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MmWave Channel Estimation via Atomic Norm
Minimization for Multi-User Hybrid Precoding

Junquan Deng∗, Olav Tirkkonen∗ and Christoph Studer†
∗Department of Communications and Networking, Aalto University, Finland
†School of Electrical and Computer Engineering, Cornell University, NY, USA

Abstract—To perform multi-user multiple-input and multiple-
output transmission in millimeter-wave (mmWave) cellular sys-
tems, the high-dimensional channels need to be estimated for
designing the multi-user precoder. Conventional grid-based Com-
pressed Sensing (CS) methods for mmWave channel estimation
suffer from the basis mismatch problem, which prevents accurate
channel reconstruction and degrades the precoding performance.
This paper formulates mmWave channel estimation as an Atomic
Norm Minimization (ANM) problem. In contrast to grid-based
CS methods which use discrete dictionaries, ANM uses a con-
tinuous dictionary for representing the mmWave channel. We
consider a continuous dictionary based on sub-sampling in the
antenna domain via a small number of radio frequency chains.
We show that mmWave channel estimation using ANM can
be formulated as a Semidefinite Programming (SDP) problem,
and the channel can be accurately estimated via off-the-shelf
SDP solvers in polynomial time. Simulation results indicate that
ANM can achieve much better estimation accuracy compared to
grid-based CS, and significantly improves the spectral efficiency
provided by multi-user precoding.

I. INTRODUCTION

In future millimeter-wave (mmWave) cellular networks,
large antenna arrays are expected to be applied at the Base
Station (BS) to serve multiple User Equipments (UE) in
dense urban scenarios. To perform Multi-User Multiple-input
and Multiple-Output (MU-MIMO) hybrid precoding [1], [2],
accurate Channel State Information (CSI) is necessary. As
mmWave channels typically compromise a few strong prop-
agation paths, Compressed Sensing (CS) methods have been
considered for mmWave channel estimation [1]–[5]. In order
to apply CS to channel estimation, a discretization procedure
is generally adopted to reduce the continuous angular or
delay spaces to a finite set of grid points. Assuming that the
Direction of Departure (DoD) and Direction of Arrival (DoA)
lie on the grid, the virtual channel representation is sparse
with few non-zero entries. The channel estimation problem
then can be addressed with a specific measurement matrix
and a recovery algorithm, e.g., the Orthogonal Matching Pur-
suit (OMP) [5]. However, as the actual signals are continuous
and will not fall on the discrete points, basis mismatch will
degrade recovery performance [6]. Although finer grids can
reduce the reconstruction error, they require more computation
resources.

In the literature, most of the multi-user hybrid precoding
schemes assume perfect CSI at the transmitters (see e.g., [7],
[8]). However, grid-based CS for channel estimation will lead
to the basis mismatch problem and hence channel estimation
errors, which will degrade the performance of MU-MIMO pre-

coding such as Zero-Forcing (ZF) [2]. Recently, a continuous
basis pursuit technique with auxiliary interpolation points [9]
was used for mmWave channel estimation in [10], which
shows that adding interpolation points to the original grids can
improve channel estimation accuracy considerably. This paper
considers a continuous dictionary for multi-user mmWave
channel estimation in order to completely eliminate the basis
mismatch error. We proposed a continuous dictionary based
on antenna-domain sub-sampling via a much smaller number
of Radio Frequency (RF) chains in the hybrid architecture.
The sparse mmWave channel estimation is formulated as an
Atomic Norm Minimization (ANM) problem [11], which can
be solved via Semidefinite Programming (SDP) in polynomial
time. ANM has been considered for massive MIMO channel
estimation [12], [13], wherein a fully-digital architecture is
assumed which has much higher complexity compared to the
hybrid architectures. To show the advantage of ANM based
on antenna-domain sub-sampling in the hybrid architecture,
we investigate a low-complexity MU-MIMO hybrid precoding
scheme using the estimated channel information. Finally, we
evaluate the performance of ANM and the precoding scheme
via simulations in realistic scenarios. Simulation results re-
garding the channel estimation error and user spectral effi-
ciency are provided, which verify the efficacy of our solutions.

II. SYSTEM MODEL

A. Architectures of BS and UE
We consider a mmWave cellular system where the BS

has N antennas and Q RF chains to serve K = Q UEs
in downlink (DL). In contrast to [4], [7], a BS architecture
equipped with both Phase Shifters (PS) and switches is
proposed, as shown in Fig. 1. The BS antennas are grouped
into Q sub-arrays. Antennas in each sub-array are associated
with one particular RF chain. With the proposed architecture,
the BS can adopt two working modes: 1) the PS mode with
a partially-connected PS network (as A2 in [7]); 2) the SW
mode with a partially-connected switch network (as A6 in [7]).
When working in SW mode, the BS contains a fully-digital
architecture with Q antennas. The switch network enables
accessing the received signal from an individual antenna,
which is useful for channel estimation, especially when the
Signal-to-Noise Ratio (SNR) is high. The cost of adding
dedicated switches to the phase-shifter network is moderate as
the implementation complexity of switches is typically lower
than that of phase shifters [7]. In contrast, the PS network is
used to perform analog beamforming and combining for both
beam training and data transmission.
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Fig. 1. System architectures for BS and UE, the RF part of BS has two modes
of operation: 1) phase-shifter-based mode (PS mode) for directional data
transmission and 2) switch-based mode (SW mode) for channel estimation.

At the UE side, each UE is assumed to have a single RF
chain with M antennas and M phase shifters. Such UEs
are able to perform single-data-stream analog beamforming.
This UE architecture has low hardware complexity and energy
consumption, making it suitable for mobile UEs [14].

The BS has two kinds of RF precoder/combiner depending
on the working modes. In SW mode, the sub-array RF pre-
coder/combiner fq is an antenna selection vector with one non-
zero element. In PS mode, fq is a sub-array steering vector. For
UEs, the RF precoder/combiner wk of UE k is a beam steering
vector. We assume that BS and UE have Qps-bits quantized
PSs [15]. The number of beams that can be steered by BS or
UE depends on the PS resolution Qps rather than the number
of antennas, and is equal to 2Qps . The coefficient set available
for each PS is denoted by P = {ω0, ω1, . . . , ω2Qps−1} where
ω = ej2π/2

Qps is the minimum angular domain separation.
The quantized PSs can adjust the phases of the signals and
have constant modulus. Specifically, the RF beamforming
codewords are

fq = 1Ωq�fω(c,N), wk = fω(c,M), (1)

where Ωq is the antenna index set for qth sub-array, 1Ωq is a
binary valued vector with |Ωq| ones indexed by Ωq , fω(c, i) =
[1, ωc, ω2c, . . . , ω(i−1)c]T with c ∈ {0, 1, . . . , 2Qps−1}.

B. Channel Model

MmWave channels are highly directional and contain a
few dominant paths in the angular domain [14]. Due to the
extremely short wave-length, diffraction effects in mmWave
frequencies are small; only Line-of-Sight (LoS) and reflected
paths are significant. As a consequence, the number of paths
is smaller than the number of BS antennas. Suppressing the
vertical directivity of the channel, for the kth UE, the DL
channel is modeled as [4],

Hk =
∑L

l=1
αlaUE(θl)aBS(φl)

H ∈ CM×N , (2)

where L represents the number of paths, and αl denotes
the complex gain of the lth path. In addition, aBS(φl) and
aUE(θl) represent the BS and UE array response vectors for
the lth path, where φl is the DoD at BS, and θl is DoA

at UE. Considering plane-wave model and Uniform Linear
Array (ULA) for both BS and UE, the array steering vectors
can be written as

aBS(φ)=[1, ej
2π
λ d sin(φ), . . . , ej(N−1) 2π

λ d sin(φ)]T,

aUE(θ)=[1, ej
2π
λ d sin(θ), . . . , ej(M−1) 2π

λ d sin(θ)]T,
(3)

where λ is carrier wavelength and the antenna spacing here is
assumed to be d = λ/2. We assume that the system is working
in the Time Division Duplex (TDD) mode and the DL and
uplink (UL) channels are reciprocal. Denote the BS baseband
combiner or precoder as PBB = [p1, . . . ,pK ] ∈ CQ×K , the
BS RF combiner or precoder as FRF = [f1,. . ., fQ] ∈ CN×Q,
and the RF combiner or precoder for all K UEs as W =
[w1, . . . ,wK ] ∈ CM×K . The DL and the UL received signals
including interference and noise for UE k are

zu = wH
k HkFRF

(
pkxk+

∑
j 6=k

pjxj

)
+ wH

k nu,

zb = pH
k FH

RF

(
HH
k wkyk+

∑
j 6=k

HH
j wjyj + nb

)
,

(4)

where xk and yk are the DL and UL signals, satisfying
E(xkx

∗
k) = ρBS

K and E(yky
∗
k) = ρUE

M with transmit powers as
ρBS and ρUE. In addition, nu ∈ CM×1 is the CN (0, σ2

u) UE
noise vector with noise power σ2

u per antenna, and nb ∈ CN×1

is the CN (0, σ2
b) BS noise vector with noise power σ2

b per
antenna. For DL transmission, F = FRFPBB satisfies power
constraint tr(FFH) ≤ 1. For UL transmission, wk satisfies
‖wk‖22 ≤ 1.

III. PROBLEM FORMULATION FOR CHANNEL ESTIMATION

For channel training in UL, we assume that the kth UE
transmits a pilot sequence sk ∈ C1×Ts using UE beam wk.
Assuming PBB = IQ, the received training signal at BS is

Y = FH
RF(
∑K

k=1
hksk + Nb). (5)

Here hk = HH
k wk is the effective channel for UE k. The user

pilots are assumed to satisfy sks
H
k′ = TsρUEδk,k′ , with δi,j the

Kronecker delta function. Correlating Y with sk, we get

yk = YsH
k = TsρUEFH

RFhk + FH
RFNbsH

k . (6)

Assuming that the BS takes T snapshots of measurements
with different combining matrices, stacking the W = T ×Q
measurement samples gives

z=


y1,k

y2,k

...
yT,k

=TsρUE


FH

1,RF

FH
2,RF
...

FH
T,RF


︸ ︷︷ ︸

Φ

hk +


FH

1,RFN1,b

FH
2,RFN2,b

...
FH
T,RFNT,b

 s∗k

︸ ︷︷ ︸
n

, (7)

where Φ is the sensing matrix and n is the noise after
combining. The objective of BS channel estimation is to
estimate the effective channel. From (2), we have

hk = HH
k wk =

∑L

l=1
βlaBS(φl), (8)

where βl = (αl(wk)HaUE(θl))
∗. The effective channel hk

contains fewer significant paths compared to the full MIMO
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channel Hk. To estimate hk, one can estimate DoAs {φl}
and the complex gains {βl} for the paths and then reconstruct
the channel. In grid-based CS methods, a discrete dictionary
ΨBS = [aBS(φ1), . . . ,aBS(φGb

)] with Gb bases is used
to represent the channel hk. We consider a grid in which
{sin(φ1), . . . , sin(φGb

)} are evenly distributed in (−1, 1] [5].
The channel vector is represented as

hk = ΨBShv, (9)

where hv ∈ CGb×1 is the sparse virtual channel in dictionary
ΨBS. Denoting A = ΦΨBS, to estimate the sparse virtual
channel hv, one can formulate the following optimization
problem:

minimize
hv

‖hv‖0 s.t. ‖zk −Ahv‖22 ≤ η. (10)

where η is an optimization parameter and typically set as the
noise power after combining. In contrast to [5], we consider
a switch-based method for constructing the sensing matrix,
in which only Q individual antennas are sampled during one
measurement snapshot. We call this method Antenna Domain
Sub-Sampling (ADSS). The ADSS sensing matrix has the
following structure:

Φ = TsρUE[ei1,1 , ei1,2 , . . . , ei1,Q , . . . , eiT,Q ]H, (11)

where the unit vector eit,q has one entry equal to 1 at position
it,q , and it,q is the antenna index for the qth RF chain in the tth
measurement snapshot. Furthermore, if we define the antenna
index set Ω = {i1,1, i1,2, . . . , i1,Q, . . . , iT,Q} for all sampled
antennas, we have

z = Φhk + n = TsρUE(hk)Ω + n. (12)

A variety of algorithms have been proposed for obtaining an
approximate solution to (10) at polynomial complexity. OMP
is a preferred method due to its simplicity and fast implemen-
tation [5]. To solve (10) based on the measurement data z
in (12), we use OMP as in Algorithm 1. The computational
complexity of OMP is proportional to the number Gb of grid
points. Step 3 in Algorithm 1 needs O(WGb) computations
and solving the Least Square (LS) problem in step 5 requires
O(W |It|2).

The joint design of the sensing matrix Φ and dictionary
matrix Ψ plays a key role in achieving accurate channel
estimation. To reconstruct hv, A should have low mutual
coherence µ(A), which is the largest normalized inner product
for two different columns of A. Specifically, when the path
directions lie on the defined grid, it can be shown that OMP
can recover hv in the noiseless case if [7]

µ(A) = max
i 6=j

|aH
i aj |

‖ai‖2 · ‖aj‖2
<

1

2L− 1
, (13)

where ai and aj are two different columns of A. The lower
bound of µ(A) is given by the Welch bound [7], which
decrease as the number of measurement W increases.

Algorithm 1 OMP for effective channel estimation
Input: The sensing matrix Φ, the dictionary matrix ΨBS and
A = ΦΨBS = [a1,a2, . . . ,aGb

], the measurement vector z,
and a threshold δ.

1: Iteration counter t ← 0, basis vector set It ← ∅, virtual
channel hv ← 0 ∈ CGb×1, residual error rt ← z

2: while ‖r‖ > δ and t < Gb do
3: g? ← arg maxg ‖aH

g rt‖2 . Find new basis vector
4: t← t+ 1, It ← It−1

⋃
{g?} . Update vector set

5: x? ← arg minx ‖z−(A)It x‖2 . LS method
6: rt ← z− (A)It x

? . Update residual error
7: (hv)It ← x? . Update the virtual channel
8: end while

Output: Estimated channel ĥ = ΨBShv

IV. ATOMIC NORM MINIMIZATION FOR EQUIVALENT
CHANNEL ESTIMATION

When using the dictionary ΨBS for channel estimation
via OMP, the estimated path angles are considered to be
on a discrete grid {φ1, . . . , φGb

}, which introduces the basis
mismatch problem [6]. To avoid this, we consider a continuous
dictionary for estimating the effective channel.

To estimate the effective channel based on UL measure-
ments, the following constrained optimization problem can be
formulated:

minimize
h

M (h) s.t. ‖z−Φh‖22 ≤ η. (14)

Here M(h) denotes a sparse metric to be minimized for a
channel vector h. The noise is assumed to be bounded by
‖n‖22 ≤ η, and h can be treated as the signal of interest which
needs to be estimated based on the observed data z in the
context of line spectral estimation [11]. Problem (14) differs
from (10) as it is formulated without a discrete dictionary.
Instead of (14), one can solve a regularized optimization
problem as

minimize
h

ξM (h) +
1

2
‖z−Φh‖22 , (15)

where ξ > 0 is a regularization parameter related to η. There
are different choices for M(h) [6]. Here, we consider the
atomic norm M(h) = ‖h‖A proposed in [6]. The atomic
norm has been used in grid-less compressive sensing for a
range of applications [6], [11]–[13], including DoA estima-
tion, line spectral estimation and massive MIMO channel
estimation. The continuous set of atoms used to represent h
is defined as

A =
{

aBS (φ)α : φ∈
(
−π

2
,
π

2

]
, α ∈ C, |α| = 1

}
. (16)

The atomic norm is the gauge function [16] of the convex hull
conv (A). Formally, the atomic norm can be written as

‖h‖A =inf { g > 0 : h ∈ g · conv (A)}

=inf
{∑

i
bi : h = bi

∑
i
ai, bi > 0,ai ∈ A

}
.

(17)

The atomic norm is a continuous counterpart of the `1-norm
used in on-grid CS methods. It can be computed efficiently
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via semidefinite programming [6]. Specifically, ‖h‖A defined
in (17) is the optimal value of the following matrix trace
minimization problem:

minimize
u,t

1

2
(t+ u1) s.t.

[
T (u) h
hH t

]
� 0, (18)

where T (u) is a Hermitian Toeplitz matrix with the first row
as u = [u1, . . . , uN ]T. In the noisy case, using the atomic
norm, we can rewrite the optimization problem (15) as

minimize
D�0

ξ

2
(t+ u1)+

1

2
‖z−Φh‖22

s.t. D =

[
T (u) h
hH t

]
.

(19)

The above problem is a SDP which can be solved by off-the-
shelf convex optimization tools in polynomial time [17]. The
computational complexity is O

(
(N + 1)6

)
in each iteration

using the interior point method.
To guarantee that h can be exactly recovered via ANM, the

measurement matrix Φ and the number of atoms in h (i.e.,
the number of paths L in the user channel) should satisfy a
condition which is similar to the mutual coherence condition
in on-grid CS. To define this condition for ANM, a concept
called spark for the continuous set of atoms is introduced. Let
us define the transformed continuous dictionary based on the
measurement matrix Φ as

AΦ =
{

ΦaBS(φ) : φ ∈
(
−π

2
,
π

2

]}
. (20)

Similar to the definition of matrix spark, spark(AΦ) is defined
as the smallest number of atoms which are linearly dependent
in AΦ. From [16], the problem (14) with η = 0 in the
noiseless setting has a unique solution if the number of paths
satisfies

L <
spark(AΦ)

2
. (21)

Note that the spark in (13) satisfies spark(A) ≥ 1+(µ(A))
−1,

so the condition above is equivalent to (13) in the case of
discrete atoms. Thus the spark(AΦ) should be as large as
possible so that ANM can recover a channel with as many
paths as possible. For a specific BS array, one may notice
that spark(AΦ) depends only on Φ. For ADSS via switches,
spark(AΦ) depends on the number of sampled antennas |Ω|
and the sampled antenna indexes. It was shown in [16] that
2 ≤ spark(AΦ) ≤ |Ω|+ 1, and a random Ω or a Ω with |Ω|
consecutive integers can achieve a sufficiently large spark.

V. MULTI-USER DOWNLINK PRECODING/COMBINING
BASED ON THE ESTIMATED CHANNELS

In this section, we consider the designs of downlink BS
precoder and UE combiners. To design the BS precoder
{FRF,PBB} and UE combiners W optimally, full CSI H =
{H1,H2, . . . ,HK} needs to be known. However, acquiring
H would require each UE to send huge amount of pilots which
consumes lots of resources. A sub-optimal method, which
works well when user channels are sparse, is that each UE first
finds its best beam which aligns with the most significant path,
then UEs transmit their pilots to BS for multi-user channel

(a) BS sub-array (b) UE array

Fig. 2. (a) Designed Q DL sub-array beams with N = 64, Q = 8, Qps = 4;
(b) Designed 16 UE beams with M = 8, Qps = 4.

estimation as discussed in sections III and IV. As a result,
the BS only needs to estimate the user effective channel hk
which has much fewer coefficients and significant paths to
be estimated. The BS will then design the its MU-MIMO
precoder based on those estimated effective channels. For UEs,
the beam codebook is

U=
{√

1/Mfω(c,M) : c∈{0, . . . , 2Qps−1}
}
. (22)

For BS, the DL training beam codebook used by the qth sub-
array is

Fq=
{
1Ωq�fω(c,N) : c∈{0, . . . , 2Qps−1}

}
. (23)

Sub-array q will use one beam from Fq for UE beam training.
The objective of the UE beam training is to find a UE beam

which maximizes the norm of the effective channel

maximize
wk∈U

‖wH
k Hk‖22, (24)

The problem in (24) is equivalent to finding the best steering
vector wk ∈ U that aligns with the paths that have large
path gains. In principle, to find the best UE codeword, BS
needs to transmit DL training beams which cover all the
paths. However, this would increase the training overhead. We
propose using all sub-arrays to transmit Q DL pilots with Q
sub-array beams simultaneously which are evenly distributed
in [−π/2, π/2). Fig. 2 (a) shows the designed DL beams used
for the BS sub-arrays and Fig. 2 (b) shows the UE beam
codebook we used. The MU-MIMO precoding scheme based
on the UE beam training and the effective channel estimation
is summarised and shown in Algorithm 2. Noticing that DoAs
and DoDs of the propagation paths change much slower than
the channel coefficients [14], the best UE beam remains the
same during a period which is much longer than channel
coherence time, and the UE beam tracking can be performed
less frequently.

VI. NUMERICAL RESULTS

In this section, the performance of the proposed channel
estimation method and the precoding scheme are evaluated
via numerical simulations. We assume M = 8 for UEs, and
N = 64, Q = 8 for BS. The BS antennas are grouped
into Q sub-arrays with equal size. We consider an outdoor
small cell where BS is lower than buildings, and signals
will be reflected or blocked by the walls. A ray-tracing
channel model [18] is considered to generate the channels.
The reflection coefficients are computed based on the Fresnel
equation and up to 3rd order reflections are taken into account.
The relative permittivities of building walls are uniformly
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Algorithm 2 Joint UE RF combining and BS MU-MIMO
precoding

1: BS transmits Q DL pilots using Q sub-arrays
2: Each UE k ∈ {1, 2, . . . ,K} receives DL pilots using

codewords from UE codebook U = {w(1), . . . ,w(P )} and
calculate the received power with the pth UE beam and
qth BS DL beam, each UE then has a received power
matrix Pk = [p1,p2, . . . ,pQ] ∈ RP×Q. Let c← 0P×1,

3: for q = 1, 2, . . . , Q do
4: Find the best UE beam i? for the qth BS beam:
5: i? ← argmaxi (pq)i, (c)i? ← (c)i? + (pq)i? .
6: Find the final best UE beam:
7: p? ← argmaxi (c)i, wk ← w(p?)

8: end for
9: UE k transmits UL pilot to BS using wk, the BS esti-

mates the effective user channel hk using OMP or ANM
methods as described in sections III and IV; the BS has
an estimated multi-user channel Ĥ = [ĥ1, ĥ2, . . . , ĥK ]H.
Let FRF = [f1,. . ., fQ]← 0N×Q,

10: for q ∈ {1, 2, . . . , Q} do
11: Select UE k = q, find fq = argmaxf∈Fq |ĥ

H
k f |2

12: end for
13: Design PBB as PBB = (ĤFRF)−1

‖FRF(ĤFRF)−1‖F
using ZF.

TABLE I
SIMULATION PARAMETERS

Parameter Symbol value
Carrier frequency fc 28 GHz
System bandwidth bw 256 MHz

OFDM subcarrier number Nc 256
UE total Tx power Nc×ρUE 23 dBm
BS total Tx power Nc×ρBS 40 dBm

UE noise power Nc×σ2
u -89 dBm

BS noise power Nc×σ2
b -86 dBm

UE antenna pattern g1(θ) omnidirectional
BS antenna pattern g2(φ) defined in [20]

Phase-shifter resolution Qps 4 bits
Pilot sequences sk Zadoff-Chu, Ts = 63

distributed between 3 and 7. The BS is at the center while UEs
are dropped outdoor with distances to BS smaller than 150
meters, as shown in Fig. 3. Blocked UEs which cannot find a
LOS or a reflected path are not considered in the simulation.
The path coefficient in (2) is

αl = ejψ
√
G0x−2g1(θl)g2(φl)

∏R

i=0
|ri|2, (25)

where G0 = 10−6.14 is the omnidirectional path gain [19]
at reference distance one meter, x is the path propagation
distance in meter, ψ ∼ U(0, 2π) is a random phase, g1(θl) and
g2(φl) are UE and BS antenna element patterns, respectively,
R is the reflection order and ri is the ith reflection coefficient.
For a LOS path, we have R = 0, r0 = 1. More details of
simulation parameters are given in Tabe I.

A. Effective User Channel Estimation via OMP and ANM
All UEs transmit orthogonal pilots to BS using their best

beams, and BS receives them via ADSS. In these simulations,

-200 -150 -100 -50 0 50 100 150 200

-200

-150

-100

-50

0

50

100

150

200

Fig. 3. Simulation scenario in a 400×400 m2 area, the polygons represent
the buildings with walls, red triangle is the BS and red squares are the UEs.
Ray-tracing is used to generate the propagation paths which are shown in
blue lines.

T = 2 measurement snapshots are used, so we have T ×Q =
16 antennas sampled pseudo-randomly via the switch network.
The ANM problem (19) is solved via the SDPT3 [17] solver.
The OMP algorithm applys a non-redundant dictionary with
Gb = N and redundant dictionaries with Gb = 2N, 4N . We
estimate channel estimation performance, in terms of the Nor-
malized Mean Square Error (NMSE) E{‖hk−ĥk‖22/‖hk‖22}.
In total 8000 UEs are simulated. Results are presented as
a function of SNR = ρUE‖Hk‖2F/(MNσ2

b). As illustrated
in Fig. 4, increasing Gb directly results in better estimation
accuracy for OMP. The ANM method outperforms OMP since
it avoids basis mismatch by using the continuous dictionary.
As Gb increases, the gap between OMP and ANM decreases
at the cost of increasing computational complexity. When a
non-redundant dictionary with Gb = N is used for OMP,
OMP suffers severely from basis mismatch; an error floor
develops in the hign SNR regime. In comparison, ANM
achieves much better estimation accuracy, especially in the
high SNR regime, effectively removing the error floor. Inac-
curate channel estimation degrades the interference mitigation
performance in MU-MIMO precoding techniques. As a result,
ANM would be a strong candidate for the hybrid precoding
solution discussed in Section V. We also found that in the
simulated scenario, the user effective channel hk is sparse
in angular domain. In most cases, there are one to three
significant paths even when the original channel Hk has much
more paths. This ensures that the condition (21) is satisfied
and ANM can recover the channel with high probability. In
the case that the condition (21) is not satisfied, ANM aims to
recover those strongest paths and moderate channel estimation
accuracy is attainable. Compared to OMP, solving the ANM
problem using SDPT3 entails higher complexity. In practice,
an efficient solver based on the Alternating Direction Method
of Multipliers (ADMM) [21] technique could be adopted to
solve the ANM problem.

B. Spectral Efficiency Performance of Multi-User Precoding

To evaluate the multi-user precoding performance, 8000
UEs are randomly divided into 1000 groups and 8 UEs in each
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Fig. 5. Performance of multi-user hybrid precoding with sub-arrays, with
different channel estimates.

group are served simultaneously. The Cumulative Distribution
Function (CDF) for user spectral efficiency is collected, where
SE is estimated as log2(1 + γ) from the Shannon formula
with γ the signal-to-interference-plus-noise ratio. As shown in
Fig. 5, hybrid precoding with ANM-based channel estimation
can provide much better performance compared to an OMP-
based scheme since it provides accurate channel estimates
for the effective user channel. The baseband ZF precoding is
sensitive to channel estimation error and the error will damage
the user orthogonality provided by ZF. On average, OMP with
Gb = N , 2N and 4N loses 63%, 18% and 11% of the spectral
efficiency with perfect CSI. By comparison, ANM loses only
3.4%, which verify the efficacy of ANM.

VII. CONCLUSION

This paper has proposed a low-complexity hybrid architec-
ture in which an inexpensive switch network is added to the
subarrays to facilitate channel estimation. We have formulated
the mmWave channel estimation as an ANM problem which
can be solved via SDP with polynomial complexity. Compared
to the grid-based CS methods, the proposed ANM approach
uses a continuous dictionary with sub-sampling in antenna
domain via the switch network. Simulation results show that
ANM can achieve much better channel estimation accuracy
compared to grid-based CS methods, and can help MU-MIMO
hybrid precoding to achieve significantly better user spectral
efficiency performance.
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