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Fracturing ranked surfaces
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1Computational Physics for Engineering Materials, IfB, ETH Zurich, Schafmattstrasse 6, CH-8093 Zurich, Switzerland,
2Departamento de Fı́sica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil.

Discretized landscapes can be mapped onto ranked surfaces, where every element (site or bond) has a unique
rank associated with its corresponding relative height. By sequentially allocating these elements according to
their ranks and systematically preventing the occupation of bridges, namely elements that, if occupied,
would provide global connectivity, we disclose that bridges hide a new tricritical point at an occupation
fraction p 5 pc, where pc is the percolation threshold of random percolation. For any value of p in the
interval pc , p # 1, our results show that the set of bridges has a fractal dimension dBB < 1.22 in two
dimensions. In the limit p R 1, a self-similar fracture is revealed as a singly connected line that divides the
system in two domains. We then unveil how several seemingly unrelated physical models tumble into the
same universality class and also present results for higher dimensions.

A
ny real landscape can be duly coarse-grained and represented as a two-dimensional discretized map of
regular cells (e.g., a square lattice of sites or bonds) to which average heights can be associated. This
process is exemplarily shown in Figs. 1(a)–(c). As such, the concept of discretized maps has been

considered as a way to delimit spatial boundaries in a wide range of seemingly unrelated problems, ranging from
tracing water basins and river networks in landscapes1–5 to the identification of cancerous cells in human tissues6,7,
and the study of spatial competition in multispecies ecosystems8,9. Moreover, previous studies have shown that
cracks or surviving paths through discretized maps possess a universal fractal dimension which can be physically
realized in terms of optimal paths under strong disorder10–13, optimal path cracks14,15, loopless percolation16,17, or
minimum spanning trees18–23. Here we show that all these problems can be understood in terms of the same
universal concept of fracturing a ranked surface.

We start by defining a ranked surface. Given a two-dimensional discretized map of size L 3 L, we generate a list
containing the heights of its elements (sites or bonds) in crescent order, and then replace the numerical values in
the original map by their corresponding ranks. As depicted in Fig. 1(d), the result is a ranked surface. The process
of fracture generation is rather simple. Once the ranked surface is obtained, we sequentially occupy the elements
of an empty lattice with the same size following the crescent rank order of the corresponding elements (i.e., in the
same position) on the ranked surface. During each step of the allocation process, only bridges, identified as those
lattice elements which, once occupied, would create a spanning cluster (i.e., a globally connecting cluster)24, are
never occupied. These elements will eventually form a macroscopic fracture.

In Fig. 2 we show the evolution of the fracture line on a large ranked surface with the fraction of occupied bonds
p. As displayed, the lattice is initially seeded by a set of disconnected bridge elements at low values of p, while for
p R 1 the fracture finally emerges towards a singly connected line that divides the system in two. As we show later
in this article, our results reveal that this line is fractal with dimension dBB < 1.22. Interestingly, this value is
statistically identical to the dimensions of fractures generated from different models previously investigated10–13.
However, at the percolation threshold value of the classical random percolation model24,25, p 5 pc, the set of bridge
bonds appearing in any configuration of our model should be identical to the set of the so-called anti-red bonds in
random percolation26. As first proposed by Coniglio26 and numerically verified by Scholder27, at p 5 pc, this set is
also fractal, but with dimension 1/n (5 3/4 in 2D), where n is the correlation length exponent.

Motivated by this substantial change in the fractal behavior at distinct stages of our fracturing process, in what
follows we address how the set of bridges scales with the fraction of occupied bonds and the system size at p 5 pc

analogously to a theta point28–30, while for all values of p above pc, it has a fractal dimension dBB. Moreover, we
introduce a new tricritical crossover exponent, which we study up to dimension six, the upper-critical dimension
of percolation.

Results
We performed simulations of fracturing ranked surfaces on square lattices. It is worth noting that, despite the
similarities with random percolation, the suppressing of connectivity poses a statistically different problem. For
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example, while for p R 1 there is only a single configuration in
random percolation (all bonds occupied), in ranked percolation
there are N!, evenly weighted, possible configurations, where N is
the total number of bonds. In classical percolation the total number
of configurations is 2N. Figure 3 shows the dependence of the number
of bridge bonds NBB on system size, for different fractions of occu-
pied bonds, namely, p 5 pc 5 0.5, p 5 0.51, and p 5 0.8. As expected,
at the percolation threshold of classical percolation (p 5 pc), the
number of bridge bonds diverges with system size as NBB , L1/n,
where n is the correlation length exponent, with n 5 4/3 in 2D; while
for p 5 0.8, NBB*LdBB , with dBB 5 1.215 6 0.003. The latter is in
fact observed at any p . pc. We found the same result (see
Supplementary Information) for site percolation and on other lattices
(star, triangular, and honeycomb), which provides strong evidence

for the universality of this exponent. For p *> pc, like p 5 0.51 we can
observe, as depicted in Fig. 3, a crossover between the two different
regimes. The inset of Fig. 4 shows NBB, rescaled by LdBB , as a function
of p, for different system sizes. The number of bridge bonds grows
with p, such that, NBB , (p 2 pc)f, where f 5 0.50 6 0.03 is a novel
exponent, which we call bridge-growth exponent. The overlap of the
different curves confirms that the fractal dimension of the bridge
bonds above pc is dBB, for all p . pc. This result differs from classical
percolation where fractality is solely observed at criticality24,25 while,
above pc, bridge bonds are only observed for finite systems26.

For polymer chains, at high temperatures, the excluded volume
prevails over attractive forces and the chain can be described as a self-
avoiding walk. When the temperature is reduced, the attractive forces
become relevant leading, at a theta-temperature, to a new exponent
at the crossover between two dimensions28–30. Analogously, in ranked
percolation the fractal dimension of the bridge bonds is 1/n, at p 5 pc,
between dBB above pc and zero below pc. For the tricritical scaling we
verify the following ansatz,

NBB~L1=nF p{pcð ÞLh
� �

, ð1Þ

whereF x½ �*xf for x ? 0, and is nonzero at x 5 0; and the exponent
h is the crossover exponent. Therefore, the following relation is
obtained,

h~f{1 d{Q{
1
n

� �
, ð2Þ

where Q 5 d 2 dBB. In the main plot of Fig. 4 we see, for 2D, the
scaling given by equation (1), with h 5 0.93.

The results above disclose a tricritical pc below which the fraction
of bridges in the bridge line vanishes in the thermodynamic limit.
This is identical to a minimum height in the bridge line, H 5 hmin, in

Figure 1 | The generation process of a ranked surface. The landscape in (a) is coarse-grained to the low-resolution system of 8 3 8 shown in (b), and then

represented as a discretized map of local heights, as depicted in (c). By ranking these heights in crescent order, one obtains the ranked surface in (d). In

fact, the landscape shown in (a) is a high resolution synthetic map obtained from a fractional Brownian motion simulation based on the Fourier filtering

method15,41–46.

Figure 2 | Snapshots of the fractal set of bridges in two (line) and three
(surface) dimensions. For 2D four stages are seen (from left to right): p 5

pc (black), p 5 1.01pc (blue), p 5 1.05pc (green), and p 5 1 (red), while for

3D only the final set is shown. We considered in 2D a square lattice with

10242 sites and, in 3D, a simple-cubic lattice with 5123 sites. The fractal

dimension is dBB 5 1.215 6 0.003, in 2D, and dBB 5 2.50 6 0.02, in 3D.
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the context of landscapes (Figs. 1(a)–(b)). For a cumulative distri-
bution function of heights H, P(H # h), the minimum is given by
P(H # hmin) 5 pc. Note that, for uncorrelated landscapes, regardless
the distribution of heights, the set of bridges only depends on their
position in the rank. To observe the new set of exponents on dis-
cretized landscapes (Fig. 1(c)), NBB is the number of sites in the
bridge line with both neighbors (one at each side) having height
lower than h, where P(H # h) 5 p.

To study the dependence of exponents f and Q on the spatial
dimension, we analyze the same problem up to dimension six. On
a simple-cubic lattice (3D), above pc, the set of all bridge bonds has a

fractal dimension dBB 5 2.50 6 0.05 and grows with f 5 1.0 6 0.1
(see Supplementary Information). Figure 5 shows the size depend-
ence of NBB, in the limit p 5 1, for lattices with size Ld, where
2 # d # 6 is the spatial dimension. In the inset, we plot the exponent
Q as a function of d. Since the set of bridge bonds blocks connectivity
from one side to the other, its fractal dimension must follow
d 2 1 # dBB # d, i.e., 0 # Q # 1. With increasing dimension Q
decreases. At the upper-critical dimension of percolation, dc 5 6,
Q 5 0.0 6 0.1 and the set of bridge bonds becomes dense having
the spatial dimension d. Table I summarizes the exponents for
dimensions 2 to 6. The bridge-growth exponent grows with d and
converges to f 5 1.5 6 0.7 at the upper-critical dimension. For d . 6,
above the critical dimension of percolation, the exponent Q remains
zero and the dimension of the set of bridges is equal to d. This can be
understood from the fact that above dc one has an infinity of span-
ning clusters31 and thus many more possible bridges. Since the
dimension of the set of bridges at p 5 pc is 1/n and above pc is d,
the crossover exponent increases with d, with the relation given by
equation (2), where Q 5 0.

Since one can interchange occupied and empty bonds, there exists
a symmetry between bridges and cutting bonds (red bonds), so one
can raise the question of what happens when bonds are removed
from a percolating system with the constraint that connectivity can-
not be broken. Initially all bonds are occupied and at the end, since
cutting bonds are never removed, a line of cutting bonds is obtained,
which we denote here as the cutting line. Above pc, as in the classical
case, the percolation cluster is compact and there are no cutting
bonds. For p , pc, the set of cutting bonds is fractal with the same
fractal dimension as the bridge-bond set, dCB 5 dBB, whereas at pc it is
1/n. For the crossover scaling a similar ansatz to the one given by
equation (1) is verified, where the argument of the scaling function is
then (pc 2 p)Lh. The same hyperscaling of equation (2) is obtained
with Q 5 d 2 dCB. At d 5 2, our numerical results corroborate the
hypothesis of the same f and Q, for cutting and bridge bonds (see
Supplementary Information). For d . 2, the set of cutting bonds is
a line with dCB # 2 and the one of bridge bonds has a dimension

Figure 3 | Crossover in the size dependence. Number of bridge bonds,

NBB, for different p, namely, p 5 pc 5 0.5 (circles), p 5 0.51 (stars), and

p 5 0.8 (triangles). The solid lines stand for the best fit. At p 5 pc, as

conjectured by Coniglio26, NBB , L1/n, where n 5 4/3 is the critical exponent

of the correlation length in 2D. For p . pc, the number of bridge bonds

scales with LdBB . A crossover between the two regimes in system size is

observed (stars) for p in the neighborhood of pc. Systems of size L2 have

been considered, with L ranging from 32 to 4096. All results have been

averaged over 104 samples. Error bars are smaller than the symbol size.

Figure 4 | Tricritical scaling, crossover, and data collapse. Number of

bridge bonds, NBB, as a function of the fraction of occupied bonds, p, for

2D with different system sizes L 5 {256, 512, 1024, 2048, 4096}. The scaling

function given by equation (1) is applied, with h 5 0.93, obtaining f 5 0.50

6 0.03. In the inset, NBB has been rescaled by LdBB , where dBB 5 1.215. All

results have been averaged over 104 samples.

Figure 5 | Dependence on the spatial dimension and approach to the
mean-field limit. Size dependence of the number of bridge bonds, NBB, in

the limit p 5 1, up to dimension six. The solid lines stand for the best fit.

The mass of the shortest path in loopless percolation (SP) in 2D is also

included for comparison. Results have been averaged over 104 samples for

2D and 3D, and 102 samples for higher dimensions. Error bars are smaller

than the symbol size. The inset shows the dependence on the spatial

dimension of the exponent Q. At the upper-critical dimension of

percolation, d 5 6, the set of bridge bonds becomes dense having the spatial

dimension.
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above d 2 1, so that the fractal dimensions differ. Above the critical
dimension, the set of cutting bonds has dimension two, like the
shortest path at pc

32, for any p # pc.
Fisher33 proposed a bond-site transformation to map bond per-

colation on a lattice onto site percolation on a covering graph. For
example, the covering graph of the square lattice is obtained by
adding all diagonal edges to every other face34. Considering such a
mapping for ranked percolation and, following the analogy with a
random landscape, where sites are sequentially removed from the
lowest number (height) and suppressing global disconnection, the
obtained cutting line is identical to the bridge one with the constraint
applied in the perpendicular direction. The same is also observed for
site-ranked percolation on a square lattice. Given the relation
between connectivity and disconnection, in both cases, the cutting
version needs to be defined on different topologies, namely, the star
lattice for the square (on sites) and the same lattice for its covering
graph, but with swapped cells of diagonal bonds. For the triangular
lattice, the relation between cutting and bridges sites is straightfor-
ward without requiring additional connections.

Discussion
For several different models in 2D the same fractal dimension as the
one of bridge bonds has been reported. Here we discuss how some of
them can be related with the process of fracturing ranked surfaces.
Let us construct ranked percolation configurations on a random
landscape starting with the bond with the largest number (height)
and then occupying bonds sequentially in order of decreasing num-
ber. Each time a chosen bond closes a loop, it is not occupied (loop-
less). One stops the procedure when, for the first time, a path of
connected sites spans from one side to the other (percolation thresh-
old). Since all clusters are trees, the backbone and the shortest path
are the same and their fractal dimension is identical to the bridge-
bond line, as verified in Fig. 5. In fact, given the connectivity/discon-
nection relation discussed in the previous section, this line corre-
sponds to the bridge line when bonds are occupied from the lowest
to the largest number in the covering graph. This line also corre-
sponds to the line of cutting bonds when bonds are removed from the
smallest to the largest number. A similar procedure was also pro-
posed to obtain the minimum spanning tree (MST), for which the
same fractal dimension is found for the paths between all pairs of
sites19. There bonds are sequentially removed (from the highest to the
lowest value) under the constraint that all sites remain connected. If
the constraint is relaxed such that only connectivity between two
opposite borders is imposed, the cutting-bond line is obtained.
Therefore, the cutting-bond line is the path between borders on
the MST for which the largest value (height) is minimum, a valid
relation in any spatial dimension d.

The fractal dimension dBB was also observed for the backbone of
the optimal path crack (OPC)14,15. For a random landscape, the
sequence of optimal paths between opposite borders is obtained
and their highest site removed. Every such path crosses the bridge
line. The highest site on successive paths is either on the bridge line
itself or is higher than the lowest bridge-line site. Therefore, as in the

loopless percolation described before, the removed sites percolate
when all sites on the bridge line are removed, which is the backbone
of the crack, giving the same fractal dimension dBB. This is in fact the
case for the crack of any sequence of self-avoiding paths between
opposite borders. Since in this case the duality between cutting and
bridges is not used (only valid in 2D), the relation between OPC and
bridge bonds is still true in higher dimensions.

Let us now define the optimal minimax path (OMP) in the fol-
lowing way. One starts selecting the set of paths on the landscape for
which the highest-ranked site is minimum (minimax paths). Such set
is then reduced to include only the paths for which the second highest
site is also minimum and one proceeds iteratively to the following
sites, until a unique path is obtained. This path is the optimal path in
strong disorder16,17, since under such disorder strength each site is
higher than the sum over the height of all sites with lower rank.
This path is also identical to the backbone of the loopless-ranked-
percolation cluster when occupied from the lowest to the largest
number and, therefore, the cutting line in any dimension.

In summary, suppressing connectivity (disconnection) between
opposite borders on ranked surfaces leads to a fractal set of bridge
(cutting) bonds, with a universal fractal dimension, even far away
from the critical point of classical percolation. In 2D, there is an
equivalence between bridges and cutting bonds and dBB 5 dCB,
whereas for d . 2 cutting bonds are still a fractal line but bridge
bonds form a surface. The discussed models are then split into two
groups. The ones suppressing connectivity (e.g., watershed10,12 and
optimal path crack14,15) are in the bridges universality class, while the
ones keeping connectivity (e.g., optimal path on the MST or in strong
disorder media16) are in the universality class of cutting bonds. For d
. 6, dBB 5 d and dCB 5 2, so we conjecture that the upper-critical
dimension of bridges and cutting bonds is also dc 5 6. Finally, we
show that, at the percolation threshold of classical percolation,
ranked percolation displays a theta-point-like crossover.

This work opens up several challenges. Besides the need for a
more precise numerical estimation of the bridge-growth exponent,
it would be interesting to formulate a renormalization group scheme
and to obtain the new set of exponents from analytic treatments such
as, e.g., exact results in the mean-field limit and a Schramm-Loewner
evolution in two dimensions. Another interesting possibility is to
find the corresponding exponents in other related problems with
different universality classes like, e.g., the Kasteleyn-Fortuin clusters
in the q-state Potts model26,35–38 with or without magnetic field.
Regarding the fractal dimension of the surface of discontinuous
percolation clusters39,40, it would also be interesting to understand
how it relates with the herein introduced bridge-bonds universality
class. For the cutting bonds, the study of the crossover for higher
dimensions represents another computational challenge. Finally, it
would also be interesting to try to identify the third scaling field of
our theta-like point.

Methods
All numerical results have been obtained with Monte Carlo simulations. Results
have been averaged over 104 samples for 2D and 3D, and 102 samples for higher
dimensions.
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