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A unified approach to well-posedness of type-I
backward stochastic Volterra integral equations*
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Abstract

We study a novel general class of multidimensional type-I backward stochastic Volterra
integral equations. Toward this goal, we introduce an infinite family of standard
backward SDEs and establish its well-posedness, and we show that it is equivalent to
that of a type-I backward stochastic Volterra integral equation. We also establish a
representation formula in terms of non-linear semi-linear partial differential equation
of Hamilton–Jacobi–Bellman type. As an application, we consider the study of time-
inconsistent stochastic control from a game-theoretic point of view. We show the
equivalence of two current approaches to this problem from both a probabilistic and
an analytic point of view.
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1 Introduction

This paper is concerned with introducing a unified method to address the well-
posedness of backward stochastic Volterra integral equations, BSVIEs for short. BSVIEs
are regarded as natural extensions of backward stochastic differential equations, BS-
DEs for short. On a complete filtered probability space (Ω,G,G,P), supporting an
n-dimensional Brownian motion B, and denoting by G the P-augmented natural filtration
generated by B, one is given data, that is to say a GT -measurable random variable ξ, and
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A unified approach to well-posedness of type-I BSVIEs

a mapping g, referred to respectively as the terminal condition and the generator. A
solution to a BSDE is a pair of G-adapted processes (Y·, Z·) such that

Yt = ξ +

∫ T

t

gr(Yr, Zr)dr −
∫ T

t

ZrdBr, t ∈ [0, T ], P−a.s. (1.1)

BSDEs of linear type were first introduced by Bismut [10, 11] as an adjoint equation
in the Pontryagin stochastic maximum principle. Actually, the contemporary work of
Davis and Varaiya [20]1 studied a precursor of a linear BSDE for characterising the
value function and the optimal controls of stochastic control problems with drift control
only. In the same context of the stochastic maximum principle, BSDEs of linear type are
present in Arkin and Saksonov [7], Bensoussan [9] and Kabanov [33]. Remarkably, the
extension to the non-linear case is due to Bismut [12], as a type of Riccati equation, as
well as Chitashvili [16], and Chitashvili and Mania [17, 18]. Later, the seminal work of
Pardoux and Peng [40] presented the first systematic treatment of BSDEs in the general
nonlinear case, while the celebrated survey paper of El Karoui, Peng, and Quenez [25]
collected a wide range of properties and applications of BSDEs to finance. Among such
properties we recall the so-called flow property, that is to say, for any 0 ≤ r ≤ T ,

Yt(T, ξ) = Yt(r, Yr(T, ξ)), t ∈ [0, r], P−a.s., and,

Zt(T, ξ) = Zt(r, Yr(T, ξ)), dt⊗ dP−a.e. on [0, r]× Ω,

where (Y (T, ξ), Z(T, ξ)) denotes the solution to the BSDE with terminal condition ξ and
final time horizon T .

A natural extension of (1.1) arises by considering a collection of GT -measurable
random variables (ξ(t))t∈[0,T ], referred in the literature of BSVIEs as the free term,
as well as a generator g. In such a setting, a solution to a BSVIE is a pair (Y·, Z

·
· ) of

processes such that

Yt = ξ(t) +

∫ T

t

gr(t, Yr, Z
t
r, Z

r
t )dr −

∫ T

t

ZtrdBr, P−a.s., t ∈ [0, T ]. (1.2)

Of noticeable interest is the case in which the term Zrt is absent in the generator, i.e.

Yt = ξ(t) +

∫ T

t

gr(t, Yr, Z
t
r)dr −

∫ T

t

ZtrdBr, P−a.s., t ∈ [0, T ]. (1.3)

Nowadays (1.3) and (1.2) are referred in the literature as type-I and type-II BSVIEs,
respectively. The first mention of such equations is, to the best of our knowledge, due to
Hu and Peng [31]. Indeed, in the context of well-posedness of BSDEs valued in a Hilbert
space, a prototype of type-I BSVIEs (1.3) is considered, see the comments following [31,
Remark 1.1]. Two decades passed before a direct consideration of BSVIEs of the form
given by (1.3) was made by Lin [37], where the author studied the case ξ(t) = ξ, t ∈ [0, T ],
for a GT -measurable ξ. The general form of (1.2) was first addressed in Yong [69, 71] in
the context of optimal control of (forward) stochastic Volterra integral equations (FSVIEs,
for short).

There are significant distinctions between BSDEs and BSVIEs. Nevertheless, a
satisfactory concept of solution for such equations can be defined by extrapolating
from the theory of BSDEs. In broad terms, a pair (Y·, Z

·
· ) is said to be a solution to a

BSVIE, see [71], if for each s ∈ [0, T ), the mapping t 7−→ (Yt, Z
s
t ) is G-adapted on [s, T ],

(Y,Z) is appropriately integrable and satisfies (1.2). It is also worth pointing out the
distinctions between type-I and type-II BSVIEs. As a consequence of the presence of

1Indeed, [20] was received for publication on October 27, 1971 and it is part of the bibliography of [11].
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Zst in the generator, to obtain a solution to a type-II BSVIE one has to determine Zst for
(t, s) ∈ [0, T ]2, and (1.2) alone does not give enough restrictions. Indeed, [71] showed
that an adapted solution to the type-II BSVIE (1.2) may, in general, not be unique. This
is in contrasts with type-I BSVIEs, where it suffices to determine Zst for (t, s) ∈ [0, T ]2,

0 ≤ s ≤ t ≤ T . Moreover, without additional assumptions, a solution to a general type-II
BSVIE does not satisfy the flow property.

Since their introduction, BSVIEs have been extended to much more general frame-
works than the one presented above. Hence, Wang [57] studies the case of random
Lipschitz data; Wang and Zhang [66] and Shi and Wang [47] deal with general non-
Lipschitz data; Coulibaly and Aman [19] study time-delayed generators; mean-field
BSVIEs are considered in Shi, Wang, and Yong [48]; Lu [38], Hu and Øksendal [30] and
Popier [42] studied extensions to general filtrations and the case where B is replaced by
more general processes; Djordjević and Janković [22, 21] were interested in perturbed
BSVIEs, i.e. when the coefficients depend additively on small perturbations; BSVIEs in
Hilbert spaces have been investigated in Anh and Yong [5], Anh, Grecksch, and Yong
[6], and Ren [45]; and an analysis of numerical schemes for BSVIEs has been proposed
in Bender and Pokalyuk [8]. There is also a wide spectrum of applications of BSVIEs.
Hence, dynamic risk measures have been considered in Yong [70], Wang and Shi [61, 62],
Wang, Sun, and Yong [55] and Agram [1]. Kromer and Overbeck [35] also studied the
question of dynamic capital allocations via BSVIEs. Wang and Shi [60] dealt with a
risk minimisation problem by means of the maximum principle for FBSVIEs, while the
optimal control of SVIEs and BSVIEs via the maximum principle has been studied in
Chen and Yong [15], Wang [59], Agram, Øksendal, and Yakhlef [3, 4], Shi, Wang, and
Yong [49], Shi, Wen, and Xiong [50], see also Wei and Xiao [67] for the case with state
constraints.

Since their first appearance, a natural and non-trivial question for BSVIEs has been
that of the regularity in time of their solutions. The best known probabilistic results for
general type-II BSVIEs guarantee the regularity of the solutions in an Lp sense only, see
Wang [58] and Li, Wu, and Wang [36]. Nevertheless, analytic results via a representation
formula, guarantee the pathwise regularity of a solution to type-I BSVIEs, see Wang
and Yong [64] and Wang, Yong, and Zhang [56] for results regarding the representation
of BSVIEs in the Markovian and non-Markovian framework, respectively. Regarding
BSVIEs driven by discontinuous processes, it is known that type-I BSVIEs are much
more amenable to the analysis, for example [42; 66] are able to study the regularity of
type-I BSVIEs with jumps by probabilistic methods. Extending these ideas to type-II
BSVIEs is a more challenging task, see for instance Overbeck and Röder [39].2 General
discontinuous BSVIEs are out of the scope of our paper, and we leave a possible extension
for future research.

Out of the class of processes described by BSVIEs, a broader family than that of
standard type-I BSVIEs (1.3) is known to arise in the study of time-inconsistent control
problems. Recently, Agram and Djehiche [2] studied reflected backward stochastic
Volterra integral equations and their relations to a time-inconsistent optimal stopping
problem. Earlier connections were suggested in the concluding remarks of Wang and
Yong [64]. Indeed, BSVIEs provide a probabilistic representations of the system of partial
differential equation (PDE, for short) appearing in the study of time-inconsistent optimal
control problems, e.g. see Yong [72] and Wei, Yong, and Yu [68] for PDEs obtained
via Pontryagin’s and Bellman’s principle, respectively. A natural link was then made
rigorous independently by Wang and Yong [54, Section 5] and Hernández and Possamaï

2We highlight here a potential problematic argument in [39, Corollary 1], which was pointed out to us by a
referee. Indeed, it is claimed there that if t 7−→ Y s

t and s 7−→ Y s
t are càdlàg, then t 7−→ Y t

t is also càdlàg,
which in general is not true. In our framework this will not be an issue.
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[29, Lemma A.2.3]. Although following different approaches, their analyses lead to
introduce type-I BSVIEs of the form

Yt = ξ(t) +

∫ T

t

gr(t, Yr, Z
t
r, Z

r
r )dr −

∫ T

t

ZtrdBr, P−a.s., t ∈ [0, T ]. (1.4)

These are BSVIEs in which the diagonal of Z appears in the generator. We highlight
that, until the present work, the only well-posedness results in the literature for type-I
BSVIEs (1.4) are available in [54] and [29]. Both results hold for the particular case in
which the driver g is linear in Ztr. Indeed, the argument in [54] follows as a consequence
of the representation formula, i.e. an analytic argument via PDEs, and holds in a
Markovian setting. On the other hand, the probabilistic argument in [29] holds in the
non-Markovian case.

Likewise, Hamaguchi [26, 27] studied a time-inconsistent control problem where the
cost functional is defined by the Y component of the solution of a type-I BSVIE (1.3), in
which g depends on a control. Via Pontryagin’s optimal principle, the author noticed
that the adjoint equations correspond to an extended type-I BSVIE, as first introduced
in Wang [53] in the context of generalising the celebrated Feynman–Kac formula. An
extended type-I BSVIE consists of a pair (Y ·· , Z

·
· ), with appropriate integrability, such that

s 7−→ Y s is continuous in an appropriate sense for s ∈ [0, T ], Y s· is pathwise continuous,
Zs· is predictable, and

Y st = ξ(s) +

∫ T

t

gr(s, Y
s
r , Z

s
r , Y

r
r )dr −

∫ T

t

ZsrdBr, t ∈ [0, T ], P−a.s., s ∈ [0, T ]. (1.5)

We highlight that the noticeable feature of (1.4) and (1.5) is the appearance of the
‘diagonal’ processes (Y tt )t∈[0,T ] and (Ztt )t∈[0,T ], respectively. A prerequisite for rigorously
introducing these processes is some regularity of the solution. Indeed, the regularity of
s 7−→ (Y s, Zs) in combination with the pathwise continuity of Y and the introduction of a
derivative of Zs with respect to s, as first discussed in [29], make the analysis possible,
see Remark 3.4 for details.

Put succinctly, type-I BSVIEs, understood in a broader sense than that of (1.3),
provide a rich framework to address new classes of problems in mathematical finance
and control. In the case of time-inconsistent control problems, (1.4) and (1.5) appear as
a consequence of the study of such problems via Bellman’s and Pontryagin’s principles,
respectively. Consequently, in this paper we want to build upon the strategy devised in
[29] and address the well-posedness of a general and novel class of type-I BSVIEs. We
let X be the solution to a drift-less stochastic differential equation (SDE, for short) under
a probability measure P, and F be the P-augmentation of the filtration generated by X,
see Section 2.1 for details, and consider a tuple (Y ·· , Z

·
· , N

·
· ), of appropriately F-adapted

processes, which for any s ∈ [0, T ] satisfy, P−a.s. for any t ∈ [0, T ], the equation

Y st = ξ(s) +

∫ T

t

gr(s,X, Y
s
r , Z

s
r , Y

r
r , Z

r
r )dr −

∫ T

t

ZsrdXr −
∫ T

t

dNs
r , (1.6)

We remark that the additional process N corresponds to a martingale process which
is P-orthogonal to X. This is a consequence of the fact that we work with a general
filtration F. To the best of our knowledge, a theory for type-I BSVIEs, as general as the
ones introduced above, remains absent in the literature. Moreover, such class of type-I
BSVIEs has only been mentioned in [27, Remark 3.8] as an interesting generalisation
of (1.5).

Our approach is based on the following class of infinite families of BSDEs, given for
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any s ∈ [0, T ], by

Yt = ξ(T ) +

∫ T

t

hr(X,Yr,Zr, Y rr , Zrr )dr −
∫ T

t

ZrdXr −
∫ T

t

dNr, t ∈ [0, T ], P−a.s.,

Y st = η(s) +

∫ T

t

gr(s,X, Y
s
r , Z

s
r ,Yr,Zr)dr −

∫ T

t

ZsrdXr −
∫ T

t

dNs
r , t ∈ [0, T ], P−a.s.,

where (Y,Z,N , Y, Z,N) are unknown, and required to have appropriate integrability,
see Section 3 and Equation (S).

We first establish the well-posedness of (S), see Theorem 3.6. For this it is important
to be able to identify the proper spaces to carry out the analyses, see Remark 3.4.
Moreover, we show that, for an appropriate choice of data for (S), its well-posedness is
equivalent to that of the type-I BSVIE (1.6), see Theorem 4.4. Noticeably, our approach
can naturally be specialised to obtain the well-posedness of (1.3), (1.4) and (1.5) in the
classic spaces, see Remark 4.5. Moreover, as our results provide an alternative approach
to BSVIEs, it may allow for the future design of new numerical schemes to solve type-I
BSVIEs, which to the best of our knowledge, remain limited to [8]. In addition, we
recover classical results for this general class of multidimensional type-I BSVIEs. We
provide a priori estimates, show the stability of solutions as well as a representation
formula in terms of a semilinear PDEs, see Proposition 5.1. Given our multidimensional
setting, we refrained from considering comparison results, see Wang and Yong [63] for
the one-dimensional case.

As an application of our results, we consider the game-theoretic approach to time-
inconsistent stochastic control problems. We recall this approach studies the problem
faced by the, so-called, sophisticated agent who aware of the inconsistency of its
preferences seeks for consistent plans, i.e. equilibria. We show that as a consequence
of Theorem 4.4, one can reconcile two recent probabilistic approaches to this problem.
Moreover, we provide, see Proposition 5.3, an equivalent result for two earlier analytic
approaches, based on semi-linear PDEs. We believe this helps to elucidate connections
between the different takes on the problem available in the literature.

The rest of the paper is structured as follows. Section 2 introduces the stochastic
basis on a canonical space as well as the integrability spaces necessary to our analy-
sis. Section 3 precisely formulates the class of infinite families of BSDEs (S), which is
the crux of our approach, and provides the statement of its well-posedness, while the
proof is deferred to Section 6. Section 4 introduces the class of type-I BSVIEs which
are the main object of this paper, and establishes the equivalence of its well-posedness
with that of (S) for a particular choice of data. Section 5 deals with the representation
formula for the class of type-I BSVIEs considered, and presents the application of our
results in the context of time-inconsistent stochastic control. Finally, Section 6 includes
the analysis of (S).

2 Preliminaries

Notations: we fix a time horizon T > 0. Given (E, | · |) a finite-dimensional Euclidean
space, a positive integer d, and a non-negative integer q, Cdq (E) (resp. Cdq,b(E)) will denote

the space of functions from E to Rd which are q times continuously differentiable (resp.
and bounded with bounded derivatives). When d = 1 we write Cq(E) and Cq,b(E). For
φ ∈ C0,q([0, T ]× E) with q ≥ 2, if s 7−→ φ(s, α) is uniformly continuous uniformly in α, we
denote by ρφ : [0, T ] −→ R its modulus of continuity. ∂αφ and ∂2

ααφ denote the gradient
and Hessian with respect to α, respectively. For (u, v) ∈ (Rp)2, u ·v will denote their usual
inner product, and |u| the corresponding norm. For positive integers m and n, we denote
by Mm,n(R) the space of m × n matrices with real entries, and set Mn(R) := Mn,n(R).
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For M ∈Mm,n(R), M:i and Mi: denote the i-th column and row. S+
n (R) denotes the set

of n × n symmetric positive semi-definite matrices, while Tr[M ] denotes the trace of
M ∈Mm(R), and |M | :=

√
Tr[M>M ] for M ∈Mm,n(R).

For (Ω,F) a measurable space, Prob(Ω) denotes the collection of probability measures
on (Ω,F). For a filtration F := (Ft)t∈[0,T ] on (Ω,F), Ppred(E,F) (resp. Pprog(E,F),
Popt(E,F), Pmeas(E,F)) denotes the set of E-valued, F-predictable processes (resp. F–
progressively measurable processes, F-optional processes, F-adapted and measurable).
For P ∈ Prob(Ω), FP := (FPt )t∈[0,T ], denotes the P-augmentation of F, where for t ∈ [0, T ],
FPt := Ft ∨ σ(NP), where NP := {N ⊆ Ω : ∃B ∈ F , N ⊆ B and P[B] = 0}. With this,
P ∈ Prob(Ω) can be extended so that (Ω,F ,FP,P) becomes a complete probability
space, see Karatzas and Shreve [34, Chapter II.7]. FP+ denotes the right limit of FP, i.e.
FPt+ :=

⋂
ε>0 FPt+ε, t ∈ [0, T ), and FPT+ := FPT , so that FP+ is the minimal filtration that

contains F and satisfies the usual conditions.

2.1 The stochastic basis on the canonical space

We fix two positive integers n and m, which represent respectively the dimension
of the martingale which will drive our equations, and the dimension of the Brownian
motion appearing in the dynamics of the former. We consider the canonical space
X := C([0, T ],Rn), with canonical process X. We let F be the Borel σ-algebra on X (for
the topology of uniform convergence), and we denote by Fo := (Fot )t∈[0,T ] the natural
filtration of X. We fix a bounded Borel measurable map σ : [0, T ]×X −→ Rn×m, σ·(X) ∈
Pmeas(R

n×m,Fo), and an initial condition x0 ∈ Rn. We assume there is P ∈ Prob(X ) such
that P[X0 = x0] = 1 and X is martingale, whose quadratic variation, 〈X〉 = (〈X〉t)t∈[0,T ],
is absolutely continuous with respect to Lebesgue measure, with density given by σσ>.
Enlarging the original probability space, see Stroock and Varadhan [51, Theorem 4.5.2],
there is an Rm-valued Brownian motion B with

Xt = x0 +

∫ t

0

σr(X·∧r)dBr, t ∈ [0, T ], P−a.s.

We now let F := (Ft)t∈[0,T ] be the (right-limit) of the P-augmentation of Fo. We
stress that we will not assume P is unique. In particular, the predictable martingale
representation property for (F,P)-martingales in terms of stochastic integrals with
respect to X might not hold.

Remark 2.1. We remark that the previous formulation on the canonical is by no means
necessary. Indeed, any probability space supporting a Brownian motion B and a process
X satisfying the previous SDE will do, and this can be found whenever that equation has
a weak solution.

2.2 Functional spaces and norms

We now introduce our spaces. In the following, (Ω,FT ,F,P) is as in Section 2.1.
We are given a finite-dimensional Euclidean space, i.e. E = Rk for some non-negative
integer k and | · | denotes the Euclidean norm. For any (p, q) ∈ (1,∞)2, we introduce the
spaces

• Lp(E) of FT -measurable, E-valued random variables ξ, ‖ξ‖pLp := EP[|ξ|p] <∞;

• Sp(E) of Y ∈ Popt(E,F), with P−a.s. càdlàg paths, ‖Y ‖pSp := EP
[

sup
t∈[0,T ]

|Yt|p
]
<∞;

• Lq,p(E) of Y ∈ Popt(E,F), ‖Y ‖pLq,p := EP
[(∫ T

0

|Yr|qdr
) p

q
]
<∞;
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• Hp(E) of Z ∈ Ppred(E,F), defined σσ>t dt−a.e., ‖Z‖pHp := EP
[(∫ T

0

|σtZr|2dr

) p
2
]
<∞;

• Mp(E) of martingales M ∈ Popt(E,F), P-orthogonal to X (that is the product XM is an

(F,P)-martingale), with P−a.s. càdlàg paths, M0 = 0 and ‖M‖pMp := EP
[
[M ]

p
2

T

]
<∞;

• Lp,2(E) denotes the space of families (ξ(s))s∈[0,T ] of FT -measurable E-valued random
variables such that the mapping ([0, T ]×Ω,B([0, T ])⊗F) −→ (Lp(E), ‖·‖Lp) : s 7−→ ξ(s)

is continuous, ‖ξ‖pLp,2 := sups∈[0,T ] ‖ξ‖
p
Lp <∞;

• P2
meas(E,FT ) of two parameter processes (Ust )(s,t)∈[0,T ]2 : ([0, T ]2 × Ω,B([0, T ]2) ⊗
FT ) −→ (E,B(E)) measurable.

Finally, given an arbitrary integrability space (Ip(E), ‖ · ‖I), we introduce the space

• Ip,2(E) of (Ust )(s,t)∈[0,T ]2 ∈ P2
meas(E,FT ) such that the mapping ([0, T ],B([0, T ])) −→

(Ip(E), ‖ · ‖Ip) : s 7−→ Us is continuous and ‖U‖p
Ip,2

:= sups∈[0,T ] ‖Us‖
p
Ip <∞.

For example, Hp,2(E) denotes the space of (Zst )(s,t)∈[0,T ]2 ∈ P2
meas(E,FT ) such that the

mapping ([0, T ],B([0, T ])) −→ (Hp(E), ‖ · ‖Hp) : s 7−→ Zs is continuous and ‖Z‖p
Hp,2 :=

sups∈[0,T ] ‖Zs‖
p
Hp <∞.

Lastly we introduce the space, see Remark 2.2 for further details,

• Hp,2(E) of (Zst )(s,t)∈[0,T ]2 ∈ P2
meas(E,FT ) such that ([0, T ],B([0, T ])) −→ (Hp(E), ‖·‖Hp) :

s 7−→ Zs is absolutely continuous with respect to the Lebesgue measure3, Z ∈ H2(E),
where Z := (Ztt )t∈[0,T ] is given by

Ztt := ZTt −
∫ T

t

ðZrt dr, and, ‖Z‖2
Hp,2

:= ‖Z‖2H2,2 + ‖Z‖2H2 <∞

Remark 2.2. When p = q, we will write Lp(E)
(
resp. Lp,2(E)

)
for Lq,p(E)

(
resp.

Lq,p,2(E)
)
. With this convention, L2(E)

(
resp. L2,2(E)

)
will be L2,2(E)

(
resp. L2,2,2(E)

)
.

Also, Sp,2(E), Lq,p,2(E) and Hp,2(E) are Banach spaces.

In addition, we remark that the space H2(E) being closed implies Hp,2(E) is a closed
subspace of Hp,2(E) and thus a Banach space. The space Hp,2(E) allows us to define a
good candidate for (Ztt )t∈[0,T ] as an element of H2(E).4 Let Ω̃ := [0, T ]×X , ω̃ := (t, x) ∈ Ω̃

and

Zs(ω̃) := ZTt (x)−
∫ T

s

ðZrt (x)dr, dt⊗ dP−a.e. ω̃ ∈ Ω̃, s ∈ [0, T ],

so that the Radon–Nikodým property and Fubini’s theorem imply Zs = Zs,dt⊗ dP−a.e.,
s ∈ [0, T ]. Lastly, as for ω̃ ∈ Ω̃, s 7−→ Zs(ω̃) is continuous, we may define

Ztt := ZTt −
∫ T

t

ðZrt dr, for dt⊗ dP−a.e. (t, x) in [0, T ]×X .

3We recall thatH2, being a Hilbert space and in particular a reflexive Banach space, has the so-called Radon–
Nikodým property, see [46, Corollary 5.45]. Thus the absolute continuity of the H2-valued mapping s 7−→ Zs

is equivalent to the existence of the density (ðZs)s∈[0,T ], which is unique for Lebesgue−a.e. s ∈ [0, T ]. The
fact Z is well-defined is argued in Remark 2.2

4This is based on [27, Section 2.1]. The mapping s 7−→ Zs is assumed absolutely continuous, as opposed
to continuously differentiable. We are indebted to Yushi Hamaguchi for pointing out inconsistencies in the
definition of H2,2 on an earlier version of this document.
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3 An infinite family of BSDEs

We are given jointly measurable mappings h, g, ξ and η,

h : [0, T ]×X ×Rd1×Rn×d1×Rd2×Rn×d2×Rd2−→ Rd1 , ξ : [0, T ]×X −→ Rd1 ,

g : [0, T ]2 ×X ×Rd2×Rn×d2×Rd1×Rn×d1−→ Rd2 , η : [0, T ]×X −→ Rd2 ,

such that for any (y, z, u, v,u) ∈ Rd1 × Rn×d1 × Rd2 × Rn×d2 × Rd2 , h·(·, y, z, u, v, u) ∈
Pprog(Rd1 ,F), g·(s, ·, u, v, y, z) ∈ Pprog(Rd2 ,F). Moreover, we work under the following
set of assumptions.

Assumption 3.1. (i) (s, u, v) 7−→ gt(s, x, u, v, y, z) (resp. s 7−→ η(s, x)) is continuously
differentiable. Moreover, the mapping ∇g : [0, T ]2×X × (Rd2×Rn×d2)2×Rd1×Rn×d1−→
Rd2 defined by

∇gt(s, x,u, v, u, v, y, z) := ∂sgt(s, x, u, v, y, z) + ∂ugt(s, x, u, v, y, z)u

+

n∑
i=1

∂v:igt(s, x, u, v, y, z)vi:,

satisfies ∇g·(s, ·,u, v, u, v, y, z) ∈ Pprog(Rd2 ,F);

(ii) (y, z, u, v,u) 7−→ ht(x, y, z, u, v, u) is uniformly Lipschitz continuous, i.e. ∃Lh > 0,

such that for all (t, x, y, ỹ, z, z̃, u, ũ, v, ṽ,u, ũ)

|ht(x, y, z, u, v, u)− ht(x, ỹ, z̃, ũ, ṽ, ũ)|
≤ Lh

(
|y − ỹ|+ |σt(x)>(z − z̃)|+ |u− ũ|+ |σt(x)>(v − ṽ)|+ |u− ũ|

)
;

(iii) for ϕ ∈ {g, ∂sg}, (u, v, y, z) 7−→ ϕt(s, x, u, v, y, z) is uniformly Lipschitz continuous,
i.e. ∃Lϕ > 0, such that for all (s, t, x, u, ũ, v, ṽ, y, ỹ, z, z̃)

|ϕt(s, x, u, v, y, z)− ϕt(s, x, ũ, ṽ, ỹ, z̃)|
≤ Lϕ

(
|u− ũ|+ |σt(x)>(v − ṽ′)|+ |y − ỹ|+ |σt(x)>(z − z̃)|

)
;

(iv) for 0 := (u, v, y, z)|(0,...,0),
(
h̃·, g̃·(s),∇g̃·(s)

)
:=

(
h·(·,0, 0), g·(s, ·,0), ∂sg·(s, ·,0)

)
∈

L1,2(Rd1)×
(
L1,2,2(Rd2)

)2
.

Remark 3.2. We comment on the set of requirements in Assumption 3.1. Of particular
interest is Assumption 3.1.(i), the other being the standard Lipschitz assumptions on
the generators as well as their integrability at zero. Anticipating the introduction of (S)
below and the discussion in Remark 3.4, Assumption 3.1.(i) will allow us to identify the
second BSDE in the system as the antiderivative of the third one, see Remark 3.4.

Let us define the space (H, ‖ · ‖H), of h = (Y,Z,N , U, V,M, ∂U, ∂V, ∂M), where

H := S2(Rd1)×H2(Rn×d1)×M2(Rd1)× S2,2(Rd2)×H2,2(Rn×d2)×M2,2(Rd2)

× S2,2(Rd2)×H2,2(Rn×d2)×M2,2(Rd2),

‖h‖2H := ‖Y‖2S2 + ‖Z‖2H2 + ‖N‖2M2 + ‖U‖2S2,2 + ‖V ‖2
H2,2 + ‖M‖2M2,2

+ ‖∂U‖2S2,2 + ‖∂V ‖2H2,2 + ‖∂M‖2M2,2 ,

We are now ready to precise the class of systems subject to our study. Given
(ξ, η, ∂sη) ∈ L2(Rd1) × (L2,2(Rd2))2, ∂sη as in Assumption 3.1, we consider the system,
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which for any s ∈ [0, T ] holds P−a.s. for any t ∈ [0, T ],

Yt = ξ(T,X) +

∫ T

t

hr(X,Yr,Zr, Urr , V rr , ∂Urr )dr −
∫ T

t

Z>r dXr −
∫ T

t

dNr,

Ust = η(s,X) +

∫ T

t

gr(s,X,U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r , (S)

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r .

Definition 3.3. We say h is a solution to (S) if h ∈ H and (S) holds.

Remark 3.4. We now expound on our choice for the set-up and the structure of (S).

(i) We first highlight two aspects which are crucial to establish the connection be-
tween (S) and type-I BSVIE (1.6). The first is the presence of ∂U in the generator of the
first equation. This causes the system to be fully coupled but is nevertheless necessary
in our methodology, this will be clear from the proof of Theorem 4.4 in Section 4. The
second relates to our choice to write three equations instead of two. In fact, our approach
is based on being able to identify ∂U as the derivative with respect to the s variable of U
in an appropriate sense and, at least formally, it is clear that the third equation allows
us to do so, see Lemma 6.1 for details. Alternatively, we could have chosen not to write
the third equation and consider for any s ∈ [0, T ], the system, which holds P−a.s. for any
t ∈ [0, T ],

Yt = ξ(T,X·∧T ) +

∫ T

t

hr(X,Yr,Zr, Urr , V rr , ∂Urr )dr −
∫ T

t

Z>r dXr −
∫ T

t

dNr,

Ust = η(s,X·∧T ) +

∫ T

t

gr(s,X,U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r ,

∂Ust :=
d

ds
Us|(s,t) ,

where d
dsU

s corresponds to the density with respect to the Lebesgue measure of s 7−→ Us.
Nevertheless, for the proof of well-posedness of (S) that we present in Section 6, we
have to derive appropriate estimates for (∂U tt )t∈[0,T ], and for this it is advantageous to do
the identification by adding the third equation in (S) and work on the space (H, ‖ · ‖H).

(ii) We also emphasise that the presence of (V tt )t∈[0,T ] in the generator of the first
equation requires us to reduce the space of the solution from the classic (H, ‖ · ‖H) to
(H, ‖ · ‖H) where

H := S2(Rd1)×H2(Rn×d1)×M2(Rd1)× S2,2(Rd2)×H2,2(Rn×d2)×M2,2(Rd2)

× S2,2(Rd2)×H2,2(Rn×d2)×M2,2(Rd2),

and ‖ · ‖H denotes the norm induced by H. Ultimately, this is due to the presence of
(Ztt )t∈[0,T ] in the type-I BSVIE (1.6). On this matter, we stress that to the best of our
knowledge, our results constitute the first comprehensive study of type-I BSVIEs as
general as (1.6). We remark that our identification of the appropriate space to carry out
the analysis is based on [27, Section 2.1]. In the case where (V tt )t∈[0,T ] (resp. (Ztt )t∈[0,T ]

)
does not appear in the generator of the first BSDE in (S) (resp. type-I BSVIE (1.6)),
Proposition 6.5 (resp. Remark 4.5) provide the arguments for how one can adapt our
approach to yield a solution in the classical space. This shows that our methodology
recovers existing results on type-I BSVIE (1.3) as well as the so-called extended type-I
BSVIE (1.5).
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Remark 3.5. In addition, we highlight two features of (S) that will come into play in
the setting of type-I BSVIE (1.6), and differ from the one in the classic literature. They
are related to the fact we work under the general filtration F. The first is the fact that
the stochastic integrals in (S) are with respect to the canonical process X. Recall that
σ is not assumed to be invertible (it is not even a square matrix in general and can
vanish), therefore the filtration generated by X is different from the one generated by
B. This yields more general results and it allows for extra flexibility necessary in some
applications, see [29] for an example. The second difference is the presence of the
processes (N,M, ∂M). As it was mentioned in Section 2.1, we work with a probability
measure for which the martingale representation property for F–local martingales in
terms of stochastic integrals with respect to X does not necessarily hold. Therefore,
we need to allow for orthogonal martingales in the representation. Certainly, there are
known properties which are equivalent to the orthogonal martingales vanishing, i.e.
N = M = ∂M = 0, for example when P is an extremal point of the convex hull of the
probability measures that satisfy the properties in Section 2.1, see [32, Theorem 4.29].

Assumption 3.1 provides an appropriate framework to derive the well-posedness
of (S). The following is the main theorem of this section whose proof we postpone
to Section 6.

Theorem 3.6. Let Assumption 3.1 hold. Then (S) admits a unique solution in (H, ‖ · ‖H).
For any h ∈ H solution to (S) there exists C > 0 such that

‖h‖2H ≤ C
(
‖ξ‖2L2 + ‖η‖2L2,2 + ‖∂sη‖2L2,2 + ‖h̃‖2L1,2 + ‖g̃‖2L1,2,2 + ‖∇g̃‖2L1,2,2

)
.

Moreover, if hi ∈ H denotes the solution to (S) with coefficients (ξi, hi, ηi, gi, ∂sη
i,∇gi)

for i ∈ {1, 2}, then

‖δh‖2H ≤ C
(
‖δξ
∥∥2

L2 + ‖δη
∥∥2

L2,2 + ‖δ∂sη
∥∥2

L2,2 + ‖δ1h‖2L1,2 + ‖δ1g‖2L1,2,2 + ‖δ1∇g‖L1,2,2

)
,

where for ϕ ∈ {Y,Z,N , U, V,M, ∂U, ∂V, ∂M, ξ, η, ∂sη} and Φ ∈ {h, g,∇g}

δϕ := ϕ1 − ϕ2, and δ1Φt := Φ1
t (Y1

r ,Z1
t , U

1t
t , V

1t
t )− Φ2

t (Y
1
r , Z

1
t , U

1t
t , V

1t
t ), dt⊗ dP−a.e.

Remark 3.7. The reader may wonder about our choice to leave out the diagonal of ∂V
in the generator of the first equation in (S). As we will argue below, this would require
us to consider an auxiliary infinite family of quadratic BSDEs. Since the main purpose
of this paper is to relate the well-posedness of (S) to that of the type-I BSVIE (1.6), and
inasmuch as we do not need to consider this case to establish Theorem 4.4, we have
refrained from pursuing it in this document. Nevertheless, this case is covered as part
of the study of the extension of (S) to the quadratic case in Hernández [28]. If we were
to study the system, which for any s ∈ [0, T ] satisfies

Yt = ξ(T,X) +

∫ T

t

hr(X,Yr,Zr, Urr , V rr , ∂Urr , ∂V rr )dr −
∫ T

t

Z>r dXr −
∫ T

t

dNr

Ust = η(s,X) +

∫ T

t

gr(s,X,U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r ,

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r ,

and as it is clear from our analysis in Section 6, its well-posedness requires both having
a rigorous method to define the mapping t 7−→ ∂V tt , as well as deriving a priori estimates
for the norm of ∂V tt . In analogy with Lemma 6.1 and Remark 3.4, both tasks require us
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to make sense of the family of BSDEs with terminal condition ∂ssη and generator

∇2gt(s, x, ũ, ṽ,u, v, u, v, y, z) := ∇gt(s, x, ũ, ṽ, u, v, y, z)

+
∑

(π̃i,π̃j)∈Π̃2

(πi,πj)∈Π2

π̃>i ∂
2
πiπj

gt(s, x, u, v, y, z)π̃j ,

where Π :=
(
s, u, v1:, ..., vn:

)
, Π̃ :=

(
1,u, v1:, ..., vn:

)
and ∂2

πiπj
gt(s, x, u, v, y, z) denote the

second order derivatives of g. Even though we could add assumptions ensuring that the
second order derivatives are bounded, it is clear from the second term in the generator
that we would necessarily need to consider a quadratic framework.

4 Well-posedness of type-I BSVIEs

We now address the well-posedness of type-I BSVIEs. Let d be a non-negative
integer, and f and ξ be jointly measurable functionals such that for any (s, y, z, u, v) ∈
[0, T ]× (Rd ×Rn×d)2

f : [0, T ]2 ×X × (Rd ×Rn×d)2 −→ Rd, f·(s, ·, y, z, u, v) ∈ Pprog(Rd,F),

ξ : [0, T ]×X −→ Rd, ξ(s, ·) is F -measurable.

To derive the main result in this section, we will exploit the well-posedness of (S).
Therefore, we work under the following set of assumptions.

Assumption 4.1. (i) (s, y, z) 7−→ ft(s, x, y, z, u, v) (resp. s 7−→ ξ(s, x)) is continuously
differentiable, uniformly in (t, x, u, v) (resp. in x). Moreover, the mapping ∇f : [0, T ]2 ×
X × (Rd ×Rn×d)3 −→ Rd defined by

∇ft(s, x,u, v, y, z, u, v) := ∂sft(s, x, y, z, u, v) + ∂yft(s, x, y, z, u, v)u

+

n∑
i=1

∂z:ift(s, x, y, z, u, v)vi:,

satisfies ∇f·(s, ·, y, z, u, v, u, v) ∈ Pprog(Rd,F) for all s ∈ [0, T ];

(ii) for ϕ ∈ {f, ∂sf}, (u, v, y, z) 7−→ ϕt(s, x, y, z, u, v) is uniformly Lipschitz continuous, i.e.
∃Lϕ > 0, such that for all (s, t, x, y, ỹ, z, z̃, u, ũ, v, ṽ)

|ϕt(s, x, y, z, u, v)− ϕt(s, x, ỹ, z̃, ũ, ṽ)|
≤Lϕ

(
|y − ỹ|+ |σt(x)>(z − z̃)|+ |u− ũ|+ |σt(x)>(v − ṽ)|

)
.

(iii)
(
f̃·, f̃·(s),∇f̃·(s)

)
:=
(
f·(·, ·,0), f·(s, ·,0), ∂sf·(s, ·,0)

)
∈ L1,2(Rd)×

(
L1,2,2(Rd)

)2
.

Let (H?, ‖ · ‖H?) denote the space of (Y,Z,N) ∈ H? such that ‖(Y,Z,N)‖H? < ∞
where

H? := S2,2(Rd)×H2,2(Rn×d)×M2,2(Rd), ‖ · ‖H? := ‖Y ‖2S2,2 + ‖Z‖2
H2,2 + ‖N‖2M2,2 .

We consider the n-dimensional type-I BSVIE on (H?, ‖ · ‖H?), which for any s ∈ [0, T ]

holds P−a.s. for any t ∈ [0, T ],

Y st = ξ(s,X) +

∫ T

t

fr(s,X, Y
s
r , Z

s
r , Y

r
r , Z

r
r )dr −

∫ T

t

Zsr
>dXr −

∫ T

t

dNs
r (4.1)

We work under the following notion of solution.
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Definition 4.2. We say (Y,Z,N) is a solution to the type-I BSVIE (4.1) if (Y,Z,N) ∈ H?
verifies (4.1).

Defining ht(x, y, z, u, v, u) := ft(t, x, y, z, u, v)− u, we may consider the system, given
for any s ∈ [0, T ] by

Yt = ξ(T,X) +

∫ T

t

hr(X,Yr,Zr, Y rr , Zrr , ∂Y rr )dr −
∫ T

t

Z>r dXr −
∫ T

t

dNr,

Y st = ξ(s,X) +

∫ T

t

fr(s,X, Y
s
r , Z

s
r ,Yr,Zr)dr −

∫ T

t

Zsr
>dXr −

∫ T

t

dNs
r , (Sf )

∂Y st = ∂sξ(s,X) +

∫ T

t

∇fr(s,X, ∂Y sr , ∂Zsr , Y sr , Zsr ,Yr,Zr)dr −
∫ T

t

∂Zsr
>dXr −

∫ T

t

d∂Ns
r ,

Remark 4.3. Let us comment on our set-up for the study type-I BSVIE (4.1).

(i) The necessity of the set of assumptions in Assumption 4.1 to our approach, based
on the systems introduced in Section 3, is clear. Compared to the set of assumption
made by recent works on BSVIEs in the literature we notice the main difference is
the regularity with respect to the s variable we imposed on the data of the problem,
i.e. Assumption 4.1.(i). In particular, we highlight that type-I BSVIE (1.5), in which
the diagonal of Y , but not of Z is allowed in the generator, had been considered in
[27; 53]. In such a scenario, the authors assumed (ξ, f) ∈ L2,2(Rd)× L1,2,2(Rd), and no
additional condition is required to obtain the well-posedness of (1.5). As it will be clear
from Proposition 6.5 and Remark 4.5 our procedure can be adapted to work under such
set of assumptions provided the diagonal of Z is not considered in the generator.

(ii) Moreover, the spaces of the solution considered in [27; 53] also differ, echoing the
absence of the diagonal of Z in the generator. The authors work with the notion of
C-solution, that is, Y is assumed to be a jointly measurable process, such that s 7−→ Y s

is continuous in L1,p(Rd), p ≥ 2, and for every s ∈ [0, T ], Y s is F-adapted with P−a.s.

continuous paths. This coincides with our definition of the space L1,p,2(Rd). Similarly,
Z belongs to the space H2,2(Rn×d). On the other hand, [54] provides a representation
formula for type-I BSVIEs for which the driver allows for the diagonal of Z, but not of Y .
More precisely, they introduce a PDE, similar to the one we will introduce in Section 5,
prove its well-posedness, and then a Feynman–Kac formula. Naturally, in this case (Y, Z)

inherits the regularity of the underlying PDE.

(iii) The main contribution of our methodology to the field of BSVIEs is to be able
to accommodate type-I BSVIEs for which the diagonal of Z appears in the generator.
For this, the definition of the space (H?, ‖ · ‖H?), notably the space H2,2(Rn×d), and
Assumption 4.1.(i) play a central role. As first noticed in [29], see Lemma 6.1, under this
assumption one can identify the density, with respect to the Lebesgue measure, of the
H2-valued mapping s 7−→ Zs, namely the H2-valued mapping s 7−→ ∂Zs. This allows us
to define the diagonal of Z following [27, Section 2.1], and consequently, introduce the
space H2,2(Rn×d).

(iv) We highlight that Theorem 4.4 below guarantees a unique solution to (4.1) in the
space H?, for which the mapping s 7−→ Zs is assumed to be absolutely continuous, cf.
[27, Section 2.1]. This allows for extra generality compare to assuming such mapping is,
a priori, continuously differentiable. Nevertheless, as a by-product of Assumption 4.1.(i),
the unique solution ensured by Theorem 4.4 is automatically C1 with derivative s 7−→ ∂Zs.
Moreover, not only does our approach identify the dynamics of (∂Y, ∂Z, ∂N), but also, in
the terminology of [27, Section 2.1], it does guarantee (Ztt )t∈[0,T ] is the unique process
that satisfies the (D)-property with respect to Z.
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(v) Let us remark that Assumption 4.1.(i), being an assumption on the data of the BSVIE,
is easier to verify in practice compare to the regularity required in [27]. Certainly, our
results would still hold true if we require the differentiability of data (ξ, f) with respect
to the parameter s in the L2 (resp. L1,2) sense, or, even better, absolute continuity,.

(vi) Lastly, we stress that the above type-I BSVIE is defined for (s, t) ∈ [0, T ]2, as opposed
to 0 ≤ s ≤ t ≤ T . However, anticipating the result of Theorem 4.4, this could be handled
by first solving on (s, t) ∈ [0, T ]2 and then consider the restriction to 0 ≤ s ≤ t ≤ T .

We are now in position to prove the main result of this paper. The next result shows
that under the previous choice of data for (Sf ), its solution solves the type-I BSVIE with
data (ξ, f) and vice versa.

Theorem 4.4. Let Assumption 4.1 hold. Then

(i) the well-posedness of (Sf ) is equivalent to that of the type-I BSVIE (4.1);

(ii) the type-I BSVIE (4.1) is well-posed, and for any (Y,Z,N) ∈ H? solution to type-I
BSVIE (4.1) there exists C > 0 such that

‖(Y,Z,N)‖H? ≤ C
(
‖ξ‖2L2,2 + ‖∂sξ‖2L2,2 + ‖f̃‖2L1,2,2 + ‖∇f̃‖2L1,2,2

)
. (4.2)

Moreover, if (Y i, Zi, N i) ∈ H? denotes the solution to type-I BSVIE (4.1) with data (ξi, f i)

for i ∈ {1, 2}, we have

‖(δY, δZ, δN)‖2H? ≤ C
(
‖δξ
∥∥2

L2 + ‖δ∂sξ
∥∥2

L2,2 + ‖δ1f‖2L1,2 + ‖δ1∇f‖2L1,2,2

)
.

Proof. (ii) is a consequence of (i). Indeed, (4.2) follows from Proposition 6.3, and the
well-posedness of type-I BSVIE (4.1) from that of (Sf ), which holds by Assumption 4.1
and Theorem 3.6. We now argue (i).

Let (Y,Z,N , Y, Z,N, ∂Y, ∂Z, ∂N) ∈ H be a solution to (Sf ). It then follows from
Lemma 6.2 that, P−a.s. for any t ∈ [0, T ],

Y tt = ξ(T,X) +

∫ T

t

hr(X,Y
r
r , Z

r
r ,Yr,Zr, ∂Y rr )dr −

∫ T

t

Zrr
>dXr −

∫ T

t

dÑr, (4.3)

where Ñt := N t
t −

∫ t
0
∂Nr

r dr, t ∈ [0, T ], and Ñ ∈M2(Rd). This shows that(
(Y tt )t∈[0,T ], (Z

t
t )t∈[0,T ],Y·,Z·, (Ñt)t∈[0,T ]

)
,

solves the first BSDE in (Sf ). It then follows from the well-posedness of (Sf ), which holds

by Assumption 4.1 and Theorem 3.6, that
(
(Y tt )t∈[0,T ], (Z

t
t )t∈[0,T ], (Ñt)t∈[0,T ]

)
= (Y·,Z·,N·)

in S2(Rd)×H2(Rn×d)×M2(Rd). Consequently, for any s ∈ [0, T ], it holds, P−a.s. for any
t ∈ [0, T ], that

Y st = ξ(s,X) +

∫ T

t

fr(s,X, Y
s
r , Z

s
r , Y

r
r , Z

r
r )dr −

∫ T

t

Zsr
>dXr −

∫ T

t

dNs
r .

We are left to show the converse result. Let (Y, Z,N) ∈ H? be a solution to
type-I BSVIE (4.1). We begin by noticing that the processes Y := (Y tt )t∈[0,T ],Z :=

(Ztt )t∈[0,T ],N := (N t
t )t∈[0,T ] are well-defined. In particular, Z ∈ H2(Rn×d) is well-defined

as Z ∈ H2,2(Rn×d). Moreover, Y ∈ L2,2(Rd) follows from

‖Y‖2L2 = E

[ ∫ T

0

|Y rr |2dr

]
≤ E

[ ∫ T

0

sup
t∈[0,T ]

|Y rt |2dr

]
=

∫ T

0

‖Y r‖S2dr <∞.
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Then, since (Y,Z, Y, Z,N) ∈ L2(Rd)×H2(Rn×d)×S2,2(Rd)×H2,2(Rn×d) × M2,2(Rd)

and Assumption 4.1 holds, we can apply Lemma 6.1 and obtain the existence of
(∂Y, ∂Z, ∂N) ∈ S2,2(Rd)×H2,2(Rn×d)×M2,2(Rd) such that for s ∈ [0, T ], P−a.s. for t ∈
[0, T ],

∂Y st = ∂sξ(s,X) +

∫ T

t

∇fr(s,X, ∂Y sr , ∂Zsr , Y sr , Zsr , Y rr , Zrr )dr −
∫ T

t

∂Zsr
>dXr −

∫ T

t

d∂Ns
r ,

We claim that h := (Y,Z, Ñ , Y, Z,N, ∂Y, ∂Z, ∂N) is a solution to (Sf ), where Ñt :=

N t
t −

∫ t
0
∂Nr

r dr, t ∈ [0, T ]. For this, we first note that in light of Lemmata 6.1 and 6.2 we
have that

Yt = ξ(T,X) +

∫ T

t

hr(X,Yr,Zr, Y rr , Zrr , ∂Y rr )dr −
∫ T

t

Zr>dXr −
∫ T

t

dÑr, (4.4)

and Ñ ∈M2,2(Rd). We are only left to argue Y ∈ S2(Rd). Note that by Assumption 4.1
and Equation (6.1) there exists C > 0 such that

|Yt|2 ≤ C
(
|ξ|2 +

(∫ T

0

|f̃r|dr
)2

+

∫ T

0

(
|Yr|2 + |σ>r Zr|2 + |Y rr |2 + |σ>r Zrr |2 + |∂Y rr |2

)
dr

+

∣∣∣∣ ∫ T

t

Z>r dXr +

∫ T

t

dÑr

∣∣∣∣2).
Moreover, by Doob’s inequality we have E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

Z>dXr

∣∣∣∣2] ≤ 4‖Z‖2H2 and thus

Equation (6.16) yields

‖Y‖2S2 ≤ C
(
‖ξ‖2L2,2 + ‖∂sξ‖2L2,2 + ‖f̃‖2L1,2,2 + ‖∇f̃‖2L1,2,2

+ ‖Y‖2L2 + ‖Y ‖2L2,2 + ‖Z‖2
H2,2 + ‖∂Z‖2H2,2

)
<∞.

We conclude ‖h‖H <∞, h ∈ H and thus h solves (Sf ).

Remark 4.5. There are two noticeable differences between Theorem 4.4 and the results
in the literature on type-I BSVIEs (1.3), (1.4) and (1.5), as previously studied in [71],
[54; 29] and [27; 53], respectively. The first is the additional terms, involving the
derivative with respect to the parameter s of the data, appearing in the a priori estimates
and the stability. The second one, is the space where the solution lives. Both differences
are due to the fact that we are handling the diagonal term for Z in the generator.

In fact, in light of Proposition 6.5 for the case of type-I BSVIEs (1.5), i.e. where
only the diagonal of Y is allowed in the generator, one can work in the more standard
(compared to the existing literature) space (H?, ‖ · ‖H?) given by

H? := S2,2(Rd)×H2,2(Rn×d)×M2,2(Rd), ‖(Y,Z,N)‖2H? := ‖Y ‖2S2,2 + ‖Z‖2H2,2 + ‖N‖2M2,2 .

Then, the a priori estimate (4.2) simplifies to

‖(Y,Z,N)‖H? ≤ C
(
‖ξ‖2L2,2 + ‖f̃‖2L1,2,2

)
,

and for (Y i, Zi, N i) the solution to type-I BSVIE (1.5) with data (ξi, f i) for i ∈ {1, 2}, we
obtain

‖(δY, δZ, δN)‖2H? ≤ C
(
‖δξ
∥∥2

L2 + ‖δ1f‖2L1,2

)
.
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5 Type-I BSVIEs, parabolic PDEs and time-inconsistent control

This section is devoted to the application of our results in Section 4 to the problem of
time-inconsistent control for sophisticated agents. Moreover, we also reconcile seemingly
different approaches to the study of this problem.

5.1 Representation formula for adapted solutions of type-I BSVIEs

Building upon the fact that second-order, parabolic, semilinear PDEs of HJB type
admit a non–linear Feynman–Kac representation formula, we can identify the family
of PDEs associated to Type-I BSVIEs. This is similar to the representation of forward
backward stochastic differential equations, FBSDEs for short, see [64].

For (s, t, x, u, y, v, z,γ,Σ) ∈ [0, T ]2 × X × (Rd)2 × (Rn×d)2 × (Rn×n)d × Rn×m, define
Tr
[
ΣΣ>γ

]
∈ Rd by

(
Tr
[
ΣΣ>γ

])
i

:= Tr
[
ΣΣ>γi

]
, i ∈ {1, . . . , d}. Let f and σ be as in the

preceding section, and b : [0, T ]×X −→ Rm be bounded, b·(X) ∈ Pmeas(R
m,F) and

G
(
s, t, x, u, v, y, z, γ

)
:= v>σ(t, x)b(t, x) +

1

2
Tr[σσ>(t, x)γ] + f(s, t, x, u, v, y, z).

Proposition 5.1. Suppose ϕt(X, ·) = ϕt(Xt, ·) for ϕ ∈ {b, σ, f, ∂sf}, and ϕ(s,X) =

ϕ(s,XT ) for ϕ ∈ {ξ, ∂sξ}. For O := [0, T ) × [0, T ] × Rn, let V ∈ Cd1,1,2([0, T ]2 × Rn) be
a classical solution to{
∂tV(s, t, x) +G

(
s, t, x, V(s, t, x), ∂xV(s, t, x), V(t, t, x), ∂xV(t, t, x), ∂2

xxV(s, t, x)
)

= 0, on O,
V(s, T, x) = ξ(s, x), (s, x) ∈ [0, T ]×Rn,

for which V(s, t, x) and ∂xV(s, t, x) have uniform exponential growth in x5, i.e. ∃C > 0,
∀(s, t, x) ∈ [0, T ]2 ×X

|V(t, x)|+ |∂xV(t, x)| ≤ C exp(C|x|1).

Then, Y st := V(s, t,Xt), and Zst := ∂xV(s, t,Xt) define a solution to the type-I BSVIE
given for every s ∈ [0, T ] by

Y st = Y sT +

∫ T

t

(
fr(s,Xr, Y

s
r , Z

s
r , Y

r
r , Z

r
r ) + Zsr

>σr(Xr)br(Xr)
)
dr −

∫ T

t

Zsr
>dXr, (5.1)

Proof. Let s ∈ [0, T ] and P as in Section 2. Applying Itō’s formula to the process Y st we
find that P−a.s.

Y st = Y sT −
∫ T

t

(
∂tV(s, r,Xr) +

1

2
Tr[σσ>r (Xr)∂

2
xxV(s, r,Xr)]

)
dr −

∫ T

t

Zsr
>dXr

= Y sT +

∫ T

t

(
fr(s,Xr, Y

s
r , Z

s
r , Y

r
r , Z

r
r ) + Zsr

>σr(Xr)br(Xr)
)
dr −

∫ T

t

Zsr
>dXr.

We verify the integrability of (Y,Z). As σ is bounded, Xt has exponential moments of
any order which are bounded on [0, T ], i.e. ∃C > 0, such that supt∈[0,T ]E

P[exp(c|Xt|1)] ≤
C <∞, for any c > 0, where C depends on T and the bound on σ. This together with the
growth condition on V(s, t, x) and ∂xV(s, t, x) yield the integrability.

Remark 5.2. In the previous result the type-I BSVIEs has an additional term linear in z.
This is a consequence of the dynamics of X under P, see Section 2.1. Nevertheless, as b
is bounded, we can define Pb ∈ Prob(X ), equivalent to P so that by Girsanov’s theorem
Bb := B −

∫ ·
0
br(Xr)dr is a Pb–Brownian motion and

Xt = x0 +

∫ t

0

σr(Xr)br(Xr)dr +

∫ t

0

σr(Xr)dB
b
r, t ∈ [0, T ], Pb−a.s.,

5Here, | · |1 denotes the `1 norm in Rn, i.e. for x ∈ Rn, |x|1 :=
∑d

i=1 |xi|
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and consequently

Y st = Y sT +

∫ T

t

fr(s,Xr, Y
s
r , Z

s
r , Y

r
r , Z

r
r )dr −

∫ T

t

Z>r dXr, t ∈ [0, T ], P−a.s., s ∈ [0, T ].

5.2 On equilibria and their value function in time-inconsistent control prob-
lems

The game theoretic approach to time-inconsistent control problems in continuous-
time started with the Markovian setting, and is grounded in the notion of equilibrium
first proposed in Ekeland and Pirvu [24], Ekeland and Lazrak [23], and the infinite family
of PDEs, or Hamilton–Jacobi–Bellman equation, provided by Björk, Khapko, and Murgoci
[13], see Equation (5.2) below. Soon after, Wei, Yong, and Yu [68] presented a verification
argument via a one dimensional PDE, but over an extended domain, see Equation (5.3)
below. Both approaches have generated independent lines of research in the community,
including both analytic and probabilistic methods, but no compelling connections have
been established, as far as we know.

BSDEs and BSVIEs appear naturally as part of the probabilistic study of these
problems. This approach allows extensions to a non-Markovian framework, and to
reward functionals given by recursive utilities. Indeed, the approaches in [29] and
[54] address these directions, and can be regarded as extensions of [13] and [68],
respectively. As such, it is not surprising that in order to characterise an equilibrium and
its associated value function, both [29] and [54] lay down an infinite family of BSDEs,
and a type-I BSVIEs, respectively. In fact, [29, Theorem 3.7] and [54, Theorem 5.1]
establish representation formulae for the analytic, i.e. PDEs, counterparts. Moreover,
[29] noticed that their approach through BSDEs led to the well-posedness of a BSVIE.
This is nothing but a manifestation of Theorem 4.4 which reconciles, at the probabilistic
level, the findings of [29] and [54]. Moreover, we also include Proposition 5.3 which does
the same at the PDE level. To sum up, we can visualise this in the next picture.

[13]
[29, Theorem 3.7]

[29]

Proposition 5.3 Theorem 4.4

[68]
[54, Theorem 5.1]

[54]

Let A ⊆ Rp be a compact set, f̄ : [0, T ]2 × Rn × A −→ R, b : [0, T ] × Rn × A −→
Rm, bounded, with f·(s, ·, a) ∈ Pprog(R,F) and b·(·, a) ∈ Pmeas(R

m,F) for (s, a) ∈ [0, T ]×
A. With this we may define

ḡ(s, t, x, a, v) := f̄(s, t, x, a) + v · σ(t, x)b(t, x, a), H(s, t, x, v) := sup
a∈A

ḡ(s, t, x, a, v),

∇ḡ(s, t, x, a, v) := ∂sf̄(s, t, x, a) + v · σ(t, x)b(t, x, a),

and assume there exists a? : [0, T ]2×Rn×Rn −→ A, measurable, such that, H(s, t, x, v) =

ḡ(s, t, x, a?(s, t, x, v), v).
Following the approach of [54], let us assume that given an admissible A-valued

strategy ν over the interval [s, T ], the reward at s ∈ [0, T ] is given by the value at s of the
Y coordinate of the solution to the type-I BSVIE given by

Y νt = ξ(t,XT ) +

∫ T

t

ḡr(t,Xr, νr, Z
t
r)dr −

∫ T

t

Ztr · dXr, t ∈ [s, T ], P−a.s.
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[54] finds that the value along the equilibrium policy coincides with the Y coordinate
of the following type-I BSVIE

Yt = ξ(t,XT ) +

∫ T

t

ḡr
(
t,Xr, a

?(r, r,Xr, Z
r
r ), Ztr

)
dr −

∫ T

t

Ztr · dXr, t ∈ [0, T ], P−a.s.,

where the diagonal of Z appears in the generator. However, decoupling the dependence
between the time variable and the variable source of time-inconsistency, we can define,
for s ∈ [0, T ],

Y st := ξ(s,XT ) +

∫ T

t

ḡr
(
s,Xr, a

?(r, r,Xr, Z
r
r ), Zsr

)
dr −

∫ T

t

Zsr · dXr, t ∈ [0, T ], P−a.s.

It then follows from Theorem 4.4 that this approach is equivalent to that of [29] based
on the system, which for any s ∈ [0, T ] holds P−a.s. for t ∈ [0, T ],

Yt = ξ(T,XT ) +

∫ T

t

(
Hr(r,Xr, Zr)− ∂Y rr

)
dr −

∫ T

t

Zr · dXr,

∂Y st = ∂sξ(s,XT ) +

∫ T

t

∇ḡr(s,Xr, a
?(r, r,Xr, Z

r
r ), ∂Zsr )dr −

∫ T

t

∂Zsr · dXr.

We now move on to establish the connection of the analyses at the PDE level. The
original result of [13] is based on the semi-linear PDE system of HJB type given for(
V (t, x),J (s, t, x)

)
∈ C1,2([0, T ]×Rn)× C1,1,2([0, T ]2 ×Rn) by

∂tV (t, x) +
1

2
Tr[σσ>(t, x)∂xxV (t, x)]

+H(t, t, x, ∂xV (t, x))− ∂sJ (t, t, x) = 0, on O,

∂tJ (s, t, x) +
1

2
Tr[σσ>(t, x)∂xxJ (s, t, x)]

+ḡ
(
s, t, x, ∂xJ (s, t, x), a?

(
t, t, x, ∂xV (t, x)

))
= 0, on O,

V (T, x) = ξ(T, x), J (s, T, x) = ξ(s, x), (s, x) ∈ [0, T ]×Rd.

(5.2)

On the other hand, [68] considers the equilibrium HJB equation for J (s, t, x) ∈
C1,1,2([0, T ]2 ×Rn) given by

∂tV(s, t, x) +
1

2
Tr[σσ>(t, x)∂xxV(s, t, x)]

+ḡ
(
s, t, x, ∂xV(t, t, x), a?

(
t, t, x, ∂xV(t, t, x)

))
= 0, on O,

V(s, T, x) = ξ(s, x), (s, x) ∈ [0, T ]×Rd.

(5.3)

By setting V(s, t, x) = J (s, t, x), it is immediate that a solution to (5.2) defines a
solution to (5.3). The next proposition establishes the converse result.

Proposition 5.3. Suppose (5.2) and (5.3) are well-posed.

(i) Let J (s, t, x) ∈ C1,1,2([0, T ]2 ×Rn) solve (5.2). Then V(s, t, x) := J (s, t, x) solves (5.3).

(ii) Let V(s, t, x) ∈ C1,1,2([0, T ]2×Rn) solve (5.3). Then V (t, x) := V(t, t, x) and J (s, t, x) :=

V(s, t, x) solve (5.2).

Proof. We are only left to argue (ii). It is clear
(
V (t, x),J (s, t, x)

)
∈ C1,2([0, T ] ×Rn) ×

C1,1,2([0, T ]2 ×Rn), the results follows as −∂tV (t, x) + ∂sJ (t, t, x) = −∂tV(t, t, x).
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6 Analysis of the BSDE system

Let us first recall the elementary inequalities( n∑
i=1

ai

)2

≤ n
n∑
i=1

a2
i , (6.1)

valid for any positive integer n and any collection (ai)1≤i≤n of non-negative numbers, as
well as, Young’s inequality which guarantees that for any ε > 0, 2ab ≤ εa2 + ε−1b2.

In order to alleviate notations, and as it is standard in the literature, we suppress
the dependence on ω, i.e. on X, in the functionals, and, write E instead of EP as the
underlying probability measure P is fixed. Moreover, we will write I2 instead of I2(E)

for any of the integrability spaces involved, the specific space E is fixed and understood
without ambiguity.

6.1 Regularity of the system and the diagonal processes

In preparation to the proof of Theorem 3.6, we present next a couple of lemmata from
which we will benefit in the following. As a historical remark, we mention the following
is in the spirit of the analysis in Protter [43, Section 3] and Pardoux and Protter [41] of
forward Volterra integral equations.

A technical detail is to identify appropriate spaces so that given (∂U,U, V,M) one
can rigorously define the processes

(
(U tt )t∈[0,T ], (V

t
t )t∈[0,T ], (M

t
t )t∈[0,T ], (∂U

t
t )t∈[0,T ]

)
. It is

known that for U ∈ S2,2, the diagonal process (U tt )t∈[0,T ] is well-defined. Indeed, this
follows from the pathwise regularity of Us for s ∈ [0, T ] and has been noticed since
[27; 29; 65]. The same argument works for (∂U,M) ∈ S2,2 ×M2,2. Unfortunately, the
same reasoning cannot be applied for arbitrary V ∈ H2,2 and motives the introduction of
the space H2,2 , see Remark 3.4.

Lemma 6.1. Let Assumption 3.1 hold and (Y,Z) ∈ L2×H2. Let (U, V,M) ∈ L2,2×H2,2×
M2,2 be a solution to for s ∈ [0, T ]

Ust = η(s) +

∫ T

t

gr(s, U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r , t ∈ [0, T ], P−a.s.

(i) There exists (∂U, ∂V, ∂M) ∈ S2,2 ×H2,2 ×M2,2 unique solution to the equation,

∂Ust = ∂sη(s) +

∫ T

t

∇gr(s, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)dr

−
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r , t ∈ [0, T ], P−a.s., s ∈ [0, T ];

(6.2)

(ii) there exist C > 0, such that for all c > 4Lg and (s, t) ∈ [0, T ]2

E

[ ∫ T

t

ecr|σ>r ∂V sr |2dr

]
≤ CE

[
ecT
∣∣∂sη(s)

∣∣2 +

(∫ T

t

e
c
2 r|∇g̃r(s)|dr

)2

+

∫ T

t

ecr
(
|Usr |2 + |σ>r V sr |2 + |Yr|2 + |σ>r Zr|2

)
dr

]
;

(6.3)

(iii) for any s ∈ [0, T ],as elements of S2 ×H2 ×M2

(∫ T

s

∂Urdr,

∫ T

s

∂V rdr,

∫ T

s

∂Mrdr

)
=
(
UT − Us, V T − V s,MT −Ms

)
; (6.4)
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(iv) V ∈ H2,2 . Moreover, for V := (V tt )t∈[0,T ] and ε > 0, P−a.s.∫ T

t

|σ>u Vu|2du ≤
∫ T

t

|σ>u V tu |2du+

∫ T

t

∫ T

r

ε|σ>u V ru |2 + ε−1|σ>u ∂V ru |2dudr, t ∈ [0, T ]. (6.5)

Proof. Note that in light of Assumption 3.1.(i), for (t, s, x, u, v, y, z) ∈ [0, T ]2 ×X ×Rd2 ×
Rd2×n × Rd1 × Rd1×n, (u, v) 7−→ ∇gt(s, x,u, v, u, v, y, z) is linear. Therefore, for any
s ∈ [0, T ] the second equation defines a linear BSDE, in (∂Us, ∂V s), whose generator
at zero, by Assumption 3.1.(iii), is in L1,2. Therefore, its solution (∂Us, ∂V s, ∂Ms) ∈
S2×H2×M2 is well-defined from classic results, see for instance Zhang [73] or [25]. The
continuity of the applications s 7−→ (∂Us, ∂V s, ∂Ms), e.g. ([0, T ],B([0, T ])) −→ (S2, ‖·‖S2) :

s 7−→ ∂Us, follows from the classical stability results of BSDE, and that by assumption
(U, V, Y, Z) ∈ L2,2×H2,2×L2×H2 and s 7−→ (∂sη(s),∇g̃(s)) is continuous. This establishes
(∂U, ∂V, ∂M) ∈ S2,2 ×H2,2 ×M2,2.

(ii) follows from classic a priori estimates, but when the norms are considered over
[t, T ] instead of [0, T ]. Indeed, following the argument in [25, Proposition 2.1], applying
Itō’s formula to ect|∂Ust |2 we may find C > 0 such that for any c > 4Lg and (s, t) ∈ [0, T ]2

E

[
sup
r∈[t,T ]

{
ecr
∣∣∂Usr ∣∣2}+

∫ T

t

ecr
∣∣σ>r ∂V sr ∣∣2dr +

∫ T

t

ecr−d[∂Ms]r

]
≤ CE

[
ecT
∣∣∂sη(s)

∣∣2 +

(∫ T

t

e
c
2 r
∣∣∇gt(s, 0, 0, Usr , V sr ,Yr,Zr)∣∣dr)2]

= CE

[
ecT
∣∣∂sη(s)

∣∣2 +

(∫ T

t

e
c
2 r
∣∣∣∂sgr(s, Usr , V sr ,Yr,Zr)∣∣∣dr)2]

≤ CE
[
ecT
∣∣∂sη(s)

∣∣2 +

∣∣∣∣ ∫ T

t

e
c
2 r|∇g̃r(s)|dr

∣∣∣∣2
+

∫ T

t

ecr
(
|Ust |2 + |σ>t V st |2 + |Yt|2 + |σ>t Zt|2

)
dt

]
,

where in the second inequality we exploited the fact (u, v, y, z) 7−→ ∂sg(t, s, x, u, v, y, z) is
Lipschitz, see Assumption 3.1.(iii), and C > 0 was appropriately updated.

Next, we assume (iii) and show (iv). In light of (i) and (iii), s 7−→ ∂V s is the density
of s 7−→ V s with respect to the Lebesgue measure. Arguing as in Remark 2.2, we obtain
that we can define

V tt := V Tt −
∫ T

t

∂V rt dr, dt⊗ dP−a.e. in [0, T ]×X . (6.6)

We now verify (6.5). By definition of V, Fubini’s theorem and Young’s inequality we
have that for ε > 0∫ T

t

|σ>u V uu |2 − |σ>u V tu |2du =

∫ T

t

∫ u

t

2Tr
[
V ru
>σuσ

>
u ∂V

r
u

]
drdu

=

∫ T

t

∫ T

r

2Tr
[
V ru
>σuσ

>
u ∂V

r
u

]
dudr

≤
∫ T

t

∫ T

r

ε|σ>u V ru |2 + ε−1|σ>u ∂V ru |2dudr.

Thus ‖V‖H2 <∞ and consequently V ∈ H2,2 . This proves (iv).
We now argue (iii). We also remark that a similar argument to the one in (i) shows

that under Assumption 3.1 U ∈ S2,2. We know the mapping [0, T ] 3 s 7−→ (∂Y s, ∂Zs, ∂Ms)
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is continuous, in particular integrable. A formal integration with respect to s to (6.2)
leads to∫ T

s

∂Urt dr =

∫ T

s

∫ T

t

∂sgu(r, Uru, V
r
u ,Yu,Zu) + ∂ygu(r, Uru, V

r
u ,Yu,Zu)∂Urududr

+

∫ T

t

∫ T

s

n∑
i=1

∂vigu(r, Uru, V
r
u ,Yu,Zu)(∂V ru ):idudr

−
∫ T

s

∫ T

t

∂Zru
>dXudr −

∫ T

t

∫ T

s

d∂Mr
udr +

∫ T

s

∂sη(r)dr.

Fix s ∈ [0, T ] and let (Π`)` be a properly chosen sequence of partitions of [s, T ], as in
van Neerven [52, Theorem 1], Π` = (si)i=1,...,n`

with ‖Π`‖ := supi |si+1 − si| ≤ `. To ease
the notation, we set ∆s`i := s`i − s`i−1, and, for a generic family process (φs)s∈[0,T ], and a
mapping s 7−→ ∂sη(s, x), we define δη(x) := η(T, x)− η(s, x), and

I`(φ) :=

n∑̀
i=0

∆s`iφ
s`i , δφ := φT − φs, I`(∂sη(·, x)) :=

n∑
i=0

∆s`i∂sη(s`i , x).

We then notice that for any t ∈ [0, T ]

I`(∂U)t − (δU)t

= I`(∂sη(·))− δη +

∫ T

t

[
I`
(
∂sgu(·, U ·u, V ·u,Yu,Zu)

)
+ I`

(
∂ygu(·, U ·u, V ·u,Yu,Zu)∂U ·u

)]
du

+

∫ T

t

[
I`
(
∂zgu(·, U ·u, V ·u,Yu,Zu)∂V ·u

)
− δgu(·, U ·u, V ·u,Yu,Zu)

]
du

−
∫ T

t

(
I`(∂V )r − (δV )r

)>
dXu − I`(∂M ·T − ∂M ·t)− δ(MT −Mt).

We now note that the integrability of (∂U, ∂V ) and (U, V ) yields I`(∂U)− (δU) ∈ S2,2 and
I`(∂V )− (δV ) ∈ H2,2. Therefore, Bouchard, Possamaï, Tan, and Zhou [14, Theorem 2.2]
yields

‖I`(∂U)− (δU)‖2S2,2 + ‖I`(∂V )− (δV )‖2H2,2 + ‖I`(∂M)− (δM)‖2M2,2

≤ CE
[∣∣I`(∂sη(·))− δη

∣∣2 +

∣∣∣∣ ∫ T

t

∣∣∣I`(∂sgu(·, U ·u, V ·u,Yu,Zu)
)
− δgu(·, U ·u, V ·u,Yu,Zu)

∣∣∣du∣∣∣∣2]
To conclude, we first note that by our choice of (Π`)`, I`(∂U) converges to the

Lebesgue integral of ∂Us. In addition, the uniform continuity of s 7−→ ∂sg(s, x, u, v, y, z)

and s 7−→ ∂sη(s, x), see Assumption 3.1.(i), justifies, via bounded convergence, the
convergence in S2,2 (resp. H2,2) of I`(∂Us) to UT − Us (resp. I`(∂V s) to V T − V s) as
` −→ 0. The result follows in virtue of the uniqueness of (U, V,M).

The next lemma identifies the dynamics of (U tt )t∈[0,T ].

Lemma 6.2. Let (Y,Z) ∈ L2×H2 and (U, ∂U, V, ∂V,M, ∂M) ∈ (L2,2)2×H2,2×H2,2×(M2,2)2

satisfy, for any s ∈ [0, T ] P−a.s. for any t ∈ [0, T ],

Ust = η(s,X) +

∫ T

t

gr(s,X,U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r ,

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r ,
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Then

U tt = UTT +

∫ T

t

(
gr(r, U

r
r , V

r
r ,Yr,Zr)− ∂Urr

)
dr −

∫ T

t

V rr dXr −
∫ T

t

dM̃r, t ∈ [0, T ], P−a.s.

where M̃ := (M̃t)t∈[0,T ] is given by M̃t := M t
t −

∫ t
0
∂Mr

r dr. Moreover, M̃ ∈M2.

Proof. We show that P−a.s., for any t ∈ [0, T ]∫ T

t

∂Urr dr = UTT − U tt +

∫ T

t

gr(r, U
r
r , V

r
r ,Yr,Zr)dr −

∫ T

t

V rr dXr −
∫ T

t

dM̃r.

Indeed, note that, P−a.s., for any t ∈ [0, T ]∫ T

t

∂Urr dr =

∫ T

t

∂sη(r)dr +

∫ T

t

(∫ T

r

∇gu(r, ∂Uru, ∂V
r
u , U

r
u, V

r
u ,Yu,Zu)du

)
dr

−
∫ T

t

(∫ T

r

∂V ru
>dXu +

∫ T

r

d∂Mr
u

)
dr.

By Fubini’s theorem, the change of variables formula for the Lebesgue integral, [44,
Theorem 54], and Lemma 6.1 we have that, P−a.s., for any t ∈ [0, T ]∫ T

t

∫ T

r

∇gu(r, ∂Uru, ∂V
r
u , U

r
u, V

r
u ,Yu,Zu)dudr

=

∫ T

t

∫ u

t

∇gu(r, ∂Uru, ∂V
r
u , U

r
u, V

r
u ,Yu,Zu)drdu

=

∫ T

t

gu(u, Uuu , V
u
u ,Yu,Zu)− gu(t, U tu, V

t
u ,Yu,Zu)du.

Similarly, given ∂V ∈ H2,2, the version of Fubini’s theorem for stochastic integration,
see [44, Theorem 65], yields∫ T

t

∫ T

r

∂V ru
>dXudr =

∫ T

t

∫ u

t

∂V ru
>drdXu =

∫ T

t

(
V uu − V tu)>dXu.

Now, by Lemma 6.1 we have that, P−a.s., for any t ∈ [0, T ]∫ T

t

∫ T

r

d∂Mr
udr =

∫ T

t

(
∂Mr

T − ∂Mr
r

)
dr = M̃T − M̃t +M t

t −M t
T .

We are left to verify M̃ ∈M2. Indeed, note that M̃0 = 0 and

(i) M̃ has càdlàg paths. This follows from the fact that, as F satisfies the usual conditions,
there exist a càdlàg modification of (M t

t )t∈[0,T ], which, abusing notations, we still denote
by (M t

t )t∈[0,T ]. Indeed for t ∈ [0, T ]

M t
t = MT

t −
∫ T

t

∂Mr
t dr, P−a.s.

(ii) M̃ is a martingale. Indeed by Lemma 6.1, for 0 ≤ u ≤ t ≤ T , P−a.s.

E
[
M̃t|Fu

]
= E

[
M t
t |Fu

]
−
∫ u

0

∂Mr
r dr −

∫ t

u

E
[
∂Mr

r

∣∣Fu]dr
= M t

u −
∫ u

0

∂Mr
r dr −

∫ t

u

∂Mr
udr = M̃u,
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(iii) M̃ is orthogonal to X. For 0 ≤ u ≤ t ≤ T , P−a.s.

E
[
XtM̃t

∣∣Fu] = E
[
XtM

t
t

∣∣Fu]− E[Xt

∫ u

0

∂Mr
r dr

∣∣∣Fu]− ∫ t

u

E
[
E
[
Xt|Fr

]
∂Mr

r |Fu
]
dr

= XuM
t
u −Xu

∫ u

0

∂Mr
r dr −Xu

∫ t

u

∂Mr
udr

= XuM
t
u −Xu

∫ u

0

∂Mr
r dr −XuM

t
u +XuM

u
u

= XuM̃u,

where in the second equality we used the fact
∫ u

0
∂Mr

r dr is Fu-measurable, the tower
property and the orthogonality of Ms and X and of ∂Ms and X for s ∈ [0, T ]. The third
equality follows from Lemma 6.1.

(iv) ‖M̃‖M2 <∞,

‖M̃‖2M2 = E

[(
MT
T −

∫ T

0

∂Mr
r dr

)2]
≤ 2

(
E
[
[MT ]T

]
+ T

∫ T

0

E
[
[∂Mr]r

]
dr

)
≤ 2
[
‖MT ‖2M2 + T 2‖∂M‖2M2,2

]
<∞.

6.2 A priori estimates

We now establish a priori estimates for (S). To ease the readability, recall that for
any s ∈ [0, T ] it holds P−a.s. for any t ∈ [0, T ],

Yt = ξ(T,X) +

∫ T

t

hr(X,Yr,Zr, Urr , V rr , ∂Urr )dr −
∫ T

t

Z>r dXr −
∫ T

t

dNr,

Ust = η(s,X) +

∫ T

t

gr(s,X,U
s
r , V

s
r ,Yr,Zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r , (S)

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r .

Let us introduce (Ho, ‖ · ‖Ho) and (Ho, ‖ · ‖Ho) where ‖ · ‖Ho and ‖ · ‖Ho denote the
norms induced by

Ho := L2 ×H2 ×M2 × L2,2 ×H2,2 ×M2,2 × L2,2 ×H2,2 ×M2,2,

Ho := L2 ×H2 ×M2 ×
(
L2,2 ×H2,2 ×M2,2

)2
.

To obtain estimates between the difference of solutions, it is more convenient to
work with norms defined by adding exponential weights. We recall, for instance, that for
c ∈ [0,∞) the norm ‖ · ‖H2,c is given by

‖Z‖2H2,c = E

[ ∫ T

0

ect|σ>t Zt|2dt

]
,

and they are equivalent for any two values of c, since [0, T ] is compact. With this, we
define the norm ‖ ·‖Ho,c . In the following, we take the customary approach of introducing
arbitrary constants C > 0 to our analysis. These constants will typically depend on the
data of the problem, e.g. the Lipschitz constants and T and on the value of c unless
otherwise stated.
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Proposition 6.3. Let Assumption 3.1 hold and h ∈ Ho satisfy (S). Then (Y, U, ∂U) ∈
S2 × S2,2 × S2,2. Furthermore, there exists a constant C > 0 such that for ‖ · ‖H as in
Section 3

‖h‖2H ≤ C
(
‖ξ‖2L2 + ‖η‖2L2,2 + ‖∂sη‖2L2,2 + ‖h̃‖2L1,2 + ‖g̃‖2L1,2,2 + ‖∇g̃‖2L1,2,2

)
︸ ︷︷ ︸

=:I20

<∞.

Proof. We proceed in several steps. We recall that in light of Assumption 3.1, dt⊗dP−a.e.

|hr(Yr,Zr, Urr , V rr , ∂Urr ))| ≤ |h̃|+ Lh
(
|Yr|+ |σ>r Zr|+ |Urr |+ |σ>r V rr |+ |∂Urr |

)
,

|gr(s, Usr , V sr ,Yr,Zr))| ≤ |g̃(s)|+ Lg
(
|Usr |+ |σ>r V sr |+ |Yr|+ |σ>r Zr|

)
, (6.7)

|∇gr(s, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr))| ≤ |∇g̃r(s)|+ L∂sg
(
|Usr |+ |σ>r V sr |+ |Yr|+ |σ>r Zr|

)
+ Lg

(
|∂Usr |+ |σ>r ∂V sr |

)
.

Step 1: we start with auxiliary estimates. By Meyer–Itô’s formula for e
c
2 t|∂Ust |, see

Protter [44, Theorem 70], for any t ∈ [0, T ],

e
c
2 t|∂Ust |+ L0

T −
∫ T

t

e
c
2 r sgn(∂Usr ) · ∂V sr

>dXr −
∫ T

t

e
c
2 r− sgn(∂Usr−) · d∂Ms

r

= e
c
2T |∂sη(s)|+

∫ T

t

e
c
2 r

(
sgn(∂Usr ) · ∇gr(s, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr)−

c

2
|∂Usr |

)
dr,

(6.8)

where L0 := L0(∂Us) denotes the non-decreasing and pathwise-continuous local time of
the semi-martingale ∂Us at 0, see [44, Chapter IV, pp. 216]. We also notice that for any
s ∈ [0, T ] the last two terms on the left-hand side are martingales, recall that ∂V s ∈ H2.

We now take conditional expectation with respect to Ft in Equation (6.8). We may
use (6.7) and the fact L0 is non-decreasing to derive that for t ∈ [0, T ] and c > 2Lg

e
c
2 t|∂Ust |

≤ Et
[
e

c
2T |∂sη(s)|+

∫ T

t

e
c
2 r
(
|∂Usr |(Lg − c/2) + |∇g̃r(s)|+ Lg|σ>r ∂V sr |

)
dr

+

∫ T

t

e
c
2 rL∂sg

(
|Usr |+ |σ>r V sr |+ |Yr|+ |σ>r Zr|

)
dr

]
≤ Et

[
e

c
2T |∂sη(s)|

+

∫ T

t

e
c
2 r
(
|∇g̃r(s)|+ L̄

(
|σ>r ∂V sr |+ |Usr |+ |σ>r V sr |+ |Yr|+ |σ>r Zr|

))
dr

]
.

(6.9)

where L̄ := max{Lg, L∂sg}. Squaring in (6.9), we may use (6.1) and Jensen’s inequality
to derive for t ∈ [0, T ]

ect

7
|∂U tt |2 ≤ Et

[
ecT |∂sη(t)|2 +

(∫ T

t

e
c
2 r|∇g̃r(t)|dr

)2]
+ Et

[
T L̄2

∫ T

t

ecr
(
|U tr |2 + |Yr|2 + |σ>r ∂V tr |2 + |σ>r V tr |2 + |σ>r Zr|2

)
dr

]
.

Integrating the previous expression and taking expectation, it follows from the tower
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property that for any t ∈ [0, T ]

1

7
E

[ ∫ T

t

ecr|∂Urr |2dr

]
≤ E

[ ∫ T

t

ecT |∂sη(r)|2dr

]
+ E

[ ∫ T

t

(∫ T

r

e
c
2u|∇g̃u(r)|du

)2

dr

]
+ T L̄2E

[ ∫ T

t

∫ T

r

ecu
(
|Uru|2 + |Yu|2 + |σ>u ∂V ru |2 + |σ>u V ru |2 + |σ>u Zu|2

)
dudr

]
≤ T sup

r∈[0,T ]

{
‖ecT |∂sη(r)|2]‖L2 + E

[(∫ T

t

e
c
2u|∇g̃u(r)|du

)2]}
+ T 2L̄2 sup

r∈[0,T ]

{
E

[ ∫ T

t

ecu
(
|Uru|2 + |σ>u V ru |2 + |σ>u ∂V ru |2

)
du

]}
+ T 2L̄2E

[ ∫ T

t

ecu
(
|Yu|2 + |σ>u Zu|2

)
du

]
.

Thus, we obtain there is C∂u > 0 such that for any c > 2Lg and t ∈ [0, T ]

1

C∂u
E

[ ∫ T

t

ecr|∂Urr |2dr

]
≤ ecT

(
‖∂sη‖2L2,2 + ‖∇g̃‖2L1,2,2

)
+ E

[ ∫ T

t

ecr
(
|Yr|2 + |σ>r Zr|2

)
dr

]
+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr
(
|Usr |2 + |σ>r V sr |2 + |σ>r ∂V sr |2

)
dr

]
.

(6.10)

Similarly, we may find Cu > 0 such that for any c > 2Lg and t ∈ [0, T ]

1

Cu
E

[ ∫ T

t

ecr|Urr |2dr

]
≤ ecT

(
‖η‖2L2,2 + ‖g̃‖2L1,2,2

)
+ E

[ ∫ T

t

ecr
(
|Yr|2 + |σ>r Zr|2

)
dr

]
+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr|σ>r V sr |2dr

]
. (6.11)

We now estimate the term V tt . In light of (6.3) and (6.5), with e
c
2 tσ>t instead of σ>t ,

there exists C > 0 such that for any ε > 0, c > 4Lg and t ∈ [0, T ]

E

[ ∫ T

t

ecu|σ>u V uu |2du

]
≤ E

[ ∫ T

t

ecu|σ>u V tu |2du

]
+

∫ T

t

E

[ ∫ T

r

ecu
(
ε|σ>u V ru |2 + ε−1|σ>u ∂V ru |2

)
du

]
dr

≤ sup
r∈[0,T ]

E

[ ∫ T

t

ecu|σ>u V ru |2du

]
+ T sup

r∈[0,T ]

E

[ ∫ T

t

ecu
(
ε|σ>u V ru |2 + ε−1|σ>u ∂V ru |2

)
du

]
≤ (1 + εT ) sup

r∈[0,T ]

E

[ ∫ T

t

ecu|σ>u V ru |2du

]
+ TCε−1 sup

r∈[0,T ]

E

[ ∫ T

t

ecu
(
|Uru|2 + |σ>u V ru |2

)
du

]
+ TCε−1E

[ ∫ T

t

ecu
(
|Yu|2 + |σ>u Zu|2

)
du

]
+ TCε−1ecT sup

r∈[0,T ]

E

[∣∣∂sη(r)
∣∣2 +

(∫ T

t

|∇g̃u(r)|du
)2]

.
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Thus, taking ε = TC we may find Cv > 0 such that for any c > 4Lg and t ∈ [0, T ]

1

Cv
E

[ ∫ T

t

ecu|σ>r V rr |2dr

]
≤ ecT

(
‖∂sη‖2L2,2 + ‖∇g̃‖2L1,2,2

)
+ E

[ ∫ T

t

ecr
(
|Yr|2 + |σ>r Zr|2

)
dr

]
+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr
(
|Usr |2 + |σ>r V sr |2

)
dr

]
.

(6.12)

We emphasise that the constants (C∂u, Cu, Cv) ∈ (0,∞)3 depend only of the data of
the problem and are universal for any value of c > 4Lg.

Step 2: Let s ∈ [0, T ], we show that (Y, U, ∂U) ∈ S2 × S2,2 × S2,2. To alleviate the
notation we introduce

Y := (Y, Us, ∂Us), Z := (Z, V s, ∂V s), N := (N ,Ms, ∂Ms),

whose elements we may denote with superscripts, e.g. Y1, Y2, Y3 correspond to Y, Us,
∂Us.

By (6.1) and (6.7), we obtain that there exists C > 0, which may change value from
line to line, such that

|Ust |2 ≤ C
(
|η(s)|2 +

(∫ T

0

|g̃r(s)|dr
)2

+

∫ T

0

(
|Usr |2 + |σ>r V sr |2 + |Yr|2 + |σ>r Zr|2

)
dr

+

∣∣∣∣ ∫ T

t

V sr
>dXr +

∫ T

t

dMs
r

∣∣∣∣2).
We note that by Doob’s inequality

E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

V sr
>dXr

∣∣∣∣2
]
≤ 4‖V s‖2H2 . (6.13)

Taking supremum over t ∈ [0, T ] and expectation we obtain for s ∈ [0, T ]

‖Us‖2S2 ≤ C
(
‖η(s)‖2L2 + ‖g̃(s)‖2L1,2

+ ‖Us‖2L2 + ‖V s‖2H2 + ‖Y‖2L2 + ‖Z‖2H2 + ‖Ms‖2M2

)
<∞.

(6.14)

Similarly, we obtain that there exists C > 0 such that for s ∈ [0, T ]

‖∂Us‖2S2 ≤ C
(
‖∂sη(s)‖2L2 + ‖∇g̃(s)‖2L1,2

+

3∑
i=1

‖Yi‖2L2 + ‖Zi‖2H2 + ‖∂Ms‖2M2

)
<∞.

(6.15)

Given (η, ∂sη, g̃, ∂g̃) ∈ (L2,2)2 × (L1,2,2)2, (U, ∂U, V, ∂V,M, ∂M) ∈ (L2,2)2 × (H2,2)2 ×
(M2,2)2, (6.14) and (6.15), the mapping

([0, T ],B([0, T ])) −→ (S2, ‖ · ‖S2) : s 7−→ Yis is continuous for i ∈ {2, 3},

and ‖Yi‖S2,2 <∞. Consequently, Yi ∈ S2,2 for i ∈ {2, 3}. Arguing as above we may also
derive,

|Yt|2 ≤ C
(
|ξ|2 +

(∫ T

0

|h̃r|dr
)2

+

∫ T

0

(
|Yr|2 + |σ>r Zr|2 + |Urr |2 + |σ>r V rr |2 + |∂Urr |2

)
dr

+

∣∣∣∣ ∫ T

t

Z>r dXr

∣∣∣∣2 +

∣∣∣∣ ∫ T

t

dNr

∣∣∣∣2),
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which in turn yields, in combination with (6.10), (6.11) and (6.12),

‖Y‖2S2 ≤ C
(
I2
0 + ‖Y‖2L2 + ‖Z‖2H2 + ‖U‖2L2,2 + ‖V ‖2H2,2 + ‖∂V ‖2H2,2 + ‖N‖2M2

)
<∞. (6.16)

Finally, taking sup over s ∈ [0, T ] and adding together (6.16) (6.14) and (6.15) we
obtain

‖Y‖2S2 + ‖Us‖2S2,2 + ‖∂U‖2S2,2 ≤ C
(
I2
0 + ‖(Y,Z,N , U, V,M, ∂U, ∂V, ∂M)‖Ho

)
. (6.17)

Step 3: We obtain the estimate of the norm. To ease the notation we introduce

hr := hr(Yr,Zr, Urr , V rr , ∂Urr ), gr(s) := gr(s, U
s
r , V

s
r ,Yr,Zr),

∇gr(s) := ∇gr(s, ∂Usr , ∂V sr , Usr , V sr ,Yr,Zr).

By applying Itô’s formula to ect
(
|Yt|2 + |Ust |2 + |∂Ust |2

)
we obtain, P−a.s.

3∑
i=1

ect
∣∣Yi

t

∣∣2 +

∫ T

t

ecr
∣∣σ>r Zir∣∣2dr +

∫ T

t

ecr−d
[
Ni
]
r

+ Mt −MT

= ecT (|ξ(T )|2 + |η(s)|2 + |∂sη(s)|2)

+

∫ T

t

ecr
(
2Yr · hr + 2Usr · gr(s) + 2∂Usr · ∇gr(s)− c(|Yr|2 + |Usr |2 + |∂Usr |2)

)
dr,

where we used the orthogonality of X and both Ms and N , and we introduced the
martingale

Mt := 2

3∑
i=1

∫ t

0

ecrYi
r · Zir

>
dXr +

∫ t

0

ecr−Yi
r− · dNi

r.

Indeed, the Burkholder–Davis–Gundy inequality in combination with the fact that
(Y, Us, ∂Us) ∈ (S2)3 shows that M is uniformly integrable, and consequently a true
martingale. Moreover, we insist on the fact that the integrals with respect to N , Ms and
∂Ms account for possible jumps, see [32, Lemma 4.24].

Moreover, as (Y, U, ∂U) ∈ S2 × (S2,2)2, from (6.7) and with Young’s inequality we
obtain that for any (ε, ε̃) ∈ (0,∞)2, there is C(ε̃) ∈ (0,∞) such that the left-hand side
above is smaller than

≤ ecT
(
|ξ|2 + |η(s)|2 + |∂sη(s)|2

)
+

∫ T

t

ecr(C(ε̃)− c)
(
|Yr|2 + |Usr |2 + |∂Usr |2

)
dr

+

∫ T

t

ε̃ecr
(
|σ>r Zr|2 + |σ>r V sr |2 + |σ>r ∂V sr |2 +

1

Cu
|Urr |2 +

1

Cv
|V rr |2 +

1

C∂u
|∂Urr |2

)
dr

+ ε

3∑
i=1

sup
r∈[0,T ]

ecr
∣∣Yi

t

∣∣2 +
1

ε

∣∣∣∣ ∫ T

0

e
c
2 r|h̃r|dr

∣∣∣∣2+
1

ε

∣∣∣∣ ∫ T

0

e
c
2 r|g̃r(s)|dr

∣∣∣∣2+
1

ε

∣∣∣∣ ∫ T

0

e
c
2 r|∇g̃r(s)|dr

∣∣∣∣2
with (C∂u, Cu, Cv) as in (6.10)–(6.12). Taking expectation and letting c > 4Lg, we find
there is C > 0 such that

E

[ 3∑
i=1

ect
∣∣Yi

t

∣∣2 +

∫ T

t

ecr
∣∣σ>r Zir∣∣2dr +

∫ T

t

ecr−d
[
Ni
]
r

]

≤ sup
s∈[0,T ]

E

[ ∫ T

t

ecr
(
|Yr|2 + |Usr |2

)
(C(ε̃)− c)dr

]
+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr|∂Usr |2(C(ε̃)− c)dr
]

+ (1 + ε−1 + ε̃)CI2
0 + ε̃C

(
‖Z‖2H2,c + ‖V ‖2H2,2,c + ‖∂V ‖2H2,2,c

)
+ εC

(
‖Y‖2S2,c + ‖U‖2S2,2,c + ‖∂U‖2S2,2,c

)
.
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We then let ε̃ = 1/(24C), c ≥ max{4Lg, C(ε̃)}, and take sup over t ∈ [0, T ] (resp. (s, t) ∈
[0, T ]2) to each term on the left side separately. Adding these terms up we find there is
C > 0, such that for any ε > 0

1

T
‖(Y,Z,N , U, V,M, ∂U, ∂V, ∂M)‖Ho

≤ sup
t∈[0,T ]

E
[
ect|Yt|2

]
+ sup

(s,t)∈[0,T ]2
E
[
ect|Ust |2

]
+ sup

(s,t)∈[0,T ]2
E
[
ect|∂Ust |2

]
+ ‖Z‖2H2 + ‖V ‖2H2,2 + ‖∂V ‖2H2,2 + ‖N‖2M2 + ‖M‖2M2,2 + ‖∂M‖2M2,2

≤(1 + ε−1)CI2
0 + εC

(
‖Y‖2S2 + ‖U‖2S2,2 + ‖∂U‖2S2,2

)
.

(6.18)

We can the use (6.18) back in (6.17) to find ε ∈ (0,∞) small enough so that6

‖h‖2H ≤ CI2
0 .

The result in terms of the norm ‖ · ‖H follows from (6.12).

Proposition 6.4. Let (ξi, ηi, ∂sη
i) ∈ L2 × (L2,2)2 and (hi, gi, ∂sg

i) for i ∈ {1, 2} satisfy
Assumption 3.1 and suppose in addition that Hi ∈ Ho is a solution to (S) with coefficients
(ξi, hi, ηi, gi, ∂sη

i,∇gi), i ∈ {1, 2}. Then

‖δH‖2H ≤ C
(
‖δξ
∥∥2

L2 + ‖δη
∥∥2

L2,2 + ‖δ∂η
∥∥2

L2,2 + ‖δ1h‖2L1,2 + ‖δ1g‖2L1,2,2 + ‖δ1∇g‖L1,2,2

)
,

where for ϕ ∈ {Y,Z,N , U, V,M, ∂U, ∂V, ∂M, ξ, η, ∂sη} and Φ ∈ {h, g,∇g}

δϕ := ϕ1 − ϕ2, and, δ1Φt := Φ1
t (Y1

r ,Z1
t , U

1t
t , V

1t
t )− Φ2

t (Y1
r ,Z1

t , U
1t
t , V

1t
t ), dt⊗ dP−a.e.

Proof. Note that by the Lipschitz assumption on h and g there exist bounded processes
with appropriate dimensions (αi, βi, γi, εi), i ∈ {1, 2, 3}, ρ and % such that for every
s ∈ [0, T ], P−a.s., t ∈ [0, T ]

δYt =

∫ T

t

(
δ1hr + γ1

rδYr + α1>
r σ>r δZr + β1

rδU
r
r + ε1>

r σ>r δV
r
r

)
dr

+ δξ(T )−
∫ T

t

δZ>r dXr −
∫ T

t

dδNr,

δUst =

∫ T

t

(
δ1gr(s) + β2

rδU
s
r + ε2>

r σ>r δV
s
r + γ2

rδYr + α2>
r σ>r δZr

)
dr

+ δη(s)−
∫ T

t

δV s>r dXr −
∫ T

t

dδMs
r ,

δ∂Ust =

∫ T

t

(
δ1∇gr(s) + ρrδ∂U

s
r + %rδ∂V

s
r + β3

rδU
s
r + ε3>

r σ>r δV
s
r + γ3

rδYr + α3>
r σ>r δZr

)
dr

+ δ∂sη(s)−
∫ T

t

δ∂V sr
>dXr −

∫ T

t

dδ∂Ms
r .

We can therefore apply Proposition 6.3 and the result follows.

When the data of the system is chosen so as to study the class of type-I BSVIEs
considered in Section 4, our approach can be specialised so as to enlarge the initial
space and simplify the a priori estimates obtained in Proposition 6.3. We let (H?,o, ‖·‖H?,o)

be
H?,o := L2 ×H2 ×M2 × L2,2 ×H2,2 ×M2,2,

‖(Y,Z,N , Y, Z,N)‖2H?,o := ‖Y‖2L2 + ‖Z‖2H2 + ‖N‖2M2 + ‖Y ‖2L2,2 + ‖Z‖2H2,2 + ‖N‖2M2,2 .
6Recall the norm ‖ · ‖H is the norm induced by the space H as defined in Remark 3.4.(ii)
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Proposition 6.5. Let Assumption 4.1 hold and consider (Y,Z,N , Y, Z,N) ∈ H?,o solu-
tion, which holds for any s ∈ [0, T ] P−a.s. for any t ∈ [0, T ], to

Yt = ξ(T,X) +

∫ T

t

(
fr(r,X,Yr,Zr, Y rr )− ∂Y rr

)
dr −

∫ T

t

Z>r Xr −
∫ T

t

Nr,

Y st = ξ(s,X) +

∫ T

t

fr(s,X, Y
s
r , Z

s
r ,Yr)dr −

∫ T

t

Zsr
>dXr −

∫ T

t

dNs
r ,

(Sof )

with ∂Y given as in Lemma 6.1. Then (Y, Y ) ∈ S2 × S2,2 and there exist C > 0 such that

‖(Y,Z,N , Y, Z,N)‖2H? ≤ C
(
‖ξ‖2L2,2 + ‖f̃‖2L1,2,2

)
<∞.

Proof. We first note that Y ∈ S2,2 follows as in Proposition 6.3. Thus, in light of
Lemma 6.1, there exists (∂Y, ∂Z, ∂N) ∈ S2,2 × H2,2 ×M2,2 solution to the BSDE with
data (∂sξ, ∂f), and,

(
(Y tt )t∈[0,T ], (Z

t
t )t∈[0,T ]

)
∈ S2 ×H2 are well-defined. Moreover, ∂Y rr is

well-defined as an element of L1,2, i.e. dt⊗ dP−a.e. on [0, T ]× X , as a consequence of
the path-wise continuity of ∂Y s· . With this, we conclude Y ∈ S2.

Let us now note that given (Y tt )t∈[0,T ], (Z
t
t )t∈[0,T ] and (∂Y tt )t∈[0,T ], the first equation,

being a Lipschitz BSDE, admits a unique solution (Y,Z,N ). In addition, for Ñ as in
Lemma 6.2 we obtain

Y tt = Y TT +

∫ T

t

(
fr(r, Y

r
r , Z

r
r ,Yr)− ∂Y rr

)
dr −

∫ T

t

Zrr
>dXr −

∫ T

t

dÑr, t ∈ [0, T ], P−a.s.

(6.19)

Thus,
(
Y·,Z·,N·

)
=
(
(Y tt )t∈[0,T ], (Z

t
t )t∈[0,T ], (Ñt)t∈[0,T ]

)
in S2 ×H2 ×M2 and we obtain

Yt = ξ(t) +

∫ T

t

fr(t, Y
t
r , Z

t
r,Yr)dr −

∫ T

t

Ztr
>

dXr −
∫ T

t

dN t
r , t ∈ [0, T ], P−a.s. (6.20)

With this equation we can simplify our estimates. Let us introduce the system

Yt = ξ(t) +

∫ T

t

fr(t, Y
t
r , Z

t
r,Yr)dr −

∫ T

t

Ztr
>

dXr −
∫ T

t

dN t
r ,

Y st = ξ(s) +

∫ T

t

fr(s, Y
s
r , Z

s
r ,Yr)dr −

∫ T

t

Zsr
>dXr −

∫ T

t

dNs
r , t ∈ [0, T ].

(A)

Then, following the same reasoning of Proposition 6.3, i.e. applying Itô’s formula to
ect
(
|Yt|+ |Y st |) in combination with Young’s inequality, we obtain there is C > 0 such that

‖(Y,Z,N , Y, Z,N)‖2H? ≤ C
(
‖ξ‖2L2,2 + ‖f̃‖2

L1,2,2

)
<∞.

6.3 Well-posedness

Before we present the proof of Theorem 3.6 we recall that in light of Proposition 6.3
and Proposition 6.4 once the result is obtained for Ho the existence of a unique solution
in H follows immediately.

Proof of Theorem 3.6. Note that uniqueness follows from Proposition 6.4. To show
existence, let us define the map

T : Ho −→ Ho

(y, z, n, u, v,m,u, v,m) 7−→ (Y, Z,N,U, V,M, ∂U, ∂V, ∂M),

EJP 26 (2021), paper 89.
Page 28/35

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP653
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A unified approach to well-posedness of type-I BSVIEs

with (Y,Z,N , U, V,M, ∂U, ∂V, ∂M) given for any s ∈ [0, T ], P−a.s. for any t ∈ [0, T ] by

Yt = ξ(T,X) +

∫ T

t

hr(X, yr, zr, U
r
r , V

r
r , ∂U

r
r )dr −

∫ T

t

Z>r dXr −
∫ T

t

dNr,

Ust = η(s,X) +

∫ T

t

gr(s,X,U
s
r , V

s
r , yr, zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r ,

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr , yr, zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r .

Step 1: We first show T is well defined. Let (y, z, n, u, v,m,u, v,m) ∈ Ho.

(i) Let us first consider the tuples (U, V,M) and (∂U, ∂V, ∂M). Let us first consider the
second equation. Given (y, z) ∈ S2 ×H2 and Assumption 3.1, this equation is a standard
Lipschitz BSDE whose well-posedness follows by classical arguments, see [73; 25]. This
yields (Us, V s,Ms) ∈ S2 ×H2 ×M2 for all s ∈ [0, T ].

Let us argue the continuity of ([0, T ],B([0, T ])) −→ (L2, ‖ · ‖L2) : s 7−→ Us. Let
(sn)n ⊆ [0, T ], sn

n→∞−−−−→ s0 ∈ [0, T ] and define for ϕ ∈ {U, V, η}, ∆ϕn := ϕsn − ϕs0 . From
the classic stability result for BSDEs we obtain that there is C > 0 such that

E

[ ∫ T

0

|∆Unt |2dr

]
≤ 2T

(
‖∆ηn‖2L2 + TL2

g

(
ρ2
g(|sn − s0|)

)
.

We conclude ‖U‖L2,2 < ∞ and U ∈ L2,2. Given (Us, V s) ∈ L2 × H2 together with
(y, z) ∈ S2 ×H2, the argument for (∂Us, ∂V s, ∂Ms) for fixed s ∈ [0, T ] is identical.

(ii) We now show that (V, ∂V,M, ∂M) ∈ (H2,2)2 × (M2,2)2. Again, the argument for
(∂V, ∂M) is completely analogous. Applying Itô’s formula to |Usr |2 we obtain

|Ust |2 +

∫ T

t

|σ>r V sr |2dr +

∫ T

t

d[Ms]r = |η(s)|2 + 2

∫ T

t

Usr · gr(s, Usr , V sr , yr, zr)dr

− 2

∫ T

t

Usr · V sr
>dXr − 2

∫ T

t

Usr− · dMs
r .

First note Us ∈ S2 guarantees that the last two terms are true martingale for any s ∈ [0, T ].
To show that ([0, T ],B([0, T ])) −→ (H2, ‖ · ‖H2)

(
resp. (M2, ‖ · ‖M2)

)
: s 7−→ V s

(
resp. Ms

)
is continuous, let (sn)n ⊆ [0, T ], sn

n→∞−−−−→ s0 ∈ [0, T ]. We then deduce there is C > 0 such
that

E

[ ∫ T

0

|σ>r ∆V nr |2dr + [∆Ms]T

]
≤ C

(
‖∆η‖2L2 + ρ2

g(|sn − s0|)
)
,

where ρg denotes the modulus of continuity of g as defined in the notations section above.
Likewise, we obtain

sup
s∈[0,T ]

E

[ ∫ T

0

|σ>r V sr |2dr + [Ms]T

]
≤ C

(
‖η‖2L2,2 + ‖g̃‖2L1,2

)
<∞.

Since the first term on the right-hand side is finite from Assumption 3.1, we obtain
‖V ‖H2,2 + ‖M‖M2,2 <∞.

We are left to argue V ∈ H2,2 . Applying Lemma 6.1 to the system, which holds for
any s ∈ [0, T ] P−a.s. for any t ∈ [0, T ],

Ust = η(s,X +

∫ T

t

gr(s,X,U
s
r , V

s
r , yr, zr)dr −

∫ T

t

V sr
>dXr −

∫ T

t

dMs
r ,

∂Ust = ∂sη(s,X) +

∫ T

t

∇gr(s,X, ∂Usr , ∂V sr , Usr , V sr , yr, zr)dr −
∫ T

t

∂V sr
>dXr −

∫ T

t

d∂Ms
r ,
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we obtain s 7−→ V s is absolutely continuous with density s 7−→ ∂V s. Consequently, we
may define the diagonal of V , denoted by V := (V tt )t∈[0,T ], as in Equation (6.6), with

V tt := V Tt −
∫ T

t

∂V rt dr, dt⊗ dP−a.e. in [0, T ]×X .

The fact ‖V‖H2 <∞ follows as in Lemma 6.1.(iv). This yields V ∈ H2 and we conclude
V ∈ H2,2 .

(iii) We derive an auxiliary estimate. Recall (U, V,M, ∂U, ∂V, ∂M) satisfy (6.4). Now, in
light of Assumption 3.1 and (ii), we may find, as in Step 1 in Proposition 6.3, a universal
constant C > 0 such that for any c > 4Lg and t ∈ [0, T ]

1

C
E

[ ∫ T

t

ecr
(
|Urr |2 + |∂Urr |2 + |σ>r V rr |2

)
dr

]
≤ ecT

(
‖η‖2L2,2 + ‖g̃‖2L1,2 + ‖∂sη‖2L2,2 + ‖∇g̃‖2L1,2,2

)
+ E

[ ∫ T

t

ecr
(
|yr|2 + |σ>r zr|2

)
dr

]
.

(iv) We now argue for the tuple (Y,Z,N ). Notice that

Ỹt := E

[
ξ(T ) +

∫ T

0

hr(yr, zr, U
r
r , V

r
r , ∂U

r
r )dr

∣∣∣∣Ft], is a square integrable F-martingale.

Indeed, under Assumption 3.1, h is uniformly Lipschitz in (y, z, u), so (iii) yields

E
[
|Ỹt|2

]
≤ 6

(
‖ξ‖2L2 + ‖h̃‖2L1,2 + TL2

h

(
‖y‖2H2 + ‖z‖2H2 + E

[ ∫ T

0

(
|Urr |2 + |V rr |2 + |∂Urr |2

)
dr

]))
<∞

Integrating the above expression, Fubini’s theorem implies that Ỹ ∈ L2, thus the
predictable martingale representation property for local martingales guarantees the
existence of a unique (Z,N ) ∈ H2×M2 such that (Y,Z,N ) satisfies the correct dynamics
and Doob’s inequality implies Y ∈ S2, where

Y := Ỹ − E
[ ∫ ·

0

hr(yr, zr, U
r
r , V

r
r , ∂U

r
r )dr

]
.

All together, we have shown that T(y, z, n, u, v,m, ∂u, ∂v, ∂m) ∈ Ho.

Step 2: We show T is a contraction under the equivalent norm ‖ · ‖Ho,c , for some c > 0

large enough. Let (yi, zi, ni, ui, vi,mi) ∈ Ho, hi = T(yi, zi, ni, ui, vi,mi, ∂ui, ∂vi, ∂mi) for
i ∈ {1, 2}. We first note that by Lemma 6.2

U it = η(T ) +

∫ T

t

(
gr(r,U ir,Vir, yir, zir)− ∂U ir

)
dr −

∫ T

t

VirdXr −
∫ T

t

dM̃i
r, t ∈ [0, T ], P−a.s.,

where (U i,Vi,M̃i, ∂U i) :=
(
(U itt )t∈[0,T ], (V

it
t )t∈[0,T ], (M̃

i
t )t∈[0,T ], (∂U

it
t )t∈[0,T ]

)
and M̃ i as

in Lemma 6.2 for i ∈ {1, 2}.
To ease the readability we define dt⊗ dP−a.e.

δhr := hr(y
1
r , z

1
r ,U1

r ,V1
r , ∂U1

r )− hr(y2
r , z

2
r ,U2

r ,V2
r , ∂U2

r ),

δĝr := gr(r,U1
r ,V1

r , y
1
r , z

1
r )− ∂U1

r − gr(r,U2
r ,V2

r , y
2
r , z

2
r ) + ∂U2

r ,

δgr(s) := gr(s, U
1s
r , V

1s
r , y1

r , z
1
r )− gr(s, U2s

r , V
2s
r , y2

r , z
2
r ),

δ∇gr(s) := ∇gr(s, ∂Usr
1, ∂V sr

1, Usr
1, V sr

1, ysr
1, z1

r )−∇gr(s, ∂Usr
2, ∂V sr

2, Usr
2, V sr

2, ysr
2, z2

r ),
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and

δY := (δY, δU , δUs, δ∂Us), δZ := (δZ, δV, δV s, δ∂V s), δN := (δN , δM̃, δMs, δ∂Ms),

whose elements we may denote with superscripts, e.g. δY1, δY2, δY3, δY4 correspond
to δY, δU , δUs, δ∂Us.
(i) In light of (6.4), as in Step 1 in Proposition 6.3, we may find that for c > 4Lg there
exists a universal constant C ∈ (0,∞) such that for t ∈ [0, T ]

E

[ ∫ T

t

ecr
(
|δUr|2 + |δ∂Ur|2 + |σ>r δVr|2

)
dr

]
≤ CE

[ ∫ T

t

ecr
(
|δyr|2 + |σ>r δzr|2

)
dr

]
. (6.21)

(ii) Applying Itô’s formula to ecr
(
|δYr|2 + |δUr|2 + |δUsr |2 + |δ∂Usr |2

)
and noticing that

(δYT , δUT , δUT , δ∂UT ) = (0, 0, 0, 0) we obtain

4∑
i=1

ect
∣∣δYi

t

∣∣2 +

∫ T

t

ecr
∣∣σ>r δZir∣∣2dr +

∫ T

t

ecr−d
[
δNi

]
r

+ M̃s
T − M̃s

t

=

∫ T

t

ecr
(

2δYr · δhr + 2δUsr · δgr(s) + 2δ∂Usr · δ∇gr(s)− c
(
|δYr|2 + |δUsr |2 + |δ∂Usr |2

))
dr,

where M̃s
t = 2

∑4
i=1

∫ t
0

ecrδYi
r · δZir

>
dXr +

∫ t
0

ecr−δYi
r− · d δNi

r. Again, the fact that
(δY, δU , δU, δ∂U) ∈ (S2)2×(S2,2)2 guarantees, via the Burkholder–Davis–Gundy inequality,

that M̃s is a uniformly integrable martingale, and thus a true martingale for all s ∈ [0, T ].

Additionally, under Assumption 3.1.(ii) and 3.1.(iii), dt⊗ dP−a.e.

|δhr| ≤ Lh(|δyr|+ |σ>t δzr|+ |δUr|+ |σ>r δVr|+ |δ∂Urr |),
|δĝr| ≤ Lg(|δyr|+ |σ>t δzr|+ |δUr|+ |σ>r δVr|) + |δ∂Urr |,

|δgr(s)| ≤ Lg
(
|δUsr |+ |σ>r δV sr |+ |δyr|+ |σ>r δzr|

)
,

|δ∇gr(s)| ≤ L∂sg
(
|δUsr |+ |σ>r δV sr |+ |δyr|+ |σ>r δzr|

)
+ Lg(|δ∂Usr |+ |σ>r δ∂V sr |).

In turn, this implies together with Young’s inequality and (6.21), that for any c > 4Lg
there exists a universal constant C > 0 such that for any ε > 0

E

[ 4∑
i=1

ect
∣∣δYi

t

∣∣2 +

∫ T

t

ecr
∣∣σ>r δZir∣∣2dr +

∫ T

t

ecr−d
[
δNi

]
r

]

≤ E
[ ∫ T

t

ecr
((
|δYr|2 + |δUr|2 + |δUsr |2 + |δ∂Usr |2

)
(Cε−1 − c)

)
dr

]
+ εE

[ ∫ T

t

ecr
(
|δyr|2 + |σ>r δzr|2 + |δUr|+ |σ>r δVr|+ |δ∂Ur|

)
dr

]
≤ E

[ ∫ T

t

ecr
(
|δYr|2 + |δUr|2

)
(Cε−1 − c)dr

]
+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr|δUsr |2(Cε−1 − c)dr
]

+ sup
s∈[0,T ]

E

[ ∫ T

t

ecr|δ∂Usr |2(Cε−1 − c)dr
]

+ εCE

[ ∫ T

0

ecr
(
|δyr|2 + |σ>r δzr|2

)
dr

]
,

where in the second inequality C is appropriately updated. Choosing ε = Cc−1 we obtain

E

[ 4∑
i=1

ect
∣∣δYi

t

∣∣2 +

∫ T

t

ecr
∣∣σ>r δZir∣∣2dr +

∫ T

t

ecr−d
[
δNi

]
r

]
≤ C

c

(
‖δy‖L2,c + ‖δz‖H2,c

)
,

which yields

‖δh‖2Ho,c ≤
C

c

(
‖δy‖L2,c + ‖δz‖H2,c

)
.

We conclude T has a fixed point as it is a contraction for c large enough.
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