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Constraint Handling in Continuous-Time DDP-Based
Model Predictive Control

Jean-Pierre Sleiman, Farbod Farshidian, Marco Hutter

Abstract— The Sequential Linear Quadratic (SLQ) algorithm
is a continuous-time version of the well-known Differential
Dynamic Programming (DDP) technique with a Gauss-Newton
Hessian approximation. This family of methods has gained
popularity in the robotics community due to its efficiency in
solving complex trajectory optimization problems. However, one
major drawback of DDP-based formulations is their inability to
properly incorporate path constraints. In this paper, we address
this issue by devising a constrained SLQ algorithm that handles
a mixture of constraints with a previously implemented pro-
jection technique and a new augmented-Lagrangian approach.
By providing an appropriate multiplier update law, and by
solving a single inner and outer loop iteration, we are able
to retrieve suboptimal solutions at rates suitable for real-time
model-predictive control applications. We particularly focus
on the inequality-constrained case, where three augmented-
Lagrangian penalty functions are introduced, along with their
corresponding multiplier update rules. These are then bench-
marked against a relaxed log-barrier formulation in a cart-pole
swing up example, an obstacle-avoidance task, and an object-
pushing task with a quadrupedal mobile manipulator.

I. INTRODUCTION

Model Predictive Control (MPC) is a prominent and well-
established technique that combines continuous feedback
with a lookahead strategy to synthesize stabilizing actions
for a broad range of dynamical systems. Its ability to
encode complex high-level tasks in simple and intuitive
cost functions, while accounting for system constraints, has
made it quite compelling in the robotics community. For
instance, with regards to locomotion research, this approach
has proven its effectiveness in generating dynamic mo-
tions for highly articulated underactuated machines such as
humanoids [1], [2] or quadrupeds [3]–[7]. Fundamentally,
MPC operates by repeatedly solving a finite-horizon optimal
control problem (OCP) in a receding-horizon fashion. It is
therefore clear that the quality of the resulting control law
heavily relies on the underlying optimal control formulation
and on the scheme used to solve it [8]. These two compo-
nents dictate how much of the problem’s true complexity
is captured in the formulation, in addition to the speed at
which optimal trajectories are calculated. Direct Trajectory
Optimization (TO) approaches transcribe the OCP through
a time-discretization of the states and inputs; thereby trans-
forming the infinite-dimensional optimization problem into
a finite-dimensional one that could be solved with standard
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nonlinear programming (NLP) solvers. These optimization-
based methods have drawn great interest due to their ability
to naturally incorporate any form of path constraints. How-
ever, they typically carry a high computational burden that
renders them inapplicable in real-time settings, with a few
notable exceptions that tend to exploit the problem’s sparse
structure [9], [10].

In contrast, indirect methods rely on fundamental prin-
ciples that provide necessary or sufficient conditions of
optimality to solve the original optimal control problem. Par-
ticularly, one such method that has gained significant traction
recently is Differential Dynamic Programming [11]. This
technique relies on Bellman’s principle of optimality [12]
to decompose the problem into smaller minimization sub-
problems that are solved recursively. To avoid the “curse-of-
dimensionality” attributed to Dynamic Programming, DDP
uses local quadratic approximations of the stage cost, dynam-
ics, and cost-to-go, around nominal state-input trajectories
to compute an affine control sequence from a backward
Riccati equation. Variants of the DDP method such as the
iterative Linear Quadratic Regulator (iLQR) [13], [14] or
the Sequential Linear Quadratic algorithm [15], [16] follow
a similar mechanism but use first-order approximations of
the dynamics instead, which reduces the computation time
at the expense of slower convergence rates. This family of
TO schemes has a linear complexity with respect to the
time horizon, which makes it favorable in real-time control
applications [5], [17], [18]. However, unlike NLP solvers,
the Riccati solvers used by DDP-based methods are not
inherently designed to handle constraints.

Most researchers tackling the constrained-DDP problem
have been inspired by concepts from the well-developed
literature on optimization theory [19], [20]. For instance,
Tassa et al. [21] accomodate box-constraints on the inputs
by using a projected-Newton method to successively solve a
sequence of small quadratic programs (QP) in the backward
pass. In [22], the optimal inputs are ensured to be constraint-
consistent by solving a Karush-Kuhn-Tucker (KKT) system
that contains the active set. A QP is then solved in the for-
ward pass to guarantee that the updated nominal trajectories,
under the affine control law, are still feasible. Other works
have adopted an augmented-Lagrangian (AL) approach [19]
to transform the generic constrained-DDP problem into an
unconstrained one [23], [24]. Certain authors have attempted
to combine different optimization-based notions in a single
framework: Lantoine et al. [25] use an active-set method
along with an augmented-Lagrangian formulation to handle
hard and soft inequality constraints, respectively; while in



[26], the solver switches between AL-DDP and a primal-
dual interior point method to exploit the benefits carried by
both approaches.

We specifically focus on the continuous-time, constrained
SLQ algorithm introduced in [16]. The method relies on
a projection technique and a penalty function to handle
state-input and state-only equality constraints, respectively.
Moreover, it has later been extended to incorporate inequality
constraints via a relaxed log-barrier function [6]. In this
paper, we propose an augmented-Lagrangian SLQ variant
(AL-SLQ) to overcome the numerical ill-conditioning issues
typically associated with penalty and barrier methods [19],
[20]. We also provide important considerations regarding
the AL inner/outer loop updates that allow us to run our
algorithm within a real-time MPC scheme. Finally, a compar-
ative study is presented among different inequality-handling
methods both in the theoretical and experimental sections
of this paper. The experimental part includes results from
numerical simulations of various constrained robotic tasks.

II. BACKGROUND AND MOTIVATION

In this section, we provide the reader with preliminary
ideas that support and motivate the development of the
constrained SLQ algorithm in Section III.

A. Unconstrained SLQ

We consider the representation of a generic dynamical
system through a set of nonlinear differential equations

ẋ(t) = f(x(t),u(t), t) (1)

with x ∈ Rnx denoting the state variables, u ∈ Rnu the input
variables, and f(x,u, t) ∈ Rnx a continuously differentiable
flow map. An unconstrained OCP for such systems can be
devised as follows

min
u(.)

Φ(x(tf )) +

∫ tf

t0

L(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t) ∀t ∈ [t0, tf ]

x(t0) = x0

(2)

where the functional being minimized consists of an inter-
mediate cost L(x,u, t) and a terminal cost Φ(x(tf )).

SLQ finds optimal trajectories to (2) by iteratively solving
time-varying local approximations of the original problem.
This requires the computation of first-order derivatives for
the dynamics, and quadratic approximations of the objective
function around nominal trajectories x̄(t) and ū(t):

δẋ ≈ A(t)δx+B(t)δu (3a)

Φ̃ ≈ 1

2
δxTQfδx+ qTf δx+ qf (3b)

L̃ ≈ 1

2
δxTQ(t)δx+

1

2
δuTR(t)δu

+ δuTP (t)δx+ qT (t)δx+ rT (t)δu+ q(t)
(3c)

where δx and δu are perturbations from the nominal trajec-
tories. In order to solve the approximate OCP at the current
iteration, SLQ relies on Pontryagin’s minimum principle

which provides the necessary conditions for optimality [27].
These entail a two-point boundary value problem (BVP)
governed by (3a) and nx differential equations defined with
respect to the costate (adjoint) variables λ(t) as follows:

λ̇∗ = −∇δxH̃, with λ∗(tf ) = ∇δxΦ̃
∣∣
t=tf

(4)

H̃ corresponds to the Hamiltonian of the linear-quadratic
OCP and is defined as

H̃(δx, δu,λ, t) := L̃+ λT (Aδx+Bδu) (5)

The optimal input variables are retrieved by minimizing the
Hamiltonian function

δu∗ = arg min
δu

H̃ (6)

Furthermore, by ensuring that ∇2
δuH̃ = R(t) is always pos-

itive definite, we obtain sufficient conditions of optimality
from the strengthened Legendre-Clebsch convexity condition
[27]. This allows us to derive a closed-form solution for (6)
from the expression below

∇δuH̃
∣∣
δu=δu∗ = 0 (7)

By using a proper assumption on the form of the costate vari-
ables λ(t) = S(t)δx+ s(t), and then mathematically ma-
nipulating the BVP, a differential Riccati equation emerges
[16]. Integrating the Riccati equation backwards in time
results in an affine control policy

δu∗(t) = δuff (t) +K(t)δx(t) (8)

which is applied to (1) to generate the new nominal trajecto-
ries needed for the next iteration. It is worth noting that by
keeping the above derivations in the continuous-time domain,
the forward and backward passes can be performed with an
adaptive step-size simulator, which provides proper control
over the integrator’s local truncation error.

B. Constrained Nonlinear Optimization

We now suppose we are given a constrained minimization
problem with respect to a finite-dimensional vector z ∈ Rnz

min
z

f(z)

s.t. gi(z) = 0 ∀i = 1, ..., neq

hi(z) ≥ 0 ∀i = 1, ..., nineq

(9)

A popular technique to handle the constraints in (9) is based
on transforming the above problem into its equivalent uncon-
strained version and solving that instead. The equivalence is
maintained by absorbing the constraints into the cost function
through the use of indicator functions, as follows

min
z

f(z) +

neq∑
i=1

IGi
(z) +

nineq∑
i=1

IHi
(z) (10)

where

IGi
:=

{
0 if gi = 0

+∞ otherwise
IHi

:=

{
0 if hi ≥ 0

+∞ otherwise



In this discussion, we specifically consider second-
order Newton-type algorithms for solving the resulting
unconstrained problem. Such methods assume the existence
of gradient and Hessian information in the objective.
To that end, the indicator functions in (10) are replaced
with differentiable approximations such as the quadratic
penalty Qi =

ρ

2
· ||gi||2 for equality constraints and the

log-barrier function Bi = −µ ln(hi) for inequalities. The
parameters ρ > 0 and µ > 0 are weighting factors that
are monotonically adapted throughout the optimization
iterations. This effectively leads to successive minimizations
of simpler perturbed versions of (10) that ultimately tend
to the original problem as ρ→ +∞ and µ→ 0. One could
easily show that the indicator functions are indeed recovered
at the limit: Qi → IGi

and Bi → IHi
.

1) Numerical Issues: Penalty and barrier methods are
typically studied separately in the optimization literature,
due to the different ways in which their iterates evolve and
converge to the optimal solution [20]. However, they both
suffer from similar issues of ill-conditioning that arise as
the relaxed problem approaches the true one, thus causing
convergence difficulties. This can be seen in the Hessian
expression which – when z is in the vicinity of the minimizer
(for large ρ and small µ) – can be approximated as

H ≈ ∇2L+

neq∑
i=1

ρ∇gi∇gTi +

nineq∑
i=1

µ

h2i
∇hi∇hTi , (11)

where the first term is the Hessian of the Lagrangian L
for problem (9). The remaining two terms are responsible
for the aforementioned ill-conditioning: Assuming that at
the solution m-inequality constraints are active, such that
0 < m+ neq < nz , then m+neq eigenvalues are very large
while the remaining ones are zero. This results in a high
condition number for the matrix H .

It is important to note that other approximating functions
can be used to encode constraint satisfaction in the cost
function. For instance, one that is particularly interesting for
the results section of this paper, is the relaxed log-barrier

B̂(hi) =

{
−µ ln(hi) hi > δ

β(hi; δ) hi ≤ δ
(12)

where δ is a relaxation parameter that separates between a
log-barrier and an external penalty function β(hi; δ). The
latter could be a quadratic [6], general polynomial or expo-
nential function [28] designed such that C2-continuity of B̂ is
maintained at δ. The relaxed barrier is defined for all values
of hi, thereby getting rid of the singularity at the boundary
of the feasible region, and allowing for infeasible iterates
to take place without any algorithmic failures. In order to
ensure that for any fixed barrier parameter µ the solution
to the relaxed problem doesn’t violate the constraints, δ has
to be smaller than a certain threshold. However, similar to
our previous reasoning, the optimal solution to the original
problem can only be retrieved as µ→ 0 and δ → 0, both of
which could lead to the same Hessian ill-conditioning issues
perceived in (11).

2) Augmented-Lagrangian: A powerful remedy to the
problems presented in Section II-B.1 can be found in the
augmented-Lagrangian approach. The fundamental idea be-
hind it is to augment the cost with a penalty function
P(c(z), ν, ρ), where c(z) is a generic constraint, ρ is a
penalty parameter and ν is an auxiliary variable that is meant
to estimate the optimal Lagrange multiplier corresponding to
the constraint c(z). The algorithmic structure consists of an
inner loop that uses an unconstrained optimization solver to
minimize the augmented-Lagrangian for fixed values of ρ
and ν. This is followed by an outer loop that monotonically
increases the penalty parameter, and adapts the multiplier
estimate with an appropriate predefined update rule

ν∗k+1 = Π(c(z∗k+1), νk, ρk) (13)

It can be shown that as ν approaches the true optimal
multiplier, the algorithm converges to a Karush-Kuhn-Tucker
(KKT) point (z∗, ν∗) of the original constrained program,
which is also a potential primal-dual optimum. In fact,
this is true for finite values of the penalty parameter
(i.e. for any ρ > ρmin) [19], [20]; thus implying that conver-
gence can be attained without any numerical issues, through
a proper update of the multiplier estimates. We go into
further details regarding the chosen penalty functions P(.)
and update rules Π(.) in the upcoming section.

III. CONSTRAINED SLQ-MPC

In this section, we present the main developments behind
our constrained SLQ-MPC algorithm for solving general
constrained optimal control problems. To begin with, we
make use of the notion of partial elimination of constraints
[19], which allows us to handle each type of constraint
differently. To elaborate, inequalities and state-only equalities
are treated with an augmented-Lagrangian approach. On the
other hand, the dynamic constraint given by (1) and state-
input equality constraints are adjoined to the cost function
through Lagrange multipliers. The former is implicitly satis-
fied in the SLQ forward rollout, while the algebraic equalities
are respected through a projection technique to ensure strict
feasibility [16]. Therefore, the exact same formulation is
used here as in [16], but with a different cost-functional
that includes a constraint-dependent AL-penalty P(.). For the
sake of brevity, our subsequent derivations will only cover
inequality constraints

(
i.e., h(x,u, t) ≥ 0

)
; however, they

can readily be extended to the case of pure-state equalities.

A. Inner Loop

The receding horizon OCP to be solved has the following
form:

min
u(.)

Φ(x(tf )) +

∫ tf

t0

(
L(x,u, t) + P(h,νk, ρk)

)
dt︸ ︷︷ ︸

LA

s.t. ẋ = f(x,u, t) ∀t ∈ [t0, tf ]

g(x,u, t) = 0 ∀t ∈ [t0, tf ]

x(t0) = x0

(14)



where the initial state x0 is updated at every MPC iteration
with the current measured state. When it comes to selecting
a proper AL-penalty, a wide variety of alternatives exist in
the literature. Here we focus on three, highlight some of their
differences, and compare them in the experimental section.
The reader is also referred to the supplementary video, which
supports the explanation presented in this section.

The most popular choice for P(.) is given by the Powell-
Hestenes-Rockafellar (PHR) method [20], [29]:

P1(h,ν, ρ) =

nineq∑
i=1

1

2ρ

(
max{0, νi − ρhi}2 − ν2i

)
(15)

This expression is obtained by minimizing the quadratic
function P = −νT (h− s) +

ρ

2
||h− s||2 with respect to

s ≥ 0, which are slack variables introduced to transform the
inequalities into equivalent equality constraints h − s = 0.
A different AL-formulation, which we refer to as the non-
slack penalty, has been presented in [30], and applied in [24]
within a DDP context:

P2(h,ν, ρ) =

nineq∑
i=1

−νihi +
[
hi < 0 ∨ νi > 0

]ρ
2
h2i (16)

It is clear that the terms in equations (15) and (16) match
whenever the corresponding constraint is violated. However,
the latter keeps applying the same quadratic penalty in the
interior of the feasible region as long as the multiplier esti-
mate is non-zero, regardless of how far the current feasible
solution is from the boundary (i.e., h∗ik � 0). Consequently,
in the non-slack approach, inequalities are treated as equal-
ities up until the update rule for νi drives it to zero.

One of the drawbacks of quadratic-type penalties applied
to inequality constraints is that the resulting augmented-
Lagrangian is not twice differentiable, which might be prob-
lematic for second-order methods that are not robust against
Hessian discontinuities. Hence, we consider a third option
from a family of smooth AL-penalty functions that satisfy
certain properties [19], [31]:

P3(h,ν, ρ) =

nineq∑
i=1

ν2i
ρ
ψ

(
ρhi
νi

)
(17)

where ψ(.) in our case is defined as a shifted quadratically-
relaxed log-barrier [31]. This somewhat resembles the func-
tion (12) used in [6], but the advantage in using an AL
method with (17) is that when a constraint is violated, the
corresponding multiplier updates would increase the linear
term of the exterior quadratic penalty without affecting the
second-order coefficient (which is what typically leads to the
numerical issues discussed previously in non-AL methods).

We recall from Section II-A that SLQ iteratively mini-
mizes a linear-quadratic approximation of the OCP. In the
case of (14), this entails a second-order approximation of
the augmented-Lagrangian LA and thus the inequalities as
well. Consequently, both the feedforward and feedback terms
of the control policy (8) are shaped by the curvature of
these constraints and the current multiplier estimates. More-
over, an Armijo-Goldstein backtracking line-search scheme

Algorithm 1 Augmented-Lagrangian SLQ-MPC

1: Initialize ρ̄, α, u0(t) and ν0(t) ∀t ∈ [t0, tf ]
2: for k = 0, 1, 2, . . . do
3: Forward rollout of system dynamics → xk(t)
4: Quadratize augmented-Lagrangian LA(xk,uk,νk)
5: Linearize dynamics and state-input equalities
6: Solve resulting Riccati equations
7: Compute control policy
8: → uk+1(t) = γ · uff (t) +K(t)δx(t)
9: Perform line search over LA(xk+1,uk+1,νk)

10: → γ∗,uk+1(t; γ∗)
11: Update inequality multiplier estimates
12: νk+1 ← Π(hk+1,νk, ρ̄, α)
13: Shift uk+1(t),νk+1(t) and extrapolate tails
14: end for

Inner
Loop

Outer
Loop

is applied on the feedforward input-step to further minimize
the augmented-Lagrangian function. Finally, it is important
to recall that AL-methods rely on a proper minimization
of the successive sub-problems (i.e., to ensure optimality
up to a prescribed tolerance) each of which is followed
by updates in the outer loop. Such a strategy would not
be desirable when dealing with real-time applications that
require fast and continuous online re-planning. This has been
verified before in MPC-related settings, where it was shown
that computing suboptimal solutions to each optimization
problem with a few iterations, results in superior closed-
loop performance when compared to solving them up to
optimality at lower rates [9], [32]. Similarly, we adopt a
real-time iteration scheme [32] to run the constrained SLQ
algorithm in a receding-horizon fashion. More specifically,
one MPC call consists of a single forward-backward pass
in the inner loop (i.e., one Riccati iteration), to update the
primal trajectories x∗k(t) and u∗k(t), followed by a single
update of the dual trajectories ν∗k(t) performed in the outer
loop. We only require multiple SLQ calls (≈ 10) during the
first MPC iteration to avoid convergence towards bad local
minima caused by poor initialization. The constrained SLQ-
MPC main loop is summarized in Algorithm 1.

B. Outer Loop

As discussed previously, after the inner loop minimization
terminates, the penalty parameter ρk and the multiplier
estimates νk are adapted according to a prespecified update
rule. Typically, for standard optimization problems or in
open-loop trajectory optimization settings [24], ρ is updated
monotonically as ρk+1 = βρk where β > 1. In contrast, in
the MPC case, penalty parameters (or barrier parameters) [6],
[9] are kept constant due to the lack of proper and systematic
warm-starting techniques for such algorithms. Similarly, we
set ρk = ρ̄ which for AL-based methods would still allow for
convergence to the true optimum if ρ̄ is large enough. On the
other hand, the update law for the multipliers turns out to be
of crucial importance to the convergence of our algorithm.
The most common rule is given by νik+1

← ∇hiP
∣∣
νik ,hik+1

[20]. This usually involves update steps that are proportional

https://www.youtube.com/watch?v=TXKNEaFvLsk


to the penalty parameter. Since in our case we do not follow
the standard AL algorithmic procedure, we found it useful in
practice to be able to take smaller step-sizes. The reasoning
behind this stems from the idea that multiplier updates could
be interpreted as gradient ascent steps that are meant to
maximize the Lagrange dual function, defined as follows

d(ν(t)) := min
u(.)
L (18)

where L is the Lagrangian of problem (14). Therefore, the
gradient-ascent algorithm is given as

νk+1 = νk + α · ∇νd (19)

The parameter α determines the ascent step-length, while
the gradient ∇νd can be approximated under certain mild
assumptions as in [19]. For instance, for the PHR penalty
function, we get the following update rule – Π1:

νik+1
= max

{
νik − αhik+1

, (1− α

ρ
) · νik

}
(20)

Two things can be noticed from (20): If we set α = ρ,
then the update rule coincides with the standard one given
by ∇hi

P . Moreover, to ensure that νik → 0 when the
corresponding constraint is inactive at the solution, α must
satisfy a condition (0 < α < 2ρ) that renders the system
νk+1 = (1− α/ρ) · νk asymptotically stable. A similar rea-
soning is adopted when choosing the update rules for the
non-slack penalty (16) – Π2:

νik+1
= max{0, νik − αhik+1

} (21)

and the smooth-PHR penalty (17) – Π3:

νik+1
= −α · νikψ′

(
ρhik+1

νik

)
(22)

Finally, we note that there exist other update rules given
by second-order multiplier methods, or methods that rely
on estimating the optimal step-length α∗ [19]; but those are
typically more computationally demanding.

IV. RESULTS

In this section, we validate our augmented-Lagrangian
SLQ-MPC approach through numerical simulations per-
formed on three different underactuated dynamical systems,
with a variety of inequality constraints. We also present
comparative results for the AL-penalties introduced in this
paper, and benchmark them against the quadratically-relaxed
barrier method previously used in [6]. Supporting results
and plots are also included in the accompanying video
submission. All examples are implemented in C++.

A. Cart-Pole

We first consider the standard cart-pole swing-up task.
The same quadratic cost weights and time horizon T = 3 s
are used throughout the different test cases. The MPC
loop runs at 100 Hz. We impose simple box-constraints
−umax ≤ u ≤ umax on the input force acting on the cart.
Without any constraints, the force needed to swing the
pendulum to its upright position reaches a maximum of
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Fig. 1: Plots showing the L2-norm of constraint violations for the four
methods in the cart-pole example.

u ≈ 15 N (see input trajectory in video); therefore, we set
a strict limit by choosing umax = 5 N. The plots in Fig. 1
show the L2-norm of the constraint violations over the time
horizon, per MPC iteration, for the four inequality-handling
methods. The corresponding parameters are manually tuned
in such a way that the best performance (in terms of cost
minimization and constraint satisfaction) is attained for each
method. We note the following: The relaxed log-barrier
works well in this case as it is made stiff by choosing low
values for both µ and δ. This was possible since the number
of active constraints was always equal to the number of
inputs which, according to our previous discussion, does not
lead to any ill-conditioning issues. Moreover, all three AL-
penalties manage to realize the swing-up task with minor
real-time violations (in the order of 0.01 N), but this was
only possible for small step sizes in the multiplier updates.
The non-slack penalty led to the poorest performance – in
terms of feasibility and time required for swing-up – among
all four methods. We hypothesize that this is because this
penalty (16) would still result in gradients that could push
feasible iterates towards the boundary of the feasible region,
unlike the other penalty functions which tend to vanish
when the current iterate satisfies the constraints. Finally, we
notice that on average, all four methods have similar com-
putational times; however, the relaxed-barrier and smooth
PHR methods are only slightly faster than their counterparts
(≈ 2 ms faster) due to their second-order continuity.

B. Ballbot

In this example, we impose obstacle-avoidance constraints,
which are state-only non-convex inequalities, that would
allow a ballbot to reach a desired goal after traversing a path
surrounded by an array of 20 pillars. The ballbot system
consists of 5 unactuated degrees of freedom (corresponding
to the base’s planar position and 3D orientation), and 3
actuated degrees of freedom responsible for actuating the
supporting ball. The MPC loop runs at 100 Hz for a time
horizon of T = 1 s. The AL method manages to find a
similar solution for the three penalty functions with the maze
presented in Fig. 2. This can be seen in their corresponding
plots for the evolution of the cost function in Fig. 3. As
for the relaxed-barrier method, the solver fails to converge
when using a stiff barrier (low µ and δ), and violates the
constraints for an overly relaxed barrier (high δ). Indeed
the solver converges only for high values of µ with a low

https://www.youtube.com/watch?v=TXKNEaFvLsk
https://www.youtube.com/watch?v=TXKNEaFvLsk


Fig. 2: Collision-free ballbot
trajectory computed by the
three AL-methods
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Fig. 3: Plots showing the cost-function
value for the four methods during the
obstacle-avoidance task

value for δ. However, two consequences arise from such
a choice: First, the robot is not able to pass in between
the red pillars, so it gets stuck there and fails to reach the
goal. This is because a high barrier parameter tightens the
actual feasible region, thereby effectively reducing the gap
between the red obstacles. After increasing this gap to allow
the ballbot to pass through, we notice that it approaches
the goal but never attains a zero steady-state error. This is
because the minimizer of the new cost function is shifted
with respect to the original one, thus leading to a new
reference equilibrium point. The plots in Fig. 3 further
support this idea, as the original cost in the relaxed-barrier
case never goes to zero. The figure also highlights the ability
of AL-based methods to circumvent such an issue, thereby
enhancing control performance in terms of tracking error.

C. Quadrupedal Mobile Manipulator

In this last scenario, we test our augmented-Lagrangian
SLQ-MPC method on a high-dimensional hybrid dynamical
system: a quadrupedal platform equipped with a 4-DoF
robotic arm. The task description involves the robot pushing
a 10 kg block from one point to another, while respecting the
joint torque limits of the arm. Briefly, we use the centroidal-
dynamics formulation to describe the robot’s motion, and we
augment that to the object’s dynamics to define the full sys-
tem flow map in the OCP. Therefore, the corresponding state
vector is given by: x = (hcom, qb, qj ,xo) ∈ R32 which
includes the centroidal momentum hcom, the base pose qb,
the joint positions qj and the object state xo; while the input
vector is given by the forces acting on the limb contacts and
the joint velocities: u = (fc1 , ..., fcnc

, vj) ∈ R31. We
use a quadratic cost function where we encode the pushing
task by setting a high weight on the object’s deviation
from the desired position. Moreover, we introduce a set
of locomotion and manipulation-related state-input equality
constraints that are defined at the level of the different contact
points [7]. As for the arm torque limits, those are specified
as follows: −τmax ≤ JTcafca ≤ τmax, where Jca and fca
are the arm contact Jacobian and end-effector contact forces,
respectively. We choose a torque limit of τmax = 15 Nm
(the torques reach a maximum of 35 Nm during the un-
constrained manipulation task). Moreover, we make the task
more challenging by applying a constant fictitious external
force on the block, which causes the system to start close

TABLE I: RESULTS FOR AL-SLQ SOLVER DURING OBJECT-PUSHING
TASK. THE BEST RESULTS ARE HIGHLIGHTED IN BLUE.

Augmented-Lagrangian
Penalty

Solver Average
Time (ms)

Solver Peak
Time (ms)

Constraint
Violation

Task
Duration (s)

PHR (αhigh / αlow) 35 / 25 80 / 59 1.3 / 0.12 1.9 / 1.8
Non-Slack (αhigh / αlow) 30 / 25 65 / 55 1.8 / 0.70 1.9 / 1.9
Smooth-PHR (αhigh / αlow) 25 / 22 60 / 51 0.8 / 0.15 1.9 / 1.8

1 2

Fig. 4: Snapshots of the quadrupedal mobile manipulator pushing a 10 kg
load, with torque limits applied to the arm joints.

to the boundary of the feasible region. As a result, the
relaxed-barrier method either fails to converge or violates
the constraints. Therefore, we exclude it from the analysis
in this section. The MPC loop runs at 60 Hz for a time
horizon of T = 1 s. As illustrated in Fig. 4, and more
clearly in the supplementary video, the solver discovers
whole-body motions that tend to drive the arm close to a
kinematic singularity while pushing the block. This provides
the necessary pushing force without violating the torque
limits. Furthermore, we note from this experiment that for
the same penalty parameter value, adopting smaller step-
sizes (αlow) in the outer loop generally yields better results
in terms of feasibility and computational time for all three
cases, as reported in Table I. This is most likely related
to the Riccati solver (i.e., the adaptive step-size integrator)
struggling to find solutions that meet the specified accuracy
tolerances in the presence of large variations in the backward
dynamics. Such variations are induced by high ν values
within infeasible parts of the trajectory, and low values
elsewhere. Indeed for larger multiplier steps α > αmax, the
Riccati solver fails to converge to any solution within the
assigned number of allowable function calls.

V. CONCLUSION

We have proposed a generic constrained SLQ formulation
in continuous-time, where equality constraints are handled
with projection techniques, while an augmented-Lagrangian
approach is introduced to treat inequality constraints. By al-
ternating between a single inner loop and outer loop iteration,
we are able to retrieve sub-optimal solutions fast enough to
apply the algorithm within a real-time MPC scheme. More-
over, by interpreting the updates of the multiplier estimates
as gradient ascent steps, we have been able to motivate
and validate the importance of taking small step-lengths to
avoid numerical issues in the solver’s backward pass, thus
improving convergence and stability of the solver. Three
variants of AL-penalties were proposed and benchmarked
in several representative robotic tasks. We conclude that the
classical and smooth PHR penalties yield the best results
overall. In terms of computational time, the latter has a
slight advantage due to its second-order continuity. Natural
extensions to this work would involve exploring alternative
multiplier update methods that would potentially overcome
the need for proper tuning of the step-length parameter.

https://www.youtube.com/watch?v=TXKNEaFvLsk
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scheme for nonlinear optimization in optimal feedback control,” SIAM
J. Control. Optim., vol. 43, no. 5, pp. 1714–1736, 2005.


