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ABSTRACT

Real-world datasets collected with sensor networks often contain incomplete and
uncertain labels as well as artefacts arising from the system environment. Com-
plete and reliable labeling is often infeasible for large-scale and long-term sensor
network deployments due to the labor and time overhead, limited availability of
experts and missing ground truth. In addition, if the machine learning method used
for analysis is sensitive to certain features of a deployment, labeling and learning
needs to be repeated for every new deployment. To address these challenges, we
propose to make use of system context information formalized in an information
graph and embed it in the learning process via contrastive learning. Based on real-
world data we show that this approach leads to an increased accuracy in case of
weakly labeled data and leads to an increased robustness and transferability of the
classifier to new sensor locations.

1 INTRODUCTION

Classifiers based on artificial neural networks have proven to be very effective across domains, how-
ever their applicability to real-world data is limited by the requirement of a clean and comprehensive
dataset (Tsipras et al., 2020). Unfortunately, real-world datasets often contain artefacts arising from
the system environment and contain incomplete and uncertain labels. One example of machine
learning applications is natural hazard monitoring for slope failure detection (Hammer et al., 2013;
Dammeier et al., 2016). Here, high misclassification requires careful retraining and post-processing
(Hibert et al., 2017). In this setting, comprehensive manual annotations are infeasible for large-scale
and long-term sensor network deployments due to the labor and time overhead (Meyer et al., 2019).

Hence, the process is error-prone and requires significant domain expertise. However, experts might
not be available throughout the whole deployment periods of the sensor network, which inevitably
leads to an annotation set containing noisy annotations limited in time and/or subset of sensors. In
addition, as long as the learned features and classifier are sensitive to the detailed properties of the
subsurface and the sensors, labeling and learning needs to be repeated for every new installation or
classifier performance is decreased (Wenner et al., 2021). Therefore, there is a close link between
weakly labeled data and robustness with respect to certain feature variations.

Fortunately, real-world deployments provide additional sources of information which could be ben-
eficial for learning, such as correlation of sensor data due to sensor proximity. However, these infor-
mation cannot be easily captured by the prevailing data/annotation pairs used for learning. Similarity
learning (Schroff et al., 2015; Meyer et al., 2017), such as contrastive learning (He et al., 2020; Chen
et al., 2020; Saeed et al., 2020) allows to establish relations between data pairs. However, their ca-
pability to integrate system context information is limited.
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To address these challenges, we propose to transfer the concept of knowledge graphs (Hogan et al.,
2021) to learning by using it for storing information about data similarity. Moreover, we extend
the prevailing data/annotation learning concept to allow any data point to be an annotation for any
other data point. This is accomplished by utilizing the following concepts: (i) injecting all available
knowledge in form of an information graph and sampling from it, (ii) transforming the data into a
common representation and (iii) the use of contrastive learning to train the system. We show that
using these concepts to formalize system context information and using the additional knowledge
in the learning phase leads to an increased accuracy in case of weakly labeled data and leads to an
increased robustness and transferability of the classifier to new sensor locations. 1

Our main contributions are:

• We present a method which uses system context information to counteract the negative im-
pact of few and weak labels by combining contrastive learning with an information graph.

• We present a unified learning process in which annotations are encoded as Gaussian random
vectors to treat them similar to data.

• We demonstrate on a dataset gathered from a real-world deployment in the Swiss alps,
how the method can be used to train a classifier with improved generalization performance
across sensors with diverging characteristics.

2 DATASET

In this work, we use data from a real-world deployment of seismic sensors at Illgraben, Switzerland.
The sensor array consists of 8 seismometer (ILL01-08), each having three channels, one vertical and
two horizontal. The sensors are deployed at distances of hundreds of meters up to several kilometers
away from the area of interest. We aim to distinguish seismic signals from 3 different types of events
namely earthquakes, slope failures and noise signals. The Illgraben event catalog was created by
visual inspection of the vertical channel of the seismic waveforms and their spectrograms by experts.
The earthquake catalogs provided by the Swiss Seismological Service (SED) and the European-
Mediterranean Seismological Center (EMSC) served as additional ground truth for providing correct
earthquake labels. The Illgraben event catalog consists of 320 to 560 time segments per station each
containing an event, summing up to 32.5 hours of labelled seismic data recorded at a sampling
frequency of 100 Hz. In addition, the dataset contains randomly sampled, verified time segments
without activity with a total duration approximately equal to the event segment’s total duration.

3 METHOD

In our scenario, two major issues need to be addressed, namely (i) few and weak labels and (ii)
classifier robustness. The first issue requires an improvement and extension of the annotation set,
the latter requires that the learning method can adapt to out-of-distribution samples.

In contrast to real-time classification, environmental monitoring usually relies on post-processing
of a long-term dataset. Therefore, an extensive dataset is usually available for training albeit not
always thoroughly annotated. In our scenario, we can make use of non-annotated data by using
general assumptions about the specific sensor deployment, for example about sensor proximity: The
same event is captured by multiple seismometer channels and possibly multiple stations, but with
different signal signatures. These differences are caused by groundwave propagation as well as
properties of the seismometers, for example ground coupling. Thus, we obtain ”different views”
of the same event. Contrastive learning has shown to benefit from such different views. Intuitively
speaking, contrastive learning achieves an embedding of data samples in a latent space by moving
representations of different views of the same event closer together while increasing the distances of
representations of different events.

To combine contrastive learning with all available information, we propose to make use of an in-
formation graph, which holds annotations as well information about the relation between time seg-
ments, channels and stations. We expect that by using system context information we simultaneously

1Further content is available at https://matthiasmeyer.xyz/system-context-info/
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(i) improve our annotation set by adding additional information to each annotated segment and (ii)
include non-annotated, out-of-distribution samples in the training process.

The information graph is filled by subdividing the seismic signals into segments using a window
length Tw. Each segment is represented by a node in the information graph. An edge is introduced
between segments A and B if the segments overlap in time and A is from a different station or
different channel than segment B. To reduce the possibility of learned shortcuts (Fonseca et al.,
2020) no edges to segments of the same channel are added.

The information graph is used to train a model f(·) which embeds each segment xi into a common
space zi = f(xi), with zi ∈ Rd. Similar to related work, we separate the model into an encoder and
encoder head (Chen et al., 2020). As illustrated in Fig. 1, a fixed numberNe of edges is sampled from
the graph for every batch during training and connected data segments are loaded. Any duplicate
segments are removed from the batch before computing f(·), leading to a number of data segments in
the batch of N ≤ 2Ne. Each data segment is encoded by the encoder and subsequently transformed
by the encoder head into an embedding vector zi.

Figure 1: The central entity is the information graph which combines knowledge from domain
experts, for example annotations or signal propagation behaviour, as well as dataset-specific knowl-
edge of each data segment, for example location, channel, time. The combination of contrastive
loss, information graph and encoder allows to learn a suitable embedding for the classification task.

By sampling the edges we construct a subgraph of the information graph with non-negative ad-
jacency matrix A ∈ RN×N

≥0 . To avoid that second order neighbours of a node have a detrimental
impact on training by not being directly connected, we add second order neighbors by B = A+A2.
In this setting, we define the contrastive loss between a pair s, t (source and target of an edge), with
the adjacency matrix B as follows:

Ls,t = −Bs,t log
exp(φ(zs, zt)/τ)∑N

n=1 1[Bs,n=0] exp(φ(zs, zn)/τ)
(1)

where Bs,t represents the weight of the edge connecting s, t. φ(·) is a similarity function, which in
our implementation is the Cosine similarity. τ is a temperature scaling. The indicator function 1 is
evaluating to 1 iff Bs,n is zero.

Annotations are considered in the information graph by introducing Nc anchor nodes, where Nc

equals the number of classes. Each segment belonging to a class is connected to the anchor node
of that class by an edge. Two strategies can be employed to compute Eq. 1 for an edge with an
annotation anchor node.

The first option makes use of the fact that B contains second order neighbors meaning that all nodes
sharing an edge with an annotation are also directly connected. Thus, the edges with an annotation
node can be skipped while computing Eq. 1 but representations with the same annotation are still
moved closer together, which resembles the work by Khosla et al. (2020).

The second option is to introduce a high-dimensional L2-normalized Gaussian random vector a(c) ∈
Rd for class c into the batch which acts as the target zt during computation of Eq. 1. The vectors
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Accuracy
all all+SC one-station one-station+SC

Random Forest 86.4 % - n.a. -
ResNet18+XE 91.3 % ± 0.5 - 50.0 % ± 15.0 -
ResNet18+IG+links 92.3 % ± 0.3 93.8 ± 0.3 44.0 % ± 15.6 84.1 % ± 2.6
ResNet18+IG+anchors 92.0 % ± 0.4 93.9 ± 0.6 47.9 % ± 16.7 85.0 % ± 1.8

Table 1: Classifier accuracies for different sets of available training annotations. Either all annota-
tions (all) or only annotations for one station are available (one-station). Additionally, the informa-
tion graph (IG) is used with or without system context information (SC).

are fixed at the beginning of the training. Here, we make use of the fact that any two random high-
dimensional vectors are almost orthogonal to each other with high probability (Blum et al., 2020),
thus data points of different classes are trained to move ”far away” from each other. The first strategy
will be referred to as link, the latter as anchor in the following evaluation.

4 EXPERIMENTAL EVALUATION

We evaluate the proposed approach by performing an ablation study and comparing the system to a
random forest classifier, which is best practice for slope failure detection (Wenner et al., 2021).

For the ablation study we use a classifier based on a single-channel variant of ResNet18 (He et al.,
2015) as encoder in combination with an MLP with 1 hidden layer as encoder head. During classi-
fication the encoder head is replaced with a classification head differing only in output size. Input
to the ResNet18 is a log-compressed spectrogram of the seismic data. For more implementation
details please refer to the Appendix A. The ResNet18 model is trained with three methods, cross-
entropy loss between the output of the classification head and the ground truth (Resnet18+XE),
contrastive pretraining using the information graph (IG) and either the link (Resnet18+IG+link) or
anchor (Resnet18+IG+anchor) strategy. Subsequently, the classification head is trained using cross-
entropy loss. We compare training with system context information (SC) and training without it.

The benefit of our approach for the weakly-labeled setting is evaluated by using the available training
annotations of all stations. The experiments are repeated 5 times and mean and standard deviation
are reported. Robustness is evaluated by training the model variants when only a subset of the
annotations are available. While the whole training data is available to train a classifier only the
annotations for one of each of the 8 seismic stations can be used. All reported accuracies are based
on evaluation on the test set using all stations and are reported as mean and standard deviation of all
one-station evaluations.

The results presented in Table 1 show that the ResNet18 classifiers outperform the random forest
classifier in the weakly-labeled setting (all and all+SC). The all column, illustrates that training us-
ing contrastive pretraining improves the performance significantly in comparison to the random for-
est classifier but only slightly in comparison to using cross-entropy loss (ResNet18+XE). However,
if we include the system context information the accuracy improves significantly (all+SC column),
demonstrating our method’s applicability to weakly labeled data.

In the robustness experiments, all classifiers show a comparable bad performance of around 50 %
on average if only annotated data of one station is used (one-station). If more non-annotated data
from other stations is available, our method takes advantage of the system context information (SC)
stored in the information graph (one-station+SC) and the average accuracy rises to over 84 %. The
increase comes from a better generalization to other sensors, as illustrated in Fig. 2. The left figure
illustrates the poor generalization of ResNet18+XE to other stations than the one used for training.
If, however, non-annotated data from other stations and system context information is available, our
method increases classifier performance on all stations, thus demonstrating and increased robustness.
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Figure 2: Each row indicates of which station the annotated training subset was used. Each column
indicates the respective score on the subset of the test dataset for each station. (Left): Results for
ResNet18+XE. (Right): Results for ResNet18+IG+anchor.

5 CONCLUSION

In this paper we have presented a novel approach to learn with weakly labeled data for the case of
mass movement monitoring. By using contrastive learning we can increase the classification accu-
racy compared to the reference implementation. Moreover, the presented method unifies data and
annotation representations and thus inherently allows to integrate additional system information into
the learning process. This additional information leads to a strong performance increase in a setting
with limited annotations and diverging sensor characteristics, demonstrating increased robustness
across sensors.
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Table 2: Random forest parameters

Number of trees 400
Split quality measure Gini criterion
Minimum number of samples required to be a leaf node 1
Minimum number of samples for an internal node to be split 2

A IMPLEMENTATION DETAILS

A.1 DETAILS TO CONTRASTIVE LEARNING WITH INFORMATION GRAPH

The seismic signals are subdivided into segments using a window length Tw and a stride Th. The
data subset for pre-training uses Tw = 30s, Th = 30s, the subset for fine-tuning and the test set use
Tw = 30s, Th = 15s. Each segment’s annotation is determined using the Illgraben event catalogue,
which is split into training and test set with a ratio of approx. 70/30. Linear detrend is applied to
the seismic signal before it is transformed into a log-compressed spectrogram with window length
of 2.56 s and stride of 0.08 s. No data augmentation is applied. As encoder we use a single-channel
variant of ResNet18 (He et al., 2015), without the final linear layer. The output of the encoder is a
512-dimensional vector, which is then passed through the encoder head, consisting of a MLP with
a hidden layer of size 512, batch normalization and ReLU non-linearity. The encoder head’s output
size is d = 128 and L2 normalized. During fine-tuning, the same encoder head architecture (with
random initialization) is used as a classification head with an output size equal to the number of
classes Nc.

In the supervised training we train encoder and classification head jointly using cross-entropy loss.

For semi-supervised training (all+SC and one-station+SC), we train the encoder and encoder head
with contrastive loss, then for fine-tuning we replace the encoder head with a classification head and
train the classification head with cross-entropy loss while keeping the encoder weights fixed. In ev-
ery epoch we first train with contrastive loss, then fine-tune the classification head. For optimization
we use SGD with momentum 0.9 and weight decay 10−4 and a batch size of 128. The temperature
coefficient τ is set to 0.1. We use a cosine annealing scheduler. In our experiments the edge weights
of the information graph are 1.

To counter class-imbalance, each batch contains the same number of examples for each class. Dur-
ing semi-supervised training the non-annotated data out-weights the annotated data by a factor of
approx. 4.5 in each batch. We select our model based on a validation set which is 20% of the train-
ing set, except for the one-station+SC experiment. Here, we select model from the last epoch, since
model selection on the one-station subset would deteriorate the generalization effect. More details,
e.g. the code and hyperparameters for individual experiments will be made available on the paper’s
project page.

A.2 DETAILS TO RANDOM FOREST CLASSIFIER

FollowingProvost et al. (2017) and Wenner et al. (2021) we computed a total of 55 signal charac-
teristics in the time and frequency domain, e.g., information on the signal form and dominant fre-
quencies. For a complete description of the chosen features see Wenner et al. (2021). We performed
a three-fold-cross-validation grid search to optimize classifier performance. Final parameters are
presented in Table 2.
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