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ABSTRACT
Since the first GPS studies in the mid-1990s, this way of surveying individual travel behaviour
has gained increasing attention in transport research. Compared to classic travel survey meth-
ods researchers benefit from more accurate and reliable information. At the same time, the
participants’ burden is reduced substantially if the GPS data collection is not accompanied by
elaborate questioning. However, without additional information, such as modes and trip pur-
poses, extensive post-processing is required to derive data that can be used for analysis and
model estimation. The corresponding procedures are still an ongoing research issue.

This paper describes a post-processing procedure that needs no other input than the most
basic GPS raw data: three-dimensional positions and the corresponding timestamps. First, the
data is thoroughly cleaned and smoothed. Second, trips and activities are determined. Third,
the trips are segmented into single-mode stages and the transport mode for each of the stages
is identified. The procedure is applied to GPS records collected in the Swiss cities of Zurich,
Winterthur and Geneva. 4882 participants carried an on-person GPS-receiver for 6.65 days on
average. The results are compared to the Swiss Microcensus 2005 to demonstrate that derived
data is ready for further applications, such as discrete choice model estimations.
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INTRODUCTION AND RELATED WORK
Since the first GPS studies in the mid-1990s (e.g. 1, 2, 3, 4, 5, 6), this new way of surveying
individual travel behaviour has gained increasing attention in transport research. Compared to
classic travel survey methods researchers benefit from more accurate and reliable information
about times, geographic locations, and routes as well as from the prevention of trip under-
reporting. At the same time, the participants’ burden is reduced substantially if the GPS data
collection is not accompanied by elaborate questioning to derive additional information, such
as trip purposes and transport modes. However, without additional information extensive data
processing is required to derive data that can be used for analysis and model estimation. Ac-
cordingly, current research focusses on the development of GPS post-processing procedures
that allow the researcher to derive all necessary information, such as start and ending time,
mode, and trip purpose directly from the GPS records. Moreover, continuously growing sam-
ple sizes lead to an increasing demand for automated procedures with low computational cost.

The choice of the approach strongly depends on whether the GPS data was collected
vehicle-based or person-based. In vehicle-based studies (e.g. 7, 8, 9, 10), the participants’
vehicles are usually equipped with GPS loggers that record only, when the engine of the vehi-
cle is running. Accordingly, the detection of individual trips is relatively easy using the time
differences between the recorded points. In addition, short stops during which the engine is
not turned off can be found fairly reliably by identifying times when the speed of the vehicle is
zero. However, there are also some shortcomings related to vehicle-based data. First and fore-
most, all other modes are omitted, even though they are essential for the analysis of transport
behaviour in an urban environment. Second, the real trip origins and destinations have to be
guessed since only vehicle movements are recorded.

Therefore, person-based GPS studies have recently become more popular, although they
raise the requirements for the post-processing procedures considerably. In addition to data
filtering, trip detection and map-matching, the analyst has to detect the modes used by the
participant. Moreover, the method for trip detection needs refinement and the map-matching
has to be done either on a multi-modal network or, if that is not available, multiple networks.

As summarised in Stopher (11) a couple of authors have started to address these problems
(e.g. 12, 13, 14, 15, 16, 17). Basically, all approaches contain individual modules accounting
for:

• Data filtering
• Detection of trips and activities
• Mode stage determination
• Mode identification
• Map-matching

Some authors include additional features such as the merging of stages after the mode detection
(17) or a feedback between the map-matching and the mode detection (15). Yet, all of these
methods have so far only been tested on small samples or test scenarios and most still require
manual intervention, particularly in the mode detection.

Relying on manual interaction is not feasible for the data set at hand, which contains about
32,000 person-days recorded in the Swiss cities of Zurich, Winterthur and Geneva. The original
study was conducted by a private sector company with the aim to explore whether or not partic-
ipants pass certain billboards. 4882 participants were asked to carry an on-person GPS logger
for 6.65 days on average. No additional information, such as modes or trip purposes, were col-
lected. Due to the large amount of data it was decided not to work within a GIS environment
but to implement our own procedures in JAVA. Its design, advantages, and shortcomings are
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presented in this paper, which extends an earlier paper of the authors (18).
The remainder of this paper is structured as follows: The next section focusses on data

cleaning and smoothing. Subsequently, it is described how the GPS records are subdivided into
trips and activities. Since each trips can still contain more than one mode, the mode detection,
which is presented afterwards, starts with a segmentation of the trips into single-mode stages.
The actual mode detection is then executed using a fuzzy logic approach based on the speed and
acceleration characteristics of the stages. Before presenting the conclusions and the outlook on
future work, the results of the proposed approach are compared to the Swiss Microcensus 2005
since no validation data was available from the study itself.

DATA CLEANING AND DATA SMOOTHING
The positioning accuracy of GPS receivers under ideal conditions lies between five and ten
metres (19). In reality, however, it is usually much worse due to several error sources. For
instance, there might be less than the four satellites in view that are required to precisely cal-
culate a three-dimensional position. Even if there are enough satellites in view, they might not
be ideally positioned, which is expressed by a high position dilution of precision (PDOP) value
(20). While this leads to GPS positions that are completely different from the actual position
of the receiver, the so-called warm start/cold start problem results in missing GPS points at the
beginning of the trip due to the time the GPS receiver needs to acquire the position of at least
four satellites in view (21).

In addition, there are random errors caused for example by satellite or receiver issues, at-
mospheric and ionospheric disturbances, multi-path signal reflection or signal blocking (22).
Especially burdensome are multi-path errors, also called urban canyoning errors because they
typically appear in urban canyons. The GPS signal is reflected by buildings, walls or surfaces
and the corresponding GPS positions jump and are often scattered around the actual position
of the receiver. Signal blocking, on the contrary, leads to missing GPS points and is of special
importance for person-based GPS surveys since it varies for the different means of transport.
While GPS reception is generally good when the participant is walking, cycling and or travel-
ling by car, it varies considerably for public transport journeys, depending on the proximity of
the person to the nearest window (4, 17).

There are several ways to overcome the problems caused by the GPS errors described above.
Data filtering, for instance, takes care of systematic errors while data smoothing removes ran-
dom errors. All these approaches, however, depend on the information available in the study.
Previous studies (e.g. 20, 9) showed that the number of satellites in view and the PDOP value
are fairly efficient measures to determine systematic errors. Unfortunately, they are not acces-
sible here. Therefore, other criteria to identify erroneous data points had to be developed. One
of these criteria is the altitude value. Considering the Swiss topology, all points with an altitude
value of less than 200 and more than 4200 metres above sea level are removed.

Another criterion are sudden jumps in the position. Position jumps are detected by compar-
ing the distance between two consecutive GPS points with the distance the person could have
travelled in the time interval assuming a maximum speed of 50 m/s and a random error buffer
of 30 metres. The GPS points are split into so-called quality segments each of which com-
prises all points between two consecutive position jumps. Subsequently, every two adjacent
quality segments are compared and the GPS points of the shorter one are deleted until the end
of the quality segment is reached or the distance between every two consecutive GPS points is
smaller the threshold defined above. The whole procedure is repeated until all positional jumps
are removed. It is important to note, that for this filter the three-dimensional distance is used,
because errors in longitude and latitude are often accompanied by fairly strong jumps in the



Schuessler, N. and K.W. Axhausen 4

altitude, while in the subsequent trip and mode detection only the two-dimensional positions
are considered.

Concerning the random errors, several approaches were reviewed to select the appropriate
smoothing technique. Since no speeds from Doppler measurements are available, speed and
acceleration have to be calculated directly from the position and the timestamp of the GPS
points. Hence, the position of the GPS points is smoothed rather than the speed. A Gauss
kernel smoothing approach was implemented. For each coordinate dimension c ∈ x, y, z the
smoothed value c̃(t) at time t is individually calculated as

c̃(t) =

∑
j(w(tj) · c(tj))∑

j w(tj)
(1)

with c(tj) being the raw value of the coordinate c at time tj and w(tj) the Gaussian Kernel
function computed for each point of time tj by

w(tj) = exp−(t− tj)2

2σ2
(2)

The Kernel bandwidth, represented by σ, is set to 10 seconds, which results in a 15 second
smoothing range. This is assumed to be a reasonable time frame for real behavioural changes
as opposed to signal jumps. Accordingly, the directional speed for each coordinate c is the first
derivative with respect to t of the smoothed position and the acceleration the second derivative
with respect to t.

TRIP AND ACTIVITY DETECTION
The filtered and smoothed GPS points then have to be subdivided into trips and activities. Since
the GPS points have been collected person-based, two basic types of activities are considered:
activities with ongoing GPS recording and activities with signal loss. Activities with ongoing
GPS recording are either characterised by speeds that are close to zero (e.g. 8, 15) or by so-
called bundles of GPS points (e.g. 23, 21). A bundle is a sequence of GPS points positioned very
close to each other, i.e. within a diameter of about 30 metres which equates to approximately
thrice the standard deviation of the measurement accuracy (21). Therefore two criteria to detect
activities with ongoing recording were established. The first one flags an activity, if the speed is
lower than 0.01 m/s for at least 120 seconds and the second, if the point density in a sequence
of GPS points is higher than 15 for at least 2/3 of the points and the sequence lasts for at least
10 points or 300 seconds. Thereby, the point density is determined by counting how many of
the 30 preceding and succeeding GPS points are positioned within a 15 metres radius around
the GPS point in question.

Activities with signal loss are detected by means of the time difference between two con-
secutive GPS points. The threshold beyond which it is assumed that an activity took place
varies in the literature between 45 (6) and 300 seconds (e.g. 24, 23), whereas most studies ap-
ply 120 seconds. In this study, however, a 900 second threshold is used. Compared to former
studies this is a high value. But the examination of the GPS points lead to the conclusion that
a shorter dwell time would lead to too many wrongly detected activities due to bad reception
during trips. As these reception losses will be handled by the map-matching algorithm, they do
not need to be considered here.

Each of the three criteria is used individually to determine potential activity start and poten-
tial activity end points. It is important to note, that each activity can be detected by more than
one criterion. Consequently, the potential activity start and end points are joined in the way
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that the outermost potential activity start and end points are considered to be the true activity
start and end points regardless of the criterion they belong to. Moreover, if a new activity starts
shortly (maximum 15 GPS points) after the last one has ended, the two activities are joined.
This rule on the one hand accounts for measurement errors and on the other hand considers that
trips of less than 15 GPS points cannot be reasonably used for route choice modelling. After
finding all activity start and end points, activity and trip objects are generated and stored in
separate lists. Only the trip objects are used in the subsequent analysis. The activity objects
will be used later on to analyse trip purposes as well as trip and activity chains.

Finally, the results of the trip and activity detection were compared to the results of a human
analyst on a small sample of persons, since no information about the actual activities was
available. 97% of the activities could be detected by at least one of the criteria and none was
falsely detected.

MODE DETECTION
So far, only a few approaches have been published that implement an automated mode detec-
tion although this is crucial to make person-based GPS usable in large-scale applications. Most
approaches comprise two steps: a segmentation into single-mode stages and the mode assign-
ment for each of these stages. In addition, some authors (e.g. 25, 17) introduced a third step
that accounts for the reasonability of the derived mode chains.

The segmentation of trips into single-mode stages implements the definition, that walking
is required for every mode change. The procedure, which follows the mode detection method
presented by Chung and Shalaby (16) and Tsui and Shalaby (15), exploits the uniqueness of
the walk mode with consistently low speeds and accelerations. In addition, a new stage is
created if a signal loss, i.e. a gap, of more than 120 s occurs. Three types of potential mode
transfer points (MTP) are detected: end of walk (EOW), start of walk (SOW), and end of gap
(EOG) points. The speed and acceleration thresholds for walking are 2.78 m/s and 0.1 m/s2 ,
respectively. Consequently, the potential MTPs are aligned, to ensure that each walking stage
is enclosed by exactly one SOW (or EOG) and one EOW (or EOG) point, that the speed in a
walking stage never exceeds 2.78 m/s, and that the derived stages are sufficiently long. For a
walking stage the minimal duration is 60 s and for all other modes 120 s.

Subsequently, the mode for each stage has to be derived. Former studies have applied
different approaches to achieve this. Bohte and Maat (12), Stopher et al. (21), Chung and
Shalaby (16), and de Jong and Mensonides (17) use rules based, for instance, on average and
maximum speed, proximity to certain network elements (e.g. bus stops or train stations), or the
deviation from the street network. Zheng et al. (25) evaluate four inference models (Decision
Trees, Bayesian Networks, Support Vector Machines and Conditional Random Fields) and
obtain best results for the Decision Tree model. In this study, however, a fuzzy logic approach
based on speed and acceleration characteristics is employed, as it has been introduced by Tsui
and Shalaby (15). Five modes have been distinguished:

• walk
• cycle
• car
• urban public transport (i.e. bus and tram)
• rail

An open source fuzzy engine (26) is used. Three fuzzy variables were chosen: the median
of the speed distribution with four membership functions, and the ninety-fifth percentiles of the
speed and acceleration distributions, each with three membership functions. These statistical



Schuessler, N. and K.W. Axhausen 6

FIGURE 1 Membership functions of the fuzzy variables

(a) Median Speed

(b) 95 Percentile Acceleration

(c) 95 Percentile Speed

location parameters were explicitly chosen over the average speed or the maximum speed and
acceleration to make the algorithm more robust against outliers. The trapezoidal membership
functions are depicted in Figure 1. They are defined by four key points: Start point, left top
corner, right top corner, and end point. The values for these points were chosen after an analysis
of the available modes and the speed and acceleration characteristics in the GPS data.

Having established the membership functions, fuzzy rules are derived. They characterise
the different modes with regard to the fuzzy variables. As depicted in Table 1, each mode is
described by at least one rule. Since the ranges of the membership functions overlap, more
than one rule can apply to the same stage. Hence, multiple modes can be assigned to that
stage. These ambiguities are deliberately included in the outcome of the mode detection and
allow for feedback loops with the map-matching and other correction methods. The defuzzify
method combines the membership values for each individual mode using the AND operator.
Thus, the final score for each mode equals the minimum membership value amongst all its
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TABLE 1 Fuzzy rules for mode detection

Median speed 95 perc. acceleration 95 perc. speed Mode
very low low − Walk
very low medium − Cycle
very low high − Cycle

low low low Cycle
low low medium UrbanPuT
low low high Car
low medium − UrbanPuT
low high low UrbanPuT
low high medium Car
low high high Car

medium low − UrbanPuT
medium medium − Car
medium high − Car

high low − Rail
high medium − Car
high high − Car

rules. Subsequently, the likelihood for each mode is calculated based on all the mode scores of
a stage.

In a third step, the reasonability of the derived mode chains is investigated. Due to the
design of the stage generation process described above, every two non-walking stages are either
separated by a walking stage or by a time gap of at least 120 seconds. The latter accounts for
the fact, that the analyst cannot know for certain whether a mode change has or has not occurred
during that time. This, however, sometimes leads to relatively unlikely mode transitions, for
example a direct transfer from car to train. Therefore, the characteristics of the time gap are
scrutinised, in particular the average speed during the time gap. If the average speed is higher
than walking speed and the two neighbouring stages are both non-walk stages, it is assumed that
no mode transfer happened during the time gap. The stages are joined and the mode detection
is repeated for the joined stage. In addition, two adjacent walk stages are joined if the average
speed in the time gap is below the walk speed threshold. The threshold for walking speed is
thereby set to 2 m/s. Thus, not only more realistic mode chains were derived, but also the
average distance and duration of the stages were increased, which had been too short in the
earlier version of the algorithm presented by Schüssler and Axhausen (18).

Furthermore, the mode detection was embedded in a bigger framework that allows for anal-
yses and corrections of the resulting mode chains. One correction, that will be implemented in
the near future, is the deviation from the mode-specific transport network. This will be used
to better distinguish for example inter-urban rail trips from car trips. Another potential ap-
proach considers the likelihood of the mode transitions and mode transition sequences, as it
was employed by Zheng et al. (25). This, however, requires further research, not least because
available survey data is not detailed enough.
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TABLE 2 Overall statistics of the GPS study compared to the Microcensus 2005

Zurich Winterthur Geneva MZ 2005
Number of persons 2 435 1 086 1 361 3199
Number of days per person 6.99 5.96 6.51 1.00
Number of trips per day 4.50 3.40 4.26 3.65
Average trip distance [km] 7.72 7.37 7.19 8.79
Average daily mileage [km] 34.74 23.20 29.25 32.13
Average trip duration [min] 15.17 13.71 15.05 26.21
Average number of stages per trip 1.40 1.31 1.47 1.68

ANALYSIS OF THE RESULTS
Since no information about the actual trips and activities of the participants is available, the
Swiss Microcensus on Travel Behaviour 2005 (MZ 2005) (27) is used as the basis for the vali-
dation of the post-processing procedure. The Swiss Microcensus on Travel Behaviour (MZ) is
conducted every five years and delivers a representative and detailed insight into the travel pat-
terns of the Swiss population. In 2005, 33,390 individuals reported in the course of a computer-
assisted telephone interview (CATI) on their socio-economic background, their mobility tools,
and their, stage-based recorded, trips and activities on the reporting day. In the following,
the results of the post-processing procedure are compared to a sub-sample of the Microcensus
2005, which comprises the respondents living in Zurich, Winterthur or Geneva.

The overall statistics for the three sub-studies for Zurich, Winterthur and Geneva, and the
corresponding sample in the MZ 2005 are represented in Table 2. It can be seen that the
values vary between the cities. The number of days observed per participant, for example, is
about seven in Zurich compared to approximately six days in Winterthur. Overall, however, the
numbers reveal the same trend. Except for Winterthur, the number of trips per day is higher
than the one reported in the MZ 2005 and the average trip distance and duration are smaller.
This effect was expected because several previous studies (e.g. 7, 28, 3, 29) could demonstrate
that in particular shorter trips and activities are under-reported in recall-based surveys.

The distribution of the number of trips per day is depicted in Figure 2. It can be seen that
the distributions are similarly skewed positive although the tail of the one derived from the
GPS data is slightly longer and the two distinct peaks for two and four trips per day that are
present in the MZ 2005 are not replicated in the GPS data. Both effects were expected since
the omission of shorter trips and intermediate activities, e.g. shopping on the way home from
work, in recall-based surveys leads to fewer and shorter trip chains.

The distributions of the trip lengths and durations presented in Figure 3 reveal similar pat-
terns in the MZ 2005 and the GPS data. This confirms that the trip and activity detection works
properly. Moreover, the graphs reveal that the rounding of times and distances is an important
issue in recall-based surveys. Estimating distances and times accurately is a real challenge for
the respondents. In the Swiss Microcensus, distances are frequently rounded to km values and
durations to quarter hours. This underlines once more the advantage of GPS over recall-based
surveys with respect to temporal and spacial accuracy.

In Figure 4, the distribution of the mode per stage is compared to the MZ 2005. Since
the fuzzy logic algorithm delivers probabilities and not crisp values, for each stage the mode
with the highest probability is chosen. The walk stages are excluded because they are only
partially comparable. On the one hand, around 15% of the mode transitions in the MZ 2005
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FIGURE 2 Trips per day compared with the Swiss Microcensus 2005

FIGURE 3 Trip distance and duration distributions compared with the Swiss Micro-
census 2005

(a) Trip distance distribution (b) Trip duration distribution

do not meet the basic assumption that every two non-walking stages should be separated by
a walk stage. On the other hand, the trips derived from the GPS data suffer from the warm
start/cold start problem. Accordingly, 43% of the GPS trips start with a car, rail or urban public
transport stage as opposed to 31% in the MZ 2005. Figure 4 reveals that rail stages are fairly
under-represented at this phase of the analysis. This might be due to the design of the study
which focussed on passing urban bill-boards and not on inter-urban travel. Another problem is
the generally bad GPS signal reception in trains. However, some rail trips are most probably
misclassified as car stages, likewise some of the missing urban public transport stages. Two
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FIGURE 4 Distribution of stage modes compared to the Swiss Microcensus 2005

approaches to correct this are envisaged in the future. First, the mode detection parameters
will be further optimised. Second, a feedback-loop between the map-matching and the mode-
detection will be implemented.

Even closer to the MZ 2005 is the distribution of the stage distance per mode, as depicted
in Figure 5. In both surveys, this distributions follow reasonable patterns, e.g. walk trips are
rather short, while car and rail are predominantly used for longer trips. Overall, the distance
distributions of the individual modes derived from the GPS data are very similar to the ones
reported in the MZ 2005. This underlines the quality of the mode detection procedure, espe-
cially since the stage distance is not used in the procedure. Only the detected bike trips are
quite short compared to the MZ 2005. This might indicate that some of the bike trips are in
reality misclassified walk trips. This has to be further analysed in the future.

COMPUTATIONAL PERFORMANCE
One of the main reasons for implementing our GPS post-processing procedure in Java and not
in a GIS environment was the requirement to handle the large amount of data in this study
in a reasonable computation time. This objective was fully achieved. The computation was
performed on a machine with 4 dual-core AMD Opteron 2 GHz CPUs, 4 GB RAM and a
Debian Linux version 2.618-5-amd64. The Java 1.5 program processed the complete data set
containing about 64.5 million GPS points using one CPU and 1 GB allocated memory in 7091
seconds resulting in an average speed of about 9100 GPS points per second.

CONCLUSION AND OUTLOOK
The data obtained from the post-processing procedure described in this paper will primarily
be used to develop route and destination choice models. The focus will be on the different
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FIGURE 5 Distance distribution per mode compared to Microcensus 2005

(a) Walk (b) Bike

(c) Car (d) Urban public transport

(e) Rail



Schuessler, N. and K.W. Axhausen 12

ways to account for similarities in discrete choice modelling. The person-based GPS data set
at hand is ideal for this purpose. It covers complete trip and activity chains over several days,
thus describing the participants travel behaviour in the most comprehensive way. In addition,
the sample size is large enough to obtain stable choice models and is now usable since the
procedure presented in this paper delivers sound results in a reasonable computation time even
though only the most basic information was available.

A key success factor for the post-processing procedure is the implementation of appropri-
ate filtering and smoothing techniques. Finding the right approach was essential in the study
at hand because no information about the numbers of satellites in view or their positioning
was available. Though filtering based on altitude levels and unrealistic positional jump was
essential, it was not sufficient. Therefore, a Gauss kernel smoothing had to be applied as well.

The activity dwell time of 900 seconds employed in the trip and activity detection is rather
high. Shorter dwell times, however, led to too many false trip ends. Instead, the detection of
shorter activities is based on the identification of point bundles and zero speeds. With these
criteria, the trip and activity detection delivers results very similar to those derived manually,
which had to be the frame of reference since no information about the actual trips and activities
was available.

For the same reason, the results of the fuzzy logic mode detection could only be compared to
the MZ 2005. The comparison showed that mode detection yields realistic results. Especially,
the distance distributions per mode are very satisfactory. However, a more detailed validation of
the mode detection will be carried out soon with the handcoded GPS data presented by Flamm
and Kaufmann (14). First, the mode detection parameters alone will be investigated. Then
the whole trip will be examined with regard to the stage generation as well as the actual mode
detection. A method for the first analysis has already been implemented by Upadhyay et al.
(30) and tested for an earlier version of the post-processing procedure. For the second step, an
advanced multi-dimensional sequence alignment method developed by Wilson et al. (31) will
be used.

The map-matching will be done with the algorithm described in Marchal et al. (32) because
it produces accurate results and efficiently handles large data volumes. For a start, the map-
matching will be employed externally and the results fed back into the mode detection. Due
to the modular framework of the mode chain correction, the deviation from the mode-specific
transport network can be straightforwardly used to distinguish for example inter-urban rail trips
from car trips. Eventually, the map-matching ought to be integrated into the post-processing
procedure.

The last step of the post-processing procedure will be the determination of activity purposes.
A couple of researchers have already worked on that (e.g. 33, 34, 24, 21). Their input will be
reviewed to derive an approach suitable for the data available in this study. Key criteria will be
observed activity patterns such locations that are visited multiple times and the time of day and
duration of activities. In addition, detailed land-use date will be used.
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