
ETH Library

Compressing Subject-specific
Brain-Computer Interface Models
into One Model by Superposition
in Hyperdimensional Space

Conference Paper

Author(s):
Hersche, Michael ; Rupp, Philipp; Benini, Luca ; Rahimi, Abbas 

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000387117

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.23919/DATE48585.2020.9116447

Funding acknowledgement:
780215 - Computation-in-memory architecture based on resistive devices (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3065-7639
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0003-3141-4970
https://doi.org/10.3929/ethz-b-000387117
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.23919/DATE48585.2020.9116447
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Compressing Subject-specific Brain–Computer
Interface Models into One Model by Superposition

in Hyperdimensional Space
Michael Hersche, Philipp Rupp, Luca Benini, Abbas Rahimi

Integrated Systems Laboratory, ETH Zurich, Switzerland
Emails: ruppp@student.ethz.ch, {hersche, benini, abbas}@iis.ee.ethz.ch

Abstract—Accurate multiclass classification of electroen-
cephalography (EEG) signals is still a challenging task towards
the development of reliable motor imagery brain–computer in-
terfaces (MI-BCIs). Deep learning algorithms have been recently
used in this area to deliver a compact and accurate model.
Reaching high-level of accuracy requires to store subjects-specific
trained models that cannot be achieved with an otherwise
compact model trained globally across all subjects. In this paper,
we propose a new methodology that closes the gap between these
two extreme modeling approaches: we reduce the overall storage
requirements by superimposing many subject-specific models into
one single model such that it can be reliably decomposed, after
retraining, to its constituent models while providing a trade-off
between compression ratio and accuracy. Our method makes the
use of unexploited capacity of trained models by orthogonalizing
parameters in a hyperdimensional space, followed by iterative
retraining to compensate noisy decomposition. This method can
be applied to various layers of deep inference models. Experi-
mental results on the 4-class BCI competition IV-2a dataset show
that our method exploits unutilized capacity for compression
and surpasses the accuracy of two state-of-the-art networks: (1)
it compresses the smallest network, EEGNet [1], by 1.9×, and
increases its accuracy by 2.41% (74.73% vs. 72.32%); (2) using
a relatively larger Shallow ConvNet [2], our method achieves
2.95× compression as well as 1.4% higher accuracy (75.05% vs.
73.59%).

I. INTRODUCTION
Brain–computer interfaces (BCIs) aim to provide a commu-

nication and control channel based on the recognition of the
subjects intentions from neural activity typically recorded by
noninvasive electroencephalogram (EEG) electrodes [3]. What
makes it particularly challenging, however, is its susceptibility
to errors in the recognition of human intentions, especially
during motor imagery (MI) [4], [5]. MI-BCIs strive to decode
the cognitive process of thinking of a motion, e.g., the left
or the right hand movement, without actually performing
it. Recently, deep learning algorithms strive to decode EEG
signals to deliver compact yet accurate MI-BCI models [1],
[2], [6], [7].

To further improve classification accuracy and deal with
the high variability of EEG signals between subjects, most
approaches [2], [5], [6], [8], [9] train a personalized model
per subject. This subject-specific model training requires a
calibration session for each subject, which can be exhausting
for clinical users with impaired cognitive abilities, or tedious
for healthy users [10]. On other hand, one may train a global
model for all subjects eliminating the calibration procedure.
However, the global model often comes with a significant

degradation in classification accuracy. For instance, an accu-
racy loss of 9.22% is observed when using a global model
instead of subject-specific models [6].

Further, subject-specific models demand separate memory to
store the trained model per subject. Each model size could be
as large as 103k parameters for execution on a neuromorphic
TrueNorth chip [11]. The Shallow ConvNet [2], one of the
smaller convolutional neural networks (CNN) for MI-BCIs,
stores 47k parameters per subject. For a multi-subject BCI
device, this memory requirement increases linearly with the
number of subjects and poses limitations on resource-limited
edge devices. This memory may be compressed to some
degree by quantizing or sparsifying the parameters [12]. Hence
a complementary approach that produces a single model to
combine the best of both worlds (i.e., the compactness of a
global model, and the accuracy of subject-specific models) is
highly desirable.

One viable option is to exploit the hyperdimensional
space [13] by holistically taking into account the parameters
available in the model. Such large number of parameters can
naturally form a holographic representation in which randomly
drawn d-dimensional vectors (d > 1, 000) can be reliably
superimposed and decomposed [14]. In this hyperdimensional
space, we can learn a separate set of parameters for each
subject, these parameters—arranged in a set of d-dimensional
vectors—can be stored in superposition with each other,
resulting in a composite d-dimensional vector that requires
almost the same number of parameters as a model for a single
subject [15].

We apply the concept of superposition in hyperdimensional
space (Section II-B) to compress the weights of MI-BCI deep
models (Section II-A) from multiple subjects into a single
model. This paper makes the following contributions:

• We present a universal compression approach that
applies to any layer in the network, including the fully
connected, and convolutional layers. We assign to each
subject a pseudorandom hyperdimensional vector that
nearly orthogonalizes the subject-specific model after a
binding operation, allowing for superposition of many
such models into a single model without interference.
Moreover, our method is non-intrusive to the operation
of the network because retrieval of subject-specific
weights is done by unbinding the single model with the



W (FC) W (FC)’

activation: squareactivation: linear

1110

4040

2760 4
1125

22

1110

40
22

40 units
spatial convolution (Conv) mean pooling fully connected (FC)

69

flatten

kernel 25x1 kernel 1x22x40 kernel 75x1

11,040 weights

temporal convolution
40 units

stride 1x1

1,000 weights

stride 0x1

35,200 weights

stride 15x1
activation: log

activation: softmax

W (Conv)

bias: yes

bias: no bias: yes

non-compressible
weights

W (Conv)’

Fig. 1: Shallow ConvNet [2] with detailed kernel description and number of weights applied on 4-class BCI IV-2a dataset.
Weights of spatial convolution (Conv) and fully connected layer (FC) are compression friendly and can be extracted and
vectorized to a hypervector, or inserted into the network again.

subject key at loading stage of the model. Section III
describes our method in details.

• We propose an iterative retraining procedure to
compensate for the accuracy loss of decomposed model
due to noisy retrieval (Section III-B). The procedure
adapts the pre-trained superimposed weights as well as
non-compressed weights of every subject, followed by
an altering random subject sequence selection.

• We evaluate our method on two widely-used networks
using the 4-class BCI competition IV2a dataset [16] in
Section IV. Our experimental results show that for both
networks, our method finds a smaller set of parameters
that is more accurate. Subject-specific EEGNet [1] mod-
els, as the smallest network, are compressed by 1.9×
into a single—still subject-specific—model with 9,620
parameters, delivering 2.41% higher accuracy than the
uncompressed models. This is achieved by superposition
of the fully connected layers. Using a relatively larger
Shallow ConvNet [2], our method finds an optimal set
of parameters resulting in 2.95× compression and 1.4%
higher accuracy by superimposing the spatial convolu-
tional layers. This leads to a single model with 144,316
parameters achieving 75.05% accuracy (vs. 73.59% of
uncompressed models). Our code is available.1

II. RELATED WORK AND BACKGROUND
A. Shallow ConvNet and EEGNet in MI-BCI

Motor imagery (MI) is still one of the most challenging
paradigms to connect the brain with an external device. The
main challenge in MI is the high variance in data between dif-
ferent subjects as well as between different recording sessions
of the same subject.

Traditional MI-BCI architectures are divided into feature
extraction and a subsequent classifier. EEG signals are typi-
cally pre-processed using tunable spectral and spatial filters
followed by log-energy feature extraction, with filter bank
common spatial pattern (FBCSP) [5] and Riemannian co-
variance matrices [9] being the most popular feature extrac-

1https://github.com/MHersche/bci-model-superpos

tors. The multi-spectral features are classified using a linear
discriminant analysis (LDA), regularized LDA, or support
vector machines (SVMs) [10]. A linear SVM on more than
32k Riemannian features, leading to overall 1.751M trainable
parameters, has achieved so far the highest classification
accuracy of 75.47% [8] on the 4-class MI-BCI competition
IV-2a dataset [16].

Alternatively, the feature extractor and classifier can be
combined and trained simultaneously with a convolutional
neural network (CNN). While being successful in image clas-
sification, CNNs are gaining attention in MI-BCIs as well [10].
Schirrmeister et al. [2] provides an elaborate study on CNN
architectures for MI-BCI, where the small Shallow ConvNet
achieves an accuracy of 73.59% on the 4-class dataset.

Fig. 1 shows the architecture of the Shallow ConvNet, which
is inspired by the classic spectral and spatial filtering with log-
energy features [2]. The input feature map represents the EEG
signal in the time domain with 1125 samples (4.5 s × 250 Hz)
and 22 EEG channels. The samples are filtered in time-
domain (1,000 weights), spatial domain (35,200 weights) with
square activation, pooled with log activation, and classified
with fully connected layer (11,400 weights). Overall, this CNN
architecture has 47,324 parameters including weights and
biases, where spatial convolution and fully connected layers
are the largest, making them most appealing for compression.

Yet another smaller network is EEGNet [1] with 1,716
trainable parameters. The main difference to Shallow ConvNet
is that EEGNet uses spatial separable convolutions and more
pooling layers, which reduces the number of weights of
the convolutional layer and the size of the fully connected
layer, respectively. EEGNet enables not only classification of
MI, but also of P300 event-related potential, feedback error-
related negativity, and movement-related cortical potential.
Its flexibility and small size, however, comes at the cost of
significantly lower accuracy, e.g., 67% for MI. Effort has
been done to modify EEGNet by changing the pooling layers
and expanding the network to 2,036 trainable parameters for
achieving 72% accuracy with subject-specific models [17].



W2

d weights model 2

RG

d weights model Ns

RG

key1

RG
K1

W1 WNs

S

d weights model 1

retrieval pathcompression path

V1

KNs

VNs

circular correlationcircular convolution RG pseudorandom vector generator

...

V2

...

non-compressible
weights

K2
RG

K1

d weights model 1

Ŵ1

S

Compressing Subject-specific Models Retrieving One Model for Execution

”Subject 1”

key2

”Subject 2”

keyNs

”Subject Ns”

key1

”Subject 1”

Fig. 2: Compression of Ns models and retrieval to execute model 1. The compressible weights of model 1 are extracted
from the network and vectorized to a d-dimensional hypervector W1, bound with a key hypervector K1 and superimposed
with the bound weights of all other models to form a single model S. The superposition S is the compressed version of
W1,W2, ...,WNs. To execute model 1, its weights are retrieved by unbinding S with K1 and reloaded into the network. All
double lines are connections of dimension d.

B. Superposition in Hyperdimensional Space
Computing in hyperdimensional space [13] is all about

manipulation and comparison of large patterns with a well-
defined set of operations that provide multifaceted features.
For instance, hyperdimensional computing constructs fast
learning and low-energy models for ExG biosignal classifi-
cation tasks [18]. Hyperdimensional computing goes beyond
designing efficient classifiers by applying its rich operations to
encapsulate deep learning models in a compressed representa-
tion. Here, we present the concept of hyperdimensional super-
position for model compression [15] using Plate’s holographic
reduced representation [14]. The basic idea is to extract
parameters, or weights, from a pre-trained model, vectorize
them to a hyperdimensional vector, bind the vector with a
random key, and superimpose multiple bound vectors into a
single vector. Retrieval of individual weights is guaranteed, if
the dimension of the vectors is high, i.e., d > 1, 000, denoted
as hypervectors.

We define the binding of a weight hypervector W with a
key hypervector K as

V = K ~W, (1)

where ~ is the binding operator and V,W,K ∈ Rd are
d-dimensional hypervectors. There exists a vast variety of
binding operators; we use circular convolution used in original
holographic representation [14]. Circular convolution can be
understood as a compression of the outer-product between K
and W and is efficiently implemented with Latin squares [19].
This binding operator generates a key-value pair. The approx-
imate inverse is the unbinding operation defined as

W ≈ K � V, (2)

where � corresponds to the circular correlation. A key hy-
pervector is generated by sampling from a normal distribution
with variance 1/d yielding a random hypervector with unit
norm.

Binding a hypervector W with a random key hypervector K
generates V , which has small cosine similarity to W with very
high probability if the dimension d is reasonably high [14].
After binding, V and W become quasiorthogonal [13]. This
concept is leveraged to generate quasiorthogonal hypervectors
even though they may be arbitrarily close in their original
space. For instance, V1 = W1 ~K1 and V2 = W2 ~K2 have
small cosine similarity, independent of their original relation
if K1 and K2 are two randomly drawn key hypervectors.

Quasiorthogonality allows superposition of multiple key-
value pairs:

S =
∑
i

Ki ~Wi, (3)

where S ∈ Rd represents the composition of all Wi. A specific
weight hypervector Wj is retrieved by unbinding S with the
corresponding key

Ŵj = S �Kj . (4)

The retrieval is noisy due to two error sources, namely the
terms originating from other key-value pairs as well as the
error from the unbinding operation itself:

Ŵj = Kj � (Kj ~Wj) +
∑
j 6=i

Kj � (Kj ~Wj). (5)

An auto-associative memory would allow for a perfect retrieval
using a clean-up procedure, where Ŵj is compared against



all possible value hypervectors stored in the associative mem-
ory [13]. The hypervector with the highest cosine similarity
to Ŵj , i.e., Wj is finally returned.

III. SUPERPOSITION AND RETRIEVAL IN
HYPERDIMENSIONAL SPACE

This section presents the main contribution of this paper.
We first describe how hyperdimensional superposition is used
to compress CNN weights of multiple pre-trained MI-BCI
networks. We then propose a retraining method to further
improve the accuracy of compressed models.

A. Model Compression with Superposition
We exploit hyperdimensional superposition and noisy re-

trieval to superimpose weights of neural network models
without clean-up. This eliminates the need of an associative
memory, similar to [15], but imposes noisy retrieval that can
be improved by an iterative retraining (Section III-B). Fig. 2
illustrates our proposed superposition and retrieval process for
Ns separate models. From every model, we extract d weights
and concatenate them to build a d-dimensional hypervector.
Then, for every model, we generate a d-dimensional hyper-
vector Ki using a pseudorandom number generator (RG) with
seed corresponding to keyi. We need to store only the seed
keyi instead of the actual key hypervector. This keyi needs a
negligible 32-bit storage per model since Ki can be reproduced
from the key by RG. The weights Wi are bound with the
related hypervector Ki, resulting in Vi with weights qua-
siorthogonal with respect to each other. Next, the hypervector
S is computed by superposition of V1, V2, ..., VNs which is
a composite representation of W1,W2, ...,WNs. Notably, the
binding, unbinding, and superposition operators do not change
the dimensionality of the hypervectors at any point, thus
keeping the space closed. For inference, or executing model
1, the weights are retrieved by unbinding S with K1. Finally,
the retrieved weights Ŵ1 are inserted into the network. Dur-
ing execution of the model, no additional binding/unbinding
operations are required; therefore, our method is non-intrusive
to the operation of the network.

The presented procedure is used to compress Ns subject-
specific CNN models. First, we train a specific CNN per
subject, which gives Ns different sets of weights. We extract
the weights from one or multiple layers per subject and
superimpose the vectorized weights among all subjects. Any
layer can be added or removed from compression, resulting
in the dimension of the weight hypervector to change. The
weights of the remaining layers as well as all biases are
left non-compressed. To store all models, we need to keep
the non-compressed weights as well as the hyperdimensional
superposition S (see Fig. 2). For executing the MI-BCI on
subject i, we locally generate the key hypervector Ki using the
same RG with subject-dependent seed and use it for retrieval
of the compressed weights. We then reload the CNN consisting
of layers with non-compressed and retrieved weights.

We define the compression ratio as

CR =
Ns ·model size

Ns · (non-compressed weights) + d
(6)

=
Ns

Ns(1− r) + r
(7)

where Ns is the number of models and r = d
model size is the

ratio between the number of compressed weights, and all the
weights available in one model.

Noisy retrieval of hypervectors introduces errors on the
weights, which influence the accuracy of the CNN. For ex-
ample, our experiments have shown that accuracy drops by
21.15% when compressing the fully connected layer in the
4-class MI dataset. The error of retrieval gets smaller when
increasing the dimension of the hypervector. On other hand,
increasing the dimension means compressing more weights
and therefore introducing more errors into the network. More-
over, the network is highly sensitive to which layers are
introduced with errors. Thus, a sensitivity analysis is required
to find a trade-off between compression ratio and performance
degradation of the model. We find that the sweet spot lies
in the middle of the network, leaving input layer as well as
the last classification layer untouched. This is aligned with
multiple studies which quantize neural network models and
explained in [20]. Nevertheless, we show that even the fully
connected classification layer can be compressed without any
loss in accuracy using retraining.

B. Retraining to Compensate Noisy Retrieval
We propose an iterative retraining procedure to recover,

and also enhance, the performance of the compressed model.
The idea is to add a retraining procedure which includes
noisy retrieval, therefore making the network robust against
introduced errors in weights. The retraining is done offline
and does not have any affect on the execution of the model.

Algorithm 1 describes the retraining procedure. The inner-
most loop shows one retraining iteration for all subjects, which
are retrained sequentially. First, the compressed weights are re-
trieved and inserted to the network of subject s, which already
has the non-compressed weights of subject s included. The
model is retrained, where hyperparameters such as learning
rate, batch size, and number of epochs are determined by a
grid search in 5-fold cross-validation on the training set based
on the highest validation accuracy. It is essential to retrain
all layers in the model: when adjusting only the compressed
layers and freezing the non-compressed ones, experiments
showed that the performance does not recover. Finally, the
superposition S is updated with the retrained weights, and the
uncompressed weights of network s are saved. The retraining
is repeated for NI iterations. In every iteration, the order of the
subjects is shuffled randomly, which increases the accuracy of
retraining by 2%.

Fig. 3 shows the training and validation misclassification
rate during retraining on the BCI competition IV-2a training
set for subject 1 as well as for all subjects on average.
Before starting with retraining at iteration 0, the validation
misclassification rate is 60% on average, which is close to
chance level at 75%. This supports the necessity of retraining.
In the first couple of iterations, training misclassification rate
is above 25% but drops to zero quickly. The validation mis-
classification, however, decreases only slowly but gets close to
the baseline validation misclassification without compression.
In this example, retraining of subject 1 decreases validation
misclassification beyond the baseline and therefore even im-
proves the performance compared to no compression.



Algorithm 1: Iterative retrieval and retraining of CNN
weights to improve accuracy of compressed models.

input : Ns - number of subjects (models superimposed)
NI - number of retraining iterations
S - initial superimposed pre-trained weights
Ks, s ∈ {1, ..., Ns} - key hypervectors
N - set of all pre-trained CNN models

output: S - retrained superimposed weights
N - set of all retrained models

1 for (i = 1 : NI) do
2 for (s = 1 : Ns) do
3 Ŵs[i] = S �Kl

4 network = N.getNetwork(s)
5 network.setWeights(Ŵs[i])
6 network.retrain()
7 Ws[i] = network.getWeights()

8 S += (Ws[i]− Ŵs[i])~Ks

9 end
10 end

0

25

50

75
Subject 1

0 100 200 300 400
Retraining Iteration

0

25

50

75
Average

Training Validation Baseline Validation

M
is

cl
as

s.
[%

]
M

is
cl

as
s.

[%
]

Fig. 3: Misclassification rate in % during retraining of com-
pressed Shallow ConvNet in cross-validation of BCI com-
petition IV-2a training set of subject 1 and average over
all subjects. The validation baseline shows the validation
performance of subject-specific model. With retraining of
compressed models the training misclassification drops to zero
and the validation misclassification converges close to the
baseline.

IV. EXPERIMENTAL RESULTS

A. BCI Competition IV-2a dataset
We use the BCI Competition IV-2a dataset [16] consisting

of EEG recordings from 9 different subjects. The subjects
were requested to carry out four different MI tasks, namely
the imagination of the movement of the left hand, right hand,
both feet, and tongue. Two sessions were recorded on two
different days. For each subject a session consists of 72 trials
per class yielding 288 trials in total. One session is used for
training and the other for testing exclusively. The signal was
recorded using 22 EEG electrodes according to the 10-20

TABLE I: Classification accuracy in %, and compression
ratio (CR) on 4-class MI-BCI competition IV-2a testset by
compressing fully connected (FC) and/or spatial convolutional
(Conv) layer of Shallow ConvNet and EEGNet. p-value re-
ports the significance of Wilcoxon signed-rank test relative
to subject-specific model. Retraining hyperparameters such as
number of retraining iterations (Niter), learning rate (LR),
batch size (BS), and number of epochs per iteration (Epochs)
where determined with cross-validation on the training set.

Shallow ConvNet EEGNet

Comp.
layer - FC Conv FC+Conv - FC

CR 1 1.26 2.95 7.61 1 1.90
Niter N/A 1000 1000 1000 N/A 1000
LR 1e-3 2.5e-5 1.25e-4 2.5e-5 1e-3 1e-4
BS 64 64 32 128 64 64
Epochs N/A 5 20 5 N/A 5

S1 78.81 87.51 78.81 64.58 84.36 85.77
S2 55.90 60.37 56.22 40.63 54.06 60.07
S3 90.28 85.40 89.57 75.35 87.91 85.71
S4 82.64 79.84 78.42 54.17 63.16 66.23
S5 56.60 63.92 62.83 43.75 67.39 73.19
S6 50.69 55.95 52.35 44.44 54.88 53.49
S7 91.17 93.38 93.40 78.47 88.09 87.36
S8 77.78 80.18 81.61 67.71 76.75 80.81
S9 78.47 69.73 82.27 75.00 74.24 79.92

Mean 73.59 75.14 75.05 60.46 72.32 74.73
Std 15.26 13.13 14.52 14.98 13.26 12.28
p-value - 0.515 0.208 0.008 - 0.066

system. It is bandpass filtered between 0.5 Hz and 100 Hz and
sampled with 250 Hz. In addition, three electrooculography
(EOG) channels give information about the eye movement.
An expert marked trials containing artifacts based on the EOG
signal. This way, 9.41% of the trials were excluded from the
dataset. The number of trials per class remains balanced. We
measure the classification accuracy as the ratio between correct
classified trials over the total number of trials.

B. Compression vs. Accuracy Loss
Table I shows the classification accuracy with different

compressed layers applied to Shallow ConvNet and EEGNet.
The hyperparameters for retraining are determined with a grid
search in 5-fold cross-validation on the training set. For sake
of completeness, the training parameters of non-compressed
original models are added as well, even though we did not
apply any retraining there.

In Shallow ConvNet, the compression of the fully connected
layer without retraining results in an accuracy of 52.44%,
which is a significant loss of 21.15% relative to no compres-
sion. Our retraining procedure is capable of recovering the
accuracy to 75.14%, therefore even improving the accuracy of
subject-specific models by 1.55%. This is the highest accuracy
in this state-of-the-art deep network so far, and puts it on
par with the 75.47% using Riemannian+SVM [8], while our
model requires 5× fewer parameters. When replacing the
spatial convolution layer with the fully connected layer for
compression, we can achieve 2.95× compression with almost
the same accuracy (i.e., 75.05%). As shown in Table I, the



compression ratio is increased from 1.26 to 2.95 when com-
pressing the spatial convolution instead of the fully connected
layer. The compression of both layers together yields the
highest compression ratio of 7.69 but the accuracy significantly
degrades to 60%. This degradation can be interpreted in two
ways: 1) we reach a fundamental limit of how much the model
can be compressed, or 2) the number of non-erroneous weights
is too little in order to counteract the errors introduced by lossy
compression. Our method is still effective on the much smaller
EEGNet by reducing the number of parameters by 1.9× and
achieving 2.41% higher accuracy relative to uncompressed
EEGNet (74.73% vs. 72.32%).

The comparison between total number of parameters for
all subjects and classification accuracy is summarized in
Fig. 4. Subject-specific EEGNet models require an order of
magnitude lower number of parameters than Shallow ConvNet,
while achieving slightly lower accuracy. Training one global
EEGNet model for all subjects further reduces the number
of parameters, but comes at the cost of significantly lower
accuracy of 70%. Our method, applicable to both networks,
reduces the number of parameters and improves the accuracy
at the same time.

1k 10k 100k 1000k
68

70

72

74

76

78

A
ve

ra
ge

A
cc

ur
ac

y
[%

]

Total Number of Parameters (log-scale)

Sup(FC)Sup(Conv)

Global [17]

Sup(FC)

Sub-spec [17]

Sub-spec [2]

Fig. 4: Number of parameters to store CNN model of 9
subjects vs. average classification accuracy with Shallow
ConvNet (�) and EEGNet (�). Model weights are either
global (Global), subject-specific (Sub-spec), superimposed at
fully connected classification layer (Sup(FC)) or at spatial
convolutional layer (Sup(Conv)).

V. CONCLUSION
This paper demonstrates that hyperdimensional superposi-

tion can be used to compress already compact CNN models
of MI-BCIs while improving classification accuracy at the
same time. The noisy retrieval of weights introduces errors
into the CNN causing severe degradation in accuracy, how-
ever, our proposed iterative retraining procedure recovers the
performance with a compression ratio of ≈3×: nine subject-
specific EEGNet models at 72.32% accuracy are compressed
by 1.9× to a single model (9,620 parameters) at 74.73%
accuracy; similarly, nine Shallow ConvNet models at 73.59%

are compressed by 2.95× to one model (144,316 parameters)
at 75.05%. Moreover, hyperdimensional superposition can be
used as a tool to identify compression friendly vs. non-
compressible layers in larger CNNs. Ongoing work is focused
on capacity analysis for a larger number of subjects.

ACKNOWLEDGMENT
This project was supported in part by ETH Research Grant

09 18-2, by the Hasler Foundation under project no. 18082,
and by EU’s H2020 under grant no. 780215.

REFERENCES
[1] V. J. Lawhern, A. J. Solon et al., “EEGNet: a compact convolutional

neural network for EEG-based braincomputer interfaces,” Journal of
Neural Engineering, vol. 15, no. 5, p. 056013, 2018.

[2] R. T. Schirrmeister, J. T. Springenberg et al., “Deep learning with
convolutional neural networks for EEG decoding and visualization,”
Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420, 2017.

[3] B. Graimann, B. Allison et al., “BrainComputer Interfaces: A Gentle
Introduction.” Springer, Berlin, Heidelberg, 2009, pp. 1–27.

[4] M. Tangermann, K.-R. Müller et al., “Review of the BCI Competition
IV.” Frontiers in neuroscience, vol. 6, p. 55, 2012.

[5] Kai Keng Ang, Zhang Yang Chin et al., “Filter Bank Common
Spatial Pattern (FBCSP) in Brain-Computer Interface,” in 2008
IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence). IEEE, 2008, pp. 2390–2397.

[6] H. Dose, J. S. Moller et al., “A Deep Learning MI - EEG Classification
Model for BCIs,” in 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE, 2018, pp. 1676–1679.

[7] Y. R. Tabar and U. Halici, “A novel deep learning approach for
classification of EEG motor imagery signals,” Journal of Neural
Engineering, vol. 14, no. 1, p. 016003, 2017.

[8] M. Hersche, T. Rellstab et al., “Fast and Accurate Multiclass Inference
for MI-BCIs Using Large Multiscale Temporal and Spectral Features,”
in 2018 26th European Signal Processing Conference (EUSIPCO).
IEEE, 2018, pp. 1690–1694.

[9] A. Barachant, S. Bonnet et al., “Classification of covariance
matrices using a Riemannian-based kernel for BCI applications,”
Neurocomputing, vol. 112, pp. 172–178, 2013.

[10] F. Lotte, L. Bougrain et al., “A review of classification algorithms for
EEG-based braincomputer interfaces: a 10 year update,” Journal of
Neural Engineering, vol. 15, no. 3, p. 031005, 2018.

[11] E. Nurse, B. S. Mashford et al., “Decoding EEG and LFP signals using
deep learning,” in Proceedings of the ACM International Conference
on Computing Frontiers - CF ’16. New York, New York, USA: ACM
Press, 2016, pp. 259–266.

[12] C. Sakr and N. Shanbhag, “Minimum Precision Requirements for Deep
Learning with Biomedical Datasets,” in 2018 IEEE Biomedical Circuits
and Systems Conference (BioCAS), 2018, pp. 1–4.

[13] P. Kanerva, “Hyperdimensional Computing: An Introduction to
Computing in Distributed Representation with High-Dimensional
Random Vectors,” Cognitive Computation, vol. 1, no. 2, 2009.

[14] T. Plate, “Holographic reduced representations,” IEEE Transactions on
Neural Networks, vol. 6, no. 3, pp. 623–641, 1995.

[15] B. Cheung, A. Terekhov et al., “Superposition of many models into
one,” arXiv:1902.05522 [cs], no. 1, 2019.

[16] C. Brunner, R. Leeb et al., “BCI competition 2008 - Graz data set A,”
doi: 10.1007/BF00994018.

[17] A. Uran, C. van Gemeren et al., “Applying Transfer Learning To Deep
Learned Models For EEG Analysis,” arXiv:1907.01332 [cs, eess, stat],
2019.

[18] A. Rahimi, P. Kanerva et al., “Efficient biosignal processing using
hyperdimensional computing: Network templates for combined learning
and classification of exg signals,” Proceedings of the IEEE, vol. 107,
no. 1, pp. 123–143, Jan 2019.

[19] M. A. Kelly, D. Blostein et al., “Encoding structure in holographic re-
duced representations,” Canadian Journal of Experimental Psychology,
vol. 67, no. 2, pp. 79–93, 2013.

[20] A. G. Anderson and C. P. Berg, “The High-Dimensional Geometry
of Binary Neural Networks,” International Conference on Learning
Representations, 2017.


