
ETH Library

Designing Informatics Curriculum
for K-12 Education: From
Concepts to Implementations

Journal Article

Author(s):
Dagienė, Valentina; Hromkovič, Juraj; Lacher, Regula

Publication date:
2021-09

Permanent link:
https://doi.org/10.3929/ethz-b-000505940

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Informatics in Education 20(3), https://doi.org/10.15388/infedu.2021.22

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000505940
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15388/infedu.2021.22
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Informatics in Education, 2021, Vol. 20, No. 3, 333–360
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.22

333

Designing Informatics Curriculum for K-12
Education: From Concepts to Implementations

Valentina DAGIENĖ1, Juraj HROMKOVIČ2, Regula LACHER2

1Vilnius University, Lithuania
2ETH Zürich, Switzerland
e-mail: valentina.dagiene@mif.vu.lt, juraj.hromkovic@inf.ethz.ch, regula.lacher@inf.ethz.ch

Received: May 2021

Abstract. Computing as a discipline has common roots with mathematics and written languages,
and computing as a way of thinking and handling has been integral to human culture since ever.
This is not only a reasonable argument for convincing society to consider informatics as one of
the very fundamental pillars of education, but it also puts the potential contributions of teach-
ing informatics in schools into the correct perspective in the context of science and humanities.
Many European countries are switching from teaching information technologies to informatics
education during the current second decade of this century. Informatics curriculum is becoming
a central part of school education.

We explain and design a way of developing informatics curriculum that offer the critical
competences new generations need to survive and thrive in todays’ knowledge society and will
allow them to contribute to the future development of society. These competences also strongly
support the development of their intellectual potential and creativity. Our design of informatics
curriculum takes into account the interaction with other scientific disciplines as well with the
subject didactics, pedagogy and psychology.

The starting point is merging constructionism and critical thinking. Constructionism with
its “learning by doing” and “learning by getting things to work” enables designing a teaching
process in which students acquire knowledge by creating products, analysing the properties and
the functionality of their own products, and finally derive motivation to improve these products.
Critical thinking asks us not to teach products of science and technology and their application,
but to teach the creative process of their development. To implement this approach, we use the
historical method allowing the students to learn by productive failures in the process of search-
ing for a solution. To organize the process of learning and make the different steps available
to the appropriate age groups we take into account the cognitive dimensions of the revised
taxonomy of Bloom. To illustrate how the combination of all these concepts works we pres-
ent a detailed curriculum for algorithm design, programming, robotics, and communication in
networks.

Keywords: informatics, informatics curriculum, informatics concepts, informatics education,
computing education, computer science, computational thinking, digital competences, Bloom’s
taxonomy.

V. Dagienė, J. Hromkovič, R. Lacher334

1. Introduction

Technological developments influence education at schools and enhance opportunities
for effective learning. Importance and roles of informatics / computer science / com-
puting in the school education are growing and are broadly recognized. Arguments for
including informatics education in schools are provided and discussed, for example,
Don Passey (2019) presents the six main arguments for wider-scale introduction of the
informatics subject, the implications for researchers, schools, teachers and learners, and
evidence of outcomes of informatics in compulsory school education. Also Mark Guz-
dial made a good list of the arguments in his book “Learner-Centered Design of Comput-
ing Education” (Guzdial, 2015).

Informatics curriculum tend to be defined nationally or at state level (CECE-Report,
2017). The curriculum is important for schools and especially for education policy
makers, and it needs to be matched by well-qualified teachers who deliver topics that
resonate with pupils, teachers who motivate them, stimulate their deeper thinking
skills, and attract their curiosity to continue the course further. It is important to note

Table 1
Terminology used in this paper

Term Definition

Informatics The entire set of scientific concepts that make information technology possible.
Informatics is a distinct science, characterised by its own concepts, methods, body of
knowledge, and open issues. (CECE-Report, 2017)

Computer Science The scientific discipline encompassing principles such as algorithms, data structures,
programming, systems architecture, design, problem solving, etc.

Computing The broad subject area incorporating information technology, computer science,
digital literacy and problem solving in this context deploying computational thinking.
Computing is now the title for the new curriculum in the UK; in Australia and New
Zealand “Digital Technologies” is the equivalent term used in curricula.

Information Technology
(IT)

The use of computers, in industry, commerce, the arts and elsewhere, including using
software packages, aspects of information technology systems architecture, human
factors, project management etc.

Digital literacy The general ability to use computersa – covers fluency with computer tools and the
internet. It is a set of skills rather than a subject in its own right.

Computational thinking Recognising aspects of computation in the world that surrounds us and applying tools
and techniques from computer science to understand, reason and solve problems in
relation to both natural and artificial systems and processes.

Programming A process of designing and building an executable computer program to accomplish
a specific computing result or to perform a specific task. It involves: analysis and
understanding of problems, identifying and evaluating possible solutions, generating
algorithms, implementing solutions in the code of a particular programming language,
testing and debugging.

Coding Coding is the translation of natural language into machine commands and coders
use an intermediary language to direct the step-by-step action the machine needs to
take.

Designing Informatics Curriculum for K-12 Education: ... 335

that even a very well-established informatics curriculum cannot reach its goals without
well-educated and trained teachers who need to have higher education in informat-
ics as a scientific discipline. Many countries, for example, Finland or Norway, have
adopted the integrated approach in primary education: computational thinking should
be included in all subjects, from history to biology and arts. The integrated approach
also requires that all primary teachers will be familiar with informatics concepts. The
worldwide tendencies of teaching informatics in primary education and primary school
teachers’ understanding of computational thinking issues are provided in a survey of 52
countries (Dagienė et al., 2021).

The variation in terminology in relation to computer science / informatics / comput-
ing education / computational thinking or even information and communication technol-
ogy (ICT) has been a source of much confusion, so we begin by defining the terms used
in the paper. The CECE-Report (2017) provided some useful definitions, these form the
basis for definitions in this paper with some further clarification (see Table 1). Informat-
ics is slightly broader than computer science, a term which is used widely across Europe.
We focus on the primary and secondary school levels (aged approximately 4 to 19),
excluding schools within tertiary education.

In this paper we are going to answer the following questions:
What to take into account when designing an informatics curriculum?1.
How to design an informatics curriculum interacting with other school subjects 2.
and being well adjusted to corresponding age groups?
How to motivate pupils to approach deep informatics concepts and to guarantee 3.
a high degree of success?

2. Background

Numeracy and literacy are fundamental to any educational system and nobody would
argue against the teaching of reading, writing and arithmetic. But symbolic representa-
tions of information and the design of efficient algorithms for automation of different
processes have roots as old as written language and calculation. Informatics (also known
as a computer science or computing discipline) therefore has been integral to human
culture since ever. Moreover, the fast increase of the importance of digital competences
in our knowledge society which is based on information and communication technology
makes a comprehensive education of informatics an unavoidable part of school experi-
ence (Hromkovič 2015; Hromkovič and Lacher, 2017a; Hromkovič and Lacher 2017b;
Hromkovič and Steffen, 2011).

Being digital native and a mere user of technology is not sufficient. Technology is
changing at such a rapid pace that to thrive and succeed in the information age, we need
to understand how the digital world works, how it has been created and how it can be
improved going forward. As educators, one of our aims should be to educate the young
generation not only to be able to control existing technology, but also to invent and de-
velop new technology.

V. Dagienė, J. Hromkovič, R. Lacher336

There is a growing recognition of the importance of offering young students the op-
portunity of informatics education along with four Rs: Reading, wRiting, aRithmetic/
mathematics and algoRithms. informatics is scientific basis for digital technologies. In-
formatics radically change the way we think about, understand, and organize our lives,
our surroundings, and the whole world. Therefore, informatics is a part of general educa-
tion and should be recognized by all as “a truly fundamental discipline that plays a sig-
nificant role in education for the 21st century” (Caspersen et al., 2019).

Informatics is a distinct scientific discipline, characterised by its own concepts, meth-
ods, body of knowledge, and students’ achievements (Hromkovič 2015; Hromkovič
and Steffen, 2011; Kert et al., 2019). Informatics is known as the study of information
and data, computers, and algorithmic processes, including their principles, hardware
and software designs, applications, and their impact on society. Many countries use
the term computer science (Hubwieser et al., 2011), however, it is also referred to as
“Computing”, “Informatics”, and partially as “Digital Technologies” or “Information
and Communication Technologies”. Although there may exist different opinions on it,
we prefer to use informatics and computer science (CS) (or computing education) as
synonymous.

Informatics covers the foundations of computational structures, processes, artefacts,
systems, their software designs, applications as well as the networking and their impact
on society. The basic principles and fundamental knowledge of informatics shape the
thinking, expression, and working of each individual and are much more important for
education than the technologies themselves. Computers, technologies “should deepen
our understanding of the process of design and creation, it should give us better control
over the task of organizing our thoughts” (Dijkstra, 1972).

Several globally known scientists have provided characterisation of informatics
as a discipline. Already in 1970s A.P. Erschov called informatics / programming the
second literacy (Erschov, 1972; Erschov, 1981). For example, Nygaard (1986) applied
the informatics term when describing conceptual modelling and information systems.
Harel (1987) described algorithmics as the discipline which covers three complexities:
computational complexity, behavioural complexity, and cognitive complexity. Denning
and Rosenbloom (2009) developed the argumentation that computing is a fourth great
domain alongside the physical, life and social sciences. Recently Denning and Tedre
(2019), in their book “Computational Thinking”, have discerned four stages of comput-
ing/computational thinking development:

Phenomena surrounding computers (1950s–1970s). 1)
Programming as art and science (1970s). 2)
Computing as automation (1980s). 3)
Computing as pervasive information processes (1990s to present). 4)

Pupils can be exposed to aspects of computational thinking by engaging in algo-
rithms and programming through diverse means such as data analysis, modelling or
robotics.

Juraj Hromkovič and Regula Lacher extended these computational aspects of in-
formatics to a more holistic view by adding abstraction and symbolic representations
that enable to describe and investigate the world in an efficient way (Hromkovič, 2015;

Designing Informatics Curriculum for K-12 Education: ... 337

Hromkovič and Lacher, 2017b). The three roots of informatics (Hromkovič, 2015;
Hromkovič, 2018) offer a more general view on informatics in the broader context of
science, humanities, and technology than previous approaches, and allows a clear view
of the potential contributions of informatics education.

The Committee on European Computing Education (CECE), jointly established by
ACM Europe and Informatics Europe have brought forward a detailed picture of the
state of informatics education at school level. The first of the three main recommenda-
tions for informatics curriculum (Fig. 1) have stated: “All students must have access to
ongoing education in informatics in the school system. Informatics teaching should pref-
erably start in primary school, and at the latest at the beginning of secondary school.”
(CECE-Report, 2017). A crucial component of the informatics for ALL initiative is the
two-tier strategy at all educational levels: 1) informatics as an area of specializationa –
a fundamental and independent subject in school, and 2) the integration of informatics
with other school subjects. These two trends were named as Learn to Compute (special-
ization) and Compute to Learn (integration).

We acknowledge that curriculum design is complex. No single theory of curriculum
is commonly accepted that can provide us with a basis for developing our vision for
curricular design (Pacheco, 2012). Still there is the issue of balance across computer
science, information technology, digital literacies and computational thinking. For ex-
ample, the UK, Australia and Poland have incorporated elements of all these in their cur-

Fig. 1. Main recommendations of the CECE report in three areas (CECE, 2017).

V. Dagienė, J. Hromkovič, R. Lacher338

ricula for all students although the balance is only likely to be clear from more detailed
analysis of curricula (Webb et al., 2019). Previous research comparing computer science
curricula in different countries revealed the range of factors affecting the curriculum and
how it is implemented (Hubwieser et al. 2015).

Finding a place for informatics in the school curriculum is a complex issue since it
requires to find sustainable solutions for including a new fundamental discipline among
historically firmly established subjects in an educational system that in most countries
already works at its maximum capacity. Adding a subject to an existing school curricu-
lum is very challenging, at first because of lack of space. Each country needs to find its
own solution, matching its constrains and its overall situation.

In one of the first papers on informatics curriculum, J. Gal-Ezer, C. Beeri, D. Harel,
and A. Yehudai (1995) provided a high-level description and argumentation of a high-
school curriculum in Israel with emphasis on the basics of algorithmics and teaching

Fig. 2. New Zealand Computer Science Field Guide table of contents
(http://csfieldguide.org.nz).

Designing Informatics Curriculum for K-12 Education: ... 339

programming. The authors discussed background and motivation for the curriculum, its
structure and its initial implementation. Later J. Gal-Ezer and D. Harel (1999) continued
development of the computer science curriculum by providing a detailed description
with all necessary modules.

Informatics curriculum should include the foundation of the discipline, including
theoretical and practical aspects. It should be clearly designed at each school level: el-
ementary, lower secondary and upper secondary or high school. It is very important to
encourage new curricula research concerning appropriate methodology, learning design,
teaching and learning methods, etc.

The CECE (2017) report has emphasized the following informatics fundamental
concepts and practices:

Data, information, and representation. ●
Algorithms and programming. ●
Patterns and parametrization. ●
Abstraction and conceptual modelling. ●
Devices, network and the web. ●
Computation and communication. ●
Design and interaction. ●
Security, privacy, and ethics. ●
Societal impact. ●

For example, New Zealand has included key concepts like algorithms, programming
languages, various aspects of coding, formal languages, etc. (Fig. 2). The purpose of the
curriculum is to give students a taste of the field of computer science, not to teach it in
detail (Bell, 2014). For example, formal languages can be introduced by working with
some simple Finite State Automata and based on interesting tasks integrated with gram-
mar or expressions in mathematics.

3. Main Concepts for Teaching Informatics: Constructivism,
Constructionism, Critical Thinking, and the Historical Method

The famous general concept of constructivist theory or constructivism of Jean Piaget
(1950) can be expressed in short by “learning by doing”. The activity of learners is
decisive in the process of learning and especially significant for the sustainability of
acquired knowledge and it’s interconnecting with already known facts. Constructivist
learning is particularly based on students’ active participation in problem solving and
critical thinking.

For teaching informatics Seymour Papert (1980) has evolved the idea of Jean Piaget
with his well-known “learning by getting things to work”. According to this, one tries to
teach in such a way that:

Learners create or construct “things”, i.e., the results of the activity of learners (i)
are products (programs, secret writings, self-verifying codes, data organiza-
tion, etc.).

V. Dagienė, J. Hromkovič, R. Lacher340

Learners investigate the properties and the functionality of their products.(ii)
Learners create motivation for building better products (better properties, ad-(iii)
vanced functionality, etc.) and continue with (i).

This concept of Seymour Papert is called constructionism (which is built on con-
structivism) and it is exceptionally natural for teaching programming (Papert and Harel,
1991). Papert wrote in his book “The Children‘s Machine” (p. 142–143):

“Constructionism also has the connotation of “construction set”,
starting with sets in the literal sense, such as Lego, and extending
to include programming languages considered as “sets” from which
programs can be made, and kitchens as “sets” with which not only
cakes but recipes and forms of mathematics-in-use are constructed.
One of my central mathetic tenets is that the construction that takes
place “in the head” often happens especially felicitously when it is
supported by construction of a more public sort “in the world” –
a sand castle or a cake, a Lego house or a corporation, a computer
program, a poem, or a theory of the universe. Part of what I mean
by “in the world” is that the product can be shown, discussed, exam-
ined, probed, and admired. It is out there.

Thus, constructionism, my personal reconstruction of constructivism,
has as its main feature the fact that it looks more closely than other
educationalisms at the idea of mental construction. It attaches spe-
cial importance to the role of constructions in the world as a support
for those in the head, thereby becoming less of a purely mentalist
doctrine. It also takes the idea of constructing in the head more seri-
ously by recognizing more than one kind of construction (some of
them as far removed from simple building as cultivating a garden),
and by asking questions about the methods and the materials used.
How can one become an expert at constructing knowledge? What
skills are required? And are these skills the same for different kinds
of knowledge?”

A program as a product of learners’ activity has a functionality that can be espe-
cially well investigated if the execution of the program is visualized e.g., by mov-
ing robots or drawing pictures. But one must not restrict “learning by getting things
to work” to programming. If, for example, the product of the activity of learners is
a cryptosystem, one can investigate this product by applying it in communication
process and by trying to break it. For everything we want to teach one can design
the teaching process by following the concept of constructionism. Constructionist
principles support the strategies of using more kinesthetic and active approaches and
this is embodied in the “unplugged” style in informatics (Kirschner et al., 2006). The
“unplugged” approach of teaching refers to the use of activities to teach informat-
ics concepts without computers (Bell et al., 2009; Hromkovič 2018; Hromkovič and
Lacher 2019, Hauser et al 2020). But one has to be very careful with a well working

Designing Informatics Curriculum for K-12 Education: ... 341

implementation. We know that too restricted guidance does not work (Kirschner et al.,
2006), and there has to be find a good balance between guidance (interaction with
teacher) and learner’s activity.

Constructionism as a teaching method fits very well the concept of critical thinking.
Critical thinking for the purpose of this paper can be summarized as follows:

Do not teach only the product of science and technology (facts, theo-
rems, methods, models, equipment etc.) and how to apply them, but
the processes of their discovery and their development. One has to
recognize that each result of science, and each product of technology
are only intermediate steps on the way to goals behind the horizon.
One has to imagine that all these achievements have their drawbacks
and reach only a fraction of posed goals.

This means that the focus is on creative processes. We aim to explore the intellectual
potential of learners and support the leaners to become creative personalities. Person-
alities who do not accept anything, that they are not able to verify by corresponding
scientific methods. Personalities who understand the creative processes of research and
development so well that they enhance our knowledge by discovering new facts and
improve the products of science and technology.

To design teaching based on constructionism and critical thinking we recommend
using the historical method (Behr, 1996; Bruckheimer and Arcavi, 2000; Bussi and Bar-
tolini, 1996; Man-Keung, 2000; Swetz, 2000). Jean Piaget and Seymour Papert have
paid attention to historical approaches to the evolution of knowledge.

“In the simplest case the individual development is parallel to the
historical development, recalling the biologists’ dictum, ontogeny
recapitulates phylogeny. For example, children uniformly represent
the physical world in an Aristotelian manner, thinking, for exam-
ple, that forces act on position rather than on velocities. In other
cases, the relation is more complex, indeed to the point of rever-
sal. Intellectual structures that appear first in a child’s development
are sometimes characteristic not of early science but of the most
mod- ern science. So, for example, the mother structure topology
appears very early in the child’s development, but topology itself
appeared as a mathematical subdiscipline only in modern times.”
(Papert, 1980, p. 163)

John P. Smith, Andrea di Sessa and Jeremy Roschele (1994) has used an historical
revisitation of Galileo in developing his approach to learning the physics of free fall.

Applying the historical method means that teachers first learn the genesis of a sub-
ject they want to teach. Starting with motivations, continuing with unsuccessful at-
tempts, failures, or partial successes. If learners can experience in their activities at
least part of these processes and learn from own failures, learners will acquire an un-
derstanding of the subject that is incomparable deeper that what learners could achieve

V. Dagienė, J. Hromkovič, R. Lacher342

by presentations of the final products of these processes. The sustainability of learning
by intense trying, failing, and improving is incomparably higher than by learning the
final products of these processes. Moreover, the learners understand that all the cur-
rently available products of science and technology are far from being perfect, that they
will evolve and that the learners are part of this journey. The current products are mere
interim steps on the way to our goals. So, the historical method is a very helpful instru-
ment for teachers who want to design teaching and learning processes based simultane-
ously on constructionism and on critical thinking.

Also, we should deal with new methods and strategies which are useful for infor-
matics education. Recently flourished the computational thinking term holds hope that
informatics covers a thinking tool for understanding out technology-infused world. In
2011, a committee of experts, examining the role that informatics would play in bring-
ing computational thinking to K-12, broadly defined computational thinking as “an
approach to solving problems in a way that can be solved by a computer … a problem
solving methodology that can be transferred and applied across subjects” (Barr and
Stephenson, 2011). Peter J. Denning and Matti Tedre wrote in their book “Computa-
tional Thinking” (2019, p. 21): “Computational thinking evolved from ancient origins
over 4,500 years ago to its present, highly developed, professional state. The long quest
for computing machines was driven not only by the need for speed, but also to eliminate
human errors”. This is also the main reason why we offer a short history of informatics
in the next chapter. This history will be the starting point for developing a curriculum
for informatics in this paper.

The key concepts and techniques of informatics have been translated into curricula
that incorporate broad areas of algorithms / programming, data structures, data rep-
resentation, digital infrastructure, digital applications, and human factors (ACARA,
2014; Hubwieser et al., 2015; Seehorn et al., 2011). Some countries have implemented
these elements to different levels in their curricula.

4. Three Roots of Informatics

We start here with the concept of “three roots of computer science” as introduced by
Hromkovič and Lacher (2017b). Probably the shortest specification of “informatics” is
a science of automated storing, transporting and processing of information.

The crucial terms in this definition (and therefore the most fundamental notions of
informatics) are information, and automation. Because of that, we consider the follow-
ing three roots of computer science:

Information and data.(i)
Automation and algorithms.(ii)
Digital technology.(iii)

Let us give a little bit more explanation to understand why this classification of com-
puter science is the most natural one.

Designing Informatics Curriculum for K-12 Education: ... 343

4.1. Information and Data

The history of computing from the point of view of information and data started some
5400 years ago with the “first big data crisis” in human history. Mesopotamia had that
time about 1 Million inhabitants and this empire needed to manage matters related to
private properties and taxes. However, at that time the only possibility to store and main-
tain all information needed was in the minds of the officers. The solution to the almost
collapsing management of the empire was the development of writing (scripts). This was
the birth of digitalization because digital information representation is the representa-
tion of information (called data) as a sequence of discrete symbols (letters, digits) of an
alphabet. For the first time in the existence of human civilization, humans were able to
save and keep information externally (outside of their minds), to broadcast it, and even
to transport (communicate) it across arbitrary distances.

This was a true revolution in information processing (Williams, 1985). Three funda-
mental and truly computer science related tasks had to be solved as the consequence of
this development:

How to represent information as data in such a way that the representation is a)
understandable, unambiguous, not too long, and suitable for efficient information
processing (for instance calculating with numbers)?
How to organize (manage) data in such a way that any information needed could b)
be found quickly?
How to protect confidential data and make them available only for persons who c)
are allowed to see them?

Finding better and better solutions for these three tasks so far took thousands of years
and may well be a never-ending story. Big subareas of computer science such as security,
data management, compression, and self-correcting codes are products of the effort to
answer the questions above.

4.2. Automation and Algorithms

Human civilization strived to be efficient in everything people did since ever, and so
we are unable to fix the birth of algorithmics (for some more involved history see Das-
gupta, 2014; Tedre, 2014). The ancient way of automation was to acquire knowledge
and use it to develop procedures tailored to the specific goals (for instance, develop
some products). Since the procedures were described in such a way that humans were
able to successfully apply them without understanding why they work, we may call this
automation. The original automation did not need machines. If one wants to look at true
algorithms as exact descriptions of activities in the unambiguous language of mathemat-
ics, the history is at least 4000 years old (Knuth, 1972). Starting with Babylonian stone
plates, continuing with the book “Elements” of Euclid and with the big book of business
calculations in the 8th century by Al-Khwarizmi whose name gave us the term “algo-
rithm”. Throughout the history of mankind humans tried to automate everything they

V. Dagienė, J. Hromkovič, R. Lacher344

were able to sufficiently understand. And the efficiency (computational complexity as
the measure of the amount of work executed during the calculation) of algorithms was
from the very beginning in the focus of interest.

One of the great ancient stories related to efficiency is the development of number
representations (Williams, 1985). Many different number representations have been
developed by different civilizations. But in the end the main criterion for choosing an
appropriate number representation became clear to be the efficiency in calculation. To
underline this statement, we call attention to the following fact: For some algorithmic
problems in advanced algebra and number theory, some special number representations
were developed. They enable to efficiently calculate some operations, for which the
common decimal and binary representations do not allow any efficient execution.

The history of problem solving, algorithm design, and computational complexity is
very rich in great ideas that have high potential to enrich our education and to explore
the creative potential of pupils.

4.3. Digital Technology

The idea to “create” a machine that could execute part of human work is very old. It is
a natural continuation of the idea of developing instruments making our work more ef-
ficient and simultaneously more accurate or “trustable” in executing different activities.
The history of developing mechanical calculators started with Wilhelm Schickard who
tried to design and unsuccessfully develop a mechanical device performing the basic
arithmetic operations automatically. In 1642 the French mathematician Blaise Pascal in-
vented the first mechanical calculator. Another famous scientist Gottfried Wilhelm Leib-
niz developed his calculator in 1716. In 1871 Charles Babbage designed his Analytical
Engine, the first programmable computer. Lady Ada Lovelace developed first programs
for Analytical Engine.

But one is not allowed to reduce the history of IT to the development of computers.
The interconnection networks as a communication technology are also an important part
of IT and their history spans at least 2 millennia. This is the case because creating signals
(visual or acoustic) and using sequences of signals to code information is the very base
of communication technology. We are unable to fix the starting point of using sequences
of signals in the history of mankind.

Nevertheless, technology is not only about building hardware. This hardware
needs to be programmed, operating systems need to be developed, and programming
languages and applications need to be built. This is one of the reasons we consider,
for instance, programming and communication protocols as part of technology. For
sure, programming in the broad interpretation as problem solving and describing the
solution method can be assigned to algorithms. But programming in the narrow inter-
pretation as “explaining” a solution method to a machine so the machine can execute
the method is strongly related to technology. And to properly understand programming
languages one should understand the underlying hardware with its potential and its
restrictions.

Designing Informatics Curriculum for K-12 Education: ... 345

Summarizing the above, there are several reasons to look into the roots of informat-
ics. It allows to understand that informatics is as old as science itself and that tasks and
concepts of informatics have been an integral part of human culture since ever. Since
concepts of informatics have been created in strong interaction with other scientific dis-
ciplines, especially with mathematics and language development, one can also teach
some computer science concepts inside other disciplines and one can contribute to un-
derstanding mathematics and languages by teaching informatics.

But the main reason to study the roots of informatics, the history of its main discov-
eries, and the development of its fundamental concepts is to enable a reasonable design
of computer science curricula and to create textbooks that offer successful, suitable,
and enjoyable learning.

To illustrate it by an example let us take cryptology as a theory of secret writings.
Following the history one can start to teach about 4000 years old method of trans-
position and then the 2300 years old method of substitution. We follow the security
principle of ancient time telling the secret writing must be designed in such a way
that one can be learned by heart and does not need to safe the description in a writ-
ten form. Doing is properly by following the development of crucial ideas in small
steps children in age 10 to 12 can become true experts in ancient cryptography, who
are able to design and apply completely new, original cryptosystems. Then following
the development of the first method for breaking such cryptosystems in the 7th century
the pupils learn to use analysis of the relative letters frequency to break all mono-
alphabetic cryptosystems.

All the development you can relate to the development of human culture and deal
with the tasks what kind of data have been protected in different human cultures (not
only secrets of the army, but also technology for producing different kinds of products
or tax declarations). After getting into dead end pupils can be confronted with different
attempts to avoid the possibility to learn something from the letter frequencies in the
cypher texts. In this way they can converge to the cryptosystem Viginiere, which uses
a repeating key to select different encryption alphabets in rotation, and was considered
to be secure for about 300 years. In age about 15 students can use again stochastic to
break this cryptosystem based on stochastic concepts as Charles Babbage succeeded in
breaking this cipher more than a century ago (Singh, 1999).

Again the development of secret writings has been in deadlock. How one can try to
overcome it can be the topic of informatics in high schools. Systems such as ENIGMA
uses the idea to change the encryption scheme after encrypting each particular letter
and the roots of this approach one can find already in 15th century. The highlight of
teaching cryptology are the public key cryptosystems and protocols based on them.
All these advanced cryptosystems ask for really involved algebra and number theory.
But following the genesis of the crucial ideas one can find a way to design public key
cryptosystems by means of high school mathematics in such a way that the students un-
derstand why it is possible to make the encryption algorithm public and in spite of that
only a person possessing a secret is able to decrypt. In this way pupils learn to imagine
how the development of fundamental concepts of computer science (especially com-

V. Dagienė, J. Hromkovič, R. Lacher346

plexity theory and algorithmics) offered a breakthrough in designing and implementing
secure cryptosystems.

Following the above presented path students acquire a deep understanding of the
genesis of cryptology as a scientific discipline. Moreover, the students see the whole
history of developing secret writing as a process going from one product (achieve-
ment) to a next, better one. At the very end students gain competences in the sense of
a true expertise, and so they are able to create new cryptosystems, and find methods
to break the cryptosystems designed by analyzing their weaknesses. In this way we
educate personalities who are able to contribute to society in a creative way.

5. Development of Informatics Curriculum

National and international efforts are dedicated to develop, support and evaluate cur-
riculum development. From the recently growing number of publications, it can be seen
that informatics curricula, both for primary and secondary schools, is currently an im-
portant subject and introduced in many countries (e.g. Bell et al., 2014; Department…,
2021; Directorate…, 2019; Education Scotland, 2017; National …, 2018; Seehorn et al.,
2011). In some countries the informatics curriculum is well entrenched, however it is
a relatively new phenomenon in others. This poses challenges especially in preparing
and supporting teachers as they transition from initial teacher qualifications and experi-
ence in other learning areas to the teaching of informatics (Brown et al., 2014).

Anja Balanskat and Katja Engelhardt (2014) have explored primary and second-
ary school informatics curricula initiatives across Europe. In 2011 an ITiCSE Working
Group (Hubwieser et al., 2011) provided research findings about informatics curricula
of secondary education from different countries, and in the process developed a cat-
egory system (Darmstadt Model) to support comparisons across regional and national
boundaries.

A few years later, a 2015 Working Group applied the Darmstadt Model to analyse
articles within two TOCE K-12 computer science education special issues (Hubwi-
eser et al., 2015). This work sought to understand informatics curriculum, aims, goals
and competencies, programming languages, tools adopted, assessment practices and
teacher training.

For example, informatics courses in Poland were divided into three phases (Sysło
and Kwiatkowska, 2015). The first stage begins by training elementary school pupils in
basic skills using information technology. In the second stage, secondary school pupils
are trained in the ability of computing, understanding behind technology, and problem-
solving. By the third stage, the informatics course is one of the important subjects for the
high school final examinations. The main goal of these three stages is to help students
understand and analyse problems, use computers or other computer equipment to solve
problems, and also apply technology to society or to their own lives.

South Korea has also developed a new curriculum for schools. They started to pro-
mote computer education courses in 1971, with more than 34 h of computer courses in
each grade of primary and secondary education (Heintz et al., 2016). At first, they only

Designing Informatics Curriculum for K-12 Education: ... 347

focused on teaching computing theory and the concepts of information science, but later
they changed the curriculum to include the training of pupil’s digital literacy, computa-
tional thinking, and programming skills.

In many countries the term curriculum is a high-level concept relating to specific
learning objectives and measurable outcomes or benchmarks for learning levels. Educa-
tors in the US refer to curriculum as well-articulated bodies of courses, modules, and
lesson plans. When educators from outside the US use the term curriculum, people from
the US can understand their meaning as a computer science framework or standards.

In curricula we usually talk about big ideas that should be the focus of education for
understanding. A big idea is a concept, theme, or issue that gives meaning and connection
to concrete facts or skills. For example, in physics education the “big ideas“ approach
has a long tradition (e.g. Principles and Big Ideas of Science Education, https://www.
ase.org.uk/bigideas). In informatics education Tim Bell, Paul Tymann, and Amiram
Yehudai (2018) have presented a list of ten big ideas that have been distilled based on
input from curriculum designers and computer science education experts around the
world. However, while there is a consensus on this approach in the education research
community, it has not yet become mainstream at the policy level.

Curriculum refers to the blueprint for learning that is derived from the desired results.
Wiggins and McTighe in their excellent book on designing curricula “Understanding
by Design” (1999) says “Curriculum takes content (from external standards and local
goals) and shapes it into a plan for how to conduct effective and engaging teaching and
learning. It is thus more than a list of topics and list key facts and skills (the “inputs”).
It is map for how to achieve the “outputs” of desired student performance” (p. 6).

The curriculum development process systematically organizes
what will be taught, ●
who will be taught, and ●
how it will be taught. ●

Each component affects and interacts with other components. For example, what
will be taught is affected by who is being taught (e.g., their stage of development in
age, maturity, and education). Methods of how content is taught are affected by who is
being taught, their characteristics, and the setting. Considering the above three essen-
tial components, the following are widely used for curriculum development in formal
education settings:

Content is identified (what). ●
Target audience (who). ●
Intended outcomes/objectives (what the learners are able to learn). ●
Methods to accomplish intended outcomes (how). ●
Evaluation strategies for content and intended outcomes (what works). ●

Informatics curriculum development has some general components. We are going
to focus on the content of informatics curriculum from primary education to second-
ary and high school education. The challenge in the curriculum development process
is selecting content that will make a real difference in the lives of the learner and
ultimately society as a whole. At this point, the primary questions are: If the intended

V. Dagienė, J. Hromkovič, R. Lacher348

outcome is to be attained, what will the learner need to know? What knowledge, skills,
attitudes, and behaviours will need to be acquired and practiced? The scope (breadth
of knowledge, skills, attitudes, and behaviours) and the sequence (order) of the content
could also be discussed. For a more involved view on curriculum design see (Wiggins
and McTighe, 1999).

In this paper we use the revised taxonomy of Benjamin Bloom (Bloom et al., 1956;
Anderson and Krathwohl, 2001) in order to find the right sequence of competences one
aims to achieve in selected subareas of informatics (Table 2). The goal of using this ap-
proach of cognitive psychologists is to move the attention from the static notion of “ed-
ucational objectives” to cognitive processes that are crucial to support the development
of the intellectual potential and creativity of the pupils (learners). For us it is important
not to see the Bloom’s taxonomy as a hierarchy of cognitive activities (De Bruyckere
et al., 2015), but as a helpful instrument for designing educational objectives.

A similar approach was used for classification informatics tasks of the Bebras chal-
lenge on informatics and computational thinking (Dagienė et al., 2020). The contribu-The contribu-
tion of this classification of the Bebras tasks is a new concept for classifying tasks that
also offers new ideas for generating tasks and which is used for creating spiral curricula
for teaching informatics.

6. Examples of Designing an Informatics Curriculum

A curriculum in different countries may differ a lot, but there are some fundamental
computer science topics such as programming, problem solving and algorithms, abstrac-
tion and data representation, data management and security that cannot be omitted if one
does not want to miss the most basic competencies of computer scientists. “The vast

Table 2
Six levels of the revised Bloom’s taxonomy

1. Remember Learners can recognize (identify) concepts already learned, recall (retrieve) informa-
tion and so are prepared to interconnect it with new knowledge.

2. Interpret (understand) Learners can construct the meaning of instructional messages, use it to illustrate
concepts by examples, to classify (categorize), to compare, to abstract.

3. Apply Learners can apply own knowledge to solve tasks in different settings, execute alg-
orithms (methods), implement strategies under different circumstances, simulate.

4. Analyze Learners can compare objects (models) with respect to their attributes, structure,
break down objects into components (model), compare and categorize.

5. Evaluate (judge) Learners can use analysis to judge objects and products of human activities with
respect to different criteria, choose an appropriate evaluation criterion with respect to
goals, judge efficiency of algorithms / methods and the quality of their outputs, reflect
on progress achieved, test hypotheses.

6. Create Learners can design and develop their own, original products, generate hypotheses
and verify them, plan activities, synthesize different parts into a new model, create
knowledge.

Designing Informatics Curriculum for K-12 Education: ... 349

majority of any informatics curriculum will be scientific in nature, focus on the key con-
cepts in the field and reflect the constructive aspect of the discipline. Attention should be
given to a range of topics such as data, programming, algorithms, networks and the web,
design and human computer interaction, security, privacy and ethical considerations.
Moreover, the conceptual and practical elements should be blended in a way that reflects
the multiple links between the two.” (CECE-Report, 2017).

In this chapter we design curriculum for programming, algorithms, robotics, and
networking in order to illustrate our approach. The detailed implementation of our
design can be found in the textbook series covering all age groups starting with kin-
dergarten and finishing with high schools (Barnett et al., 2020; Hauser et al., 2020;
Hromkovič, 2018a, 2018b, 2018c; Hromkovič and Kohn, 2018; Hromkovič and
Lacher, 2019, 2021).

The curriculum integrates the concepts of constructivism, critical thinking, view-
point of competences, as well as the historical approach and combines these with the
hierarchy of the revised Bloom’s taxonomy (Anderson and Krathwohl, 2001).

We plan to continue with this project and design curricula for other informatics /
computer science / computing areas and present them in future papers.

6.1. Programming and Algorithms

What do educators expect from teaching programming? Programming in narrow inter-
pretation means talking to technology (computer, robot, etc.) in order to describe unam-
biguously an activity they have to execute. In that sense a program is a grammatically
correct text in a programming language, that is built with mathematical rigor, i.e. every
text has only one interpretation. Therefore, teaching programming in narrow interpreta-
tion means to master a programming language so far that one can write programs cor-
rectly describing the activities to be automated and can correct syntactic (grammatical)
errors in programs. This is very similar to learning a natural languagea – the competenc-
es of being able to express oneself in an understandable way and grammatically correct
are the main goals. Here we add the ability of developing a language by introducing new
words. From this point of view programming in a narrow sense is very much related to
learning how to control technology.

Programming in broad interpretation includes also problem solving. This is the way
to support one more creative dimension and so the interpretation we prefer to use. From
this point of view programming is on the intersection of algorithmic and technology. We
aim to teach programming as:

Formulating goals, creating motivations. ●
Searching for solution methods (strategies). ●
Describing solution methods by programs. ●
Searching for errors in programs and correcting them. ●
Modifying given programs in order to extend their functionality. ●

We start with programming in the narrow interpretation and continue investigating
algorithms with the focus on problem solving. Then we combine programming with

V. Dagienė, J. Hromkovič, R. Lacher350

robots. Finally, we discuss teaching communication in networks on the abstract level
of graphs.

The choice of appropriate age group is based on one hand on the development of
cognitive processes and topics taught in other subjects, and on the other hand by experi-
mental teaching at more than 500 project schools involving approximately 20 000 pupils
and 1 000 teachers.

The abbreviation BT stands for the revised Bloom’s taxonomy following by appro-
priate levels. The numbers BT 1-6 are not allowed to be related to a hierarchical view on
cognitive activities, they are used to address educational objectives to be discussed.

6.1.1. Programming

Executing programs as sequences of instructions (BT 1-3, Age 4+)1.
One starts with a very poor programming language consisting of a few instruc-
tions only (in the beginning represented by a symbol and later by one word) and
the goal is to correctly interpret a given program, i.e., to take the role of a robot
and to execute few commands. The usual starting point is a movement in two-
dimensional space. For young children this strengthens their ability of orientation
in space and planning with respect to time.
Developing (writing) programs without inputs as sequence of unstructured 2.
instructions (BT 2-3, Age 4+)
A program without input (parameter) describes exactly one activity. The goal is
to transform a description of an activity (for instance a trajectory in a landscape)
to a program as another description of this trajectory. A classic example is writing
programs to draw simple pictures.
Searching for logical errors if a program does not execute the expected activ-3.
ity (BT 4, Age 6+)
We are still working with programs consisting of sequences of unstructured instruc-
tions. To train pupils to find and correct logical errors in own programs as well as in
given programs is as important as to learn to write programs. Programming skills
cannot be mastered without this competence. To support the training of pupils in
achieving this competence one has to offer a programming environment in which
the pupils can execute programs slowly and move forward as well as backward in
the execution, while observing the effect of particular instructions of the program.
Using loops without parameters (BT 2-4, Age 7+)4.
First pupils recognize repetition of patterns in programs and can shorten the pro-
gram description by applying repeat-loop. Secondly pupils recognize possible
repetitions in task descriptions (drawing pictures, running a regular trajectory)
and design programs with loops.
Understanding and applying modular design (BT 2-4, 6, Age 10+)5.
Pupils learn to partition a task into a couple of subtasks, develop and check the
correct functionality of the programs for the subtask they are working on, and to

Designing Informatics Curriculum for K-12 Education: ... 351

use these programs as building blocks for creating a program for the whole task.
Pupils can use modularity to introduce new words (commands) to the program-
ming language used.
Working with parameters (BT 2-4, Age 12+)6.
Parameters are powerful concept of programming. To learn to work with param-
eters is one of the biggest jumps in teaching programming. One switches from
programs executing exactly one activity to programs executing infinitely many
activities depending on their input values (parameters). We speak here about pa-
rameters and not about variables, because in this first stage we do not allow to
change the value of the parameters during the execution of programs. Pupils can
use parameters to determine size, color or even form of pictures.
Working with variables (BT 3-5, Age 13+)7.
The goal is to understand variables as names of places in computer memory and
to learn to work with them to store and read information, but also to process in-
formation. Pupils can actively change the values of variables during the execution
of the program.
Recognizing different data types and using appropriate operations on them 8.
(BT 2-4, Age 14+)
Here pupils have to interconnect their knowledge about abstract representations
of information by numbers, texts (symbol sequences) or tables and pictures and
learn to handle different data types in a different way. Pupils can work on pattern
recognition of various samples and get abilities to deal with abstraction. Note that
the base for abstract representation is part of “information and data” in our cur-
riculum and starts already at the age of 4.
Understanding and applying conditional instructions (BT 2-4, Age 13+)9.
Pupils can branch programs with if-then-else and to use conditional loops such as
while. Pupils touch the interface to formal language of logic and can work with
a syntax of logical expressions.
Correcting syntactic errors in text-based programs (BT 4, Age 10+)10.
This competence should not be taught in this sequence but should be an integral
part of the whole process of teaching text-based programming. Using well-devel-
oped debuggers pupils have to learn to use the comments of the debugger and fix
syntactic errors.
Using data structures to work with data (BT 2-3, Age 15+)11.
Pupils can work with data structures of arbitrary size as arrays or lists, and to read,
and process efficiently large amount of data. Pupils learn also to filter data and to
merge two data sets.
Programming functions and using them as subroutine (BT 4-6, Age 15+)12.
Pupils can design and implement programs that compute functions and their func-
tions as building blocks of more complicated programs.

V. Dagienė, J. Hromkovič, R. Lacher352

Designing and implementing recursive programs (BT 2-6, Age 17+)13.
Learners first understand and execute recursive programs and use trees to describe
the execution of recursive programs. Then learners can use recursion as a strategy
for problem solving (intersection with algorithmics) and develop implementations
of recursive algorithms.

The next part focuses on problem solving related to algorithm design.

6.1.2. Problem Solving and Algorithms
Here we assume that the pupils already are familiar with abstraction (which is a part
of the subarea “Recognizing different data types and using appropriate operations on
them”, 6.1.1 item 8) to describe information by numbers, texts and graphs and can inter-
pret problem descriptions using these abstract objects.

Classifying solution proposals into feasible and unfeasible (BT 1-2, Age 8+)1.
Pupils understand the problem instance description and can interpret it correctly.
They prove the competence of the correct interpretation by ability to classify solu-
tion candidates into feasible and non-feasible ones.
Searching for solutions for small problem instances (BT 2-3, Age 8+)2.
Pupils can search and find solutions for small instances of different kinds of prob-
lems by trial and error.
Listing all solutions of a problem instance or all objects with prescribed prop-3.
erties (BT 2-4, Age 8+)
For objects with simple, given properties pupils can use trees in order to find all
such objects. Later they can use trees to find and systematically list all solutions
of small problem instances.
Applying a given criterion to evaluate and compare solutions (BT 2-5, 4.
Age 9+)
Pupils can assign values (costs) to presented solutions to a problem instance by
a given criterion (cost functions). They can use the costs of solutions to compare
the solutions. Later they even can create cost functions (criteria) that enable to
evaluate solutions for a given purpose.
Understanding descriptions of optimization problems (BT 2-3, Age 9+)5.
Pupils can interpret descriptions of optimization problems, and so distinguish be-
tween constraints (that have to satisfied) and optimization goal.
Solving instances of optimization problems (BT 3-5, Age 9+)6.
Pupils can solve small instances of optimization problems either by trial and error
or by listing all solutions, evaluating them and choosing an optimal one.
Discovering and applying strategies for problem solving (BT 2-5, Age 13+)7.
Pupils can search systematically for solutions by applying general solving strate-
gies like greedy or simply trying all possibilities (brute-force).

Designing Informatics Curriculum for K-12 Education: ... 353

Understanding concrete algorithms (BT 2-5, Age 14+)8.
Pupils understand and can successfully apply concrete algorithm solving all in-
stances of a given problem. They understand (at least intuitively), why these algo-
rithms work properly for any given instance of the problem considered.
Modifying algorithms (BT 4-6, Age 14+)9.
Learners can modify (adapt) known algorithms to modified problem settings or
new situations.
Understanding and applying methods for design of algorithms (BT 3-6, 10.
Age 17+)
Learners understand how robust method for the design of efficient algorithms
work. They know examples of greedy algorithms, local search, divide and con-
quer (divide et impera) and dynamic programming. Later they can use these de-
sign methods to develop algorithms for simple problems. Combining their knowl-
edge from programming they can implement them, also using recursive programs
for the implementation.
Analyzing complexity of algorithms (BT 5, Age 17+)11.
Learners can analyze the computational complexity (amount of work executed)
of algorithms working on concrete problem instances. For simple algorithms they
can analyze its space complexity and its time complexity. Learners can compare
two different algorithms for the same problem with respect to efficiency.
Designing efficient algorithms (BT 5-6, Age 17+)12.
Learners are able for a given problem and a given complexity bound design algo-
rithms solving the problem within the prescribed complexity.

Testing and verifying algorithms and programs (BT 5-6, Age 17+)13.
Learners are able to test algorithms on a chosen set of inputs or to logically argue
why algorithms designed and implemented work correctly for any input data.
Applying machine learning to solve problems (BT 3-5, Age 15+)14.
Learners are able to develop programs that can learn from data sets to find solu-
tions to given problems with high probability or to play games for which we do
not know a winning strategy (e.g. chess).

6.2. Robotics

Robotics programs can be engaging learning environments for acquiring core informat-
ics and computational thinking competencies. Several empirical studies evaluate the
effectiveness of a robotics programming curriculum for developing informatics knowl-
edge and skills.

Programming robots differs from programming computers. First one needs some
knowledge of physics and engineering in order to build robots that are able to execute
the aimed physical activities. Secondly one has to move from “executing commands”

V. Dagienė, J. Hromkovič, R. Lacher354

to “moving robots from one state to another state” and fix by experiments how long the
robot has to be in a state in order to finish a partial activity. The design of a curriculum
for early childhood education on computing should include active research on what pro-
gramming might be for that age (Chioccariello, et al., 2004).

Designing playful programming construction kit is an interesting and challenging
activity. One aspect, worth mentioning here, is what a designer thinks are children ca-
pable of master when programming their construction. This depends on both the cogni-
tive development of the child, and how the construction kit, including its programming
environment, is designed.

Writing programs navigate robots from a to B (BT 2-4, Age 4+)1.
Pupils can design programs as sequences of commands in order to move robots
from one position to another position. Pupils are able to check the correctness of
their programs by executing them and pupils can correct them when they do not
work as intended.
Describing the state of a robot (BT 1-2 Age 10+)2.
Working with robots requires to think in states. Pupils have to be able to interpret
state description correctly and explain what a robot is doing in a given state.
Adjusting the robot to reach a state given by some parameters (BT 2-3, 3.
Age 10+)
Pupils know which commands or which sequence of instructions one has to apply
to “move” the robot to a particular state.
Using commands to move a robot from one state to another (BT 2-3, 4.
Age 10+)
Pupils can use the appropriate commands to move the robot form a given state to
another one.
Constructing a robot as a mechanical machine with sensors (BT 2-6, 5.
Age 12+)
Pupils can construct robots as a mechanical device able to move and work in
their environment. Pupils can add sensors to robots and use them for different
purposes.
Using experiments to develop programs allowing robots to follow a trajectory 6.
(BT 2-5, Age 13+)
The difference between moving robots in real environment and on the screen is
that one has to take into account the properties of the physical environment (e.g.
friction). Pupils can determine by experiments how long the robot has to work in
a given state in order to reach the goal.
Using sensor to program autonomous behavior of robots (BT 2-6, Age 14+)7.
Pupils can use their knowledge about conditional commands from programming
lessons to program robots working according to data offered by the sensors of
the robot.

Designing Informatics Curriculum for K-12 Education: ... 355

Programming robots to learn (BT 3-4, Age 15+)8.
Pupils can write programs for robots that enable robots to learn their environ-
ment and modify their own autonomous behavior with respect to “knowledge”
acquired.
Design, build and program robots for special purposes (BT 4-6, Age 17+)9.
Starting from a given specification for automating a mechanical work, can design,
build and program robots that are able to execute this work. This competence
has to be combined with the ability to plan, coordinate and cooperate inside of
a project group.

6.3. Communication in Networks

The goal here is to understand the design of communication networks that enable ef-
ficient transport (broadcast) of information on an abstract level.

Understanding sequences of signals as information representation (BT 1-2, 1.
Age 4+)
Pupils can correctly interpret sequences of physical signals and can mimic com-
munication by using them.
Creating codes as signal sequences (BT 3-6, Age 6+)2.
Pupils can create own codes for representing different messages and use them in
communication. Older pupils can even design codes that are resistant to small
errors.
Modelling interconnection networks by graphs (BT 1-2, Age 8+)3.
Pupils can interpret graphs as models of communication networks and can de-
scribe communication structures by graphs.
Understanding and applying strategies for information broadcast in net-4.
works (BT 2-3, Age 10+)
Pupils understand strategies for disseminating information in networks and can
apply and simulate them in different communication modes.
Understanding and applying strategies for information accumulation and 5.
evaluation in networks (BT 2-3, Age 13+)
Pupils understand strategies for accumulating information and for computing
functions of arguments distributed in networks and can simulate them.
Understanding and applying strategies for gossiping in networks (BT 2-3, 6.
Age 14+)
Pupils understand strategies to complete exchange of information among all par-
ties of a network and can simulate it in a concrete network.
Measuring the time complexity of executing communication tasks in different 7.
networks (BT 3-4, Age 16+)

V. Dagienė, J. Hromkovič, R. Lacher356

Learners can analyze communication algorithms with respect to time needed to
complete the communication strategies.
Comparing different strategies for communication tasks in networks (BT 4-5, 8.
Age 16+)
Learners can evaluate communication strategies in different networks, compare
them with respect to their efficiency and choose an appropriate strategy.
Designing networks with good communication properties (BT 4-5, Age 17+)9.
Learners can design networks with very good communication properties with re-
spect to information dissemination.

Conclusion and Discussions

Informatics should be recognized as a vital, important 21st century discipline. Consider-
ing that digital technology increasingly plays a pervasive role, informatics education is
necessary to ensure sustainable and balanced development of the digital society.”

Our contribution is to design curricula for teaching computer science in such a way.
Our design is novel and it is to be noted that this is the case not only from the informat-
ics point of view. Our approach, which is based on constructionism and critical thinking,
offers a pattern other school subjects could use to improve their curricula. Our experi-
ments with thousands of students showed that both the mastery of the subjects deepened
a lot and the sustainability grew essentially. Combining thinking about the history of
processes of developing basic concepts with the cognitive progress of students is the best
way for the design and implementation of teaching sequences. It supports creativity and
exploring of the intellectual potential of the students.

One could propose to extend our examples of curricula by appropriate tasks the stu-
dents are able to solve for any of the competences listed. We omit to do this because
we already have published a series of textbooks (also addressing specifically teachers)
containing this in detail.

We do not consider the presentation of the competences in section 5 as a final prod-
uct. It is a further step in developing more and more appropriate curricula for informat-
ics. Everybody is invited to join us on this journey by contributing. Especially new
missing competences could be added, or existing ones could be split into a sequence of
more detailed ones.

Acknowledgement

The authors appreciate and acknowledge very much the inspiring feedback provided by
Matti Tedre, professor at the School of Computing, University of Eastern Finland. Many
thanks to Dr. Augusto Chioccariello (National Research Council of Italy, Institute for
Educational Technology) for valuable comments.

Designing Informatics Curriculum for K-12 Education: ... 357

References

ACARA (2014). Australian Curriculum Assessment and Reporting Authority. Australian Curriculum: Digital
Technologies. https://www.australiancurriculum.edu.au/

Anderson, L. W., Krathwohl, D. R. (Eds. , 2001). A taxonomy for learning, teaching, and assessing: a revi-
sion of Bloom›s taxonomy of educational objectives. New York: Longman.

Balanskat, A., Engelhardt, K. (2014). Computing our future Computer programming and codinga – Pri-
orities, school curricula and initiatives across Europe and Technology in Computer Science Education
(ITiCSE’19). ACM, New York, NY, USA, 257–258. https://doi.org/10.1145/3304221.3325535

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of
the computer science education community? ACM Inroads 2(1), 48–54. DOI:10.1145/1929887.1929905

Barnett, M., Hromkovič, J., John, A.L., Lacher, R., Lütscher, P., Staub, J. (2020). Einfach Informatik Pro-
grammieren mit Robotern KG 1 / 2 (in German). Klett und Balmer.

Behr, H. (1996). Teaching Mathematics with Historical Componentsa – some Experiences and Ideas. In:
Jahnke Hans-Niels, History of Mathematics and Education: Ideas and Experiences, Verlag Vandenhoeck
& Ruprecht, Göttingen, 27–37.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpungo, A., Torelli, M., et al. (2014). Informatics
education in Italian secondary schools. ACM Transactions on Computer Science Education, 14(2), 1–15.

Bell, T., Alexander, J., Freeman, I., Grimley, M. (2009). Computer science unplugged: school students doing
real computing without computers. New Zealand journal of Applied Computing and Information Technol-
ogy, 13(1), 20–29.

Bell, T. (2014). Establishing a nationwide CS curriculum in New Zealand high schools: providing students,
teachers, and parents with a better understanding of computer science and programming. Communications
of the ACM, 57(2), 28–30.

Bell, T., Tymann, P., Yehudai, A. (2018). The Big Ideas in Computer Science for K–12 Curricula. European
Association of Theoretical Computing Science, 124, 2–12

Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R. (1956). Taxonomy of Educational
Objectives: The Classification of Educational Goals. Handbook I: Cognitive Domain. New York: David
McKay Company.

Brown, N.C.C., Sentance, S., Crick, T., Humphreys, S. (2014). Restart: The Resurgence of Computer Science
in UK Schools. ACM Trans. Comput. Educ. 14(2), Article 9 (June 2014), 22 pages.
https://doi.org/10.1145/2602484

Bruckheimer, M., Arcavi, A. (2000). Mathematics and its History: An Educational Partnership. In: V. Katz
(Ed). Using History To Teach Mathematics, Mathematical Association of America, Washington DC,
135–145.

Bussi, M., Bartolini, G. (1996). History in the Mathematics Classroom. In: H.-N. Jahnke. History of Math-
ematics and Education: Ideas and Experiences, Verlag Vandenhoeck & Ruprecht, Göttingen, 39–66.

Caspersen M.E., Gal-Ezer, J., McGettrick, A., Nardelli, E. (2019). Informatics as a fundamental discipline for
the 21st century. Communications of the ACM, 62(4), 58–63.

CECE (2017). Informatics Education in Europe: Are we all in the Same Boat? Report by the Committee on
Europe Computing Education (CECE), ACM, https://www.informatics-europe.org/news/382-
informatics-education-in-europe-are-we-on-the-same-boat.html

Chioccariello, A., Manca, S., Sarti, L. (2004). Children’s playful learning with a robotic construction kit. In J.
Siraj-Blatchford (Ed.). Developing new technologies for young children (pp. 93–112). London: Trentham
Books Ltd.

Dagienė V., Hromkovič J., Lacher R. (2020). A Two-Dimensional Classification Model for the Bebras Tasks
on Informatics Based Simultaneously on Subfields and Competencies. In Kori, K., Laanpere, M. (Eds)
Informatics in Schools. Engaging Learners in Computational Thinking. ISSEP 2020. Lecture Notes in
Computer Science, 12518. Springer. https://doi.org/10.1007/978-3-030-63212-0_4

Dagienė, V., Jevsikova, T., Stupurienė, G., Juškevičienė (2021). Teaching computational thinking in pri-
mary schools: Worldwide trends and teachers’ attitudes. Computer Science and Information Systems 2021
OnLine-First Issue 00, 33–33. https://doi.org/10.2298/CSIS201215033D

Dasgupta, S. (2014). It Began with Babbage: The Genesis of Computer Science. Oxford University Press.
De Bruyckere, P., Kirschner, P.A., Hulshof, C. (2015). Urban myths about learning and education, London,

Boston: Elsevier.

V. Dagienė, J. Hromkovič, R. Lacher358

Denning, P.J., Rosenbloom, P.S. (2009). The profession of ITa – Computing: The fourth great domain of sci-
ence. Communications of the ACM, 52(9), 27–29.

Denning, P. J., Tedre, M. (2019). Computational Thinking. The MIT press.
Dijkstra, E.W. (1972). The humble programmer. Communications of the ACM, 15(10), 859–866.
Department for Education (2021). The National Curriculum in England. Department for Education Govern-

ment of UK, Crown, Cheshire. www.gov.uk/government/collections/national-curriculum
Directorate for Learning and Assessment Programmes (2019). SEC Syllabus: Computing.

https://www.um.edu.mt/__data/assets/pdf_file/0017/292310/SEC09.pdf

Education Scotland (2017). Benchmark Technologies. education.
gov.scot/improvement/documents/technologiesbenchmarkspdf.pdf

Erschov, A.P. (1972). Communications of the ACM. 15(7).
Ershov, A.P. (1981). Programming: The second literacy. Microprocessing and Microprogramming, 8(1),

1–9.
Gal-Ezer, J., Beeri, C., Harel, D. Yehudai, A. (1995). A High-School Program in Computer Science. Compu-

ter, 28, 10, 73–80.
Gal-Ezer, J., Harel, D. (1999). Curriculum and Course Syllabi for High-School Computer Science Program.

Computer Science Education, 9(2), 114–147.
Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A., Boyle, R., Drechsler, M., Men-

delson, A., Stephenson, C., Ghezzi, C., Meyer, B. (2013). Informatics Education: Europe Cannot Afford
to Miss the Boat. Technical Report. Association for Computing Machinery &, Joint Informatics Europe
ACM Europe Working Group on Informatics Education, New York. 1–21 p.

Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing for Every-
one (Synthesis Lectures on Human-Centered Informatics). Morgan & Claypool, 1st edition.

Harel, D. (1987). Algorithmicsa – the Spirit of Computing. Addison-Wesley.
Hauser, U., Hromkovič, J., Klingenstein, P., Lacher, R., Lütscher, P., Staub, J. (2020). Einfach Informatik

Rätsel und Spiele ohne Computer KG 1–2 (in German). Klett und Balmer.
Heintz, F., Mannila, L., Färnqvist, T. (2016). A review of models for introducing computational thinking,

computer science and computing in K-12 education. Frontiers in Education Conference (FIE), 2016
IEEE (pp. 1–9).

Hromkovič, J. (2015). Homo Informaticus, Bull. EATCS 115.
Hromkovič, J. (2018). Einfach Informatik. Daten 7–9 (in German). Klett und Balmer.
Hromkovič, J. (2018). Einfach Informatik. Strategien Entwickeln. 7–9 (in German). Klett und Balmer.
Hromkovič, J. (2018). Einfach Informatik. Programmieren 5–6 (in German). Klett und Balmer.
Hromkovič, J., Kohn, T. (2017). Einfach Informatik. Programmieren 7–9 (in German). Klett und Balmer.
Hromkovič, J., Lacher, R. (2017a): How to convince teachers to teach computer science even if informatics

was never a part of their own studies. Bull. EATCS 123.
Hromkovič, J., Lacher, R. (2017b). The computer science way of thinking in human history and consequenc-

es for the design of computer science curricula. ISSEP 2017, LNCS 10696, 3–11.
Hromkovič, J., Lacher, R. (2019). Einfach Informatik. Lösungen Finden 5 / 6 (in German). Klett und Bal-

mer.
Hromkovič, J., Lacher, R. (2021). Einfach Informatik. 3 / 4 (in German). Klett und Balmer.
Hromkovič, J., Steffen, B. (2011). Why teaching informatics in schools is as important as teaching mathemat-

ics and natural sciences. ISSEP 2011, LNCS, LNCS 7013, 21–30.
Hubwieser, P., Armoni, M., Giannakos, M.N. (2015). How to implement rigorous computer science educa-

tion in K-12 schools? Some answers and many questions. Acm Transaction On Computing Education,
15(2), 1–12.

Hubwieser, P., Schubert, S., Armoni, M., Brinda, T., Dagienė, V., Diethelm, I., Giannakos, M.N., Knobels-
dorf, M., Magenheim, J., Mittermeir, R. (2011). Computer science/informatics in secondary education. In:
Proceedings of the 16th Annual Conference Reports on Innovation and Technology in Computer Science
Educationa – Working Group Reportsa – ITiCSE-WGR ’11.

Hubwieser, P., Armoni, M., Giannakos, M.N., Mittermeir, R.T. (2014). Perspectives and visions of computer
science education in primary and secondary (K-12) schools. Transaction on Computing Education, 14(2),
7(1), 7–9.

Kert, S.B., Kalelioglu, F., Gulbahar, Y. (2019). A Holistic Approach for Computer Science Education in Sec-
ondary Schools, Informatics in Education, 18(1), 131–150,
https://doi.org/10.15388/infedu.2019.06

Designing Informatics Curriculum for K-12 Education: ... 359

Kirschner, P.A., Sweller, J., Clark, R.E. (2006). Why minimal guidance during instruction does not work: An
analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teach-
ing. Educational Psychologist, 41(2), 75–86.

Knuth, D.E. (1972). Ancient Babylonian algorithms. Communications of the ACM, 15(7), 671–677.
Kong, S.C. (2017). A framework of curriculum design for computational thinking development in K-12 edu-

cation. Journal of Computers in Education, 3(4), 377–394.
Lau, W. (2018). Teaching Computing in Secondary Schools: a Practical Handbook. Taylor & Francis.
Man-Keung, S. (2000) The ABCD of Using History of Mathematics in the (Undergraduate) Classroom. In:

V. Katz (ed.). Using History To Teach Mathematics, Mathematical Association of America. Washington
DC, 3–9.

National Council for Curriculum and Assessment (2018). Computer Science Curriculum Specification.
https://www.curriculumonline.ie/Senior-cycle/Senior-Cycle-Subjects/Computer-Sci-

ence

Nygaard, K. (1986). Program development as a social activity. In: Proceedings of the IFIP 10th World Com-
puter Congress, Information Processing. Dublin, Elsevier science publishers, 198–198.

Pacheco, J.A. (2012). Curriculum studies: What is the field today? Journal of the American Association for
the Advancement of Curriculum Studies, 8, 1–18.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: BasicBooks.
Papert, S. (1993). The Children’s Machine: Rethinking School in the Age of the Computer. New York: Ba-

sicBooks.
Papert, S., Harel, I. (1991). Constructionism. New York: Ablex publishing.
Passey, D. (2017). Computer science in the compulsory education curriculum: Implications for future re-

search. Education and Information Technologies, 22(2), 421–443.
Piaget, J. (1950). The Psychology of Intelligence. Cambridge, MA: Harvard university press.
Seehorn, D., Carey, S., Futschetto, B., Lee, I., Moix, D., et al. (2011). CSTA K-12 Computer Science Stan-

dards. New York: ACM/CSTA.
Sentance, S., Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s

perspective. Education and Information Technologies, 22(2), 469–495.
Singh, S. (1999). The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography.

London, 143–189.
Smith III, J.P., diSessa, A.A., Roschelle, J. (1994). Misconceptions Reconceived: a Constructivist Analysis of

Knowledge in Transition. Journal of the Learning Sciences, 3(2), 115–163,
https://10.1207/s15327809jls0302_1

Swetz, F. (2000). Problem Solving from the History of Mathematics. In: V. Katz (Ed.). Using History To
Teach Mathematics, Mathematical Association of America. Washington DC, 59–65.

Sysło, M.M., Kwiatkowska, A.B. (2015). Introducing a new computer science curriculum for all school
levels in Poland. In: International Conference on Informatics in Schools: Situation, Evolution, and Per-
spectives. Springer, 141–154.

Tedre, M. (2014). The Science of Computing: Shaping a Discipline. CRC Press / Taylor & Francis, New
York, NY, USA.

Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D., et al. (2017). Computer science in K-12
school curricula of the 2lst century: Why, what and when? Education and Information Technologies,
22(2), 445–468.

Williams, M.R. (1985). A History of Computing Technology. Prentice-Hall, New Jersey, USA, 1st edition.

V. Dagienė, J. Hromkovič, R. Lacher360

V. Dagienė is a principal researcher at Vilnius University Institute of Data Sciences
and Digital Technologies. She has published over 300 scientific papers and 60 text-
books in informatics education area. She is an Editor-in-Chief of two international
journals “Informatics in Education” and “Olympiads in Informatics”. She coordinated
over 50 national and international projects on teaching coding to children and young-
sters, technology enhanced learning, teacher training, development of education soft-
ware, and software localization. She is acknowledged by honorary gold medal for
contributions to school Informatics in Europe (ETH Zurich, 2011), the Informatics
Europe Best Practices in Education Award (2015), Ada Lovelace Computing Excel-
lence Award (2016), and the Cross of the Knight of the Order of the Lithuanian Grand
Duke Gediminas (2016).

J. Hromkovič is professor of Information Technology and Eduation at the Department
of Computer Science at ETH Zurich since January 2004. His research and teaching
interests focus on informatics education, algorithmics for hard problems, complex-
ity theory with special emphasis on the relationship between determinsm, random-
ness, and nondeterminism. One of his main activities is writing textbooks which make
complex recent discoveries and methods accessible for students and practitioners, and
so contributing to the speed up of the transformation of new paradigmatic research
results into educational folklore. In order to introduce the subject informatics to the
school education, he founded the Centre for Computer Science Education in 2005. He
is responsible for the master program Lehrdiplom Informatik at ETH devoted to the
education of computer science teachers.

R. Lacher is the operational manager of the ABZ (Center for Computer Science Edu-
cation at ETH) since 2014 and works at UBS (a global finance institute) since 2001
as an Operational Risk Manager. Regula has completed three educations: She is a ge-
ographer (master in natural sciences of the University of Zürich, 1990), a Quality
Manager (accredited by the European Organization for Quality Management in 1993)
and a physics laboratory technician (apprenticeship plus professional baccalaureate,
in 1982). All these different backgrounds together with the interest in the concept of
constructivism proved to be useful in her work in informatics education. Regula en-
joys contributing to computer science education as a co-author to a series of textbooks,
research papers and creates tasks for the Informatics Beaver Competition.

