), (6), and (7) simplify to

d ln I(τ )
dτ

= S(τ ) − k, I(τ ) = −d ln S(τ )
dτ

, (19)

and

dR(τ )
dτ

= kI(τ ) = − d
dτ

[k ln S(τ )], (20)

respectively. In equation (19) (d ln S/dτ )τ=0 = − fk(ε) in order to meet the initial condition
(12) for I(τ = 0) = fk(ε).

Equation (19) includes the well-known threshold [5, 9] value k which determines the so-
called J-shape or peak-shape [9] of the pandemic wave. Obviously, equation (19) indicates
that a peaked pandemic wave cannot emerge if the ratio k > 1: as S � 1 the right-hand side
of equation (19) in this case is always negative, so that with positive I(τ ) the time derivative
dI/dτ < 0, so that the infection rate decreases with time. An epidemic wave emerges if the
ratio k < 1; the case k = 1 we already discussed in section 2.2.

The boundary conditions S(t) = 1 and R(t) = 0 for t = −∞ take over to S(τ = −∞) = 1
and R(τ = −∞) = 0 for k > 0, because a positive k implies μ(t) > 0 for all t, and thus also
a(t) > 0 for all t. The solution to equation (20) is thus formally equivalent to the relationship
we had between R(t) and S(t),

R(τ ) = −k ln S(τ ), S(τ ) = e−
R(τ )

k (21)

3.2. Analytical solution

Since the original pioneering work [5] the procedure to obtain analytical solutions is similar
in later work [9, 28] and also here: either (1) one expresses two of the interesting variables
S(t), I(t) and R(t) in terms of the third one as done in reference [5], or (2) one expresses all
three variables in terms of a suitable chosen function as done in reference [28] and here. In
both cases one uses equation (1) to calculate the solution. Inserting equations (19) and (21),
equation (1) reads

S(τ ) − k ln S(τ ) − d ln S(τ )
dτ

= 1 (22)

We emphasize that this equation fulfills the initial conditions (11) for τ = 0. For given rates a(t)
and k = μ0/a0 the solution of equation (22) yields the temporal evolution of S(t). Equation (22)
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can be written as

d ln S
dτ

=
1
S

dS
dτ

= S − k ln S − 1 (23)

or

dS/dτ
S(S − k ln S − 1)

= 1, (24)

which apart from a different notation corresponds to equations (23) and (27) of Harko et al
[28]. The solution to the dimensional version of equation (24) had been expanded into a series
S(t) =

∑∞
n=0 antn by Barlow and Weinstein [15], who realized that the convergence radius is

rather low and suggested to look for solutions with correct asymptotic behavior, as we will do
here.

To this end we follow a slightly different but equivalent approach starting out from
equation (22). We introduce the quantity G(τ ) by

G(τ ) = − ln S(τ ), S(τ ) = e−G(τ ) (25)

with the initial condition G(τ = 0) = ε. According to equations (19) and (21) the function G
(25) determines

R(τ ) = kG(τ ), I(τ ) =
dG
dτ

(26)

The dynamical equation (22) in terms of G(τ ) reads

dG(τ )
dτ

= 1 − kG(τ ) − e−G(τ ) = fk[G(τ )] (27)

using the function fk defined in (13). Integrating

dG/dτ
fk(G)

= 1 (28)

over τ then provides (figure 1)

τ (G) =
∫ G

ε

dx
1 − kx − e−x

(29)

where the integration constant was determined from the initial condition G(τ = 0) = ε. The
integrand vanishes at x = 0 and at certain x = G∞ to be discussed below. The whole τ ∈
[−∞,∞] range is thus captured by equation (29) upon varying G between zero and G∞, and
vice versa, G(τ ) ∈ [0, G∞] determines the range of G.

The solution (29) generalizes the known analytical solutions in the literature [5, 9, 28] as it
holds for arbitrary time-dependence of the infection rate a(t). The mentioned known solutions
can be reproduced with equation (29) by setting τ = a0t on its left-hand side resulting from
a constant injection rate a0. The parametric solution presented in the original SIR work [5]
assumed G � 1 to simplify the analysis. We will see below that G∞ � 1 holds only within a
very narrow range of k values close to k = 1. The contributions within the regime G ∈ [0, ε]
are usually not considered in numerical schemes while they can be used to verify the proper
boundary conditions stated at the very beginning. Harko et al [28] did show results for t > 0
only, as some of the fractions would get negative or exceed unity at times prior to t = 0, using
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Figure 1. Exact reduced time τ (black) vs G for (a, top left) k = 0.2, (b, top right)
k = 0.5, (c) k = 0.8, and (d, bottom right) k = 0.9, according to equation (29). Approx-
imant (86) shown in green. The vertical red lines marks G = G0 (54), corresponding to
peak time τ 0 = τ (G0). The range of G is given by G ∈ [0, G∞] with G∞ provided by
equation (32) or (34). The relative deviation between exact and approximative versions
is plotted in figures 16(a) and (b).

their analytic solution. We will present an equivalent formulation with τ (J) of the solution (29)
in equation (41).

As NPIs during the pandemic wave generate a time-changing infection rate a(t), the gen-
eralized solution (29) is highly valuable to assess quantitatively the effect of the NPIs on the
time evolution of the disease.

3.3. Maximum value G∞

The solution (29) indicates that the maximum value G∞ = G(τ = ∞) of the function G is
attained when the denominator of the integrand vanishes, i.e.

fk(G∞) = 0, (30)

or

e−G∞ = −k

(
G∞ − 1

k

)
(31)

which is of the form (G1) with c = 1, a0 = −k and r = 1/k. Consequently, according to
equation (G2) we obtain (figure 2)

G∞ =
1
k
+ W0(α), (32)
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Figure 2. Analytic final values G∞, S∞, R∞, and J∞ vs k (black) according to
equations (32), (48), and (49), while I∞ = 0 (48). They are all insensitive to the initial
conditions. For all these final values, simple approximants (green) based on equation (34)
are shown as well. The relative deviation between exact and approximative versions is
plotted in figure 16(c).

where W0 is the principal solution of Lambert’s equation z = W(z)eW(z) (discussed in appendix
G) and α is given in terms of k as

α = −e−
1
k

k
(33)

The argumentα of the Lambert’s W0 function in equation (32) is negative for all k (figure 15(b)
in appendix G). Accordingly, W0 ∈ [−1, 0] is negative as well (figure 15(a)), while G∞ � 0.
In figure 2 we show the maximum G∞ as a function of k. It can be seen that G∞ has val-
ues significantly greater than unity for k � 1, while it vanishes at k = 1. The value G∞ = 1
is attained at k = 1 − 1/e ≈ 0.63. The dashed black line shows the asymptotic behavior of
G∞ ∼ 1/k at small k � 1. Significant deviations from the asymptotic behavior set in at
k ≈ 1/3. According to these considerations, G∞ is well approximated by (figure 2)

G̃∞ 
 1
k
− 8k − 1

7
(34)

The relative error of this approximant is below 2.2% for k � 0.63; its absolute error is below
0.014 for k � 0.63, while it is exact at k = 1 and exhibits the correct asymptotic behavior for
k → 0.

Similarly, the non-principal solution of Lambert’s equation sets the lower bound G−∞ =
G(τ = −∞) with G−∞ = k−1 + W−1(α) = 0. The lower bound is identical zero because
Lambert’s equations is trivially solved by W−1 = −1/k for α given by (33). To summarize,
G ∈ [0, G∞], compatible with τ ∈ [−∞,∞] and S ∈ [0, 1]. This compatibility is established
as a result of the proper boundary conditions.

3.4. Differential and cumulative rates of newly infected persons

From the invariant J̇(t)dt = j(τ )dτ we obtain with equations (25), (27), and equation (17) in
the form dτ/dt = a(t) for differential rate of newly infected persons (figure 3)

10
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Figure 3. Differential fraction of infected persons j(τ ) (black) vs reduced time τ for
(a, top left) k = 0.2, (b, top right) k = 0.5, (c) k = 0.8, and (d, bottom right) k = 0.9,
according to equation (36). The simple approximant for j(τ ), equations (36) and (86),
is shown in green. The peak position, located at τ 0 and jmax, is highlighted by vertical
and horizontal red lines according to equations (59) and (58). The initial value at τ = 0
is j(0) = fk(ε)e−ε, thus different for each k and ε.

j(τ ) =
J̇(t)
a(t)

= S(τ )I(τ ) = −dS(τ )
dτ

(35)

= fk(G(τ ))e−G(τ ) (36)

with the initial value j(τ = 0) = fk(ε)e−ε. The corresponding cumulative distribution picks up
all the newly infected individuals, not only the ones that are going to occur at t > 0, i.e., one
has (figure 4)

J(τ ) =
∫ τ

−∞
dτ ′ j(τ ′) = −

∫ τ

−∞
dτ ′

dS(τ ′)
dτ ′

= 1 − S(τ ) = 1 − e−G(τ ) (37)

In the far past, both quantities j and J emanated from zero, because G−∞ = 0. As indicated
we may regard these j and J as functions of G(τ ).

Equation (19) in the form dS/dτ = −IS, and dI/dτ = SI − kI imply with j = SI from
equation (35)

d ln j
dτ

= S − I − k (38)

A maximum of ln j and j thus occurs when S − I = k, while (25) and (28) can be used to write
S − I in terms of G

11
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Figure 4. Cumulative fraction of infected persons J(τ ) (black) vs reduced time τ for
(a, top-left) k = 0.2, (b, top right) k = 0.5, (c) k = 0.8, and (d) k = 0.9, according to
equation (37). Approximants (86) shown in green. The final value is J∞ = R∞ = kG∞
(red) with G∞ from equation (34). Its approximant is given by equation (50).

S − I = 2e−G + kG − 1 (39)

Hence equation (38) can be written as

d ln j
dτ

= 2e−G + kG − 1 − k (40)

Having introduced j and J = 1 − e−G, it is worth mentioning that the solution (29) can also
be expressed in terms of J as follows. Since dG/dJ = (1 − J)−1,

τ (J) =
∫ J

J(ε)

dy
(1 − y)[y + k ln(1 − y)]

(41)

with J(ε) = 1 − e−ε. The range of J values follows from the range of G values, and is
thus given by J ∈ [0, J∞] = [0, 1 − e−G∞] = [0, kG∞], in light of equation (31). With τ (J)
at hand, the remaining quantities of the SIR model are obtained immediately via S = 1 − J,
R = −k ln(1 − J), I = J − R, and j = SI,

3.5. SIR parameters

The J thus captures all infections up to τ , including those that occurred prior τ = 0, and the
usually reported J(0) = 1 − S(0) = 1 − e−ε provides us with S(0) and ε, i.e.,

ε = − ln[1 − J(0)] (42)

12
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This possibility to determine a parameter does not exist for case (II) where such quantity J is
not available from the model equations and can only be manually entered as a new parameter.
Only for case (I) it is directly related to S(τ ), as we have just shown. Having determined ε from
J(0), and assuming τ = a0t with a constant a0 = a(t = 0), there are two remaining parameters
a0 and k of the SIR model, that we now obtain from the measurable J(0) and its derivatives J̇(0)
and J̈(0) at the initial t = 0. To this end we write down expressions for J̇(0) and J̈(0) and solve
them for k and a0. The first relationship is obtained from J̇(t) = a0 j(τ ) given by equation (36),
evaluated at t = 0. This yields with fk(ε) = 1 − kε− e−ε that

k =
1 − e−ε − J̇(0)eε/a0

ε
(43)

The second relationship follows from J̈(0) = a0(d j/dτ )|τ=0, using equations (27) and (36). As
d j/dτ = (d j/dG) fk(G) we can proceed and express J̈(0) in terms of G(0) = ε, k, and a0,

J̈(0) = a0 fk(ε)[e−ε − k − fk(ε)]e−ε 
 ε(1 − k)2a0 (44)

where the 2nd line can be used if ε � 1. Under such conditions

ã0 

J̈(0)

ε(1 − k)2
(45)

Upon replacing k from equation (43) in equation (45) one can write down an explicit, but
lengthy, expression for a0 in terms of J(0), J̇(0) and J̈(0). We have thus shown how to obtain all
three SIR parameters from the cumulative fraction of newly infected persons J and its deriva-
tives at t = 0. In other words, the parameters are obtained from a quadratic fit to the reported
J(t), taking into account only data in the vicinity of t = 0. Depending on the available data,
other expressions presented in this work may be preferred to extract the coefficients, such as
equation (68).

3.6. Final values

The knowledge of G∞ from equation (32) and the solution (29) allow us already to derive a
number of important results. We first consider the final values at τ = ∞ of (figure 2)

S∞ = S(τ = ∞) = e−G∞ = 1 − kG∞,

I∞ = I(τ = ∞) =
dG∞
dτ

e−G∞ = 0,

R∞ = R(τ = ∞) = k ln [eG∞] = kG∞,

(46)

where we have used equations (19), (21) and (25). As a consistency check we note that
equation (1) is fulfilled here, i.e. S∞ + R∞ + I∞ = 1. Inserting G∞ from equation (32) we
obtain with the help of equation (32)

R∞ = 1 + kW0(α) = kG∞ (47)

S∞ = 1 − R∞(k) = −kW0(α), (48)

which both are determined solely by the inverse basic reproduction number k = 1/r0. In
figure 2 we plot the fractions R∞ and S∞ from equation (48) as a function of r0 > 1 along
with their approximants that follow immediately follow from equations (34) and (46).

13
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If the final values were known, one can calculate the corresponding r0 upon inverting the
relationship between S∞ and r0. The result is r0 = ln(S∞)/(S∞ − 1). The canonical values
R∞ = 2/3 and S∞ = 1/3 are thus reached for r0 = 3 ln(3)/2 ≈ 1.65. The final susceptible
fraction S∞ decreases with increasing r0, starting with S∞ = 1 at r0 = 1, and reaching S∞ = 0
as r0 grows.

For these values of the differential and cumulative rates of newly infected persons after
infinite time we obtain with equations (35) and (46)

j∞ = j(τ = ∞) = I∞S∞ = 0,

J∞ = J(τ = ∞) = 1 − S∞ = R∞ = kG∞
(49)

J∞ thus coincides with R∞ (figure 2). Its approximant based on equation (34) is

J̃∞ ≈ 1 +
k(1 − 8k)

7
(50)

With increasing values of k the cumulative fraction of infected persons decreases from 1 at
k = 0 to 0 at k = 1.

3.7. Bell-shaped differential rate. GM-like solution of the SIR

Equation (36) can also be used, even without the explicit inversion of equation (29), to derive
generally valid expressions for the time τ 0 of maximum, the maximum level jmax and the
dimensionless width ω of the differential rate j, which correspond to the three important
parameters characterizing a Gaussian differential rate,

j(τ ) = jmax e−
(τ−τ0)2

ω2 (51)

although here the width ω may not be a τ -independent constant. Assuming a constant ω,
equation (51) is known as the GM for the time evolution of the daily number of new infections
(or also deaths) [4].

3.7.1. Exact peak amplitude. The maximum of the differential rate (36) occurs when the
derivative d j/dτ in equation (40) vanishes providing

2e−G0 + kG0 = 1 + k (52)

directly from equations (38) and (39). Writing this as

e−G0 = − k
2

(
G0 −

1 + k
k

)
(53)

makes the equation of the form (G1) with c = 1, a0 = −k/2 and r = (1 + k)/k. The analytic
solution of equation (52) is the non-principal solution W−1 of Lambert’s equation,

G0 =
1 + k

k
+ W−1(α0), α0 =

2α
e

(54)

with α from (33). If W in (54) were the principal solution W0 of Lambert’s equation, with
the property W0(α) ∈ [−1, 0] and W0(α0) ∈ [−0.406, 0] for k ∈ [0, 1] (appendix G), then
G0 = G∞ + 1 + W0(α0) − W0(α) would exceed G∞. The W in (54) is therefore the

14
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non-principal solution W−1 of Lambert’s equation with the property W−1(α0) � −2 for all
k ∈ [0, 1], as shown in appendix G. A simple approximant for G0 is

G̃0 
 (1 − k)

(
1 +

5
9

k

)
ln 2 (55)

It is exact at k = 0 and k = 1 and has a maximum absolute error of 0.008.
Inserting equation (52) in equation (36) yields an analytic expression for the maximum

value

jmax = j(G0) =
(
e−G0 − k

)
e−G0 (56)

=
k2

4

{
[1 + W−1(α0)]2 − 1

}
(57)

=
(1 − kG0)2 − k2

4
(58)

where the 1st, 2nd, and 3rd line are obtained with the help of (36), (54), (53), respectively. Since
W−1(α0) � −2 for all k ∈ [0, 1], the jmax is positive. For k = 1 the W−1(α0) = −2 and jmax

vanishes. For k → 0 the W−1(α0) diverges to −∞ (appendix G), but the k2 in front causes jmax

to approach 1/4. Note that jmax (58) is not affected by ε but is solely determined by the inverse
basic reproduction number k. This is reflected by the results shown in figure 3: regardless of
ε the maximum value jmax remains unchanged for given k. A simple approximant for jmax is
provided by equation (77).

We recall that the maximum jmax in the measurable daily number of new infections is
completely different from the maximum population fraction Imax of the infected compart-
ment. Because I(τ ) = fk(G) it achieves its maximum at Imax = 1 − k + k ln k according to
equation (A2).

3.7.2. Peak time. The time, at which jmax is reached, need not be positive. The maximum may
have occurred already, depending on the initial condition and the value for the inverse basic
reproduction number k. According to solution (29) the value of G0(k) corresponds to the time
of maximum τ 0(k) where G0 and τ are given by equations (54) and (29). An explicit expression
for τ 0 in terms of k and ε is given upon inserting G0 from equation (54) into equation (86).
This yields (figure 5)

τ0 = τ (G0) =
A(ε) − A(G0)
κ(1 − k)

(59)

with the very useful abbreviations

A(x) = ln

(
1 − x

G∞

)
+ ln

(
G∞

x

)κ

(60)

and (figure 6(a))

κ =
k[1 + W0(α)]

1 − k
(61)

where 1 + W0(α) is identical to the crossover x∗ from equation (A11). We can use this κ with
the feature κ ∈ (0, 1) to rewrite the exact expression (32) as

G∞ =
(1 − k)(1 + κ)

k
(62)
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Figure 5. Dimensionless peak time of daily infections, τ 0 vs k for various ε. Exact solu-
tion (solid black) compared with the analytic approximant τ 0 (green) from equation (59).
The peak time in real units is τ 0/a0, and corresponds to the number of days between
the time of maximum daily infections and the time for which initial conditions have
been specified. Because G0(k = 1) = 0, depending on the initial condition character-
ized by ε, the τ 0 becomes negative for sufficiently large k (the peak time has already
passed). The relative deviation between exact and approximative versions is plotted in
figure 16(d).

Figure 6. (a) Quantities 1 − k, κ defined by equation (61) as well as κ(1 − k), where
1 − k and κ(1 − k) characterize the exponential increase and decay of the differential
rate j at early and late times. By determining k from the regime of exponential growth
at early times, the exponential decrease at late times is already encoded in κ(1 − k).
(b) Several k-dependent quantities entering the approximant ˜G(τ ), such as b1,2 and c1,2
required in equation (87). Also shown is the exact maximum differential rate of newly
infected, jmax, and maximum fraction of the infected compartment, Imax.

Figure 3 indicates that the peak time τ 0 varies inversely with ε, confirming equation (59).

3.7.3. Exact behavior in the vicinity of the maximum. With the help of equations (28) and (40)
one has

d2 ln j
dτ 2

= fk(G)
d ln j

dG
= (k − 2e−G) fk(G) (63)
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Figure 7. Analytic results (black) for the (a) amplitude jmax and (b) widths of the dif-
ferential rate j(τ ) vs. k according to equations (58), (74) and (66). Also shown in (a):
G0 (54) and G∞ for comparison with G0. For all exact results, the simple approximants
(34), (55), (76) and (77) are shown for comparison in green.

so that a 2nd order Taylor expansion of ln j(τ ) around its maximum

ln j(τ ) = ln jmax +
(τ − τ0)2

2
d2 ln j

dτ 2

∣∣∣∣
τ=τ0

+ O(τ − τ0)3 (64)

can be evaluated, where ln jmax is given by equation (58). Making use of e−G0 as given by (53),
equation (63) evaluated at τ = τ 0, or equally, G = G0, simplifies to

d2 ln j
dτ 2

∣∣∣∣
τ=τ0

= − 2
ω2

0

(65)

with (figure 7(b))

ω0 =
2√

(1 − kG0)(1 − kG0 − k)
(66)

We thus have for the Taylor expansion of ln j(τ ) around its maximum value at τ 0 to second
order, ln j(τ ) = ln jT (τ ) + O(τ − τ0)3 with

ln jT (τ ) = ln jmax −
(τ − τ0)2

ω2
0

(67)

with ω0 given by equation (66).

3.7.4. Exact asymptotic behavior of the SIR model. Next we show that the rate j(τ ) exhibits
exponential behavior at early and late times with respect to the peak time and evaluate the
growth coefficients.

Making use of the limiting values G(τ = −∞) = 0 and G(τ = ∞) = G∞ in equation (40)
we find the growth coefficients characterizing exponential growth and decrease at early and
late times,

lim
τ→−∞

j(τ ) = jearlye(1−k)(τ−τ0), (68)

lim
τ→+∞

j(τ ) = jlatee−κ(1−k)(τ−τ0) (69)
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with κ from equation (61) and τ 0 from equation (59). Note that the exponent in (68) is positive,
and the exponent in (69) is negative since κ > 0 for all k ∈ (0, 1).

To calculate the important prefactors in these expressions we start from equation (B2). At
small times, where g = G/G∞ approaches zero, we use the Taylor expansion ln(1 − g) = −g
to obtain

G(τ ) 
 κG0W0

[
e(1−k)τ+A(ε)/κ

κ

]
(70)

for g � 1 as the solution of equation (B2). Since the argument of Lambert’s principal solution
W0 gets small in this limit, cf equation (G10), because j = (1 − k)G + O(G2), and with the
help of τ 0 (59) and A(x) (60) we obtain for the regime of early times τ � τ 0

jearly = (1 − k)G∞e−A(G0)/κ = (1 − k)G0

(
1 − G0

G∞

)−1/κ

(71)

In the opposite limit, where g = G/G∞ approaches unity, we can use the Taylor expansion
ln(g) = g − 1 + O(1 − g)2 to obtain

G(τ ) 
 G∞

{
1 − W0

[
e−κ(1−k)eA(ε)

κ

]}
(72)

for 1 − g � 1 as the solution of equation (B2). Since the argument of Lambert’s function
W gets again small in this limit, because j = κ(1 − k)(G − G∞)e−G∞ + O[(G∞ − G)2], we
obtain for the regime at late times τ � τ 0

jlate = κ(1 − k)G∞e−G∞eA(G0) = κ(1 − k)(G∞ − G0)

(
G∞
G0

)κ

e−G∞ (73)

We have thus shown that the initial condition S(0) enters only the peak time τ 0 and that the
prefactors jearly and jlate characterizing the amplitudes of the asymptotic behaviors depend on k
alone. Their dependence on k is shown in figure 8. While jearly reaches its maximum at k → 0,
where the SIR reproduces the SI model (section 3.6), jlate becomes very small in this limit. As
a matter of fact, the asymptotic behavior of the SI model, corresponding to a value unity in
figure 8, is all that can be observed up to huge times τ ∼ k−1 (denoted as τ c in appendix F), as
not only the prefactor jlate becomes extremely small in the limit k → 0, but also the contribution
jlate/κ(1 − k) from the asymptotic exponential to the cumulative J.

These expressions (68), (69), (71) and (73) exactly capture the short and long time behavior
of j(τ ) shown in figure 3. The coefficients ε and k can thus also be read off from the regime of
exponential growth, if a0 is already known. It is worthwhile noticing that the initial condition
S(0) does only affect the peak time, but not the prefactors jearly and jlate in the asymptotic
behavior of j (figure 9).

3.7.5. Gaussian width. While j is not a perfect Gaussian, as it is not perfectly symmetric
(to be discussed below), we can calculate a width via three routes. Route (A) fits j(τ ) by the
Gaussian function (51) with constantw. Route (B) determinesw by the known GM relationship
w = J∞/

√
π jmax using our above results for J∞ and jmax. The third route is to estimate a

width from the behavior in the vicinity of the peak times. The latter leads to width ω0 (66). The
former two routes give rise to very compatible widths ω as a function of k (all widths shown
in figure 7(b)).
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Figure 8. Quantities jearly (71) and jlate (73) versus k characterize the magnitude of the
asymptotic exponential increase and decay of the differential rate j. Also shown are the
hypothetical contributions to the cumulative J if j were fully captured by its asymptotes,
evaluated at early and late times. The actual contribution from times prior to the peak
time τ 0 to the cumulative J is J(τ0)/J∞ = (1 − e−G0)/kG∞ (shown as well). For the
symmetric GM and the logistic model this fraction is 1/2.

Figure 9. SIR model (a) reduced differential j(τ )/ jmax and (b) reduced cumulative frac-
tion J(τ )/J∞ of infected persons versus time relative to peak time, τ − τ 0, according
to equations (36) and (37), with τ 0 from (59), for various k. Approximant (86) shown
in green. The asymptotic behaviors of the differential j at small and large τ are in full
agreement with our analytic expressions (68) and (69) with (71) and (73).

Making use of our above results (49), (46) and (32), we can thus express a τ -independent
characteristic width of j(τ ) analytically as

ω =
4G∞√

πk{[1 + W−1(α0)]2 − 1} (74)

=
4G∞√

πk[(G0 − k−1)2 − 1]
(75)

where α0 = 2α/e and α expressed in terms of k in (33), and where we have used G0 from
equation (54). Note, that the width is unaffected by ε as well, it is solely determined by
the inverse basic reproduction number k. Taking into account all limiting behaviors our
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approximant for ω is given by

ω̃ ≈ 4 + 2k(1 − k)√
π(1 − k)

(76)

implying, with the help of our approximant G̃∞ (34)

j̃max =
kG̃∞√
πω̃

≈ (1 − k)2(7 + 8k)
14(2 − k)(1 + k)

(77)

Both are compared with the exact results in figure 7. The two frequenciesω0 and ω are actually
very comparable which lead us to the GM-like approximant to be discussed next. We recall
that the dimensional J̇max = a0 jmax for a constant a(t), and that the dimensional width is then
w = ω/a0.

3.7.6. GM-like approximant for j(τ ). We have by now calculated the behavior of ln j(τ ) around
its maximum including peak height (denoted as jT(τ ) in equation (67)), and the asymptotic
behavior of j(τ ) at small and large τ . Using a continuity requirement we can construct an
approximant j̃(τ ) for j(τ ) that captures the behavior of j(τ ) qualitatively at all times. The
continuity requirement is, in light of equations (68) and (69),

ln jT (τearly) = ln jearly + (1 − k)(τearly − τ0), (78)

ln jT (τlate) = ln jlate − κ(1 − k)(τlate − τ0) (79)

where jearly and jlate are given by equations (71), (73), and where the two times τearly and
τlate have to be determined by the continuity conditions. The condition (78), with jT (τ ) from
equation (67), yields

τearly = τ0 −
1
2

(1 − k)(1 + Dearly)ω2
0, (80)

Dearly =

√
1 +

4 ln( jmax / jearly)
(1 − k)2ω2

0

(81)

Similarly, condition (79) yields

τlate = τ0 +
1
2
κ(1 − k)(1 + Dlate)ω

2
0, (82)

Dlate =

√
1 +

4(ln( jmax / jlate))
κ2(1 − k)2ω2

0

(83)

The full GM-like approximant for j(τ ) therefore reads (figure 10)

j̃GML(τ ) =

⎧⎪⎪⎨⎪⎪⎩
jearlye(1−k)(τ−τ0), τ � τearly

jmax e−(τ−τ0)2/ω2
0 , τ ∈ [τearly, τlate]

jlatee−κ(1−k)(τ−τ0), τ � τlate

(84)

with jearly and jlate given by equations (71) and (73), κ defined by equation (61), τ late and τ late

according to equations (80) and (82), ω0 specified by equation (66), and τ 0 denoting the peak
time τ 0 = τ (G0) from equation (59). The classical GM [4] is a special case of the GM-like
approximant for τearly = −∞ and τlate →∞.
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Figure 10. Comparison of the GM-like approximant given by equation (84) (red) and the
numerically exact j(τ ) (black) for (a, top left) k = 0.2, (b, top right) k = 0.5, (c) k = 0.8,
and (d) k = 0.9. The GM-like approximant has three regimes, divided by characteristic
times τearly and τlate, where the asymptotic exponential behavior turns into a Gaussian-
shaped time-evolution that captures the j in the neighborhood of the peak time. The GM
is especially useful prior the climax of the epidemic, where is had been used to estimate
the GM parameters. We have shown here how to map these parameters to the parameters
of the corresponding SIR model.

Not under all conditions does the central Gaussian part meet the asymptotic exponential tail.
Both Dearly and Dlate can become complex-valued as soon as the argument of the square root
becomes negative. This is the case for Dlate if τ 0 is sufficiently large and negative. Under such
conditions the relevant crossover times are the real parts of τearly and τlate, and the asymptotic
branches are only shown up to the level that is reached by jT (τ ).

Our GM-like approximant (84) suggests that the GM is a suitable approximation for times
between τearly and τ late. The ω from equation (74) and ω0 from equation (66) are found to be
very similar, which implies that J∞ calculated for the GM can serve as an estimate for the
exact J∞, as done in reference [4]. The difference between the GM and the SIR can also be
visualized by eliminating time, and plotting j/ jmax versus J/J∞ (figure 11).

The value of τearly can be most easily determined from the differential and cumulative dou-
bling times [29] of the GML-approximant (84), as both are constants below tearly. tearly coincides
with the time when the monitored doubling times start to increase with time.

Similarly, τlate can be determined when the differential decay time (although this is seldomly
reported) or the cumulative doubling time become constants at late times of a pandemic wave.

The cumulative

J̃GML(τ ) =
∫ τ

−∞
j̃GML(τ ′)dτ ′ (85)
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Figure 11. Reduced differential rate j/ jmax versus reduced cumulative rate J/J −∞.
This representation of the result eliminates time, and thus τ 0. Shown are results of the
SIR model for various k (black) together with our approximants τ̃ (G) and ˜G(τ ) (green,
both identical in this representation), and the simple GM (red) for comparison. The larger
k, the better the simple GM (red) captures the SIR. The GM is especially useful prior
the climax of the epidemic, where is had been used to estimate the GM parameters [4].

as well as the final J̃∞ corresponding to the GM-like j̃(τ ) then follow by integration. Analytic
expressions are provided in appendix H.

4. Further reduction of solution (29)

In order to derive explicit analytical expressions G(τ ) it is necessary to calculate, at least
approximately, the remaining integral on the right-hand side of equation (29). Whereas in
the references [9, 28] the analytical evaluation of this remaining integral is not detailed, we
recall that in the pioneering work [5] this was done for small values of G less than unity by
expanding the exponential function in the denominator to second order in x about x = 0, i.e.
e−x 
 1 − x + x2/2. However, this approximation cannot be applied here for all values of G as
figure 2 indicates that G∞ attains values significantly greater than unity. Therefore more gen-
erally, without referring to the regime x � 1, an analytic approximant τ̃ for τ can be derived,
as shown in appendix A

τ̃ (G) =
1

1 − k

[
ln(G/ε) +

1
κ

ln
G∞ − ε

G∞ − G

]
(86)

that is valid for all k ∈ (0, 1) and all ε � 1. The κ is defined in terms of k by equation (61).
We note that equation (86) can alternatively be written as τ̃ (G) = [A(ε) − A(G)]/κ(1 − k) with
A defined by equation (60). Obviously, τ̃ (G = ε) = 0 is fulfilled for this approximant. Upon
replacing G by G0 in (86), we arrive at the expression (59) for the peak time. In figure 1 we
compared the numerically evaluated integral (29) with the approximation (86) for various k.
We notice the excellent agreement.

Even more important in practice, we were able to invert the relationship (86) to obtain an
approximant G̃(τ ). This is done in appendix (B). There we use this approximant to confirm
that it exhibits the correct asymptotic behaviors, that it reproduces the exact jmax , and shares
the peak time τ 0 with τ̃ (G) exactly. To be specific we obtain
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G̃(τ )
G∞

=

{
b1W0[c1e(1−k)(τ−τ0)], τ � τ0

1 − b2W0[c2e−κ(1−k)(τ−τ0)], τ � τ0

(87)

where the k-dependent parameters b1,2 and c1,2 (figure 6(b)) are specified in appendix B, τ 0

given by equation (59), and W0 is the principal solution of Lambert’s equation (appendix G).
With G̃(τ ) at hand, one can express all results in terms of τ , and thus also in terms of time t—for
arbitrary a(t)—without preparing a parametric plot. The approximant (87) is implemented in
appendix J.

5. Time-dependent infection rate a(t)

As we have demonstrated, J∞ and all other final values are insensitive to the precise time-
dependency of a(t). It is possible to flatten the curve of daily infections J̇max = a(tmax) jmax

by interventions that reduce a(tmax) at peak time tmax given by τ 0 = τ (tmax). Here J̇max is the
maximum population fraction that is newly infected within a single day, if we choose day as
the time unit in which we also express the infection rate a(t).

While J(t) = J(τ ) is invariant, the differential rates are related as J̇(t) = τ̇ j(τ ) = a(t) j(τ (t)).
Inserting τ (t) for an arbitrarily chosen a(t) into the expression for j = fk(G)e−G with G = G̃(τ )
from equation (87), the daily number of new infections is available analytically as a function
of time.

Starting from equations (36) and (37) one has G = − ln(1 − J) and S = 1 − J, so that we
can write down a relationship between the differential j(τ ) and the cumulative J(τ ) number of
infected persons,

j = (1 − J)[J + k ln(1 − J)] (88)

The same relationship follows from the derivative of equation (41) with respect to τ . Since
j(τ ) = a(t)J̇(t), the infection rate a(t) can be extracted from the measured J̇(t) and J(t) via the
right-hand side of equation (88), divided by J̇(t), as long as k is time-independent.

6. Summary and conclusions

We demonstrated that the exact parametric solution S(t), I(t) and R(t) to the SIR model with
time-dependent a(t), time-independent k and arbitrary initial conditions is determined by the
function G(τ ) uniquely specified equation (29). The t-dependency of G is given by τ (t) from
equation (17). With Gt = G(τ (t)) as a function of t therefore at hand,

S(t) = e−Gt , R(t) = kGt, (89)

and I(t) = 1 − S(t) − R(t) solve the SIR equations at all times, and satisfy the boundary and
initial conditions exactly. The measurable differential rate of newly infected J̇ and its cumula-
tive counterpart J are then available from J̇(Gt) = a(t)S(t)I(t) and J(Gt) = 1 − S(t), according
to equations (36) and (37). Alternatively, one can go over the J(τ ) route instead of G(τ ) as
explained in section 3.4.

While the SIR model is usually solved numerically, and the relationship between G and τ
given by equation (29) can also be calculated numerically, we provide analytic approximants
G̃(τ ) (87) as well as for the inverse τ̃ (G) (86) that both have the correct asymptotic behaviors
and may be use instead of the exact result, as they are sufficiently accurate for any practical
purpose. Using this approximant (87), that works for any k and any initial condition, the usually
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reported daily number of new infections we have expressed explicitly as a function of time t for
an arbitrarily time-dependent infection rate a(t) in section 5. The presented solution of the all-
time SIR model can thus be used to replace the numerical solution of the SIR model. Having
an analytical solution should be also advantageous to understand the effect of interventions
reflected by a(t) much easier, and in a more transparent fashion.

The whole shape of the differential rate j depends on k only. The shape is characterized by
the maximum jmax (58), width ω (74), asymptotic exponents 1 − k and −κ(1 − k) as well as
their prefactors jearly (71) and jlate (73), while the initial condition affects the peak time τ 0 (59).
All these quantities have been determined analytically in this work for the all-time SIR model.
In addition, we have provided approximants for all quantities characterizing the exact solution
of the SIR model, to appreciate their qualitative behavior, or in case the Lambert functions
are unavailable. For the special case of time-independent a(t) = a0, and thus τ = a0t, the SIR
parameters k, ε, and a0 can all be determined from initial conditions J(0), J̇(0), and J̈(0) by
equations (42), (43) and (45). This is important because the I and R fractions are usually not
reported at a certain time to provide an initial condition.

Our derivation not only generalizes existing solutions, but may appear very compact com-
pared with existing ones, while it includes them as a special case. We have relaxed the assump-
tions of t � 0 and G � 1 from previous approaches, and present the unique solution that
captures consistently both the future and the past, if the SIR model is assumed to hold in the
past as well. The classical assumption G � 1 we have shown to fail except at inverse basic
reproduction numbers close to unity.

The evolution of the usually reported differential rates assumes a bell-shaped curve charac-
terized by a peak time τ 0, height jmax, and width ω. We have provided analytic expressions for
all these parameters by equations (59), (58), and (74), respectively. They involve the two solu-
tions W0 and W−1 of Lambert’s equation, usually available in scientific software. To appreciate
the validity of our arguments and derivations, we have collected the required exact features of
W0 and W−1 in appendix G.

We have inspected the limiting case of k → 0 of the SIR model to find that the SI model,
corresponding to k = 0, does not trivially emerge from the SIR model in this limit. While
the asymptotic behavior of the SIR model is qualitatively different from the SI model, the
quantitative difference between them still decreases with decreasing k. Insofar is the SI model
compatible with the limiting case of an SIR model, but at the same time asymptotically
different.

The semi-time SIR model, which can be considered as the SIR model subject to initial
conditions incompatible with the all-time SIR model, and thus useful to predict only the future
time-evolution, will be elaborated in part B of this work.

Appendix A. Approximant τ̃ (G) for τ (G)

Here we address the formal solution (29)

τ =

∫ G

ε

dx
fk(x)

, (A1)

with fk defined in (13), over the range of all possible values for G ∈ [0, G∞] and k ∈ [0, 1],
where G∞ is given by (32). For the special case of G = G0, we thus also address the peak time
τ 0 = τ (G0) introduced in section 3.7. The fk in the denominator of the integral is semiposi-
tive, has its maximum at xm = − ln(k), and reaches zero at G∞. A 2nd root of fk is located at
x = 0. Accordingly, fk has the following properties: fk(0) = fk(G∞) = 0, fk

′(0) = 1 − k,
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Figure 12. Integrand 1/ fk(x) with f(x) defined by (13) for (a) k = 0.3 (G∞ ≈ 3.20)
and (b) k = 0.6 (G∞ ≈ 1.13) (black). The asymptotic behavior is captured at small x by
1/h1(x) (dashed gray) and at large x by 1/h2(x) (dashed gray). Our approximant (A5)
(yellow) appears to basically coincide with the integrand, and has the correct asymptotic
behavior by construction.

fk
′(xm) = 0, and

f max
k = fk(xm) = 1 − k + k ln k, (A2)

For x � 1 the function fk(x) can be expanded about x = 0 as fk(x) = h1(x) +O(x2) with

h1(x) = (1 − k)x (A3)

Likewise, for large x we expand fk about G∞ to obtain fk(x) = h2(x) +O((G∞ − x)2) with

h2(x) = (x − G∞)[1 − k(1 + G∞)] = κ(1 − k)(G∞ − x) (A4)

with κ from equation (61). Using these asymptotes we obtain the following approximant

1
fk(x)

=
1

h1(x)
+

1
h2(x)

(A5)

Examples for the cases of k = 0.3 and k = 0.6 are shown in figure 12. Both partial integrals
can be performed analytically as

τ1(G) =
∫ G

ε

dx
h1(x)

=
ln(G/ε)
1 − k

, (A6)

τ2(G) =
∫ G

ε

dx
h2(x)

=
1

κ(1 − k)
ln

[
G∞ − ε

G∞ − G

]
(A7)

and τ̃ (G) = τ1(G) + τ2(G). While τ 1 dominates the integral at small G, at G = ε and beyond,
τ 2 is responsible for the sharp increase at large G, when G approaches G∞ (see figure 1). With
A(x) defined by equation (60), τ̃ (G) can alternatively be written as

τ̃ (G) =
A(ε) − A(G)
κ(1 − k)

(A8)

The exact asymptotic behaviors at small and large G are
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lim
G→0

τ (G) = lim
G→0

τ1(G) = −∞, (A9)

lim
G→G∞

τ (G) =
ln(G∞/ε)

1 − k
+ lim

G→G∞
τ2(G) = ∞ (A10)

where the intermediate expressions are also required, e.g., to calculate jlate in equation (73).
As already noted, h1(x) and h2(x) dominate the behavior of the integrand in distinct x

regimes. To specify the regimes, we solve h1(x∗) = h2(x∗) to obtain

x∗ = 1 + W0(α) =
κ(1 − k)

k
(A11)

with the help of (32), and where we recall that W0(α) ∈ [−1, 0) is negative for all k ∈ [0, 1]. For
x < x∗ the dominating contribution is h1(x). While x∗ = 1 for k = 0 and x∗ ≈ 1 for k < 0.2,
it depends almost linearly on k for larger k and reaches x∗ = 0 for k = 1. From equation (A6)
we infer

G(τ ) ≈ εe(1−k)τ , G � x∗ (A12)

and G0 given by equation (54) we can derive from equation (A11) the inequality

G0 � x∗ (A13)

for all k, while G0 = x∗ at k = 1 follows from the mentioned properties of Lambert’s functions.

Appendix B. Approximant G̃(τ ) for G(τ )

Starting from the high quality approximant τ̃ (G) derived in the previous section, we are looking
for an explicit expression for the inverse function, G̃(τ ). Unfortunately, τ̃ (G) cannot be inverted
analytically over the whole G domain, but we are going to find approximants for G separately
over the two disjoint intervals G̃ ∈ [0, G0] and G̃ ∈ [G0, G∞] so that

G̃(τ )
G∞

=

{
g1(τ ), τ � τ0

g2(τ ), τ � τ0

(B1)

with g1, g2 given in terms of k and ε by equations (B4), (B6) to be derived in this section,
and compared with the exact G(τ ) in figure 13. We recall that G∞ is known in terms of
k by equation (32). The two partial approximants meet exactly at τ = τ 0 specified by
equation (59).

To derive all quantities appearing in equation (B1) we start from τ̃ = τ1 + τ2 in terms
of G, provided by equations (A6) and (A7). Upon introducing g = G/G∞ and the known
g0 = G0/G∞, using the abbreviation κ already introduced by equation (61), the governing
equation for g is written

κ ln g − ln(1 − g) = κ(1 − k)τ − A(ε) (B2)

involving the g-independent and semipositive constant A(ε) defined by equation (60).
Equation (B2) leads to the exact transcendental equation

gκ

1 − g
= eκ(1−k)τ−A(ε) (B3)
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Figure 13. Comparison of the numerically exact G(τ ) (black) with the approximant ˜G(τ )
from equation (B1) (green) versus τ for various ε and for (a, top left) k = 0.2, (b, top
right) k = 0.5, (c) k = 0.8, and (d) k = 0.9.

that cannot be solved analytically. To proceed we approximate, for the two cases of g > g0 and
g < g0 separately, corresponding to τ � τ 0 and τ � τ 0, respectively, the smaller of the two
logarithmic terms. In each case we make sure that the approximation is correct in all limiting
cases, so that not only the asymptotic behavior of G and j will be correctly captured, but also
g1 and g2 will coincide at τ = τ 0.

B.1. Approximant ˜G1(τ ) = g1(τ )G∞

To obtain g1 we approximate ln(1 − g) 
 −C1g in equation (B2) with a constant C1 in such
a way that the approximation is exact at both g = 0 and g = g0. This yields C1 = −g−1

0
ln(1 − g0). If we furthermore introduce x via g = e−x , the corresponding equation for x is
of the form (G1) with c = 1, r = A(ε)/κ− (1 − k)τ , and a0 = κ/C1. Its solution is thus
x = r + W0(e−r/a0), involving W0 and not W−1 because the argument e−r/a0 � 0 (figure 15).
With x at hand, we have found g1 = ln x which can be written with the help of Lambert’s
equation in two equivalent ways

g1(τ ) = b1W0(c1x1) =
W0(c1x1)
W0(c1)

g0, (B4)

both for a different purpose. In equation (B4) we have introduced the abbreviations b1 =
κ/C1 = −κg0/ ln(1 − g0),

c1 = − ln(1 − g0)
κ(1 − g0)1/κ

, x1 = e(1−k)(τ−τ0) (B5)
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with g0 = G0/G∞, so that x1 carries the dependency on time, and is unity at τ = τ 0 with τ 0

according to (59), G0,κ and A explicitly given by equations (54), (61), and (60). This expression
for τ 0 is just another way of writing the expression (59) for τ 0 we obtained from τ̃ (G) in the
previous section. The equivalence follows already from equation (B2). The right-hand side of
equation (B4) proves that g1(τ 0) = g0.

B.2. Approximant ˜G2(τ ) = g2(τ )G∞

For the opposite case of large g close to unity. We use the same strategy as before and now
approximate ln(g) 
 C2(g − 1) with a constant C2 in such a way that the approximation is
exact at both g = 1 and g = g0. This yields C2 = −(1 − g0)−1 ln g0. If we proceed in a way
analogous to the case of g1, we obtain

g2(τ ) = 1 − b2W0(c2x2) = 1 − W0(c2x2)
W0(c2)

(1 − g0), (B6)

Here we have introduced the abbreviations b2 = (κC2)−1 = (g0 − 1)(κ ln g0)−1,

c2 = −κ ln g0

gκ
0

, x2 = e−κ(1−k)(τ−τ0) (B7)

so that x2 carries the dependency on time, is unity at τ = τ 0, where τ 0 was already given by
equation (59).

The two half approximants (B4) and (B6) (figure 13) perfectly match at G0 by construction,
i.e., by the proper choice of the approximants for ln(1 − y) and ln y. The calculations leading
to the present form of the approximants had to make use of properties of Lambert’s function,
in particular the identity W(z ln z) = ln z from equation (G6) for any positive z. Note that the
dependency of G̃(τ ) on ε is adsorbed by x1 and x2, while all other coefficients are positive and
depend on k only. The coefficients are not independent of each other, as

b2c2 = (b1c1)−κ =
1 − g0

gκ
0

(B8)

holds. To summarize, in this section we have provided an explicit expression for the approx-
imant G̃(τ ) in terms of k and ε, and also an approximant for the peak time τ 0 in terms of the
same parameters. Because the assumptions were asymptotically exact, the approximant has the
features

lim
τ→−∞

G̃(τ ) = G∞ lim
x1→0

g1(τ ) = lim
x1→0

b1c1x1 = 0,

lim
τ→∞

G̃(τ ) = lim
x2→0

G∞(1 − b2c2x2) = G∞,
(B9)

as expected, and G̃(τ ) is compared with the exact G(τ ) in figure 13. To arrive at equation (B9),
we used property (G10) of the Lambert’s function. Approximants τ̃ (G) and G̃(τ ) are compared
with each other in figure 14.

Appendix C. Approximant S̃(τ ) for S(τ )

S(τ ) had been defined by equation (25). Using the identity W(z) = ln(z) − ln W(z) =
ln[z/W(z)] implies aW(z) = ln[z/W(z)]a and e−aW(z) = [W(z)/z]a. We thus have, starting from
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Figure 14. Comparison of the two approximants τ̃ (G) and ˜G(τ ) for (a, top left) k = 0.2,
(b, top right) k = 0.5, (c) k = 0.8, and (d) k = 0.9. Shown is ˜G(τ̃ (G)) versus G, where
the part with G � G0 is colored red, while the remaining part is blue. The dashed lines
marks the point (G0, G0), and the black line is a guide for the eye. The approximants are
inverse to each other independent on the value of ε.

the result of the previous section,

S̃1(τ ) = e−
˜G1(τ ) 


[
W0(c1x1)

c1x1

]b1G∞

, (C1)

S̃2(τ ) = e−
˜G2(τ ) 


[
W0(c2x2)

c2x2

]−b2G∞

e−G∞ (C2)

where S̃1(τ ) captures the regime before, and S̃2(τ ) the regime after the peak time τ 0. As these
approximants have correct asymptotic behavior, the exact asymptotic behavior of S(τ ) follows
from these expressions with equation (G10).

Appendix D. Approximants Ĩ(τ ) and R̃(τ )

Since R = kG according to equation (26) and S + I + R = 1, we can write immediately down
our approximants for R(τ ) and I(τ )

R̃(τ ) = kG̃(τ ), (D1)

Ĩ(τ ) = 1 − S̃(τ ) − kG̃(τ ) (D2)

= 1 − kG̃(τ ) − e−
˜G(τ ) (D3)
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with G̃ and S̃ given by equations (B1) and (C2).

Appendix E. Approximant j̃(τ ) for j(τ )

The differential rate j(τ ) had been defined by equation (35) or the equivalent equation (36).
With G̃(τ ) from equation (B1) at hand we can calculate the approximant for j̃(τ ) via
equation (36).

j̃(τ ) = Ĩ(τ )S̃(τ ) 

{

j1(τ ), τ � τ0

j2(τ ), τ � τ0

(E1)

with τ 0 according to equation (59). with the approximants for Ĩ(τ ) and S̃(τ ) in terms of G̃
already written down in equations (D3), (C1), and (C2). Obviously, j1 meets j2 at τ = τ 0,
because G1(τ 0) = G2(τ 0). Note that this is not the case if equation (35) is used, as the slopes
of S̃1 and S̃2 are not exactly identical at τ = τ 0. The prefactors of this approximant in the
asymptotic limits of early and late times differ from the exact equations (71) and (73) only by
a factor C1 and C2, respectively, introduced in section B. Both factors approach unity for small
ε, and start to deviate from unity only at large ε� 0.2.

The maximum of the approximant coincides with the exact jmax , because we have deter-
mined j̃ using equation (36), and because the definition of G0 implies jmax = (e−G0 − k)e−G0 ,
which remains unchanged, as the maximum of the approximant occurs at τ = τ 0, where
G = G0.

E.1. Remark: non-monotonous d˜S/dτ

If we calculate the approximant j̃(τ ) starting from equation (35), using the notation from
appendix B, with dx1/dτ = (1 − k)x1, and the property (G8) of Lambert’s function, this
gives

j̃1(τ ) = −dS̃1

dτ
= −c1dx1

dτ
dS1

d(c1x1)
=

(1 − k)G∞
[1 + W0(c1x1)]

g1(τ )S̃1(τ ) (E2)

Similarly, with dx2/dτ = −κ(1 − k)x2,

j̃2(τ ) = −dS̃2

dτ
= −c2dx2

dτ
dS2

d(c2x2)
=

κ(1 − k)G∞
[1 + W0(c2x2)]

[1 − g2(τ )]S̃2(τ ) (E3)

At τ = τ 0, these expressions simplify with x1 = x2 = 1, g1(τ 0) = g2(τ 0) = g0, S̃1(τ0) =
S̃2(τ0). We thus have

j̃1(τ0)

j̃2(τ0)
=

(1 − k)g0

[1 + W0(c1)]
[1 + W0(c2)]

κ(1 − k)(1 − g0)
=

1
κ

[1 + W0(c2)]
[1 + W0(c1)]

(E4)

If we now make use of relationships from appendix B, i.e., replace W0(c1) = −κ−1 ln(1 − g0),
W0(c2) = −κ ln g0, and κ by its definition (61), we see that this ratio is unity for a single k, but
not all k ∈ (0, 1). This is because dS̃/dτ is generally non-monotonic.
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Appendix F. The case of vanishing k

For the extremal case of k = 0 (so-called SI model), which is shown here to emerge nontrivially
from the SIR model in the limit k → 0, the differential equation (27) for G(τ ) with G(0) = ε
is solved by

GSI(τ ) = ln(1 + eτ−τSI
0 ), τ 0

SI = − ln(eε − 1) (F1)

hence SSI(τ ) = e−GSI(τ ) = 1 − JSI(τ ) = [1 + eτ−τ0
SI]−1 and

ISI(τ ) = 1 − SSI(τ ) =
eτ−τ0

SI

1 + eτ−τ0
SI

(F2)

since RSI = 0 at all times for k = 0. The differential rate is given by GSI(τ ) via equation (36)
or via equation (35), or from dJSI/dτ , as

jSI(τ ) =
eτ−τ0

SI

(1 + eτ−τ0
SI )2

(F3)

The same result is obtained with jSI(τ ) = ISI(τ )SSI(τ ) using the solution of the logistic
equation, mentioned in section 2.2. Its maximum with amplitude jmax

SI = 1/4 thus occurs at τ 0
SI,

the asymptotic behavior is given by limτ→−∞ jSI(τ ) = eτ−τ0
SI and limτ→∞ jSI(τ ) = e−(τ−τ0

SI),
and the GM-like behavior in the vicinity of τ = τ 0

SI follows from the Taylor-expansion as
jSI(τ ) 
 [1 − (τ − τ 0

SI)
2]/4, corresponding to ω0 = 2. Within the SI model, every person gets

infected in the course of time, J∞SI = 1, but nobody will ever get uninfected again (through
recovery/removal).

Importantly, while some quantities like G∞
SI = ∞, G0

SI = ln(2), jmax
SI = 1/4 obviously agree

with the values one obtains for the SIR in the limit k → 0, the exponential decay of jSI (F3)
of the logistic SI model (k = 0) is qualitatively different from the SIR model at times after
peak time, as the SIR exponent−κ(1 − k) tends to reach zero for k → 0. In fact, the deviations
between SI and the k → 0 limit of the SIR get smaller with decreasing k. This can be seen by
inspecting τ in the regime where it is large, and G close to G∞. For small k one has κ 
 k and
κ(1 − k) ≈ k, as well as G∞ 
 k−1 and thus, according to equation (A7),

τ 
 τ2 
 1
k

ln

(
1 − kε
1 − kG

)

 −1

k
ln(1 − kG) (F4)

as k approaches zero. This relationship can be inverted to write G 
 k−1(1 − e−kτ ). Since
e−kτ = 1 − kτ + O(k2) for any finite τ , the G approaches τ , and j thus approaches, albeit very
slowly with decreasing k, the limiting e−(τ−τ0), in agreement with the SI model (F3). To be
more precise, the SIR approaches the SI in the sense

lim
k→0

∫ ∞

−∞
[ j(τ ) − jSI(τ )]2 dτ = 0 (F5)

while for any small but finite k, the SIR j still enters the regime j ∝ e−κ(1−k)τ 
 e−kτ at
some finite crossover τ = τ c < ∞ that can be estimated by equating this asymptotics with
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equation (F3). The asymptotics of the SIR at large times is thus different from the SI, but the
numerical difference between the SI and SIR results still decreases with decreasing k. To esti-
mate τ c in the limit of small k, one can safely use the mentioned approximations G∞ 
 k−1

and κ(1 − k) 
 k. By equating the two differential rates (69) with (73) and (F3) the governing
equation for the crossover τ c is thus e−1/k(kε)−ke−kτc = e−τc/(eε − 1), or equivalently,

τc 

1
k
+ k ln(kε) − ln(eε − 1) (F6)

where we have used another relationship, k(1 − k) 
 k, also valid for small k. Further assuming
k � ε � 1, this latter expression simplifies to

τc 

1
k
− ln(ε) (F7)

The crossover τ c thus increases not only strongly with decreasing k but moreover slowly with
decreasing ε, and this makes equation (F5) to hold.

Another signature of qualitatively different setting between the SI and SIR at k → 0 is the
relationship J∞ = R∞ for the SIR, which breaks down at k = 0, as R does not depend on
time for k = 0, and thus R∞

SI = 0 and I∞SI = 1, while the limiting behavior of the SIR model is
limk→0 R = limk→0 kG∞ = 1.

Irrespective these observations, for an arbitrary infection rate a(t), the daily number of
new infections as a function of time t is given for the SI model by equation (F3) with
τ =

∫ t
0 a(t′)dt′.

Appendix G. Lambert’s equation. Solutions and their properties

Lambert’s W function [30, 31] with several applications in physics [32–37] solves the equation
z = W(z)eW(z). It can be used to calculate the solution of transcendental equations of the
form

e−cx = a0(x − r) (G1)

in explicit form as

x = r +
1
c

W

(
ce−cr

a0

)
(G2)

The two real-valued solutions are denoted by W0 (principal) and W−1 (non-principal)
as shown by figure 15(a). These two functions are available in scientific software such as
lambertw (MatlabR) or ProductLog (MathematicaR).

For the purpose of this manuscript we are interested in W(α) and W(α0) as a function of k ∈
[0, 1], whereα = −e−1/k/k (32) andα0 = 2α/e (54). The twoα’s and their ranges are depicted
as a function of k in figure 15(b). Whileα ∈ [−e−1, 0] for any k, theα0 ∈ [−2e−2, 0]. The lower
bound is in each case reached at k = 1. One has W0(0) = 0, W−1(0) = −∞, W(−e−1) = −1,
W0(−2e−2) ≈ −0.406, and W−1(−2e−2) = −2 as one can verify by pluggin in these values
into Lambert’s equation. Accordingly, for the case of α the solutions of Lambert’s equation
reside in the disjunct ranges W0(α) ∈ [−1, 0] and W−1(α) ∈ [−∞,−1]. For α0 the solutions
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Figure 15. (a) Principal W0 and non-principal W−1 solutions of Lambert’s equation
z = W(z)eW(z). As can be seen, there is single real-valued solution for z � 0, and two
real-valued solutions for z ∈ [−1/e, 0]. Complex-valued solutions are represented by
thin lines. The thick black line is the real-valued W0(z) ∈ [−1, 0] for z � −1/e, while
the thick red line is the real-valued W−1(z) � −1 for z ∈ [−1/e, 0]. (b) α and α0 vs
k for ε = 0 (thick), ε = 0.02 and ε = 0.05 (thin). One has α � −e−1 ≈ −0.368 and
α0 � −2e−2 ≈ −0.271 for all k ∈ [0, 1] and ε � 0.

reside in the disjunct ranges W0(α0) ∈ [−0.406, 0] and W−1(α0) ∈ [−∞,−2]. These ranges
are used to select the relevant solutions of Lambert’s equation in (32) and (54). A special,
trivial but important case is z = −e−1/k/k = α(ε = 0) because this z obviously solves
Lambert’s equation exactly with the simple W−1(z) = −k−1, i.e., one has

W−1

(
−e−1/k

k

)
= −1

k
(G3)

for all k. Using the same α’s, Lambert’s W functions have the following property

W0(α) − W−1(α0) � 1 (G4)

that implies G0 � G∞.

Proof. As is obvious from figure 15(b), the difference between α and α0 is largest at k =
1 and ε = 0. For these special values W0(α) = W0(−e−1) = −1 and W−1(α0) = W−1(2e−2)
= −2. The difference then changes monotonously and becomes huge in the limit k → 0 (and
α→ 0), as is obvious from figure 15(b). This completes the proof.

Another important inequality is

W−1(α) − W−1(α0) � 1 (G5)

as it implies G0 � G−∞ = 0.

Proof. The left-hand side increases with increasing k, as α− α0 increases as well
(figure 15(b)). At k = 1, W−1(α) = W−1(−e−1) = −1 and W−1(α0) = W−1(−2e−2) = −2.
This completes the proof.
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There is another identity that we need to derive the final expression for our approximant
G̃(τ ).

W (z ln z) = ln z (G6)

holds for any z > 0. As a proof one can start from this expression for W , to obtain WeW =
( ln z)eln z = z ln z, which is Lambert’s equation. A function W with the property (G6) ful-
fills Lambert’s equation at the same time, as long as W is real-valued; equation (G6) is thus
equivalent to Lambert’s equation over the domain of positive arguments.

Taking the derivative of Lambert’s equation z = W eW with respect to z, Lambert’s functions
W0 and W−1 both obey the differential equation

z
dW
dz

=
W(z)

1 + W(z)
(G7)

so that

x
dW(cx)

dx
=

W(cx)
1 + W(cx)

, (G8)

x
dW(cx)

dx
− W(cx) = − W2(cx)

1 + W(cx)
(G9)

Relationships (G8) and (G9) are required if one attempts calculating the approximant j̃ from
−dS̃/dτ .

For small z, Lambert’s function W0 has the expansion

W0(z) = z − z2 +
3
2

z3 + O(z4) (G10)

implying

W0(z)
z

= 1 − z +
3
2

z2 + O(z3), (G11)

W0(z)
1 + W0(z)

= z − z3

2
+ O(z4) (G12)

Appendix H. Cumulative J̃(τ ) for GM-like solution of the SIR

The cumulative J̃GML(τ ) =
∫ τ

−∞ j̃GML(τ ′)dτ ′ corresponding to j̃GML(τ ) given by the GM-like
equation (84) follows by integration. One has

J̃GML(τ ) =

⎧⎪⎪⎨⎪⎪⎩
J̃1(τ ), τ � τearly,

J̃1(τearly) + J̃T(τ ), τ ∈ [τearly, τlate]

J̃1(τearly) + J̃T(τlate) + J̃2(τ ), τ � τlate

(H1)
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Figure 16. Absolute relative deviations between the exact and approximative analytical
(a, top row) τ (G) shown in figure 1 for k = 0.5 and k = 0.9, (b) final values shown in
figure 2, and (c) τ 0 shown in figure 5. Note the different scales for the panels and that
the absolute error may be extremely small when the relative error is as large as 10%.

with

J̃1(τ ) =
jearlye(1−k)(τ−τ0)

1 − k
,

J̃T(τ ) =
jmax ω0

√
π

2

[
erf

(
τ − τ0

ω0

)
+ erf

(
τ0 − τearly

ω0

)]
,

J̃2(τ ) =
jlate

[
e−κ(1−k)(τlate−τ0) − e−κ(1−k)(τ−τ0)

]
κ(1 − k)

(H2)

Appendix I. Deviation between analytical and numerical results

Because our analytical approximants seem to reproduce the exact result so very well that it is
hard to see any difference between the curves by eye, figure 16 provides some plots that show
the absolute relative difference between the two.

Appendix J. Supplementary: implementation

For the convenience of a reader, this section contains a complete MathematicaTM notebook that
creates time-dependent SIR results using our G̃(τ ) for an arbitrary infection rate a[t], spec-
ified in the first line, arbitrary k ∈ (0, kmax) and S(0) ∈ (0, 1). All results such as S(t) (code
SIRS[k,S0][t]) and J̇(t) (code SIRj(k,S0][t]) are available analytically, and can be plotted as
shown.
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