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Foreword 

 
Parking is an intrinsic component of urban systems. Moreover, its relation to the traffic 

system is undeniable, yet often overlooked. Parking policies affect the traffic system as 

much as they affect the parking system, potentially leading to higher or lower levels of 

traffic performance, as a function of the share of traffic that is cruising for parking. The 

work of Mr. Jakob uses a macroscopic framework to evaluate multiple parking policies 

paying special attention to such interactions. Such macroscopic framework is 

computationally very efficient and has very low data requirements. As such, he can then 

use it to determine the short-term impacts of different parking policies, and the resulting 

interactions between the parking and traffic systems. Moreover, he proposes a number of 

extensions to the framework in order to (i) capture the competition between on-street and 

off-street parking, (ii) illustrate the potential use of parking pricing as an alternative to the 

more controversial congestion pricing, (iii) introduce a new dynamic pricing scheme that 

is a function of both, the parking demand and the parking supply, and (iv) estimate the 

optimal parking occupancy with and without differentiate parking. 

Mr. Jakob’s work is not only relevant from a scientific perspective, but also timely from a 

practical perspective. To illustrate the value and importance of each of the extensions 

mentioned above, Mr. Jakob uses a case study based on real data from the city of Zurich, 

Switzerland. Moreover, he discusses and evaluates the tradeoffs between the revenue 

generated by a policy and the benefits it provides for the users. He also develops the tools 

so city governments can analyze these tradeoffs in response to changes to demand, 

supply, and other aspects related to the parking and traffic systems. As a result, many of 

his insights are directly implementable by local governments aiming to improve parking 

while minimizing traffic disruptions. 

On behalf of the Traffic Engineering research group at the Swiss Federal Institute of 

Technology, Zurich, I thank Mr. Jakob for his extreme motivation and work ethics. Even 

while working full-time in a private company, and clearly progressing on his role within 

that company, Mr. Jakob has managed to be very active on his PhD studies, publishing 

four articles in scientific journals. I cannot imagine a better testament to his hard work 

than this very thesis. 

Monica Menendez 

Director 

Research Center for Interacting Urban Networks (CITIES) 

Associate Professor of Civil and Urban Engineering 

New York University Abu Dhabi (NYUAD) 

Global Network Associate Professor of Civil and Urban Engineering 

Tandon School of Engineering, New York University (NYU) 
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Abstract 

 
Parking policies and their interactions with the urban traffic and parking systems can have 

significant impacts on the traffic performance and the congestion in an urban area. These 

impacts have a long-term component affecting the travel demand and the travelers’ 

preferences, and a short-term component affecting the traffic and parking operations. This 

dissertation studies multiple parking policies focusing on pricing and occupancy aspects 

and analyzes their short-term impacts on the parking searchers and the performance of 

the traffic and parking systems, which, in turn, might impact the efficiency of the parking 

policies themselves. In other words, we investigate the interdependencies between 

different parking policies and parking-caused traffic issues. In particular, we evaluate the 

influences on the searching-for-parking traffic, the congestion in the network, the total 

driven distance, and the revenue created by parking, park and ride (P+R) fees, and/or 

congestion tolls for the city. We show the results for the different parking policies in some 

case studies of a central area within the city of Zurich, Switzerland. Our easy to implement 

model uses a dynamic macroscopic framework which saves on data collection efforts and 

reduces the computational costs significantly as all values correspond to aggregations at 

the network level over time. Our work clusters the parking policies into two types. First, 

we study static and dynamic parking pricing strategies and second, we investigate 

parking occupancy related strategies. 

i. At the beginning of this dissertation, we focus on a macroscopic on-street and 

garage parking framework which allows us to model the drivers’ decision between 

searching for an on-street parking space or driving to a parking garage instead. 

Different static on-street and garage parking fee ratios are analyzed with respect 

to the impacts on the traffic system and the parking search model over time. Our 

framework shows how traffic performance issues might influence the drivers’ 

decision between on-street and garage parking in the short-term. This decision is 

faced by multiple user groups with respect to their value of time (VOT). We study 

the impacts of different parking policies, including the availability of real-time 

garage usage information, and the conversion of on-street parking to garage 

parking spaces. The recovered on-street curb can then be used for other activities 

(e.g., bike lanes) in order to improve the quality of life for the city’s residents. 

Another strategy for cities might be to establish a P+R facility outside the city in 

order to reduce the searching-for-parking traffic in the central area. We analyze a 

P+R policy with static fares and compare it to a congestion pricing scenario and/or 

parking pricing policy in the network. In case the area consists of a high number 

of public parking spaces, parking pricing could be considered as a viable 

alternative to congestion pricing in terms of improving the performance of the 

traffic and parking system (i.e., traffic performance, parking availability, revenue 

for the city, etc.). Different parking fees or traffic conditions might, however, affect 
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the drivers’ decision between entering the network by car or using P+R instead. 

We propose a decision model with respect to the drivers’ VOT and integrate it into 

a multimodal macroscopic traffic and parking framework focusing on parking and 

congestion pricing. We evaluate the distributional effects of our heterogenous 

VOT model on the drivers’ decision of which mode (P+R or car) to use when 

entering the area. Additionally, the proposed methodology can be used by city 

councils to find the trade-offs between the parking fee and the congestion toll 

when looking to reduce the average cruising time in the network, or increase the 

total revenue for the city. 

Moreover, we study a dynamic responsive parking pricing scheme which takes 

the parking search phenomenon and the parking occupancy into account. This 

macroscopic pricing policy maximizes the parking revenue for a city while 

minimizing the searching-for-parking time simultaneously. In different words, 

our pricing algorithm changes in response to the parking occupancy rate and the 

number of searching vehicles on the network. It checks whether the cost of paying 

the current parking fee is lower than the cost of keep on searching for another 

available parking space depending on the drivers’ VOT. The latter cost includes 

paying the predicted parking fee for the next available parking space at a future 

time slice under consideration of the driving and penalty costs to get there. We 

show the short-term impacts of the proposed dynamic parking pricing scheme on 

the urban traffic and parking systems, including the financial benefits of the 

pricing scheme and the benefits (or disbenefits) for the traffic performance in the 

area. 

ii. As the second type of parking policies, we study parking occupancy strategies in 

this dissertation. Here, we model the optimal parking occupancy rate over, e.g., 

the peak hours of the day, to guarantee an optimal trade-off between an efficient 

usage of the parking infrastructure and a high likelihood of finding parking to 

improve the traffic performance in a central area. In other words, our framework 

tries to find the optimal equilibrium between a high occupancy rate and a low 

average searching time in the network. It is based on the same macroscopic traffic 

and parking model that we used in the first part of the thesis. We extend it to 

include multiple vehicle types allowing us to generate insights about the parking 

occupancy’s dependency on specific vehicle types (e.g., fuel and electric vehicles). 

We evaluate a differentiated and a hierarchical parking policy for parking supply 

with and without battery chargers, and compare the results to a parking scheme 

without any parking differentiation. Our optimal parking occupancy strategy 

allows local governments to evaluate how to react towards a constantly varying 

parking demand (e.g., a modal shift towards electric vehicles), and how much 

parking supply to dedicate to electric vehicles in order to have the best balance 

between traffic performance, optimal parking occupancies, social impacts, and a 

high parking revenue for the city. Additionally, we provide cities a tool to analyze 

the influences on the optimal parking occupancy rate caused by a change in 

parking demand, supply, or parking duration in the area. 

In general, we discuss various parking policies in this dissertation and develop the tools 
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for cities to evaluate the short-term impacts on the traffic and parking system when 

applying such policies. We show how to evaluate them macroscopically with the 

minimum amount of data requirements and costs, as our algorithms can easily be 

implemented with a simple numerical solver. Parking planners, traffic managers, 

consultants, practitioners, and local authorities can then use the new insights about these 

parking policies to develop the best fit for their city.  
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Zusammenfassung 

 
Parkrichtlinien und ihre Wechselwirkungen mit dem städtischen Verkehr und den 

Parksystemen können erhebliche Auswirkungen auf die Verkehrsleistung und den Stau 

in einem städtischen Gebiet haben. Diese Auswirkungen wirken sich langfristig auf die 

Reisenachfrage und die Vorlieben der Reisenden aus, und kurzfristig auf den Verkehrs- 

und Parkbetrieb. Diese Dissertation untersucht mehrere Parkrichtlinien, die sich auf Preis- 

und Belegungsaspekte konzentrieren, und analysiert deren kurzfristige Auswirkungen 

auf die Parksucher und die Leistung der Verkehrs- und Parksysteme, die sich wiederum 

auf die Effizienz der Parkrichtlinien selbst auswirken können. Mit anderen Worten, wir 

untersuchen die Abhängigkeiten zwischen verschiedenen Parkrichtlinien und park-

bedingten Verkehrsproblemen. Insbesondere bewerten wir die Einflüsse auf den 

Parkplatzsuchverkehr, die Überlastung des Netzwerks (Stau), die gesamte zurückgelegte 

Fahrtstrecke, und die Einnahmen aus Park-, P+R-, und/oder City-Mautgebühren für die 

Stadt. Wir zeigen die Ergebnisse für die verschiedenen Parkrichtlinien in einigen 

Fallstudien in einem zentralen Gebiet innerhalb der Stadt Zürich, Schweiz. Unser einfach 

zu implementierendes Modell verwendet ein dynamisches makroskopisches 

Bezugssystem, das Datenerfassungsaufwand spart und die Rechenkosten erheblich 

reduziert, da alle Werte im Zeitablauf Aggregationen auf Netzwerkebene entsprechen. 

Unsere Arbeit gliedert die Parkrichtlinien in zwei Typen. Erstens untersuchen wir 

statische und dynamische Parkpreisstrategien, und zweitens untersuchen wir Strategien 

zur Parkplatzbelegung. 

i. Zu Beginn dieser Dissertation konzentrieren wir uns auf ein makroskopisches 

Straßenpark- und Garagenparksystem, mit dem wir die Entscheidung der Fahrer 

zwischen der Suche nach einem Parkplatz auf der Straße oder der Fahrt zu einem 

Parkhaus modellieren können. Unterschiedliche statische Parkgebühren-

verhältnisse auf der Straße und in der Garage werden im Hinblick auf die 

Auswirkungen auf das Verkehrssystem und das Parksuchmodell im Zeitverlauf 

analysiert. Unser Rahmen zeigt, wie sich Probleme mit der Verkehrsleistung 

kurzfristig auf die Entscheidung der Fahrer zwischen Parken auf der Straße und 

in der Garage auswirken können. Diese Entscheidung wird von mehreren 

Benutzergruppen in Bezug auf ihren Wert der Zeit (VOT) getroffen. Wir 

untersuchen die Auswirkungen verschiedener Parkrichtlinien, einschließlich der 

Verfügbarkeit von Echtzeit-Informationen zur Garagennutzung und der 

Umwandlung von Parkplätzen auf der Straße in Garagenparkplätze. Der 

zurückgewonnene Straßenrand kann dann für andere Aktivitäten (z.B. für 

Radwege) verwendet werden, um die Lebensqualität der Einwohner in der Stadt 

zu verbessern. 

Eine andere Strategie für Städte könnte darin bestehen, eine P+R-Einrichtung 
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außerhalb der Stadt einzurichten, um den Verkehr auf der Suche nach Parkplätzen 

im zentralen Bereich zu verringern. Wir analysieren eine P+R-Richtlinie mit 

statischen Tarifen und vergleichen sie mit einem City-Mautszenario und/oder 

einer Parkpreisstrategie im Netzwerk. Wenn das Gebiet aus einer großen Anzahl 

öffentlicher Parkplätze besteht, könnte die Parkgebühr als praktikable Alternative 

zur City-Maut angesehen werden, um die Leistung des Verkehrs- und 

Parksystems zu verbessern (d.h. die Verkehrsleistung, die Parkverfügbarkeit, die 

Einnahmen für die Stadt, usw.). Unterschiedliche Parkgebühren oder Verkehrs-

bedingungen können jedoch die Entscheidung des Fahrers beeinflussen, ob er mit 

dem Auto in den Stadtkern fährt oder stattdessen P+R verwendet. Wir stellen ein 

Entscheidungsmodell in Bezug auf den Wert der Zeit der Fahrer vor und 

integrieren es in einen multimodalen makroskopischen Verkehrs- und Park-

rahmen, der sich auf Park- und City-Mautpreise konzentriert. Wir analysieren die 

Verteilungseffekte unseres heterogenen Modells der Wert der Zeit auf die 

Entscheidung der Fahrer, welche Verkehrsform (P+R oder Auto) sie zum 

Erreichen des Stadtkerns verwenden möchten. Darüber hinaus kann die 

vorgeschlagene Methodik von den Stadträten verwendet werden, um die 

Austauschbeziehungen zwischen der Parkgebühr und der City-Maut zu ermitteln, 

wenn die durchschnittliche Reisezeit im Verkehrsnetz verringert oder die 

Gesamteinnahmen für die Stadt erhöht werden sollen. 

Darüber hinaus untersuchen wir ein dynamisches, reagierendes Parkpreis-

schema, welches das Phänomen der Parksuche und der Parkplatzbelegung 

berücksichtigt. Diese makroskopische Preispolitik maximiert die Parkeinnahmen 

für eine Stadt und minimiert gleichzeitig die Zeit für die Suche nach Parkplätzen. 

Mit anderen Worten, unser Preisalgorithmus ändert sich in Abhängigkeit von der 

Parkplatzbelegungsrate und der Anzahl der suchenden Fahrzeuge im Netzwerk. 

Es wird geprüft, ob die Kosten für die Zahlung der aktuellen Parkgebühr niedriger 

sind als die Kosten für die Suche nach einem anderen verfügbaren Parkplatz, 

abhängig von dem Wert der Zeit des Fahrers. Die letzteren Kosten beinhalten die 

Zahlung der prognostizierten Parkgebühr für den nächsten verfügbaren Parkplatz 

zu einem späteren Zeitpunkt, unter Berücksichtigung der Fahrt- als auch der 

bereits zurückgelegten Parkplatzsuchkosten. Wir analysieren die kurzfristigen 

Auswirkungen des vorgestellten dynamischen Parkpreissystems auf das 

städtische Verkehrs- und Parksystem, einschließlich der finanziellen Vorteile der 

Preispolitik und der Vorteile (oder Nachteile) für die Verkehrsleistung in der 

Region. 

ii. Als zweite Art von Parkrichtlinien untersuchen wir in dieser Dissertation 

Strategien zur Parkplatzbelegung. Hier modellieren wir die optimale Parkplatz-

belegungsrate über z.B. die Stoßzeiten eines Tages, um einen optimalen 

Kompromiss zwischen einer effizienten Nutzung der Parkinfrastruktur und einer 

hohen wahrscheinlichen Parkplatzverfügbarkeit zu finden, sodass die Verkehrs-

leistung im Stadtkern verbessert werden kann. Mit anderen Worten, unser 

Bezugssystem versucht das optimale Gleichgewicht zwischen einer hohen 

Belegungsrate und einer niedrigen durchschnittlichen Parkplatzsuchzeit im 
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Netzwerk zu finden. Es basiert auf demselben makroskopischen Verkehrs- und 

Parkmodell, welches wir im ersten Teil der Arbeit verwendet haben. Wir erweitern 

es um mehrere Fahrzeugtypen, sodass wir Einblicke in die Abhängigkeit der 

Parkplatzbelegung von bestimmten Fahrzeugtypen (z.B. von Kraftstoff- und 

Elektrofahrzeugen) gewinnen können. Wir analysieren eine differenzierte und 

eine hierarchische Parkplatzrichtlinie für die Parkversorgung mit und ohne 

Batterieladegerät, und vergleichen diese Ergebnisse mit einer Parkplatzstrategie 

ohne jegliche Parkdifferenzierung. Unsere optimale Parkplatzbelegungsstrategie 

ermöglicht es den Lokalbehörden zu bewerten, wie sie auf eine sich ständig 

ändernde Parknachfrage (z. B. eine Verlagerung des Autoverkehrs auf Elektro-

fahrzeuge) reagieren können. Hierbei ist für die Behörden interessant wie viel 

Parkangebot für Elektrofahrzeuge bereitgestellt werden sollte, sodass ein 

bestmögliches Gleichgewicht zwischen der Verkehrsleistung, der optimalen 

Parkplatzbelegung, der soziale Auswirkungen und der hohen Parkeinnahmen 

erzielt wird. Darüber hinaus bieten wir Städten ein Tool zur Analyse der Einflüsse 

auf die optimale Parkplatzauslastung, die durch eine Änderung der 

Parknachfrage, des Parkangebots oder der Parkdauer in der Region verursacht 

werden kann. 

Im Allgemeinen diskutieren wir in dieser Dissertation verschiedene Parkrichtlinien und 

entwickeln Tools für Städte, um die kurzfristigen Auswirkungen auf das Verkehrs- und 

Parksystem bei der Anwendung solcher Richtlinien zu bewerten. Wir zeigen, wie Sie diese 

makroskopisch mit minimalem Datenbedarf und minimalen Kosten auswerten können, 

da unsere Algorithmen leicht mit einem einfachen numerischen Löser implementiert 

werden können. Parkplaner, Verkehrsmanager, Berater, Praktiker und lokale Behörden 

können dann die neuen Erkenntnisse über diese Parkrichtlinien nutzen, um die beste 

Lösung für ihre Stadt zu entwickeln. 
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1.1 Motivation 

Parking is an essential component at both ends of each private car journey. An 

average car spends over 80 % of its time parked at home, and about 16 % parked 

somewhere else, which results in only about 4 % actual usage time of the car (RAC 

Foundation (2004)). The travel to work is the most frequent reason for parking. For 

example, outside London, U.K., 70 % of the drivers commute to work by car leading 

to regular traffic congestion during peak hours. The highest parking demand is then 

usually around midday, when the non-workplace related parking activities add 

about 44 % to the base demand resulting from workplace parking activities (Bates 

and Leibling (2012)). Most drivers experience daily difficulties finding legal and 

available parking spaces. 29 % of all drivers have even given up their journeys and 

gone home because they could not find an available parking space in an area (RAC 

Foundation (2004)). Illegal parking with shares of about 40 % to 50 % of the total 

parking activities is a widespread issue in inner cities and residential areas (Topp 

(1991)). Thus, policies about parking should be integral parts of transport and traffic 

policies. Parking policies and the time spent on searching for parking are often 

neglected by both individual travelers and planning authorities. This is unfortunate, 

as taking cruising-for-parking into account can not only assist drivers to better plan 

their trips (including departure time and mode choice); but it can also reduce the local 

environmental impacts from traffic. However, learning about cruising conditions in 

urban areas can be difficult, since the cruising vehicles are hidden within the normal 

driving traffic. So, cities should concentrate on various parking policies which might 

positively influence the traffic performance 

• reducing cruising-for-parking traffic, 

• relieving the parking demand pressure, and  

• increasing the parking availability in central areas, although this might be 

controversial as it might lead to higher parking demands in the long-term. 

Additionally, parking policies might also lead to 

• a raise in revenue for local authorities and governments,  

• an option to regain curb space and make it available for other activities (e.g., 

creating pedestrian zones or bicycle lanes) by removing on-street parking 

spaces or converting them into concentrated parking garages, and 

• a chance to manage the parking demand (e.g., reducing the car usage, 

deterring visitors from using the car in central areas, and controlling the 

transportation and delivery demand). 

In this dissertation, we analyze different parking policies and their impacts on the 

parking and traffic systems which are relevant components of the overall 

transportation system in nearly all urban areas. Compared to methodologies 

concentrating on long-term demand management strategies, we focus on the short-

term interactions between these two components, i.e., we analyze how parking 
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policies might affect traffic operations in the network, and vice versa. We evaluate 

different parking policies showing their short-term influences on the performance of 

both the urban parking and traffic systems, e.g., how these policies can impact the 

traffic performance, the congestion, the parking revenue, the parking occupancy, or 

the parking availability in the area. 

Urban parking policies affect the travel demand and the traffic system in the long-

term. Drivers can change their travel behavior such that they are no longer entering 

an urban area by car, and change to public transportation (PT) instead. These 

decisions can arise due to a change in travelers’ parking choice which might be caused 

by, e.g., an increase in parking pricing, congestion, strict parking time controls, 

limited parking availability or higher walking times after parking. In comparison to 

studies analyzing the parking policy impacts on the travel demand based on 

microscopic models or agent-based simulation tools (Axhausen (1990), Axhausen and 

Polak (1990, 1991), Axhausen et al. (1989), Weis et al. (2012)), our dissertation presents 

a macroscopic traffic and parking framework focusing on short-term interactions 

between the urban parking and traffic systems. We evaluate the interdependencies 

between different parking policies (focusing on parking pricing and parking 

occupancy) and parking-caused traffic issues with the aid of limited aggregated data. 

Note that this dissertation focuses on improving car traffic. The introduced parking 

policies try to establish a better traffic performance by reducing the drivers’ time 

searching for parking in an urban area. Even if high cruising-for-parking times might 

force drivers to change to other transportation modes which, in turn, changes the 

demand, reduces the car traffic and might lead to significant traffic performance 

improvements, these demand changes are not intended by our parking policies. 

Long-term changes in the travel demand and the drivers’ travel behavior are out of 

the scope of this research. 

Our macroscopic methodology has several advantages. The framework is based on 

very limited data inputs, while most of the models used nowadays to analyze parking 

policies and parking-related traffic require a lot of detailed data that is hard to get. 

Our model saves on data collection efforts and reduces the computational costs 

significantly as all values correspond to aggregations at the network level over time. 

These efficiencies are useful and can especially be applied in real-time control 

algorithms or when the data is scarce. A simple numerical solver such as Excel or 

Matlab can be used to easily solve our methodology without the use of complex 

simulation software. Moreover, our macroscopic model provides additional insights 

that cannot be delivered by microscopic models (e.g., insights into the mathematical 

relation between traffic properties and parking policies with respect to a minimal total 

cruising time in the area). 

Our macroscopic traffic and parking methodology uses the parking-state-based 

matrix, and the methodology to determine the likelihood of finding parking from Cao 

and Menendez (2015a). Input data for the used case studies is based on prior data 

collections and an agent-based model in MATSim (Waraich and Axhausen (2012)). 

That data includes the time stamps of all cars arriving to the area, and the times they 

leave the area after parking, as well as the parking occupancy in the area at the start 
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of our simulation. The original model from Cao and Menendez (2015a) was calibrated 

and validated with real data from the city of Zurich, Switzerland in Cao et al. (2019), 

using the parking occupancy data over a working day based on a local monitoring 

system (PLS Zurich), and the cruising time based on survey results that were 

conducted during May 2016. The results were all found to be reasonable. Our parking 

policy applications are based on such conditions. Cao and Menendez (2018) extended 

the methodology to quantify the potential cruising time savings associated with 

intelligent parking services. We enhance and combine the macroscopic traffic and 

parking model from Cao and Menendez (2015a) with the multimodal extension of the 

macroscopic fundamental diagram (MFD (Geroliminis and Daganzo (2008), 

Geroliminis (2009, 2015))), the 3D-MFD framework from Loder et al. (2019) and Zheng 

and Geroliminis (2016) when capturing the system dynamics of urban car, PT and 

P+R traffic. The latter is relevant when evaluating whether parking pricing can be 

considered as an alternative to the more controversial congestion pricing schemes. 

Additionally, further improvements of the parking-state-based matrix from Cao and 

Menendez (2015a) are analyzed in this study (e.g., covering on-street and garage 

parking, dynamic parking pricing and different vehicle types as electric and fuel 

vehicles). Within the frame of this dissertation, we develop a macroscopic concept to 

analyze the impact of parking policies on an urban network considering its cruising-

for-parking traffic in the short-term. The policies are mostly used for operational 

purposes, e.g., for traffic management and control within an area. We focus on two 

specific parking aspects – parking pricing and parking occupancy – that can 

potentially affect the traffic performance and the congestion in an area: 

i. Parking pricing: 

We differentiate this part into static and dynamic macroscopic parking 

pricing policies.  

First, we develop on-street and garage parking policies with static parking 

fees using a macroscopic traffic and parking framework. It allows us to model 

the driver’s decision to use on-street or garage parking over time. Here we 

determine several cost factors influencing the on-street/garage parking 

decision which is embedded into our on-street and garage parking-state-

based matrix describing the system dynamics of urban traffic based on 

multiple parking-related states. Our model can be used to analyze the 

relationship between on-street and garage parking, and we can get valuable 

insights on the interdependency between cruising-for-parking traffic and 

traffic performance with respect to different parking fees. Additionally, it 

allows us to study parking policies in city center areas, e.g., the short-term 

effects of converting on-street to garage parking spaces on the traffic system 

can be simulated, and recommendations for city councils can be made. 

Second, we study the influences of different parking pricing and congestion 

pricing policies on the traffic system. We develop a multimodal macroscopic 

traffic and parking search model that allows us to evaluate whether parking 

pricing can be considered as an alternative to the more controversial 
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congestion pricing schemes, especially in areas with a high parking demand 

for public parking spaces. Our methodology investigates the short-term 

interdependencies between traffic congestion, P+R and parking pricing 

within the area. The static congestion or parking pricing schemes allow us to 

analyze, for example, how the cars searching for parking or the drivers 

deciding to enter the area using P+R affect the traffic performance and the 

congestion in the area. Our framework can also be used to find the best 

relation between the parking fee and the congestion toll in order to improve 

the traffic performance in the network or the total revenue for the city. 

Third, instead of static pricing policies cities can use dynamic parking pricing 

schemes. We propose a macroscopic responsive pricing scheme, taking the 

available parking supply and the parking search phenomenon into 

consideration. Parking pricing is modeled as an optimization problem to 

maximize revenue while minimizing the cruising time in the urban area. The 

framework is integrated into an existing parking-state-based matrix to 

account for the driver’s parking decision between using the first available 

parking space or searching for another one. The latter might be interesting for 

some drivers in case of lower costs. Our methodology can be used to analyze 

the interdependency between responsive parking pricing and searching-for-

parking traffic in urban traffic and parking systems. When introducing a 

dynamic responsive parking pricing scheme, our research can help cities to 

efficiently evaluate their short-term impacts over time. 

ii. Parking occupancy: 

We propose a framework to determine the optimal parking occupancy rate 

with and without differentiated parking for multiple vehicle types based on 

a macroscopic traffic and parking model for an urban area. The parking 

occupancy is defined to be optimal when minimizing the cruising time over 

a given time horizon. The results help cities setting the optimal parking 

occupancy rate in order to guarantee an optimal trade-off between an efficient 

usage of the parking infrastructure and a high likelihood of finding parking. 

The latter ensures that the traffic performance is improved in the network. 

We evaluate policies including a modal shift towards a specific vehicle type 

(e.g., electric vehicles). This will lead to new challenges for cities establishing 

the required parking supply (e.g., parking spaces with battery charging 

opportunities for electric vehicles) in the area. Our model allows us to 

evaluate the impacts of different vehicle type proportions (e.g., fuel and 

electric vehicles) in demand and supply on the traffic performance, the 

optimal parking occupancy rates and the society. That way, cities can react 

towards a constantly varying parking demand for, e.g., electric vehicles over 

time and can reserve some dedicated parking supply in the area. We 

investigate a non-differentiated parking scheme, a differentiated parking 

policy, covering vehicle type dependent parking spaces (e.g., fuel vehicles 

park at fuel vehicle parking spaces, and electric vehicles park at their 

dedicated parking spaces), and a hierarchical parking policy, considering no 
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parking space restrictions for some vehicle types (e.g., electric vehicles can 

park at any parking space). 

In this dissertation, we present the analytical models for all parking policies using the 

macroscopic traffic and parking framework presented in chapter 2. Chapters 3 to 5 

concentrate on parking pricing policies, and chapter 6 on parking occupancy policies. 

We show how they can be applied on a real urban network, e.g., an area within the 

city of Zurich. Here we discuss the findings and analyze their impacts on the traffic 

performance, the congestion, the environmental conditions and the total revenue for 

the city which can consist of, e.g., parking fees, congestion tolls, P+R fees, and/or PT 

fares. More details on the dissertation outline are given in section 1.6. 

1.2 Literature Review 

The following literature review is divided into sections about parking pricing, and 

parking occupancy. 

1.2.1 Parking pricing 

Attractive parking pricing schemes are often based on empirical or modelling 

approaches. Empirical approaches usually collected data by using parking meters for 

on-street parking spaces, e.g., Xerox® (implemented in Los Angeles’s LA 

ExpressParkTM), SFpark (2009). The latter used its responsive pricing scheme to leave 

between 20 and 40 percent of on-street parking spaces open on every block in San 

Francisco, and Pierce et al. (2015) introduced parking pricing to have open spaces 

available in public garages at all times. Other garage parking models are based on 

questionnaires, e.g., Auchincloss et al. (2015), Bianco (2000), or they use dynamic 

information to predict real-time garage parking availability (Caicedo et al. (2012)). 

Moreover, several companies have invested heavily in their “smart parking” 

technologies (e.g., Deteq, Fybr, Streetline, Libelium, etc.). In our macroscopic model, 

however, we have the advantage that we do not require very specific parking data. 

Without any physical devices nor large data collection efforts, we provide general 

results regarding the effects of parking pricing on a dynamic traffic network under 

realistic conditions. 

Some modelling approaches do not differentiate between on-street and garage 

parking. In Lei and Ouyang (2017) a demand-driven dynamic location-dependent 

parking pricing and reservation strategy was used to improve the system-wide 

performance of an intelligent parking system. The drivers were allowed to make 

parking reservations prior to their trips and secure parking spaces for a future time 

period. These models provide a long-term demand management strategy capturing 

user competition and considering market equilibrium, while our model provides an 

aggregate parking pricing methodology focusing on the short-term effects on traffic 

performance. Ayala et al. (2012) worked on a pricing model that sets the parking fees 

such that the total driving distance is minimized in the system. A static parking 
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demand is assumed, i.e., the model cannot replicate a dynamic real-world 

environment. Zhang and Van Wee (2011) introduced a duration dependent parking 

fee regime based on daily travel cost in a linear city. Arnott and Rowse (1999) 

presented a nonlinear model of parking congestion focusing on the searching-for-

parking phenomenon for an available on-street parking space in a homogeneous 

metropolis. Arnott and Inci (2006) analyzed the influences of on-street parking 

pricing on cruising-for-parking and Arnott and Rowse (2013) studied the effects of 

on-street parking time limits on traffic performance, but it did not consider garage 

parking. Arnott et al. (1991) explored optimal location-dependent parking fees in 

comparison to time-varying road tolls concentrating on commuter parking and their 

arrival times during the morning rush hour. They proposed different parking meter 

rates across time at different locations during the morning rush-hour in a downtown 

area to be able to control the order in which on-street parking spaces are occupied. 

They used network equilibrium models to regulate traffic and parking usage with the 

help of their parking fee policy. Because of the use of a parking fee policy to control 

the congestion of the city, low-income workers would try to avoid paying high 

parking fees and park further away from their destination in the city center. Their 

model, however, did not take into account traffic performance, i.e., the traffic 

performance parameters (e.g., travel speed) were assumed as fixed for all conditions 

in the model. Arnott and Inci (2010) investigated how an increasing demand affects 

the traffic dynamics for a uniform road network with on-street parking. Wang et al. 

(2019) derived a bi-modal traffic equilibrium model to investigate the optimal parking 

supply considering the scale economy of transit. Kladeftiras and Antoniou (2013) 

focused on the effects of illegal parking (double parking) on traffic and environmental 

conditions using a microscopic simulation. 

For modeling both on-street and garage parking and the associated parking fees, 

Arnott (2006) and Inci and Lindsey (2015) illustrated how the actual full price of 

parking contains both the interaction between garage operators and the cruising costs 

for on-street parking. They developed a spatial competition model to eliminate 

cruising by allocating excess cruising demand to garage parking and focused on 

social optimum suggestions concerning the relationship between curbside and garage 

fares. Shoup (2019) showed that underpriced on-street parking creates an incentive 

for drivers to cruise. The microeconomic model explained why a driver would rather 

choose to cruise for free on-street parking than paying for garage parking. The 

decision model between on-street and garage parking in Shoup (2019) was based on 

the garage parking fee, the driver’s intended parking duration, the time spent 

cruising, the cost of petrol while cruising-for-parking, the number of people in the 

car, and the driver’s and his passengers’ VOT. Our parking decision, instead, is based 

on a macroscopic modeling approach. Kobus et al. (2013) estimated the effect of on-

street parking fees on drivers' choice between on-street and garage parking. Gragera 

and Albalate (2016) analyzed how garage parking demand is affected by on-street 

parking regulations. Mackowski et al. (2015) modeled variable on-street and garage 

pricing in real-time for effective parking access and space utilization by using a 

dynamic Stackelberg leader-follower game theory approach. Van Nieuwkoop (2014) 
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combined a traffic assignment model (Wardrop (1952)) and a parking search model 

into one single dynamic link-based methodology that is formulated as a mixed 

complementarity problem (MCP). By making a distinction between curbside and 

garage parking spaces and a differentiation of user classes with respect to their VOT, 

the model aimed to analyze the efficiency and distributional effects of different 

parking fee policies and to impose a demand-responsive pricing scheme for parking. 

This agent-based MCP model has interesting results regarding the impact of parking 

fee policies on cruising and congestion. Our proposed model has similar goals, but 

from a macroscopic perspective with much less data requirements and lower 

computational costs. Anderson and de Palma (2004) analyzed the parking pricing 

economics more formally and showed that the social optimum can be achieved if the 

parking garages are owned privately. In comparison with these approaches, our 

proposed model requires very limited data, as we do not need individual vehicle or 

parking spaces information. Benenson et al. (2008) developed an agent-based parking 

model for a city by simulating the behavior of each driver in comparison to our 

macroscopic framework based on aggregated data. Further studies used this agent-

based parking model to analyze different parking policies (Martens and Benenson 

(2008)), estimated city parking patterns (Levy and Benenson (2015)), explored 

cruising-for-parking (Levy et al. (2013), Martens et al. (2010)) and evaluated parking 

planning projects for large parking garages (Levy et al. (2015)). Wang et al. (2015) 

studied P+R networks with multiple origins and one destination and focused on an 

optimal parking pricing strategy. They only focused on setting optimal parking fees 

for P+R terminals and did not consider the interaction with on-street parking. Arnott 

et al. (2015) studied how much curbside to allocate to parking when the private sector 

provides garage parking. Arnott and Rowse (2009) analyzed parking in a spatially 

homogeneous downtown area where the drivers choose between on-street and 

garage parking. Cruising for parking contributed to congestion, such that the price of 

the initially cheaper on-street parking was increased until it equaled the price of 

garage parking. Then increasing the on-street parking fee may generate an efficiency 

gain through the reduction of cruising. These models focused on social optimum and 

user equilibrium methodologies. 

Zheng and Geroliminis (2016) modeled multi-modal traffic with limited on-street and 

garage parking and dynamic pricing based on a congestion- and cruising-responsive 

feedback parking pricing scheme. The proposed framework was based on the MFD 

reflecting the dynamics of parking flows in an urban network (Geroliminis (2009, 

2015) and Geroliminis and Daganzo (2008)). The model from Zheng and Geroliminis 

(2016) used feedback pricing controllers to realize a congestion- and cruising-

responsive parking pricing scheme. It was assumed that drivers start to cruise-for-

parking after they arrive at their destinations. This assumption is not needed in our 

methodology, as the vehicles might start to search for parking before they arrive at 

their destination. The system dynamics with MDF representation in Zheng and 

Geroliminis (2016) required a regional route choice model to be integrated between 

origin-destination (OD) pairs or the sequence of regions for specific ODs should be 

known priori. Our model is only interested in the destination of the drivers who are 



 Chapter 1: Introduction 

  

  
 

 

 

9 

searching for a parking space, and assumes such destinations are all within our area 

of interest. As long as the vehicles are already in the network looking for a parking 

space, their origin is irrelevant. We do not compute the total distance driven for their 

whole trip, but just the portion of the trip that happens within the area of interest. 

This simplifies the model without the need for tracking individual vehicles. The 

aggregated and dynamic pricing strategies in Zheng and Geroliminis (2016) were 

developed for large-scale network applications. These pricing strategies include a 

congestion- and cruising-responsive feedback parking pricing scheme, and 

optimization strategies that minimize the total passenger cost or the total travel time. 

However, the optimization problems are highly non-linear and are solved by 

sequential quadratic programming, hence cannot be easily implemented in real-time. 

Our dynamic macroscopic pricing framework in chapter 5, in comparison, builds on 

a convex optimization problem minimizing the total travel time in a homogenous 

network environment. Our dynamic pricing model combines several characteristics 

from the strategies presented in Zheng and Geroliminis (2016). It incorporates 

responsive characteristics based on the parking occupancy and the number of 

searching vehicles, and it can be implemented in real-time. Another advantage of our 

model is that the parking pricing optimization strategy can easily be switched 

between parking pricing set to change in response to both the parking occupancy and 

the number of searching vehicles, or only to the parking occupancy while still 

minimizing the total travel time in the network. Additionally, our dynamic pricing 

model can be easily solved with a simple numerical solver such as Excel or Matlab 

without the use of complex simulation software. Zheng et al. (2016) proposed a time-

dependent area-based pricing scheme for congested multimodal urban networks 

considering user heterogeneity in an agent-based environment. The level of 

congestion is described by an MFD at the network level. Liu and Geroliminis (2016) 

used an MFD approach to investigate how cruising-for-on-street-parking influences 

the commuters’ morning peak and developed a dynamic parking pricing model to 

reduce total social cost. However, it did not consider garage parking in its framework. 

Leclercq et al. (2017) only included on-street parking to their trip-based MFD model 

evaluating the on-street parking search process with respect to different vehicle 

parking strategies. They analyzed the relationship between the aggregated travel 

distance before parking and the on-street parking occupancy in an urban network. 

Based on a trip-based MFD formulation using experimental data from the city of 

Lyon, France, parking search laws were investigated to understand how the distance 

to park behaves when the parking occupancy rate changes dynamically. 

All the congestion pricing methodologies implemented so far are based on the 

principle of marginal cost pricing. A comprehensive literature summary of 

congestion pricing models can be found in Yang and Huang (2005). Some models 

determine the congestion charge focusing on the time loss externalities for drivers not 

entering the network (Anas and Lindsey (2011), Small et al. (2007), Vickrey (1969)). If 

a city introduces congestion pricing, alternative transportation options should also be 

offered. Therefore, it is reasonable for cities to reinvest the income from congestion 

pricing onto other modes. Leape (2006) and Prud’homme and Bocarejo (2005) 
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investigated the impact on the traffic performance and the changes in congestion 

driven by the changes in modal split triggered by the congestion pricing. These 

studies used aggregated traffic indicators, but did not take into account any parking 

related phenomena. The methodology we propose in chapter 4 allows us to model 

the decision of entering the area and paying the congestion charge or not entering and 

changing the transportation mode at a P+R facility outside the area. In the latter case 

the drivers then use some form of PT to enter the protected area, e.g., buses, trams 

and/or trains. Albert and Mahalel (2006) examined the sensitivity of drivers’ attitudes 

towards parking fees and congestion tolls and their effect on travel habits such as 

demand changes for the considered network. In comparison to our macroscopic 

methodology, a numerical simulation model is developed in Calthrop et al. (2000) to 

study the efficiency gains from various parking policies with and without a simple 

cordon pricing scheme. Ambühl et al. (2018) used empirical data from loop detectors 

and automated vehicle location (AVL) devices from May 2016 to analyze the impacts 

of London’s congestion pricing using the multimodal extension of the MFD 

(Geroliminis and Daganzo (2008), Geroliminis (2009, 2015)), the 3D-MFD (Dakic et al. 

(2020), Loder et al. (2017), Paipuri and Leclercq (2020), Zheng et al. (2014)). Ambühl 

et al. (2018), Gu et al. (2018b), Smeed (1968) and Yang et al. (2019) accounted for bi-

modal interactions such that a macroscopic traffic analysis inside and outside the 

congestion pricing area could be made. Our research, in comparison, studies the 

short-term interdependencies between traffic congestion, P+R and parking pricing 

within the area (chapter 4). The aggregated bi-modal interactions in Ambühl et al. 

(2018) were observed for a large-scale network, and they did not account for the 

parking impacts within the area nor any P+R. In contrast, our methodology considers 

networks with traffic and parking systems that are affected by the drivers entering 

the area and searching for a parking space to get to their desired destination. These 

destinations can be within or outside our area of interest and since the cars start to 

search for parking within the area, their origin is irrelevant. Additionally, our 

macroscopic model can be easily solved with a simple numerical solver such as Excel 

or Matlab without the use of complex simulation software. 

1.2.2 Parking occupancy 

Other literature used the parking occupancy rate to determine their parking pricing 

strategy. Qian and Rajagopal (2013) developed a real-time pricing approach for a 

parking lot based on its occupancy rate as a system optimal parking flow 

minimization problem. They assumed a user equilibrium travel behavior and only 

focused on garage parking without analyzing its interdependency with on-street 

parking in the network. Qian and Rajagopal (2014) presented a parking pricing model 

that minimizes the total travel time of the system according to real-time occupancy 

collected by parking sensors. This parking pricing problem under stochastic demand 

was later extended to investigate both departure time choices and parking location 

choices (Qian and Rajagopal (2015)). The resulting stochastic control problem 

managed the parking demand by adjusting the parking prices based on the 

occupancy rate. Zhang et al. (2008, 2011) and Qian et al. (2012) investigated agent-
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based parking pricing models or alternative downtown parking policies 

incorporating on-street parking occupancy rates in order to improve the traffic 

performance. Our dynamic parking pricing model in chapter 5, however, uses both, 

parking occupancy and searching traffic to maximize the revenue for a city while 

simultaneously minimizing the total searching time on the network.  

The stochasticity of vacant on-street parking spaces and their impact on the traffic 

performance is often underestimated. Even if on-street parking spaces in an area 

might have low occupancy rates at specific times of the day, there might be times 

when drivers must spend a considerable amount of time cruising for parking (Shoup 

(1999, 2005, 2006)). Vickrey (1954) was the first to discuss the possibilities of achieving 

a specific on-street parking occupancy rate such that there is a parking space on each 

block available at almost all times. His proposal decreases congestion and the 

cruising-for-parking time on the network, and it could be achieved through smart on-

street parking pricing policies. However, the required technology was beyond the 

means at that time. Zakharenko (2016) developed a uniform parking pricing scheme 

for all parking sites focusing on the parkers’ arrival rates and the parking occupancy 

rate in a heterogenous parking environment. He showed that the purpose of pricing 

methods affects more the parking departures than the arrivals. Tamrazian et al. (2015) 

proposed efficient learning algorithms to predict parking occupancy rates using 

historical and real-time data. Javale et al. (2019) developed a smart parking pricing 

algorithm using electronic IoT-based sensors to determine the optimal parking fee 

depending on various factors including the current occupancy rate, the time of day 

and the parking space locations within the network. This agent-based methodology 

can also be used to predict the future occupancy rate in the area. 

As real-time pricing schemes require a lot of information, they are harder and more 

expensive to implement compared to policies setting the parking meter rate ex ante 

by block and time of day to achieve a target on-street parking occupancy rate. Shoup 

(1999, 2005, 2006) developed an on-street parking scheme according to a target 

parking occupancy rate and suggested setting this rate to 85 %. We confirm these 

findings using our model in chapter 6 and discuss how these rates might change 

depending on various demand and supply relationships following different parking 

policies. A modified version of his proposed scheme has been implemented in San 

Francisco using empirical data collected by parking meters for on-street parking 

spaces (SFpark (2009); Millard-Ball et al. (2014); Pierce and Shoup (2013)). Arnott 

(2014) developed a simple, structural model for steady-state on-street parking to 

determine the optimal on-street parking occupancy rate on a block in the network. 

The static results show that the optimal occupancy and parking meter rates are 

dependent on the parking demand, i.e., at busier blocks with a higher parking 

demand the target parking occupancy rate should be set to a higher value. De Vos 

and van Ommeren (2018) focused on the effects of parking occupancy rates on 

walking distances towards the drivers’ destinations in a residential area in 

Amsterdam, Netherlands. The drivers’ walking distances only increase when the 

parking occupancy rate exceeds 85 % in the area. Zakharenko (2019) used the 

information from parking occupancy sensors to help drivers during their search for 
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an available parking space. Increasing the parking price in congested areas can lead 

to a higher turnover rate for parking spaces. To do this, it is not necessary to install 

parking sensors for all parking spaces. By considering price discrimination and by 

pricing parking locations differently, it is possible to set the optimal parking fee for 

sensored parking lower compared to non-sensored parking spaces. Zakharenko 

(2020) enhanced this work by investigating when it is more reasonable to steer 

heterogenous drivers away from available parking in order to reserve privileged 

parking spaces. This framework uses second-best pricing policies and is extended by 

studying parking for drivers with special needs. As electric vehicles require long 

charging periods, they can be counted as vehicles with special needs. Zakharenko 

(2020) used the binomial approximation parking search model by Arnott and 

Williams (2017) which is based on a stochastic simulation of cruising for curbside 

parking. The binomial approximation, however, leads to an underestimation of 

cruising-for-parking time, especially at high occupancy rates. In addition, it does not 

account for competition between cars searching for parking, and the parking search 

strategy is assumed to be trivial with drivers searching for parking as soon as they 

enter the network. Our model in chapter 6, however, accounts for non-searching 

vehicles, as (i) not all drivers search for parking, and (ii) even those that do, usually 

do not start searching for parking directly after entering a central area. The non-

searching traffic in our methodology can also influence the traffic performance and 

in turn, the likelihood of finding parking. Moreover, our macroscopic framework uses 

average values and some probability distributions to model searching for parking 

traffic taking into account the competition across the demand in a dynamic manner 

(Cao and Menendez (2015a)). Zakharenko (2020) differentiated between standard and 

specially designed parking bays, and considered two parking policies covering 

exclusive special-needs parking and an optimal policy which makes special needs 

parking available to anyone for an extra fee. He stated that the desired parking 

duration can vary, but for simplicity, it was assumed to be exogenous for each parking 

searcher and it did not respond to policy or aggregate equilibrium conditions. Our 

macroscopic framework allows us to investigate different parking space policies for 

cities analyzing the impacts of changes in parking demand, supply, and parking 

durations for different vehicle types in the area. Cities can use these results to react to 

these changes by modifying the supply of parking spaces with battery charging 

possibilities, by limiting their charging durations while parking, or by pricing in order 

to achieve different target occupancy rates. 

1.3 Research Objectives 

The primary objective of this dissertation is to provide insights into macroscopic 

modelling of parking policies. First, we present the foundations of our macroscopic 

parking and traffic framework. Then, we concentrate on the parking policies  

including static and dynamic parking pricing (Part I), and parking occupancy (Part 

II). Specific objectives for all dissertation parts are listed as follows:  
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I. Parking pricing 

i. Analyze the effects of on-street and garage parking policies on the 

traffic and parking system (e.g., traffic performance, searching-for-

parking traffic), and how the traffic and parking system can affect the 

decision to use on-street or garage parking in an urban area. 

ii. Investigate the short-term influences of parking and congestion 

pricing policies on the traffic and parking system, and how the traffic 

and parking system can impact the number of cars deciding between 

entering the network by car or using P+R instead. 

iii. Evaluate the influences of dynamic responsive pricing on the traffic 

and parking system, and how different traffic conditions (e.g., 

number of vehicles searching for parking, and available parking 

spaces in the network) can affect the responsive parking pricing. 

II. Parking occupancy 

i. Determine the optimal parking occupancy rate for different vehicle 

types with the opportunities of evaluating traffic and parking impacts 

(e.g., average searching time for parking, total revenue from parking 

pricing, optimal parking occupancy rates) of a modal shift towards a 

specific vehicle type, such as electric vehicles with differentiated and 

hierarchical parking space policies. 

1.4 Scope 

This dissertation studies different parking policies focusing on parking pricing and 

parking occupancy, and their short-term impacts on the urban parking and traffic 

system. Here, we concentrate not only on the financial benefits of the parking policies, 

but also on the benefits (or disbenefits) that this might bring to the area’s traffic 

system. Long-term effects and demand changes (e.g., drivers avoiding paying high 

on-street or garage parking fees and quitting their journeys) are considered out-of-

scope in this dissertation. Our parking demand does not change over time with 

respect to the choice of travelers as a result of the parking policies and the local 

conditions of the study area (i.e., residents’ and commuters’ preferences, culture, or 

travel behavior). Additionally, we do not account for traffic disruptions caused by 

parking maneuvers (Cao and Menendez (2015b), Cao et al. (2016)), as we focus on the 

influence of the number of vehicles searching for on-street parking on the overall 

traffic performance. 

The applicability of our macroscopic model is limited to compact urban areas as 

relatively homogeneous networks. It has been proven that the model represents a 

very good compromise between accuracy and efficiency for such networks (Cao et al. 

(2019)). The network should not be too large such that the drivers’ preference of 

parking location can be more or less neglected, and not be too small either such that 
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the traffic flow on it can be viewed macroscopically. Even though the scale of the 

network might sound restrictive, it allows us to analyze the problem with a new and 

comprehensive methodology, that, above all, has very limited data requirements and 

rather low computational costs. Non-homogeneous environments are out of the scope 

of this dissertation. However, we could use our homogeneous network as the first 

building block; with which further analysis can be developed for more complex 

situations (e.g., where the parking spaces or the parking prices are not homogenously 

distributed). For a case where there are different areas each with a different 

distribution of parking spaces or parking prices, for example, one can use different 

subnetworks connected to each other. Each subnetwork could be modelled as in this 

building block, i.e., would have identical parking fees but different subnetworks 

would have different parking fees. More research would be needed, however, to 

determine the connections between those subnetworks. 

In the following chapters, our parking policies are applied using a case study for an 

area within the city of Zurich, Switzerland. The traffic properties (i.e., free-flow speed, 

maximum traffic throughput, critical traffic density, jam density, coefficients 

capturing PT traffic properties) are considered as inputs to our research based on the 

MFD or the 3D-MFD of the city of Zurich, respectively. Changes to the traffic 

properties are out-of-scope in this dissertation. We refer to chapter 2 showing further 

modelling assumptions and restrictions for our macroscopic framework. 

1.5 Contributions 

The main contributions of this dissertation are listed below. 

i. We develop macroscopic decision models and integrate them into a 

macroscopic traffic and parking framework. These models include the 

drivers’ decisions between different on-street and garage parking fees, or 

between entering the network by car or using P+R instead. These decisions 

are faced by multiple user groups with respect to their VOT. Our framework 

provides valuable insights into different on-street and garage parking fee 

ratios and their impacts on cruising-for-parking traffic as well as the overall 

traffic performance. In addition, we study the influences of the traffic 

performance on the drivers’ decision between on-street and garage parking. 

Our multimodal macroscopic traffic and parking framework focusing on 

parking and congestion pricing allows cities to evaluate how parking and 

congestion pricing affect the traffic and parking system, and how the traffic 

and parking system affect the drivers’ decision between entering the network 

by car or using P+R instead. Our methodology allows us to investigate the 

distributional effects of different VOTs on this drivers’ decision. 

ii. Our frameworks provide the tools to study the trade-off between the parking 

revenue and the cruising-for-parking traffic. These tools are based on 

aggregated data at the network level over time that can be easily solved with 

low computational costs using a simple numerical solver. City councils or 
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private agencies can use this study to find reasonable hourly on-street and 

garage parking fees such that the average vehicle time/distance is not 

negatively affected and additionally, acceptable financial revenues are 

obtained. Moreover, our parking and congestion pricing policy can be used 

to find the best relation between the parking fee and the congestion charge in 

order to improve the traffic performance in the network or the total revenue 

for the city (which could be used to improve the P+R facilities). 

iii. We simulate different on-street and garage parking policies in a central area 

within the city of Zurich, e.g., the short-term effects of converting on-street to 

garage parking spaces on the traffic system, or the availability of garage usage 

information to all drivers. Based on our results, recommendations for city 

councils can be made. 

iv. We show that parking pricing is indeed a viable alternative to congestion 

pricing, potentially leading to traffic performance improvements inside the 

protected network. This is valid in areas with a high parking demand for 

public parking spaces. 

v. We develop a responsive parking pricing scheme taking into account the 

parking search phenomenon by changing in response to the number of 

searching vehicles, and the parking occupancy rate in the area. The parking 

fee is then updated over time in response to the parking demand and the 

supply. Here, we formulate an optimization model to maximize the parking 

pricing revenue to the highest level, while simultaneously minimizing the 

negative impacts on the traffic system (i.e., minimizing total cruising time on 

the network). In the short-term, this optimal parking pricing policy has 

neither negative influences on traffic performance nor environmental 

conditions, but it significantly increases the total revenue. This could lead to 

major improvements for city councils or private agencies in the area. 

vi. We propose a framework to compute the optimal parking occupancy rate 

over a given time horizon for an area within a city based on a macroscopic 

traffic and parking model. The extension of our macroscopic model to include 

multiple vehicle types allows us to generate insights about the parking 

occupancy’s dependency on specific vehicle types (e.g., fuel and electric 

vehicles). 

vii. We investigate a differentiated parking policy with exclusive parking spaces 

(e.g., fuel vehicles park at fuel vehicle parking spaces, and electric vehicles 

park at spaces with battery chargers), and a hierarchical parking policy, 

considering no parking space restrictions for some vehicle types (e.g., electric 

vehicles can park at both parking spaces for fuel and electric vehicles). We 

compare both policies to a parking scheme without any parking 

differentiation. Our framework allows cities to evaluate how to react towards 

a constantly varying parking demand and how much parking supply to 

dedicate to electric vehicles in order to have the best balance between traffic 

performance, optimal parking occupancies, and a high parking pricing 
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revenue. Additionally, we can use our methodology to quickly evaluate the 

impacts on the optimal parking occupancy rate caused by a change in parking 

demand, supply, or parking duration in the area. 

1.6 Dissertation Outline 

This dissertation presents two main parts, and seven chapters in total. The overall 

structure is illustrated in Fig. 1.1. An overview of each chapter is given below: 

Chapter 2 shows the macroscopic model of an urban parking and traffic system which 

is used as a foundation for the following chapters. 

Part I: 

Chapter 3 provides insights into a macroscopic framework of on-street and garage 

parking using static parking fees and analyzing their impacts on the traffic 

performance in an urban area.  

Chapter 4 presents a macroscopic methodology which allows cities to evaluate the 

introduction of new parking and congestion pricing policies in an urban area, and 

analyzes their impacts on the traffic and parking system, and the potential revenue 

over a defined time horizon. 

Chapter 5 introduces a dynamic macroscopic parking pricing framework focusing 

on the short-term effects of congestion and traffic performance. The scheme not 

only uses the parking occupancy but also the searching traffic to maximize the 

revenue for a city while simultaneously minimizing the total searching time in the 

area. 

Part II: 

Chapter 6 concentrates on the parking occupancy, and proposes a model to 

determine the optimal parking occupancy rate for multiple vehicle types based on 

a macroscopic traffic and parking model over a given time horizon for an urban 

area. It considers differentiated and hierarchical parking space policies and 

compares them to a non-differentiated parking scheme. 

Chapter 7 concludes this dissertation, highlights the main findings and discusses 

open questions for future research. 
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Fig. 1.1. Structure of the dissertation. 

This dissertation is based on the following refereed archival journal articles, and 

conference contributions by the author. All articles below are original work and first-

authored by the doctoral candidate: 

Journal papers: 

Jakob, M., M. Menendez, J. Cao. 2018. “A dynamic macroscopic parking pricing and 

parking decision model”. Transportmetrica B: Transport Dynamics, Vol. 8 (2020), Issue 1, 

pp. 307–331, doi: 10.1080/21680566.2018.1488226. 

Jakob, M., and M. Menendez. 2019. “Macroscopic Modeling of On-Street and Garage 

Parking: Impact on Traffic Performance”. Journal of Advanced Transportation, Volume 

2019, Article ID 5793027, 20 pages, doi: 10.1155/2019/5793027. 

Jakob, M., and M. Menendez. 2020. “Parking pricing vs. congestion pricing: a macroscopic 

analysis of their impact on traffic”. Transportmetrica A: Transport Science, doi: 

10.1080/23249935.2020.1797924. 

Jakob, M., and M. Menendez. 2020. “Optimal Parking Occupancy with and without 

Differentiated Parking: A Macroscopic Analysis”. Submitted to Transport Policy. 

Conference contributions: 

Jakob, M., M. Menendez, J. Cao. 2016. “A dynamic macroscopic parking pricing model”, 

Transportation Research Procedia, Proceedings of the 14th World Conference on 

Transportation Research (WCTR 2016), Shanghai, China, July 2016. Paper received Best 

Paper Award Topic Area C. 
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Jakob, M., and M. Menendez. 2016. “A macroscopic off-street parking decision model”. 

Proceedings of the 16th Swiss Transport Research Conference (STRC 2016), Ascona, 

Switzerland, May 2016. 
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2.1 Introduction 

This chapter describes the macroscopic foundation of our parking policies which is 

based on a macroscopic model of an urban parking and traffic system. A central 

element of this methodology is the parking-state-based matrix describing how 

vehicles transition from one parking-related state to another over time. The matrix 

consists of transition events and traffic states, accounting for the system dynamics of 

urban traffic and its interactions with the parking system over time. We present the 

model inputs and assumptions for this matrix, which – as an output of our 

methodology – estimates the proportion of cars cruising-for-parking and the cruising 

time, as well as the traffic conditions and parking usage over time. Additionally, we 

highlight the advantages of our macroscopic framework compared to microscopic 

approaches. 

2.2 Model inputs and general assumptions 

Our macroscopic parking and traffic framework is based on the model in Cao and 

Menendez (2015a). Modified and enhanced versions build the foundations for our 

parking pricing and parking occupancy policies. For the readers’ convenience, the 

core parts of the basic model including the macroscopic network setup are 

summarized again here. 

• Network: The study considers a compact urban area as a relatively 

homogeneous network. Following the same idea as the original model, here 

the urban network is abstracted as one ring road with cars driving in a single 

direction. Such ring road abstraction has been proven to be reasonable for 

small, homogeneous traffic networks (Daganzo (2011); Daganzo et al. (2011); 

Gayah and Daganzo (2011); Cao and Menendez (2015a)). 

• Time: The total time domain is split into small time slices (e.g., 1 minute), and 

the traffic/parking conditions are assumed steady within each time slice, 

although they can change over multiple time slices. 

• Parking demand: The parking demand is homogenously distributed over the 

network, and the parking searchers are homogenously distributed within the 

overall driving traffic. This is reasonable for small compact areas where 

parking is also more or less homogeneously distributed. Thus, we assume 

that vehicles do not prefer parking possibilities in a specific street or area of 

the network, i.e., drivers are indifferent across parking locations and can park 

anywhere in the area. No drivers cancel their trip towards their internal 

destinations. Since the traffic demand is independent of vehicles travelling in 

a single direction or two, the assumption of a single travel direction simplifies 

the model without affecting the model results. All the assumed trips in this 

network are exclusively made by car (i.e., the mode choice has been 

previously made). The total demand includes two types of vehicles, those that 
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might search for parking at some point, and through traffic. Although 

parking maneuvers have been proven to influence traffic flow (Cao and 

Menendez (2015b), Cao et al. (2016)), here we do not account for them, as we 

focus on the influence of the number of vehicles searching for on-street 

parking on the overall traffic performance. Additionally, we assume no 

overtaking takes place. Although this seems unrealistic, it does not affect the 

model results: even if vehicles can overtake each other, for any given number 

of available parking spaces and searchers the average number of cars finding 

parking spaces in a time slice will not change. 

• Parking supply: This analysis includes identical on-street and garage parking 

spaces. However, vehicles that use parking garages, private parking spaces 

or have parking permit reservations do not typically search for parking, as 

they treat their parking location as their target destination. Hence, it is not 

realistic to model them as searching traffic. Considering that, we define a 

portion of travel demand as through-traffic which represents trips that do not 

search for parking. This portion includes drivers with an off-street or 

dedicate/private parking facility destination, or drivers simply moving 

through the area. A differentiation between on-street and garage parking is, 

however, added to our framework in chapter 3. All existing parking spaces 

(not only the available ones) are on average uniformly distributed on the 

network. This is reasonable for small areas with standard parking 

policies/provision (e.g., downtown areas or portions thereof). By looking into 

the number of available parking spaces (which also can be zero in some 

instances) at the beginning of each time slice, we take parking restrictions and 

capacity constraints of parking spaces into account. Thus, it is possible to 

analyse the limitation of parking resources with our framework for a central 

part of the city. The number of available parking spaces on the network is 

deterministic at the beginning of each time slice, but this is not valid for the 

locations of such spaces, as we assume they are randomly located on the 

network. Hence, even though at any given iteration the available parking 

spaces are randomly distributed in the network, in the long run, the locations 

of all the available parking spaces obey a uniform distribution. Additionally, 

we assume double and delivery parking activities do not cause any issues in 

the network. 

These assumptions aim at replicating typical conditions in a small downtown area, 

where traffic and parking spaces are more or less homogenously distributed. The 

demand is considered as an inelastic input to the model and known at the beginning 

of each time interval. Further inputs to this model are the size and the traffic 

properties of the network, the amount of parking supply, and the distribution of 

parking durations. There are some distributions that describe parking duration better 

than others, see Richardson (1974), Lautso (1981), Cao and Menendez (2013); although 

in theory any distribution can be used, e.g., negative binomial, poisson (Cao and 

Menendez (2015a)). Note that these probability distributions can be used to describe 

the parking durations in our model as we discretize time and split the total time 
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horizon into small time slices. The parking-state-based matrix, as an output of this 

model, estimates the proportion of cars cruising-for-parking and the cruising time, as 

well as the traffic conditions and parking usage over time.  

Table 2.1 presents the list of all main variables and parameters used in section 2.4. 

Table 2.1. List of main variables and parameters. 

Notation Definition 

𝐿 Size (length) of the network. 

𝐿𝑙𝑎𝑛𝑒 Size (length) of the network in lane-km (used to measure traffic density). 

𝑡 Length of a time slice. 

𝐾 Set of user groups for the network’s demand indexed by 𝑘. Each user group has a different value of time (VOT). 

𝐴𝑖 Number of available on-street parking spaces at the beginning of time slice 𝑖. 

𝑣𝑖 Average travel speed in time slice 𝑖, including stopped time at intersections. 

𝑣 Free flow speed, i.e., maximum speed on the network, including stopped time at intersections. 

𝑄𝑚𝑎𝑥 Maximum traffic throughput for the network. 

𝑘𝑐 Optimal/critical traffic density on the network.  

𝑘𝑗 Jam density. 

𝑘𝑖 Density of vehicles in time slice 𝑖. 

𝑑𝑖 Maximum driven distance per vehicle in time slice 𝑖. 

𝛽𝑖 Proportion of new arrivals during time slice 𝑖 that corresponds to traffic that is not searching for parking. 

𝑙𝑛𝑠/ Average distance driven by a vehicle before it starts to search for parking. 

𝑙𝑝/ Average distance driven by a vehicle before it leaves the area after it has parked. 

𝑙/ Average distance driven by a vehicle before it leaves the area without having parked. 

𝑡𝑑 Parking duration. 

2.3 Macroscopic vs. microscopic approach 

The searching time and distance depend on the current traffic conditions, and on 

drivers’ probability of finding an available parking space (based on their own 

location, that of the available parking spaces and the competitors). To specify each 

vehicle’s driving time and driving distance, one normally needs to record the location 

of all cars and parking spaces throughout the different time slices in the system 

(microscopic approach). We can avoid that by using a macroscopic approach. As the 

data requirements correspond to aggregate values at the network level, this has the 

advantage that there is no data required for individual vehicles and the location of 

individual parking spaces. We only consider the average number of vehicles that 

access parking during a time slice 𝑖, and the total/average searching distance driven 

during this time slice 𝑖. The number of available parking spaces and the number of 

parking searchers are recorded over time in the parking-state-based matrix. However, 

their locations are not tracked. The following two assumptions are used in this model: 

First, we assume the stochastically independent distribution of parking availability 

on the network, i.e., at the beginning of each time slice 𝑖 the locations of available 

parking spaces are assumed as random. Second, the traffic demand is homogeneously 

generated and the locations of all parking searchers are uniformly distributed on the 
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network at the beginning of each time slice 𝑖. The second assumption is used to 

compute the average number of vehicles that find parking, and ultimately the average 

number of parking spaces being taken. These average values only stand for a situation 

where, more or less all searchers are uniformly distributed on the network. This, 

however, limits the model. In reality, searchers can focus on one street to find parking 

while parking spaces are easily available in other areas of the network. In this case, 

the model would likely overestimate the amount of parking spaces being taken. 

However, the model does provide indicative and realistic results regarding the effects 

that parking might have on traffic performance under general conditions, as we are 

interested in whether there is on average at least one car that takes each available 

parking space. For that, we do not need to know the exact location of each car or 

available parking space. For the validation of the original macroscopic model, 

including these assumptions, we refer to Cao et al. (2019). 

2.4 Overview of the parking-state-based matrix 

The parking-state-based matrix describes how vehicles transition from one parking-

related state to another over time, taking into account the transition events and the 

traffic states as shown in Fig. 2.1 and Table 2.2. It accounts for the system dynamics 

of urban traffic and its interactions with the parking system over time. This section 

presents the traffic states and transition events as in Cao and Menendez (2015a), 

which are enhanced in the following chapters 3 to 6 by reflecting the changes for 

different user groups 𝑘 ∈ 𝐾. Here, 𝐾 represents the set of user groups for the 

network’s demand. 

 
     (a) First group of vehicles.                                                  (b) Second group of vehicles. 

Fig. 2.1. The transition events of urban traffic in-between different parking-related states  

(Source: Cao and Menendez (2015a)). 

Two types of traffic demands are considered in this network and they are generated 

simultaneously in each time slice. The first group of vehicles searches for parking. 

This portion of the traffic demand experiences five transition events in the area of 

interest as seen in Fig. 2.1(a). During one single time slice a vehicle may experience at 

most one of the transition events. The notation for the three parking-related traffic 

states and the five transition events is shown in detail in Table 2.2. The second group 
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of vehicles does not search for parking, i.e., the vehicles can be considered as through 

traffic and/or heading to a given private or reserved parking space. This portion of 

vehicles in Fig. 2.1(b) only experiences the transition events “enter the area” and 

“leave the area” in Table 2.2, and the decision to leave the area depends on their 

driven distance in the network. 

Table 2.2. Relevant key variables for matrix per time slice. 

 Notation Definition 

T
ra

ff
ic

 s
ta

te
s 𝑁𝑛𝑠

𝑖  Number of vehicles in the state “non-searching” at the beginning of time slice 𝑖 (Non-searching). 

𝑁𝑠
𝑖 Number of vehicles in the state “searching” at the beginning of time slice 𝑖 (Searching). 

𝑁𝑝
𝑖  Number of vehicles in the state “parking” at the beginning of time slice 𝑖 (Parking). 

T
ra

n
si

ti
o

n
 e

v
en

ts
 

𝑛 /𝑛𝑠
𝑖  

Number of vehicles that enter the area and transition to “non-searching” during time slice 𝑖 

(Enter the area). 

𝑛𝑛𝑠/s
𝑖  

Number of vehicles that transition from “non-searching” to “searching” during time slice 𝑖 

(Start to search for parking). 

𝑛𝑠/𝑝
𝑖  

Number of vehicles that transition from “searching” to “parking” during time slice 𝑖  

(Access parking). 

𝑛𝑝/ns
𝑖  

Number of vehicles that transition from “parking” to “non-searching” during time slice 𝑖 

(Depart parking). 

𝑛𝑛𝑠/
𝑖  

Number of vehicles that leave the area and transition from “non-searching” during time slice 𝑖 

(Leave the area). 

2.4.1 Traffic states 

Details about the mathematical formulations of the three traffic states summarized in 

Table 2.2 can be found in Cao and Menendez (2015a), but a summary is given here 

for the readers’ convenience. All traffic state variables need an initial condition as an 

input to the model that can be measured, assumed or simulated.  

The number of non-searching vehicles, 𝑁𝑛𝑠
𝑖+1, are updated at the beginning of time 

slice 𝑖 + 1 in Eq. (1). Vehicles entering the area (i.e., 𝑛/𝑛𝑠
𝑖 ) and vehicles departing from 

parking (i.e., 𝑛𝑝/𝑛𝑠
𝑖 ) join these states. Vehicles starting to search for parking in the area 

(i.e., 𝑛𝑛𝑠/𝑠
𝑖 ) and vehicles leaving the area (i.e., 𝑛𝑛𝑠/

𝑖 ) leave these states. 

𝑁𝑛𝑠
𝑖+1 = 𝑁𝑛𝑠

𝑖 + 𝑛/𝑛𝑠
𝑖 + 𝑛𝑝/𝑛𝑠

𝑖 − 𝑛𝑛𝑠/𝑠
𝑖 − 𝑛𝑛𝑠/

𝑖  (1) 

The number of vehicles searching for parking at the beginning of time slice 𝑖 + 1, 𝑁𝑠
𝑖+1, 

is updated in Eq. (2). Vehicles starting to search for parking in the area (i.e., 𝑛𝑛𝑠/𝑠
𝑖 ) join 

this state, and vehicles accessing parking (i.e., 𝑛𝑠/𝑝
𝑖 ) leave this state. 

𝑁𝑠
𝑖+1 = 𝑁𝑠

𝑖 + 𝑛𝑛𝑠/𝑠
𝑖 − 𝑛𝑠/𝑝

𝑖  (2) 

The number of vehicles parked in the area at the beginning of time slice 𝑖 + 1, 𝑁𝑝
𝑖+1, 

is determined in Eq. (3). Vehicles accessing an available parking space (i.e., 𝑛𝑠/𝑝
𝑖 ) join 

this traffic state, and vehicles departing from parking (i.e., 𝑛𝑝/𝑛𝑠
𝑖 ) leave this state. 
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𝑁𝑝
𝑖+1 = 𝑁𝑝

𝑖 + 𝑛𝑠/𝑝
𝑖 − 𝑛𝑝/𝑛𝑠

𝑖  (3) 

Note that the formulations of 𝑁𝑛𝑠
𝑖+1 (Eq. (1)) and 𝑁𝑠

𝑖+1 (Eq. (2)) will change throughout 

the following chapters when reflecting different user groups 𝑘 ∈ 𝐾. The design of 

𝑁𝑝
𝑖+1 (Eq. (3)), however, remains consistent, even when differentiating between on-

street and garage parking in chapter 3. 

The traffic states (Eq. (1)-(2)) are then used to determine the average travel speed, 𝑣𝑖, 

during time slice 𝑖 in Eq. (4a-b). 𝑣𝑖 is formulated in Eq. (4b) based on a triangular 

MFD (Haddad and Geroliminis (2012); Haddad et al. (2013); Yang et al. (2017); Yang 

et al. (2019)), and the average traffic density 𝑘𝑖 (Eq. (4a)) in the same time slice. This 

triangular approximation of the MFD, which basically discards the impact of traffic 

signals, is used here only for simplification purposes. More realistic MFD shapes 

could be easily used to estimate 𝑣𝑖 instead, potentially changing Eq. (4b) below, but 

nothing else in the proposed model. 𝑘𝑖 is determined based on the total number of 

vehicles on the road network (consisting of non-searching, 𝑁𝑛𝑠
𝑖 , and searching 

vehicles, 𝑁𝑠
𝑖), and the network length, 𝐿𝑙𝑎𝑛𝑒, in lane-km (Cao and Menendez (2015a); 

Cao et al. (2019)). The vehicles travel at free flow speed 𝑣 when traffic is not congested, 

and at a lower speed in case the traffic density exceeds the critical density, 𝑘𝑐. The 

actual speed in congestion is calculated based on the traffic density in that time slice, 

𝑘𝑖, the critical density, 𝑘𝑐, the jam density, 𝑘𝑗, and the maximum traffic throughput, 

𝑄𝑚𝑎𝑥, for the network. 

𝑘𝑖 =
𝑁𝑛𝑠
𝑖 +𝑁𝑠

𝑖

𝐿𝑙𝑎𝑛𝑒
 (4a) 

𝑣𝑖 = {

𝑣,                           𝑖𝑓   0 ≤ 𝑘𝑖 ≤ 𝑘𝑐
𝑄𝑚𝑎𝑥
𝑘𝑐 − 𝑘𝑗

⋅ (1 −
𝑘𝑗

𝑘𝑖
) , 𝑖𝑓   𝑘𝑐 < 𝑘

𝑖 ≤ 𝑘𝑗
 (4b) 

Note that 𝑣𝑖 is modelled in Eq. (4b) based on a MFD, which is replaced by a 3D-MFD 

(Dakic et al. (2020), Loder et al. (2017), Paipuri and Leclercq (2020), Zheng et al. (2014)) 

in chapter 4. 

2.4.2 Transition events 

Based on some initial conditions, the output of the model is the parking-state related 

matrix. This matrix contains the number of vehicles experiencing each transition 

event as well as the resulting parking and traffic conditions (e.g., parking 

occupancy/availability and average travel speed) for each time slice. The conditions 

at any given time slice affect the transition events in the next time slice, so the matrix 

can be updated iteratively until the whole period is analyzed, or a defined criterion is 

reached (e.g., all the cars leave the area). 

All transition events are modelled macroscopically using a deterministic approach. 

However, the model is not thoroughly deterministic, as for example, the parking 
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location of each vehicle is not fixed, nor the travel time, nor the parking duration. The 

model is not thoroughly stochastic either as there are no random values involved in 

the computation of the transition events. Having a not thoroughly stochastic model 

does not necessarily make the model less valuable than one under completely 

stochastic conditions, because the model is meant to look for average values based on 

some probability distributions rather than the random values themselves. Since all 

variables are based on average values and not on random values, every simulation 

run returns the same results as long as the input variables to the model are not 

changed. In addition, there is no need to run the model many times in order to account 

for its stochasticity, as it is based on probability functions (i.e., the stochasticity is 

already implicit within the model formulations) (Cao and Menendez (2015a)). 

The total number of vehicles entering the network, 𝑛/𝑛𝑠
𝑖 , during time slice 𝑖 is a known 

demand input to the framework (Fig. 2.1 and Table 2.2). Depending on the proportion 

of through-traffic, 𝛽𝑖, the vehicles will directly leave the area after driving a given 

distance 𝑙/, or they will go through all transition events presented below. 𝑙/ is 

considered as fixed or taken out of any given probability density function, and it can 

vary by the network size and the average trip lengths. 

The number of vehicles starting to search for parking, 𝑛𝑛𝑠/𝑠
𝑖 , is determined in Eq. (5) 

depending on whether the vehicles’ driven distance by time slice 𝑖 has been long 

enough to cover a given distance 𝑙𝑛𝑠/. 𝑙𝑛𝑠/ can be fixed or taken out of any given 

probability density function. We capture the condition by 𝛾𝑛𝑠/
𝑖′  in Eq. (5). 𝑑𝑖 represents 

the maximum driven distance per vehicle in time slice 𝑖. It is estimated based on the 

speed during that interval 𝑣𝑖 (from Eq. (4b)) and the length of a time slice, 𝑡 (i.e., 𝑑𝑖 =

𝑣𝑖 ∙ 𝑡). Evidently, in reality, not all vehicles will drive the full distance before 

transitioning to another event on a given time slice. However, it is trivial to show that 

the bias of 𝑑𝑖 becomes negligible as the length of the time interval 𝑡 becomes very 

small (in this case, 1 min). 

𝑛𝑛𝑠/𝑠
𝑖 = ∑(1 − 𝛽𝑖

′
) ∙ 𝑛/𝑛𝑠

𝑖′ ∙ 𝛾𝑛𝑠/
𝑖′

𝑖−1

𝑖′=1

 (5) 

where 

𝛾𝑛𝑠/
𝑖′ = {

1,    if 𝑙𝑛𝑠/ ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑛𝑠/ + 𝑑

𝑖−1

0,    otherwise_____________________________________________

 

The likelihood formulations from Cao and Menendez (2015a) and Cao and Menendez 

(2018) are used to model the number of vehicles finding and accessing parking, 𝑛𝑠/𝑝
𝑖 , 

in Eq. (6). Depending on the number of competing vehicles trying to find parking, 𝑁𝑠
𝑖, 

the number of available parking spaces at the beginning of time slice 𝑖, 𝐴𝑖, and the 

proportion of the network covered by a searching vehicle during time slice 𝑖, 𝑑𝑖/𝐿, 

the number of vehicles accessing parking can vary. Here, we differentiate between a 

low share of vehicles accessing parking, when 𝐴𝑖 < 𝑁𝑠
𝑖, i.e., the number of available 

parking spaces is not enough for all drivers cruising for parking; and a high share of 
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vehicles accessing parking, when 𝐴𝑖 > 𝑁𝑠
𝑖. More modelling details on 𝑛𝑠/𝑝

𝑖  are 

illustrated in Cao and Menendez (2015a) with a simplified version in Cao and 

Menendez (2018). 

𝑛𝑠/𝑝
𝑖 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑁𝑠
𝑖 [1 − (1 −

𝑑𝑖

𝐿
)

𝐴𝑖

] , 𝑖𝑓 𝑡 ∈ [0,
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖]           

𝐴𝑖 + [𝐴𝑖 −𝑁𝑠
𝑖 +𝑁𝑠

𝑖 ⋅ (1 −
1

𝑁𝑠
𝑖  )

𝐴𝑖

] ⋅ (
log
𝑁𝑠
𝑖

𝐴𝑖
⋅
𝑑𝑖

𝐿
log𝐴𝑖

) , 𝑖𝑓 𝑡 ∈ [
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖 ,
𝐿

𝑣𝑖
⋅
𝐴𝑖

𝑁𝑠
𝑖]

𝐴𝑖 , 𝑖𝑓 𝑡 ∈ [
𝐿

𝑣𝑖
⋅
𝐴𝑖

𝑁𝑠
𝑖 , ∞)        

, 𝑖𝑓 𝐴𝑖 ≤ 𝑁𝑠
𝑖

{
 
 
 
 

 
 
 
 

𝑁𝑠
𝑖 [1 − (1 −

𝑑𝑖

𝐿
)

𝐴𝑖

] ,                               𝑖𝑓 𝑡 ∈ [0,
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖]     

𝑁𝑠
𝑖 +𝑁𝑠

𝑖 ⋅ (1 −
1

𝑁𝑠
𝑖  )

𝐴𝑖

⋅ (
log
𝑑𝑖

𝐿
log𝑁𝑠

𝑖) ,                            𝑖𝑓 𝑡 ∈ [
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖 ,
𝐿

𝑣𝑖
]

𝑁𝑠
𝑖 ,                   𝑖𝑓 𝑡 ∈ [

𝐿

𝑣𝑖
, ∞)

     , 𝑖𝑓 𝐴𝑖 ≥ 𝑁𝑠
𝑖

 (6) 

After departing from their parking spaces, the vehicles 𝑛𝑝/𝑛𝑠
𝑖  (Eq. (7)) drive towards 

their destinations outside the area during time slice 𝑖. The likelihood that these 

vehicles depart from the parking spaces in time slice 𝑖 is based on the distribution of 

parking durations 𝑓(𝑡𝑑) and the number of vehicles having accessed parking spaces, 

𝑛𝑠/𝑝
𝑖′ , in a former time slice 𝑖′ ∈ [1, 𝑖 − 1]. The probability of their parking duration is 

between (𝑖 − 𝑖′) ∙ 𝑡 and (𝑖 + 1 − 𝑖′) ∙ 𝑡, i.e., ∫ 𝑓(𝑡𝑑) 𝑑𝑡𝑑
(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡
. 

𝑛𝑝/𝑛𝑠
𝑖 = ∑ 𝑛𝑠/𝑝

𝑖′ ∙ ∫ 𝑓(𝑡𝑑) 𝑑𝑡𝑑

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (7) 

Depending on whether the vehicles have parked or not, they leave the area, 𝑛𝑛𝑠/
𝑖  in 

Eq. (8), after having driven a given distance 𝑙𝑝/ or 𝑙/, respectively. These distances are 

considered as fixed or taken out of any given probability density function. 

𝑛𝑛𝑠/
𝑖 = ∑ (𝛽𝑖

′
∙ 𝑛/𝑛𝑠
𝑖′ ∙ 𝛾/

𝑖′ + 𝑛𝑝/𝑛𝑠
𝑖′ ∙ 𝛾𝑝/

𝑖′ )

𝑖−1

𝑖′=1

 (8) 

where 

𝛾/
𝑖′ = {

1,    if 𝑙/ ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙/ + 𝑑

𝑖−1

0,    otherwise                    _____________________________
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𝛾𝑝/
𝑖′ = {

1,    if 𝑙𝑝/ ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑝/ + 𝑑

𝑖−1

0,    otherwise  __________________________________________

 

𝛾/
𝑖′  and 𝛾𝑝/

𝑖′  indicate whether the number of vehicles 𝑛/𝑛𝑠
𝑖′  and 𝑛𝑝/𝑛𝑠

𝑖′  have driven long 

enough, 𝑙/ and 𝑙𝑝/, respectively, in order to leave the area in time slice 𝑖. Recall that 𝑑𝑖 

represents the maximum driven distance per vehicle in time slice 𝑖. 

Note that the transition events 𝑛/𝑛𝑠
𝑖 , 𝑛𝑛𝑠/𝑠

𝑖  and 𝑛𝑠/𝑝
𝑖  are modified in the following 

chapters when reflecting different user groups 𝑘 ∈ 𝐾. The concept to determine the 

likelihood of finding on-street parking in 𝑛𝑠/𝑝
𝑖 , however, stays the same throughout 

the dissertation. The formulations of 𝑛𝑝/𝑛𝑠
𝑖  and 𝑛𝑛𝑠/

𝑖  remain consistent within the 

following chapters, even when modelling them for 𝑘 ∈ 𝐾. 

A case study for an area within the city of Zurich, Switzerland, was carried out in Cao 

et al. (2019) using this macroscopic model. Results showed that this model can be 

easily applied with limited data requirements and low computational costs, yielding 

relevant and trustworthy indicators of the cruising-for-parking phenomenon. 

Moreover, the model has also been used to quantify the potential cruising time 

savings generated by intelligent parking services (Cao and Menendez (2018)). We 

now extend it to include 

i. on-street and garage parking (chapter 3),  

ii. the system dynamics of urban car and P+R traffic using a multimodal traffic 

and parking framework focusing on parking and congestion pricing (chapter 

4), 

iii. a dynamic macroscopic parking pricing methodology (chapter 5), and 

iv. multiple vehicle types in the demand with different parking needs to 

determine the optimal parking occupancy rate (chapter 6). 

The modified models use different traffic states and transition events in their outputs, 

i.e., an enhanced parking-state-based matrix, which is presented in the following 

chapters. 
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Abstract 
 

 

As traffic congestion gets worse year by year in metropolitan areas, cities search for 

solutions to improve their traffic performance and reduce their environmental 

impacts. This first part of the dissertation focuses on parking pricing policies and their 

short-term effects not only on traffic congestion but also on the potential revenue for 

a city. We differentiate these policies by looking first at static and later at dynamic 

pricing strategies. 

We develop a macroscopic on-street and garage parking decision model and integrate 

it into a traffic system with an on-street and garage parking search model over time. 

Here, we formulate an on-street and garage parking-state-based matrix that describes 

the system dynamics of urban traffic based on different parking-related states and the 

number of vehicles that transition through each state in a time slice. This macroscopic 

modeling approach is based on aggregated data at the network level over time. All 

parking searchers face the decision to drive to a parking garage or to search for an on-

street parking space in the network. This decision is affected by several parameters 

including the static on-street and garage parking fees. 

A further framework develops an easy to implement multimodal macroscopic traffic 

and parking search model for a central area allowing us to analyze how introducing 

parking pricing inside a network, or a congestion toll combined with a P+R scheme 

can affect the drivers’ decision between entering the network by car (private vehicle) 

or using P+R instead. The decision directly influences the number of drivers using 

P+R, and this impacts, in turn, the traffic performance. Based on such analysis using 

aggregated data at the network level, a city can get valuable insights to evaluate 

whether congestion pricing is a necessity or if the traffic improvements resulting from 

implementing static parking pricing strategies are sufficient when combined with 

P+R facilities. 

Finally, we develop a dynamic macroscopic parking pricing model in order to 

maximize the revenue for a city, while simultaneously minimizing the total cruising 

time on the network. The proposed responsive pricing scheme takes the parking 

search phenomenon into consideration. This means that the parking fee also changes 

in response to the number of searching vehicles, in addition to changes in response to 

the parking occupancy. Compared to most literature, this macroscopic pricing model 

is embedded into a dynamic macroscopic urban traffic and parking model and has 

rather low data requirements, mostly related to average values and probability 

distributions at the network level.  

We illustrate all parking pricing policies in regard to the financial revenues they 

generate and their short-term impacts on traffic performance, congestion and 

environmental conditions using a case study of an area within the city of Zurich, 

Switzerland.
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3.1 Introduction 

As the population in urban areas is increasing, more and more cars need to find 

parking spaces in city centers. These vehicles normally have the choice between on-

street and garage parking. Both parking possibilities follow diverse policies, which 

can sometimes lead to rather complex interdependencies and significant changes in 

the performance of a transportation network. In this research, we develop a 

macroscopic on-street and garage parking model such that the influence of different 

on-street and garage parking policies on the traffic system can be studied and 

illustrated. Hereafter, off-street parking is referred to as garage parking. The 

macroscopic model is built on a traffic system with a parking search model over time. 

It is incorporated into the on-street parking framework from Cao and Menendez 

(2015a). 

Compared to methodologies concentrating on long-term demand management 

strategies, our dynamic macroscopic modeling approach focuses on the short-term 

effects in the traffic network, i.e., the demand entering the network is treated as 

exogenous, and the on-street and garage parking capacity is taken as fixed. An on-

street and garage parking-state-based matrix is used to capture the system dynamics 

of urban traffic. It is based on multiple parking-related traffic states and transition 

events to update the number of vehicles per state over time (Cao and Menendez 

(2015a)). Here, our macroscopic model in chapter 2 is enhanced to include on-street 

and garage parking. The total traffic demand entering the network is divided into two 

groups; through-traffic, and vehicles searching for parking. The first group of vehicles 

represents the proportion of traffic that is driving through this area but does not want 

to park or has a destination outside. Therefore, it only experiences two transition 

events, as seen in Fig. 3.1(a). The second group of vehicles needs to decide between 

searching for on-street parking or driving towards a parking garage, as seen in Fig. 

3.1(b). During one single time slice, a vehicle may experience at most one transition 

event. 

 
(a) Through-traffic. 

 
(b) Searching for parking traffic. 
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Fig. 3.1. The transition events of urban traffic focusing on on-street and garage parking in-between different 

parking-related states. 

In case the drivers decide for on-street parking, they might need to circulate in the 

city to search for an available on-street parking space, which contributes to the 

problem of traffic congestion. In case the drivers decide for garage parking, there is 

no need to search-for-parking. These vehicles drive towards the closest parking 

garage and access it depending on its current availability. Our methodology 

differentiates between on-street and garage parking. Note that this differs from the 

macroscopic model introduced in chapter 2 as garage parking was not explicitly 

considered in the former framework. With limited data collection efforts, our 

macroscopic on-street and garage parking decision model shows the influence of 

different on-street and garage parking pricing ratios on the average searching 

time/distance. We analyze the relationship between on-street and garage parking, but 

also their interdependency on cruising-for-parking traffic and traffic performance 

with respect to different parking fees. Different pricing strategies affect the drivers’ 

decision to park on-street or to drive towards a parking garage. Insights from this 

chapter will help city councils or private agencies to analyze the short-term impacts 

on the traffic system, for example, when changing the hourly on-street and garage 

parking fee rates on the network, or when converting on-street to garage parking 

spaces (as it has been the case in cities like Zurich, Switzerland). 

In summary, the existing literature approaches on-street and garage parking models 

either with empirical data collection efforts or with methodologies concentrating on 

user equilibrium or social optimum solutions that focus on long-term demand 

management strategies. Our on-street and garage parking decision model follows a 

macroscopic approach and focuses on short-term effects. The main contributions of 

this study are three-fold. 

i. First, without large data collection efforts, our macroscopic decision model 

provides valuable insights into different on-street and garage parking fee 

ratios and their impacts on cruising-for-parking traffic as well as the overall 

traffic performance. The macroscopic model of garage parking also allows us 

to provide an easy to implement methodology with low computational costs 

based on aggregated data at the network level over time that can be easily 

solved with a simple numerical solver. 

ii. Second, our framework provides the tools to study the trade-off between the 

parking revenue and the cruising-for-parking traffic. We analyze the 

relationship between on-street and garage parking, but also their 

interdependency on traffic performance with respect to different parking 

fees. This study can be used for city councils or private agencies to find 

reasonable hourly on-street and garage parking fees such that the average 

vehicle time/distance is not negatively affected and additionally, acceptable 

financial revenues are obtained.  

iii. Third, different parking policies in city center areas, e.g., the short-term 

effects of converting on-street to garage parking spaces on the traffic system, 
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or the availability of garage usage information to all drivers can be simulated 

using our methodology and recommendations for city councils can be made. 

The chapter is organized as follows. Section 3.2 presents the overall framework of the 

macroscopic on-street and garage parking decision model. Section 3.3 illustrates the 

concept and mathematical model of the on-street and garage parking-state-based 

matrix. Section 3.4 shows a case study of an area within the city of Zurich, 

Switzerland. Section 3.5 summarizes this chapter. 

3.2 On-Street and Garage Parking Decision 

Several cost factors influence the on-street/garage parking decision, as seen in Fig. 3.2. 

These cost variables include variables that have an impact on either the on-street 

parking option (e.g., the on-street parking pricing), the garage parking option (e.g., 

the garage parking pricing) or on both parking options (e.g., the number of parking 

spaces of each kind, and the desired parking duration). Drivers with desired long 

parking durations are more likely to choose garage parking. All drivers are assumed 

to be rational during their parking decision and only compare the relevant parking 

costs between on-street and garage parking, i.e., all drivers are treated as risk-neutral. 

 
Fig. 3.2. Decision Model for on-street and garage parking based on several cost factors. 

The parking decision is then modeled macroscopically using a logistic function based 

on the on-street and garage parking cost variables. The data inputs are presented in 

section 3.2.1. All mathematical details of this modeling approach are illustrated in 

section 3.2.2. 

3.2.1 Data inputs for decision model 

The decision between on-street and garage parking is dependent on the input 

variables shown in Table 2.1, 3.1 and 3.2. The model parameters and all variables that 

are required to define the traffic network are presented in Table 2.1 and 3.1. These 

variables can either be directly measured, or estimated based on simulation results 

and/or the MFD. 

Recall that all data inputs are based on a compact urban area with a relatively 

homogeneous network. The total time horizon is divided into small time slices (e.g., 

1 minute). All traffic and parking conditions can change over multiple time slices, but 
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they are assumed to be steady within each time slice.  
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        Table 3.1. Independent variables for parking decision (inputs to the model): Traffic network and model parameters. 

Notation Definition 

𝑏 Average length of a block in the network.  

𝑇 Length of the simulation’s time horizon. 

𝑉𝑂𝑇𝑘 VOT for user group 𝑘 ∈ 𝐾. 

𝑤 Walking speed in the network. 

 

It is assumed that all trips are exclusively made by car, i.e., the mode choice has been 

previously made. In addition, we assume that drivers do not cancel their trips while 

searching for parking. The VOT is assumed to be different for individual vehicles 

depending on their user group. Such user group can be dependent on the residents’ 

location, income, careers, working states, etc. 

Table 2.1 and 3.2 show all independent variables associated with on-street and garage 

parking. This includes parking duration and parking pricing specific input 

parameters. These variables can be estimated based on real measurements, historical 

on-street and garage parking and pricing data, or defined otherwise. All variables 

related to the travel demand and the distances driven can be estimated based on 

historical data, e.g., traffic data on main roads to enter the network, etc. The distance 

variables that are associated with a transition into the next state can be reasonably 

assumed based on the length of the network, and other data collected from drivers. 

Given the homogeneous network, parking searchers are assumed to be 

homogeneously distributed within the overall driving traffic. This is reasonable, as 

we also assume that all on-street parking spaces (not only the available ones) are 

uniformly distributed on the network. Recall that we focus on small compact areas 

with standard parking policies (e.g., downtown areas or portions thereof). We do not 

need to record the location of individual cars and parking spaces throughout the 

different time slices in the system, i.e., only average numbers of vehicles during a time 

slice and total/average searching times and distances are tracked. 

Parking garages are also assumed to be uniformly distributed within the network, 

and without loss of generality, all associated garage parking capacities are assumed 

to be equal. In other words, all parking garages have equal limited capacities. The 

distribution of desired parking durations is considered as an input to this model. 

Some distributions describe the parking duration better than others, see Cao and 

Menendez (2013), Richardson (1974). Remember that in theory, however, any 

distribution can be used, e.g., poisson, negative binomial (Cao and Menendez 

(2015a)). It is assumed that during the period of one working day drivers do not 

repark their car after the on-street parking time limit has expired. 
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Table 3.2. Independent variables for parking decision (inputs to the model): On-street and garage parking parameters. 

Notation Definition 

𝐴 Total number of existing on-street parking spaces (for public use) in the area. 

𝐺 Number of parking garages in the network. 

𝑅 Total capacity of all parking garages, i.e., total number of all garage parking spaces. 

𝑡𝑑 Parking duration of vehicles (independently of on-street and garage parking). 

𝑡𝑑,𝜉  Parking duration of vehicles focusing on on-street (𝑜𝑝) or garage parking (𝑔𝑝), 𝜉 ∈ {𝑜𝑝, 𝑔𝑝}. 

𝜏𝜉 On-street (𝑜𝑝) or garage parking (𝑔𝑝) time limit, 𝜉 ∈ {𝑜𝑝, 𝑔𝑝}. 

𝑝𝜉  Hourly on-street (𝑜𝑝) or garage parking (𝑔𝑝) fee rate, 𝜉 ∈ {𝑜𝑝, 𝑔𝑝}. 

𝑝𝑑 Price per kilometer driven on the network (i.e., external costs as petrol, wear and tear of vehicles). 

𝑙𝑛𝑠/
𝑘  

Average distance that must be driven by a vehicle from user group 𝑘 ∈ 𝐾 before it starts to search for 

parking. 

𝑙/
𝑘 

Average distance that must be driven by a vehicle from user group 𝑘 ∈ 𝐾 before it leaves the area 

without having parked. 

𝑙𝑝/
𝑘  

Average distance that must be driven by a vehicle from user group 𝑘 ∈ 𝐾 before it leaves the area 

after it has parked (on-street or in a garage). 

3.2.2 Mathematical decision framework 

Table 3.3 summarizes the intermediate modeling variables – in addition to Table 2.1 

– that are needed to model the on-street and garage parking decision. The model 

outputs provide, amongst others, the results of the interactions between on-street and 

garage parking and their influence on the urban traffic system. 

Table 3.3. Intermediate model variables. 

Notation Definition 

𝐶𝜉
𝑖,𝑘 Total cost of on-street (𝑜𝑝) or garage parking (𝑔𝑝) in time slice 𝑖 for user group 𝑘 ∈ 𝐾, 𝜉 ∈ {𝑜𝑝, 𝑔𝑝}. 

𝛿𝑔𝑝
𝑖,𝑘 Choice of drivers for garage parking (𝑔𝑝) in time slice 𝑖 for user group 𝑘 ∈ 𝐾. 

𝛾𝜉
𝑖,𝑘 

Proportion of drivers deciding for on-street (𝑜𝑝) or garage parking (𝑔𝑝) in time slice 𝑖 for user group 

𝑘 ∈ 𝐾, 𝜉 ∈ {𝑜𝑝, 𝑔𝑝}. 

𝐴𝐶𝑇𝑖 Average cruising time for vehicles parking on-street at the beginning of time slice 𝑖. 

𝐴𝐷𝐷 Average driving distance to closest garage location. 

𝐴𝑊𝐷𝜉 
Average walking distance from on-street (𝑜𝑝) or garage parking (𝑔𝑝) parking to destination, 𝜉 ∈

{𝑜𝑝, 𝑔𝑝}. 

𝑅𝑖 Garage parking availability of all parking garages in time slice 𝑖. 

𝑃𝑡𝑜𝑡  Total revenue resulting from hourly on-street and garage parking fee rates for the city. 

 

We model the parking decision between on-street and garage parking 

macroscopically in Eq. (9)-(11). This will then be incorporated into the on-street and 

garage parking-state-based matrix in section 3.3. We assume that the on-street 

parking time limit 𝜏𝑜𝑝 is smaller than the garage parking time limit 𝜏𝑔𝑝, i.e., 𝜏𝑜𝑝 ≤ 𝜏𝑔𝑝. 

All drivers with a desired parking duration of 𝑡𝑑 ≤ 𝜏𝑜𝑝 decide between on-street and 

garage parking, whereas drivers with 𝜏𝑜𝑝 < 𝑡𝑑 ≤ 𝜏𝑔𝑝 are restricted and can only park 

at garages. Notice that 𝑡𝑑 is taken out of a distribution and no individual vehicles are 

tracked. We assume that 𝑡𝑑 ≤ 𝜏𝑔𝑝 for all drivers, since vehicles with 𝑡𝑑 > 𝜏𝑔𝑝 cannot 

find a parking place according to their desired parking duration anywhere within this 
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network. The choice for garage parking over on-street parking, 𝛿𝑔𝑝
𝑖,𝑘, is modeled in Eq. 

(1) using a logistic function based on 𝑅 (the total capacity of all parking garages), 𝐴 

(the total number of existing on-street parking spaces), 𝐶𝑜𝑝
𝑖,𝑘 (the cost of on-street 

parking in section 3.2.2.1), and 𝐶𝑔𝑝
𝑖,𝑘 (the cost of garage parking in section 3.2.2.2). 

𝛿𝑔𝑝
𝑖,𝑘 =

𝑒

𝑅
𝑅+𝐴

∙𝐶𝑜𝑝
𝑖,𝑘−

𝐴
𝑅+𝐴

∙𝐶𝑔𝑝
𝑖,𝑘

min{
𝑅
𝑅+𝐴

∙𝐶𝑜𝑝
𝑖,𝑘,

𝐴
𝑅+𝐴

∙𝐶𝑔𝑝
𝑖,𝑘}

1 + 𝑒

𝑅
𝑅+𝐴

∙𝐶𝑜𝑝
𝑖,𝑘−

𝐴
𝑅+𝐴

∙𝐶𝑔𝑝
𝑖,𝑘

min{
𝑅
𝑅+𝐴

∙𝐶𝑜𝑝
𝑖,𝑘,

𝐴
𝑅+𝐴

∙𝐶𝑔𝑝
𝑖,𝑘}

 (9) 

Drivers base their parking choice on expected costs. These cost variables are 

determined macroscopically without stochastic components, using average values 

and probability distributions across the whole population. Therefore, 𝛿𝑔𝑝
𝑖,𝑘 is modeled 

as an average corresponding to aggregated data at the network level based on the 

logistic probability distribution. To make sure the parking choice takes the supply 

into consideration we add the weight parameters 
𝑅

𝑅+𝐴
 and 

𝐴

𝑅+𝐴
 to Eq. (9). These terms 

are not time-dependent since there is no real-time information for on-street and 

garage parking availability. We assume that the drivers have only information 

available about the VOT for their own user group 𝑘 ∈ 𝐾, about total parking 

capacities in the network and about the system averages required to determine the 

cost variables 𝐶𝑜𝑝
𝑖,𝑘 and 𝐶𝑔𝑝

𝑖,𝑘. It is further assumed that the drivers are unsophisticated 

in their decision-making since they do not use their experienced vehicle speed values 

as additional information to update the available system average information 

required to determine 𝐶𝑜𝑝
𝑖,𝑘 and 𝐶𝑔𝑝

𝑖,𝑘. In an alternative scenario in section 3.4.5 we relax 

this assumption by having real-time garage parking availability information 

accessible to the drivers when deciding to park on-street or to drive towards a parking 

garage. However, no real-time on-street parking information is assumed to be 

available in this alternative scenario, as this is less common. In future research, other 

scenarios can be investigated involving a forecast about future on-street and/or 

garage parking availability when making their decision. Notice that the decision of 

some drivers is restricted by 𝜏𝑜𝑝 and 𝜏𝑔𝑝. This is taken into account when calculating 

𝛾𝑔𝑝
𝑖,𝑘 in Eq. (10), which described the proportion of vehicles deciding for garage 

parking, and 𝛾𝑜𝑝
𝑖,𝑘 in Eq. (11) which describes the proportion of vehicles deciding to 

search for on-street parking. 

𝛾𝑔𝑝
𝑖,𝑘 = ∫ 𝑓(𝑡𝑑)𝑑𝑡𝑑

𝜏𝑜𝑝

0

∙ 𝛿𝑔𝑝
𝑖,𝑘

⏟            
term 1

+∫ 𝑓(𝑡𝑑)𝑑𝑡𝑑

𝜏𝑔𝑝

𝜏𝑜𝑝⏟        
term 2

 (10) 

𝛾𝑜𝑝
𝑖,𝑘 = 1 − 𝛾𝑔𝑝

𝑖,𝑘 (11) 

Term 1 in Eq. (10) represents the portion of vehicles with a parking duration 𝑡𝑑 ≤ 𝜏𝑜𝑝 

that have the option to decide for on-street or garage parking. Term 2 represents the 

portion of vehicles with 𝜏𝑜𝑝 < 𝑡𝑑 ≤ 𝜏𝑔𝑝 that has to park in a garage because of their 
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desired parking duration. Notice that both ∫ 𝑓(𝑡𝑑)𝑑𝑡𝑑
𝜏𝑜𝑝
0

 and ∫ 𝑓(𝑡𝑑)𝑑𝑡𝑑
𝜏𝑔𝑝
𝜏𝑜𝑝

 are 

assumed to be 𝑘-independent, i.e., the distribution of the parking durations is 

assumed to be independent of the drivers’ VOT. 

3.2.2.1 Cost of on-street parking 

In Eq. (12), we derive the cost of on-street parking, 𝐶𝑜𝑝
𝑖,𝑘 for each user group 𝑘 ∈ 𝐾 in 

time slice 𝑖. 

𝐶𝑜𝑝
𝑖,𝑘 = 𝑝𝑜𝑝⏟

term 1

+ 𝑝𝑑 ⋅ 𝑣
𝑖 ⋅ 𝐴𝐶𝑇𝑖⏟        

term 2

+ 𝑉𝑂𝑇𝑘 ∙ 𝐴𝐶𝑇𝑖⏟        
term 3

+ 𝑉𝑂𝑇𝑘 ∙
𝐴𝑊𝐷𝑜𝑝
𝑤⏟          

term 4

 (12) 

Term 1 represents the hourly on-street parking fee rate which, in the remainder of 

this chapter, is assumed to be constant. In theory, however, the on-street parking fee 

could also be modeled as a responsive parking pricing scheme (chapter 5) that takes 

the parking search phenomenon into consideration. Notice that the parking decision 

in Eq. (9) is assumed to be based on the parking fee rates per hour independently of 

the parking durations. Term 2 represents the average cruising distance for on-street 

parking (i.e., external costs as petrol, wear and tear of vehicles) converted to price 

units. Term 3 represents the average cruising time based on the drivers’ VOT 

expressed in price units for 𝑘 ∈ 𝐾. The average cruising time 𝐴𝐶𝑇𝑖 is determined in 

section 5.3.3.3, and is based on a queueing diagram showing the cumulative number 

of vehicles going through each transition event as a function of time. Notice that the 

longer the drivers search for on-street parking, the higher the average cruising time 

𝐴𝐶𝑇𝑖 is, and consequently also the 𝐶𝑜𝑝
𝑖,𝑘. Therefore, it is more likely that the drivers 

might decide for garage parking in congested areas. Term 4 represents the cost of 

walking from the on-street parking to the destination expressed in price units for 𝑘 ∈

𝐾. Even though our abstracted network was a ring, we may assume without loss of 

generality that the real network is a square grid, where the average length of a block 

𝑏 in the network is known. The total length of the ring network, 𝐿, is then equivalent 

to joining all blocks of length 𝑏 together. As on-street parking spaces are uniformly 

distributed throughout the network, the walking costs can be determined using the 

average Manhattan distance traveled 𝐴𝑊𝐷𝑜𝑝 (Eq. (13)) between two random points 

in the square grid (Ortigosa et al. (2019)). 

𝐴𝑊𝐷𝑜𝑝 =
2

3
⋅ 𝑏 ⋅ (−

1

2
+ √

1

4
+
𝐿

2𝑏
)

⏟              
term 1

 
(13) 

Term 1 represents the side length of the square grid. 

3.2.2.2 Cost of garage parking 

The cost of garage parking, 𝐶𝑔𝑝
𝑖,𝑘 for each user group 𝑘 ∈ 𝐾 in time slice 𝑖, is based on 

multiple cost terms as shown in Eq. (14). 
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𝐶𝑔𝑝
𝑖,𝑘 = 𝑝𝑔𝑝⏟

term 1

+ 𝑝𝑑 ⋅ 𝐴𝐷𝐷⏟      
term 2

+ 𝑉𝑂𝑇𝑘 ∙
𝐴𝐷𝐷

𝑣𝑖⏟        
term 3

+ 𝑉𝑂𝑇𝑘 ∙
𝐴𝑊𝐷𝑔𝑝

𝑤⏟          
term 4

 (14) 

Term 1 represents the hourly garage parking fee rate which, in the remainder of this 

chapter, is assumed to be constant. Terms 2 and 3 show the cost of driving from the 

actual vehicle’s garage parking decision location to the closest garage for 𝑘 ∈ 𝐾. It 

contains the average distance to the closest garage parking expressed in distance price 

units (term 2) and the average time expressed in price units for 𝑘 ∈ 𝐾 (term 3). Both 

terms include the associated average driving distance 𝐴𝐷𝐷, determined in Eq. (15). 

𝐴𝐷𝐷 =
𝐿

2 ∙ 𝐺
 (15) 

Remember that the actual garage locations are assumed to be uniformly distributed 

on the network and that we assume that traffic on the abstracted ring moves in a 

single direction. 

 
Fig. 3.3. Simple example of uniformly distributed garage parking to illustrate the average walking distance in Eq. (16). 

Term 4 in Eq. (14) represents the cost of walking from the garage parking to the 

destination expressed in price units for 𝑘 ∈ 𝐾. As the number of garages is limited, 

they are expected to require, on average, some walking distance. The walking speed 

𝑤 is assumed to be a constant input. To estimate the area served by each parking 

garage, we take the surface of the square grid [𝑏 ⋅ (−
1

2
+√

1

4
+

𝐿

2𝑏
)]

2

 and divide it by 

𝐺 (Fig. 3.3). Assuming destinations are uniformly distributed in the network, we can 

compute the average walking distance 𝐴𝑊𝐷𝑔𝑝 in Eq. (16) as 2 3⁄  of the radius of each 

of the areas served by a parking garage. 

𝐴𝑊𝐷𝑔𝑝 =
2𝑏

3√𝜋 ∙ 𝐺
[−
1

2
+ √

1

4
+
𝐿

2𝑏
] (16) 

Note that we enhance 𝐶𝑔𝑝
𝑖,𝑘 in section 3.4.5 by including garage usage information to 
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all drivers. 

3.2.2.3 Total revenue 

One component of the parking decision is paying an hourly fee for on-street or garage 

parking. However, the drivers pay the final parking fee from on-street or garage 

parking depending on how long they have parked. Eq. (17) expresses the total 

revenue 𝑃𝑡𝑜𝑡 obtained from all user groups 𝐾 for the time horizon 𝑇. 

𝑃𝑡𝑜𝑡 =∑∑𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘 ∙ 𝑝𝑜𝑝 ∙ 𝑡𝑑,𝑜𝑝̅̅ ̅̅ ̅̅⏟            

term 1

+ 𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘 ∙ 𝑝𝑔𝑝 ∙ 𝑡𝑑,𝑔𝑝̅̅ ̅̅ ̅̅⏟            

term 2

𝐾

𝑘=1

𝑇

𝑖=1

 (17) 

Term 1 shows the revenue from on-street parking for user group 𝑘 ∈ 𝐾 during time 

slice 𝑖. Term 2 illustrates the revenue from garage parking for user group 𝑘 ∈ 𝐾 

during time slice 𝑖. 𝑡𝑑,𝑜𝑝̅̅ ̅̅ ̅̅  and 𝑡𝑑,𝑔𝑝̅̅ ̅̅ ̅̅  illustrate the average on-street/garage parking 

duration obtained from all user groups 𝐾 for the time horizon 𝑇. Notice that 𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘  in 

term 1 and 𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘  in term 2 are both defined in section 3.3.1 (Table 3.5). 

3.3 On-Street and Garage Parking-State-Based 

Matrix 

The on-street and garage parking-state-based matrix describes the system dynamics 

of urban traffic based on multiple parking-related states as in chapter 2 according to 

Cao and Menendez (2015a). The matrix is used to incorporate our parking decision 

model into a macroscopic traffic system framework that captures the interactions over 

time between the on-street and garage parking systems. This section shows an 

overview of all on-street and garage parking-related traffic states (section 3.3.1), and 

the analytical formulations for the transition events between those states (section 

3.3.2). 

3.3.1 Parking-related traffic states 

Recall that the parking-related traffic states build the foundation for the parking-state-

based matrix. The matrix updates all parking-related traffic states based on the 

number of vehicles going through different transition events in each time slice. The 

matrix is then updated iteratively over time until the whole period is analyzed, or a 

defined criterion is reached (e.g., all the cars leave the area). Here, we enhance the 

basic matrix from our macroscopic model in chapter 2 to include on-street and garage 

parking. By integrating our on-street and garage parking decision model from section 

3.2, the matrix allows us to illustrate the effects of different on-street and garage 

parking policies on the searching time and searching distance. 

All vehicles searching for parking in Fig. 3.1(b) have the option to decide for on-street 

or garage parking at their current location. This decision involves the on-street and 

garage parking decision model from section 3.2. The vehicles that have decided to 
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search for on-street parking can change their mind and switch to garage parking later. 

As soon as the vehicles decide for garage parking, they will drive towards the closest 

parking garage and access it based on availability. For these drivers, the location of 

the parking garages is assumed to be known, or guidance to the garage location is 

available. Once the garage parking decision is made, we assume the drivers do not 

change their decision while driving to the garage location. If there are no available 

garage parking spaces, the vehicles cannot access the parking garage and might move 

to the searching-for-on-street-parking state. After the vehicles have accessed on-street 

or garage parking, they depart and move back to the non-searching state before they 

leave the area. All traffic states in Fig. 3.1 are summarized in Table 3.4. They show 

modifications of the traffic states presented in Table 2.2 and include the differentiation 

between on-street and garage parking. The initial conditions of all traffic state 

variables are model input variables that can be measured, assumed, or simulated. 

Table 3.4. All traffic state variables for the on-street and garage parking-state-based matrix per time slice. 

Notation Name Definition 

𝑁𝑛𝑠
𝑖,𝑘 Non-searching 

Number of vehicles in the state “non-searching” for user group 𝑘 ∈ 𝐾 at the 

beginning of time slice 𝑖. 

𝑁𝑠
𝑖,𝑘 

Searching for on-street 

parking 

Number of vehicles in the state “searching for on-street parking” for user 

group 𝑘 ∈ 𝐾 at the beginning of time slice 𝑖. 

𝑁𝑜𝑝
𝑖,𝑘 On-street parking 

Number of vehicles in the state “on-street parking” for user group 𝑘 ∈ 𝐾 at 

the beginning of time slice 𝑖. 

𝑁𝑑𝑔𝑝
𝑖,𝑘  

Driving to garage 

parking 

Number of vehicles in the state “driving to garage parking” for user group 

𝑘 ∈ 𝐾 at the beginning of time slice 𝑖.  

𝑁𝑔𝑝
𝑖,𝑘 Garage parking 

Number of vehicles in the state “garage parking” for user group 𝑘 ∈ 𝐾 at 

the beginning of time slice 𝑖. 

 

These parking-related states are determined using the information on the transition 

events. We introduce the transition events in Table 3.5. These transition events 

enhance the variables presented in Table 2.2 allowing us to model the differentiation 

between on-street and garage parking. 

Eq. (18) to (22) update the number of “non-searching”, “searching for on-street 

parking”, ”on-street parking”, “driving to garage parking”, and “garage parking” 

vehicles, respectively. Eq. (18) presents an enhancement of Eq. (1), and Eq. (19) shows 

a modification of Eq. (2). Eq. (20) and (22) relate to Eq. (3), differentiating between on-

street and garage parking. Eq. (21) is a newly defined traffic state required to model 

the number of vehicles driving to garage parking and thus, it has no counterpart in 

the original model shown in section 2.4.1. Notice that all equations need to be 

determined for every user group 𝑘 ∈ 𝐾, where 𝐾 is the total number of user groups 

for the demand input of the network. 

𝑁𝑛𝑠
𝑖+1 =∑𝑁𝑛𝑠

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑛𝑠
𝑖+1,𝑘 = 𝑁𝑛𝑠

𝑖,𝑘 + 𝑛/𝑛𝑠
𝑖,𝑘 + 𝑛𝑜𝑝/𝑛𝑠

𝑖,𝑘 + 𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘 − 𝑛𝑛𝑠/𝑠

𝑖,𝑘 − 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 − 𝑛𝑛𝑠/

𝑖,𝑘  (18) 
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𝑁𝑠
𝑖+1 =∑𝑁𝑠

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑠
𝑖+1,𝑘 = 𝑁𝑠

𝑖,𝑘 + 𝑛𝑛𝑠/𝑠
𝑖,𝑘 + 𝑛𝑑𝑔𝑝/𝑠

𝑖,𝑘 − 𝑛𝑠/𝑜𝑝
𝑖,𝑘 − 𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘  (19) 

𝑁𝑜𝑝
𝑖+1 =∑𝑁𝑜𝑝

𝑖+1,𝑘

𝐾

𝑘=1

, where 𝑁𝑜𝑝
𝑖+1,𝑘 = 𝑁𝑜𝑝

𝑖,𝑘 + 𝑛𝑠/𝑜𝑝
𝑖,𝑘 − 𝑛𝑜𝑝/𝑛𝑠

𝑖,𝑘  (20) 

𝑁𝑑𝑔𝑝
𝑖+1 =∑𝑁𝑑𝑔𝑝

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑑𝑔𝑝
𝑖+1,𝑘 = 𝑁𝑑𝑔𝑝

𝑖,𝑘 + 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 + 𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘 − 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘 − 𝑛𝑑𝑔𝑝/𝑠

𝑖,𝑘  (21) 

𝑁𝑔𝑝
𝑖+1 =∑𝑁𝑔𝑝

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑔𝑝
𝑖+1,𝑘 = 𝑁𝑔𝑝

𝑖,𝑘 + 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘 − 𝑛𝑔𝑝/𝑛𝑠

𝑖,𝑘  (22) 

Table 3.5. All transition event variables for the on-street and garage parking-state-based matrix per time slice. 

Notation Name Definition 

𝑛 /𝑛𝑠
𝑖,𝑘  Enter the area 

Number of vehicles that enter the area and transition to “non-

searching” for user group 𝑘 ∈ 𝐾 during time slice 𝑖 (i.e., travel 

demand per VOT user group). 

𝑛 𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  

Go to parking  

(Decision to park: Driving to 

garage parking) 

Number of vehicles that transition from “non-searching” to “driving 

to garage parking” (depending on their parking decision) for user 

group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛 𝑛𝑠/𝑠
𝑖,𝑘  

Go to parking  

(Decision to park: Searching 

for on-street parking) 

Number of vehicles that transition from “non-searching” to 

“searching for on-street parking” (depending on their parking 

decision) for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  Switch to garage parking 

Number of vehicles that transition from “searching for on-street 

parking” to “driving to garage parking” for user group 𝑘 ∈ 𝐾 

during time slice 𝑖. 

𝑛𝑠/𝑜𝑝
𝑖,𝑘  

Find and access on-street 

parking 

Number of vehicles that transition from “searching for on-street 

parking” to “on-street parking” for user group 𝑘 ∈ 𝐾 during time 

slice 𝑖. 

𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘  Access garage parking 

Number of vehicles that transition from “driving to garage parking” 

to “garage parking” for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑑𝑔𝑝/𝑠
𝑖,𝑘  Not access garage parking 

Number of vehicles that transition from “driving to garage parking” 

to “searching for on-street parking” for user group 𝑘 ∈ 𝐾 during 

time slice 𝑖. 

𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘  Depart on-street parking 

Number of vehicles that transition from “on-street parking” to 

“non-searching” for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘  Depart garage parking 

Number of vehicles that transition from “garage parking” to “non-

searching” for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑛𝑠/
𝑖,𝑘  Leave the area 

Number of vehicles that leave the area and transition from “non-

searching” for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

 

Eq. (18) updates the number of “non-searching” vehicles for each 𝑘 ∈ 𝐾 before 

aggregating them to 𝑁𝑛𝑠
𝑖+1. Vehicles entering the area (i.e., 𝑛/𝑛𝑠

𝑖,𝑘 ), and vehicles that 

depart from on-street or garage parking (i.e., 𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘  and 𝑛𝑔𝑝/𝑛𝑠

𝑖,𝑘 ) join this state; vehicles 

that start searching or drive to garage parking (i.e., 𝑛𝑛𝑠/𝑠
𝑖,𝑘  and 𝑛𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘 ), and vehicles 
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leaving the area (i.e., 𝑛𝑛𝑠/
𝑖,𝑘 ) quit this state. Eq. (19) updates the number of “searching” 

vehicles for each 𝑘 ∈ 𝐾 and aggregates them after to 𝑁𝑠
𝑖+1. Vehicles starting to search 

for on-street parking (i.e., 𝑛𝑛𝑠/𝑠
𝑖,𝑘 ) and vehicles not able to access garage parking (i.e., 

𝑛𝑑𝑔𝑝/𝑠
𝑖,𝑘 ) join this state; vehicles accessing on-street parking (i.e., 𝑛𝑠/𝑜𝑝

𝑖,𝑘 ) and vehicles 

driving to garage parking (i.e., 𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 ) leave this state. Eq. (20) updates the number of 

“on-street parking” vehicles for each 𝑘 ∈ 𝐾 and then aggregates them to 𝑁𝑜𝑝
𝑖+1. 

Vehicles accessing an on-street parking space (i.e., 𝑛𝑠/𝑜𝑝
𝑖,𝑘 ) join this state; vehicles 

departing from on-street parking (i.e., 𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘 ) leave this state. Eq. (21) updates the 

number of vehicles that “drive to garage parking” for each user group 𝑘 ∈ 𝐾 and then 

aggregates them to 𝑁𝑑𝑔𝑝
𝑖+1 . Vehicles that drive to a parking garage during time slice 𝑖 

(i.e., 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  and 𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘 ) join this state; vehicles that actually access garage parking 

(i.e., 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘 ) and vehicles that cannot access garage parking (i.e., 𝑛𝑑𝑔𝑝/s

𝑖,𝑘 ) quit this 

state. Eq. (22) updates the number of “garage parking” vehicles for each 𝑘 ∈ 𝐾 before 

aggregating them to 𝑁𝑔𝑝
𝑖+1. Vehicles that access a garage during time slice 𝑖 (i.e., 

𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘 ) join this state; vehicles that depart garage parking (i.e., 𝑛𝑔𝑝/𝑛𝑠

𝑖,𝑘 ) quit this state. 

The total number of vehicles driving in the network at the beginning of time slice 𝑖 is 

𝑁𝑛𝑠
𝑖 +𝑁𝑠

𝑖 +𝑁𝑑𝑔𝑝
𝑖 . The total number of vehicles parked at the beginning of time slice 𝑖 

is 𝑁𝑜𝑝
𝑖 +𝑁𝑔𝑝

𝑖 . 

3.3.2 Transition events 

We model the transition events introduced in Table 3.5 in the sections 3.3.2.1 to 3.3.2.9 

below. 

3.3.2.1 Enter the area 

The traffic demand 𝑛/𝑛𝑠
𝑖,𝑘  is – analogously to section 2.4.2 – an input to the model. It 

can be based on a probability distribution or it can be extracted from an agent-based 

model (e.g., MATSim). However, similarly to all other transition events, 𝑛/𝑛𝑠
𝑖,𝑘 , is 

deterministic and represents average values, i.e., there are no random values involved 

in their computation. A portion 𝛽𝑖 of all vehicles entering the area is considered as 

trough-traffic, i.e., these vehicles will drive through the area without needing to park. 

3.3.2.2 Go to parking (Decision to park) 

We assume that the vehicles from user group 𝑘 ∈ 𝐾 make their parking decision 

(searching for on-street parking or driving to garage parking) after driving a distance 

𝑙𝑛𝑠/
𝑘  since they enter the area. 𝑙𝑛𝑠/

𝑘  can be fixed or taken out of any given probability 

density function. The vehicles have the option to drive to garage parking as modeled 

in Eq. (23), or search for an on-street parking space as shown in Eq. (24). Both 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  

and 𝑛𝑛𝑠/𝑠
𝑖,𝑘  may consist of vehicles from user group 𝑘 ∈ 𝐾 entering the network in any 

former time slice 𝑖′ ∈ [1, 𝑖 − 1]. Eq. (23) and Eq. (24) are modifications of Eq. (5), and 

include the proportions of vehicles deciding for garage parking, 𝛾𝑔𝑝
𝑖,𝑘, or to search for 

on-street parking, 𝛾𝑜𝑝
𝑖,𝑘, for 𝑘 ∈ 𝐾. 
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𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 = [∑ (1 − 𝛽𝑖

′
) ∙ 𝑛/𝑛𝑠

𝑖′,𝑘
⏟          

term 1

∙ 𝛾𝑛𝑠/
𝑖′,𝑘
⏟
term 2

𝑖−1

𝑖′=1

] ∙ 𝛾𝑔𝑝
𝑖,𝑘
⏟
term 3

 (23) 

𝑛𝑛𝑠/𝑠
𝑖,𝑘 = [∑ (1 − 𝛽𝑖

′
) ∙ 𝑛/𝑛𝑠

𝑖′,𝑘
⏟          

term 1

∙ 𝛾𝑛𝑠/
𝑖′,𝑘
⏟
term 2

𝑖−1

𝑖′=1

] ∙ 𝛾𝑜𝑝
𝑖,𝑘
⏟
term 4

 (24) 

where 

𝛾𝑛𝑠/
𝑖′,𝑘 = {

1,    if 𝑙𝑛𝑠/
𝑘 ≤∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑛𝑠/

𝑘 + 𝑑𝑖−1

0,    otherwise_____________________________________________

 (25) 

Term 1 in Eq. (23) and Eq. (24) shows the portion of the total demand 𝑛/𝑛𝑠
𝑖′,𝑘 that needs 

to park, i.e., all vehicles excluding through traffic. The proportion of through-traffic, 

𝛽𝑖
′
, is assumed to be independent of the individual user group 𝑘 ∈ 𝐾. Term 2 

indicates whether these vehicles can decide for parking in time slice 𝑖 or need to 

continue driving until they cover a distance 𝑙𝑛𝑠/
𝑘  (Eq. (25)). Term 3 in Eq. (23) expresses 

the proportion of drivers deciding to drive towards a parking garage (from Eq. (10)) 

in time slice 𝑖 depending on user group 𝑘. Term 4 in Eq. (24) expresses the proportion 

of drivers deciding to search for an on-street parking space (from Eq. (11)) in time 

slice 𝑖 depending on user group 𝑘. 

3.3.2.3 Switch to garage parking 

In this section, the transition event 𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  is modeled in Eq. (26) to determine the 

number of vehicles switching to garage parking after being in the searching-for-on-

street-parking state for at least one time slice. This represents the drivers that change 

their mind regarding where to park. 

𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 = [𝑁𝑠

𝑖,𝑘 − 𝑛𝑠/𝑜𝑝
𝑖 ∙

𝑁𝑠
𝑖,𝑘

𝑁𝑠
𝑖⏟            

term 1

] ∙ 𝛿𝑔𝑝
𝑖,𝑘
⏟
term 2

∙ min{(𝑁𝑠
𝑖)
−𝛼
; 1}⏟          

term 3

 (26) 

Term 1 represents all searching vehicles of user group 𝑘 that have not parked on-

street in this time slice 𝑖. Further details on the computation of 𝑛𝑠/𝑜𝑝
𝑖  can be found in 

section 2.4.2. Here, we can refer to 𝑛𝑠/𝑝
𝑖  in Eq. (6), as we do not differentiate between 

on-street and garage parking in the original model (section 2.4). Term 2 shows the 

proportion of searching vehicles deciding to drive towards a parking garage (Eq. (9)). 

Notice that the same vehicles have to go over the same decision at multiple time slices 

in the transition events “Go to parking” and “Switch to garage parking” (potentially 

revising their previous decision). Term 3 represents a penalty term that prevents 

drivers from flipping between 𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  and 𝑛𝑑𝑔𝑝/𝑠

𝑖,𝑘 . It is dependent on 𝑁𝑠
𝑖 since the 

likelihood of flipping is high when there are a lot of searching vehicles on the 

network. The level of the penalty for the simulation is characterized by 𝛼. This 

parameter is defined as 𝛼 > 1 such that (𝑁𝑠
𝑖)
−𝛼
< 1, if 𝑁𝑠

𝑖 > 1. We introduce a 

minimum function in term 3 to keep term 3 as a probability value, i.e., between 0 and 
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1. It can be shown in a sensitivity analysis that as long as 𝛼 > 1, changes to its value 

only have a marginal influence on the average searching time/distance, the average 

time/distance of drivers driving to garage parking, and on the revenue collected by 

on-street and garage parking fees in the network, but the details are omitted in this 

chapter for brevity. In the remainder of this study, we assume a square root 

dependency and set 𝛼 = 2. 

3.3.2.4 Find and access on-street parking 

The vehicles 𝑛𝑠/𝑜𝑝
𝑖,𝑘  from user group 𝑘 searching for on-street parking that find and 

access a parking space are determined in Eq. (27). 

𝑛𝑠/𝑜𝑝
𝑖,𝑘 = 𝑛𝑠/𝑜𝑝

𝑖 ∙
𝑁𝑠
𝑖,𝑘

𝑁𝑠
𝑖

 (27) 

Notice that all drivers decide to access the first available on-street parking space in 

the network, as all parking spaces have the same price. As previously stated, details 

on 𝑛𝑠/𝑜𝑝
𝑖  can be found in section 2.4.2. 

3.3.2.5 Access garage parking 

The transition event 𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘  in Eq. (28) describes the process of accessing a parking 

garage. After the vehicles have decided to use garage parking, they drive towards the 

parking garage where they realize whether it is possible for them to access it 

depending on the garage parking availability. 

𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘 =

𝑁𝑑𝑔𝑝
𝑖,𝑘

𝑁𝑑𝑔𝑝
𝑖
⏟
term 1

∙ min{∑∑ (𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖′,𝑘 + 𝑛𝑠/𝑑𝑔𝑝

𝑖′,𝑘 )⏟            
term 2

∙ 𝛾𝐴𝐷𝐷
𝑖′,𝑘
⏟
term 3

𝑖−1

𝑖′=1

𝐾

𝑘=1

; 𝑅𝑖} (28) 

where 

𝛾𝐴𝐷𝐷
𝑖′,𝑘 = {

1, if 𝐴𝐷𝐷 − 𝑙𝑛𝑠/
𝑘 ≤∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝐴𝐷𝐷 − 𝑙𝑛𝑠/

𝑘 + 𝑑𝑖−1

0, otherwise______________________________________________________________

 (29) 

Term 1 in Eq. (28) represents the portion of vehicles trying to access garage parking 

that belong to user group 𝑘. Term 2 shows the sum of all vehicles (from sections 3.3.2.2 

and 3.3.2.3) that have decided to use garage parking in any former time slice 𝑖′ ∈

[1, 𝑖 − 1]. Term 3 (computed in Eq. (29)) indicates whether these vehicles have arrived 

at the garage after reaching 𝐴𝐷𝐷 − 𝑙𝑛𝑠/
𝑘  (section 3.2.2.2). Note that the vehicles driving 

to garage parking are assumed to drive directly towards their garage as soon as they 

enter the area. Thus, the distance 𝑙𝑛𝑠/
𝑘  is deducted from 𝐴𝐷𝐷. Two conditions must be 

satisfied: the vehicles have driven enough distance to arrive at a parking garage after 

having decided for it, and they have not accessed a garage in a former time slice. 

Finally, the number of vehicles that can actually access garage parking is the 

minimum of the available garage parking spaces and the number of vehicles that 

want to park. 
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3.3.2.6 Not access garage parking 

This transition event includes all vehicles that do not access garage parking due to 

limited availability. In this situation, some of these vehicles 𝑛𝑑𝑔𝑝/𝑠
𝑖,𝑘  in Eq. (30) return 

back to searching-for-on-street-parking state. However, depending on 𝐴 and 𝑅 some 

drivers might prefer to stay in the “drive to garage parking” state as a result of a low 

total number of existing on-street parking spaces compared to the total existing 

garage capacity. 

𝑛𝑑𝑔𝑝/𝑠
𝑖,𝑘 =

𝑁𝑑𝑔𝑝
𝑖,𝑘

𝑁𝑑𝑔𝑝
𝑖
⏟
term 1

∙ max{∑∑ (𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖′,𝑘 + 𝑛𝑠/𝑑𝑔𝑝

𝑖′,𝑘 )⏟            
term 2

∙ 𝛾𝐴𝐷𝐷
𝑖′,𝑘
⏟
term 3

𝑖−1

𝑖′=1

𝐾

𝑘=1

− 𝑅𝑖; 0} ∙
𝐴

𝑅 + 𝐴⏟  
term 4

 (30) 

Term 1, 2, and 3 are already determined as in Eq. (28). In case the garage parking 

availability limit is reached and the vehicles that would like to enter a parking garage, 

i.e., ∑ ∑ (𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖′,𝑘 + 𝑛𝑠/𝑑𝑔𝑝

𝑖′,𝑘 ) ∙ 𝛾𝐴𝐷𝐷
𝑖′,𝑘𝑖−1

𝑖′=1
𝐾
𝑘=1 , surpass 𝑅𝑖, the remaining vehicles need to 

return to searching-for-parking state; otherwise all vehicles can successfully enter a 

garage. This portion of vehicles returning back to searching-for-on-street-parking 

state is reduced by term 4 that represents the drivers’ decision to stay in the “drive to 

garage parking” state due to a low 𝐴 in comparison to 𝑅 + 𝐴. This term is not time-

dependent since there is no real-time usage information available. This constraint is 

relaxed later (section 3.4.5) when real-time information is available. Notice that for 

more realistic applications, the capacity of garage parking will not be an active 

constraint. It is included here, however, for the sake of completeness. 

3.3.2.7 Depart on-street parking 

The number of vehicles that depart from on-street parking is based on the distribution 

of on-street parking durations 𝑓(𝑡𝑑,𝑜𝑝) and on the number of vehicles having accessed 

on-street parking, 𝑛𝑠/𝑜𝑝
𝑖′,𝑘 , in a former time slice 𝑖′ ∈ [1, 𝑖 − 1]. The probability that 

these vehicles depart from on-street parking in time slice 𝑖 equals to the probability 

of the on-street parking duration being between (𝑖 − 𝑖′) ∙ 𝑡 and (𝑖 + 1 − 𝑖′) ∙ 𝑡, i.e., 

∫ 𝑓(𝑡𝑑,𝑜𝑝) 𝑑𝑡𝑑,𝑜𝑝
(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡
. The transition event is formulated as 𝑛𝑜𝑝/𝑛𝑠

𝑖,𝑘  in Eq. (31), which 

is consistent with Eq. (7) and focuses only on on-street parking for 𝑘 ∈ 𝐾. 

𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘 = ∑ 𝑛𝑠/𝑜𝑝

𝑖′,𝑘 ∙ ∫ 𝑓(𝑡𝑑,𝑜𝑝) 𝑑𝑡𝑑,𝑜𝑝

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (31) 

The on-street parking availability 𝐴𝑖 is updated in Eq. (32) after vehicles access or 

depart from on-street parking. 𝐴𝑖 cannot surpass the total number of existing on-street 

parking spaces, i.e., 𝐴𝑖 ≤ 𝐴 for all time slices 𝑖. 

𝐴𝑖+1 = 𝐴𝑖 +∑𝑛𝑜𝑝/𝑛𝑠
𝑖,𝑘

𝐾

𝑘=1

−∑𝑛𝑠/𝑜𝑝
𝑖,𝑘

𝐾

𝑘=1

 (32) 
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3.3.2.8 Depart garage parking 

The transition event 𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘  in Eq. (33) is modeled analogously to 𝑛𝑜𝑝/𝑛𝑠

𝑖,𝑘 . It is based on 

Eq. (7), but uses only garage parking related transition events and garage parking 

durations. As we know the number of vehicles having decided to use garage parking 

in all former time slices, we can find 𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘  based on the distribution of garage 

parking durations 𝑓(𝑡𝑑,𝑔𝑝). 

𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘 = ∑ 𝑛𝑑𝑔𝑝/𝑔𝑝

𝑖′,𝑘 ∙ ∫ 𝑓(𝑡𝑑,𝑔𝑝) 𝑑𝑡𝑑,𝑔𝑝

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (33) 

After vehicles access or depart from garage parking, the availability 𝑅𝑖 is updated in 

Eq. (34). 𝑅𝑖 cannot surpass the total capacity, i.e., 𝑅𝑖 ≤ 𝑅 for all time slices 𝑖. 

𝑅𝑖+1 = 𝑅𝑖 +∑𝑛𝑔𝑝/𝑛𝑠
𝑖,𝑘

𝐾

𝑘=1

−∑𝑛𝑑𝑔𝑝/𝑔𝑝
𝑖,𝑘

𝐾

𝑘=1

 (34) 

3.3.2.9 Leave the area 

The vehicles leave the area after having driven for a given distance 𝑙/
𝑘 or 𝑙𝑝/

𝑘  depending 

on whether they have parked or not. Notice that the distances 𝑙/
𝑘 and 𝑙𝑝/

𝑘  analogously 

to 𝑙𝑛𝑠/
𝑘  can be fixed or taken out of any given probability density function. Vehicles 

leaving the area are modeled as 𝑛𝑛𝑠/
𝑖,𝑘  in Eq. (35) and include through-traffic vehicles, 

𝛽𝑖
′
∙ 𝑛/𝑛𝑠
𝑖′,𝑘, and vehicles from the transition events 𝑛𝑜𝑝/𝑛𝑠

𝑖′,𝑘  and 𝑛𝑔𝑝/𝑛𝑠
𝑖′,𝑘 . Eq. (35) is based 

on the formulation in Eq. (8), including a slight enhancement which allows us to take 

into account vehicles departing from on-street and garage parking. 

𝑛𝑛𝑠/
𝑖,𝑘 = ∑ (𝛽𝑖

′
∙ 𝑛/𝑛𝑠
𝑖′,𝑘 ∙ 𝛾/

𝑖′,𝑘 + (𝑛𝑜𝑝/𝑛𝑠
𝑖′,𝑘 + 𝑛𝑔𝑝/𝑛𝑠

𝑖′,𝑘 ) ∙ 𝛾𝑝/
𝑖′ ,𝑘)

𝑖−1

𝑖′=1

 (35) 

where 

𝛾/
𝑖′,𝑘 = {

1,    if 𝑙/
𝑘 ≤∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙/

𝑘 + 𝑑𝑖−1

0,    otherwise_________________________________________

  

𝛾𝑝/
𝑖′,𝑘 = {

1,    if 𝑙𝑝/
𝑘 ≤∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑝/

𝑘 + 𝑑𝑖−1

0,    otherwise___________________________________________

  

3.4 Applications 

In this section, a case study of an area within the city of Zurich, Switzerland, is 

provided to illustrate the influences of on-street and garage parking on the traffic 
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system. We use real data obtained by Cao et al. (2019). The results are obtained with 

the aid of a simple numerical solver such as Matlab. We discuss the findings 

regarding on-street and garage parking pricing, the related parking decision, and the 

impacts on the average searching time/distance. We analyze the short-term effects of 

including garage usage information to all drivers, as well as the influences of 

converting on-street to garage parking spaces on the traffic system. 

3.4.1 Case study of an area within the city of Zurich, 

Switzerland 

Our study area (0.28 km2) in Fig. 3.4(a) is located around the shopping area Jelmoli 

in the city center of Zurich (Cao et al. (2019)). There is a significant amount of retail 

space and offices from the financial sector in this area. This central area attracts 39 % 

of all trips related to shopping, 35 % related to leisure, and 26 % related to business 

activities (survey from May 2016 (Cao et al. (2019)). The total length of all roads in the 

area is 𝐿 = 7.7 km with an associated area radius of 0.3 km and 𝑏 = 76 m. Most streets 

in this area have two lanes (one per direction or two one-way lanes). 

 
     (a) Case study area in the city center of Zurich.      (b) Number of vehicles entering the area over one day 

Fig. 3.4. Case study area and parking demand per minute computed as a moving average over 10 min  

(Source: Cao et al. (2019)). 

There are 𝐴 = 207 on-street parking spaces and 𝐺 = 2 parking garages (Jelmoli and 

Talgarten garage) with a total capacity of 𝑅 = 332 spaces. The on-street parking price 

is on average 𝑝𝑜𝑝 = 1.5 CHF/hour and the garage parking price is on average 𝑝𝑔𝑝 =

3 CHF/hour (Cao et al. (2019)). We consider time slices of 1 min during a working day, 

i.e., 𝑡 = 1 min for a time horizon of 𝑇 = 1440 min. The MFD of the city of Zurich was 

used for the traffic properties (i.e., 𝑣 = 12.5 km/h), based on (Dakic and Menendez 

(2018), Loder et al. (2017), Ortigosa et al. (2014)). 

The parking demand (Fig. 3.4(b)), parking durations, and initial conditions are 

extracted from an agent-based model in MATSim that is based on previous 

measurements. This has been validated and proven reasonable for the city of Zurich 

in Waraich and Axhausen (2012). Note that the parking demand (Fig. 3.4(b)) is a 

deterministic demand that changes throughout the day. There is a total travel 

demand of 2687 trips spread between four different user groups (892/ 956/ 838/ 956 

trips) in the network associated with different VOTs (𝑉𝑂𝑇1 = 29.9 CHF/h; 𝑉𝑂𝑇2 =
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25.4 CHF/h; 𝑉𝑂𝑇3 = 25.8 CHF/h; 𝑉𝑂𝑇4 = 17.2 CHF/h). All VOT values are based on 

the estimated mean values for the VOT for car journeys in Switzerland (Axhausen et 

al. (2006)). Based on the parking demand and parking usage 23% (618 trips) of the 

daily demand (i.e., 𝛽𝑖 = 0.23, ∀𝑖) does not search for parking and can be considered 

as through-traffic, while 77% (2069 trips) of the daily traffic searches for parking (Cao 

et al. (2019)). At the beginning of every working day 183 vehicles are already in the 

area, where 𝑁𝑜𝑝
0 = 70 are parked on-street and 𝑁𝑔𝑝

0 = 113 are in a garage. All other 

initial conditions are considered as zero, i.e., 𝑁𝑛𝑠
0 = 𝑁𝑠

0 = 𝑁𝑑𝑔𝑝
0 = 0. Taking the 

network properties into account, the travel distances 𝑙𝑛𝑠/
𝑘 , 𝑙/

𝑘 and 𝑙𝑝/
𝑘  are all uniformly 

distributed between 0.1 and 0.7 km for all 𝑘 ∈ {1,… ,4}. 

 

(a) Histogram of the on-street parking durations.        (b) Histogram of the garage parking durations. 

Fig. 3.5. Parking durations for on-street and garage parking. 

The parking durations of vehicles are differentiated by their parking destination. Fig. 

3.5(a) displays the distribution of on-street parking durations and Fig. 3.5(b) the 

distribution of garage parking durations. The histogram in Fig. 3.5(a) is comparable 

to a gamma distribution with a shape parameter of 𝑎1 = 3.5 and a scale parameter of 

𝑎2 = 28.5. The histogram in Fig. 3.5(b) represents the two types of drivers, those that 

have to park in a garage because 𝑡𝑑 > 𝜏𝑜𝑝 and those that chose to do it as 𝑡𝑑 ≤ 𝜏𝑜𝑝. It 

is modeled using the gamma distribution with a shape parameter of 𝑎1 = 2.1 and a 

scale parameter of 𝑎2 = 137.4. Depending on the frequency, a bi-modal gamma 

distribution might be suitable for other case studies. All on-street parking spaces have 

a parking time limit of 𝜏𝑜𝑝 = 180 min and the garages have no limit within 24 hours, 

i.e., 𝜏𝑔𝑝 = 1440 min (Cao et al. (2019)). The price per distance driven is assumed as 

𝑝𝑑 = 0.3 CHF/km and the walking speed is set to 𝑤 = 5 km/h (Browning et al. (2006)). 

3.4.2 Validation 

Given that the original framework (Cao and Menendez (2015a)) focusing only on on-

street parking has already been validated – in terms of parking usage and cruising 

time – in former studies (Cao et al. (2019)) and has been used in Cao and Menendez 

(2018), here we focus on the validation of the garage parking usage. We validate the 

garage parking occupancy rate using empirical data collected by the city of Zurich. 

The real garage occupancy data in Fig. 3.6 is generated through a local monitoring 

system (PLS Zurich) based on 15-minute intervals between the 1st and the 22nd of 
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April, 2016. Only data from Tuesdays, Wednesday, and Thursdays from the Jelmoli 

and Talgarten garages are included in the study to represent a working day demand. 

Compared to Cao et al. (2019) the garage parking occupancy obtained in this chapter 

is already close to 100% after the 9.5th hour. This happens because the garage parking 

duration used here (gamma distribution with mean 𝜇 = 293 min in Fig. 3.5(b)) is on 

average longer than that used in Cao et al. (2019) (gamma distribution with mean 𝜇 =

230.2 min) due to our differentiation of parking durations based on parking 

destinations. Hence, the turnover-rate of the garage parking spaces is reduced, and 

the 100% garage occupancy is reached at an earlier hour of the day. 

 
Fig. 3.6. Comparison between the empirical garage and the estimated garage parking occupancy  

(empirical data were collected and averaged over 12 working days from three weeks during 1st – 22nd April, 2016). 

The curve reflecting the estimated garage parking occupancy rate shows a rather 

similar pattern to that of the real data. The approximation is more accurate compared 

to the validation in Cao et al. (2019), where no differentiation between on-street and 

garage parking is modeled. The mean absolute error (MAE) of our estimation is 0.046, 

less than in Cao et al. (2019). 

 

3.4.3 Model results 

In this section, we present some valuable insights with respect to on-street and garage 

parking. Table 3.6 illustrates the average/total time and driven distance for the 

vehicles in the states “Searching for on-street parking”, “Drive to garage parking” 

and “Non-searching” during a typical working day. 

On average, each vehicle spends 9.7 minutes in the network (excluding the time spent 

parked). Not surprisingly, vehicles spend on average longer in the “Searching for on-

street parking”-state (3.7 minutes) than in the “Drive to garage parking”-state (3 

minutes). A similar behavior can be detected when looking at the average driven 

distance in the network (Table 3.6). What is interesting, however, is that the absolute 

difference in average travel time between the two parking options is less than a 

minute. This happens because of two reasons. First, the area itself is rather small. 

Second, based on our decision framework in Eq. (10) on average, only 48.8% of the 

parking vehicles are able to make a decision between on-street and garage parking. 

The remaining 51.2% must drive towards a parking garage, given that the on-street 
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parking duration limit is set to 𝜏𝑜𝑝 = 180 min. 

Table 3.6. Average/Total time and driven distance in the network during a typical working day. 

State 

Average time  

per vehicle  

(min/veh) 

Total time  

(min) 

Average driven  

distance 

(km/veh) 

Total driven  

distance  

(km)  

Searching for on-street parking state 3.72 4323 0.77 901 

Driving to garage parking state 2.96 7458 0.69 1554 

Non-searching state 4.46 10047 0.93 2093 

Total 9.69 21827 2.02 4547 

 

Following the parking demand (Fig. 3.4(b)), the number of vehicles searching for on-

street parking increases drastically between the 9th and the 13th hour, and the 

number of available on-street parking spaces goes down (Fig. 3.7(a)). After the 9.5th 

hour, the number of available garage parking spaces gets close to zero (Fig. 3.7(b)). 

The vehicles that cannot access garage parking then return back to the searching-for-

on-street-parking state. This leads to more searching vehicles and less available on-

street parking spaces at an earlier hour compared to Cao et al. (2019) (Fig. 3.7(a)). The 

number of vehicles driving to garage parking behaves analogously to the parking 

demand (Fig. 3.4(b)) and increases between the 5th and the 20th hour (Fig. 3.7(b)). 

Given the distribution of garage parking durations and the resulting turnover, the 

number of available garage parking spaces decreases drastically between the 9.5th 

and the 14th hour (see also Fig. 3.6): 

 
     (a) Searching vehicles and available on-street parking.    (b) Vehicles driving to garage and available garage parking. 

Fig. 3.7. On-street and garage parking demand and supply over a typical working day. 

Once there are no available on-street parking spaces anymore (Fig. 3.7(a)), the average 

cruising time increases (Fig. 3.8). This leads to an increase in the costs associated with 

cruising-for-on-street-parking. 
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Fig. 3.8. Average cruising time for on-street parking over a typical working day. 

 

   (a) Traffic composition.                 (b) Vehicles in garage parking related transition events. 

Fig. 3.9. Traffic composition and garage parking related transition events as a moving average over 10 min. 

Fig. 3.9(a) shows the share of vehicles searching for on-street parking, driving to 

garage parking, or non-searching over time. This traffic composition is related only 

to the vehicles circulating on the network, and not those that are parked. Between the 

10th and the 13th hour, the network has the highest percentage of vehicles searching 

for on-street parking. Fig. 3.9(b) shows the number of vehicles 𝑛𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘 , 𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘  and 

𝑛𝑑𝑔𝑝/s
𝑖,𝑘  summed over all user groups 𝑘 ∈ 𝐾 over a typical working day. 𝑛𝑛𝑠/𝑑𝑔𝑝

𝑖,𝑘  

behaves analogously to the parking demand (Fig. 3.4(b)). It increases between the 5th 

and the 20th hour. 𝑛𝑠/𝑑𝑔𝑝
𝑖,𝑘  is negligibly small. 𝑛𝑑𝑔𝑝/s

𝑖,𝑘  increases from approximately the 

9.5th hour since the garage parking occupancy rate is close to 100% (Fig. 3.6). Thus, 

not enough available garage parking spaces are left (Fig. 3.7(b)) and vehicles are not 

able to access the parking garages. 

3.4.4 Impacts of on-street and garage parking pricing 

We now use our model to capitalize on the interactions between on-street and garage 

parking pricing to improve traffic performance in the short-term (i.e., minimize the 

average searching time and distance). This might be accomplished by increasing the 

attractiveness of garage parking such that fewer vehicles insist on searching for an 

on-street parking space, or vice versa, once the garages become full. Remember that 

this is only possible for drivers who actually have a choice and not for drivers who 

can only use a garage (Eq. (10)) due to the on-street parking time limit restrictions. 
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What is the ideal ratio between on-street and garage parking fees to attract drivers 

such that they avoid cruising for on-street parking? We study the impacts of a limited 

on-street and garage capacity in combination with different on-street and garage 

parking pricing parameters, i.e., due to the limited number of garage parking spaces 

and different related pricing schemes congestion might occur and affect the traffic 

performance in the network. 

Remember that both the hourly on-street and garage parking fee rates, 𝑝𝑜𝑝 and 𝑝𝑔𝑝, 

are part of the decision related cost variables for on-street and garage parking. Based 

on these cost variables, the drivers decide for on-street or garage parking, affecting 

the average travel time in each parking-related state as illustrated in Fig. 3.10. 

Increasing the ratio 
𝑝𝑜𝑝

𝑝𝑔𝑝
 leads to a higher cost variable 𝐶𝑜𝑝

𝑖,𝑘 (section 3.2.2.1) and the 

drivers are more likely to drive to garage parking. Thus, the average time for vehicles 

driving to garage parking increases, while the average searching time decreases (Fig. 

3.10). Both times are equal for 
𝑝𝑜𝑝

𝑝𝑔𝑝
= 1.75. At the same time, the average vehicle time 

for both searching and driving to garage parking vehicles increases in the network 

after some initial drop (green dotted line in Fig. 3.10). The results for the average 

distance driven follow a similar pattern as Fig. 3.10, but the details are omitted in this 

chapter for brevity. 

 
Fig. 3.10. The impact of on-street and garage parking pricing schemas on average time searching/driving to  

garage parking. 

Table 3.7 highlights these findings by comparing the reference scenario in section 3.4.3 

with an average 𝑝𝑜𝑝 = 1.5 CHF/hour and an average 𝑝𝑔𝑝 = 3 CHF/hour, i.e., 
𝑝𝑜𝑝

𝑝𝑔𝑝
=
1

2
, 

with the following scenarios: 

• 𝑝𝑜𝑝 = 0.75 CHF/hour and 𝑝𝑔𝑝 = 3 CHF/hour, i.e., 
𝑝𝑜𝑝

𝑝𝑔𝑝
=
1

4
 

• 𝑝𝑜𝑝 = 3 CHF/hour and 𝑝𝑔𝑝 = 3 CHF/hour, i.e., 
𝑝𝑜𝑝

𝑝𝑔𝑝
= 1 

• 𝑝𝑜𝑝 = 6 CHF/hour and 𝑝𝑔𝑝 = 3 CHF/hour, i.e., 
𝑝𝑜𝑝

𝑝𝑔𝑝
= 2. 

As one would expect, the short-term financial benefits for the city, i.e., the total 

revenue from both on-street and garage parking pricing, increase as either 𝑝𝑜𝑝 and 

𝑝𝑔𝑝 increase. 
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Table 3.7. Comparison of different policies presented in section 3.4.4 (Different on-street and garage parking fees), section 3.4.5 

(Availability of garage usage information) and section 3.4.6 (Converting on-street to garage parking) to the reference scenario in 

section 3.4.3. Value within parenthesis represents the percentage change with respect to the reference scenario. 

Policies 

Section 

3.4.3: 

Reference 

scenario 

Section 3.4.4:  

Different on-street and  

garage parking pricing 

Section 3.4.5: 

Garage usage 

information 

available 

Section 3.4.6: 

Conversion rate from on-street  

to garage parking 

Scenario 
𝒑𝒐𝒑

𝒑𝒈𝒑
=
𝟏

𝟐
 

𝒑𝒐𝒑

𝒑𝒈𝒑
=
𝟏

𝟒
 

𝒑𝒐𝒑

𝒑𝒈𝒑
= 𝟏 

𝒑𝒐𝒑

𝒑𝒈𝒑
= 𝟐 Known to all 

drivers 
𝟏𝟎 %  𝟑𝟎 %  𝟓𝟎 %  

Average time for 

vehicles searching for 

on-street parking 

(min/veh) 

3.72 
4.32 

(+16.1 %) 

3.61 

(-3 %) 

3.53 

(-5.1 %) 

2.93 

(-21.2 %) 

2.61 

(-29.8 %) 

0.89 

(-76.1 %) 

0.18 

(-95.2 %) 

Average time for 

vehicles driving to 

garage parking 

(min/veh) 

2.96 
2.29 

(-22.6 %) 

3.31 

(+11.8 %) 

3.83 

(+29.4 %) 

2.14 

(-27.7 %) 

4.04 

(+36.5 %) 

5.38 

(+81.8 %) 

5.93 

(+100 %) 

Average time for 

vehicles searching for 

on-street parking and 

driving to garage 

parking (min/veh) 

6.68 
6.61 

(-1.1 %) 

6.92 

(+3.6 %) 

7.36 

(+10.2 %) 

5.07 

(-24.1 %) 

6.65 

(-0.4 %) 

6.27 

(-6.1 %) 

6.11 

(-8.5 %) 

Average time for 

vehicles non-searching 

(min/veh) 

4.46 
4.46 

(+0 %) 

4.45 

(-0.2 %) 

4.44 

(-0.5 %) 

4.48 

(+0.5 %) 

4.41 

(-1.1 %) 

4.4 

(-1.3 %) 

4.4 

(-1.3 %) 

Average driven 

distance for vehicles 

searching for on-street 

parking (km/veh) 

0.77 
0.9 

(+16.9 %) 

0.75 

(-2.6 %) 

0.73 

(-5.2 %) 

0.61 

(-20.8 %) 

0.53 

(-31.1 %) 

0.18 

(-76.6 %) 

0.1 

(-87 %) 

Average driven 

distance for vehicles 

driving to garage 

parking (km/veh) 

0.69 
0.54 

(-21.7 %) 

0.77 

(+11.6 %) 

0.89 

(+29 %) 

0.5 

(-27.5 %) 

0.92 

(+33.3 %) 

1.19 

(+72.5 %) 

1.23 

(+78.3 %) 

Average driven 

distance for vehicles 

searching for on-street 

parking and driving to 

garage parking 

(km/veh) 

1.46 
1.44 

(-1.4 %) 

1.52 

(+4.1 %) 

1.62 

(+11 %) 

1.11 

(-24 %) 

1.45 

(-0.7 %) 

1.37 

(-6.2 %) 

1.33 

(-8.9 %) 

Average driven 

distance for vehicles 

non-searching (km/veh) 

0.93 
0.93 

(+0 %) 

0.93 

(+0 %) 

0.93 

(+0 %) 

0.93 

(+0 %) 

0.93 

(+0 %) 

0.92 

(-1.1 %) 

0.92 

(-1.1 %) 

Total on-street  

parking revenue 
3968 

2040 

(-48.6 %) 

7764 

(+95.7 %) 

13845 

(+248.9 %) 

3974 

(+0.2 %) 

3720 

(-6.3 %) 

3192 

(-19.6 %) 

2634 

(-33.6 %) 

Total garage  

parking revenue 
13163 

12714 

(-3.4 %) 

13443 

(+2.1 %) 

13634 

(+3.6 %) 

13131 

(-0.2 %) 

14314 

(+8.7 %) 

16606 

(+26.2 %) 

19008 

(+44.4 %) 

Total revenue created  

by both on-street and 

garage parking 

17131 
14754 

(-13.9 %) 

21207 

(+23.8 %) 

27479 

(+60.4 %) 

17105 

(-0.2 %) 

18034 

(+5.3 %) 

19798 

(+15.6 %) 

21642 

(+26.3 %) 

As a matter of fact, increasing only the price of on-street parking (e.g., to 3 CHF or 

6 CHF) increases the revenues for both the on-street and the garage parking. The 
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former is intuitive, the latter comes from the fact that more vehicles move into garage 

parking in order to avoid the expensive on-street parking fees. Only doubling 𝑝𝑜𝑝 

compared to the reference scenario (scenario 
𝑝𝑜𝑝

𝑝𝑔𝑝
= 1) leads to 23.8% more parking 

revenue. The total revenue would increase slightly faster if 𝑝𝑔𝑝 were to increase, since 

more than 60% of the parking spaces in the network are garage parking spaces. Every 

city can estimate their best on-street and garage parking fees according to its plans on 

improving the traffic performance, the congestion and the environmental conditions 

and on collecting parking fee revenue (see the different on-street and garage parking 

pricing ratios in Table 3.7). 

It is also possible to use more advanced sensitivity analysis techniques (e.g., as in Ge 

et al. (2015) and Ge and Menendez (2017)) to further understand the impact of 

different inputs (dependent or independent) on these metrics. 

Different on-street and garage parking fee rates can lead not only to more vehicle 

time/distance on the network, worse traffic performance, and worse environmental 

conditions, but also to various financial revenue outputs. Based on these results cities 

can find reasonable hourly on-street and garage parking fees such that the average 

time driving to garage parking and searching for on-street parking are not negatively 

affected and additionally, acceptable financial revenues are obtained. Our 

methodology provides the tools to do a cost-benefit analysis and to study the trade-

off between revenues and the average travel time of vehicles trying to park. 

3.4.5 Availability of garage usage information to all drivers 

In reality, the actual garage parking availability also influences the drivers’ decision 

to park on-street or to drive towards a parking garage. This garage usage information 

can be made available to the drivers by providing real-time smartphone applications 

or garage information signs in the traffic network. 

In this section, we include full real-time information of garage parking availability 

into our on-street and garage parking model, i.e., the drivers have access to real-time 

usage information but no forecast of future garage availability. Since this garage 

parking availability influences the driver’s parking decision, we replace all 𝑅 by 𝑅𝑖 in 

Eq. (9) and Eq. (30). Table 3.7 illustrates the average time and driven distance for the 

scenario with garage availability information given to all drivers in the network 

during a typical working day. This additional information helps to reduce the average 

searching time by 21.2 % and the average time driving to garage parking by 27.7 % 

compared to the scenario without garage information available (section 3.4.3). The 

average driven distance in the network reduces similarly and the revenue from on-

street and garage parking fees stays constant (Table 3.7). Allowing drivers to make 

their on-street or garage parking decision based on real-time occupancy data leads to 

a better traffic performance on the network, and on average, a faster journey for 

drivers searching for parking, without affecting much the parking revenues. 

The parking choice for garage over on-street parking decreases drastically for drivers 

with available garage usage information between the 9.5th and the 14th hour 
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compared to drivers who have no garage information available (Fig. 3.11). Since the 

increase in the average cruising time (Fig. 3.8) has an impact on the drivers’ decision, 

more drivers without any available garage usage information drive to garage parking 

between the 9.5th and the 13th hour. Due to the lack of garage information, this 

parking choice is made even if the garage occupancy rate is low. Note that this 

parking choice only affects the portion of the parking demand that can make a 

decision between on-street and garage parking due to the on-street parking duration 

limit. By including the garage usage information into the decision framework, the 

drivers react towards the garage occupancy rate. The garage occupancy rate (Fig. 3.6) 

is then reflected in Fig. 3.11 and the parking choice for garage parking increases from 

the 14th hour analogously to the decrease of the garage occupancy rate in Fig. 3.6. 

 
Fig. 3.11. Parking choice for garage over on-street parking over a typical working day. The parking choice is 

illustrated for the scenarios without (section 3.4.3) and with (section 3.4.5) available garage usage information  

for all drivers. This choice is only possible for drivers with desired parking duration 𝑡𝑑 ≤ 𝜏𝑜𝑝. 

3.4.6 Impacts of converting on-street parking to garage  

parking spaces 

It has been one of the policies in Zurich, Switzerland to convert on-street to garage 

parking spaces. In this section, we evaluate the effects of this policy on traffic 

performance and the city’s revenue. Converting on-street to garage parking spaces is 

not a trivial task, since real estate in downtown areas is normally expensive to be 

dedicated to parking garages. However, many cities around the world have indeed 

done it in order to remove on-street parking spaces without necessarily downsizing 

the overall parking supply. For example, since the 1990’s Zurich has introduced a 

parking supply cap system in the inner-city (Fellmann et al. (2009)), i.e., in case a new 

parking space is created in a parking garage, an existing on-street parking space must 

be removed such that the parking supply is kept the same (Kodransky and Hermann 

(2011)). Since the introduction of this policy a few parking garages (e.g., City Parkhaus 

Zurich and Globus Parkhaus Zurich) and office parking lots have been built, and as 

a result, on-street parking space has been recovered for other activities. In this 

chapter, we assume a new parking garage is built and the number of parking garages 

increases to 𝐺 = 3. At the same time, valuable on-street parking space becomes 

available. We assume that the recovered road space while converting on-street 

parking to garage parking spaces has no influence on the traffic flow, and can be used 
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for other activities as in the case of Zurich (e.g., to create pedestrian zones or bicycle 

lanes). It is further assumed that the conversion of on-street parking does not 

influence the on-street and garage parking accessibility in the network. The total 

garage capacity starts at 𝑅 = 332 (as in section 3.4.3) and increases dependent on the 

number of converted on-street parking spaces. Note that the initial conditions for 𝑁𝑜𝑝
0  

and 𝑁𝑔𝑝
0  are adapted accordingly. 

The outputs in Fig. 3.12(a)-(b) show the impacts of the on-street parking conversion 

on the average time searching/driving to garage parking and the parking fee revenue. 

The impacts on the average/total driven distance follow a similar pattern, but the 

details are omitted in this chapter for brevity. 

 
   (a) Impact on average time.    (b) Impact on on-street and garage parking fee revenue. 

Fig. 3.12. The influence of converting on-street to garage parking on the average/total time searching and driving to 

garage parking, and on the parking fee revenue in the network. 

The more on-street parking spaces that are converted to garage parking spaces, the 

less drivers chose to go to on-street parking in the first place. This leads to a 

decreasing average searching time and an increasing average time driving to garage 

parking in the short-term (Fig. 3.12(a)). Table 3.7 highlights these findings by 

comparing the reference scenario in section 3.4.3 with the scenarios of having a 10%, 

30%, and 50% conversion rate from on-street to garage parking spaces. The average 

time/distance for vehicles that wish to park decreases as more on-street parking 

spaces are converted to garage parking. When converting on-street parking, for 

simplicity, we assume that the distribution for the garage parking durations becomes 

the same for all levels (based on the combination of Fig. 3.5(a) and Fig. 3.5(b)) as in 

Cao et al. (2019). Fig. 3.12(b) and Table 3.7 show the impact of the on-street parking 

conversion on the total revenue created by on-street/garage parking. While a 

decreasing number of on-street parking spaces leads to a decreasing total on-street 

parking revenue, it leads to an increasing total revenue from both on-street and 

garage parking fees. A conversion of on-street parking to garage parking spaces leads 

to a reduced travel time and distance for vehicles wishing to park and an increase in 

the total parking revenue for the city.  
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3.5 Summary of the chapter 

In this study, we develop a dynamic macroscopic on-street and garage parking model 

such that the short-term influences of different on-street and garage parking policies 

on the traffic system can be studied and illustrated. The macroscopic model is built 

on a traffic system with a parking search model over time. It is incorporated into the 

on-street parking framework from Cao and Menendez (2015a) (chapter 2). We 

validate this model based on real data for a case study of an area within the city of 

Zurich, Switzerland. 

The main contributions of this chapter are three-fold. 

First, we model garage parking macroscopically, including the parking searchers’ 

decision between driving to a parking garage or searching for an on-street parking 

space in the network. This includes the influences on the searching-for-parking traffic 

(cruising), the congestion in the network (traffic performance), the total driven 

distance (environmental impact), and the revenue created by on-street and garage 

parking fees for the city. 

Second, we analyze not only the relationship between on-street and garage parking, 

but also their interdependency on cruising-for-parking traffic and traffic performance 

with respect to different parking fees. Different hourly on-street and garage parking 

fee ratios can lead not only to more vehicle time/distance in the network, but also to 

various financial revenue outputs. Thus, this analysis can be used for city councils or 

private agencies to find reasonable hourly on-street and garage parking fee ratios 

such that the average vehicle time/distance is not negatively affected and 

additionally, acceptable financial revenues are obtained. Our methodology provides 

the tools to do a cost-benefit analysis and to study the trade-off between the revenue 

and the average travel time. In the long-term, drivers might avoid paying high on-

street or garage parking fees and quit their journeys. This could affect the demand, 

but long-term effects are out-of-scope of this research. 

Third, our model allows us to analyze parking policies in city center areas, e.g., the 

short-term effects of converting on-street to garage parking spaces on the traffic 

system can be simulated, and recommendations for city councils can be made. In the 

city of Zurich, a conversion of on-street parking to garage parking spaces might lead 

to a higher average time driving to garage parking and a lower average searching 

time in the short-term with an increase in the total parking revenue. Additionally, the 

impact of the availability of garage usage information on all drivers can be analyzed. 

This might lead to a better traffic performance on the network and an on average 

faster and shorter journey for each driver searching for parking. 

The general framework provides an easy to implement methodology to 

macroscopically model on-street and garage parking. All methods are based on very 

limited data inputs, including travel demand, VOT, number of garages with their 

capacity, the traffic network, and initial parking specifications. Only aggregated data 

at the network level over time are required such that there is no need for individual 
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on-street and garage parking data. This macroscopic approach saves on data 

collection efforts and reduces the computational costs significantly compared to 

existing literature. Additionally, there is no requirement of complex simulation 

software, and the model can be easily solved with a simple numerical solver. 

So far, the model only accounts for cars, so any changes in the demand and how those 

could affect other transportation modes have not been studied. However, recent 

advances in the MFD and its multimodal extension, the 3D-MFD (Dakic et al. (2020), 

Geroliminis et al. (2014), Loder et al. (2017)), could open new opportunities to enhance 

the model by including public transport. If public transport was introduced, the effect 

of using parking revenue to improve or subsidize mass transit and increase service 

frequency could potentially be analyzed. Also, here we assume that double parking 

is not an issue, and we do not account explicitly for delivery parking. Notice, 

however, that there are already some studies on the development of dynamic delivery 

parking spaces Roca-Riu et al. (2017) which could also be integrated into the proposed 

framework in the future. 

Overall, the usage of the model is far beyond the illustration in the case study 

presented here. Here we have assumed that the driving time/distance within the 

parking garages is negligible. We have done so because that travel does not affect 

traffic performance at the city level. However, it would be relatively easy to integrate 

the cost of travel within the parking garages into our decision model, and account for 

the fact that drivers prefer to park on lower floors close to the exits. A further 

consideration is tiered parking pricing, which could also be included into the model. 

Certain cities have tiered pricing for both on-street and garage parking such that the 

driver may pay a low rate for the first hours, and then the rate jumps up significantly 

to increase turnover and promote higher parking availability. The model could then 

be extended to study responsive parking pricing schemes. Time-dependent parking 

fees can be used to move the parking demand away from the daily peak. Future 

research can investigate parking fees that are not only dependent on the parking 

demand of each user group over time, but also on the available parking supply in the 

network. Additionally, this could include a traffic demand split with a fixed (low 

subsidized) parking fee for all on-street and/or garage parking spaces. All remaining 

portions of demand could be treated responsively, reflecting the external costs for 

parking. This approach can be motivated by, e.g., the subsidy by a company or a city 

for their residents. 

In summary, the model can be used to efficiently analyze the influence of different 

on-street and garage parking policies on the traffic system for a smaller geographic 

scale network, despite its simplicity in data requirements. Based on scarce aggregated 

data, this model can be used to analyze how on-street and garage parking policies can 

affect the traffic performance; and how the traffic performance can affect the decision 

to use on-street or garage parking. 
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4.1 Introduction 

Traffic congestion is a growing challenge for cities worldwide. Therefore, many city 

councils have considered introducing a congestion charge to improve speeds and 

reduce congestion in downtown areas. The first cities to introduce an electronic road 

pricing system with a combination of cordon and corridor pricing schemes were 

Singapore (Goh (2002), Olszewski and Xie (2005)) and London (Leape (2006), Santos 

(2005), Santos and Shaffer (2004)). Other cities such as Stockholm, Bergen, Oslo and 

Milan (Eliasson (2009), Hess and Börjesson (2019)) also implemented similar schemes. 

However, the introduction of congestion pricing has not been successful so far in 

other areas such as Hong Kong (Ison and Rye (2005)). New York City rejected its 

congestion pricing proposal in 2008, but new efforts in 2019 will lead New York to 

become the first city in the U.S. to implement a traffic congestion fee by 2021 (Gu et 

al. (2018a), Griswold (2019), Schaller (2010)). Overall, the actual implementation of 

congestion pricing schemes is rather limited due to the controversial issues regarding 

the high initial costs, problems of discrimination, and where to start the border. There 

are also many debates in relation to the disposition of the revenues raised, undesirable 

distribution effects, and the social and political acceptability of the congestion charge 

(Button (1993), Cervero (1998), Small et al. (2007)). In this research, we analyze the 

differences in traffic performance driven by parking pricing policies as a comparable 

option to congestion pricing. Parking pricing strategies can be easily installed and 

maintained by a city, and they normally face much less political opposition (Arnott 

et al. (1991)). In addition, their introduction can lead to remarkable traffic 

performance improvements (Arnott et al. (1991), Cao et al. (2019), Shoup (2019)). 

However, parking pricing policies only affect drivers using public parking in the area 

compared to congestion pricing policies affecting a larger group of drivers in the 

network (e.g., drivers using private parking, drivers passing through the central area, 

drivers picking up and/or dropping off passengers). That being said, when the share 

of drivers searching for public parking is large enough, parking pricing could indeed 

be considered as a viable alternative to congestion pricing. In this chapter, we take 

these trade-offs into account, so cities can use our methodology to evaluate the 

parking and congestion pricing policies especially in areas with a high parking 

demand for public parking spaces. We propose a macroscopic framework to evaluate 

the short-term performance of an urban network under the implementation of 

parking pricing policies as an alternative to a congestion pricing scheme. 

The contributions of this chapter are fourfold. First, we evaluate how parking and 

congestion pricing affect the traffic and parking system (i.e., traffic performance, 

parking availability, revenue for the city, etc.) and how the traffic and parking system 

(i.e., traffic congestion, parking pricing, etc.) affect the drivers’ decision between 

entering the network by car or using P+R instead. Second, we propose a decision 

model and integrate it into a multimodal macroscopic traffic and parking framework 

focusing on parking and congestion pricing. This decision is faced by multiple user 
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groups with respect to their VOT. This allows us to evaluate the distributional effects 

of different VOTs on the drivers’ decision between entering the area by car or 

switching to P+R instead. Third, we not only provide a framework to compare 

parking and congestion pricing scenarios, but also to find the best relation between 

the parking fee and the congestion charge in order to improve the traffic performance 

in the network or the total revenue for the city (which could be used to improve the 

P+R facilities). Fourth, we illustrate our parking and congestion pricing methodology 

in a central area with a high parking demand for public parking spaces within the city 

of Zurich, Switzerland, and show that parking pricing is indeed a viable option 

compared to congestion pricing, potentially leading to traffic performance 

improvements inside the protected network. 

The chapter is organized as follows. Section 4.2 shows the overall decision model 

associated with the introduction of parking and congestion pricing to a central area. 

Section 4.3 illustrates the multimodal macroscopic traffic and parking framework 

including our decision model. Section 4.4 presents a case study of an area within the 

city of Zurich. Section 4.5 summarizes this chapter. 

4.2 Introducing parking pricing vs. congestion 

pricing policies for a central area 

In this section, we build the framework to compare the traffic performance impacts 

of different parking and/or congestion pricing policies. When introducing/increasing 

parking pricing within an area with no congestion pricing combined with P+R 

facilities, the drivers face a new choice between entering the network and leaving 

their car outside the area, potentially using the available P+R facilities and PT (i.e., 

bus, tram and/or train) to reach the center. A similar decision happens for drivers 

when congestion pricing gets introduced to a central area. Please note that we assume 

P+R facilities exist in both policies. 

In this research, we analyze the influencing factors (section 4.2.1) and the 

mathematical decision model (section 4.2.2) for two policies: parking pricing (policy 

1) and congestion pricing (policy 2). 

4.2.1 Factors affecting the decision framework 

The main variables and parameters for our framework, and basic model assumptions 

are briefly described below. 

Main variables and parameters: 

All policies are modeled macroscopically using a logistic function based on the cost 

of entering the network by car and the cost of using the P+R facility outside the 

network. Some factors including the congestion or parking charges have only an 

impact on the cost of entering the network, some factors including the P+R pricing 

only affect the cost of not entering the network, and others (i.e., the number of parking 
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spaces for P+R and spaces inside the network) impact both cost variables by directly 

influencing the decision. Table 4.1 introduces the main variables and parameters used 

in our methodology, in addition to some variables from Table 2.1, 3.1, 3.2 and 3.3 

which are also used in this chapter. 

Recall that our traffic model analyzes a homogeneous, compact urban network of 

length 𝐿 (in link-km) and 𝐿𝑙𝑎𝑛𝑒 (in lane-km) representing a central area with standard 

parking policies (e.g., downtown areas or portions thereof) and a high parking 

demand for public parking spaces. The network’s average block size is represented 

as 𝑏. It is simulated over a total time horizon 𝑇 (e.g., a day). This time period is divided 

into time slices 𝑡 (e.g., 1 minutes) such that the traffic and parking conditions are 

steady within each time slice, but they can change over multiple time slices. Drivers 

have different VOTs, 𝑉𝑂𝑇𝑘, according to their individual user group 𝑘 ∈ 𝐾, with the 

total number of user groups denoted as 𝐾. This can be dependent on the drivers’ 

residence location, income, career, working state, etc. Due to our macroscopic 

modelling approach it is not necessary to record the individual location of each car 

and parking space throughout time. Instead, our multimodal macroscopic traffic 

model (section 4.3.1) tracks the average number of cars during every time slice and 

the average searching times and traveled distances in the area. 

Assumptions about homogeneity: 

For simplicity, the area contains 𝐴 identical parking spaces inside, and 𝑃 P+R spaces 

outside the parking and congestion pricing area. A differentiation between on-street 

and garage parking can be added using the macroscopic modelling approach in 

chapter 3, but here, for simplicity, we obviate that. All drivers searching for parking 

are assumed to be homogenously distributed within the overall traffic, and all 

parking spaces (not necessarily the available ones) are assumed to be uniformly 

distributed on the network. 

Assumptions about PT and mode choice: 

The PT route is assumed to be unidirectional (i.e., it goes on a loop around the 

network). The total number of PT stops is assumed to be uniformly distributed across 

the network and the actual travel distance of each PT passenger is on average 

uniformly distributed over time. Once the drivers have entered the network by car, it 

is assumed that they continue their trip with their car and do not change towards PT 

within the network. This is reasonable since the drivers already paid the congestion 

toll. We also assume that drivers do not cancel their trip. 

Assumptions about walking: 

After parking in or riding a bus into the area, the drivers require some walking 

distance to reach their final destination. The drivers’ walking speed, 𝑤, is assumed to 

be constant. At an earlier stage, the drivers switching to P+R already require some 

walking distance between the parking space and the PT stop near the P+R facility 

which is assumed to be negligible for our decision framework. 

Assumptions about pricing and toll delays: 

The hourly parking fee 𝑝𝑝, the congestion toll rate 𝑝𝑡, the P+R fee 𝑝𝑝𝑟, and the round-

trip PT fare 𝑝𝑃𝑇 are assumed to be constant over time. There is no traffic delay 
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assumed while paying the congestion toll. 

Table 4.1. List of main variables and parameters. 

Notation Definition 

𝑃 Total number of existing P+R spaces outside the area. 

𝑃𝑖 Number of available P+R spaces outside the area at the beginning of time slice 𝑖. 

𝑝𝑝 Hourly parking fee in the area. 

𝑝𝑡 Congestion toll rate to enter the area by car. 

𝑝𝑝𝑟 P+R fee outside the area. It is considered as a fixed fee over the time horizon 𝑇. 

𝑝𝑃𝑇 Round-trip PT fare paid to enter the area from the P+R facility by PT. 

𝑢𝑖 
Average PT speed in time slice 𝑖, i.e., average speed of buses, trams and/or trains, including PT dwell 
time. 

𝜇𝑐𝑎𝑟 Coefficient capturing the aspect that PT vehicles typically move slower than cars due to frequent stops. 

𝜇𝑃𝑇 
Coefficient capturing the aspect that PT speeds might exceed car speeds during congested times due to 
dedicated lanes. 

𝜗𝑐𝑎𝑟 Coefficient capturing the marginal effects of car density on car speeds in the area. 

𝜗𝑃𝑇 Coefficient capturing the marginal effects of PT vehicle density on car speeds in the area. 

𝑘𝑐𝑎𝑟
𝑖  Density of cars in time slice 𝑖. 

𝑘𝑃𝑇
𝑖  Density of PT vehicles in time slice 𝑖. 

𝑙𝑃𝑇 Average distance driven by using PT from the P+R facility to the area. 

𝑡𝑑,𝜉  Parking duration of cars parking inside the area (𝑝) or using P+R (𝑝𝑟), 𝜉 ∈ {𝑝, 𝑝𝑟}. 

ℎ Average headway of PT from the P+R facility to PT stops. 

𝑆 Total number of PT stops in the area. 

𝐶𝜉
𝑖,𝑘 

Total cost of entering the area by car (𝑐𝑎𝑟) or by using P+R (𝑝𝑟) in time slice 𝑖 for user group 𝑘 ∈ 𝐾,  
𝜉 ∈ {𝑐𝑎𝑟, 𝑝𝑟}. 

𝛿𝑐𝑎𝑟
𝑖,𝑘  Share of drivers that enter the area by car in time slice 𝑖 for user group 𝑘 ∈ 𝐾. 

𝐴𝐷𝐷𝑃𝑇 Average distance travelled using PT from P+R space to PT stop in the network. 

𝐴𝑊𝐷𝜉 Average walking distance from on-street parking space (𝑜𝑝) or PT stop (𝑃𝑇) to destination, 𝜉 ∈ {𝑝, 𝑃𝑇}. 

𝑡𝑠 Average searching time per car to find an available parking space for all user groups 𝐾 over 𝑇. 

𝐼𝑡𝑜𝑡 
Total revenue resulting from parking fees, P+R and congestion pricing (tolls) for all user groups 𝐾 over 
𝑇. 

4.2.2 Mathematical model for the parking and congestion 

pricing decision framework 

This section illustrates the mathematical decision framework for drivers entering the 

network by car or choosing to use P+R instead. The model can be used for both 

policies explained before, so that we can compare and analyze the traffic performance 

under different scenarios. 

Drivers’ choice, 𝛿𝑐𝑎𝑟
𝑖,𝑘 , for entering the area by car is modelled in Eq. (36a-b) using a 

logistic function based on 𝐴 and 𝑃 (the total number of existing parking and P+R 

spaces, respectively), 𝐶𝑐𝑎𝑟
𝑖,𝑘  (the total cost of entering the area by car, modelled in 

section 4.2.2.1), and 𝐶𝑝𝑟
𝑖,𝑘 (the total cost of using P+R, modelled in section 4.2.2.2) in 

time slice 𝑖 for user group 𝑘 ∈ 𝐾. 



Chapter 4: Parking Pricing vs. Congestion Pricing: A Macroscopic Analysis of their Impact on Traffic 

A Macroscopic Analysis of their Impact on Traffic 

 Parking Pricing vs. Congestion Pricing: A Macroscopic Analysis of their Impact on Traffic 

A Macroscopic Analysis of their Impact on Traffic 

 

Parking Pricing vs. Congestion Pricing:  

A Macroscopic Analysis of their Impact on Traffic 

  
 

 

 

67 

𝛿𝑐𝑎𝑟
𝑖,𝑘 =

𝑒𝜂
𝑖,𝑘

1 + 𝑒𝜂
𝑖,𝑘 (36a) 

where 

𝜂𝑖,𝑘 =

𝐴
𝐴 + 𝑃

∙ 𝐶𝑝𝑟
𝑖,𝑘 −

𝑃
𝐴 + 𝑃

∙ 𝐶𝑐𝑎𝑟
𝑖,𝑘

𝑚𝑖𝑛 {
𝐴

𝐴 + 𝑃 ∙ 𝐶𝑝𝑟
𝑖,𝑘,

𝑃
𝐴 + 𝑃 ∙ 𝐶𝑐𝑎𝑟

𝑖,𝑘 }
 (36b) 

The drivers’ choice between entering the area by car or by using P+R is based on the 

comparison between the weighted cost variables 
𝐴

𝐴+𝑃
∙ 𝐶𝑝𝑟

𝑖,𝑘 and 
𝑃

𝐴+𝑃
∙ 𝐶𝑐𝑎𝑟

𝑖,𝑘  in Eq. (36b). 

Their difference is set in relation to min {
𝐴

𝐴+𝑃
∙ 𝐶𝑝𝑟

𝑖,𝑘 ,
𝑃

𝐴+𝑃
∙ 𝐶𝑐𝑎𝑟

𝑖,𝑘 } as the drivers’ choice is 

based on a relative weighted cost difference. Using the minimum here is necessary to 

set a reference to the lowest cost value. The weight parameters 
𝐴

𝐴+𝑃
 and 

𝑃

𝐴+𝑃
 in Eq. 

(36b) illustrate the parking supply dependency incorporated into the parking choice. 

An underlying assumption for Eq. (36a-b) is that all drivers have access to information 

about 𝐴, 𝑃 and the basic data to estimate 𝐶𝑐𝑎𝑟
𝑖,𝑘  and 𝐶𝑝𝑟

𝑖,𝑘. However, drivers have, for 

simplicity, no access to real-time parking usage information, i.e., we only consider the 

total number of existing parking and P+R spaces, 𝐴 and 𝑃, respectively; and we do 

not use the time-dependent parking availabilities in Eq. (36b). This information could, 

however, be added to this model as per the methodology proposed in section 3.4.5 to 

account for the value of real-time parking information. 

4.2.2.1 Cost of entering the network by car 

Eq. (37) describes the cost of entering the network by car, 𝐶𝑐𝑎𝑟
𝑖,𝑘 , for each user group 

𝑘 ∈ 𝐾 in time slice 𝑖. 

𝐶𝑐𝑎𝑟
𝑖,𝑘 = 𝑝𝑡⏟

term 1

+ 𝑝𝑝 ∙ 𝐸 (𝑓(𝑡𝑑,𝑝))⏟          
term 2

+ 𝑝𝑑 ⋅ 𝑣
𝑖 ⋅ 𝐴𝐶𝑇𝑖⏟        

term 3

+ 𝑉𝑂𝑇𝑘 ∙ (
𝑙𝑛𝑠/
𝑘

𝑣𝑖
+ 𝐴𝐶𝑇𝑖 +

2 ∙ 𝐴𝑊𝐷𝑜𝑝

𝑤
+
𝑙𝑝/
𝑘

𝑣𝑖
)

⏟                          
term 4

 (37) 

Term 1 represents the congestion toll rate (policy 2), 𝑝𝑡. Term 2 represents the total 

parking charge (policy 1), which is dependent on the hourly parking fee, 𝑝𝑝, and the 

expected parking duration, 𝐸 (𝑓(𝑡𝑑,𝑝)). While this fee will be fixed here, it is also 

possible to make it variable using a responsive parking pricing scheme (chapter 5). 

Term 3 represents the average cost associated with the cruising distance for parking 

(i.e., external costs as petrol, wear and tear of cars) converted to price units (chapter 

3). The average cruising time 𝐴𝐶𝑇𝑖 is determined as in section 5.3.3.3 using a queueing 

diagram. The price per kilometer driven is denoted as 𝑝𝑑 and the average travel speed 

in time slice 𝑖 is represented as 𝑣𝑖. Here, for simplicity, we assume that 𝑣𝑖 is 

representative of the average network speed during the future search process. Term 

4 represents the time-related costs based on the drivers’ VOT expressed in price units 

for 𝑘 ∈ 𝐾. It includes the costs associated with the average distance before starting to 

search for parking 𝑙𝑛𝑠/
𝑘 , the average cruising time 𝐴𝐶𝑇𝑖, the average walking distance 

𝐴𝑊𝐷𝑜𝑝 from the parking space to the final destination, and the average distance to 
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leave the area after parking 𝑙𝑝/
𝑘 . We multiply 𝐴𝑊𝐷𝑜𝑝 by 2 to account for the return trip 

to the car as well. Notice that the longer the drivers search for parking, the higher 

𝐴𝐶𝑇𝑖 is, and consequently also 𝐶𝑐𝑎𝑟
𝑖,𝑘 . In this case, it is more likely that the drivers might 

decide to use P+R instead of entering the area by car. Using the abstraction of the 

network as a square grid, its total length, 𝐿, is equivalent to joining all blocks of 

average known length 𝑏 together. Recall that 𝐴𝑊𝐷𝑜𝑝 is determined in Eq. (13), as 

parking spaces are uniformly distributed throughout the area. 

4.2.2.2 Cost of using P+R 

Eq. (38) describes the cost of not entering the area by car and using P+R instead, 𝐶𝑝𝑟
𝑖,𝑘, 

for each user group 𝑘 ∈ 𝐾 in time slice 𝑖. Notice that for a case where there are 

different areas with large variations in P+R and PT properties (e.g., in PT stops, P+R 

fees, PT fares, or dwell times), one can use different adjacent subnetworks, each 

modeled as the network presented here. 

𝐶𝑝𝑟
𝑖,𝑘 = 𝑝𝑝𝑟 + 𝑝𝑃𝑇⏟      

term 1

+ 𝑉𝑂𝑇𝑘 ∙ (ℎ +
2 ∙ 𝐴𝐷𝐷𝑃𝑇

𝑢𝑖
+
2 ∙ 𝐴𝑊𝐷𝑃𝑇

𝑤
)

⏟                        
term 2

 (38) 

Term 1 represents the total fee, including the P+R fee, 𝑝𝑝𝑟, and the round-trip PT fare, 

𝑝𝑃𝑇, for buses, trams and/or trains from the P+R facility. Note that the P+R fee is fixed 

over the time horizon 𝑇. This is often the case, for example in cities like Zurich, 

Switzerland. However, this is not necessary for our model, as we can adapt term 1 

according to, e.g., an hourly P+R pricing rate. In some instances, 𝑝𝑝𝑟 could also be 

zero. Term 2 represents all the time-related costs expressed in price units to reach the 

driver’s destination within the network and to return back to the parked car at the 

P+R facility. Once the driver has parked the car at the P+R space, he/she has to wait 

until the next PT vehicle arrives. This average waiting time is reflected by ℎ 2⁄  for the 

one-way trip (ℎ for the two-way trip), where ℎ is the average headway of the PT line 

connecting the P+R facility to the area. The average round-trip travel time for the PT 

ride is modelled by 2 ∙ 𝐴𝐷𝐷𝑃𝑇 𝑢𝑖⁄ , where 𝐴𝐷𝐷𝑃𝑇 represents the average distance 

travelled using PT and 𝑢𝑖 describes the average PT speed in the network (including 

dwell times). We model 𝑢𝑖 in Eq. (39) as a function of the car speed 𝑣𝑖 using the 

statistical model for the vehicle based 3D-MFD in Loder et al. (2017). The coefficients 

𝜇𝑐𝑎𝑟 and 𝜇𝑃𝑇 are to be estimated and calibrated depending on the network of interest. 

𝜇𝑐𝑎𝑟 captures the reduction of speed for PT vehicles compared to cars due to frequent 

stops. 𝜇𝑃𝑇 adjusts the PT vehicle speed based on network topology and PT network 

design (e.g., whether the PT vehicles use dedicated lanes and exceed car speeds 

during congested times or not). 

𝑢𝑖 = 𝜇𝑐𝑎𝑟 ∙ 𝑣
𝑖 + 𝜇𝑃𝑇 (39) 

𝐴𝐷𝐷𝑃𝑇 is computed in Eq. (40) by using the mean based on the round-trip PT travel 

distance in Fig. 4.1. Given that the total length of the network is 𝐿 and the average 
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block size is 𝑏, the network side is 𝑏 ⋅ (−
1

2
+√

1

4
+

𝐿

2𝑏
). 𝑆 is the total number of PT stops 

with an average distance of 
𝑏⋅(−

1

2
+√

1

4
+
𝐿

2𝑏
)

√𝑆
 between any consecutive stops along the 

unidirectional PT route. The round-trip PT travel distance in Fig. 4.1 is computed 

according to Daganzo (2010) as the surface of the square grid [𝑏 ⋅ (−
1

2
+

√
1

4
+

𝐿

2𝑏
)]

2

divided by 
𝑏⋅(−

1

2
+√

1

4
+
𝐿

2𝑏
)

√𝑆
. Term 1 (Eq. (40)) is then determined as half of this 

result representing the average PT passenger’s journey. Term 2 shows the average 

driven distance, 𝑙𝑃𝑇, by using PT from the P+R facilities to the area (Fig. 4.1), which is 

a function of the network size. 

𝐴𝐷𝐷𝑃𝑇 = 𝑏 ⋅
√𝑆

2
⋅ (−

1

2
+ √

1

4
+
𝐿

2𝑏
)

⏟                
term 1

+ 𝑙𝑃𝑇⏟
term 2

 (40) 

As 𝑆 is limited, people are expected to require, on average, some walking time. The 

average round-trip walking time from the PT stop until the destination is modelled 

by 2 ∙ 𝐴𝑊𝐷𝑃𝑇 𝑤⁄  in term 2 (Eq. (38)), where the average walking distance, 𝐴𝑊𝐷𝑃𝑇, is 

determined in Eq. (41). Note that 𝐴𝑊𝐷𝑃𝑇 is modelled analogously to 𝐴𝑊𝐷𝑔𝑝, 

replacing 𝐺 by 𝑆 in Eq. (16). 

𝐴𝑊𝐷𝑃𝑇 =
2𝑏

3√𝜋 ∙ 𝑆
[−
1

2
+ √

1

4
+
𝐿

2𝑏
] (41) 

To obtain Eq. (41), the surface [𝑏 ⋅ (−
1

2
+√

1

4
+

𝐿

2𝑏
)]

2

is divided by the number of PT 

stops, 𝑆, to estimate the area served by each PT stop. Assuming the drivers’ 

destinations are uniformly distributed in the area we determine the average walking 

distance as 2 3⁄  of the radius (average distance from the center of a circle) of each of 

the areas surrounding one PT stop. 

It is possible to add a discomfort term to Eq. (38) for drivers using PT instead of using 

their more comfortable car to enter the area according to Zheng and Geroliminis 

(2013). However, we omit such term in this chapter for brevity. 
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Fig. 4.1. Simple example of an abstracted square grid with uniformly distributed PT stops to illustrate 𝐴𝐷𝐷𝑃𝑇. 

4.3 Parking and congestion pricing 

Introducing parking and congestion pricing can lead to traffic performance and/or 

revenue changes for an area. To compare and analyze these impacts both policies are 

integrated into a modification of the macroscopic urban traffic and parking 

framework from chapter 2. 

In section 4.3.1, we propose a multimodal macroscopic traffic and parking model 

including the option of using P+R instead of entering the network by car. In sections 

4.3.2 and 4.3.3, we determine the traffic performance in the area and the total revenue 

for the city, respectively. 

4.3.1 A multimodal macroscopic traffic and parking 

framework focusing on parking and congestion pricing 

Increasing the parking fees or introducing a congestion toll might lead to less traffic 

within the area of interest. Our multimodal macroscopic traffic and parking model 

uses the 3D-MFD framework from Loder et al. (2017) and Zheng and Geroliminis 

(2016) as a foundation to analyze that. We combine this 3D-MFD model with insights 

from the parking-state-based matrix framework (chapter 2), and the methodology to 

determine the likelihood of finding parking from section 2.4.2. The matrix is used to 

capture the system dynamics of urban car and P+R traffic, i.e., it allows us to evaluate, 

for example, how the cars searching for parking or the drivers deciding to enter the 

area using P+R affect the traffic performance and the congestion in the network. 

Our model uses the five traffic states summarized in Table 4.2. They show 

modifications of the traffic states presented in Table 2.2, differentiating between non-

searching cars with external and internal destinations, and presenting a traffic state 

for P+R. Updating the traffic states is an iterative process until the end of the time 
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horizon, or until a defined criterion is reached (e.g., all the cars leave the network). 

Notice that all state variables need an initial condition as an input to the model. That 

value can be measured, assumed or simulated. 

Table 4.2. Traffic states for our multimodal macroscopic traffic and parking framework in an area of interest. 

Notation Name Definition 

𝑁𝑛𝑠𝑒
𝑖,𝑘  

Non-searching  
(external 
destination) 

Number of cars not searching for parking with external destination (i.e., 

outside the area) for user group 𝑘 ∈ 𝐾 at the beginning of time slice 𝑖. 

𝑁𝑛𝑠𝑖
𝑖,𝑘  

Non-searching  
(internal 
destination) 

Number of cars not searching for parking with internal destination (i.e., within 

the area) for user group 𝑘 ∈ 𝐾 at the beginning of time slice 𝑖. 

𝑁𝑠
𝑖,𝑘 

Searching for 
parking 

Number of cars searching for parking within the area for user group 𝑘 ∈ 𝐾 at 

the beginning of time slice 𝑖. 

𝑁𝑝
𝑖,𝑘 Parking 

Number of cars parking within the area for user group 𝑘 ∈ 𝐾 at the beginning 

of time slice 𝑖. 

𝑁𝑝𝑟
𝑖,𝑘 Park + Ride (P+R) Number of cars using P+R for user group 𝑘 ∈ 𝐾 at the beginning of time slice 𝑖. 

 

The traffic states are determined based on the transition events depicted in Fig. 4.2 

and defined in Table 4.3. Note that these transition events enhance the variables 

presented in Table 2.2 by modelling drivers entering the area by car, or by PT. The 

latter portion of drivers uses the P+R facilities outside the area. 

 

Fig. 4.2. The transition events in-between different traffic states in an area. 

Fig. 4.2 illustrates two groups of drivers. The first group shows the drivers using a car 

to enter the network, with an internal or an external destination. The latter represents 

the through-traffic. For each user group 𝑘 ∈ 𝐾, the through-traffic enters the area and 

drives some distance 𝑙/
𝑘 (“non-searching (external destination)”) before leaving the 

area. Once the cars focusing on internal destinations enter the area, they drive some 
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distance 𝑙𝑛𝑠/
𝑘  towards their destination (“non-searching (internal destination)”) before 

they search for an available parking space (“searching for parking”). After having 

parked for a given duration (“parking”), they travel some distance 𝑙𝑝/
𝑘  to leave the 

area (“non-searching (external destination)”). The second group of drivers decides to 

use PT to reach their destination inside the area from the P+R facility (“Park + Ride”). 

They leave the P+R spaces after having returned by PT from the area. 

Table 4.3. Transition events for our multimodal macroscopic traffic and parking framework in an area of interest. 

Notation Name Definition 

𝑛 /ns
𝑖,𝑘  Enter the area 

Number of cars entering the area by car and by P+R for user group 𝑘 ∈ 𝐾 
during time slice 𝑖. 

𝑛 /𝑛𝑠𝑒
𝑖,𝑘  

Enter the area by car 
(external destination) 

Number of cars entering and having their destination outside the area for 
user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛 /𝑛𝑠𝑖
𝑖,𝑘  

Enter the area by car 
(internal destination) 

Number of cars entering and having their destination inside the area for 
user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛 /𝑝𝑟
𝑖,𝑘  Enter the area by P+R 

Number of cars using P+R to enter the area for user group 𝑘 ∈ 𝐾 during 
time slice 𝑖. 

𝑛 𝑛𝑠𝑖/𝑠
𝑖,𝑘  

Start to search for 
parking  

Number of cars starting to search for parking within the area for user group 
𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑠/𝑝
𝑖,𝑘  Access parking 

Number of cars accessing parking within the area for user group 𝑘 ∈ 𝐾 
during time slice 𝑖. 

𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘  Depart parking 

Number of cars departing from parking and moving towards a destination 
outside the area for user group 𝑘 ∈ 𝐾 during time slice 𝑖. 

𝑛𝑛𝑠𝑒/
𝑖,𝑘  Leave the area by car 

Number of cars leaving the area by car for user group 𝑘 ∈ 𝐾 during time 
slice 𝑖. 

𝑛𝑝𝑟/
𝑖,𝑘  

Leave the area by 
P+R 

Number of cars leaving the area by P+R for user group 𝑘 ∈ 𝐾 during time 
slice 𝑖. 

 

The traffic states (Table 4.2) are modelled in Eq. (42a-e) using the transition events 

(Table 4.3) according to Fig. 4.2. Note that Eq. (42a-b) enhance Eq. (1) by 

differentiating between non-searching cars with external and internal destinations. 

Eq. (42c-d) are consistent with Eq. (2) and Eq. (3), showing the cars searching and 

parking for each user group 𝑘 ∈ 𝐾. Eq. (42e) is a newly defined traffic state modelling 

the cars using the P+R facilities outside the area, which is not available in the original 

model shown in section 2.4.1. 

𝑁𝑛𝑠𝑒
𝑖+1 =∑𝑁𝑛𝑠𝑒

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑛𝑠𝑒
𝑖+1,𝑘 = 𝑁𝑛𝑠𝑒

𝑖,𝑘 + 𝑛/𝑛𝑠𝑒
𝑖,𝑘 + 𝑛𝑝/𝑛𝑠𝑒

𝑖,𝑘 − 𝑛𝑛𝑠𝑒/
𝑖,𝑘  (42a) 

𝑁𝑛𝑠𝑖
𝑖+1 =∑𝑁𝑛𝑠𝑖

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑛𝑠𝑖
𝑖+1,𝑘 = 𝑁𝑛𝑠𝑖

𝑖,𝑘 + 𝑛/𝑛𝑠𝑖
𝑖,𝑘 − 𝑛𝑛𝑠𝑖/𝑠

𝑖,𝑘  (42b) 

𝑁𝑠
𝑖+1 =∑𝑁𝑠

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑠
𝑖+1,𝑘 = 𝑁𝑠

𝑖,𝑘 + 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘 − 𝑛𝑠/𝑝

𝑖,𝑘  (42c) 
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𝑁𝑝
𝑖+1 =∑𝑁𝑝

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑝
𝑖+1,𝑘 = 𝑁𝑝

𝑖,𝑘 + 𝑛𝑠/𝑝
𝑖,𝑘 − 𝑛𝑝/𝑛𝑠𝑒

𝑖,𝑘  (42d) 

𝑁𝑝𝑟
𝑖+1 =∑𝑁𝑝𝑟

𝑖+1,𝑘

𝐾

𝑘=1

, where  𝑁𝑝𝑟
𝑖+1,𝑘 = 𝑁𝑝𝑟

𝑖,𝑘 + 𝑛/𝑝𝑟
𝑖,𝑘 − 𝑛𝑝𝑟/

𝑖,𝑘  (42e) 

All traffic states are determined for each user group 𝑘 ∈ 𝐾 before aggregating them. 

The total number of cars parked for all user groups at the beginning of time slice 𝑖 is 

𝑁𝑝
𝑖 +𝑁𝑝𝑟

𝑖  (Eq. (42d-e)), whereas the total number of cars driving in the area at the 

beginning of time slice 𝑖 is 𝑁𝑛𝑠𝑒
𝑖 +𝑁𝑛𝑠𝑖

𝑖 + 𝑁𝑠
𝑖 (Eq. (42a-c)). The calculation of the traffic 

states in Eq. (42a-e) could be advanced by using an MFD simulator model 

approximating the dynamic user equilibrium conditions in large scale networks 

(Yildirimoglu and Geroliminis (2014)). These improvements, however, are considered 

out-of-scope for this chapter. The traffic composition change (i.e., the change of the 

number of cars in each parking-related state) between two consecutive time slices can 

be illustrated in queuing diagrams for cars entering the area (Fig. 4.3(a)) and cars 

switching to P+R (Fig. 4.3(b)). 

The average travel speed of cars, 𝑣𝑖, during time slice 𝑖 is formulated in Eq. (43a) 

based on the statistical model for the vehicle based 3D-MFD in Loder et al. (2017). It 

uses the free flow speed of cars, 𝑣, when traffic is not congested, and includes the 

marginal effects of each mode (𝜗𝑐𝑎𝑟 and 𝜗𝑃𝑇 for cars and PT vehicles, respectively) on 

car speeds when traffic starts to be congested. The density of cars, 𝑘𝑐𝑎𝑟
𝑖 , is determined 

in Eq. (43b) based on the total number of cars on the road network (consisting of non-

searching, 𝑁𝑛𝑠𝑒
𝑖 + 𝑁𝑛𝑠𝑖

𝑖 , and searching cars, 𝑁𝑠
𝑖), and the network length, 𝐿𝑙𝑎𝑛𝑒, in lane-

km (Cao and Menendez (2015a), Cao et al. (2019), Loder et al. (2017)). The density of 

PT vehicles, 𝑘𝑃𝑇
𝑖 , is computed in Eq. (43c) using the number of PT vehicles in the area 

divided by 𝐿𝑙𝑎𝑛𝑒. The number of PT vehicles can be obtained as the cycle for one PT 

run, 2 ∙ 𝐴𝐷𝐷𝑃𝑇 𝑢𝑖⁄ , divided by the average headway, ℎ. 

𝑣𝑖 = 𝑣 + 𝜗𝑐𝑎𝑟 ∙ 𝑘𝑐𝑎𝑟
𝑖 + 𝜗𝑃𝑇 ∙ 𝑘𝑃𝑇

𝑖  (43a) 

𝑘𝑐𝑎𝑟
𝑖 =

𝑁𝑛𝑠𝑒
𝑖 + 𝑁𝑛𝑠𝑖

𝑖 +𝑁𝑠
𝑖

𝐿𝑙𝑎𝑛𝑒
 (43b) 

𝑘𝑃𝑇
𝑖 =

2 ∙ 𝐴𝐷𝐷𝑃𝑇
𝑢𝑖 ∙ ℎ ∙ 𝐿𝑙𝑎𝑛𝑒

 (43c) 
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(a) Illustration of traffic composition and queuing diagram for cars entering the area. 

 

 

(b) Illustration of traffic composition and queuing diagram for cars switching to P+R. 

Fig. 4.3. Traffic composition between consecutive time slices and queuing diagrams for cars  
entering the area or switching to P+R. 

Below, we model each of the transition events. The total number of cars, 𝑛/𝑛𝑠
𝑖,𝑘 , entering 

the network for user group 𝑘 ∈ 𝐾 during time slice 𝑖 is considered as the known input 

demand to the model. Based on the proportion of through-traffic (input to the model), 

𝛽𝑖, and the choice of drivers entering the area by car or PT, 𝛿𝑐𝑎𝑟
𝑖,𝑘 , the demand 𝑛/𝑛𝑠

𝑖,𝑘  is 

split based on three transition events (Fig. 4.4), Eq. (44a-c). The transition events in 

Eq. (44a-c) are newly modelled in this chapter and do not exist in the original 

framework presented in section 2.4.2. 
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Fig. 4.4. The transition events with internal/external destinations using cars or P+R to enter the area. 

𝑛/𝑛𝑠𝑒
𝑖,𝑘 = 𝛽𝑖 ∙ 𝑛/𝑛𝑠

𝑖,𝑘  (44a) 

𝑛/𝑛𝑠𝑖
𝑖,𝑘 = {

(1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ 𝛿𝑐𝑎𝑟

𝑖,𝑘 , 𝑖𝑓   (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ) ≤ 𝑃𝑖

(1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 − 𝑃𝑖 , 𝑖𝑓   (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠

𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟
𝑖,𝑘 ) > 𝑃𝑖

 (44b) 

𝑛/𝑝𝑟
𝑖,𝑘 = {

(1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ), 𝑖𝑓   (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ) ≤ 𝑃𝑖

𝑃𝑖 ,                                   𝑖𝑓   (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ) > 𝑃𝑖
 (44c) 

In Eq. (44b-c) we differentiate between enough (i.e., (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ) ≤ 𝑃𝑖) 

and not enough (i.e., (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠
𝑖,𝑘 ∙ (1 − 𝛿𝑐𝑎𝑟

𝑖,𝑘 ) > 𝑃𝑖) available parking spaces, 𝑃𝑖, at 

the P+R facility. The proportion of through-traffic, 𝛽𝑖, is assumed to be independent 

of the individual user group 𝑘 ∈ 𝐾. For cars entering the area we assume that they 

start searching for parking after driving a distance 𝑙𝑛𝑠/
𝑘 , which is a function of the 

network size. 𝑙𝑛𝑠/
𝑘  can be fixed or follow any given probability density function. The 

number of cars starting to search for parking, 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘 , for user group 𝑘 ∈ 𝐾 are 

modelled in Eq. (45). Note that Eq. (45) is consistent with Eq. (5) as 𝑛/𝑛𝑠𝑖
𝑖′,𝑘  already 

includes the proportion of cars entering the area, 1 − 𝛽𝑖, for each 𝑘 ∈ 𝐾. 

𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘 = ∑ 𝑛/𝑛𝑠𝑖

𝑖′,𝑘 ∙ 𝛾𝑛𝑠/
𝑖′,𝑘

𝑖−1

𝑖′=1

 (45) 

The 𝛾𝑛𝑠/
𝑖′,𝑘 in Eq. (45) indicates whether the cars 𝑛/𝑛𝑠𝑖

𝑖′,𝑘  have driven long enough, i.e., they 

cover a distance 𝑙𝑛𝑠/
𝑘 , such that they start searching for parking in time slice 𝑖. Please 

refer to Eq. (25) for the formulation of 𝛾𝑛𝑠/
𝑖′,𝑘. 

The number of cars finding, accessing and paying for parking, 𝑛𝑠/𝑝
𝑖,𝑘 , is modelled in 

Eq. (46) as in section 2.4.2 using the finding parking likelihood formulations from Cao 

and Menendez (2015a), Cao and Menendez (2018) and Cao et al. (2019). Note that we 

show Eq. (46) below for the sake of completeness as it is consistent with Eq. (6) with 

𝑑𝑖 = 𝑣𝑖 ⋅ 𝑡, and modelled for each user group 𝑘 ∈ 𝐾. It is a function of the number of 

available parking spaces 𝐴𝑖, the number of competing cars searching for parking 𝑁𝑠
𝑖,𝑘, 
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and the distance an average searcher can drive in a single time slice in reference to 

the network length 𝑣𝑖 ∙ 𝑡/𝐿. 

𝑛𝑠/𝑝
𝑖,𝑘 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑁𝑠
𝑖,𝑘 [1 − (1 −

𝑣𝑖 ⋅ 𝑡

𝐿
)

𝐴𝑖

] , 𝑖𝑓 𝑡 ∈ [0,
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖,𝑘
]             

𝐴𝑖 + [𝐴𝑖 −𝑁𝑠
𝑖,𝑘 + 𝑁𝑠

𝑖,𝑘 ⋅ (1 −
1

𝑁𝑠
𝑖,𝑘
 )

𝐴𝑖

] ⋅ (
log
𝑁𝑠
𝑖,𝑘

𝐴𝑖
⋅
𝑣𝑖 ⋅ 𝑡
𝐿

log𝐴𝑖
) , 𝑖𝑓 𝑡 ∈ [

𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖,𝑘
,
𝐿

𝑣𝑖
⋅
𝐴𝑖

𝑁𝑠
𝑖,𝑘
]

𝐴𝑖 ,   𝑖𝑓 𝑡 ∈ [
𝐿

𝑣𝑖
⋅
𝐴𝑖

𝑁𝑠
𝑖,𝑘
, ∞)            

, 𝑖𝑓 𝐴𝑖 ≤ 𝑁𝑠
𝑖,𝑘

{
 
 
 
 

 
 
 
 

𝑁𝑠
𝑖,𝑘 [1 − (1 −

𝑣𝑖 ⋅ 𝑡

𝐿
)

𝐴𝑖

] ,                                      𝑖𝑓 𝑡 ∈ [0,
𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖,𝑘
]           

𝑁𝑠
𝑖,𝑘 + 𝑁𝑠

𝑖,𝑘 ⋅ (1 −
1

𝑁𝑠
𝑖,𝑘
 )

𝐴𝑖

⋅ (
log

𝑣𝑖 ⋅ 𝑡
𝐿

log𝑁𝑠
𝑖,𝑘
) ,                             𝑖𝑓 𝑡 ∈ [

𝐿

𝑣𝑖 ⋅ 𝑁𝑠
𝑖,𝑘
,
𝐿

𝑣𝑖
]

𝑁𝑠
𝑖,𝑘 ,                                𝑖𝑓 𝑡 ∈ [

𝐿

𝑣𝑖
, ∞)             

     , 𝑖𝑓 𝐴𝑖 ≥ 𝑁𝑠
𝑖,𝑘

 (46) 

When 𝐴𝑖 < 𝑁𝑠
𝑖,𝑘, the number of cars accessing parking is low as there are not enough 

available parking spaces for all drivers searching for parking. When 𝐴𝑖 > 𝑁𝑠
𝑖,𝑘, the 

number of cars accessing parking can potentially be high depending on the drivers’ 

distance driven in one time slice. The number of cars accessing parking might, 

however, be low in the latter case, if the length of a time slice, 𝑡, is very short. Notice 

that all drivers decide to access the first available parking space they find, as all 

parking spaces have the same price. More details on 𝑛𝑠/𝑝
𝑖,𝑘  can be found in Cao and 

Menendez (2015a) with its simplified version in Cao and Menendez (2018). 

Once the cars depart from parking they move towards an external destination (𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘  

modelled in Eq. (47) for user group 𝑘 ∈ 𝐾 during time slice 𝑖). Note that Eq. (47) is 

consistent with Eq. (7), as all cars for each 𝑘 ∈ 𝐾 depart from parking towards an 

external destination outside the area. 

𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘 = ∑ 𝑛𝑠/𝑝

𝑖′,𝑘 ∙ ∫ 𝑓(𝑡𝑑,𝑝) 𝑑𝑡𝑑,𝑝

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (47) 

𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘  is based on the distribution of parking durations 𝑓(𝑡𝑑,𝑝) and on the number of 

cars having accessed parking spaces, 𝑛𝑠/𝑝
𝑖′,𝑘, in a former time slice 𝑖′ ∈ [1, 𝑖 − 1]. The 

likelihood that these cars depart from the parking spaces in time slice 𝑖 equals the 

probability of the parking duration being between (𝑖 − 𝑖′) ∙ 𝑡 and (𝑖 + 1 − 𝑖′) ∙ 𝑡, i.e., 

∫ 𝑓(𝑡𝑑,𝑝) 𝑑𝑡𝑑,𝑝
(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡
.  

The transition event 𝑛𝑝𝑟/
𝑖,𝑘  in Eq. (48) describes the number of cars departing from the 

P+R spaces. It is modelled analogously to Eq. (47) depending on 𝑛/𝑝𝑟
𝑖′,𝑘 and the 

distribution of P+R durations 𝑓(𝑡𝑑,𝑝𝑟). 
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𝑛𝑝𝑟/
𝑖,𝑘 = ∑ 𝑛/𝑝𝑟

𝑖′,𝑘 ∙ ∫ 𝑓(𝑡𝑑,𝑝𝑟) 𝑑𝑡𝑑,𝑝𝑟

(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (48) 

After cars access or depart the parking spaces in the area and the P+R facilities, the 

number of available parking spaces, 𝐴𝑖, and the number of available P+R spaces, 𝑃𝑖, 

are updated in Eq. (49a-b). Neither 𝐴𝑖 nor 𝑃𝑖 can surpass the total number of existing 

parking/P+R spaces, i.e., 𝐴𝑖 ≤ 𝐴 and 𝑃𝑖 ≤ 𝑃 for any time slice 𝑖. 

𝐴𝑖 = 𝐴 −𝑁𝑝
𝑖  (49a) 

𝑃𝑖 = 𝑃 − 𝑁𝑝𝑟
𝑖  (49b) 

The cars heading towards external destinations, 𝑛𝑛𝑠𝑒/
𝑖,𝑘 , leave the area after having 

driven a given distance 𝑙/
𝑘 or 𝑙𝑝/

𝑘  depending on whether they have parked or not. The 

distances 𝑙/
𝑘 and 𝑙𝑝/

𝑘  are – analogously to 𝑙𝑛𝑠/
𝑘  – considered as fixed or taken out of any 

given probability density function. They both depend on the network size and 

average trip lengths. 𝑛𝑛𝑠𝑒/
𝑖,𝑘  is modelled in Eq. (50) for user group 𝑘 ∈ 𝐾 based on 𝑛/𝑛𝑠𝑒

𝑖′,𝑘  

and 𝑛𝑝/𝑛𝑠𝑒
𝑖′,𝑘 . Note that Eq. (50) is consistent with Eq. (8), as 𝑛/𝑛𝑠𝑒

𝑖′,𝑘  includes the 

proportion of through-traffic, 𝛽𝑖, for each user group 𝑘 ∈ 𝐾. 

𝑛𝑛𝑠𝑒/
𝑖,𝑘 = ∑ (𝑛/𝑛𝑠𝑒

𝑖′,𝑘 ∙ 𝛾/
𝑖′,𝑘 + 𝑛𝑝/𝑛𝑠𝑒

𝑖′,𝑘 ∙ 𝛾𝑝/
𝑖′,𝑘)

𝑖−1

𝑖′=1

 (50) 

𝛾/
𝑖′,𝑘 and 𝛾𝑝/

𝑖′,𝑘 in Eq. (50) indicate whether the cars 𝑛/𝑛𝑠𝑒
𝑖′,𝑘  and 𝑛𝑝/𝑛𝑠𝑒

𝑖′,𝑘  have driven 𝑙/
𝑘 and 

𝑙𝑝/
𝑘 , respectively, to leave the area in time slice 𝑖. Please refer to Eq. (35) for the 

formulations of 𝛾/
𝑖′,𝑘 and 𝛾𝑝/

𝑖′,𝑘. 

4.3.2 Traffic performance in the area 

The average searching time per car, 𝑡𝑠, in Eq. (51) reflects the traffic performance in 

the area and shows whether the network is congested or not. A high average 

searching time, for example, might occur due to a small number of available parking 

spaces in the area. This will lead to traffic congestion in the network. 

𝑡𝑠 =
∑ ∑ 𝑡 ∙ 𝑁𝑠

𝑖,𝑘𝐾
𝑘=1

𝑇
𝑖=1

∑ ∑ 𝑛𝑠/𝑝
𝑖,𝑘𝐾

𝑘=1
𝑇
𝑖=1

 (51) 

𝑡𝑠 is determined by computing the total searching time for all user groups 𝑘 ∈ 𝐾 in 

the network, ∑ ∑ 𝑡 ∙ 𝑁𝑠
𝑖,𝑘𝐾

𝑘=1
𝑇
𝑖=1 , and dividing it by the total number of cars having 

searched for parking in the area, ∑ ∑ 𝑛𝑠/𝑝
𝑖,𝑘𝐾

𝑘=1
𝑇
𝑖=1 , over the time horizon 𝑇. 
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4.3.3 Total revenue for the city 

Introducing parking and congestion pricing schemes are options for generating 

revenue 𝐼𝑡𝑜𝑡 (Eq. (52)). 

𝐼𝑡𝑜𝑡 =∑∑(𝑛/𝑛𝑠𝑒
𝑖,𝑘 + 𝑛/𝑛𝑠𝑖

𝑖,𝑘 ) ∙ 𝑝𝑡

𝐾

𝑘=1

𝑇

𝑖=1⏟                
term 1

+∑∑𝑛𝑝𝑟/
𝑖,𝑘 ∙ (𝑝𝑝𝑟 + 𝑝𝑃𝑇)

𝐾

𝑘=1

𝑇

𝑖=1⏟                
𝑡𝑒𝑟𝑚 2

+∑∑𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘 ∙ 𝑝𝑝 ∙ 𝑡𝑑,𝑝̅̅ ̅̅ ̅

𝐾

𝑘=1

𝑇

𝑖=1⏟              
𝑡𝑒𝑟𝑚 3

 (52) 

Term 1 represents the revenue from the congestion toll for all 𝑘 ∈ 𝐾 during all time 

slices 𝑖. Term 2 shows the revenue from the P+R and the round-trip PT fees for all 

user groups 𝑘 ∈ 𝐾 during all time slices 𝑖. Term 3 illustrates the revenue from parking 

in the area for all user groups 𝑘 ∈ 𝐾 during all time slices 𝑖, depending on the average 

parking duration 𝑡𝑑,𝑝̅̅ ̅̅ ̅. 

4.4 Applications 

In this section, we illustrate the use of the proposed methodology by comparing 

different parking and congestion pricing scenarios for a central area with a high 

parking demand for public parking spaces within the city of Zurich, Switzerland. Our 

results help answering the question whether introducing congestion pricing is a 

necessity or implementing parking pricing strategies are sufficient to improve the 

area’s traffic performance. Our case study uses real traffic and parking data obtained 

and validated in Cao et al. (2019), which is based on historical data collections and an 

agent-based model in MATSim (Waraich and Axhausen (2012)). It was proven 

reasonable and validated in Cao et al. (2019) using the parking occupancy data over 

a working day based on a local monitoring system (PLS Zurich), and the cruising time 

based on survey results that were conducted during May 2016. Note that we use 

MATSim to estimate the demand, i.e., daily traffic data arriving to the network and 

the distribution of parking durations, and we do not use it for traffic modelling 

purposes. The framework is implemented with the aid of a simple numerical solver 

such as Matlab. 

4.4.1 Case study of an area within the city of Zurich,  

Switzerland 

We concentrate on the same study area as in section 3.4.1. Recall that the total length 

of all roads is 𝐿 = 7.7 km, and 𝑏 = 76 m. As most of the streets have two lanes (either 

one lane per direction or two lanes in a one-way street), the total network length is 

𝐿𝑙𝑎𝑛𝑒 = 15.4 lane-km. 

There are 539 public parking spaces in the area. As the policy of removing on-street 

parking spaces without necessarily downsizing the overall parking supply has been 

evaluated in the inner-city of Zurich since the 1990’s (Zurich parking supply cap 

system in Fellmann et al. (2009)), we assume that 200 on-street parking spaces can be 
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moved out of our network and turned into P+R spaces, i.e., 𝑃 = 200. The remaining 

𝐴 = 339 parking spaces stay in the area. It is assumed that the recovered road space 

while removing on-street parking spaces in the inner-city area has no influence on the 

traffic flow, and can be used for other activities (e.g., to create pedestrian zones or 

bicycle lanes). The P+R fee outside the area is a fixed lump-sum for parking up to 𝑇 =

1440 min. The average P+Rail fee around the city of Zurich including the round-trip 

PT fee paid to enter the area from the P+R facility by PT equals 𝑝𝑝𝑟 + 𝑝𝑃𝑇 = 10 CHF 

(SBB (2020), VBZ (2002)). Both P+R outside and parking spaces inside the area have 

no parking time limit, i.e., drivers can park there for the whole time horizon of 24 

hours. The working day is divided into time slices of 1 min, i.e., 𝑡 = 1 min. To model 

the traffic, we use traffic properties (i.e., 𝑣 = 27.93 km/h) and model parameters 𝜗𝑐𝑎𝑟, 

𝜗𝑃𝑇, 𝜇𝑐𝑎𝑟, and 𝜇𝑃𝑇 are based on the 3D-MFD of the city of Zurich (Ambühl et al. (2017), 

Dakic and Menendez (2018), Loder et al. (2017, 2019)). We assume the price per 

distance driven as 𝑝𝑑 = 0.3 CHF/km, the average distance driven from the P+R facility 

to the area as 𝑙𝑃𝑇 = 5𝑏 = 380 m, and the walking speed as 𝑤 = 5 km/h (Browning et 

al. (2006)). The average headway of PT lines from the P+R facility to the PT stops is 

ℎ = 7.5 min and the total number of PT stops in the area is 𝑆 = 2. Here we use bus 

line 31 and tram lines 2, 7, 9, 10 and 13 in Zurich as a reference for ℎ and 𝑆 (Carrasco 

(2012)). 

Recall that the parking demand (Fig. 3.4(b) in section 3.4.1), the distribution of parking 

durations in Fig. 4.5, and the initial conditions are based on an agent-based model in 

MATSim, which is in turn, based on previous measurements. This has been validated 

for the city of Zurich in Waraich and Axhausen (2012). The parking demand of 2687 

trips is split into 𝐾 = 4 different user groups (892/ 956/ 838/ 956 trips) associated 

with different VOTs (𝑉𝑂𝑇1 = 29.9 CHF/h; 𝑉𝑂𝑇2 = 25.4 CHF/h; 𝑉𝑂𝑇3 = 25.8 CHF/h; 

𝑉𝑂𝑇4 = 17.2 CHF/h) which are based on the estimated VOT mean values for car 

journeys in Switzerland (Axhausen et al. (2006)). 23% (618 trips) of the daily traffic 

(i.e., 𝛽𝑖 = 0.23, ∀𝑖) does not search for parking (through-traffic), and the remaining 

77% (2069 trips) searches for parking. The parking durations (Fig. 4.5) are described 

by a probability density function following a gamma distribution with a shape 

parameter of 1.6 and a scale parameter of 142.  

 

Fig. 4.5. Distribution of parking durations. 

The average parking duration is 227 min (Cao et al. (2019)). We assume that parking 

durations at P+R spaces are longer than parking durations in the area as they 
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additionally account for the drivers’ PT time, i.e., we add the average round-trip PT 

waiting and travel time to the parking durations in the area in order to determine the 

parking durations at P+R spaces. 

The initial conditions include 𝑁𝑝
0 = 113 cars already parked in the area and 𝑁𝑝𝑟

0 = 70 

cars parked at P+R facilities at the beginning of the working day. All further initial 

conditions are considered as zero, i.e., 𝑁𝑛𝑠𝑒
0 = 𝑁𝑛𝑠𝑖

0 = 𝑁𝑠
0 = 0. The travel distances 𝑙𝑛𝑠/

𝑘 , 

𝑙/
𝑘 and 𝑙𝑝/

𝑘  follow a uniform distribution between 0.1 and 0.7 km for all 𝑘 ∈ {1,… ,4}. 

4.4.2 Impact of parking and congestion pricing 

This section focuses on the traffic impacts from different parking and congestion 

pricing scenarios. First, we explain the status quo in the city of Zurich (scenario (a) in 

Table 4.4). Currently, there are no P+R facilities (besides the ones at rail stations 

around Zurich) and there is no congestion toll around this case study area. The hourly 

parking pricing fee of 2.25 CHF approximates the average value in the city center of 

Zurich (Cao et al. (2019)). We compare this reference scenario to the assumed 

scenarios (b)-(e) in Table 4.4 in terms of traffic performance (average time spent) in 

the network and total revenue for the city. 

Table 4.4. Scenarios and their pricing strategy. 

Scenarios Pricing strategy 

Scenario (a): 
Reference scenario: 
No P+R facilities 

No P+R facilities, no PT and no congestion toll are considered. Hourly parking pricing is 
set to 2.25 CHF in the area for all time slices. 

Scenario (b): Free 
P+R and free PT 

P+R facilities and PT are introduced, i.e., 200 on-street parking spaces are moved outside 

the area as P+R spaces. P+R and PT fees are set to 0 CHF. No congestion toll is considered. 

Hourly parking pricing is set to 2.25 CHF in the area for all time slices. 

Scenario (c): Parking 
pricing (policy 1) 

P+R facilities and PT are introduced, i.e., 200 on-street parking spaces are moved outside 
the area as P+R spaces. P+R fees including round-trip PT fees are set to 10 CHF for up to 
24 hours. Congestion pricing is set to 0 CHF in the area for all time slices. Hourly parking 
pricing is doubled and set to 4.5 CHF in the area for all time slices. 

Scenario (d): 
Congestion pricing 
(policy 2) 

P+R facilities and PT are introduced, i.e., 200 on-street parking spaces are moved outside 
the area as P+R spaces. P+R fees including round-trip PT fees are set to 10 CHF for up to 
24 hours. Congestion pricing is set to 12 CHF in the area for all time slices. Hourly parking 
pricing is set to 0 CHF in the area for all time slices. 

Scenario (e): Parking 
and congestion 
pricing (combined 
policies 1 and 2) 

P+R facilities and PT are introduced, i.e., 200 on-street parking spaces are moved outside 
the area as P+R spaces. P+R fees including round-trip PT fees are set to 10 CHF for up to 
24 hours. Congestion pricing is set to 12 CHF in the area for all time slices. Hourly parking 
pricing is set to 4.5 CHF in the area for all time slices. 

 

Table 4.5 shows the results for the traffic criteria including traffic performance (i.e., 

average/total searching and non-searching time), congestion (i.e., average/total delay, 

and queue reflected as the average number of cars searching for parking), traffic state 

volumes, and total revenue for the different scenarios in Table 4.4. The delay is 

determined as the difference between the actual and ideal travel time in the area. The 

latter is the time the cars spend under free-flow conditions in the network. Recall that 

the parking and P+R revenues come only from the cars that park in the area or at the 

P+R facilities, but the revenue from congestion pricing includes every single car that 

comes into the network, whether they park or not. 
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The reference scenario (a) requires the longest average/total searching and non-

searching time, and the longest average/total delay compared to all other scenarios 

since there are no P+R facilities outside the area, i.e., all assumed scenarios (b)-(e) 

improve the traffic performance in the area. However, different policies lead to 

different results (Table 4.5). Scenario (b) analyzes the policy of moving 200 on-street 

parking spaces outside the area as free P+R spaces with free PT, while the hourly 

parking pricing in the area is kept at 2.25 CHF. The results show a lower boundary for 

the average time values in Table 4.5, i.e., how much we can reduce the average 

searching and non-searching time by encouraging drivers to use the available free 

P+R facilities (32.1 % and 43.8 %, respectively). The average delay decreases 

significantly by 56 %, as on average at any given time we have 164 cars using the P+R 

facility instead of parking in the area. This brings down the usage of parking spaces 

in the central area from an average of 338 to 172 at any given minute. Note that the 

average delay refers only to the traffic within the area, which explains this significant 

reduction compared to the reference scenario. Scenario (c) considers the parking 

pricing policy (policy 1 in section 4.2) with an increased hourly parking fee of 4.5 CHF 

in the area. The P+R fees including round-trip PT fees are set to 10 CHF for 24 hours. 

This decreases the average searching time by 27.2 % compared to scenario (a) as on 

average 141 drivers decide to use P+R instead of entering the area by car. In addition, 

the average non-searching time and the average delay significantly decrease by 37 % 

and 46.7 %, respectively. Compared to scenario (b) (free P+R facilities and free PT) 

more cars enter the area due to higher costs using P+R including round-trip PT fees 

(10 CHF for 24 hours), which results in an increased searching time and delay in the 

area. The P+R and PT fees, as well as the higher parking fees lead to an increased 

revenue of 28,999 CHF. Scenario (d) describes the congestion pricing policy (policy 2 

in section 4.2) with a congestion toll set to 12 CHF (comparable to London, U.K. (TFL 

(2020)) and free parking in the area for all time slices. It considers the same P+R 

conditions as in scenario (c). As the congestion toll (scenario (d)) is cheaper than the 

parking fee for the drivers’ expected parking durations (scenario (c)), more drivers 

would like to enter the area by car. This leads to a higher searching and non-searching 

time, and a higher delay/queue in scenario (d) compared to scenario (c). When 

comparing both scenarios (policy 1 and 2), then introducing parking pricing not only 

leads to better traffic performance and congestion results, but also to a similar increase 

in revenue for the city council. In addition, parking pricing (policy 1) might be the 

preferred scenario as it is not only easier to implement, but also socially and politically 

more accepted than congestion pricing. The significant traffic performance 

improvements of policy 1 compared to scenario (a) also support a decision towards a 

parking pricing implementation. Notice that this is in part possible because in this 

case the majority of the traffic coming into the area is searching for parking (i.e., 1 −

𝛽𝑖 = 0.77 for all time slices 𝑖). Even if the total revenue in scenario (c) is slightly less 

than in scenario (d), we would like to highlight that this revenue is mainly dependent 

on the hourly parking fee rate. It can increase with a higher parking fee, but this in 

turn, might raise social acceptability issues in the city. Scenario (e) combines the 

parking and congestion pricing policies 1 and 2. The traffic performance improves 

compared to both scenarios (c) and (d) and it comes close to the best performance in 
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scenario (b). The resulting daily revenue of 49,043 CHF is the highest compared to all 

other scenarios in Table 4.5. 

Table 4.5. Comparison of different policies in terms of traffic performance, congestion, traffic state volumes, and total revenue for 
the city. Value within parenthesis represents the percentage change with respect to the reference scenario. 

Scenarios 

Scenario (a): 
Reference 

scenario: No 
P+R facilities 

Scenario (b): 
Free P+R and 

free PT 

Scenario (c): 
Parking 
pricing  

(policy 1) 

Scenario (d): 
Congestion 

pricing  
(policy 2) 

Scenario (e): 
Parking and 
congestion 

pricing 
(combined 

policies 1 and 2) 

Average time for cars 
searching for parking 
(min/veh) 

2.68 
1.82 
(-32.1 %) 

1.95 
(-27.2 %) 

2.09 
(-22 %) 

1.89 
(-29.5 %) 

Total time for cars searching 
for parking (min) 

6,036 
4,099 
(-32.1 %) 

4,395 
(-27.2 %) 

4,710 
(-22 %) 

4,244 
(-29.7 %) 

Average travel time for cars 
non-searching (min/veh) 

2.97 
1.67 
(-43.8 %) 

1.87 
(-37 %) 

1.97 
(-33.7 %) 

1.78 
(-40.1 %) 

Total travel time for cars non-
searching (min) 

6,679 
3,751 
(-43.8 %) 

4,205 
(-37 %) 

4,434 
(-33.6 %) 

4,006 
(-40 %) 

Average delay (min) 2.91 
1.28 
(-56 %) 

1.55 
(-46.7 %) 

1.75 
(-39.9 %) 

1.43 
(-50.9 %) 

Total delay (min) 8,628 
3,764 
(-56.4 %) 

4,513 
(-47.7 %) 

5,057 
(-41.4 %) 

4,164 
(-51.7 %) 

Average number of cars non-
searching (external 
destination) (veh/min) 

2.62 
1.64 
(-37.4 %) 

1.77 
(-32.4 %) 

1.84 
(-29.8 %) 

1.71 
(-34.7 %) 

Average number of cars non-
searching (internal 
destination) (veh/min) 

2.02 
0.97 
(-52 %) 

1.15 
(-43.1 %) 

1.24 
(-38.6 %) 

1.07 
(-47 %) 

Average number of cars 
searching for parking 
(veh/min) 

4.19 
2.85 
(-32 %) 

3.05 
(-27.2 %) 

3.27 
(-22 %) 

2.95 
(-29.6 %) 

Average number of cars 
parking in the area (veh/min) 

337.99 
172.27 
(-49 %) 

195.47 
(-42.2 %) 

207.85 
(-38.5 %) 

185.1 
(-45.2 %) 

Average number of cars using 
P+R (veh/min) 

0 164.16 141.05 128.76 151.36 

Revenue from P+R facilities 
and PT (CHF) 

0 0 8,886 7,989 9,693 

Revenue from congestion tolls 
(CHF) 

0 0 0 22,657 20,612 

Revenue from parking pricing 
(CHF) 

17,628 8,438 20,113 0 18,738 

Total revenue created  
by P+R facilities, PT, parking 
pricing and congestion tolls 
(CHF) 

17,628 
8,438 
(-52.1 %) 

28,999 
(+64.5 %) 

30,646 
(+73.9 %) 

49,043 
(+178.2 %) 

 

Nevertheless, this high revenue comes along with all the negative aspects of 

introducing congestion pricing to an area. The relative difference between the cost of 

using P+R and the cost of entering the area explains the changes in traffic performance 

and congestion between the scenarios (b)-(e). Our parking and congestion pricing 
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decision framework is based on a logistic function (Eq. (36a-b)) which results in more 

drivers entering the network in case of a higher gap between these relative cost 

variables. 

In the following, we present more details about policy 1 (scenario (c)) in comparison 

with the status quo (reference scenario (a)). Most drivers are searching for parking 

between the 11th and 16th hour due to a low number of available parking spaces, i.e., 

there are more searching cars in the area than available parking spaces (Fig. 4.6(b), 

scenario (c)). 66 % of the cruising-for-parking traffic occurs in this time period due to 

shopping, leisure and/or business activities (Cao et al. (2019)). This leads to a high 

average searching time (Fig. 4.6(a)). Applying policy 1 reduces the average searching 

time during the peaks at the 12th and the 14th hour by more than 2.5 min compared 

to the reference scenario (a). The highest peak happens at the 12th hour, when 28 cars 

are cruising for parking while at the same time only 2 parking spaces are available 

(Fig. 4.6(b)). The parking system in the area remains full between the 11th and the 

15th hour. After the 15th hour, parking spaces become available again as cars 

gradually leave the area. Note that the number of available parking spaces before the 

10th and after the 16th hour exceeds 30 and is not visible in Fig. 4.6(b). 

 

(a) Average searching time before parking.             (b) Searching cars vs. available parking spaces (scenario (c)). 

Fig. 4.6. Cars searching for an available parking space in the area over a typical working day. 

4.4.3 Sensitivity analysis 

In this section, we conduct a sensitivity analysis for policy 1 (scenario (c) in section 

4.4.2) to quantitatively evaluate the effects of some influencing factors (Table 4.6) on 

the traffic and parking model outputs. 

Fig. 4.7 shows how the average searching time (Fig. 4.7(a)) and the total revenue (Fig. 

4.7(b)) change as a function of each of these four factors (each shown with a different 

line).  
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                 Table 4.6. Influencing factors and their reference values for this sensitivity analysis. 

Influencing factors Reference values 

VOTs, 𝑉𝑂𝑇𝑘, for all user groups 𝑘 ∈ 𝐾 
𝑉𝑂𝑇1 = 29.9 CHF/h; 𝑉𝑂𝑇2 = 25.4 CHF/h; 
𝑉𝑂𝑇3 = 25.8 CHF/h; 𝑉𝑂𝑇4 = 17.2 CHF/h 

Total number of existing parking spaces inside the area, 𝐴 𝐴 = 339 

Total number of existing P+R spaces outside the area, 𝑃 𝑃 = 200 

P+R fee, 𝑝𝑝𝑟, and round-trip PT fee, 𝑝𝑃𝑇 𝑝𝑝𝑟 + 𝑝𝑃𝑇 = 10 CHF 

 

 

     (a) Sensitivity analysis of the average searching time (log scale).  (b) Sensitivity analysis of the total revenue. 

Fig. 4.7. Sensitivity analysis of the traffic performance over the peak period between the 10th and the 16th hour of 
one working day and the total revenue over one full working day (for an independent 𝐴 and 𝑃). 

Fig. 4.7(a) shows that 𝑉𝑂𝑇𝑘 for all 𝑘 ∈ 𝐾, and 𝑝𝑝𝑟 + 𝑝𝑃𝑇 have no influence on the 

average searching time over the peak period between the 10th and the 16th hour of 

one working day. However, there is a clear dependency between the number of 

parking and P+R spaces, 𝐴 and 𝑃, and the traffic performance. Decreasing 𝐴 or 𝑃 

significantly increases the average time searching for parking. It decreases faster for 

𝐴, as our case study considers 69.5 % more parking spaces in the area than P+R spaces 

outside the area. On the other hand, increasing 𝐴 or 𝑃 leads to a small decrease in the 

average searching time. This indicates an asymmetric relation between changes to 𝐴 

or 𝑃 and the resulting changes in searching times. 

Fig. 4.7(b) illustrates the sensitivity analysis of the total revenue from one working 

day. The 𝑉𝑂𝑇𝑘 for all 𝑘 ∈ 𝐾, 𝑝𝑝𝑟 and 𝑝𝑃𝑇 have only a marginal influence on the total 

revenue collected – compared to both 𝐴 and 𝑃. Interestingly, the revenue increases 

when the number of P+R spaces, 𝑃, decreases and it decreases when 𝑃 increases. In 

case of fewer P+R spaces, more drivers have to decide for a parking space in the area. 

The higher hourly parking fees in the area in comparison to P+R explain this gain in 

revenue. Additionally, less parking spaces, 𝐴, inside the area lead to a decline in 

revenue, and a higher 𝐴 lead to a small raise in revenue. 

Evidently, changes to 𝐴 and 𝑃 have a significant impact on the traffic performance 

and the total revenue for the city. In Fig. 4.7 we treated both 𝐴 and 𝑃 independently 

from each other. However, Zurich introduced a parking supply cap system in the 

inner-city in 1990 (Fellmann et al. (2009)): for every newly introduced parking space 

an existing on-street parking space must be removed such that the parking supply is 

kept the same (Kodransky and Hermann (2011)). Thus, we assume now 𝐴 and 𝑃 are 
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dependent on each other, i.e., 𝐴 + 𝑃 = 539, and conduct a sensitivity analysis of the 

average searching time over the peak period between the 10th and the 16th hour of 

one working day and the total revenue from one full working day (Fig. 4.8). 

 

Fig. 4.8. Sensitivity analysis of the traffic performance over the peak period between the 10th and the 16th hour of 
one working day and the total revenue over one full working day (for a dependent 𝐴 and 𝑃, i.e., 𝐴 + 𝑃 = 539). 

Fig. 4.8 shows that converting up to 80 % of the parking spaces inside the area, 𝐴, into 

P+R spaces, 𝑃, leads to less drivers entering the network and significantly lowers the 

searching times. Interestingly, this reflects an opposite relation between reductions of 

𝐴 and the resulting changes in searching times than that shown in Fig. 4.7(a). The 

reason is the increases in P+R facilities, which create opportunities for people to park 

outside the area and avoid the whole searching for parking phenomenon. Notice, 

also, that the relation between the conversion rate and the reduction in searching 

times is not monotonically decreasing. Beyond a certain point, ~80 %, the average 

searching time in the area increases with further conversions. In other words, we can 

always expect that some people would prefer to park inside the area, and reducing 

the parking supply too much will just increase the searching times. The higher P+R 

capacity affects the drivers’ decision between entering the area by car or switching to 

P+R instead. This leads to more drivers switching to P+R, such that the P+R occupancy 

increases faster. The very low availability of P+R spaces leads, in turn, to some drivers 

entering the area by car. Due to the low capacity of parking spaces in the area (caused 

by a high conversion rate), the drivers face a longer time searching for an available 

parking space. From the revenue perspective, the relation is quite intuitive. Less 

parking spaces inside the area lead to a decline in revenue. Such a decline is lower 

than the one shown in Fig. 4.7(b) as it is partially compensated by an increase in the 

revenues from P+R. 

In Cao (2016), an in-depth sensitivity analysis (Ge and Menendez (2014)) was 

conducted to analyze the effects of 𝑙𝑛𝑠/
𝑘 , 𝑙/

𝑘 and 𝑙𝑝/
𝑘  on the model outputs. The outcomes 

show that the model results are not sensitive to these distance variables as long as 

they are within a reasonable range. It is also possible to use more advanced sensitivity 

analysis methods (Ge et al. (2014, 2015), Ge and Menendez (2017)) in future research 

to have a deeper understanding of the relations between the different influencing 

factors.  
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4.4.4 Trade-offs between parking fee and congestion toll 

When introducing congestion pricing, it is often a challenge for city councils to find 

the best relation between parking pricing and the congestion toll. Since all variables 

in our framework are based on average values and not on random values, every 

simulation run returns the same results as long as the input variables to the model are 

not changed. This means that the number of cars of all transition events and the 

number of available parking spaces on the network are deterministic at the beginning 

of each time slice. We run a simulation-based search algorithm based on multiple 

simulation runs to understand the effects of all possible relations 
𝑝𝑡

𝑝𝑝
 on the average 

searching time (Fig. 4.9(a)) and revenue (Fig. 4.9(b)). 

 

                   (a) Average searching time.               (b) Revenue based on congestion toll = 12 CHF. 

Fig. 4.9. Relation between congestion toll and parking price vs. traffic performance and revenue over a typical 
working day. 

Increasing the relation 
𝑝𝑡

𝑝𝑝
 leads to an increasing average searching time. The higher 

𝑝𝑡

𝑝𝑝
, the lower is 𝑝𝑝 for a fixed congestion toll, and the higher the number of drivers 

that decide not to use P+R and drive into the area. The traffic performance impacts 

are more severe for low congestion tolls as drivers face less costs entering the network 

by car. Interestingly, the average searching time for low congestion tolls stays low up 

to a certain 
𝑝𝑡

𝑝𝑝
 value. For example, the average searching time for 𝑝𝑡 = 9 CHF in Fig. 

4.9(a) equals about 1.8 − 2.1 min per car up to 
𝑝𝑡

𝑝𝑝
= 12 before it jumps up to 3.1 min 

per car (
𝑝𝑡

𝑝𝑝
= 30). Lower relations of 

𝑝𝑡

𝑝𝑝
 and consequently, higher 𝑝𝑝 values lead to the 

highest revenue values (Fig. 4.9(b)). The total revenue results are mainly driven by 

the parking pricing revenue as the parking fees are charged hourly. 

In summary, low relations between the congestion toll and parking pricing, 
𝑝𝑡

𝑝𝑝
, might 

not only lead to the best traffic performance in the network, but also to the highest 

revenue for the city. With a higher congestion toll, 𝑝𝑡, the parking price, 𝑝𝑝, turns out 

to be less important for the drivers’ decisions and thus, the traffic performance 

becomes more and more independent of the relation 
𝑝𝑡

𝑝𝑝
. However, this might evoke 

social and political acceptability problems and changes to the drivers’ behavior in the 

long-term. As our research focuses on short-term effects, demand changes are 
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considered out-of-scope in this dissertation. 

4.4.5 Distributional effects of our heterogeneous VOT model 

This section investigates the capabilities of our multi-VOT framework considering 

several user groups associated with different VOTs. Compared to other single-VOT 

models, our methodology can analyze the impacts of different VOTs on the drivers’ 

decision between entering the area by car or switching to P+R instead. The VOT is 

used in our decision framework (section 4.2.2) to convert time-related costs into price 

units. In reality, the drivers’ VOTs also affect their willingness to pay for parking, 

congestion tolls, P+R and/or PT fees. However, here we focus on the decisions related 

to travel times. Thus, we relax all pricing (i.e., 𝑝𝑝 = 𝑝𝑡 = 𝑝𝑝𝑟 = 𝑝𝑃𝑇 = 0 CHF) and 

explore a scenario focusing on the time-related VOT impacts for different user groups. 

Fig. 4.10 presents the percentage of drivers switching to P+R compared to those 

entering the area by car.  

 

Fig. 4.10. Distributional effects of different VOTs on the drivers’ decision between entering the area by car or  
switching to P+R as a moving average over 10 min. 

Lower VOT user groups are more likely to switch to P+R. The user group associated 

with the lowest VOT, 𝑉𝑂𝑇4 = 17.2 CHF/h, reaches the highest rate, with up to 98 % 

of the drivers switching to P+R during the 12.5 hour (peak of the day). This rate 

decreases for the drivers with a higher VOT. However, these reductions do not seem 

to be too drastic. This is due to significant increase in searching times during this peak 

hour, even after the lowest VOT user groups here switched to P+R. 

4.5 Summary of the chapter 

In this chapter, we develop a multimodal macroscopic traffic and parking search 

model that allows us to evaluate whether parking pricing can be considered as an 

alternative to the more controversial congestion pricing schemes, especially in areas 

with a high parking demand for public parking spaces. Our easy to implement 

methodology is based on aggregated data at the network level over time. Based on 

small data collection efforts and low computational costs, model outputs can be 

generated with a simple numerical solver and without complex simulation software. 
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Our general framework only uses very limited data inputs, including travel demand, 

VOT, the traffic network, parking and P+R capacities, and initial traffic and parking 

specifications. We illustrate our methodology using real data from an area within the 

city of Zurich, Switzerland. Below, we summarize the main contributions of this 

study. 

• Our framework not only evaluates the short-term impacts on the traffic and 

parking system (i.e., traffic performance, parking availability, revenue for the 

city, etc.) resulting from implementing parking pricing and/or congestion 

pricing strategies, but also the impacts of the traffic and parking system (i.e., 

traffic congestion, parking pricing, etc.) on the drivers’ decision between 

entering the area by car or using P+R instead. 

• We propose a decision model based on multiple user groups with respect to 

their VOT and integrate it into a multimodal macroscopic traffic and parking 

framework that allows us to assess different parking and congestion pricing 

policies. This framework allows us to analyze the impacts of different VOTs 

on the drivers’ decision between entering the area by car or switching to P+R 

instead. 

• Besides comparing parking and congestion pricing scenarios, our study uses 

a simulation-based search algorithm to find the best relation between the 

parking fee and the congestion toll in order to improve the traffic 

performance in the network or the total revenue for the city (which could, in 

turn, be used to improve the P+R facilities). Low relations between the 

congestion toll and parking pricing (i.e., a high enough parking fee in 

comparison to the congestion toll) might not only lead to the best traffic 

performance in the network, but also to the highest revenue for the city. 

However, due to the high costs for drivers actually entering the area by car, 

a lot of drivers might prefer staying at a P+R facility outside the area. The 

traffic performance impacts might be more severe for low congestion tolls as 

drivers face less costs entering the network by car. 

• Our results for Zurich show that parking pricing policies are indeed a viable 

option compared to congestion pricing, potentially leading to traffic 

performance improvements even if parking pricing policies only affect 

drivers using public parking in the area. Furthermore, parking pricing 

strategies are socially and politically more accepted and easier to implement 

than introducing a congestion toll in a metropolitan area. 

Overall, the usage and contributions of the framework are far beyond the illustration 

in the presented case study. The framework could be extended to include tiered 

parking/P+R and congestion pricing. This scheme allows drivers to pay a low 

parking/P+R rate for the first hours, and then the rate jumps up significantly 

to promote higher parking availability and to increase turnover. Alternatively, the 

congestion toll might be low when you enter the area for only a limited amount of 

time. This ensures that cars do not stay forever in the area and congest the central 

streets. As some cities are developing parking policies aiming to maintain certain 
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occupancy rates throughout the day, we could also investigate the impacts of parking 

and congestion pricing decisions on the optimal parking occupancy rates (chapter 6). 

A further consideration is to enhance the parking fees and the congestion toll using 

responsive pricing schemes. The purpose of these time-dependent fees is to move the 

traffic demand for the central area away from the daily peak. Congestion pricing 

might be more expensive during the peak hours of the day compared to off-peak 

hours, and it might be free on Sundays as the example in London shows (Leape (2006), 

Santos (2005), Santos and Shaffer (2004)). In future research, parking fees might not 

only be dependent on the parking demand of each user group over time, but also on 

the available parking supply in the network (chapter 5). This could only affect a 

portion of the traffic demand, i.e., the parking fee for all parking spaces could follow 

a lower fixed (subsidized) charge for a portion of the demand and the remaining 

demand could be treated responsively, reflecting the external costs for parking. 

Similarly, future studies can investigate the impacts of only a portion of the demand 

being obliged to pay the congestion toll when entering the area. These differentiations 

within the traffic demand can be motivated by, e.g., the subsidy by a company or a 

city for their residents. In reality, drivers might prefer some parking spaces or PT 

stops in a central street or area of the network. Future research could investigate non-

homogeneous environments (e.g., where parking spaces or PT stops are 

inhomogeneously distributed) by developing different subnetworks connected to 

each other. Each subnetwork could have, for example, a different distribution of 

parking spaces and PT stops. 

In summary, our model helps cities to investigate the short-term influences of both 

parking and congestion pricing policies on the traffic performance, and how the 

traffic performance in the area impacts the number of cars deciding between entering 

the network by car or using P+R instead. Our framework offers quick evaluation 

possibilities for cities in terms of introducing new policies (e.g., P+R, parking pricing, 

and congestion charge) in an area and their impacts on the traffic and parking system, 

and the potential revenue over a defined time horizon. 
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5.1 Introduction 

In nearly all major cities, parking pricing policies can lead to significant changes on 

the performance of a transportation network. Short-term pricing strategies, for 

example, can have an influence on the performance of both the urban parking and 

traffic systems, e.g., parking pricing can affect the parking availability, the congestion 

and traffic performance, or the traffic composition in the network. In this chapter, we 

propose a dynamic macroscopic parking pricing model which analyzes the 

interdependency between responsive parking pricing and searching-for-parking 

traffic, while maximizing the parking pricing revenue and simultaneously 

minimizing the total cruising time on the network. It includes several cost variables 

(e.g., predicted parking cost at a future time, penalty cost for the past cruising time) 

in order to better replicate realistic conditions and determine the influence of parking 

pricing on cruising vehicles. This parking pricing scheme can then be compared to 

existing pricing methodologies. 

In this research, we formulate a new parking pricing scheme and integrate it into the 

macroscopic traffic and parking model from chapter 2 proposed by Cao and 

Menendez (2015a) in order to develop a parking pricing model and estimate its 

influence on the searching-for-parking traffic. The original methodology, validated 

already in Cao et al. (2019), uses a parking-state-based matrix to model the 

interactions between urban parking and traffic macroscopically over time. With such 

matrix, the model provides an approximation of the proportion of cars searching for 

parking, as well as an approximation of the time cars spent searching for parking, or 

traveling through the system. The original model, however, cannot account for 

pricing nor different values of time. Thus, in this chapter we propose a parking 

pricing and decision model to fill this gap. Then, we compute all the variables 

associated with cruising for parking under the influence of our responsive parking 

pricing fee over time. The macroscopic responsive pricing scheme, taking the parking 

search phenomenon into consideration, is modeled as an optimization problem to 

maximize revenue while minimizing the cruising time on the network. In contrast 

with previous studies that only take the parking occupancy into account, here the 

parking fee changes in response to both, the parking occupancy, and the number of 

searching vehicles. The optimization model is formulated to maximize the parking 

pricing revenue to the highest level such that the cost of paying the current parking 

fee remains smaller than the cost of keep on searching to obtain a lower parking fee 

(i.e., so the total cruising time on the network is minimized). In general, in the parking 

pricing model, when a searcher finds an available parking space, he makes the 

decision to stay or to keep on searching based on several cost factors:  

• the drivers’ VOT; 

• the current parking fee; and 

• the expected cost of keep on searching (which include the predicted future 
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parking fee, the costs associated with traveling to the next parking possibility, 

and a penalty for past cruising time). 

The average number of drivers that decide to park in a given time interval is 

computed then based on these costs, and the traffic and parking conditions can be 

found over time. Based on that, we analyze the efficiency of the proposed parking 

pricing scheme and its short-term influence on the urban traffic and parking systems. 

These short-term effects include: 

• the searching-for-parking traffic (cruising); 

• the congestion in the network (traffic performance); 

• the total driven distance (environmental conditions); and 

• the revenue created by parking fees for the city. 

The maximal parking fee will evidently increase the revenue for the city in the short-

term. It could also, in the long-term, deter drivers from driving into the city, 

potentially changing the demand. These long-term effects, however, are considered 

out-of-scope for this chapter. Instead, we concentrate on modeling the short-term 

effects, including not only the financial benefits of the parking pricing scheme, but 

also the benefits (or disbenefits) that this might bring to the area’s traffic system. The 

responsive parking pricing model is illustrated in a case study of an area within the 

city of Zurich, Switzerland. In addition, it is compared to other three alternative 

parking pricing scenarios, including a free, a constant, and an occupancy-responsive 

parking pricing scheme where the fee only changes in response to the parking 

occupancy. 

Most of the existing studies model travelers’ parking preferences and decisions 

microscopically. Such studies tend to require huge amounts of data, and high levels 

of detail both on the demand and the supply side. In this research, we focus only on 

average values and probability distributions across the network, i.e., we look at the 

problem macroscopically. Thus, there is no data requirement for individual drivers 

or parking spaces, as all data requirements correspond to aggregated values at the 

network level. Compared to microscopic approaches, this not only saves on data 

collection efforts (e.g., drivers’ parking fee preferences, individual driving routes, 

individual parking spaces turnovers) but also reduces the computational costs 

significantly. This is especially useful for real-time control algorithms or when the 

data is scarce. 

The chapter is organized as follows. Section 5.2 presents the overall methodology of 

the macroscopic parking pricing model. It is integrated into the matrix that describes 

the system dynamics of urban traffic based on its parking-related states and transition 

events. Section 5.3 introduces the analytical framework for the dynamic macroscopic 

responsive parking pricing. It includes a cost analysis for the cost of staying at the 

current parking space and the cost of keep on searching with the detailed description 

of all the relevant cost variables. Section 5.4 shows a case study of an area within the 

city of Zurich, Switzerland, to explore the use of the concept and the proposed 

methodology. Section 5.5 summarizes the findings of this chapter. 
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5.2 Framework 

In this section, the methodology of the dynamic macroscopic parking pricing and 

parking decision model is developed. It builds on the parking-state-based matrix in 

chapter 2 proposed by Cao and Menendez (2015a). We now extend it to include a 

dynamic macroscopic parking pricing methodology. An overview of the 

assumptions, inputs and outputs is shown below.  

5.2.1 Basic information for analytical model 

Basic model assumptions (section 5.2.1.1), inputs (section 5.2.1.2), and expected 

outputs (section 5.2.1.3) are briefly described below. 

5.2.1.1 Assumptions 

In addition to the assumptions in section 2.2, we need to add some parking pricing 

specific assumptions to the macroscopic model. We assume that the VOT is different 

for individual vehicles depending on their user group. A user group can be 

dependent on the residents’ location, income, careers, working states, etc. This VOT 

affects the parking decision of the cruising vehicles. All drivers are assumed to be 

risk-neutral, i.e., drivers are rational during their parking decision and only compare 

the relevant parking costs between deciding to park or keep on searching to find a 

better parking price. In reality, drivers with a low VOT might not keep on searching 

when the parking price increases and they might quit their journeys. Thus, we 

compute the best possible parking price such that only a small percentage of the 

population is affected by this “keep on searching” decision. In addition, we assume 

that drivers do not cancel their trips while searching for parking. The proportion of 

new arrivals that corresponds to traffic that is not searching for parking (i.e., through-

traffic) is assumed to be independent of vehicles’ VOT. The total traffic demand for 

all time slices, including the actual parking demand can be obtained based on 

simulations, demand models, city statistics, or other sources. The percentage of the 

demand that does not search for parking represents the proportion of traffic that is 

driving through this area but has a destination outside or is going to reserved parking 

spaces. The distance that must be driven by a vehicle before it starts to search for 

parking is also assumed to be independent of vehicles’ VOT. As stated before, 

vehicles that use private parking spaces or have parking permit reservations do not 

typically search for parking. Thus, they are considered as part of the through traffic. 

As soon as the vehicles enter the parking-state, the parking fee needs to be paid at the 

rate of the arrival time, i.e., the unit parking pricing is assumed to be independent of 

the vehicle’s parking duration.  
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5.2.1.2 Inputs 

In chapters 2 and 3, we have already introduced some relevant independent variables 

corresponding to the travel demand, the parking system, the traffic network, and 

model parameters (Table 2.1, 3.1, and 3.2). These variables can be estimated based on 

some historical data, e.g., traffic data on main roads to enter the network; parking 

data from one day’s data collection, etc. Other variables can be estimated based on 

real measurements, the MFD, and/or simulation results. Additional input parameters 

are the initial conditions of the parking-related states, which can be measured, 

assumed or simulated. 

Corresponding to the assumptions described above, Table 5.1 shows all the model’s 

independent variables, which are newly introduced in this chapter. 

Table 5.1. Independent variables (inputs to the model). 

Notation Definition 

𝑝0 Initial parking pricing for all available parking spaces. 

𝛥𝑚𝑎𝑥 Maximum increase/decrease in pricing per time slice. 

𝜂𝑝𝑟𝑒𝑑 Fixed number of time interval slices to include for approximation of predicted parking pricing. 

 

These variables correspond to parking pricing specific input parameters. These 

variables can be estimated based on historical parking pricing data, or defined 

otherwise. 

5.2.1.3 Outputs 

The model provides, amongst others, the results of the interactions between the 

dynamic responsive parking pricing system, the urban parking system, and the urban 

traffic system. The responsive pricing output over time and its interdependency with 

cruising vehicles can be studied. The short-term effects of parking pricing on traffic 

conditions can be investigated, i.e., the distance driven and the time spent by both, 

vehicles searching and vehicles not searching. Besides these environmental, cruising-

for-parking, and traffic performance effects, we also analyze the revenue created by 

parking fees for the city. 

In addition to Table 2.1 and 2.2, Table 5.2 shows a list of new variables we define and 

use in our methodology. The variables in Table 2.1 and 2.2 are used to quantify the 

number of vehicles that experience each transition event in a time slice. The first set 

of variables in Table 5.2 corresponds to the parking pricing model and the cost 

variables that are used to compute the vehicles deciding to park. The second set is 

used to compute these cost variables.  
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Table 5.2. Intermediate model variables. 

 Notation Definition 

F
ir

st
 s

et
 

𝑝𝑖 Responsive parking fee for all available parking spaces during time slice 𝑖. 

𝐶𝑡𝑜𝑡
𝑖,𝑘  

Total costs of keep on searching to a next available parking possibility for each user group 𝑘 ∈

𝐾 at time slice 𝑖. 

𝐶𝑝𝑎𝑦
𝑖  

Costs for the predicted parking fee at all available parking spaces for the next future time 

slices, predicted at the beginning of time slice 𝑖. 

𝛥𝐶𝑝𝑎𝑦
𝑖  Change of costs for the predicted parking fee at the beginning of time slice 𝑖. 

𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘  

Costs of driving from a given available parking space to the next parking possibility (i.e., 

external costs as petrol, wear and tear of vehicles) for each user group 𝑘 ∈ 𝐾 at time slice 𝑖. 

𝐶𝑝𝑒𝑛
𝑖,𝑘  

Costs for penalty term with respect to past cruising time (i.e., driving costs in past iterations) 

for each user group 𝑘 ∈ 𝐾 at time slice 𝑖. 

S
ec

o
n

d
 s

et
 

𝑟𝑖 
Expected average road travel distance from a given available parking space to the next 

parking possibility. 

𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  

A binary indicator of vehicles’ decision to park (or not) for each user group 𝑘 ∈ 𝐾 in time slice 

𝑖. Its value is either 1 or 0. 

𝐴𝐶𝑇𝑖 Average cruising time per vehicle at the beginning of time slice 𝑖. 

𝐶𝑇𝑚𝑎𝑥
𝑖  Maximum cruising time per vehicle at the beginning of time slice 𝑖. 

5.2.2 Transition events 

Below we introduce the modification of the transition events “Enter the area”, “Start 

to search for parking”, “Access parking”, “Depart parking”, and “Leave the area” as 

presented in section 2.4. The transition events are now adapted to include vehicles 

from different VOT user groups in the network, and the decision to park or not with 

respect to parking pricing. 

5.2.2.1 Enter the area 

Recall that the number of vehicles entering the area and transitioning to “non-

searching-state” for user group 𝑘 ∈ 𝐾 during time slice 𝑖, 𝑛 /𝑛𝑠
𝑖 = ∑ 𝑛/𝑛𝑠

𝑖,𝑘𝐾
𝑘=1 , is an input 

to the model. Please refer to section 3.3.2.1 for more information. 

Remember that a number of 𝛽𝑖 ∙ 𝑛/𝑛𝑠
𝑖,𝑘  vehicles from each user group 𝑘 ∈ 𝐾 do not 

search for parking and will directly leave the area after driving a distance 𝑙/
𝑘. The 

remaining percentage, 1 − 𝛽𝑖, will go through all transition events. 

5.2.2.2 Start to search for parking 

We assume that the vehicles from user group 𝑘 ∈ 𝐾 start to search after driving a 

distance 𝑙𝑛𝑠/
𝑘  since they enter the area. 𝑙𝑛𝑠/

𝑘  and 𝑙/
𝑘 can be assumed as a fixed value or 

to follow any given probability density function. In Cao (2016), an in-depth sensitivity 

analysis (Ge and Menendez (2014)) was conducted to quantitatively evaluate the 

effects of this variable on the model output. The outcomes show that the model results 

are not very sensitive to the values of 𝑙𝑛𝑠/
𝑘  and 𝑙/

𝑘 as long as they are within a 

reasonable range. Eq. (53) shows the number of vehicles 𝑛𝑛𝑠/𝑠
𝑖,𝑘  starting to search for 

parking during time slice 𝑖. Note that Eq. (53) is consistent with Eq. (5) and modelled 
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for each 𝑘 ∈ 𝐾. 

𝑛𝑛𝑠/𝑠
𝑖,𝑘 = ∑ (1 − 𝛽𝑖

′
) ∙  𝑛/𝑛𝑠

𝑖′,𝑘
⏟          

term 1

∙ 𝛾𝑛𝑠/
𝑖′,𝑘
⏟
term 2

𝑖−1

𝑖′=1

 (53) 

The number of vehicles 𝑛𝑛𝑠/𝑠
𝑖,𝑘  in Eq. (53) consists of vehicles from user group 𝑘 ∈ 𝐾 

that have entered the network area in any slice between 1 and 𝑖 − 1. Here we use 𝑖′ ∈

[1, 𝑖 − 1] to denote such a time slice. Term 1 in Eq. (53) shows all the vehicles that have 

entered the area before time slice 𝑖 and need to park. Term 2 is a binary variable 

indicating whether these vehicles will start to search for parking in time slice 𝑖 or not. 

Please refer to Eq. (25) for the formulation of 𝛾𝑛𝑠/
𝑖′,𝑘. 

5.2.2.3 Find and access parking: Parking pricing and parking decision 

One of the goals of this chapter is to propose a dynamic macroscopic parking pricing 

model with its interdependency with searching-for-parking traffic. It is included into 

a traffic system with a parking search model over time to replicate reality.  

In the transition event “Find and access parking” when drivers find an available 

parking space, they make the decision to park or to keep on searching for the next 

parking possibility. 

• Vehicles finding parking: We compute the portion of vehicles finding parking as 

those in the transition event 𝑛𝑠/𝑝
𝑖  (“Access parking”) in Cao and Menendez (2015a). 

More details can be found in section 2.4.2, referring to Eq. (6). The formulation is 

based on probability theory, and it depends on the number of available parking 

spaces 𝐴𝑖, the number of vehicles searching for parking 𝑁𝑠
𝑖, and the maximum 

driven distance per vehicle in a given time slice, 𝑑𝑖. 

The specific set of vehicles finding an available parking space is based on the 

vehicles’ locations, that of the available parking spaces and of the competitors. 

Here, however, we are only interested in the average number of drivers that find 

parking and the average searching time and distance driven during a time slice. 

Hence, we do not need to track any specific vehicle or parking space. 

• Vehicles deciding to park: The number of vehicles that do access parking (i.e., 

transition from “searching” to “parking”-state) is adapted depending on the 

vehicles deciding to park based on the parking price as illustrated in Fig. 5.1. 
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Fig. 5.1. Modelling of parking pricing and its effect on the transition between the “searching” and “parking”-state. 

Fig. 5.1 shows an overview of our dynamic responsive parking pricing model within 

the structure of this chapter, that includes the vehicles finding parking (section 2.4.2 

based on Cao and Menendez (2015a)) and the vehicles deciding to park (section 5.3). 

This last section explains the main model to determine the vehicles deciding to park 

(section 5.3.1), depending on the cost of staying (section 5.3.2), and the cost of keep 

on searching (section 5.3.3). All costs are determined macroscopically without 

stochastic components, using average values and probability distributions across the 

whole population. In section 5.3.1, the vehicles’ decision to park 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  is determined 

for each user group 𝑘 ∈ 𝐾. This models the decision process to park or to keep on 

searching dynamically. Incorporating the cost of staying and the cost of keep on 

searching, 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  refers to the vehicles’ decision to park at the current parking space 

for each user group 𝑘. 

The decision to stay (i.e., park) or keep on searching is modelled mathematically and 

depends on various influence factors. Below we provide an overview of those 

influence factors. More details are given in section 5.3. 

• Cost of staying: The cost of staying in section 5.3.2 represents the current 

parking price. The dynamic responsive parking fee over time is computed 

macroscopically as the outcome of an optimization model. By maximizing the 

revenue for a city while simultaneously minimizing the cruising time for 

every time slice the parking fee is determined depending on the number of 

vehicles 𝑁𝑠
𝑖 in the searching-state and the number of available parking spaces 

𝐴𝑖. 

• Cost of keep on searching: The cost of keep on searching in section 5.3.3 is 
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computed based on the predicted parking fee in a future time slice (section 

5.3.3.1), the costs associated with traveling to the next parking possibility 

(section 5.3.3.2), and some penalty for the past cruising time (section 5.3.3.3) 

in order to avoid an ever searching vehicle. 

For the next time slice 𝑖 + 1, the number of vehicles 𝑁𝑠
𝑖+1 in the searching-state is 

computed according to Eq. (54a) and (54b), which are a modification of the searching-

state formulation in Eq. (2). First, 𝑁𝑠
𝑖+1,𝑘 is determined in Eq. (54a) for each user group 

𝑘 ∈ 𝐾. Then, we compute 𝑁𝑠
𝑖+1 in Eq. (54b) as the sum over all user groups 𝑘. 

𝑁𝑠
𝑖+1,𝑘 = 𝑁𝑠

𝑖,𝑘 + 𝑛𝑛𝑠/𝑠
𝑖,𝑘 − 𝑛𝑠/𝑝

𝑖 ∙
𝑁𝑠
𝑖,𝑘

𝑁𝑠
𝑖⏟      

term 1

∙ 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘
⏟  
term 2

 (54a) 

𝑁𝑠
𝑖+1 =∑𝑁𝑠

𝑖+1,𝑘

𝐾

𝑘=1

 (54b) 

For any given time slice, term 1 in Eq. (54a) represents the number of vehicles that 

have found parking. The vehicles will then decide whether to access parking or not, 

depending on the parking decision variable 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  in term 2 for user group 𝑘. The 

vehicles will access parking when 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘 = 1, and they will keep on searching for a 

next parking possibility when 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘 = 0. Note that we assume that the ratio of the 

vehicles in the searching-state from user group 𝑘 is the same as the ratio of the 

vehicles finding parking from user group 𝑘. Thus, the portion of vehicles having 

found parking that belong to user group 𝑘 is represented by the ratio 
𝑁𝑠
𝑖,𝑘

𝑁𝑠
𝑖  in term 1. 

5.2.2.4 Depart parking and leave the area 

The number of vehicles that depart parking and the number of vehicles that leave the 

area are computed as in Eq. (7) and (8) in section 2.4.2. The former is a function of the 

distribution of parking durations. The latter is a function of some minimum driven 

distance. 

5.3 Macroscopic parking pricing and parking 

decision model 

In this section, the modelling parts and the analytical formulations for the dynamic 

macroscopic responsive parking pricing and parking decision methodology are 

shown. Here we propose the dynamic algorithms for the vehicles deciding to park (or 

not), including a cost analysis for the corresponding cost of staying and the cost of 

keep on searching for the next parking possibility, with the detailed description of all 

relevant cost variables.  
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5.3.1 Main model 

Recall that 𝑝𝑖 is the actual parking fee for all available parking spaces at time slice 𝑖, 

i.e., all parking spaces are assumed to have the same parking fee at any given time 

slice but the value changes over time. Thus, this leads to uniform price changes over 

the network. Notice that for a case where there are different areas each with a different 

distribution of parking spaces and parking prices, for example, one can use different 

subnetworks connected to each other, each modeled as the network presented here. 

For all parking searchers to decide to park, we check the following condition 

𝑝𝑖 ≤ 𝐶𝑡𝑜𝑡
𝑖,𝑘 , (55) 

i.e., we check whether the parking price at the current parking space 𝑝𝑖 is smaller than 

the cost of keep on searching to the next possible parking space (i.e., 𝐶𝑡𝑜𝑡
𝑖,𝑘  for each user 

group 𝑘 ∈ 𝐾). Since we do not track individual parking spaces, the average travel 

distance between available parking spaces is used as an indicator for the next possible 

parking space on the network. If Eq. (55) is fulfilled, the drivers decide to park at their 

current parking locations in time slice 𝑖. Otherwise the drivers will keep on searching 

hoping to find a better parking price, and as soon as they arrive at their next parking 

possibility, Eq. (55) will be checked again. Recall that we assume that all drivers are 

risk neutral and completely rational. 

Now the vehicles’ decision to park (or not) is indicated as 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  in Eq. (56). Its value 

equals 1 if Eq. (55) is fulfilled for user group 𝑘; otherwise the value equals 0, 

illustrating the decision to keep on searching for the next parking possibility. The 

decision is the same for all drivers belonging to the same user group, but it might be 

different across different user groups. 

𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘 = Prob(𝑝𝑖 ≤ 𝐶𝑡𝑜𝑡

𝑖,𝑘 ) = {
1,   𝑖𝑓   𝑝𝑖 ≤ 𝐶𝑡𝑜𝑡

𝑖,𝑘    

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (56) 

To obtain 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  in Eq. (56), 𝑝𝑖 and 𝐶𝑡𝑜𝑡

𝑖,𝑘  will be further modelled. Note that 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘  has 

the same value for all parking spaces in a small compact area. 

We now show the computation of 𝑝𝑖 by using an optimization model in section 5.3.2 

and then estimate 𝐶𝑡𝑜𝑡
𝑖,𝑘  in section 5.3.3. 

5.3.2 Cost of staying 

The cost of staying, i.e., the parking fee over time is now presented as the outcome of 

an optimization model. This parking price changes in response to both, the parking 

occupancy, 𝐴𝑖, and the number of searching vehicles, 𝑁𝑠
𝑖. In reality, 𝑁𝑠

𝑖 might be 

obtained with the help of connected vehicles and we assume this information will 

become available in the future. For cases where exact information regarding the 
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number of searchers is not available, simple estimations based on the overall demand 

pattern could be used. For this algorithm 𝐴𝑖 and 𝑁𝑠
𝑖 at the beginning of each time slice 

are found based on the parking-state-based matrix over time. The ratio between the 

number of searchers 𝑁𝑠
𝑖 and the number of available parking spaces 𝐴𝑖 changes from 

one time slice to the next. This change is formulated as written in Eq. (57). 

𝛥
𝑁𝑠
𝑖

𝐴𝑖
=
𝑁𝑠
𝑖

𝐴𝑖
−
𝑁𝑠
𝑖−1

𝐴𝑖−1
 (57) 

By maximizing the revenue for a city while simultaneously minimizing the cruising 

time for each time slice, the parking fee 𝑝𝑖 is determined as a multi-objective 

optimization problem in Eq. (58a-c). The resulting parking price, 𝑝𝑖, is then known at 

the beginning of each time slice 𝑖. 

max
𝑝𝑖

(

 
 
𝑝𝑖 ⋅

𝑛𝑠/𝑝
𝑖

𝑁𝑠
𝑖
∙ ∑𝑁𝑠

𝑖,𝑘 ∙ 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘

𝐾

𝑘=1⏟                
term 1

,  ∑(𝐶𝑡𝑜𝑡
𝑖,𝑘 − 𝑝𝑖)

𝐾

𝑘=1⏟        
term 2 )

 
 

 (58a) 

s. t.  |𝑝𝑖 − 𝑝𝑖−1| ≤ {0,          𝑖𝑓  𝛥
𝑁𝑠
𝑖

𝐴𝑖
= 0  

𝛥𝑚𝑎𝑥,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (58b) 

𝑝𝑖 ≥ 𝑝0 (58c) 

The revenue maximization is stated as the objective function term 1 in Eq. (58a) where 

all vehicles from all user groups 𝑘 ∈ 𝐾 having decided to park (as seen in Eq. (54a)) 

pay the parking fee 𝑝𝑖. The cruising time minimization is expressed by having Eq. 

(55) for each user group 𝑘 as a soft constraint in the objective function term 2 in Eq. 

(58a) where 𝐶𝑡𝑜𝑡
𝑖,𝑘  is dependent on the number of vehicles 𝑁𝑠

𝑖 in the searching-state and 

the number of available parking spaces 𝐴𝑖. This means that in case Eq. (55) is violated 

for user group 𝑘, i.e., 𝑝𝑖 > 𝐶𝑡𝑜𝑡
𝑖,𝑘 , the optimization problem will be solved, although it 

will lead to additional cruising (𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘 = 0) for user group 𝑘 in time slice 𝑖. However, 

this optimization problem tries to satisfy Eq. (55) and to guarantee the same traffic 

performance on the network compared to a free parking scenario without parking 

pricing, i.e., it tries to implement a parking pricing scheme with a maximal revenue, 

while keeping the same travel time and distance as in a case without parking pricing 

(see more details in section 5.4.2). Evidently, we cannot do better than the scenario 

without parking pricing, but we can reach the same (or similar) traffic performance 

results, while collecting revenue for the city. We would like to find the maximal 

parking price 𝑝𝑖 for any given time slice such that 𝛿𝑝𝑎𝑟𝑘
𝑖,𝑘 = 1 for each user group 𝑘. In 

other words, what is the maximal price we could choose such that the drivers still 

decide to park and not keep on cruising for a better parking price in the future. At the 

end of the simulation (𝑖 = 𝑇) this concept will lead to a maximal revenue for a city 

while simultaneously minimizing the total cruising time on the network. As shown 
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in Eq. (58b), the absolute price difference between 𝑝𝑖 and 𝑝𝑖−1 should not exceed the 

maximum pricing change input parameter 𝛥𝑚𝑎𝑥 to reduce the oscillations of the 

optimal parking pricing output (i.e., avoid drastic price fluctuations). Additionally, if 

the ratio between 𝑁𝑠
𝑖 and 𝐴𝑖 in Eq. (57) is equal to zero, then we determine the parking 

fee as 𝑝𝑖 = 𝑝𝑖−1, a constant price compared to the parking price 𝑝𝑖−1 in the last time 

slice 𝑖 − 1. Last but not least, as shown in Eq. (58c), the parking fees should not go 

below the initial parking prices. 

This convex optimization problem can be solved with a simple numerical solver. It is 

also possible to include scale parameters within 𝐶𝑡𝑜𝑡
𝑖,𝑘  to weight each decision cost from 

section 5.3.3 in the optimization model. 

In the next section, we present the formulations for the cost of keep on searching for 

another parking possibility 𝐶𝑡𝑜𝑡
𝑖,𝑘 . 

5.3.3 Cost of keep on searching 

The total cost of keep on searching 𝐶𝑡𝑜𝑡
𝑖,𝑘  is computed for each user group 𝑘 ∈ 𝐾 based 

on multiple cost terms as shown in Eq. (59) which are derived in the following 

sections. 

𝐶𝑡𝑜𝑡
𝑖,𝑘 = 𝐶𝑝𝑎𝑦

𝑖 + 𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘 + 𝐶𝑝𝑒𝑛

𝑖,𝑘 , (59) 

This includes: 

• the cost 𝐶𝑝𝑎𝑦
𝑖  for the predicted parking fee at all available parking spaces for 

the next future time slices, predicted at the beginning of time slice 𝑖 (section 

5.3.3.1), 

• the predicted cost 𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘  of traveling from a given available parking space to 

the next parking possibility (section 5.3.3.2), 

• the penalty cost 𝐶𝑝𝑒𝑛
𝑖,𝑘 , i.e., the driving cost associated with past iterations 

(section 5.3.3.3). 

Note that only 𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘  and 𝐶𝑝𝑒𝑛

𝑖,𝑘  are affected by the user group 𝑘 since these are the only 

cost variables including a time component that is associated with the drivers’ VOT. 

5.3.3.1 Predicted future parking fee, 𝑪𝒑𝒂𝒚
𝒊  

The term 𝐶𝑝𝑎𝑦
𝑖  is the parking fee at all available parking spaces for the next future time 

slices, predicted at the beginning of time slice 𝑖. We assume the parking fee in the next 

future time slice 𝑖 + 1 dictates the parking pricing we would pay in all next future 

time slices. We assume the driver predicts this future price with some information 

he/she has about the system (based on his/her own observations). The parking prices 

should be a function not only of the available supply, but also of the demand (i.e. 

larger demand should lead to higher prices even for the same available supply). 

Given that the parking price in this model is dependent on the number of searching 
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vehicles 𝑁𝑠
𝑖 and the number of available parking spaces 𝐴𝑖 from past iterations, we 

use both variables to predict future pricing, i.e., we assume the driver has some very 

recent historical information available about the traffic and parking systems. Such 

assumption is not unreasonable as traffic information is nowadays generated by a 

number of sources (Ambühl and Menendez (2016)), the same as parking information 

(Cao and Menendez (2018)). Thus, in this predicted parking pricing scheme the future 

parking price 𝐶𝑝𝑎𝑦
𝑖  changes in response to 𝑁𝑠

𝑖 and 𝐴𝑖 from past iterations, i.e., this 

pricing scheme not only focuses on the parking occupancy, but also takes the parking 

search phenomenon and competition into account. 

The predicted change of the parking fee 𝛥𝐶𝑝𝑎𝑦
𝑖  is formulated in Eq. (60) as the pricing 

difference between the current and consecutive future time slices. The predicted 

forecasting strategy uses historical information about the ratios in Eq. (57) and the 

current parking price 𝑝𝑖. 

𝛥𝐶𝑝𝑎𝑦
𝑖 = 𝑝𝑖⏟

term 1

⋅ (|𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
|)

1
𝑦

⏟        
term 2

≈ 𝑝𝑖 ⋅ (|𝛥
𝑁𝑠
𝑖

𝐴𝑖
|)

1
𝑦

⏟      
term 3

⋅ ||
1

𝜂𝑝𝑟𝑒𝑑
⋅ ∑

𝛥
𝑁𝑠
𝑗

𝐴𝑗

𝛥
𝑁𝑠
𝑗−1

𝐴𝑗−1

𝑖

𝑗=𝑖−𝜂𝑝𝑟𝑒𝑑+1

||

⏟                  
term 4

, 
(60) 

where 𝛥
𝑁𝑠
𝑗−1

𝐴𝑗−1
≠ 0. In Eq. (60), term 1 is the current parking price 𝑝𝑖 and term 2 

represents the future responsive quality to 𝛥𝐶𝑝𝑎𝑦
𝑖 . By multiplying both terms we 

transform the predicted responsive quality in term 2 to pricing units based on the 

current parking fee in term 1. The influence level of this predicted responsive quality 

term can be selected in our framework. Within term 2, 𝑦 characterizes the level of 

responsiveness, i.e., it changes the level of influence of 𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
 on the delta pricing value 

𝛥𝐶𝑝𝑎𝑦
𝑖 . The sensitivity analysis in section 5.4.4 shows that changes to the parameter 

𝑦 > 1 only have a marginal influence on the total revenue results. This scale 

parameter, however, needs to be calibrated in future research such that it leads to 

reasonable pricing results over time that are acceptable for the drivers in the area. 

This parameter ensures the flexibility of our model for different pricing needs in an 

area. In the remainder of this chapter, we assume a square root dependency and set 

𝑦 = 2. An approximation for the predicted responsive quality in term 2 is computed 

by using term 3 and term 4. The idea of this approximation is to estimate the predicted 

responsive quality by the current quality term and past change effects regarding the 

ratios between the number of searchers and the number of available parking spaces 

over a limited amount of past time slices. This approximation has been validated by 

a data analysis from the case study in section 5.4, but the details are omitted in this 

chapter for brevity. Term 3 in Eq. (60) refers to the current responsive impact term. 

Term 4 is estimated by the total average of increases/decreases over the last fixed 

𝜂𝑝𝑟𝑒𝑑 time slices, where 1 ≤ 𝜂𝑝𝑟𝑒𝑑 ≤ 𝑖 − 1  is an input parameter to the model. Thus, 

we consider all ratios 𝛥
𝑁𝑠
𝑗

𝐴𝑗
≠ 0 for 𝑗 ∈ {𝑖 − 𝜂𝑝𝑟𝑒𝑑 , … , 𝑖} to get the aggregated predictive 

estimate in term 4. For the input parameters 𝜂𝑝𝑟𝑒𝑑 = 1, the approximation term 4 in 

Eq. (60) only considers the increase/decrease of the ratio 𝛥
𝑁𝑠
𝑗

𝐴𝑗
 from the time slice 𝑖 − 1 
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to the current slice 𝑖, while for 𝜂𝑝𝑟𝑒𝑑 = 𝑖 − 1 this estimate covers the total average of 

increases/decreases of the ratio 𝛥
𝑁𝑠
𝑗

𝐴𝑗
 for all previous time slices 𝑗 ∈ {2,… , 𝑖}. By 

properly setting this input parameter 𝜂𝑝𝑟𝑒𝑑 in Eq. (60), we can make sure that the 

ratios 𝛥
𝑁𝑠
𝑗

𝐴𝑗
 for initial time slices 𝑗 have no impact on the predictive pricing for long 

simulations runs. 

By using Eq. (60) we compute in Eq. (61) the actual predictive parking pricing fee 𝐶𝑝𝑎𝑦
𝑖  

for all available parking spaces in the next future time slices. Notice that this value is 

just a prediction and will not necessarily match the actual price set in future time 

slices. 

𝐶𝑝𝑎𝑦
𝑖 =

{
  
 

  
 𝑝𝑖 +𝑚𝑖𝑛{𝛥𝐶𝑝𝑎𝑦

𝑖 , 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
> 0

𝑝𝑖,                                               𝑖𝑓  𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
= 0

𝑝𝑖 −𝑚𝑖𝑛{𝛥𝐶𝑝𝑎𝑦
𝑖 , 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥

𝑁𝑠
𝑖+1

𝐴𝑖+1
< 0

 (61) 

For 𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
≷ 0, we only consider 𝛥𝐶𝑝𝑎𝑦

𝑖  to increase or decrease 𝑝𝑖, if it is smaller than 

the maximum pricing change input parameter 𝛥𝑚𝑎𝑥. Otherwise this predicted pricing 

change is determined with 𝛥𝑚𝑎𝑥. For 𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
= 0, no pricing change is made. 

5.3.3.2 Predicted cost of traveling to next available parking space, 𝑪𝒅𝒊𝒔𝒕
𝒊,𝒌  

𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘  represents the predicted cost of traveling from a given available parking space 

to the next parking possibility. This cost is associated with the driving distance and 

with the drivers’ VOT depending on their user group 𝑘 ∈ 𝐾. 

Recall that 𝐿 is the length of the network and 𝑣𝑖 the average travel speed in time slice 

𝑖. We do not know the exact location of the available parking spaces, as they are 

assumed to be randomly distributed on the network. However, even though at any 

given iteration or decision epoch the available parking spaces are randomly 

distributed in the network, in the long run, the locations of all the available parking 

spaces are expected to obey a uniform distribution. Hence, we define the road travel 

distance 𝑟𝑖 in Eq. (62) as an expected average value. 

𝑟𝑖 =
𝐿

𝐴𝑖
 (62) 

With the aid of 𝑟𝑖 we get the expected average travel time 
𝑟𝑖

𝑣𝑖
 between available 

parking spaces that depends mostly on two factors: (1) the number of available 

parking spaces 𝐴𝑖, and (2) the average speed 𝑣𝑖 in the traffic network. Both variables 

are updated in every time slice; 𝑣𝑖 is a function of the traffic density. This traffic 

density is in turn a function of the through-traffic proportion 𝛽𝑖, the searching traffic 

and its ability to find parking (for details see section 2.4.1 based on Cao and Menendez 

(2015a)). We introduce the input variable 𝑝𝑑, the price per unit distance. Then, 𝑟𝑖 and 
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𝑟𝑖

𝑣𝑖
 are both used to model 𝐶𝑑𝑖𝑠𝑡

𝑖,𝑘  in Eq. (63), 

𝐶𝑑𝑖𝑠𝑡
𝑖,𝑘  = 𝑟𝑖 ∙ 𝑝𝑑⏟  

term 1

+
𝑟𝑖

𝑣𝑖
∙ 𝑉𝑂𝑇𝑘

⏟      
term 2

, (63) 

where term 1 is associated with the actual driving distance (i.e., external costs as 

petrol, wear and tear of vehicles) and term 2 refers to the cost of time with respect to 

drivers’ VOT. Recall 𝑉𝑂𝑇𝑘 is the input parameter showing the VOT costs for each 

user group 𝑘. 

5.3.3.3 Penalty cost, 𝑪𝒑𝒆𝒏
𝒊,𝒌  

Now we consider as well the driving cost 𝐶𝑝𝑒𝑛
𝑖,𝑘  in past iterations to account for the 

time drivers have already searched. We model this in Eq. (64) by using the average 

cruising time per vehicle at the network level. The longer the average cruising time 

on the network is, the higher will be the penalty cost 𝐶𝑝𝑒𝑛
𝑖,𝑘 , and thus the total costs of 

keep on searching 𝐶𝑡𝑜𝑡
𝑖,𝑘 . This leads to a higher likelihood of drivers accepting the 

available parking spaces. This penalty cost term is defined as 

𝐶𝑝𝑒𝑛
𝑖,𝑘 = 𝐴𝐶𝑇𝑖 ∙ 𝑉𝑂𝑇𝑘, (64) 

where 𝐴𝐶𝑇𝑖 is the average cruising time per vehicle at the beginning of time slice 𝑖, 

i.e., the average time a vehicle spends in the searching-state. For simplification 

purposes we assume that at any given time slice 𝑖, the average cruising time is the 

same for all user groups 𝑘 ∈ 𝐾. 

We now determine 𝐴𝐶𝑇𝑖 by computing the maximum cruising time 𝐶𝑇𝑚𝑎𝑥
𝑖  per vehicle 

at the beginning of time slice 𝑖. 𝐶𝑇𝑚𝑎𝑥
𝑖  is estimated based on the queueing diagram in 

Fig. 5.2 showing the cumulative number of vehicles going through each transition 

event as a function of time. This diagram not only provides the basis for 𝐶𝑇𝑚𝑎𝑥
𝑖 , it can 

also be used to estimate other interesting indicators for both the traffic and the 

parking systems, including the number of vehicles searching over time, and the total 

cruising time in the area at any given time slice. 
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Fig. 5.2. Illustration of the maximum cruising time 𝐶𝑇𝑚𝑎𝑥

𝑖  at the beginning of time slice 𝑖 within the queuing 

diagram. 

The maximum cruising time 𝐶𝑇𝑚𝑎𝑥
𝑖  per vehicle can now be determined by using Eq. 

(65). As illustrated in Fig. 5.2, this equation sets the cumulative number of vehicles 

that have started searching before the beginning of time slice 𝑖 equal to the cumulative 

number of vehicles that have found and accessed parking by the beginning of time 

slice 𝑖. In other words, Eq. (65) determines 𝐶𝑇𝑚𝑎𝑥
𝑖  such that the cumulative number of 

𝑛𝑛𝑠/𝑠
𝑗

 up to 𝑖 − 𝐶𝑇𝑚𝑎𝑥
𝑖  equals to the cumulative number of vehicles that have found 

and accessed parking by the beginning of time slice 𝑖. Note that term 1 in Eq. (65) 

represents all vehicles for all user groups 𝑘 ∈ 𝐾 having decided to park (as seen in Eq. 

(54a)). Eq. (65) can be interpreted by comparing the vehicles’ time between the 

transition events “Start searching” and “Find and access parking” within the queuing 

diagram in Fig. 5.2. 

Find 𝐶𝑇𝑚𝑎𝑥
𝑖 ,   s. t. ∑ 𝑛𝑛𝑠/𝑠

𝑗

𝑖−𝐶𝑇𝑚𝑎𝑥
𝑖

𝑗=1

=∑

(

 
 𝑛𝑠/𝑝

𝑗

𝑁𝑠
𝑗
∙ ∑𝑁𝑠

𝑗,𝑘
∙ 𝛿𝑝𝑎𝑟𝑘

𝑗,𝑘

𝐾

𝑘=1⏟              
term 1 )

 
 

𝑖

𝑗=1

 (65) 

Because all parking searchers are uniformly distributed on the network at the 

beginning of each time slice 𝑖, the average cruising time 𝐴𝐶𝑇𝑖 is now computed in Eq. 

(66) as half of 𝐶𝑇𝑚𝑎𝑥
𝑖 . Note that 𝐴𝐶𝑇𝑖 only includes the cruising time of vehicles that 

are still cruising for parking and it does not include the cruised time for vehicles that 

already found parking. Recall that 𝑡 is the length of a time slice. 

𝐴𝐶𝑇𝑖 =
𝐶𝑇𝑚𝑎𝑥

𝑖

2
∙ 𝑡   (66) 

Eq. (65) and (66) show an approximation for the average cruising time per vehicle 

𝐴𝐶𝑇𝑖 to determine 𝐶𝑝𝑒𝑛
𝑖,𝑘  in Eq. (64). 
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5.4 Applications 

In this section, a case study of an area within the city of Zurich, Switzerland, is 

provided to illustrate the interactions between a dynamic responsive parking pricing 

system and the traffic system. We use real data obtained by Cao et al. (2019) and 

present the results obtained from multiple simulation runs that are conducted with 

the aid of a simple numerical solver such as Matlab. Although the parking maneuvers 

themselves can also have a significant impact on traffic (Cao and Menendez (2015b); 

Cao et al. (2016)), here we focus on the cruising for parking phenomenon. We discuss 

the findings regarding parking pricing and the corresponding revenue in different 

pricing scenarios with its impact on the average/total searching time/distance in the 

network. 

5.4.1 Case study of an area within the city of Zurich,  

Switzerland 

We analyze the same study area as in section 3.4.1. It contains a total of 𝐿 = 7.7 km of 

road. There are a total of 539 public parking spaces in the area, i.e., 𝐴 = 539. We 

consider time slices of 1 min during a working day, i.e., 𝑡 = 1 min and 𝑇 = 1440 min. 

The traffic properties are modeled after the MFD of the city of Zurich (i.e., 𝑣 = 12.5 

km/h), based on (Ortigosa et al. (2014); Loder et al. (2017); Dakic and Menendez 

(2018)). 

Fig. 5.3 shows the total traffic demand entering the network over all four user groups. 

Recall that 23% (618 trips) of the daily demand (i.e., 𝛽𝑖 = 0.23, ∀𝑖) does not search for 

parking and can be considered as through-traffic or having dedicated parking spaces 

in the center, while 77% (2069 trips) of the daily traffic searches for parking (Cao et 

al. (2019)). At the beginning of every working day 183 vehicles are already in the area, 

i.e., 𝑁𝑝
0 = 183 parking spaces are occupied. All other initial conditions are considered 

as zero, i.e., 𝑁𝑛𝑠
0 = 𝑁𝑠

0 = 0. 

 
Fig. 5.3. Cumulative number of vehicles entering the area over one day (Source: Cao et al. (2019)). 

The distribution of parking durations is determined as in Fig. 4.5 (section 4.4.1) using 

MATSim (Waraich and Axhausen (2012)). The initial parking fee is set to 𝑝0 = 2.50 

CHF for all parking spaces and the price per distance driven is 𝑝𝑑 = 0.3 CHF/km. The 
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maximum pricing change per time slice is set to 𝛥𝑚𝑎𝑥 = 0.1 CHF/min and the 

predictive future parking fee is based on the past 𝜂𝑝𝑟𝑒𝑑 = 10 time slices (i.e., last 10 

minutes). 

In the following section, we analyze the outputs with a focus on the revenue that can 

be collected with the aid of responsive parking fees, and its effects on the total 

searching time in the area. 

5.4.2 Parking pricing and traffic effects 

Is it possible to implement parking pricing without having a significant negative 

effect on either traffic performance or environmental conditions in the short term? In 

other words, is it possible to keep the total time and the total driven distance the same 

in the short-term when introducing parking pricing on the network? These are 

relevant questions for city councils or private agencies that we would like to analyze 

in this section. 

For this case study, we compare the following pricing scenarios in Table 5.3. All 

strategies result in a different parking pricing distribution over time with a different 

total revenue for the city. A total revenue of 5172 CHF is reached in the constant 

pricing scenario (b) after the period of one day compared to no revenue in the free 

parking scenario (a) (Table 5.4). 

          Table 5.3. Pricing scenarios and their pricing and optimization strategy. 

Scenarios Pricing and optimization strategy 

Scenario (a): No parking pricing 

Parking pricing set to 0 CHF for all time slices. No usage of the 

optimization problem in Eq. (58a-c), nor the parking fee prediction in Eq. 

(60)-(61). 

Scenario (b): Constant parking 

pricing  

Parking pricing set to initial parking fee from scenarios (c) and (d), i.e., 

2.50 CHF for all time slices. No usage of the optimization problem in Eq. 

(58a-c), nor the parking fee prediction in Eq. (60)-(61). 

Scenario (c): Occupancy-responsive 

parking pricing 

Parking pricing set to change in response to the parking occupancy. 

Usage of the optimization problem in Eq. (58a-c), and the parking fee 

prediction in Eq. (60)-(61). However, since there is no dependency on the 

number of searching vehicles in the network, Eq. (5) becomes 𝛥(𝐴𝑖)−1 =

(𝐴𝑖)−1 − (𝐴𝑖−1)−1 and 𝛥
𝑁𝑠
𝑖

𝐴𝑖
 is replaced by Δ(Ai)−1 in Eq. (58b), Eq. (60) and 

Eq. (61) for all time slices. 

Scenario (d): Responsive parking 

pricing 

Parking pricing set to change in response to the parking occupancy and 

the number of searching vehicles. Usage of the optimization problem in 

(58a-c), and the parking fee prediction in Eq. (60)-(61). 

 

                Table 5.4. Total daily revenue (in CHF) for all scenarios. 

Scenarios Cumulative revenue (in CHF) 

Scenario (a): No parking pricing 0 

Scenario (b): Constant parking pricing  5172 

Scenario (c): Occupancy-responsive parking pricing 7018 

Scenario (d): Responsive parking pricing 9742 
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The occupancy-responsive parking pricing strategy in scenario (c) uses the same 

methodology as our proposed pricing scheme in scenario (d). However, it is only 

dependent on the parking occupancy and there is no dependency on the number of 

searching vehicles on the network. Thus, Eq. (57) becomes 𝛥(𝐴𝑖)
−1
= (𝐴𝑖)

−1
−

(𝐴𝑖−1)
−1

 and the variable 𝛥
𝑁𝑠
𝑖

𝐴𝑖
 is replaced by Δ(Ai)

−1
 in Eq. (58b), Eq. (60) and Eq. (61) 

for all time slices (Table 5.3). For our occupancy-responsive parking pricing scenario 

(c), we get the parking pricing output over time in Fig. 5.4(a). This plot is obtained by 

grouping the pricing fees over 5 consecutive time slices, i.e., the parking price is 

updated every 5 minutes. In addition, the parking fee is rounded to the next 0.5 CHF 

value to simplify the pricing structure1. Recall that the parking fee cannot decrease 

below its initial value of 2.5 CHF. This pricing structure reflects the parking 

occupancy over time. This occupancy rate reaches its peak of 6.5 CHF at midday 

around the 12 hr and the 14 hr. Since we consider the shopping area Jelmoli within 

the city of Zurich, this might be explained by the shop opening time and the workers’ 

lunch break, i.e., around this time most parking spaces are occupied. This rate 

decreases until the parking fee changes back to its initial value at approximately 16 

hrs. The total revenue obtained with this pricing strategy amounts to 7018 CHF after 

the period of one day (Table 5.4). 

 
      (a) Occupancy-responsive parking pricing (scenario (c)).           (b) Responsive parking pricing (scenario (d)). 

Fig. 5.4. Responsive parking pricing (in CHF) over time (in hours) in scenarios (c) and (d). 

For our responsive parking pricing scenario (d), we get the parking pricing output 

over time in Fig. 5.4(b). As in the previous case, this output is obtained by grouping 

the pricing fees over 5 consecutive time slices and rounding it to the next 0.5 CHF 

value. Additionally, the parking fee must remain 2.5 CHF or higher. This parking 

pricing approach in Fig. 5.4(b) reflects the number of searching vehicles and available 

parking spaces on the network during the period of a working day. The pricing peak 

lasts approximately between the 10 hr and the 15: 30 hr, i.e., around this time shops 

are open and, e.g., workers might drive there during their lunch break. The parking 

fee shows two peaks during this time period, the first peak reaches 10.5 CHF at 

midday and the second pricing peak reaches 8.5 CHF at approximately 14 hrs. During 

this period of time, there are more searching vehicles than available parking spaces 

 
1 For real-time pricing schemes it might be interesting to investigate a dampening mechanism to reduce oscillations, 

but this is considered out-of-scope for now and can be analyzed in future studies. 
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in the area (i.e., the real-time demand is higher than the real-time supply) (Cao et al. 

(2019)). Scenario (d) leads to a total revenue of 9742 CHF over the period of one 

working day (Table 5.4). 

All parking pricing scenarios lead to different revenues for the city. However, coming 

back to our initial question, all scenarios result in the same time and distance costs on 

the network (Table 5.5). Due to the optimization algorithm in Eq. (58) no vehicles 

decide for extra cruising on the network. Thus, we have shown that it is possible to 

implement parking pricing without having a negative effect on traffic performance 

nor environmental conditions. The free or constant parking fee in scenarios (a) and 

(b) lead to the fact that Eq. (55) is always fulfilled, such that the drivers decide to park 

at the first possible parking location. The parking fees in scenarios (c) and (d) are 

chosen to minimize the total cruising time on the network, i.e., the parking pricing 

should not encourage drivers to keep on searching for a better future alternative in 

terms of cost. The average value for all VOT considering all user groups 
1

𝐾
∙

∑ 𝑉𝑂𝑇𝑘𝐾
𝑘=1 = 0.41 CHF/min is used in Table 5.5 to determine the total time related 

costs. 

Our responsive parking pricing strategy in scenario (d) not only provides a feasible 

model that minimizes the total cruising time on the network, but it also leads to 

financial revenues that significantly exceed the revenues obtained in the other pricing 

scenarios. Having a dependency on the number of searching vehicles results in much 

higher parking fee values over time compared to scenario (c), plus a slightly different 

pricing pattern throughout the day. The total revenue in scenario (d) increases by 

38.8 % compared to scenario (c) and by 88.4 % compared to scenario (b), such that 

the pricing strategy leads to significant improvements for city councils or private 

agencies in the area. In addition, the responsive parking fee in Fig. 5.4(b) reflects the 

parking search phenomenon as well as the parking occupancy rate, and does not have 

negative influences on traffic performance nor environmental conditions in the short-

term. 

Table 5.5. Average/Total time and driven distance in the network (for all scenarios).  

State 

Average time  

per vehicle  

(min/veh) 

Total time  

(min) 

Total costs 

(converted 

through VOT) 

Average 

driven  

distance 

(km/veh) 

Total driven  

distance  

(km)  

Searching state 3.14 7078 2902 0.65 1475 

Non-searching state 4.43 9986 4094 0.92 2080 

Total 7.57 17064 6996 1.57 3555 

 

5.4.3 Impacts of traffic demand and parking supply 

In this section, we investigate the impact of traffic demand and parking supply on 

our parking pricing model. Table 5.6 shows a comparison between the reference 

scenario (d) in section 5.4.2 and the responsive parking pricing scenarios with a 4 % 
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decrease or increase in the demand or the supply. As before, the average value for all 

VOT considering all user groups 
1

𝐾
∙ ∑ 𝑉𝑂𝑇𝑘𝐾

𝑘=1 = 0.41 CHF/min is used in Table 5.6 

to determine the total time related costs. 

Table 5.6. Comparison of reference scenario (d) to responsive parking pricing scenarios with a decrease/increase in 

demand and supply. Value within parenthesis represents the percentage change with respect to the reference scenario. 

 

Scenarios 

Average 

time  

per vehicle  

(min/veh) 

Total time  

(min) 

Total costs 

(converted 

through 

VOT) 

Average 

driven  

distance 

(km/veh) 

Total 

driven  

distance  

(km)  

Total 

revenue  

S
ea

rc
h

in
g

 s
ta

te
 

Scenario (d) 3.14 7078 2902 0.65 1475  

Demand decrease  

(- 4 %) 

1.47 

(- 53.2 %) 

3181 

(- 55.1 %) 

1304 

(- 55.1 %) 

0.31 

(- 52.3 %) 

663 

(- 55.1 %) 
 

Demand increase  

(+ 4 %) 

7.02 

(+ 123.6 %) 

16395 

(+ 131.6 %) 

6722 

(+ 131.6 %) 

1.46 

(+ 124.6 %) 

3416 

(+ 131.6 %) 
 

Supply decrease  

(- 4 %) 

7.26 

(+ 131.2 %) 

16348 

(+ 131 %) 

6703 

(+ 131 %) 

1.51 

(+ 132.3 %) 

3406 

(+ 130.9 %) 
 

Supply increase  

(+ 4 %) 

1.47 

(- 53.2 %) 

3317 

(- 53.1 %) 

1360 

(- 53.1 %) 

0.31 

(- 52.3 %) 

691 

(- 53.2 %) 
 

N
o

n
-s

ea
rc

h
in

g
 s

ta
te

 

Scenario (d) 4.43 9986 4094 0.92 2080  

Demand decrease  

(- 4 %) 

4.43 

(+ 0 %) 

9607 

(- 3.8 %) 

3939 

(- 3.8 %) 

0.92 

(+ 0 %) 

2001 

(- 3.8 %) 
 

Demand increase  

(+ 4 %) 

4.44 

(+ 0.2 %) 

10362 

(+ 3.8 %) 

4248 

(+ 3.8 %) 

0.92 

(+ 0 %) 

2159 

(+ 3.8 %) 
 

Supply decrease  

(- 4 %) 

4.43 

(+ 0 %) 

9980 

(- 0.1 %) 

4092 

(- 0.1 %) 

0.92 

(+ 0 %) 

2079 

(- 0.05 %) 
 

Supply increase  

(+ 4 %) 

4.44 

(+ 0.2 %) 

9989 

(+ 0.03 %) 

4095 

(+ 0.03 %) 

0.92 

(+ 0 %) 

2081 

(+ 0.05 %) 
 

T
o

ta
l 

Scenario (d) 7.57 17064 6996 1.57 3555 9742 

Demand decrease  

(- 4 %) 

5.9 

(- 22.1 %) 

12788 

(- 25.1 %) 

5243 

(- 25.1 %) 

1.23 

(- 21.7 %) 

2664 

(- 25.1 %) 

8084 

(- 17 %) 

Demand increase  

(+ 4 %) 

11.46 

(+ 51.4 %) 

26757 

(+ 56.8 %) 

10970 

(+ 56.8 %) 

2.38 

(+ 51.6 %) 

5575 

(+ 56.8 %) 

12581 

(+ 29.1 %) 

Supply decrease  

(- 4 %) 

11.69 

(+ 54.4 %) 

26328 

(+ 54.3 %) 

10795 

(+ 54.3 %) 

2.43 

(+ 54.8 %) 

5485 

(+ 54.3 %) 

12044 

(+ 23.6 %) 

Supply increase  

(+ 4 %) 

5.91 

(- 21.9 %) 

13306 

(- 22 %) 

5455 

(- 22 %) 

1.23 

(- 21.7 %) 

2772 

(- 22 %) 

8450 

(- 13.3 %) 

 

Table 5.6 illustrates that the total revenue increases as soon as the traffic system gets 

more congested, i.e., the demand increases or the supply decreases. However, the 

total revenue is more sensitive to an increase in demand (+29.1 %) compared to a 

decrease in supply (+23.6 %), while the traffic performance and the environmental 

conditions are more sensitive to a decrease in supply. The average time per vehicle 

and the average driven distance in the searching-state illustrate this behavior. The 

results for the non-searching-state do not show a high sensitivity towards an 

increase/decrease in supply nor in demand. This is not surprising, as the non-

searching traffic is only indirectly affected by these changes. Both scenarios of 
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decreasing the demand and increasing the supply lead to less cruising vehicles in the 

area and a reduction on revenue for the city. The average time and the average driven 

distance per vehicle show similar results for both scenarios, such that the traffic 

performance and the environmental conditions have the same sensitivity towards a 

decrease in demand and an increase in supply. The total revenue, however, is more 

sensitive to a decrease in demand (−17 %) compared to an increase in supply (−13.3 

%). Overall, the total revenue is more sensitive to changes in demand compared to 

changes in supply. 

Future research could use more advanced sensitivity analysis methods (Ge et al. 

(2014, 2015); Ge and Menendez (2017)) to shed more light on the relation between 

these different variables. That being said, our macroscopic parking pricing model can 

be used to provide meaningful advice to the city, e.g., when considering inquiries for 

reducing or creating new parking spaces or when considering a population 

growth/decline with an effect on traffic demand. Additionally, the model allows city 

officials to explore changes in the parking pricing scheme while trying to optimize 

different criteria (e.g., maximize revenues such that the area is not significantly 

congested, or minimize travel distance) in the network. 

5.4.4 Sensitivity analysis for influence factor of the  

responsivity in the responsive parking pricing scheme 

The parameter 𝑦 – used to determine the predicted future parking fee, 𝐶𝑝𝑎𝑦
𝑖 , in section 

5.3.3.1 – represents the influence factor of the responsivity in the responsive parking 

pricing scheme, i.e., it reflects the influence of the number of searching vehicles and 

the parking occupancy on the parking fee. It is considered as a scale parameter that 

needs to be calibrated in future research such that it leads to reasonable pricing results 

over time that are acceptable for the drivers in the area. Table 5.7 shows a sensitivity 

analysis for parameter 𝑦 with respect to the responsive parking pricing scenario 

(scenario (d) in section 5.4.2) in the area within the city of Zurich. It illustrates the 

average/total time, the average/total distance in the network and the total revenue for 

different values of the parameter 𝑦. All values within parentheses represent the 

percentage change with respect to parameter 𝑦 = 2 in the reference scenario (using 

scenario (d) in section 5.4.2). The average value for all VOT considering all user 

groups 
1

𝐾
∙ ∑ 𝑉𝑂𝑇𝑘𝐾

𝑘=1 = 0.41 CHF/min is used in this table to determine the total time 

related costs. 

As shown in Table 5.7, changes to the parameter 𝑦 only have a marginal influence on 

the total revenue results if 𝑦 > 1, while the average/total time and distance stay 

constant in the network. These constant time and distance results can be explained by 

the parking fee optimization scheme that minimizes the total cruising time on the 

network. In general, reducing parameter 𝑦 leads to a higher total revenue. For 𝑦 ≥

1.75 an increase in parameter 𝑦 leads to a constant total revenue. Thus, the total 

revenue is only marginally sensitive to the parameter 𝑦 if we only consider parameter 

values 𝑦 > 1. Parameter 𝑦 = 2 is chosen in our reference scenario (section 5.3.3.1). This 

scale parameter, however, needs to be calibrated in future research for different 
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networks. 

Table 5.7. Sensitivity analysis for parameter 𝑦, the influence factor of the responsivity in parking pricing. Value within parenthesis 

represents the percentage change with respect to parameter 𝑦 = 2 in the reference scenario (scenario (d) in section 5.4.2). 

Parameter 𝑦 

Average time  

per vehicle  

(min/veh) 

Total time  

(min) 

Total costs 

(converted 

through VOT) 

Average driven  

distance 

(km/veh) 

Total driven  

distance  

(km)  

Total 

revenue  

0.25 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

49576 

(+ 408.9 %) 

0.5 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

38784 

(+ 298.1 %) 

0.75 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

31750 

(+ 225.9 %) 

1  
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

18791 

(+ 92.9 %) 

1.25 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

11489 

(+ 17.9 %) 

1.5 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9848 

(+ 1.1 %) 

1.75 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

2 - Reference scenario 7.57 17064 6996 1.57 3555 9742 

2.25 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

2.5 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

2.75 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

3 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

3.25 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

3.5 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

3.75 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

4 
7.57 

(+ 0 %) 

17064 

(+ 0 %) 

6996 

(+ 0 %) 

1.57 

(+ 0 %) 

3555 

(+ 0 %) 

9742 

(+ 0 %) 

 

5.5 Summary of the chapter 

In this study, we develop a dynamic macroscopic parking pricing model and analyze 

the interdependency between responsive parking pricing and searching-for-parking 

traffic. The model is integrated into an existing parking-state-based matrix to better 

model the real urban traffic and parking systems. The responsive pricing model is 

illustrated in a case study of an area within the city of Zurich, Switzerland. In 

addition, other three parking pricing scenarios are analyzed in this case study. These 

include a free, a constant, and an occupancy-responsive parking pricing scheme 

where the fee only changes in response to the parking occupancy. 

The main contributions from this chapter are summarized below. 
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• Our responsive pricing scheme takes the parking search phenomenon into 

consideration, by changing in response to the number of searching vehicles, 

compared to previous studies that only focus on the parking occupancy. This 

means that the parking fee also changes in response to the parking demand, 

in addition to changes in response to the parking supply. 

• An optimization model is formulated to maximize the parking pricing 

revenue to the highest level, yet minimize the negative impacts on the traffic 

system (i.e., minimize total cruising time on the network). This is achieved as 

the model tries to guarantee that the cost of paying the current parking fee 

remains smaller than the cost of keep on searching to obtain a lower parking 

fee across multiple user groups with different VOTs. The vehicles’ decision 

to park depends on multiple factors, including the predicted parking cost at 

future time, the costs of traveling from the current parking space to another 

space associated with driving distance and VOT, and the penalty cost 

associated with the cruising time in past iterations. 

• The model also provides a preliminary idea for city councils regarding an 

optimal parking pricing policy resulting in financial revenues while 

simultaneously minimizing the drivers’ cruising time. The policy’s impacts 

on the searching-for-parking traffic (cruising), the congestion in the network 

(traffic performance), the total driven distance (environmental conditions), 

and the revenue created by parking fees for the city are illustrated in a case 

study. In the short-term this parking pricing policy has neither significant 

negative influences on traffic performance nor environmental conditions, but 

it significantly increases the total revenue. This could lead to significant 

improvements for city councils or private agencies in the area. Notice that in 

the short-term the optimal parking fee might increase the revenue, but in the 

long-term it might deter drivers from driving into the city, potentially 

changing the demand. However, these long-term effects have not been 

studied here as they are considered out-of-scope in this chapter.  

• In comparison to microscopic models or agent-based simulation tools which 

are typically used when analyzing the interdependency between parking 

pricing and parking-caused traffic issues, the macroscopic model proposed 

here has several advantages. The whole framework is based on very limited 

data inputs, while most of the tools used nowadays to analyze parking 

pricing and parking-related traffic require a lot of detailed data that is hard 

to get. Our model corresponds to aggregated values at the network level over 

time and only needs some general inputs, including probability distributions, 

i.e., it saves on data collection efforts and reduces the computational costs 

significantly. Such efficiencies are especially useful for real-time control 

algorithms or when the data is scarce. Moreover, the model can be easily 

solved with a simple numerical solver such as Excel or Matlab without the 

use of complex simulation software. This is in part possible because we only 

have a few parameters, and all of them have a physical interpretation. 

Moreover, they can all be obtained from field data. In addition, there is no 
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need to run the model many times in order to account for its stochasticity, as 

it is based on probability functions (i.e., the stochasticity is already implicit 

within the model formulations). Last but not least, the simpler form of the 

macroscopic model might provide additional insights that cannot be 

delivered by microscopic models (e.g., insights into the mathematical relation 

between traffic speeds and maximal parking pricing with respect to a 

minimal total cruising time on the network). 

Overall, the potential of the proposed model is far beyond what we have illustrated 

in the case study. The pricing of off-street parking facilities can be modeled explicitly, 

such as the pricing of not uniformly distributed parking spaces over the network. In 

reality, vehicles could focus on parking possibilities in a central street or area of the 

network, while discarding other parking opportunities elsewhere. Future research 

could incorporate this non-homogeneous environment (e.g., where both, the parking 

demand and supply are inhomogeneously distributed) by modeling different 

adjacent subnetworks, where parking decisions are made using the proposed 

macroscopic model based on the conditions of more than one subnetwork. Each 

subnetwork can have a different distribution of parking spaces and parking prices. 

How to connect these subnetworks to each other should then be carefully studied. 

Additionally, it could be possible to introduce different pricing alternatives. For 

example, we could include a traffic demand split with a fixed (low subsidized) 

parking fee in all garages and/or some of the on-street parking spaces. This can be 

motivated by, e.g., the subsidy from a company or the city for its employees or 

residents, respectively. The remaining portion of the demand could then be treated 

responsively as in this chapter, reflecting the external costs for parking. 

In summary, the proposed model, despite its simplicity, can be used to efficiently 

evaluate a dynamic responsive pricing scheme macroscopically. With the aid of 

limited aggregated data, this model can be used to investigate, how parking pricing 

can affect searching-for-parking traffic and traffic performance (e.g., average time 

searching for parking, and average distance driven); and how different traffic 

conditions (e.g., number of vehicles cruising for parking, and available parking spaces 

in the network) can affect the responsive parking pricing. 
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Abstract 
 

 

A very high parking occupancy can negatively influence the traffic performance of an 

area by causing very long cruising times. A very low parking occupancy, on the other 

hand, is inefficient from a space utilization perspective. Thus, the second part of this 

dissertation proposes a framework to compute the optimal parking occupancy rate 

over a given time horizon based on a macroscopic traffic and parking model. This rate 

is set high enough to ensure an efficient usage of the parking infrastructure. However, 

it should also guarantee a high likelihood of finding parking in order to eliminate the 

drivers’ time wasted in cruising for parking and the added congestion it causes. The 

model outputs are based on small data collection efforts and low computational costs, 

and they can be generated without complex simulation software using a simple 

numerical solver. Multiple vehicle types are included into our methodology allowing 

us to generate insights about the optimal parking occupancy with or without 

differentiated parking (i.e., parking for specific vehicles, such as fuel and electric 

vehicles). In times of a modal shift towards electric vehicles, cities can use our model 

to evaluate how much parking supply (with battery charging opportunities) they 

would like to dedicate to electric vehicles in order to achieve optimal traffic and 

parking results, and whether a differentiated or hierarchical parking policy is 

desirable. We illustrate our framework in a case study of a central area within the city 

of Zurich, Switzerland, showing the traffic and parking impacts (e.g., average 

searching time for parking, total revenue created by parking fees, optimal parking 

occupancy rate) for different proportions of fuel and electric vehicles in the parking 

demand and/or supply. Our results confirm that optimal occupancy rates are between 

80 % and 90 % for most realistic scenarios. We show that the non-differentiated 

parking policy leads to the lowest average cruising time and the highest optimal 

occupancy rate. However, it is the least ideal policy from the city’s perspective. In the 

case of differentiated policies, equal proportions between electric vehicles in the 

demand and their parking spaces in the supply lead to the best traffic performance in 

the area. Moreover, hierarchical parking policies are more efficient than fully 

differentiated ones, by granting additional flexibility. These insights and the tools 

provided in this chapter are useful for cities to analyze their gain (or loss) in 

performance if they react (or not), e.g., to an increasing demand for electric vehicles 

over time. 
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This chapter is based on the results presented in: 

 

Jakob, M., and M. Menendez. 2020. “Optimal Parking Occupancy with 

and without Differentiated Parking: A Macroscopic Analysis”. Submitted 

to Transport Policy. 
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6.1 Introduction 

Traffic congestion and its associated costs (i.e., loss in time, loss of productivity of 

workers sitting in traffic, increase in cost of transporting goods through congested 

areas, waste of fuel) often conflict with an efficient usage of the parking infrastructure. 

A very high parking occupancy rate can drastically reduce drivers’ likelihood of 

finding parking, increasing cruising times and leading, in turn, to a worse traffic 

performance in the network. A low parking occupancy, on the other hand, is 

inefficient from a space utilization perspective. The problem becomes more 

complicated with differentiated parking (e.g., specific parking spaces for fuel and 

electric vehicles such that electric vehicles can charge their batteries while parking). 

Our study proposes a macroscopic model to determine the optimal parking 

occupancy rate to minimize the impacts on traffic and at the same time maximize the 

usage of the available parking spaces. Moreover, we analyze how the optimal parking 

occupancy might be affected by a modal shift towards a specific vehicle type such as 

electric vehicles, with and without differentiated parking. 

In contrast to existing studies focusing on agent-based searching-for-parking traffic, 

our model does not require data for individual drivers or parking spaces as we focus 

only on average values and probability distributions across the network. This is 

especially useful for real-time control algorithms or when the data is scarce. Our 

framework follows an exogenous approach as the drivers’ entry decision and their 

parking duration are independent of the different parking policies applied in the area. 

A city can estimate their target parking occupancy rate over, e.g., the peak hours of 

the day, to guarantee an optimal trade-off between an efficient usage of the parking 

infrastructure and a high likelihood of finding parking as to improve the traffic 

performance in a central area. The results can then be used to set the optimal parking 

occupancy rate ex ante and to establish measures (e.g., parking pricing policies 

(chapter 4)) in some areas in order to achieve this target rate in the future. These 

measures, however, are considered out-of-scope in this chapter. Our study defines 

the parking occupancy rate to be optimal by trying to minimize cruising time for all 

vehicles. At the same time, we aim to ensure an efficient usage of the parking 

infrastructure by having the highest possible parking occupancy rate. The model 

outputs can be generated with a simple numerical solver and without complex 

simulation software. 

The contributions of this chapter are threefold. First, our research proposes a 

framework to compute the optimal parking occupancy rate based on a macroscopic 

traffic and parking model. We determine this single optimal rate over a given time 

horizon for an area within a city. Second, the extension of our macroscopic model to 

include multiple vehicle types provides us some insights about the parking 

occupancy’s dependency on specific vehicle types (e.g., fuel and electric vehicles). We 

analyze a differentiated parking policy with exclusive parking spaces (e.g., fuel 

vehicles park at fuel vehicle parking spaces, and electric vehicles park at spaces with 
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battery chargers), and a hierarchical parking policy, considering no parking space 

restrictions for some vehicle types (e.g., electric vehicles can park at both parking 

spaces for fuel and electric vehicles). We then compare these two policies to a parking 

scheme without any parking differentiation. In all cases, our framework allows us to 

analyze the traffic and parking impacts (e.g., average searching time for parking, total 

revenue from parking pricing, optimal parking occupancy rates) of a modal shift 

towards a specific vehicle type, such as electric vehicles. Cities have the option to 

evaluate how to react towards a constantly varying parking demand and how much 

parking supply to dedicate to electric vehicles in order to have the best balance 

between traffic performance, optimal parking occupancies, and a high revenue for 

the city. Third, our methodology offers quick evaluation possibilities for the impacts 

on the optimal parking occupancy rate caused by a change in parking demand, 

supply, or parking duration in the network. We illustrate our proposed model using 

real data from a central area within the city of Zurich, Switzerland. 

This chapter is organized as follows. Section 6.2 presents the strategy to determine 

the optimal parking occupancy rate based on a macroscopic traffic and parking model 

without and with parking differentiation using multiple vehicle types. Section 6.3 

illustrates the use of the methodology to find the optimal parking occupancy for an 

area within the city of Zurich, and discusses the impact of different modeling inputs. 

Section 6.4 summarizes this chapter. 

6.2 The optimal parking occupancy rate: A 

macroscopic model for multiple vehicle types 

First, we explain our macroscopic traffic and parking framework differentiating 

multiple vehicle types (section 6.2.1). Second, we give insights into the mathematical 

model (section 6.2.2). Third, we present our optimization strategy to find the optimal 

parking occupancy rate in an area (section 6.2.3). Fourth, we show how to determine 

the average cruising time for parking and the parking revenue for the city over a 

defined time horizon (section 6.2.4). We have already introduced some relevant 

variables and parameters in chapters 2 and 3 (Table 2.1, 3.1, 3.2 and 3.3). The new 

variables and parameters used in this chapter are introduced in Table 6.1. We also 

indicate whether the variables in Table 6.1 are exogenous, policy variables, or drivers’ 

responses to the applied policy. 

6.2.1 A macroscopic traffic and parking framework for 

multiple vehicle types 

6.2.1.1 Parking demand 

Recall that the parking demand changes over time and it is homogeneously 

distributed on the network (section 2.2). The decision between different types of 

vehicles has been previously made for all drivers. 𝐸 denotes the set of vehicle types 
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(e.g., electric vs. fuel), and 𝐾 represents the set of user groups for the network’s 

demand. 

Table 6.1. List of main variables and parameters. 

Notation Definition Type 

𝐸 
Set of vehicle types indexed by 𝑒. This might include, e.g., fuel and electric 

vehicles. 
Exogenous 

𝐴𝑒 Total number of public parking spaces for vehicles of type 𝑒 ∈ 𝐸. Policy variable 

𝐴𝑖,𝑒 
Number of available parking spaces for vehicles of type 𝑒 ∈ 𝐸 at the beginning of 

time slice 𝑖. 
Drivers’ response to policy 

𝑙𝑛𝑠/
𝑘,𝑒

 
Average distance driven by a vehicle of type 𝑒 ∈ 𝐸 from user group 𝑘 ∈ 𝐾 before 

it starts to search for parking. 
Exogenous 

𝑙𝑝/
𝑘,𝑒

 
Average distance driven by a vehicle of type 𝑒 ∈ 𝐸 from user group 𝑘 ∈ 𝐾 before 

it leaves the area after it has parked. 
Exogenous 

𝑙/
𝑘,𝑒

 
Average distance driven by a vehicle of type 𝑒 ∈ 𝐸 from user group 𝑘 ∈ 𝐾 before 

it leaves the area without having parked. 
Exogenous 

𝑝𝑒 Hourly parking fee for vehicles of type 𝑒 ∈ 𝐸. Exogenous 

𝑡𝑑
𝑒 Parking duration of vehicles of type 𝑒 ∈ 𝐸. Exogenous 

𝑖𝑐𝑚𝑎𝑥 
Time slice required to determine the expected maximum cruising time per vehicle 

for vehicles cruising at the beginning of time slice 𝑖. 
Drivers’ response to policy 

𝐴𝐶𝑇𝑎𝑙𝑙 Average cruising time across all vehicles over the whole time horizon 𝑇. Drivers’ response to policy 

𝑜𝑐𝑐𝑖 Parking occupancy rate across all parking spaces at the beginning of time slice 𝑖. Drivers’ response to policy 

𝑜𝑐𝑐𝑖,𝑒 
Parking occupancy rate of parking spaces for vehicles of type 𝑒 ∈ 𝐸 at the 

beginning of time slice 𝑖. 
Drivers’ response to policy 

𝐼 Total revenue resulting from parking fees for all user groups 𝐾 over time 𝑇. Drivers’ response to policy 

𝑆 Social impacts of introducing parking spaces for electric vehicles. Drivers’ response to policy 

𝜙 Cost of establishing a parking space with charging facilities for an electric vehicle. Exogenous 

𝜀 
Proportion of electric vehicles within the traffic demand entering the area for all 

time slices. 
Exogenous 

𝜁 
Proportion of parking spaces for electric vehicles with battery charging 

possibilities compared to the total parking supply. 
Policy variable 

6.2.1.2 Parking supply 

Remember that our framework evaluates a compact urban area with a relatively 

homogeneous network of length 𝐿. This study evaluates three different parking 

supply schemes: a non-differentiated parking policy, a differentiated parking policy 

for vehicles of different vehicle types, and a hierarchical parking policy (section 

6.2.2.3). Recall that we assume that all parking spaces (available or not) are 

homogeneously distributed in the network (section 2.2). This is valid for all available 

parking spaces independently on the vehicle type restrictions and the applied parking 

policy. 

6.2.1.3 Dynamic macroscopic parking-state-based matrix 

Our framework extends the parking-state-based matrix (section 2.4) in Cao and 

Menendez (2015a) for multiple vehicle types as they not only vary within the demand, 

but also have different parking needs, e.g., an electric vehicle might be charged while 

parking. Remember that the matrix shows the system dynamics of urban traffic, and 

aims to model macroscopically a dynamic urban parking system and its interactions 
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with the traffic system. It consists of different parking-related traffic states and the 

transition events between those states (Table 6.2). The traffic states slightly enhance 

the states presented in Table 2.2 and differentiate between non-searching vehicles 

with external and internal destinations. This modification results in more transition 

events in Table 6.2 compared to Table 2.2. Additionally, we highlight that all variables 

in Table 6.2 are modelled for all vehicle types 𝑒 ∈ 𝐸 and user groups 𝑘 ∈ 𝐾. 

Table 6.2. Traffic state and transition event variables used in our traffic and parking framework 

 Notation Name Definition 

T
ra

ff
ic

 s
ta

te
s 

𝑁𝑛𝑠𝑒
𝑖,𝑘,𝑒 

Non-searching  

(external destination) 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 not searching for 

parking and with external destination (i.e., outside the area) at the beginning of 

time slice 𝑖. 

𝑁𝑛𝑠𝑖
𝑖,𝑘,𝑒 

Non-searching  

(internal destination) 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 not searching for 

parking and with internal destination (i.e., within the area) at the beginning of 

time slice 𝑖. 

𝑁𝑠
𝑖,𝑘,𝑒 Searching for parking 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 searching for parking 

at the beginning of time slice 𝑖. 

𝑁𝑝
𝑖,𝑘,𝑒 Parking 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 parking at the 

beginning of time slice 𝑖. 

T
ra

n
si

ti
o

n
 e

v
en

ts
 

𝑛 /𝑛𝑠
𝑖,𝑘,𝑒 Enter the area  

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 entering the area 

during time slice 𝑖. 

𝑛 /𝑛𝑠𝑒
𝑖,𝑘,𝑒  

Enter the area 

(external destination) 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 entering and having 

their destination outside the area during time slice 𝑖. 

𝑛 /𝑛𝑠𝑖
𝑖,𝑘,𝑒  

Enter the area  

(internal destination) 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 entering and having 

their destination inside the area during time slice 𝑖. 

𝑛 𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒  

Start to search for 

parking  

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 starting to search for 

parking during time slice 𝑖. 

𝑛𝑠/𝑝
𝑖,𝑘,𝑒 Access parking 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 accessing parking 

during time slice 𝑖. 

𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒  Depart parking 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 departing from parking 

and moving towards a destination outside the area during time slice 𝑖. 

𝑛𝑛𝑠𝑒/
𝑖,𝑘  Leave the area 

Number of vehicles of type 𝑒 ∈ 𝐸 for user group 𝑘 ∈ 𝐾 leaving the area during 

time slice 𝑖. 

 

Using this matrix, we can model, e.g., the number of searching vehicles, more 

accurately than formulating them with other existing approximation methods that do 

not account for the dynamics of both the supply and the demand, including 

competition among drivers searching for parking. This might be important to capture 

differences throughout the day, and more nuances on the optimal parking 

occupancies. 

The number of vehicles in each traffic state for vehicle type 𝑒 ∈ 𝐸 and user group 𝑘 ∈

𝐾 are updated iteratively over time based on the number of vehicles in each transition 

event. These iterations finish when the whole time horizon is evaluated, or a defined 

criterion is reached (e.g., all the vehicles leave the area). The time horizon 𝑇 (e.g., a 

day) is divided into small time slices 𝑡 (e.g., 1 minute), such that the traffic and 

parking conditions are assumed to be steady within each time slice, but they can 
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change over multiple time slices. The traffic states and transition events are illustrated 

in Fig. 6.1 based on two different vehicle types (𝐸 = {1, 2}): fuel and electric vehicles. 

 

Fig. 6.1. Traffic and parking framework for two different vehicle types: Fuel and electric vehicles. 

Vehicles enter the area with a destination outside (“non-searching (external 

destination)”) or inside the network (“non-searching (internal destination)”). The first 

group of vehicles represents the through-traffic or the drivers going to garage 

parking. The latter group (fuel or electric vehicles) searches for available on-street 

parking spaces (“searching for parking”) before parking (“parking”) at a parking 

space for fuel or electric vehicles. After having parked and paid the parking fee 

depending on their parking duration, the vehicles drive towards their next 

destination outside the network (“non-searching (external destination)”), and leave 

the area. 

6.2.2 Mathematical formulations 

6.2.2.1 Traffic states 

Our model is based on four traffic states summarized in Table 6.2. Details about their 

mathematical formulations can be found in section 2.4 based on Cao and Menendez 

(2015a). The number of non-searching vehicles with external and internal 

destinations, 𝑁𝑛𝑠𝑒
𝑖+1,𝑘,𝑒 and 𝑁𝑛𝑠𝑖

𝑖+1,𝑘,𝑒, are updated at the beginning of time slice 𝑖 + 1 in 

Eq. (67) and Eq. (68) for all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. Note that Eq. (67) and Eq. (68) enhance 

Eq. (1) by differentiating between non-searching cars with external and internal 

destinations. They are consistent with Eq. (42a-b), but are updated for all 𝑘 ∈ 𝐾 and 

𝑒 ∈ 𝐸. Vehicles entering the area (i.e., 𝑛/𝑛𝑠𝑒
𝑖,𝑘,𝑒  and 𝑛/𝑛𝑠𝑖

𝑖,𝑘,𝑒) and vehicles departing from 

parking (i.e., 𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒 ) join these states, and vehicles leaving the area (i.e., 𝑛𝑛𝑠𝑒/

𝑖,𝑘,𝑒 ) and 

starting to search for parking (i.e., 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒 ) leave these states. 

𝑁𝑛𝑠𝑒
𝑖+1,𝑘,𝑒 = 𝑁𝑛𝑠𝑒

𝑖,𝑘,𝑒 + 𝑛/𝑛𝑠𝑒
𝑖,𝑘,𝑒 + 𝑛𝑝/𝑛𝑠𝑒

𝑖,𝑘,𝑒 − 𝑛𝑛𝑠𝑒/
𝑖,𝑘,𝑒  (67) 

𝑁𝑛𝑠𝑖
𝑖+1,𝑘,𝑒 = 𝑁𝑛𝑠𝑖

𝑖,𝑘,𝑒 + 𝑛/𝑛𝑠𝑖
𝑖,𝑘,𝑒 − 𝑛𝑛𝑠𝑖/𝑠

𝑖,𝑘,𝑒  (68) 

The number of vehicles searching for parking at the beginning of time slice 𝑖 + 1, 

𝑁𝑠
𝑖+1,𝑘,𝑒, is updated in Eq. (69) for all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. Vehicles starting to search for 
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parking in the area (i.e., 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒 ) join this state, and vehicles accessing parking (i.e., 

𝑛𝑠/𝑝
𝑖,𝑘,𝑒) leave this state. 

𝑁𝑠
𝑖+1,𝑘,𝑒 = 𝑁𝑠

𝑖,𝑘,𝑒 + 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒 − 𝑛𝑠/𝑝

𝑖,𝑘,𝑒 (69) 

We determine the number of vehicles parked at the beginning of time slice 𝑖 + 1, 

𝑁𝑝
𝑖+1,𝑘,𝑒, in the area in Eq. (70) for all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. Vehicles accessing an available 

parking space (i.e., 𝑛𝑠/𝑝
𝑖,𝑘,𝑒) join this traffic state, and vehicles departing from parking 

for an external destination (i.e., 𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒 ) leave this state.  

𝑁𝑝
𝑖+1,𝑘,𝑒 = 𝑁𝑝

𝑖,𝑘,𝑒 + 𝑛𝑠/𝑝
𝑖,𝑘,𝑒 − 𝑛𝑝/𝑛𝑠𝑒

𝑖,𝑘,𝑒  (70) 

Note that Eq. (69) and Eq. (70) are consistent with Eq. (2) and Eq. (3), showing the 

vehicles searching and parking for each 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. 

6.2.2.2 Transition events 

All transition events are estimated macroscopically based on the size of the network, 

the likelihood of finding parking, and the distribution of parking durations, 

respectively (Cao and Menendez (2015a, 2018)). Enhancements to the framework 

presented in section 2.4 are shown here. Remember that we do not need to record the 

individual locations of each vehicle and parking space over time, i.e., only the average 

number of vehicles in each traffic state and transition event during each time slice is 

tracked. 

The average travel speed, 𝑣𝑖, during time slice 𝑖 is formulated in Eq. (4b) based on a 

triangular MFD (Haddad and Geroliminis (2012); Haddad et al. (2013); Yang et al. 

(2017); Yang et al. (2019)), and the average traffic density 𝑘𝑖 (Eq. (71)) in the same time 

slice. Notice that 𝑘𝑖 in Eq. (71) replaces the formulation in Eq. (4a) in this chapter. 𝑘𝑖 

is determined based on the total number of vehicles on the road network (consisting 

of non-searching, ∑ ∑ 𝑁𝑛𝑠𝑒
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 + ∑ ∑ 𝑁𝑛𝑠𝑖

𝑖,𝑘,𝑒𝐾
𝑘=1

𝐸
𝑒=1 , and searching vehicles, 

∑ ∑ 𝑁𝑠
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 ), and the network length, 𝐿𝑙𝑎𝑛𝑒, in lane-km (Cao and Menendez 

(2015a); Cao et al. (2019)). 

𝑘𝑖 =
∑ ∑ 𝑁𝑛𝑠𝑒

𝑖,𝑘,𝑒𝐾
𝑘=1

𝐸
𝑒=1 + ∑ ∑ 𝑁𝑛𝑠𝑖

𝑖,𝑘,𝑒𝐾
𝑘=1

𝐸
𝑒=1 + ∑ ∑ 𝑁𝑠

𝑖,𝑘,𝑒𝐾
𝑘=1

𝐸
𝑒=1

𝐿𝑙𝑎𝑛𝑒
 (71) 

𝑛/𝑛𝑠
𝑖,𝑘,𝑒 describes the total number of vehicles entering the network for 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸 

during time slice 𝑖, which is a known demand input to the framework. Depending on 

the proportion of through-traffic, 𝛽𝑖, the vehicles enter the area for an external, 𝑛/𝑛𝑠𝑒
𝑖,𝑘,𝑒  

in Eq. (72), or internal destination, 𝑛/𝑛𝑠𝑖
𝑖,𝑘,𝑒 in Eq. (73). Eq. (72) is modelled consistently 

with Eq. (44a) for 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. Eq. (73) shows a simplified version of Eq. (44b) 

which includes no additional variables reflecting the drivers’ decision. 

𝑛/𝑛𝑠𝑒
𝑖,𝑘,𝑒 = 𝛽𝑖 ∙ 𝑛/𝑛𝑠

𝑖,𝑘,𝑒 (72) 
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𝑛/𝑛𝑠𝑖
𝑖,𝑘,𝑒 = (1 − 𝛽𝑖) ∙ 𝑛/𝑛𝑠

𝑖,𝑘,𝑒 (73) 

The number of vehicles starting to search for parking, 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒 , is determined in Eq. (74) 

depending on whether the vehicles’ driven distance by time slice 𝑖 has been long 

enough to cover a given distance 𝑙𝑛𝑠/
𝑘,𝑒 . Note that Eq. (74) and Eq. (45) are consistent 

and only differ with respect to the newly introduced dependency on 𝑒 ∈ 𝐸. 

Remember that 𝑙𝑛𝑠/
𝑘,𝑒  can be fixed or taken out of any given probability density 

function. The condition is then captured by 𝛾𝑛𝑠/
𝑖′,𝑘,𝑒 in Eq. (74). Recall that 𝑑𝑖 is estimated 

based on the speed during that interval 𝑣𝑖 (from Eq. (4b)) and the length of a time 

slice, 𝑡 (i.e., 𝑑𝑖 = 𝑣𝑖 ∙ 𝑡). 

𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒 = ∑ 𝑛/𝑛𝑠𝑖

𝑖′,𝑘,𝑒 ∙ 𝛾𝑛𝑠/
𝑖′,𝑘,𝑒

𝑖−1

𝑖′=1

 (74) 

where 

𝛾𝑛𝑠/
𝑖′,𝑘,𝑒 = {

1,    if 𝑙𝑛𝑠/
𝑘,𝑒 ≤∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑛𝑠/

𝑘,𝑒 + 𝑑𝑖−1

0,    otherwise_____________________________________________

 

The likelihood formulations from Cao and Menendez (2015a) and Cao and Menendez 

(2018) are used to model the number of vehicles finding, accessing and paying for 

parking, 𝑛𝑠/𝑝
𝑖,𝑘,𝑒. We omit the mathematical formulation here as it is only slightly 

modified from Eq. (6) in section 2.4.2 – analogously to Eq. (46) – to include different 

vehicle types 𝑒 ∈ 𝐸. 

After departing from their parking spaces, the vehicles 𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒  (Eq. (75)) drive towards 

their external destinations during time slice 𝑖. Notice that Eq. (75) is consistent with 

Eq. (7) and modelled for each 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸, analogously to Eq. (47). The likelihood 

that these vehicles depart from the parking spaces in time slice 𝑖 is based on the 

distribution of parking durations 𝑓(𝑡𝑑
𝑒) and the number of vehicles having accessed 

parking spaces, 𝑛𝑠/𝑝
𝑖′,𝑘,𝑒, in a former time slice 𝑖′ ∈ [1, 𝑖 − 1]. The probability of their 

parking duration is then between (𝑖 − 𝑖′) ∙ 𝑡 and (𝑖 + 1 − 𝑖′) ∙ 𝑡, i.e., 

∫ 𝑓(𝑡𝑑
𝑒) 𝑑𝑡𝑑

𝑒(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡
. 

𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒 = ∑ 𝑛𝑠/𝑝

𝑖′,𝑘,𝑒 ∙ ∫ 𝑓(𝑡𝑑
𝑒) 𝑑𝑡𝑑

𝑒
(𝑖+1−𝑖′)∙𝑡

(𝑖−𝑖′)∙𝑡

𝑖−1

𝑖′=1

 (75) 

Depending on whether the vehicles have parked or not, they leave the area, 𝑛𝑛𝑠𝑒/
𝑖,𝑘,𝑒  in 

Eq. (76), after having driven a given distance 𝑙𝑝/
𝑘,𝑒 or 𝑙/

𝑘,𝑒, respectively. Remember that 

these distances are considered as fixed or taken out of any given probability density 

function, and they vary by the network size and the average trip lengths. Note that 

Eq. (76) is consistent with Eq. (50) and modelled for each vehicle type 𝑒 ∈ 𝐸. 
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𝑛𝑛𝑠𝑒/
𝑖,𝑘,𝑒 = ∑ (𝑛/𝑛𝑠𝑒

𝑖′,𝑘,𝑒 ∙ 𝛾/
𝑖′,𝑘,𝑒 + 𝑛𝑝/𝑛𝑠𝑒

𝑖′,𝑘,𝑒 ∙ 𝛾𝑝/
𝑖′,𝑘,𝑒)

𝑖−1

𝑖′=1

 (76) 

𝛾/
𝑖′,𝑘,𝑒 and 𝛾𝑝/

𝑖′,𝑘,𝑒 indicate whether the number of vehicles 𝑛/𝑛𝑠𝑒
𝑖′,𝑘  and 𝑛𝑝/𝑛𝑠𝑒

𝑖′,𝑘  have driven 

long enough, 𝑙/
𝑘,𝑒 and 𝑙𝑝/

𝑘,𝑒, respectively, in order to leave the area in time slice 𝑖. We 

omit their formulations here as they are modelled analogously to Eq. (35) and 𝛾𝑛𝑠/
𝑖′,𝑘,𝑒 

in Eq. (74). 

6.2.2.3 Parking policies 

The non-differentiated parking scheme is presented in the first subsection. In case of 

differentiated parking, we consider two different levels of flexibility: differentiated 

parking and hierarchical parking. They are introduced in the second and third 

subsections, respectively. 

Non-differentiated parking 

The non-differentiated parking supply scheme assumes all parking spaces 𝐴 to be 

identical and uniformly distributed in the area, i.e., either all or none of the parking 

spaces have battery charging facilities. The parking availability, 𝐴𝑖, is updated in Eq. 

(77) according to 𝐴 and the number of vehicles parked, 𝑁𝑝
𝑖,𝑘, at the beginning of time 

slice 𝑖. 

𝐴𝑖 = 𝐴 −∑𝑁𝑝
𝑖,𝑘

𝐾

𝑘=1

       ∀𝑖 ∈ {1,… , 𝑇} (77) 

As 𝐴𝑖 is restricted by 𝐴, 0 ≤ 𝐴𝑖 ≤ 𝐴 is valid for all time slices 𝑖. 

Differentiated parking policy 

In our fully differentiated parking policy, we assume that vehicles are only allowed 

to park at their specific vehicle type parking spaces, i.e., fuel and electric vehicles are 

only allowed to access parking spaces for fuel and electric vehicles, respectively (Fig. 

6.2(a)). 

 

     (a) Differentiated parking policy:                  (b) Hierarchical parking policy: 
                                  Exclusive parking spaces                 No parking space restrictions for electric vehicles. 

Fig. 6.2. A differentiated and a hierarchical parking policy for the access of parking spaces by fuel and electric vehicles. 

The parking spaces 𝐴𝑒 for each vehicle type 𝑒 ∈ 𝐸 are assumed to be identical and 

uniformly distributed in the area. The parking availability, 𝐴𝑖,𝑒, for 𝑒 ∈ 𝐸 is updated 
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in Eq. (78) according to 𝐴𝑒 and the number of vehicles parked, 𝑁𝑝
𝑖,𝑘,𝑒, at the beginning 

of time slice 𝑖. 

𝐴𝑖,𝑒 = 𝐴𝑒 −∑𝑁𝑝
𝑖,𝑘,𝑒

𝐾

𝑘=1

       ∀𝑖 ∈ {1,… , 𝑇},   ∀𝑒 ∈ {1,… , 𝐸} (78) 

As 𝐴𝑖,𝑒 is restricted by 𝐴𝑒, 0 ≤ 𝐴𝑖,𝑒 ≤ 𝐴𝑒 is valid for all time slices 𝑖. 

Hierarchical parking policy 

The hierarchical parking policy assumes that no parking space restrictions are in place 

for vehicles of type 𝑒 = 2, 𝑒 ∈ 𝐸. On the other hand, vehicles of type 𝑒 = 1, 𝑒 ∈ 𝐸 can 

only access their dedicated parking spaces. Assuming electric vehicles are part of 𝑒 =

2 and fuel vehicles belong to 𝑒 = 1, the electric vehicles can access parking spaces for 

fuel and electric vehicles (Fig. 6.2(b)). However, it is reasonable to assume that they 

generally prefer parking spaces with battery charging options. In case these spaces 

are not available anymore, electric vehicles access parking spaces for fuel vehicles. 

Fuel vehicles can only access their dedicated parking spaces and get fined when 

parking at spaces with battery charging opportunities. Electric vehicle drivers have 

full contemporaneous information available, i.e., the drivers have access to real-time 

information about the availability of parking spaces for electric vehicles when 

deciding to search for a parking space with battery chargers or to search for a regular 

parking space instead. This parking usage information for electric vehicles can be 

made available to the drivers by providing real-time smartphone applications or 

information signs in the traffic network. The drivers do not have information about 

the exact location of the available parking spaces, but just the number of available 

parking spaces. They do not have information either about future electric parking 

availability. Evidently, this means there is still a chance they make the “wrong” 

decision as parking availability could change between the time they make the 

decision and the time they arrive at their destination. Both fuel and electric vehicles 

have the same chance to access an available fuel parking space in case all parking 

spaces with battery chargers are occupied. 

The parking availabilities 𝐴𝑖,1 and 𝐴𝑖,2 are updated in Eq. (79) and Eq. (80) depending 

on whether there are enough parking spaces for vehicles of type 𝑒 = 2 available in 

time slice 𝑖, i.e., we check whether the net number of electric vehicles moving to 

parking during time slice 𝑖 − 1, ∑ (𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)𝐾
𝑘=1 , can access the available 

parking spaces, 𝐴𝑖−1,2, at the beginning of time slice 𝑖 − 1. If this is the case, all vehicles 

of type 𝑒 = 2 access their preferred parking spaces, and 𝐴𝑖,2 is updated to 𝐴𝑖−1,2 −

∑ (𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)𝐾
𝑘=1  (Eq. (80)). This leads to only vehicles of type 𝑒 = 1 accessing 

their dedicated parking spaces, and 𝐴𝑖,1 is updated to 𝐴𝑖−1,1 − ∑ (𝑛𝑠/𝑝
𝑖−1,𝑘,1 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,1)𝐾
𝑘=1  

(Eq. (79)). If there are not enough preferred parking spaces for the vehicles of type 

𝑒 = 2 (i.e., 𝐴𝑖,2 = 0 (Eq. (80))), all remaining vehicles move towards parking spaces for 

the vehicles of type 𝑒 = 1, and 𝐴𝑖,1 is updated to 𝐴𝑖−1,1 + 𝐴𝑖−1,2 −∑ (𝑛𝑠/𝑝
𝑖−1,𝑘,1 +𝐾

𝑘=1

𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,1 − 𝑛𝑝/𝑛𝑠𝑒
𝑖−1,𝑘,2) (Eq. (79)). 
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𝐴𝑖,1 =

{
 
 

 
 𝐴𝑖−1,1 −∑(𝑛𝑠/𝑝

𝑖−1,𝑘,1 − 𝑛𝑝/𝑛𝑠𝑒
𝑖−1,𝑘,1)

𝐾

𝑘=1

,                                                         𝑖𝑓 ∑(𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)

𝐾

𝑘=1

≤ 𝐴𝑖−1,2

𝐴𝑖−1,1 + 𝐴𝑖−1,2 −∑(𝑛𝑠/𝑝
𝑖−1,𝑘,1 + 𝑛𝑠/𝑝

𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒
𝑖−1,𝑘,1 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)

𝐾

𝑘=1

,   𝑖𝑓 ∑(𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)

𝐾

𝑘=1

> 𝐴𝑖−1,2

 (79) 

𝐴𝑖,2 =

{
 
 

 
 𝐴𝑖−1,2 −∑(𝑛𝑠/𝑝

𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒
𝑖−1,𝑘,2)

𝐾

𝑘=1

,   𝑖𝑓 ∑(𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)

𝐾

𝑘=1

≤ 𝐴𝑖−1,2

0,                                                            𝑖𝑓 ∑(𝑛𝑠/𝑝
𝑖−1,𝑘,2 − 𝑛𝑝/𝑛𝑠𝑒

𝑖−1,𝑘,2)

𝐾

𝑘=1

> 𝐴𝑖−1,2

 (80) 

As 𝐴𝑖,1 and 𝐴𝑖,2 are restricted by 𝐴1 and 𝐴2, respectively, 0 ≤ 𝐴𝑖,1 ≤ 𝐴1 and 0 ≤ 𝐴𝑖,2 ≤

𝐴2 are valid for all time slices 𝑖. 

6.2.3 Optimal parking occupancy rate 

In this section, we determine the optimal parking occupancy rate based on our 

macroscopic traffic and parking model for different vehicle types 𝑒 ∈ 𝐸. We formulate 

the parking occupancy rate 𝑜𝑐𝑐𝑖,𝑒 (section 6.2.3.1) for 𝑒 ∈ 𝐸, and the average cruising 

time 𝐴𝐶𝑇𝑖 (section 6.2.3.2) at the beginning of time slice 𝑖 before we present the 

optimization framework (section 6.2.3.3). 

6.2.3.1 Parking occupancy rate 

We determine the parking occupancy rate, 𝑜𝑐𝑐𝑖,𝑒, for parking spaces for vehicles of 

type 𝑒 ∈ 𝐸 (Eq. (81)) and, 𝑜𝑐𝑐𝑖, for all parking spaces in the area independently of their 

vehicle type (Eq. (82)). 

𝑜𝑐𝑐𝑖,𝑒 = 1 −
𝐴𝑖,𝑒

𝐴𝑒
   (81) 

𝑜𝑐𝑐𝑖 = 1 −
∑ 𝐴𝑖,𝑒𝐸
𝑒=1

∑ 𝐴𝑒𝐸
𝑒=1

   (82) 

Both formulations depend on the relation between the parking availability 𝐴𝑖,𝑒 in time 

slice 𝑖 and the total parking supply 𝐴𝑒 for 𝑒 ∈ 𝐸. For the non-differentiated parking 

policy, Eq. (81) and Eq. (82) become equivalent as all vehicles behave similarly, so we 

drop the superscript 𝑒 for vehicle type. 

6.2.3.2 Average cruising time at the beginning of each time slice 

The cumulative number of vehicles for all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸 going through each 

transition event in Fig. 6.1 are illustrated in Fig. 6.3 over time. The cumulative number 

of vehicles starting to search for parking, ∑ ∑ 𝑛𝑛𝑠𝑖/𝑠
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 , is illustrated by the black 

curve, the cumulative number of vehicles accessing parking, ∑ ∑ 𝑛𝑠/𝑝
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 , by the 

blue curve, and the cumulative number of vehicles leaving parking, ∑ ∑ 𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 , 

by the green curve over time. Fig. 6.3 allows us not only to visualize the number of 
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vehicles cruising for parking at time slice 𝑖 (i.e., ∑ ∑ 𝑁𝑠
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1 ), but also the expected 

maximum cruising time 𝑖 − 𝑖𝑐𝑚𝑎𝑥 across those vehicles. Note that this is consistent 

with Fig. 5.2 in section 5.3.3.3. According to our framework in this chapter, Fig. 6.3 

shows the cumulative number of vehicles for all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸 over time. As our 

model is meant to look for average values based on some probability distributions, 

we can compute the vehicles’ expected maximum cruising time, i.e., after this period 

of time all drivers have on average found an available parking space. 

 

Fig. 6.3. The visualization of 𝑖𝑐𝑚𝑎𝑥 at the beginning of time slice 𝑖 within the queuing diagram. 

We determine 𝑖𝑐𝑚𝑎𝑥 in Eq. (83) based on the cumulative number of vehicles having 

accessed parking by time slice 𝑖 (i.e., ∑ ∑ ∑ 𝑛𝑠/𝑝
𝑗,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1

𝑖
𝑗=1 ) across all 𝑘 ∈ 𝐾 and 𝑒 ∈ 𝐸. 

Then, we estimate the time at which the cumulative number of vehicles having started 

to search for parking (i.e., ∑ ∑ ∑ 𝑛𝑛𝑠𝑖/𝑠
𝑗,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1

𝑖𝑐𝑚𝑎𝑥
𝑗=1 ) is the same. Note that Eq. (83) is 

modelled analogously to Eq. (65), subject to the transition events 𝑛𝑛𝑠𝑖/𝑠
𝑗,𝑘,𝑒

 and 𝑛𝑠/𝑝
𝑗,𝑘,𝑒

 in 

this chapter. 

Find 𝑖𝑐𝑚𝑎𝑥,   s. t. ∑ ∑∑𝑛𝑛𝑠𝑖/𝑠
𝑗,𝑘,𝑒

𝐾

𝑘=1

𝐸

𝑒=1

𝑖𝑐𝑚𝑎𝑥

𝑗=1

=∑∑∑𝑛𝑠/𝑝
𝑗,𝑘,𝑒

𝐾

𝑘=1

𝐸

𝑒=1

𝑖

𝑗=1

 (83) 

Approximating the area highlighted in Fig. 6.3 as a red triangle, we compute the 

average searching time across vehicles searching for parking during time slice 𝑖, 𝐴𝐶𝑇𝑖 

in Eq. (84), analogously to Eq. (66). 

𝐴𝐶𝑇𝑖 =
𝑖 − 𝑖𝑐𝑚𝑎𝑥

2
 ∙ 𝑡  (84) 

𝐴𝐶𝑇𝑖 is required for our optimization framework in section 6.2.3.3 to propose the 

optimal parking occupancy rate which minimizes cruising time for all vehicles at all 

times. Notice that all non-searching vehicles including the through-traffic might affect 

the traffic performance in the area (see Eq. (4b) and Eq. (71)) and might thus impact 

𝐴𝐶𝑇𝑖.  
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6.2.3.3 Optimization framework 

Our framework combines 𝐴𝐶𝑇𝑖 (Eq. (84)) with 𝑜𝑐𝑐𝑖,𝑒 (Eq. (81)) or 𝑜𝑐𝑐𝑖 (Eq. (82)), 

respectively. 𝑚(𝐴𝐶𝑇𝑖) denotes the moving average over the number of 𝑠 values of 

𝐴𝐶𝑇𝑖 as a function of 𝑜𝑐𝑐𝑖,𝑒. The parameter 𝑠 is considered as an input to the model. 

The optimization model to determine the optimal parking occupancy rate for parking 

spaces for vehicles of type 𝑒 ∈ 𝐸 is formulated in Eq. (85). Note that we can replace 

𝑜𝑐𝑐𝑖,𝑒 in Eq. (85) by 𝑜𝑐𝑐𝑖 to compute the rate for all parking spaces in the area. 

max{ arg min
0≤𝑜𝑐𝑐𝑖,𝑒≤1

(𝑚(𝐴𝐶𝑇𝑖))} (85) 

Our optimization framework tries not only to minimize the average searching time 

for parking, but also to maximize the parking occupancy rate. This should lead to an 

efficient usage of the parking infrastructure and at the same time a high likelihood of 

finding parking in order to eliminate the drivers’ time wasted in cruising for parking 

and the added congestion it causes. Fig. 6.4 visualizes this optimization strategy (Eq. 

(85)) for 𝑚(𝐴𝐶𝑇𝑖) as a function of 𝑜𝑐𝑐𝑖,𝑒 showing the valid solution set in green. We 

solve it using a simulation-based approach, such that 𝑚(𝐴𝐶𝑇𝑖) is determined 

depending on 𝑜𝑐𝑐𝑖,𝑒 or 𝑜𝑐𝑐𝑖 for all time slices 𝑖 over 𝑇. 

 

Fig. 6.4. Optimization strategy (Eq. (85)) for 𝑚(𝐴𝐶𝑇𝑖) as a function of 𝑜𝑐𝑐𝑖,𝑒. 

6.2.4 Traffic performance, parking revenue, and social impacts 

6.2.4.1 Traffic performance 

The vehicles’ average cruising time for parking, 𝐴𝐶𝑇𝑎𝑙𝑙, over the whole time horizon 

𝑇 is represented in Eq. (86), reflecting the traffic performance in the area. We 

determine the total cruising time (gray shaded area in Fig. 6.3), 𝑡 ∙

∑ ∑ ∑ 𝑁𝑠
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1

𝑇
𝑖=1 , and divide it by the total number of vehicles accessing an 

available parking space over 𝑇, ∑ ∑ ∑ 𝑛𝑠/𝑝
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1

𝑇
𝑖=1 . Less available parking spaces 

might lead to more vehicles searching for parking, 𝑁𝑠
𝑖,𝑘,𝑒, and thus to traffic congestion 

in the network. 

𝐴𝐶𝑇𝑎𝑙𝑙 =
𝑡 ∙ ∑ ∑ ∑ 𝑁𝑠

𝑖,𝑘,𝑒𝐾
𝑘=1

𝐸
𝑒=1

𝑇
𝑖=1

∑ ∑ ∑ 𝑛𝑠/𝑝
𝑖,𝑘,𝑒𝐾

𝑘=1
𝐸
𝑒=1

𝑇
𝑖=1

 (86) 

  



Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

 

 Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

 

  
 

 

 

131 

6.2.4.2 Parking revenue 

Once the drivers depart from their parking spaces, 𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒 , they pay their parking fee 

𝑝𝑒 subject to their individual parking duration. Note that the hourly parking fee, 𝑝𝑒, 

is considered as a time-invariant input to the model. This simplifies our framework 

as drivers’ preferences on parking location, price, etc. can be avoided. However, this 

assumption can be relaxed in future research and the parking fees can be modelled 

using responsive pricing schemes in order to optimize the total revenue from parking 

pricing (chapter 5). The average parking duration across drivers is 𝑡𝑑
𝑒̅. Note that both 

𝑝𝑒 and 𝑡𝑑
𝑒̅ can vary by 𝑒 ∈ 𝐸 as some vehicle types might have different parking 

requirements (e.g., electric vehicles might need to park longer in parking spaces with 

charging possibilities for their batteries). The total revenue from parking pricing for 

the city is determined in Eq. (87). 

𝐼 =∑∑∑𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒 ∙ 𝑝𝑒 ∙ 𝑡𝑑

𝑒̅

𝐾

𝑘=1

𝐸

𝑒=1

𝑇

𝑖=1

 (87) 

Recall that for non-differentiated parking we can drop the superscript 𝑒 in Eq. (86) 

and Eq. (87). 

6.2.4.3 Social impacts 

In order to analyze the impacts of our parking policies on the society, we determine 

the social impacts of introducing parking spaces for electric vehicles (𝑒 = 2, 𝑒 ∈ 𝐸) in 

Eq. (88). Similar as in section 6.2.2.3, fuel vehicles belong to 𝑒 = 1, 𝑒 ∈ 𝐸. 

𝑆 =∑∑∑𝑛𝑝/𝑛𝑠𝑒
𝑖,𝑘,𝑒

𝐾

𝑘=1

2

𝑒=1

∙ 𝑝𝑒 ∙ 𝑡𝑑
𝑒̅

𝑇

𝑖=1⏟                
term 1

+∑∑∑𝑛𝑠/𝑝
𝑖,𝑘,𝑒

𝐾

𝑘=1

2

𝑒=1

∙ 𝑉𝑂𝑇𝑘
𝑇

𝑖=1⏟              
term 2

∙ (
2 ∙ 𝐴𝑊𝐷𝑜𝑝

𝑤⏟      
term 3

+ 𝐴𝐶𝑇𝑎𝑙𝑙⏟  
term 4

) + 𝜙 ∙ 𝐴2⏟  
term 5

 (88) 

We add all cost variables for the drivers in the network (terms 1 − 4) and the cost for 

the city to establish an electric vehicle parking infrastructure (term 5). The cost terms 

1 − 3 might impact the drivers’ utility from parking (Vrancken et al. (2017)). Term 1 

expresses the parking cost for all parking searchers based on 𝑝𝑒 and 𝑡𝑑
𝑒̅ for all 𝑘 ∈ 𝐾, 

𝑒 ∈ {1, 2} and 𝑖 ∈ 𝑇. It is the same as the total revenue generated for the city (Eq. (87)). 

Term 2 uses the 𝑉𝑂𝑇𝑘 to convert terms 3 and 4 into price units depending on the 

number of vehicles accessing parking 𝑛𝑠/𝑝
𝑖,𝑘,𝑒. Term 3 formulates the average walking 

distance 𝐴𝑊𝐷𝑜𝑝 from the parking space to the final destination and back. Recall that 

𝐴𝑊𝐷𝑜𝑝 is determined in Eq. (13), as parking spaces are uniformly distributed 

throughout the area. Recall that our network can be abstracted as a square grid with 

its total road length, 𝐿, being equivalent to joining all blocks of average known length 

𝑏 together. Term 4 (Eq. (88)) shows the average cruising time for parking 𝐴𝐶𝑇𝑎𝑙𝑙. Term 

5 estimates the costs of deploying electric vehicle parking, i.e., we multiply the cost 𝜙 

per parking space by the number of parking spaces for electric vehicles 𝐴2. We do not 

account for the cost of operating a conventional parking space (i.e., a parking space 

for fuel vehicles), nor for any additional fees that might be paid by electric vehicles 

charging their batteries. 
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6.3 Applications 

This section presents a case study of a central area within the city of Zurich, 

Switzerland, to determine the optimal parking occupancy rate for fuel and electric 

vehicles. As the interest in electric vehicles is continuously increasing, our findings 

evaluate the traffic performance and parking impacts of a modal shift towards electric 

vehicles with respect to the average searching time for parking, the total revenue from 

parking pricing, and the parking occupancy. Our methodology is implemented using 

a simple numerical solver such as Matlab based on real data obtained by Cao et al. 

(2019). 

6.3.1 A case study for an area within the city of Zurich, 

Switzerland 

The same study area (𝐿 = 7.7 km, and 𝑏 = 76 m) within the city of Zurich is used as 

in section 3.4.1. The total network length is 𝐿𝑙𝑎𝑛𝑒 = 15.4 lane-km, as most of the streets 

have two lanes (either one lane per direction or two lanes in a one-way street). 

Remember that there are 539 public parking spaces with no parking time limit in the 

area (Cao et al. (2019)). We divide the working day into time slices of 1 minute, i.e., 

𝑡 = 1 min, so that 𝑇 = 1440 min. All parking spaces have an hourly fee of 𝑝𝑒 =

2.25 CHF approximating the average value in the city center of Zurich (Cao et al. 

(2019)). Recall that 77 % (2069 trips) of the daily traffic searches for parking, and the 

remaining 23 % (618 trips) does not search for parking (through-traffic), i.e., 𝛽𝑖 =

0.23, ∀𝑖. The parking durations are described by the probability density function (pdf) 

as in Fig. 4.5 (section 4.4.1). Notice that the application of the model is not limited to 

a specific distribution, and other distributions besides gamma could also be assumed 

for the parking duration (Cao and Menendez (2013)). We initially assume that the pdf 

of the parking durations is the same for all vehicle types. However, we relax this 

assumption in section 6.3.4. The traffic properties (i.e., 𝑣 = 12.5 km/h, 𝑄𝑚𝑎𝑥 = 250 

veh/hr/lane, 𝑘𝑐 = 20 veh/km/lane, 𝑘𝑗 = 55 veh/km/lane) are based on the MFD of the 

city of Zurich (Ambühl et al. (2017); Dakic and Menendez (2018); Loder et al. (2019); 

Ortigosa et al. (2014)). The travel distances 𝑙𝑛𝑠/
𝑘,𝑒 , 𝑙𝑝/

𝑘,𝑒 and 𝑙/
𝑘,𝑒 follow a uniform 

distribution between 0.1 and 0.7 km for all 𝑒 ∈ {1,2} and all 𝑘 ∈ {1,… ,4}. The initial 

conditions include ∑ ∑ 𝑁𝑝
0,𝑘,𝑒4

𝑘=1
2
𝑒=1 = 183 vehicles already parked in the area, and 

∑ ∑ 𝑁𝑠
0,𝑘,𝑒4

𝑘=1
2
𝑒=1 = 0 vehicles searching for parking at the beginning of the working 

day. The average walking speed is assumed to be 𝑤 = 5 km/h (Browning et al. (2006)). 

The cost of establishing a parking space with charging facilities for an electric vehicle 

is estimated as 𝜙 = 10,000 CHF per year (Huang and Kockelman (2020); Idaho 

National Laboratory (2015); Smith and Castellano (2015) assuming 1 USD ≈ 1 CHF), 

and includes the station maintenance costs.  
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6.3.2 Optimal parking occupancy rate, and traffic performance 

impacts 

This section shows the optimal parking occupancy rate, and the resulting traffic 

performance when considering the differentiated and hierarchical parking space 

policies in comparison with a non-differentiated parking scheme (section 6.2.2.3). We 

first assume that the proportion of parking spaces for electric vehicles with battery 

charging possibilities, 𝜁 (Eq. (89)), matches the proportion of electric vehicles entering 

the area, 𝜀 (Eq. (90)). This assumption, 𝜁 = 𝜀, will be relaxed in section 6.3.3 when we 

analyze the trade-offs between different demand and supply proportions of electric 

vehicles. Note that 𝜀 is assumed to be equal for all time slices over one working day. 

𝜁 =
𝐴2

𝐴1 + 𝐴2
 (89) 

𝜀 =
∑ ∑ 𝑛/𝑛𝑠

𝑖,𝑘,2𝐾
𝑘=1

𝑇
𝑖=1

∑ ∑ (𝑛/𝑛𝑠
𝑖,𝑘,1 + 𝑛/𝑛𝑠

𝑖,𝑘,2)𝐾
𝑘=1

𝑇
𝑖=1

 (90) 

First, we evaluate our reference scenario with non-differentiated parking (scenario 

(a)), i.e., we do not distinguish between vehicles or parking spaces (section 6.2.2.3). 

We compare this scenario to the assumed scenarios (b) differentiated parking policy, 

and (c) hierarchical parking policy, reflecting two vehicle types, fuel (𝑒 = 1) and 

electric (𝑒 = 2) vehicles, with 𝜁 = 𝜀 = 10 %. Table 6.3 presents the results for these 

scenarios. 

Table 6.3. Comparison of different scenarios considering non-differentiated, differentiated and hierarchical 

parking policies with 𝜁 = 𝜀 = 10 % focusing on traffic and parking impacts. Value within parenthesis represents the 

percentage change with respect to the reference scenario. 

Scenarios 

(a) (b) (c) 

Reference scenario:  
Non-differentiated 

parking 

Differentiated 
parking policy 

Hierarchical 
parking policy 

Optimal parking occupancy rate (single value 
for all parking spaces) 

93.43 % 
87.37 % 
(-6.5 %) 

93.43 % 
(+0 %) 

Optimal parking occupancy rate (parking spaces 
for fuel vehicles) 

- 85.62 % 93.43 % 

Optimal parking occupancy rate (parking spaces 
for electric vehicles) 

- 87.6 % 93.63 % 

Average time for vehicles searching for parking 
(min/veh) 

3.14 
3.77 
(+20.1 %) 

3.27 
(+4.1 %) 

Social impacts of introducing parking spaces for 
electric vehicles, 𝑆 

27,145 CHF 566,660 CHF 566,250 CHF 

 

Not surprisingly, scenario (a) with a non-differentiated parking scheme leads to the 

lowest average searching time (3.14 min/veh) over one working day. It also shows a 

high optimal parking occupancy rate (93.4 %). Note that we assume an optimistic 

case with all drivers going through all parking spaces in order to find the next 

available parking space in the area. This leads to slightly higher optimal parking 
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occupancy rates than the 85 % suggested by Shoup (1999, 2005, 2006). Fig. 6.5 shows 

the average searching time as a function of the parking occupancy rate. It can be used 

to visualize the computation of the optimal parking occupancy rate using our 

optimization framework from section 6.2.3.3. 

 

Fig. 6.5. Average searching time for different parking occupancy rates during a typical working day (scenario (a)). 

The differentiated parking policy (scenario (b)) leads to an average searching time 

increase of 20.1 % compared to the reference scenario (a), despite an optimal parking 

occupancy rate reduction of 6.5 % on average. The optimal parking occupancy rate of 

parking spaces for fuel and electric vehicles are relatively similar to each other (85.6 % 

and 87.6 %, respectively). These lower occupancy rates can be explained by the 

increase in average searching time in scenario (b). As fuel and electric vehicles are 

only allowed to access their dedicated parking spaces, more vehicles require longer 

to find an available parking space. The optimal parking rate for scenario (b) should 

then be lower to still ensure a high likelihood of finding parking besides an efficient 

usage of the parking infrastructure. The hierarchical parking policy (scenario (c)) 

leads to an average searching time decrease of 13.3 % compared to scenario (b). The 

lower average searching time also leads to slightly lower social impacts of introducing 

parking spaces for electric vehicles in scenario (c) compared to scenario (b). Note that 

the social impacts (Eq. (88)) mainly depend on the cost of electric vehicle parking 

infrastructure 𝜙, which is an input to our model. This explains the significant increase 

of the social impacts in scenario (b) and (c) in comparison to having no electric vehicle 

parking infrastructure in place in reference scenario (a). One would expect, however, 

that with time, 𝜙 will go down reducing such difference. Recall also that we do not 

account for the cost of operating parking spaces for fuel vehicles, nor for any 

additional fees that might be paid by electric vehicles charging their batteries. 

The improvements in scenario (c) come with the same optimal parking occupancy 

rate as in scenario (a). The electric vehicles fill up their parking supply with battery 

charging options in the hierarchical parking policy before they decide to use fuel 

parking spaces in the area. Thus, they cause less cruising-for-parking traffic compared 

to the differentiated policy (scenario (b)), and this leads to a better traffic performance 

in the network. The average searching time for parking is only 4.1 % higher than in 

the reference scenario. This makes the hierarchical parking policy the preferred 

parking policy for most cities when facing a demand and supply change in terms of 

fuel and electric vehicles. Some drivers of electric vehicles might, however, require a 
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parking space with battery chargers as their battery is almost empty. Depending on 

their planned activities, these drivers might decide to cruise for parking even when 

there are parking spaces for fuel vehicles available, or to drive to a different area 

instead. The latter might cause a change in the total parking demand, which is, 

however, out-of-scope in this chapter. 

6.3.3 Trade-offs between demand and supply for electric 

vehicles 

Due to a modal shift towards electric vehicles, cities face the challenge of building 

new dedicated parking spaces or turning existing parking spaces for fuel vehicles into 

spaces with battery chargers. Then the question arises of how much parking supply 

shall be reserved for electric vehicles in order to react to a constantly varying parking 

demand over time. Compared to section 6.3.2 (𝜁 = 𝜀), we analyze in this section a 

mismatch between 𝜁 and 𝜀, and its effects on the traffic and parking model outputs. 

We run a simulation-based search algorithm to understand the impacts of all 

proportions 𝜁 and 𝜀 on the traffic performance (Fig. 6.6(a)-(b)) analyzing the average 

searching time for the differentiated and hierarchical parking space policies in section 

6.2.2.3. The following figures are created using a cubic interpolation method of the 

results (Hazewinkel (1994)). 

 

     (a) Average searching time (differentiated parking policy).         (b) Average searching time (hierarchical parking policy). 

Fig. 6.6. Traffic performance impacts according to different demand and supply proportions for electric vehicles. 

As one would expect, Fig. 6.6(a) shows that the average searching time for the 

differentiated parking policy is minimized for 𝜁 ≈ 𝜀 (i.e., along the diagonal). This is 

reasonable as the absolute size of the parking demand and the available supply are 

balanced for both electric and fuel vehicles, i.e., the proportion of vehicles searching 

for parking is similar to the proportion of available parking spaces over time. In other 

words, cities should aim to provide a proportion of parking spaces for electric 

vehicles, 𝜁, similar to the proportion of electric vehicles in demand, 𝜀, to reduce 

cruising-for-parking in the area. The average searching time increases faster for 𝜁 < 𝜀 

compared to 𝜁 > 𝜀. This is reasonable as both 𝜁 and 𝜀 are below 50 %. The average 

searching time follows the opposite behavior when both 𝜁 and 𝜀 are over 50 %. Either 

fuel or electric vehicles find it more difficult to find an available parking space when 

𝜁 ≠ 𝜀. However, when a mismatch between 𝜁 and 𝜀 cannot be avoided, it is safer to 
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have a 𝜁 higher than 𝜀, i.e., an oversupply of parking spaces for electric vehicles rather 

than an undersupply, as long as 𝜀 < 50 %. Applying the hierarchical parking policy 

mitigates this problem (Fig. 6.6(b)) as electric vehicles can park everywhere. This 

leads to the same searching times for 𝜁 ≈ 𝜀 and 𝜁 < 𝜀. In other words, as long as we 

do not oversupply parking spaces for electric vehicles, the traffic performance is 

acceptable in the area. Notice, however, that providing some parking with charging 

stations could potentially lead to a modal shift, and this could be desirable for the 

city. Such changes in the demand are considered out of the scope for this dissertation. 

The total revenue from parking pricing (differentiated parking policy) over one 

working day (Fig. 6.7(a)) equals to 17,630 CHF for 0.7 𝜀 ≤  𝜁 ≤ 0.7 𝜀 + 29. An efficient 

usage of the available parking spaces leads to these high revenues. Beyond this ratio, 

𝜁 < 0.7 𝜀 and 𝜁 > 0.7 𝜀 + 29, the revenue decreases. The hierarchical parking policy 

(Fig. 6.7(b)) leads to a revenue of 17,628 CHF when 𝜁 ≤ 0.7 𝜀 + 29. The low average 

searching times (Fig. 6.6(b)) facilitate a more efficient usage of the available parking 

supply compared to the differentiated parking policy. An oversupply of parking 

spaces for electric vehicles and an undersupply of parking spaces for fuel vehicles 

reduce the parking revenue. Thus, if we want to increase revenues, we need to make 

sure that we do not undersupply parking spaces for fuel vehicles, contrary to what 

we said when talking about traffic performance. 

 

        (a) Parking revenue (differentiated parking policy).                (b) Parking revenue (hierarchical parking policy). 

Fig. 6.7. Parking revenue impacts according to different demand and supply proportions for electric vehicles. 

Fig. 6.8(a)-(b) analyze how the optimal parking occupancy rates of parking spaces for 

fuel and electric vehicles (differentiated parking policy) are affected by different 

proportions 𝜁 and 𝜀. The optimal occupancy rate is higher than 80 % when 𝜁 > 𝜀 for 

the parking spaces for fuel vehicles (Fig. 6.8(a)), and when 0.9 𝜁 < 𝜀 < 3 𝜁 for the 

parking spaces for electric vehicles (Fig. 6.8(b)). The former can be explained by an 

undersupply of parking spaces for fuel vehicles which leads to high optimal parking 

occupancies reflecting the high parking demand of fuel vehicles. The latter can be 

explained by an efficient parking space usage due to low searching times in the 

network. It is still possible to achieve a high likelihood of finding parking for drivers 

of electric vehicles, even if the parking occupancy rates in the area are high. Beyond 

this, the optimal occupancy rates of parking spaces decrease in order to compensate 

for the mismatch between the demand and the supply for one of the vehicle types. 

Therefore, and given that guaranteeing different occupancy rates for different types 



Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Chapter 6: Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

 

 Optimal Parking Occupancy with and without Differentiated Parking: A Macroscopic Analysis 

 

  
 

 

 

137 

of parking is rather complicated, it makes sense to set a single target value across all 

vehicle spaces. Such value should be around 80 % as long as there are similar 

proportions 𝜁 and 𝜀. 

 

   (a) Parking spaces for fuel vehicles.                   (b) Parking spaces for electric vehicles. 

Fig. 6.8. Optimal parking occupancy rate for different demand and supply proportions for electric vehicles  

(differentiated parking policy). 

This single target occupancy rate could be even higher, around 90 %, if we were to 

implement the hierarchical parking policy (see Fig. 6.9). Moreover, in this case, it 

would be applicable as long as 𝜁 < 𝜀 which characterizes an undersupply of parking 

spaces for electric vehicles, as these vehicles can access both types of parking spaces. 

The hierarchical parking policy not only leads to a better traffic performance for 𝜁 <

𝜀 (Fig. 6.6(b)) compared to the differentiated parking policy, but also to higher optimal 

parking occupancy rates for these proportions 𝜁 and 𝜀. 

 

Fig. 6.9. Single optimal parking occupancy rate across all parking spaces in the area for different  
demand and supply proportions for electric vehicles (hierarchical parking policy). 

In summary, achieving similar proportions, 𝜁 ≈ 𝜀, leads to the best traffic 

performance in the area for both the differentiated and the hierarchical parking 

policies. In the latter policy, the proportions 𝜁 < 𝜀 can also lead to low searching times 

as drivers of electric vehicles can use fuel parking spaces instead of spaces with 

battery charging options. Equal proportions, 𝜁 = 𝜀, come along with high revenues 

for the city and single optimal parking occupancy rates around 80 % (differentiated 

parking policy) and 90 % (hierarchical parking policy) across all parking spaces. 

Consequently, cities shall react towards a changing demand for electric vehicles over 

time by changing their supply accordingly. City councils can also use the results from 

this model to analyze the traffic performance loss when they do not react, e.g., to an 
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increasing demand for electric vehicles over time. These risks can be evaluated as a 

function of the parking policy in place. 

6.3.4 Sensitivity to changes in parking demand, supply, or 

parking duration 

Here we present a sensitivity analysis for the differentiated (section 6.3.4.1) and the 

hierarchical parking policy (section 6.3.4.2) quantitatively evaluating the impacts of a 

change in parking demand, supply, or the distribution (pdf) of parking durations on 

the optimal parking occupancy rate across all parking spaces. We use as a reference 

the total demand of 2687 trips entering the area, the total supply of 539 parking spaces 

in the network, and the pdf of parking durations described in section 6.3.1. A more 

in-depth sensitivity analysis considering dependency between inputs (Ge and 

Menendez (2017)) is considered out of the scope for this chapter. 

6.3.4.1 Sensitivity analysis for the differentiated parking policy 

Fig. 6.10-6.12 show how a decrease or an increase in demand, supply, and the electric 

vehicles’ average parking durations affect the single optimal parking occupancy rates 

across all parking spaces depending on different proportions of 𝜀 with 𝜁 = 10 % (Fig. 

6.10(a)-6.12(a)), and different proportions of 𝜁 with 𝜀 = 10 % (Fig. 6.10(b)-6.12(b)). 

An increase in demand together with a low 𝜀 ≤ 10 % (Fig. 6.10(a)), or a high 𝜁 ≥ 10 % 

(Fig. 6.10(b)) leads to optimal occupancy rates above 80 %. In these cases, electric 

vehicles do not cause additional searching for parking traffic as 𝜀 < 𝜁. High 

proportions of electric vehicles in the demand, 𝜀 > 10 %, and low proportions of 

electric parking in the supply, 𝜁 < 10 %, lead to a decrease in optimal parking 

occupancy rates as the mismatch between the demand and the supply becomes more 

relevant. The low occupancy rates are needed to guarantee that despite the strong 

competition among electric vehicles looking for parking, cruising times are still 

minimized. For cases where 𝜀 < 𝜁, as the demand entering the area decreases, the 

optimal occupancy rates do so as well. This can be explained by a decreasing absolute 

number of electric vehicles searching for parking compared to a constant parking 

supply with battery chargers, resulting in an increasing oversupply of parking spaces 

for electric vehicles as the total demand decreases. 

Changes in parking supply (Fig. 6.11(a)-(b)) have a smaller impact on the optimal 

parking occupancy rates compared to changes in demand, mostly because the 

changes in absolute values are also much smaller. Recall that the total value of the 

supply is much smaller than the total value of the demand. However, the overall 

trends remain the same. 

Last, changes in the electric vehicles’ average parking durations have almost no 

impact on the optimal parking occupancy rates (Fig. 6.12(a)-(b)). Low 𝜀 ≤ 10 % (Fig. 

6.12(a)), or high 𝜁 ≥ 10 % (Fig. 6.12(b)) lead to high optimal parking occupancy rates. 
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    (a) By different proportions of 𝜀 with 𝜁 = 10 %.       (b) By different proportions of 𝜁 with 𝜀 = 10 %.  

Fig. 6.10. Sensitivity analysis of the optimal parking occupancy rate across all parking spaces with respect to changes in  

the demand entering the area (differentiated parking policy). 

 

    (a) By different proportions of 𝜀 with 𝜁 = 10 %.       (b) By different proportions of 𝜁 with 𝜀 = 10 %.  

Fig. 6.11. Sensitivity analysis of the optimal parking occupancy rate across all parking spaces with respect to changes in  

the total parking supply in the area (differentiated parking policy). 

 

    (a) By different proportions of 𝜀 with 𝜁 = 10 %.       (b) By different proportions of 𝜁 with 𝜀 = 10 %.  

Fig. 6.12. Sensitivity analysis of the optimal parking occupancy rate across all parking spaces with respect to changes in  

the pdf of electric vehicles’ parking durations in the area (differentiated parking policy). 
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6.3.4.2 Sensitivity analysis for the hierarchical parking policy 

The hierarchical parking policy leads to generally higher optimal parking occupancy 

rates across all parking spaces compared to the differentiated parking policy in 

section 6.3.4.1. In this case, an increase in demand leads to the highest optimal parking 

occupancy rate of approximately 94 % for high proportions 𝜀 ≥ 10 % (Fig. 6.13(a)), or 

low proportions 𝜁 ≤ 10 % (Fig. 6.13(b)). 

 

    (a) By different proportions of 𝜀 with 𝜁 = 10 %.       (b) By different proportions of 𝜁 with 𝜀 = 10 %.  

Fig. 6.13. Sensitivity analysis of the optimal parking occupancy rate across all parking spaces with respect to changes in 

the demand entering the area (hierarchical parking policy). 

This is different than Fig. 6.10, as a high proportion of electric vehicles in the demand, 

𝜀, or a low proportion of parking spaces for only electric vehicles, 𝜁, do not necessarily 

increase the search times. Recall that in such cases electric vehicles will use a fuel 

parking space instead. Therefore, for any increases in demand, it is worth maintaining 

𝜁 ≤ 𝜀. Note that we omit the figures showing the changes in supply and parking 

duration for the hierarchical parking policy as the variations in the optimal parking 

occupancy rates are hard to read due to their high values. As a matter of fact, there 

are no remarkable dependencies between changes in the total parking supply or the 

electric vehicles’ average parking durations and the optimal parking occupancy rates. 

In the extreme case where the total supply were to be very limited with a hierarchical 

parking scheme, it is recommended to limit the supply for the non-differentiated 

vehicle class (here electric vehicles) compared to the differentiated vehicle class (here 

fuel vehicles) in order to achieve the best traffic performance in the network. 

6.4 Summary of the chapter 

In this chapter, we propose a model to determine the optimal parking occupancy rate 

for multiple vehicle types based on a macroscopic traffic and parking model over a 

given time horizon for an urban area. We demonstrate our methodology using real 

data from an area within the city of Zurich, Switzerland. Our findings confirm the 

optimal parking occupancy rates proposed by Shoup (1999, 2005, 2006), but we also 

discuss how these rates might change depending on various demand and supply 

relationships following different parking policies. 
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The usage of the proposed framework is far beyond the illustration presented here. 

Parking and/or congestion pricing measures (chapter 4) could be analyzed to achieve 

the optimal parking occupancy rate for some parking spaces in the network. A further 

consideration is to enhance the parking fees using responsive pricing schemes in 

order to optimize the total revenue from parking pricing (chapter 5). We could also 

enhance the model by including public transport and studying the multimodal 

demand effects on the parking occupancy (Dakic et al. (2020); Loder et al. (2017); 

Paipuri and Leclercq (2020); Zheng et al. (2014)). Future research could incorporate as 

well a differentiation between on- and off-street parking (chapter 3) and evaluate their 

impacts on the optimal occupancy rate. Our model does not explicitly account for 

delivery parking and assumes double parking does not cause any issues in the area. 

Roca-Riu et al. (2017) investigated the development of dynamic delivery parking 

spaces that could be integrated into the proposed framework in future studies. 

Additionally, vehicles could prefer parking possibilities in a central street or area of 

the network compared to parking spaces elsewhere. This non-homogeneous 

environment could lead to different optimal parking occupancy rates by modeling 

adjacent subnetworks that are connected to each other. 

Below, we summarize the main contributions of this chapter and discuss their policy 

implications. 

First, we propose a macroscopic model to determine the optimal parking occupancy 

rate in a central area that is based on small data collection efforts and has low 

computational costs. The model outputs can be generated with a simple numerical 

solver and without complex simulation software. Our study defines the optimal 

parking occupancy rate to minimize cruising time. The results help cities setting the 

optimal parking occupancy rate in order to guarantee an optimal trade-off between 

an efficient usage of the parking infrastructure and a high likelihood of finding 

parking such that the traffic performance is improved in the area. Multiple parking 

measures (e.g., parking pricing policies (chapter 4)) could then be used to obtain this 

target rate over time. However, they are considered out-of-scope in this study. 

Second, a modal shift towards a specific vehicle type (e.g., electric vehicles) will lead 

to new challenges for cities as they try to establish the required parking supply (e.g., 

parking spaces with battery charging opportunities for electric vehicles). Our 

framework not only allows us to evaluate the impacts on the traffic performance and 

the society, but also on optimal parking occupancy rates for different proportions of 

fuel and electric vehicles both in the demand and the supply. We investigate a non-

differentiated parking policy, a differentiated parking policy with exclusive parking 

spaces (e.g., fuel vehicles park at fuel vehicle parking spaces, and electric vehicles 

park at their dedicated parking spaces), and a hierarchical parking policy, considering 

no parking space restrictions for some vehicle types (e.g., electric vehicles can park at 

any parking space). Not surprisingly, the non-differentiated parking policy leads to 

the lowest average cruising time and the highest optimal occupancy rate. However, 

it is the least ideal policy from the city’s perspective. Having all parking spaces 

equipped for electric vehicles is very expensive, and not providing any charging 

facilities for electric vehicles might deter drivers from switching to the more 



6.4. Summary of the chapter 

  
 

 

 

142 

sustainable technology. Notice that while the cost of deploying electric parking spaces 

seems quite high right now, it is expected to go down as the technology matures. 

Moreover, it could be at least partially recovered if drivers pay for the electricity 

consumed while charging their batteries. When it comes to differentiated parking 

policies, our results for the city center of Zurich not only show that equal proportions 

between electric vehicles in the demand and their parking spaces in the supply lead 

to the best traffic performance in the area, but they also allow city councils to analyze 

their loss in performance if they do not react, e.g., to an increasing demand for electric 

vehicles over time. These risks can be evaluated for both the differentiated and the 

hierarchical parking policies, such that our model can help cities to choose the right 

parking policy (in terms of, e.g., traffic performance, parking revenue, and social 

impacts), and apply it towards their needs (e.g., proportion of parking spaces for 

electric vehicles in the area). Overall, the hierarchical parking policy leads to better 

results in terms of traffic performance and parking revenues, as it provides higher 

flexibility. 

Third, we can analyze the dependency of the optimal parking occupancy rate (for the 

differentiated and hierarchical policies) on changes in parking demand, supply, or 

parking duration. Cities can use the sensitivity analyses to react to these changes by 

modifying the supply of parking spaces with battery chargers, or by adapting the 

target occupancy rates. 

In summary, our model combines the advantages of an easy to implement 

methodology to determine the optimal parking occupancy rate for different vehicle 

types with the opportunities of evaluating traffic and parking impacts (e.g., average 

searching time for parking, total revenue from parking pricing, optimal parking 

occupancy rates) of a modal shift towards a specific vehicle type, such as electric 

vehicles with differentiated and hierarchical parking policies. 
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7.1 Summary 

This doctoral research analyzes parking policies with respect to parking pricing and 

parking occupancy strategies and evaluate their impacts on the traffic performance. 

Based on a macroscopic methodology presented in chapter 2 we generate insights 

into the interdependency between these parking policies and the traffic and parking 

systems using limited aggregated data at the network level. There is no data required 

for individual vehicles. One of the main advantages of a macroscopic approach is that 

it can model the dynamics of the urban parking and traffic systems without the need 

for tracking the location of individual parking spaces. Such efficiencies are especially 

useful for real-time control algorithms or when the data is scarce. Urban parking 

policies have always been discussed by many stakeholders with different interests 

and perspectives. In general, there are five types of stakeholders involved in the 

decision process regarding implementing parking policies. We highlight their 

perspectives in the following: 

• Drivers: In order to achieve low travel times, drivers prefer a good traffic 

performance and no congestion near their parking destination in the area. 

They desire affordable parking and low parking occupancy rates in order to 

have an efficient commute into their area of interest. High parking fees, or 

longer times searching for parking might lead to traffic demand changes, 

with some drivers either changing their transportation mode or their desired 

destination (e.g., in case of shopping trips, or leisure activities). 

• Urban residents: Residents would like to find available parking spaces when 

returning to their homes. As some residents have no private parking spaces, 

they must search for public parking near their houses or apartments. Thus, 

they desire low parking occupancy rates near their homes, and a general 

lower traffic demand in the area. They like to have a pleasant experience 

when commuting back from work or when returning from shopping trips 

and leisure activities. In case this is not feasible, residents might consider 

moving away or changing their transportation modes. 

• Retail, businesses and shops: Parking might affect the economic 

development in the area which, in turn, has a direct influence on the number 

of customers for businesses and shops. Business and shop owners would like 

to have affordable parking pricing and low parking occupancy rates near 

their businesses such that they can be easily accessed by customers. In 

addition, logistics companies should not face any issues during delivery 

activities while short-term parking. 

• Non-retail companies: Companies would like to ensure a good employee 

experience when commuting to their workplace. Employees who are stuck in 

traffic and cruise for parking cannot perform their jobs which might lead to 

loss of productivity. Additionally, the employee satisfaction might decrease 
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as their commute might make them feel stressed at the beginning and/or at 

the end of their workday. Thus, companies usually have private parking lots 

or private parking garages which allow employees to reserve parking spaces 

in order to avoid cruising for parking. Alternatively, companies might 

subsidize the employees’ PT tickets trying to improve the traffic performance 

in the area. 

• City councils and local governments: Parking can generate a considerable 

amount of revenue for city councils and local governments. Additionally, 

future parking usage and urban development might be of interest to the local 

authorities, in particular how the city area could be made more 

internationally attractive and sustainable. Example policies might consider to 

remove parking in an area in order to minimize the car usage, or to move 

existing on-street parking spaces into concentrated parking garages, such that 

the curb can be used for other activities (e.g., creating pedestrian zones or 

bicycle lanes). 

This dissertation allows us to provide answers to different questions from these 

stakeholders using low data collection efforts and low computational costs. Some of 

these questions referring to chapters 3 to 6 are presented below together with a 

summary of each chapter. 

Chapter 3: How are on-street and garage parking policies affecting the traffic 

performance in the network? Should real-time smartphone applications or garage 

information signs be provided in the traffic network such that all drivers have access 

to garage usage information? How many on-street parking spaces should be 

converted to garage parking spaces in order to reduce the average searching time for 

parking and increase the parking revenue? 

These questions can be answered using our macroscopic modelling approach of on-

street and garage parking. We model the drivers’ decision between driving to a public 

parking garage or searching for an on-street parking space in the network, including 

the influences on the cruising-for-parking traffic, the traffic performance, the 

environmental impact, and the parking revenue for the city councils. Different 

parking fees might affect the drivers’ decision and thus the cruising-for-parking 

traffic and the traffic performance, but they also influence the financial revenues. 

Therefore, our methodology allows cities to analyze the trade-off between the 

revenue and the average travel time. Furthermore, we show the changes to this trade-

off when real-time garage usage information is provided to the drivers in the area. 

Overall, we provide tools to help local governments when deciding about converting 

on-street to garage parking spaces, and evaluate the short-term effects on the traffic 

and parking system. Here, using the case study of a central area within the city of 

Zurich, we consider also the perspectives from the local businesses and residents as 

these changes might lead to a higher average time driving to a parking garage, and a 

lower average searching time for on-street parking. As garage parking is usually more 

expensive than on-street parking, this conversion also comes along with an increase 

in the total parking revenue for the city council. 
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Chapter 4: Can static parking pricing strategies (in combination with P+R) lead to 

similar or even better traffic performance results compared to congestion pricing 

policies for a city with a high parking demand for public parking spaces? Can 

different VOTs have an impact on the drivers’ decision between entering the area by 

car or switching to P+R instead? What is the best relation between the parking fee and 

the congestion toll in order to improve the traffic performance or the total revenue for 

a local government? 

We show that parking pricing policies are indeed a viable option for drivers, residents 

and the local government compared to congestion pricing for a central area in Zurich 

which has a high demand for public parking spaces. Parking pricing strategies might 

not only lead to better traffic performance results, but they are also easier to 

implement and socially and politically more accepted than introducing a congestion 

toll in an area. Even stores and businesses might want to consider reimbursing 

customers’ parking fee in order to attract more demand and at the same time to keep 

their spaces available for customers only. Our framework allows us to analyze the 

short-term impacts of P+R pricing, parking pricing and/or congestion pricing policies 

on the traffic and parking system, which, in turn, impacts the drivers’ decision 

between entering the area by car or using P+R instead. Our decision methodology is 

based on a multimodal macroscopic traffic and parking framework using different 

VOTs for drivers entering the network. Besides the drivers’ VOT, the P+R fare, the 

parking fee and the congestion toll impact this decision model. Thus, we developed 

a simulation-based search algorithm which improves the traffic performance or the 

total revenue for the city by finding the best trade-off between the parking fee and the 

congestion toll in the network. In case the share of drivers searching for public 

parking is large enough, parking pricing can be considered as a viable alternative to 

congestion pricing, and there is no need to introduce the more controversial 

congestion pricing schemes in an area. 

Chapter 5: Can we establish a responsive pricing scheme not only changing in 

response to the the available parking supply (i.e., the parking occupancy rate), but 

also to parking demand (i.e., the number of vehicles cruising-for-parking), which 

maximizes the parking revenue for city councils and minimizes the traffic congestion 

in the area? Will drivers accept this parking fee, or will they continue cruising for a 

next available parking space hoping to find a cheaper parking spot in the area? How 

sensitive is our pricing framework when evaluating changes for the traffic demand 

and the parking supply with respect to their impacts on the parking revenue and the 

traffic performance? 

Our dynamic macroscopic responsive pricing model actually takes the parking search 

phenomenon and the parking occupancy into consideration. It is based on an 

optimization framework maximizing the revenue and at the same time minimizing 

the total cruising time in the area. We achieve this by modelling the cost for drivers 

of paying the current parking fee which should be smaller than the cost of keep on 

searching for another available parking. These costs depend on several components 

including the drivers’ VOTs and the predicted parking fee at the next available 

location. We show the short-term impacts on the searching time, the driven distance 
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and the revenue created by parking fees for the city of Zurich. Here, our scheme leads 

to no significant negative influences on the traffic performance and the environment 

conditions. However, it generates additional revenue for the local government in the 

short-term. In the long-term, it could potentially lead to demand changes as drivers 

might change their habits and not use their car anymore to drive into the area. As 

residents and businesses might be negatively affected by the application of this 

responsive pricing scheme to residents’ parking or parking spaces near business 

locations, cities could potentially evaluate whether to apply this scheme to only a 

portion of the public parking spaces in a central area. 

Chapter 6: How can an optimal parking occupancy rate be determined 

macroscopically in order to guarantee an optimal trade-off between an efficient usage 

of the parking infrastructure and a high likelihood of finding parking? How can a 

modal shift towards a specific vehicle type (e.g., electric vehicles) affect the traffic 

performance and the optimal parking occupancy rates in the area? Are differentiated 

or hierarchical parking space policies better than non-differentiated parking schemes 

when analyzing their impacts on the traffic and parking system, but also on the 

society? What is the best proportion of parking spaces with battery charging 

opportunities in the supply compared to the proportion of electric vehicles in the 

demand when evaluating the influences on the traffic performance? 

We propose a macroscopic framework determining the optimal parking occupancy 

rate by having a minimal cruising time in a central area and at the same time a high 

parking usage. In different words, we basically focus on finding the highest possible 

occupancy rate that minimizes the total cruising time in order to ensure a good public 

parking experience for, e.g., customers at central businesses and also for urban 

residents when returning home from work. Additionally, we differentiate between 

specific vehicle types (e.g., electric and fuel vehicles) and different parking space 

policies, and evaluate their impacts on the traffic performance, the optimal parking 

occupancy rates and the society. Our methodology helps city councils analyzing their 

loss in performance for different parking space strategies if they do not react, e.g., to 

an increasing demand for electric vehicles over time. For the city center of Zurich, the 

hierarchical parking policy (i.e., no parking space restrictions for electric vehicles) 

leads to a better traffic performance and higher parking revenues than the 

differentiated parking policy (i.e., electric parking spaces are reserved only for electric 

vehicles, and fuel parking spaces for fuel vehicles). Moreover, equal proportions 

between electric vehicles in the demand and their parking spaces in the supply might 

lead to the best traffic performance for the city center of Zurich. Additionally, our 

model allows us to evaluate the sensitivity of the optimal parking occupancy rate 

depending on changes in parking demand, supply, or parking duration. Local 

governments can use this to analyze implications resulting from, e.g., modifications 

to the supply of parking spaces with battery chargers. This can include new policies 

by the city council controlling the demand, the supply, the parking duration, or the 

target occupancy rate over time.  
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7.2 Usage of our Methodology 

Our macroscopic model allows us to study the interdependency between different 

parking policies and the traffic and parking system for an urban area. The 

methodology can be used to analyze parking policies with respect to parking pricing 

and parking occupancy strategies for different vehicle types or drivers with different 

VOTs associated to different user groups entering the area. Here, the vehicle types 

are not restricted to fuel and electric vehicles, and we could also investigate vehicles 

with and without a disabled parking permit, or different user groups of drivers 

corresponding to elderly drivers who prefer to park closer to their final destinations 

than younger drivers. The impacts of these different vehicle types or user groups on 

the traffic performance, the cruising-for-parking traffic, the environment and the 

revenue for the city can then be studied without the need of tracking data for 

individual vehicles and parking spaces in an area. 

7.3 Thesis limitations, and Recommendations for 

Future Research 

This dissertation evaluates different parking policies using a dynamic macroscopic 

traffic and parking model. The methodologies are validated with real data from the 

city of Zurich. However, given the complexity of traffic and parking systems, there 

are some limitations to our framework, and multiple improvements can be made. The 

following extensions to the parking demand, the supply, the traffic properties and the 

parking policies could be included in future studies. 

Extension to the parking demand: 

• In the long-term, drivers might change their behavior and avoid, for example, 

paying high on-street or garage parking fees and quit their journeys. 

Alternatively, they might get frustrated due to high searching costs and high 

parking occupancy, and change towards other transportation means, or they 

might even change their shopping behavior and focus on different businesses 

outside the area. This could affect the demand, but long-term effects are out-

of-scope of this research, and we focus only on short-term changes in traffic 

conditions in response to a given time-dependent demand. This demand 

input is more realistic than fixed rate assumptions used in the existing 

literature. However, we could enhance it by reflecting the choice of travelers 

as a result of the parking policies over time. We could also add a dependency 

on the local conditions of the study area (i.e., residents’ and commuters’ 

preferences, culture, or travel behavior). This would make our demand input 

more realistic. 

Extension to the parking supply: 

• Our research focuses on homogeneously distributed parking supply and 
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demand in an urban area. The applicability of this model is limited to 

relatively small and compact networks. For such networks, it has been proven 

that the model represents a very good compromise between accuracy and 

efficiency. The network should not be too large such that the drivers’ 

preference of parking location can be more or less neglected. It should not be 

too small either such that the traffic flow on it can be viewed macroscopically. 

Even though the scale of the network might sound restrictive in the current 

model, it allows us to analyze the problem with a new and comprehensive 

method, that, above all, has very limited data requirements and rather low 

computational costs. In other words, the current model can be seen as the first 

building block; with which further analysis can be developed later for more 

complex situations (e.g., where the parking spaces or the parking prices are 

not homogenously distributed). As vehicles could prefer, in reality, parking 

spaces in a central street or area of the network, future research should 

incorporate non-homogeneous environments (e.g., where both, the parking 

demand and supply are inhomogeneously distributed) by modeling different 

adjacent subnetworks. Each subnetwork could be modelled as a building 

block, i.e., it would have, for example, identical parking prices but different 

subnetworks would have different prices. It should be carefully studied, how 

to connect these subnetworks to each other. 

Extensions to the traffic properties: 

• The traffic properties (i.e., free-flow speed, maximum traffic throughput, 

critical traffic density, jam density, coefficients capturing PT traffic 

properties) are considered as inputs to our research based on the MFD or the 

3D-MFD of the city of Zurich, respectively. This MFD or 3D-MFD is assumed 

to be a fixed model input. In reality, these MFD properties might change with 

respect to the urban parking as the parking conditions might impact the 

traffic system. Future research can investigate this relationship, especially in 

areas with oversaturated parking conditions. 

• We could incorporate parking maneuvers and their traffic disruptions into 

our macroscopic traffic and parking model. This will lead to more realistic 

influences on the traffic flow in an urban area. 

Extensions to the parking policies: 

• Future research can study the impacts of dynamic parking reservation 

systems for on-street and garage parking, especially during rush hour 

parking. This might reduce the cruising-for-parking times and improve the 

traffic performance in the area. Additionally, it can be analyzed how a 

reservation of a dedicated time slots entering a congestion pricing area by car 

can affect the traffic and parking system. 

• Delivery parking and double parking are not explicitly accounted in our 

framework. We assume that these parking behaviors do not cause any issues 

in the area. Future research can incorporate the effects on traffic and parking, 
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and on our parking policies in an urban area. 

• We could also split the traffic demand in future research. A portion of drivers 

pays a fixed (low subsidized) parking fee in all garages and/or some of the 

on-street parking spaces, which can be motivated by, e.g., the subsidy from a 

company or the city for its employees or residents, respectively. The 

remaining portions of demand could be priced responsively, reflecting the 

external costs for parking. 

• Last but not least, our framework can be enhanced to study different parking 

pricing methodologies. Tiered parking pricing schemes for both on-street and 

garage parking, but also for P+R and congestion pricing can be included to 

the model. Drivers may pay a low parking/P+R rate for the first hours, and 

then the rate jumps up significantly to promote higher parking availability 

and to increase turnover. Alternatively, congestion pricing might be low 

when you enter the area for a limited amount of time, which guarantees that 

vehicles do not congest the central streets by staying there for a long time 

period. However, the congestion toll might also differ between the peak 

hours of the day compared to off-peak hours, and it might be free of charge 

for some days of the week (e.g., on Sundays in London, U.K.). 

As we live in an ever more populated and connected world, the need to better manage 

traffic in urban areas is evident. At the same time, sustainable travel and 

transportation modes are gaining attention around the world. This dissertation shows 

that parking policies can reduce congestion and achieve traffic performance 

improvements, while simultaneously parking fees can lead to a significant revenue 

for city councils. Parking pricing strategies are also socially and politically more 

accepted and easier to implement than introducing a congestion pricing strategy in 

an urban area. The parking fees can then be used to improve or subsidize PT in order 

to facilitate a more sustainable form of traffic in the city. Alternatively, our parking 

occupancy policies can be used to evaluate how much parking supply with battery 

charging possibilities cities would like to dedicate to electric vehicles in order to 

achieve optimal traffic and parking results. This is especially relevant in times of a 

modal shift towards more sustainable electric vehicles.  
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Appendix A 

Input Data 

A.1 Input data and implementation in Matlab 

The data used to support the findings of this dissertation is available here2. The 

frameworks are implemented with the aid of a simple numerical solver such as 

Matlab. That data includes the time stamps of all cars arriving to the area, and the 

times they leave the area after parking, as well as the parking occupancy in the area 

at the start of our simulation. 

  

 
2 https://github.com/manueljakob1986/phd-thesis. 

https://github.com/manueljakob1986/phd-thesis
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