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Dimensional Data with Application on Windfarm SCADA Data

C. Mylonas1, I. Abdallah1, and E. N. Chatzi1
1Institute of Structural Engineering, ETH Zürich, Stefano-Franscini-Platz 5, CH-8093 Zürich,

Switzerland

ABSTRACT

In this work we are addressing the problem of statistical modeling of the joint distribution of data collected from wind turbines
interacting due to collective effect of their placement in a wind-farm, the wind characteristics (speed/orientation) and the turbine
control. Operating wind turbines extract energy from the wind and at the same time produce wakes on the down-wind turbines
in a park, causing reduced power production and increased vibrations, potentially contributing in a detrimental manner to
fatigue life. This work presents a Variational Auto-Encoder (VAE) Neural Network architecture capable of mapping the high
dimensional correlated stochastic variables over the wind-farm, such as power production and wind speed, to a parametric
probability distribution of much lower dimensionality. We demonstrate how a trained VAE can be used in order to quantify
levels of statistical deviation on condition monitoring data. Moreover, we demonstrate how the VAE can be used for pre-
training an inference model, capable of predicting the power production of the farm together with bounds on the uncertainty of
the predictions.

Examples employing simulated wind-farm Supervisory Control And Data Acquisition (SCADA) data are presented. The sim-
ulated farm data are acquired from a Dynamic Wake Meandering (DWM) simulation of a small wind farm comprised of nine
5MW turbines in close spacing using OpenFAST.

The contribution of this work lies in the introduction of state-of-the-art machine learning techniques in the general context
of condition monitoring and uncertainty quantification. We show how the high dimensional joint probability distribution of
condition monitoring parameters can be analyzed by exploiting the underlying lower dimensional structure of the data imposed
by the physics of the problem. The process of making use of the trained joint distribution for the purposes of inference under
uncertainty and condition monitoring is clearly exposed.
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INTRODUCTION

Wind turbines are subjected to stochastic loadings throughout their lifetime. Many wind turbines are reaching their end of design
life which is 20-25 years. It is of interest to estimate the level of structural damage they have been subjected throughout their
lifetime. The turbines can either be refurbished or decomissioned depending on the estimated level of structural deterioration.
Due to the requirements for control in the level of electrical grid integration, but also for optimal power production, utility-
scale wind turbines contain a supervisory control and data acquisition platform (SCADA) which typically registers 10 minute
mean and standard deviation of several quantities of interest. The SCADA stream may contain useful information not only
for estimating the current state of the structure based on past measurements, but also for detecting malfunctioning components
based on instantaneous SCADA measurements. Both tasks rely on the statistical modelling of the SCADA stream, while at the
same time modelling the environmental conditions. That is due to the fact that wind, together with pitch and yaw control, are
the primary causes of mechanical straining for wind turbines.

Moreover, for the case of turbines positioned in a park, it is of importance to consider the potential interactions of them through
wakes. Wakes in the context of this work, are the result of vortices produced on the tip of horizontal axis wind turbines (HAWT).
In this work we have performed a medium-fidelity wake simulation for a windfarm containing 9 turbines with rated capacity of
5MW in a three-by-three arrangement. We used the so-called Dynamic Wake Meandering (DWM) simulation model [1] for the
effect of wakes as it is implemented in the NTWC simulation suite [2]. The two main parameters characterizing wind statistics
in this work are the 10 minute mean windspeed, and turbullence intensity. The mean windspeed distribution typically changes



Fig. 1 The layout of the studied simulated farm

with height, however for the simulations that this work considers we have not statistically modelled this effect (typically refered
to as wind shear).

DESCRIPTION OF THE METHOD

Simulated SCADA dataset

Figure 1 displays a sketch of the turbine layout on the considered windfarm. In total, 600 aero-servo-elastic simulations were
run for randomly sampled windpseed and turbullence intensity, according to their joint distribution, as defined in IEC 64100
design standard [3] for a class C turbine. The raw simulated dataset consists of dynamic and operational measurements, such
as time-domain tower and blade root moments and power production for the 9 wind turbines for 2000 seconds. The first 400
seconds in the time domain results are ignored in order for the farm to reach approximately stationary operational conditions.
Consequently, two 600 second intervals are considered from each simulation, ammounting to 1200 stochastic inputs.

The aero-servo-elastic simulations were performed with NREL-OpenFAST using the simplified ElastoDyn module and the
AeroDyn14 module for aerodynamics and the simulations of the downstream wakes, using the DWM simulator. The windfields
used for the simulations are created with TurbSim, with the Kaimal turbullence model and using a different random seed for
every simulation. Therefore the response of each turbine and the farm as a whole is fully stochastic. The DWM model can
capture the meandering and expanding of wakes.

Variational Autoencoder

Relatively recently, in the concurrent works of [4] and [5], an efficient method for building probabilistic latent variable models
was proposed. The model form of the so-called Variational Autoencoder (VAE) is shown in Figure 2.
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Fig. 2 The variational autoencoder as a probabilistic graphical model. Solid lines denote the generative model (decoder)
pθ(z)pθ(x|z), dashed lines denote the variational approximation qφ(z|x) to the posterior pθ(z|x). The variational
parameters φ to be learned jointly with the generative model parameters θ.



The Variational Autoencoder (VAE) is a re-formulation of the autoencoder [6] where the encoder, refered to also as the recog-
nition model, parametrizes a known probability distribution qφ(x|z) over latent variables z which is an approximation to the
true posterior distribution pφ(x|z). The encoder and the decoder, are both implemented as deep neural networks.

The likelihood of the datapoints reads

logpθ
(x(1), · · · ,x(N)) =

N∑
i=1

log pθ(x
(i)) (1)

For training the VAE, we optimize a lower bound on the likelihood of each datapoint that is given in Equation 2.

L(φ,θ;x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqθ(z|x(i))

[
log pθ(x

(i)|z)
]

(2)

The first term of the right-hand-side is the Kulback-Leibler divergence between a prior over the latent variable z and the
variational posterior qφ(z|x). The second term in the RHS is the expected likelihood of the data given a set of samples from
the latent space. The quantity in Equation 2 is referred to as the Evidence Lower Bound (ELBO). We can chose qφ(z|x) to
be from a parametric family. In this work, we chose a diagonal Gaussian qφ(z|x) = N (µ(x), σ(x)). We can re-parametrize
samples from a Gaussian distribution, as scaled and shifted samples from a standard Gaussian auxiliary variable ε ∼ N (0., I),
and consequently we can train on the scaling and shifting of the distribution, in practice, deterministically. Note, however, that
during the evaluation of the network sampling is performed. The computational graph with this re-parametrization is shown
in 3. This re-parametrization trick was proposed independently by [4] and [5]. Without this re-parametrization, alternative
sampling based estimators for the gradient could have been used for optimization of the hyper parameters. These sampling
based estimates are far less efficient and are expected to have much higher variance, especially for cases of large and diverse
datasets. This is the main trick that makes training of VAEs efficient and scalable to large datasets.

Fig. 3 The computational graph of a VAE with a Gaussian stochastic layer. In essense, we compress the raw high
dimensional SCADA data X ∈ RD dimensional SCADA stochastic vectors, to a z ∈ RM dimensional
stochastic vector. (M << D)

Sampling from the trained model

In the context of a VAE, the problem of approximating the high dimensional joint distribution of the 45 dimensional raw
data vector, is cast as a problem of discovering a distribution over a lower dimensional random vector, that we have assumed
is distributed according to a known prior distribution q(z). For the simulated farm studied in this work, a stochastic latent
vector of size 3 was found to be adequate to capture most of the variations in the data. The encoder is expected to exploit
the correlations between the raw input variables, allowing for a lower dimensional representation. Samples from the training
dataset, together with samples from a variational autoencoder trained on the simulated farm data are shown in 4 and 5. It is
observed that the approximation is not as good in regions of lower probability mass. Nevertheless, for our purposes the VAE
gives a good enough approximation, For clarity, the windspeed and turbullence intensity are shown separately for each turbine,



whereas the autoencoder learns them jointly. Moreover, the angle-dependent effect of wakes makes the turbullence intensity
higher on waked turbines and this cannot be seen in this figure.

Fig. 4 The samples from the simulation are denoted with blue dots. With orange dots are the sam-
ples from the VAE. The autoencoder seems to perform well in capturing the windspeed and
turbulence distribution of all the turbines.

For more intuition on the representation that the autoencoder learns, the latent space is presented in Figure 6. The first two
columns are the sinus and cosinus of the mean angle of the wind in the farm. It is interesting to note, that the latent factor in
column 4 seems to be directly correlated with mean windspeed. The mean inflow angle was kept as a deterministic variable in
the latent space. We can easilly control the mean angle and make predictions from the VAE with bounds on the uncertainty,
while sampling from the prior distribution p(z).

Using the joint distribution for predictions

In Figure 7, samples from the autoencoder are drawn, conditioned on a windspeed range from the middle of the power curve
up to the rated power ([10m/s, 12m/s]). This region of the power curve is expected to have the most pronounced wake effects,
in terms of power production. That is mostly due to the fact that we are in the below rated regime, and the windspeed is high



Fig. 5 Recostruction of mean power curve for 3x3 farm.

enough for the effect to propagate in a large distance. Note, that the dots are 5000 samples from the autoencoder for varying
wind orientation, and unseen examples. It is observed that the deficits on windspeed present extrema at multiples of 45◦ as it
was expected from the configuration of the windfarm. Moreover, at multiples of 90◦ from zero, the farm presents the highest
wake deficits, whereas on mupltiples of 90◦ from 45◦ the peaks of wake deficit are lower. This is expected due to the geometry
of the farm. However, the autoencoder has not learned a representation that corresponds to the symmetries we would expect,
since there is no effect captured in angles ±26.56◦ around every 45◦ spaced point. This is a subtle effect due to the alignment
of the center turbine of one side of the farm, with the turbines on the edges of the opposing side. It is believed that this is
mostly due to the relatively small number of simulations available for the problem at hand. Finally in Figure 8 the ratio of
power production of turbine T (2,2) to the maximum power produced in the farm is given. The correct angles are identified as
the peaks of wake deficit, and bounds on the uncertainty of the estimation can be obtained by the samples of the autoencoder.
There are some outliers which can be treated either with more training or more input data.

Using the VAE for probabilistic condition monitoring

For a well trained variational autoencoder, where the latent variables have indeed converged to the assumed prior p(z), given a
raw SCADA measurement the encoder will produce a point in the latent space z. Since we have endowed the latent space with
a known probability distribution, we can compute the likelihood of the raw datapoint as the likelihood of the latent space. It has
to be stressed, that this will be a good estimate only if the DKL term in Equation 2 is very low. In our examples we didn’t have
any simulated faults and therefore no results are presented for that application. This may be a complementary approach to fault
detection as proposed in [7].

CONCLUSIONS

In this work we have demonstrated how a deep variational autoencoder neural network can be used in order to yield interpretable
insights on high dimensional monitoring data. In works to follow, investigations on the architecture of the network are going to
be presented, as well as results from the application of the technique on real farm SCADA data.
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Fig. 6 The latent space variables, colored according to mean farm windspeed. Rows and columns 3 to 5 are the
probabilistic latent factors, whereas the mean angle is kept deterministic for easier estimation of predic-
tions w.r.t. angle.
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Fig. 7 Estimates of the maximum wake deficit estimated by the autoencoder. Red lines correspond to multiples
of 90◦ for the angle of windspeed and green lines correspond to multiples of 90◦but with a 45◦ shift.

Fig. 8 VAE samples for the wake deficits for turbine (2,2) (see Figure 1 for numbering). The power deficit is
defined as the ratio of the power of the turbine, to the maximum power produced from the farm for a given
sample. The estimated mean power deficit is shown with the blue curve.
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