
ETH Library

Noise Estimation in HPC Cloud
Networks

Bachelor Thesis

Author(s):
Rahn, Tobias

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000513171

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000513171
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Noise Estimation in HPC Cloud
Networks

Bachelor Thesis

Tobias Rahn

September 8, 2021

Advisors: Prof. Dr. T. Hoefler, Dr. D. De Sensi, K. Taranov

Department of Computer Science, ETH Zürich

Abstract

As computing is moved more and more to the cloud due to scalabil-
ity, affordability and availability, so are high performance computing
(HPC) clusters. It is expensive to build a real-world cluster that needs
the scale and performance to run the highest predicted load but is not
used to its full extent most of the time. Additionally, by relying on
cloud services, the highly specialised workforce needed to maintain
the cluster is no longer needed. As a result, more work can be put
into the development of applications. With clusters in the cloud, it is
possible to build a specific cluster just for the time it is used and with
exactly the characteristics that are needed. This significantly lowers
the cost of running HPC applications and opens up the possibility to
run such applications to a wider variety of researchers and the public.
The decreased cost and ease of use of such systems further increase
the availability of running HPC workloads. Some leading providers
such as Amazon, Microsoft and Google all have their special tailored
solutions that try to provide a replication of the performance that a
local cluster delivers. Each provider has its solutions to ensure that
the nodes that make up the cluster are connected by a consistent high
throughput, low latency network and that the virtualisation and shar-
ing of the hardware have no noticeable impact on the performance.
But do these promises hold and can it be expected to see the adver-
tised performance on these systems? In this thesis, we start to answer
this question.
We show differences between the providers and that Azure performs
the best and most similar to a non-virtualised cluster.

i

Contents

Contents ii

1 Introduction 1

2 Background 3

3 Cloud Computing interconnects 6
3.1 Network solutions . 6

3.1.1 Network Stack . 7
3.1.2 Network Interface Card 12

3.2 Virtual machine properties . 13
3.2.1 Instance placement . 13
3.2.2 Virtualization level . 14
3.2.3 Instance Types . 16

3.3 Cluster Management . 17

4 Evaluation 19
4.1 Setup . 19

4.1.1 Amazon Elastic Compute Cloud 20
4.1.2 Microsoft Azure . 20
4.1.3 Google Compute Engine 21
4.1.4 Slingshot Interconnect Based Cluster 21
4.1.5 Benchmarks . 21

4.2 Point-to-Point latency . 22
4.2.1 Single Stream MPI Latency 22
4.2.2 Multi Stream MPI Latency 23
4.2.3 Single Stream IB Latency 23

4.3 Point-to-Point throughput . 24
4.3.1 Single Stream Unidirectional Throughput 24
4.3.2 Multi Stream Unidirectional Throughput 28

ii

Contents

4.3.3 Bidirectional Throughput 31
4.3.4 Throughput Stress Test 33

4.4 Hoverboard Analysis . 34
4.4.1 Testing Method / Benchmark 34
4.4.2 Results . 35

4.5 Operating System Noise . 36
4.6 Performance per Dollar . 38

5 Conclusion and Outlook 41

A Hoverboard Test code 43

B Additional Plots 47
B.1 Per Provider Latency Plots . 47
B.2 Per Provider Throughput Plots 48

B.2.1 Single Stream Unidirectional Throughput 48
B.2.2 Multiple Stream Unidirectional Throughput 49
B.2.3 Bidirectional Throughput 50
B.2.4 IB Single- vs Multi-Stream Throughput 51

Bibliography 53

iii

Chapter 1

Introduction

High performance computing (HPC) clusters, also known as supercomput-
ers, are an integral part of computational science. It finds applications in a
wide variety of scientific fields with the movement to use computers as a
tool to assist humanity in improving everyday life. In Healthcare, HPC is
used to analyse medical data faster and for more advanced tasks such as
genome sequencing. City planners use HPC to make better design choices
in order to increase the quality of life in large cities and decrease environ-
mental pollution. Machine Learning and artificial intelligence are used to
learn patterns and detect fraudulent credit card transactions, which is in
our best interest. To effectively train large machine learning models a lot
of computing power is needed. Moreover, HPC is used in research to im-
prove medical treatments or to improve the efficiency of renewable energy
sources and develop new materials for construction that drive innovation.
This shows that a lot of people benefit if HPC is available at an affordable
price and to a wide range of researchers.
The growth in cloud computing and the performance increase has lead to
more powerful virtual machines in the cloud. Can cloud computing pro-
vide the possibility to make HPC more affordable and available by offering
HPC-as-a-Service? If this is possible the need for researchers to have access
to the expensive and highly optimised hardware of a supercomputer is no
longer a means to an end and a large amount of computing power can be
accessed from everywhere. To the best of our knowledge, there has not been
an extensive study that analyses the network stack of different providers
that offer HPC-as-a-Service and benchmark them against a non-virtualised
cluster.
In our work, we will analyse the network stack of Amazon, Microsoft and
Google. Moreover, we will assess the performance of different layers in the
network stack. This includes latency and bandwidth benchmarks of the
Message Passing Interface (MPI), the Transmission Control Protocol (TCP)

1

and the InfiniBand (IB) verbs interface. We do this to get a better under-
standing of the different approaches that the three cloud providers take to
offer HPC-as-a-Service in the cloud. We want to analyse the performance
gap between virtualised cloud clusters and traditional non-virtualised su-
percomputers and see where the differences lie.

Our contributions with this work are the following:

• An evaluation of the three different cloud providers with a special
focus on the networking components such as the network stack and
the network interface(s).

• Compare the performance of the HPC cluster on the three providers
and compare them to a non-virtualised cluster. We do this to see if
the HPC clusters in the cloud are a viable alternative to on-premise
supercomputers.

The rest of this thesis is arranged as follows: Chapter 2 provides some back-
ground on topics covered in this thesis and looks at some earlier work done
in the context of benchmarking virtualised clusters. In the next chapter,
Chapter 3, we look at the different ways that Amazon, Microsoft and Google
chose to provide HPC-as-a-Service. We will specifically analyse how they
set up their network stack to provide low latency and high bandwidth net-
working. The experiments used to evaluate the respective solutions and
their results are discussed in Chapter 4. Finally, Chapter 5 summarises our
findings and outlines future work.

2

Chapter 2

Background

In this chapter, we provide some background information on high perfor-
mance computing, cloud computing in general and some related work.

High performance computing (HPC) is the task of processing data with
a high throughput rate and performing complex calculations. Usually, a
supercomputer is used for these tasks. A supercomputer is a cluster that
consists of hundreds or thousands of servers (called compute nodes) inter-
connected by a high-speed network. Together they work like an orchestra
where each node contributes its share of work. Many different technologies
benefit from this large amount of computing power to process the massive
amount of data that is produced. For example, hugely complex weather
simulations can be run at a higher resolution to give better estimates and
spot natural catastrophes earlier to save lives.

Cloud Computing was defined by the National Institute of Standards and
Technology (NIST) in 2011 as follows: ”Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction.” [32]. Traditionally HPC has been used on-premise
by large institutions that build their own system that is optimised to get the
best performance out of it. On the other hand, cloud computing provides
more flexibility and does not force an institution to buy and build its own
system. Instead, the system can be rented for the time needed with the spe-
cific configuration. Furthermore, cloud computing increases the availabil-
ity and redundancy of corporate computer infrastructure. This is achieved
by hosting the service in multiple data centres that are geographically sep-
arated to provide resilience against any interruptions such as power out-
ages or floods. The recent push to improve the cloud infrastructure in the

3

last decade led to HPC-as-a-Service being an alternative to local clusters.
As mentioned earlier, this offers several advantages, such as the possibility
to scale up the computing resources for specific projects and the ability to
easily customize the computing environment. There are different types of
services offered in the cloud. First, we look at Infrastructure-as-a-Service
(IaaS). In this model, the cloud provider only provides the hardware such
as the server, storage, networking hardware and possibly a hypervisor. This
most basic form of cloud computing outsources the hardware, but still needs
technicians to maintain the system on this hardware. In a further step, more
control can be handed over to the cloud provider. In the Platform-as-a-
Service (PaaS) model some major software components like the operating
system are additionally outsourced. Finally, with the Software-as-a-Service
(SaaS) model everything is managed by the cloud provider. In this case, the
company does not need to install and maintain any software and applica-
tions. HPC-as-a-Service can not be put in any of the three models, as it can
be offered as any of them.

Related Work

Several works analysed the networking capabilities of HPC cloud clusters.
Many of those works analyse the MPI performance on Amazons Elastic
Compute Cloud and Microsoft Azure. However, to the best of our knowl-
edge, no study exists that extensively evaluates and compares Amazon’s,
Microsoft’s and Google’s solutions to provide networking that is suited for
HPC with a specific focus on networking performance.
Guidi et al [22] compared the performance of two AWS HPC clusters with
25 Gbps and 75 Gbps bandwidth respectively to two partitions (Haswell
and KNL) of the Cori supercomputer [4] with 82 Gbps bandwidth. They
analysed the computational power of the central processing units (CPU),
the memory subsystem and the internode communication performance and
showed that cloud clusters made a significant step in the right direction.
Our work will go beyond that and not only compare an AWS HPC cluster
with 100 Gbps networking to a non-virtualised cluster but also an Azure
and a GCE HPC cluster. Additionally, we will evaluate the latency and
bandwidth for TCP and IB communication besides benchmarking the MPI
performance.
Chakraborty et al [17] intensively studied Amazon’s in house developed
transport mode Scalable Reliable Datagram (SRD) which provides hardware
reliable delivery. They propose designs to improve the MPI performance
under the specific characteristic and features of the Elastic Fabric Adapter
(EFA) that Amazon designed itself and showed that the new transport mode
SRD has a positive effect on the performance of collective operations. In our
work, we will not do any optimizations based on specific solutions that the
providers use to offer HPC performance in the cloud. Instead, we will focus

4

on a comparison between the three providers.
Tuning the HPC clusters in the cloud can boost the performance massively
as shown by Xu et al [42]. An evaluation of the MPI latency and throughput
performance under different settings on AWS and Microsoft Azure clusters
showed an improvement of up to 150% in point-to-point communication
bandwidth. To achieve these improvements different algorithms and proto-
cols were used to see which one performs the best for each message size. For
AWS they additionally developed a new zero-copy design in MVAPICH2-X
[8] as the original was not able to deliver good performance. As Azure al-
lows root access to their high performance VM’s, the XPMEM kernel mod-
ule1 can be installed which significantly improves the throughput. Instead
of tuning system characteristics and evaluating how different MPI libraries
fare, the focus of our work lies in spotting and analysing differences between
the providers and understanding why those differences exist.
Uta et al [41] discuss how reproducible and predictable experiments in the
cloud are. Due to the multi-tenant nature, and the coupled sharing of the
underlying hardware, the application of different users can have an impact
on each other’s results. This can lead to a lack of reproducibility and pre-
dictability, despite the different mechanisms that cloud computing providers
employ to ensure Quality of Service and fairness. Additionally, often a
bucket token system is employed for different resources such as network
bandwidth and CPU scheduling. This means that a certain VM has a bud-
get for the bandwidth and if that is used up, it is significantly slowed down.
This can lead to different results for the same experiment if the buckets
are still partially filled from earlier experiments that did not deplete them.
These measures make it more difficult to draw scientific conclusions but Uta
et al [41] provide some guidelines that should help to make the results more
predictable and reproducible.
Compared to all the works listed here we want to take an extensive look
at the networking solutions that are provided and compare them against
each other. Moreover, we want to evaluate how they perform in different
benchmarks to analyse different layers of the network stack (MPI, TCP and
IB).

1This enables a process to map the memory of another process into its own virtual
address space.

5

Chapter 3

Cloud Computing interconnects

In this chapter, we compare and analyse the cloud platforms of the three
cloud computing providers Amazon, Microsoft and Google. In this work
we refer to them as follows: Amazon Elastic Compute Cloud (EC2)1 [1],
Google Compute Engine (GCE)2 [27], and Microsoft Azure [7] concerning
different features in terms of their solutions to provide HPC-as-a-Service. To
start this chapter Table 3.1 provides a rough overview of the three providers.

Amazon EC2 MS Azure GCE
NIC Nitro Card (SoC),

EFA and ENA
Mellanox (FDR, EDR,

HDR), smartNIC
(FPGA)

gVNIC

OS bypass Yes (EFA) Yes (Mellanox) Partial (Intel DMA
Technology)

Max. Bandwidth per
instance

Up to 400 Gbps Up to 200 Gbps Up to 100 Gbps

Network architecture
/ topology

High-radix Folded
Clos Topology with

ECMP

Non-blocking
low-diameter fat tree

Clos Topology

Cluster Management AWS Parallel Cluster
AWS Batch

Cycle Cloud Azure
Batch

Terraform

Table 3.1: A high level overview of the most important aspects of the cloud clusters

3.1 Network solutions

We will now look at the networking solutions of the three providers. In
Section 3.1.1 we describe the network stack and in Section 3.1.2 we will look
at the different network interfaces that are attached to the virtual machines.

1We will often use the term Amazon Web Services (AWS) interchangeably with EC2 as
it is a core component of it.

2Sometimes we refer to it as Google Cloud Platform (GCP) as GCE is a component of it.

6

3.1. Network solutions

3.1.1 Network Stack

In this section we outline the characteristic of the network stack and see
the different approaches taken. We will start with Amazon and the Elas-
tic Fabric Adapter. Then we will continue with Microsoft and Accelerated
Networking before looking at Google’s Andromeda network stack.

3.1.1.1 Amazon

AWS instances (HPC and ”normal” instances) are launched into a Virtual
Private Cloud (VPC) which consists of one or more subnets. Each instance
has a primary network interface, which is a logical virtual network card
and has a primary private IP address. It can be chosen whether an instance
has a public IP address or not. The logical component that represents the
network card in the VPC is called elastic network interface (ENI) which is
connected to a network card. Depending on the instance type, multiple
network interfaces can be attached to improve the networking performance,
notably a Bandwidth (BW) above 100 Gbps. In the following, we will look at
the more specific solutions that Amazon provides to improve the network-
ing performance. Enhanced networking can be either enabled through an
Elastic Network Adapter (ENA) or the Intel 82599 Virtual Function (VF) In-
terface. On all but the T2 instances, enhanced networking can be enabled.
The ENA allows speeds of up to 100 Gbps while it is only 10 Gbps with
the Intel 82599 VF interface. With single root I/O virtualization (SR-IOV)3

it provides higher networking capabilities (higher BW, lower network jitter
and consistently lower inter-instance latencies). To further increase the net-
working performance, Amazon offers the Elastic Fabric Adapter (EFA). It is
an ENA with added capabilities to bypass the operating system (OS) that
provides lower and more consistent latency, a higher throughput than TCP
transport and supports OpenMPI [9], Intel MPI [18] and Nvidia’s Collective
Communication Library (NCCL) [12]. The functionality to bypass the OS is
based on the IB verbs interface. Figure 3.1 shows the network stack with
and without the EFA. For instances that support the Elastic Fabric Adapter,
up to one can be assigned per network card. Only the P4d instance (accel-
erated computing) supports more than one, namely four, network cards, all
others only support one. In total, there are four choices of which one can
choose a network interface. The basic ENI, which is just a simple virtual
network card. Then we have the next step with SR-IOV provided by the
ENA and the Intel 82599 VF interface. And Last we have the EFA which is
essentially an improved version of the ENA that is tailored for tightly cou-
pled workloads such as high performance computing. HPC applications use
the aforementioned libraries to interface the Libfabric API [6], which then,

3SR-IOV is a device virtualisation method that provides lower CPU usage and higher
I/O performance by letting one PCI-device to be seen as multiple physical devices.

7

3.1. Network solutions

Figure 3.1: Traditional TCP network stack vs EFA Libfabric network stack, Source: [15]

in turn, bypasses the operating system kernel to directly communicate with
the EFA. Libfabric defines interfaces between applications and the underly-
ing fabric service. It targets high-bandwidth, low-latency Network Interface
Cards (NIC) and scales to tens of thousands of nodes.

Amazon does not use a separate network infrastructure for the HPC in-
stances and instead uses the existing high-radix4 Folded Clos5 topology out
of commodity switches with equal-cost multipath (ECMP) routing to pro-
vide affordable supercomputing. TCP is ill-suited for latency-sensitive ap-
plications because the retransmission of lost packets can produce outliers
with very high latency. Amazon states that Remote Direct Memory Ac-
cess (RDMA) over Converged Ethernet (RoCE) 6 is not scalable enough for
their infrastructure. One of the specified reasons is the requirement to have
priority flow control (PFC) which can lead to head-of-line blocking and ad-
ditionally RoCE also suffers from ECMP collisions under congestion. The
EFA supports the Unreliable Datagram (UD) mode [14] and the in house de-
veloped Scalable Reliable Datagram (SRD) mode [39]. The goal of SRD is to
load balance the packets across multiple paths while providing fast recovery
from packet drops and link failures. In SRD the sender controls the path se-
lection by manipulating the packet encapsulation. SRD guarantees reliable
and out-of-order packet delivery. This means that the packets must be re-
ordered by a higher layer in the network stack. But this allows for multiple
applications to reorder their specific packets separately without interfering
with the streams of the other applications. Libfabric in the layer above re-
orders the packets. Congestion control has the aim to get a fair share of the
available bandwidth with the minimum number of bytes in flight to prevent
incast congestion and resulting packet drops. To that end, they use a dy-
namic per-connection rate limit and an inflight limit. Congestion is detected

4High radix = large number of skinny ports per router instead of a few fat ones
5Also called fat tree
6Also known as InfiniBand over Ethernet

8

3.1. Network solutions

if the RTT goes up on a majority of paths or the estimated rate becomes
lower than the transmission rate. Network-wide congestion that affects all
paths can be detected early and the individual sending rates can be adjusted.
Congestion on individual paths can be handled with rerouting.

3.1.1.2 Microsoft

Microsoft uses the Azure Virtual Network (VNet) as the fundamental build-
ing block for the private network in the Azure cloud. It enables the VM
instances to communicate with each other and the internet. To improve the
network performance Microsoft utilizes what it calls Accelerated Networking
(AccelNet) to bypass the virtual switch by offloading the policies applied
by it (network security groups, access control lists, isolation, and other net-
work virtualized services to network traffic) to hardware. This is achieved
by enabling SR-IOV. Thus on arriving at the network interface, the traffic is
directly forwarded to the VM and does not pass through the virtual switch.
This results in lower latency, a higher packet per second (PPS) rate, reduced
jitter and decreased CPU utilization as it has to process less network traf-
fic if the policy enforcement is offloaded to hardware. Microsoft uses IB to

Figure 3.2: Communication with and without Accelerated Networking, Source: [33]

provide scalable MPI performance for HPC workloads. Depending on the
specific instance Microsoft uses Mellanox Connect-IB (56 Gbps), Mellanox
ConnectX-5 (100 Gbps) or Mellanox ConnectX-6 (200 Gbps) Network Inter-
face Cards. The low latency, high bandwidth IB network provides RDMA
capability. The structure of the interconnect is a non-blocking fat-tree with
a low diameter design for optimized and consistent RDMA performance.

9

3.1. Network solutions

3.1.1.3 Google

Figure 3.3 shows Googles self-designed network virtualization stack An-
dromeda [20], a software-defined networking (SDN) 7 substrate for their net-
work virtualisation platform and it sits on top of its own Jupiter network
fabric. Andromeda’s data plane is based on a flexible hierarchy of packet

Figure 3.3: Andromeda stack, Source: [20]

processing paths. The on-host Fast Path is the top of this hierarchy above
the on-host Coprocessor path. The third layer is the Hoverboard path, which
consists of dedicated Gateways called Hoverboard Gateways. To dynami-
cally select whether a flow is processed on one of the on-host paths or not,
Google introduces the Hoverboard Programming Model. This model makes
use of the advantages of the On-Demand Model8 and the Gateway Model 9.
By default, the VM’s send all flows via the dedicated Hoverboard gateways.
If a flow exceeds a certain usage threshold it is dynamically detected by the
control plane and offloaded to a direct host-to-host path that bypasses the
gateway. The sending VM sends usage reports to the control plane which
then detects these flows based on the reports. Figure 3.4 illustrates this
direct host-to-host path. For such a direct host-to-host path the necessary
routing information is stored in the on-host forwarding table and only flows
for which there is no information in this forwarding table are then sent to
the Hoverboard Gateway. With this method, the per-server memory utilisa-
tion is lowered as not all hosts need to store forwarding information for the
whole network. In the following we discuss the on-host Fast Path and Copro-

7In an SDN the data plane (hardware) and the control plane)software) are separated,
thus the hardwares sole purpose is to forward traffic and it has nothing to do with the
routing. This results in a central control unit and the intelligence is not partitioned into the
different switches and routers in the network.

8The first packet of a flow is sent to the controller and determines the route for the whole
flow. This scales better than the Preprogrammed Model as not all flows need to be known in
advance.

9Packets of a specific type are sent to a gateway device that is designed for high speed
packet processing. The advantages of this model are that it provides predictable performance
and that changes in the virtual network state only need to be communicated to the gateways
instead of all VM’s.

10

3.1. Network solutions

Figure 3.4: Hoverboard Packet Forwarding, Source: [20]

cessor Path in more detail. Figure 3.5 shows an overview of the on-host data
plane with the two different paths. The Fast Path is used for performance-
critical flows and is designed for high performance packet processing such
as encapsulation and routing via the aforementioned on-host flow table. To
this end, it has its own egress and ingress engines that are used for packet
processing and other periodic work. Another measure to improve the per-
formance is to avoid thread handoffs which is achieved by letting the Fast
Path directly access the queues of the virtual and physical NIC. To keep the
per-packet CPU cost low it is designed to minimize its number of features.
If the allocated 300ns CPU budget is not enough the packets are offloaded to
the per VM Coprocessor Path as can be seen in Figure 3.5. This design choice
provides fairness and isolation between VM’s. This path handles packets
that need more processing and are not latency critical. For example packet
encryption and abuse detection are handled via this path.

Figure 3.5: Andromeda on-host Dataplane overview, Source: [20]

11

3.1. Network solutions

Google gradually adds new features to its Andromeda network stack and it
now supports packet offloading to the different paths as described before
and Intel Quick DMA Engines to offload larger packet copies. We conclude
this chapter with the key takeaway about the Andromeda network stack: Ac-
tive, performance-critical flows are offloaded to a direct host-to-host path
while idle/bursty flows are routed over Hoverboard Gateways.

3.1.2 Network Interface Card

Amazon and Microsoft have developed their own SmartNIC’s to offload the
network stack and management from computing resources that are rented
to cloud customers.

3.1.2.1 Nitro Card for VPC

The AWS smartNIC is based on an in-house developed System on a Chip
(SoC)10. Amazon builds its instances on top of the Nitro system. Among
other things, this system consists of four Nitro Cards, of which one is the
Nitro Card for VPC. The Nitro cards are a family of cards with the goal to
improve system performance by offloading and accelerating I/O. The Nitro
Card for VPC is a PCIe attached NIC that is the hardware interface be-
tween the EC2 servers and their network connections. The Elastic Network
Adapter is the driver for these cards. It takes over the tasks of routing, im-
plementing security groups (virtual firewall) and packet encapsulation/de-
capsulation. This has the benefit that no cores need to be reserved for AWS
services to handle network tasks etc... and the user can use all cores to its
disposal. The EFA driver uses network acceleration features of the Nitro
Card for VPC’s EFA hardware device to bypass the operating system when
interacting with the user-space libraries to provide more consistent perfor-
mance and lower CPU utilization.

3.1.2.2 Azure SmartNIC

The Azure smartNIC is attached to all instances. Instances that are Infini-
Band ready, additionally have a second IB NIC which is one of the following:
Mellanox Connect-IB, Mellanox Connect-X5 or Mellanox Connect-X6. The
smartNIC is used to connect to the internet while the Mellanox NIC should
be used for internode communication as the smartNIC only provides 50
Gbps bandwidth. To ensure that always the right network card was used
during our evaluation, we specified the interface manually where it was
necessary. Although the test used the Mellanox NIC we still want to discuss
this smartNIC briefly as it is attached to our instances and a core component

10A System on a Chip integrates many if not all parts of a computer such as the CPU,
memory, etc. . . on a single die.

12

3.2. Virtual machine properties

of all other instances, that are not designed for HPC.
The Azure SmartNIC is an FPGA based custom-built smartNIC by Microsoft
[21]. To improve the performance they moved to SR-IOV. This meant that
they had to move the SDN stack to the NIC, as it gets bypassed together
with the hypervisor which is bypassed to reduce the load on the CPU by
allowing direct access to the NIC for packet processing. Because these SDN
policies are fast-moving, they resorted to FPGA’s due to their reprogram-
ability in contrast to Application-Specific Integrated Circuits (ASIC). This
flexibility is needed as SR-IOV is an all-or-nothing offload and if an SDN
feature is not handled by the SmartNIC, the packets must be sent and pro-
cessed via the SDN stack which almost negates the performance gain from
the SR-IOV offload. The goal is to switch to ASIC’s if they can be used for a
longer time if the cloud needs are more stable [40]. While the control plane
used for Accelerated Networking runs mostly in the hypervisor the data plane
for AccelNet is offloaded to the FPGA SmartNIC.

3.1.2.3 Google Virtual NIC (gVNIC)

All instances on GCE use the virtIO-based ethernet driver [36] to connect to
the network. This can be upgraded to the gVNIC to enable Tier 1 networking
and bandwidths between 50 and 100 Gbps. Unfortunately, Google has not
published a paper where this NIC is described nor is there documentation
on their website. Therefore it is not possible to compare it to the two NIC’s
of Amazon and Microsoft.

3.2 Virtual machine properties

In this section, we analyse different properties of the virtual machines. In
Section 3.2.1 we look at the different options that the virtual machines can
be placed physically close together for higher inter-node connection speeds
or further apart for redundancy. Next, in Section 3.2.2, we will look at the
different levels of hardware sharing and virtualisation that are offered. Last
we will describe, in Section 3.2.3, the different instances that are advertised
for HPC workloads.

3.2.1 Instance placement

All of the three providers we look at in this thesis have some form of group-
ing policy to place the Virtual Machines close together for better network
performance.

3.2.1.1 Amazon

Amazon has three types of placement groups they offer:

13

3.2. Virtual machine properties

Cluster puts the instances into the same availability zone.

Partition spreads instances across logical partitions, such that instance groups
in different partitions do not share the underlying hardware.

Spread places small groups of instances on distinct underlying hardware.

For high performance computing Cluster is the preferred placement policy
as the physical closeness of the instances results in low latency network
performance. Per default only 20 instances can be launched per region, if
more instances are needed in a single region, a request to Amazon can be
submitted.

3.2.1.2 Microsoft

When creating instances on Azure the VM can be placed in the same region
(a set of data centres within a latency-defined perimeter) and/or the same
availability zone (one or more data centres, independent power, cooling and
networking). Additionally, they offer Proximity Placement groups to bring
the VM’s physically closer together and reduce the latency further. It is
advised by Microsoft to put the virtual machines into a single placement
group for HPC. With a Scaleset this means that at most 100 virtual machines
(300 with a quota increase) can be placed in a single Scaleset such that the
VM’s are not scattered for redundancy. If one uses availability sets (for
availability and redundancy) the limit is 200 (maximum that can be put into
one availability set).

3.2.1.3 Google

Google has the following placement policies on offer:

Spread spreads the instances out from each other which can be used for
redundancy.

Compact keeps the instance physically close together.

The latter is preferred for HPC workloads as physically closer machines
result in lower network latency. At most 22 machines can be placed close
together and at most eight can be put into a Spread group.

3.2.2 Virtualization level

There are different options when choosing how to place the virtual ma-
chines. They can be explicitly put on different hardware and single tenancy
to guarantee that other VM’s have no impact on the performance.

14

3.2. Virtual machine properties

3.2.2.1 Amazon

For most of its instance families, Amazon offers metal instances. There is
no virtualization software (e.g: hypervisor) preinstalled and the applica-
tion has direct access to the underlying processor and memory. Amazon
also offers dedicated hosts, a dedicated physical server. In contrast to the
metal instances, they have virtualization software preinstalled and different
instances sizes of the same instance family can be mixed on it. On a dedi-
cated host, multiple virtual machines of the same family can be run on and
only VM’s of a single user run on it. In contrast to the other two providers,
AWS also offers dedicated instances. If an instance is launched, one can
choose whether the instance is launched on shared-, dedicated hardware or
a dedicated host. The dedicated instance gives the following guarantees: It
runs on hardware that is not shared with other users, thus we have single-
tenancy. No two instances that have the attribute dedicated are run on the
same hardware, but other instances with the shared attribute of the same
user can be placed on the same hardware to ”fill it up”.

3.2.2.2 Microsoft

Azure’s bare-metal infrastructure provides non-shared server hardware that
is maintained by Microsoft. It operates under the bring-your-own-license
model, such that already existing licenses can be used. Similar to Amazon
they also offer dedicated hosts to run one or more VM’s on a dedicated
server. But these are not available for the HPC optimized instances as they
run by default in single tenancy mode with one VM per physical server.
Furthermore, Microsoft offers to attach a Cray supercomputer of the XC- or
the CS series to a virtual network to further improve the performance.

3.2.2.3 Google

Google offers single-tenant nodes, which give exclusive access to a node that
can run multiple VM’s like the dedicated hosts of the other two providers.
A bare-metal solution similar to the other two providers that can be easily
created over the web interface is not offered by Google. Instead, it must
be requested from the support which gives more room for customization
when requesting a bare-metal solution. In contrast, one can choose whether
Google should provide the hypervisor or not.

We did not use dedicated hosts on AWS and GCE as it was not possible
within our quota limits.

15

3.2. Virtual machine properties

3.2.3 Instance Types

In this section, we will have a look at the different instances that support
high speed internode communication and are advertised for HPC workloads
by the providers. Additionally, we share our experience on increasing the
quota11 for the vCPU’s as it is not enough to create HPC-ready VM’s by
default.

3.2.3.1 Amazon

Of the three providers, Amazon offers the most families of instances and also
the most variety within the families. The different families have different
goals. They offer general purpose, compute optimized, memory-optimized,
storage optimized and accelerated computing instances that run on AMD
EPYC, Intel Xeon or AWS’ own Graviton ARM processors. They all have
differing maximum network bandwidths going up to 100 Gbps for most in-
stances and 400 Gbps, with four network cards that use the ENA or the EFA)
for one instance type (p4d.24xlarge) in the accelerated computing family. For
HPC instances the following families should be taken into consideration
as they provide 100 Gbps networking and support AWS’ EFA: M5n, M5zn,
C6gn, C5n and R5n.
Amazon increases the limit automatically on request if the previous limit
was extensively used for some time. This means that one can gradually in-
crease the limit and build larger clusters after some time. As the time of this
thesis is limited, we could only push the quota high enough to create three
instances.

3.2.3.2 Microsoft

Azure has divided their instances into similar categories and has an addi-
tional category for high performance computing instances which include
the H-series, HB[v2|v3]-series and the HC-series instances. All the instances
run on AMD EPYC or Intel Xeon processors and the HPC instances have
between 56 Gbps and 200 Gbps internode networking through IB NIC’s.
Up to a certain limit, Microsoft increases the vCPU quota automatically if
it is requested, but after this limit, one needs to provide reasoning why
that additional vCPU’s are needed. But the two instances we used for our
evaluation were within this limit.

3.2.3.3 Google

Similar to the other two providers Google has divided its machines into
different categories. As for Azure, they all run on either AMD EPYC or
Intel Xeon CPU’s. Google has only one compute-optimized machine type,

11All services in the cloud are limited and the quota specifies the per-category limit.

16

3.3. Cluster Management

the C2. Tier 1 networking was supported on the C2 instances up until a
few months before writing this document. It is now only supported on the
general-purpose machine family with the n2-standard-80 and n2d-standard-
224 instance yielding a 100 Gbps. The C2 instances now only support 32
Gbps of internode communication bandwidth.
Google was by far the hardest to get a quota increase. They wanted a de-
tailed explanation to see for which reasons we would need more vCPU’s.
After a phone call and using the lower tier instances for a while, they were
willing to increase our quota enough that we can build a cluster consisting
of three nodes.

To summarize we have up to 100 Gbps per instance on Google, up to 200
Gbps on certain instances for Microsoft and Amazon provides up to 400
Gbps for one specific instance type. In the end, we had enough quota on
all providers to create three node clusters with different amounts of work.
On Amazon and Google, we made the experience that it is worth using the
existing quota and then ask for an increase.

3.3 Cluster Management

Last, we will compare how to deploy and manage clusters on the three plat-
forms. EC2 relies on the open-source cluster management tool AWS Parallel
Cluster [16], a Command Line Interface (CLI), to deploy and manage HPC
clusters. It supports various schedulers such as Son of Grid Engine (SGE),
Slurm Workload Manager (Slurm), Torque Resource Manager (Torque) and
AWS’s own AWS Batch. Amazon also offers AWS Batch as a service to
its customers, where they take care of the cluster management part by au-
tomatically scaling and provisioning compute resources depending on the
demand. The user can set a maximum and minimum number of nodes and
submit their jobs to the job queue.
Azure Cycle Cloud [35] is the tool to manage HPC cluster on Microsoft Azure.
Microsoft provides a CLI and a web interface to manage the clusters and
many schedulers such as Slurm, LSF, HTCondor, SGE, PBS Pro, Symphony
or Microsoft’s own HPC Pack are supported. The maximum number of
nodes, the instance type of the nodes and the scheduler can be configured.
Microsoft offers a second service called Azure Batch [34] to run HPC appli-
cations. The user can run its job without creating a cluster or choosing a
scheduler. Azure Batch creates and manages a pool of nodes, installs the
necessary software and schedules the jobs for the user, who controls it via
scripts, the Azure portal or the Batch Application Programming Interface
(API).
Google has guidelines on how to optimise an instance to make it HPC ready,
but they also offer a pre-configured CentOS 7 based HPC VM instance. This

17

3.3. Cluster Management

instance can either be launched from the console (web interface) or with the
gcloud CLI. They do not offer a service as the other two to create a cluster.
Instead, they provide a Terraform [23] script that can be adapted to create a
cluster. Amazon and Google additionally provide the possibility to use the
service Cloudy Cluster [26] to create a cluster.

18

Chapter 4

Evaluation

In this chapter, we will describe the setup that we used on all platforms,
as well as the different metrics we evaluated and with which methods. The
data that was generated during this evaluation and the scripts used therefore
can be found in the git repository [37].

4.1 Setup

First, we will look at the different setups we used and how we set up the
clusters on the different providers. We tried to use similar configurations on
all platforms to get comparable results. As the cloud computing providers
do not specify everything and do not offer all the same configurations, it
is however impossible to get the same one. As we evaluate the network
performance, the configurations must have the same network speed, such
that they can be compared and to detect strengths and weaknesses. Because
Google only provides instances with a maximum bandwidth of 100 Gbps,
we also chose instances with this bandwidth on the other two providers.
Moreover, because we run network-intensive benchmarks that do not per-
form any computation, small differences in the CPU will be neglectable in
the results. In Table 4.1 we have an overview of the used platforms and their
configuration.

19

4.1. Setup

AWS
c5n.18xlarge

MS
AzureStandard

HC44rs

GCP
N2-standard-80

Slingshot
interconnect
based cluster

Cores per Node 36 44 40 128
vCPU’s /
Threads

36 44 40 256

Frequency 3 GHz 2.7 GHz 2.8 GHz 2.25 GHz
Processor 2 × Intel Xeon

Platinum 8124M
2 × Intel

Platinum 8168
2 × Intel Xeon
Gold 6268CL

2 × AMD EPYC
7742

Memory 192 GB 352 GB 320 GB 512 GB
NIC Nitro Card, EFA Mellanox

Connect-X5,
smartNIC

gVNIC Mellanox
Connect-X5

Bandwidth 100 Gbps 100 Gbps 100 Gbps 100 Gbps

Table 4.1: Details of the used machines: Provider and VM type, number of threads (called vCPU in the cloud), processor
base clock frequency, Processor Model, memory, Network Interface, advertised bandwidth (Gigabits/s)

4.1.1 Amazon Elastic Compute Cloud

On AWS we used the CLI AWS ParallelCluster to create the cluster and spec-
ify the parameters. As the goal of the thesis is to evaluate the network
speed and compare it to real-world HPC clusters, we chose an EFA- and
ENA-enabled instance that is advertised for HPC workloads: c5n.18xlarge,
the details for this specific virtual machine type can be found in Table 4.1.
The p4d.24xlarge instances that provide 400 Gbps were not evaluated as our
quota did not allow us to create two of these instances and Google only
supports a maximum of 100 Gbps internode communication bandwidth.
We used the Slurm workload manager to run MPI jobs. To ensure that the
instances are physically close together we put the instances into the same
placement group. The operating system on the master and compute nodes
is CentOS 7 because Google only provides a preconfigured CentOS 7 HPC
image. As AWS did not suggest a specific MPI library, we chose Intel MPI
as we used that on GCP and HPC-X [11] was not available. As the option to
run dedicated instances does not exist on GCP, we did not use it on AWS nei-
ther. Nonetheless, we assume that the instances were run in single tenancy
and did not share their hardware, because of the instance parameters 1.

4.1.2 Microsoft Azure

On Microsoft, we use the browser-based Graphical User Interface version
of their tool Azure CycleCloud. We host this tool on a general-purpose VM.
Clusters that are managed with Azure CycleCloud automatically have their
compute nodes put into proximity placement groups to ensure physical
closeness. For the compute nodes we again used VM’s that are adver-
tised for HPC workloads and support 100 Gbps networking with Acceler-
ated Networking: Standard HC44rs. We chose to not evaluate the newer HPC

1The used instances take up all physical cores that the two available processors provide.

20

4.1. Setup

instances equipped with the Mellanox Connect-X6 that would provide 200
Gbps internode communication bandwidth because Google does not sup-
port bandwidths over 100 Gbps. On Azure, the VM’s that are advertised
for HPC workloads run in single- tenancy by default. We again used the
Slurm workload manager to run MPI jobs and CentOS 7 on the master and
compute node. We used HPC-X as Microsoft suggested to use it if the task
doesn’t specify one and one has the freedom to chose a library.

4.1.3 Google Compute Engine

The cluster on Google consisted of two compute nodes without a workload
manager nor a master node. To ensure that the two instances are physically
close together we used a compact placement policy. The first tests were
run on c2-standard-60 instances, as they are advertised for compute-intensive
workloads. However, after a few days, Google removed the Tier 1 network-
ing support for the compute-optimized instance family and the tests shown
in this thesis were then executed on n2-standard-80 instances. We used Cen-
tOS 7 as the operating system on the compute nodes, as this is the only op-
erating system that comes preconfigured with Google’s HPC optimizations.
We used Intel MPI as suggested by Google’s guidelines for HPC. Google’s
tutorial [31] on how to set up a VM for HPC suggest to use Intel MPI 2018
which can be installed by providing a flag (–metadata=google install mpi=”–
intel mpi”) on creation of the VM. this version only comes with mpirun and
has no compiler, like mpicc, included. Thus we used a slightly newer version
of Intel MPI [19] to compile the respective benchmarks.
Alternatively one could build a traditional cluster with a workload manager
and a master node using Terraform as described by Google in their tuto-
rial. But it is not documented how to turn on the Tier 1 networking for the
compute nodes using Terraform.

4.1.4 Slingshot Interconnect Based Cluster

The physical cluster we used as a baseline to compare our virtual clusters
which is one of the Swiss National Super Computing Centre [3]. It is based
on the Slingshot interconnection network [38] and uses Mellanox ConnectX-
5 (100 Gbps) NIC’s.

4.1.5 Benchmarks

We used various benchmarks during our evaluation to test different charac-
teristics of the systems. To assess the TCP throughput under different cir-
cumstances we used the latest version of iperf3 [5]. We used iperf3 instead
of iperf2 as it is the more advanced tool. To assess MPI latency and through-
put we used the OSU benchmark suite [10]. The perftest micro-benchmark
collection [13] was used to evaluate the IB performance. Because Google

21

4.2. Point-to-Point latency

doesn’t use InfiniBand, the perftest benchmarks can not be executed on the
GCP cluster. On AWS they exist in a limited form for the SRD protocol,
ib write bw and ib write lat are not supported and the maximum message
size is 8 KiB. We also assessed the OS noise by using the OS noise test of
Netgauge [24]. To analyse the behaviour of the Hoverboard Programming
Model with the dedicated Hoverboard Gateways on Google, we wrote our
own benchmark that is described in Section 4.4.1.
For most of the tests, we created band plots to have some sense of the vari-
ability. We did that by running the same test ten times and then plot the
mean with a band around it that consists of the minimum and maximum
over the ten iterations. If there is a difference in how we collected the data
and plotted it, it will be described in the corresponding section.

4.2 Point-to-Point latency

First, we will compare the latency on the different systems. The OSU bench-
marks were used to evaluate the latency for MPI applications. We used
the standard osu latency benchmark and additionally the osu multi lat bench-
mark which runs multiple parallel streams. We did that as one needs multi-
ple streams to saturate the full bandwidth on 100 Gbps instances on GCE as
stated by Google [28] and we consequently wanted to see how the latency
behaves with multiple streams. To measure IB latency we used the ib send lat
and ib write lat on the providers for which they were available. We will look
at the benchmarks seperatly and start off with MPI latency.

4.2.1 Single Stream MPI Latency

(a) All message sizes (b) Zoomed in on the dashed rectangle in Figure 4.1a

Figure 4.1: MPI point-to-point latency using two nodes with one process per node.

We observe a similar MPI latency for AWS and GCE in Figure 4.1a. Azure is
the only virtual cluster that has similar if not the same performance as the

22

4.2. Point-to-Point latency

Slingshot interconnect based cluster. In the zoomed-in plot 4.1b we see that
the cluster on Azure has identical latency to the physical cluster while the
cluster on AWS has a slightly higher latency than the cluster on GCE.

4.2.2 Multi Stream MPI Latency

(a) All message sizes (b) Zoomed in on the dashed rectangle in Figure 4.2a

Figure 4.2: MPI point-to-point latency using two nodes with 16 processes each and 16 parallel streams.

Note that we have a different ordinate scale in Figure 4.2a than in figure
4.1a to be able to better understand the differences. We ran the OSU multi-
stream benchmark with 16 streams as that is the number of streams that
Google suggests to measure the performance of their 100 Gbps instances
when using iperf. Figure 4.2b shows that for smaller message sizes, the MPI
latency is the same for a single and multiple streams. But for larger mes-
sages (128 KiB upwards) the MPI latency is higher with multiple streams
as can be seen in Figure 4.2a. This behaviour is probably due to buffering
on the host machines as more data is injected into the network. This effect
lets the latency rise further and further for every new packet that arrives if
they keep getting larger. But we can again see that the Azure and the Sling-
shot interconnect based clusters have identical performance, while GCE and
AWS are again similar and have a noticeably higher latency than the other
two. For the largest few message sizes AWS has by far the highest latency
for the single and multi-stream case.

4.2.3 Single Stream IB Latency

The IB latency is marginally better for the Slingshot based cluster and Azure
while it is higher for the AWS cluster as can be seen in Appendix B.12. Addi-
tionally, these plots show that the performance for ib send lat and ib write lat

2These additional plots can be found in the appendix to not disturb the flow of reading
with too many graphs.

23

4.3. Point-to-Point throughput

(a) All message sizes (b) Zoomed in on the dashed rectangle in Figure 4.3a

Figure 4.3: IB point-to-point latency using two nodes using ib send

(a) All message sizes (b) Zoomed in on the dashed rectangle in Figure 4.4a

Figure 4.4: IB point-to-point latency using two nodes using ib write

is the same. Figure 4.3 shows that AWS again has a higher latency than both
Azure and the Slingshot based physical cluster. But again we see that Azure
is very close in terms of performance to a real cluster for both ib send lat and
ib write lat which can be seen in Figure 4.3 and Figure 4.4 respectively.

4.3 Point-to-Point throughput

In this section, we analyse the throughput of the providers. They all adver-
tise 100 Gpbs networking on the instances we chose. We want to evaluate
whether this advertised bandwidth is reached, whether it can be achieved
consistently over a longer period of time and if it is unidirectional or bidi-
rectional.

4.3.1 Single Stream Unidirectional Throughput

In this section, we will specifically look at the single-stream unidirectional
throughput that the providers can achieve. We want to see the performance

24

4.3. Point-to-Point throughput

they achieve for MPI with the osu bw benchmark. Additionally we used the
ib send bw and ib write bw to evaluate the performance that the hardware is
capable of. With the iperf3 test, we tested how well TCP flows are handled
by the different systems.

4.3.1.1 MPI Throughput

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.5a

Figure 4.5: MPI point-to-point throughput using two nodes with one process per node

We will start with the osu bw benchmark, to measure the MPI performance,
which uses the non-blocking MPI Isend and MPI Irecv to send messages in
batches of 64. In Figure 4.5a we observe that GCE has the worst performance
out of the four platforms for single-stream unidirectional communication.
We assume that this is due to a software stack that is not optimized as the
hardware should be capable of delivering 100 Gbps throughput. As men-
tioned before, Google advises using multiple streams to test the throughput
for instances with a fast network connection, which strengthens this assump-
tion. AWS has a similar behaviour as GCE considering that it does not reach
its full potential with just one stream which also leads us to believe that the
software stack is not fully optimized yet. Azure reaches around 90 Gbps
and is very closely matched to the physical Slingshot interconnect based
cluster, but with a lot more variance. It is interesting to note that the virtu-
alised cloud clusters have a higher throughput than the physical cluster for
smaller message sizes which can be observed in Figure 4.5b, but for larger
message sizes the physical cluster fares far better. This might be caused by
differences in the software stack or in the network technology that is opti-
mized to perform better smaller message sizes.

4.3.1.2 IB Throughput

Next we will look at the IB performance. Unfortunately IB is not supported
on GCE and only available for message sizes up to 8 KiB on AWS as men-

25

4.3. Point-to-Point throughput

tioned before. With the following two test we want to analyse how the
performance of the network interface is without all the parameters and the
variability that the different versions and implementations of MPI bring into
play.

First, we will have a look at the performance under the ib send bw mi-

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.6a

Figure 4.6: IB point-to-point throughput using two nodes using ib send

crobenchmark. In Figure 4.6a we see the common theme that Azure per-
forms similarly to the non-virtualised cluster and that the cluster on AWS
lags behind a bit. We can also see that the Slingshot based cluster has more
variance for medium sized messages compared to the cluster on Azure, but
it then reaches a higher peak throughput and has next to no variance for
the large messages. The Azure cluster reaches a similar peak throughput as
for the MPI single-stream test while the Slingshot based cluster reached a
higher peak throughput with the former3. In Figure 4.6b we can again see
that the real cluster has more variance in the throughput than the virtualised
ones.
Next, we will look at the ib write bw microbenchmark in Figure 4.7. Unsur-

prisingly, Azure and the Slingshot based cluster are again closely matched
and Azure has the lower peak throughput as before. We see, especially in
Figure 4.7b, that Azure now has a lot more variance than the real cluster.
As this test uses RDMA it does not use the receiving side CPU as it directly
writes into the receiving machine’s memory and there is no need for a re-
ceiving function to be called. It thus makes sense that we have less variance
for the real cluster. For Azure, we probably have more variance through the
virtualisation as we most likely cannot write directly to the receiving side
memory as it is also hidden behind some level of virtualisation.

3This can be seen very clearly in the plots in appendix B.2.1 where the different bench-
marks are compared per provider

26

4.3. Point-to-Point throughput

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.7a

Figure 4.7: IB point-to-point throughput using two nodes using ib write

4.3.1.3 TCP Throughput

Figure 4.8: TCP point-to-point throughput using two nodes and 1 MiB messages. The box is defined by the first and
third quartile while the orange line represents the median. The whiskers extend to Q1− 1.5 · IQR and Q3 + 1.5 · IQR
(IQR=Q1-Q3).

Last we will look at the TCP performance of the different platforms with the
help of the iperf3 tool. To that end, we executed 25 runs of the benchmark.
We can see that with a single stream none of the four systems can reach 100
Gbps. This makes sense as the transfer rate is dependent on the window
size of the communicating parties and the RTT4. AWS has a very consistent
throughput but has a relatively low transmission rate. We used the default
values for the window size because manually tuning iperf3 for the different
systems is outside the scope of this thesis. Thus the lower TCP throughput
could be due to the parameters of iperf3. We can be pretty certain that the
RTT should not be the problem here as we saw in section 4.2 that the latency

4Maximum transmission rate = TCP windows size/RTT in seconds, this is because we
can send at most ”TCP window size” many bytes without being acknowledged and it takes
RTT/2 seconds for the packets to arrive and RTT/2 seconds for the acknowledgement packet
to arrive back at the sender which results in RTT in total [30].

27

4.3. Point-to-Point throughput

of AWS is the highest but similar to the one of GCE which has a similar
performance in the TCP benchmark than AWS. Azure and GCE perform
similarly, but GCE has more outliers. This shows that the VM’s of Google
should be capable of a throughput of 40 Gbps, but they can not hold it for a
longer period of time with a single stream as most samples are concentrated
at around 20 Gbps. The Slingshot interconnect based cluster reaches the
highest median throughput, but has quite a high variance compared to the
three virtualised clusters.

4.3.2 Multi Stream Unidirectional Throughput

As Google suggest using multiple streams in parallel to evaluate the per-
formance on their instances, we followed their advice to see if it makes a
difference and how they then compare to the other providers. We used 16
streams in parallel for all benchmarks because Google used this amount of
parallel streams in their example of the iperf benchmark.

4.3.2.1 MPI Multi-Stream Throughput

We will again start with the corresponding benchmark from the OSU bench-
mark suite. They provide the osu mbw mr micro benchmark that runs mul-
tiple streams in parallel. With this benchmark one can specify how many
streams to run with a flag when initiating the command. We note that in

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.9a

Figure 4.9: MPI point-to-point throughput using two nodes with 16 process per node and 16 parallel streams

Figure 4.9a AWS, Azure and the Slingshot based cluster peak at roughly
100 Gbps. While it is roughly the same for the Slingshot based cluster, it
is a 10% increase for Azure and a 20% increase for AWS. Furthermore, we
notice that Azure is again very closely matched with the physical cluster
while AWS needs larger package sizes to reach its full potential. In Fig-
ure 4.9b we see that Azure again has the lower variance than the Slingshot
interconnect based cluster and that AWS also has a noticeable variance for

28

4.3. Point-to-Point throughput

the smaller message sizes. GCE reaches an unreasonable throughput in this
benchmark. While the mean seems reasonable at around 100 Gbps, we have
peaks at over 200 Gbps. We do not know what causes this behaviour. One
reason could be that they employ multiple NIC’s which each provide less
than 100 Gbps, but it is not documented how many NIC’s are attached per
virtual machine. This could also explain why a single stream of data cannot
fully saturate 100 Gbps.

4.3.2.2 IB Multi Stream Throughput

We will now look at the data we gathered with the perftest benchmarks.
For these two tests there also exists a flag to specify how many queue-pairs
should be used in parallel. First we will analyse the data from the ib send bw
micro benchmark with 16 queue-pairs. In Figure 4.10a we see that Azure

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.10a

Figure 4.10: IB point-to-point throughput using two nodes with 16 queue pairs using ib send

and the Slingshot interconnect based cluster again reach a peak throughput
of around 100 Gbps as advertised. Azure has a bit more variance for low
to medium-sized packets. As this benchmark only supports a packet size of
up to 8 KiB for AWS, we can only speculate that it would also reach a peak
throughput of 100 Gbps. As it almost reaches it, has a similar curve to the
other two albeit it begin shifted to the right and it having reached the same
peak throughput as the other two in the MPI bandwidth test with multiple
concurrent streams. In Figure 4.10b we can see that the non-virtualised clus-
ter has the lowest variance also for small messages sizes in contrast to the
other tests for only a single stream.

This second test from the perftest benchmark suite shows that the virtualised
Azure cluster has a similar performance to the physical cluster. As we do not
have the outliers in the band around the mean of the Azure cluster in Figure
4.11a we can assume that they were due to network noise in Figure 4.10a

29

4.3. Point-to-Point throughput

(a) All message sizes
(b) Zoomed in on the dashed rectangle in Figure 4.11a

Figure 4.11: IB point-to-point throughput using two nodes with 16 queue pairs using ib write

and that it is not a characteristic of the network stack that Azure uses. The
zoomed-in Figure 4.11b shows that also for small message sizes the systems
have a similar performance. In general, we can say that for the perftest
benchmarks there is no noticeable difference in terms of throughput. This
can be seen very clearly in the plots in B.2.4.

4.3.2.3 TCP Multi Stream Throughput

Last we will look again at the iperf tool to measure network throughput.
As iperf3 is a single-threaded application we need to manually start mul-
tiple streams. To ensure that all 16 streams are running in our interval of
measurement, we ran each stream for 30 seconds and only looked at the 10-
second interval in the middle (10s to 20s) to take our measurements. With
this method, we can avoid a situation where not all streams a running par-
allel and falsify our results by artificially increasing the measured value of
the throughput. We ran 25 iterations of this benchmark to get multiple data
points.

Azure and GCE almost reach 100 Gbps with very little variance. AWS shows
a little more variance, but also has a noticeably higher throughput for TPC
with multiple concurrent streams than with just a single stream as can be
seen in Figure 4.12. In this benchmark, the Slingshot based cluster stands out
in comparison to the virtualised clusters as it is the only one that does not
show a larger improvement with multiple streams in parallel over a single
stream. It might be that the former is not optimised for as many streams
and thus does not show a significant improvement with that many streams.
In general, we can conclude that the virtualised cluster on Azure is closest
to the physical cluster while AWS and GCE are closely matched. In the
case of the MPI benchmarks, we can reach more stability and slightly higher
throughput rates with multiple concurrent streams, except for GCE.

30

4.3. Point-to-Point throughput

Figure 4.12: TCP point-to-point throughput with 16 parallel streams using two nodes and 1 MiB messages. The
box is defined by the first and third quartile while the orange line represents the median. The whiskers extend to
Q1− 1.5 · IQR and Q3 + 1.5 · IQR (IQR=Q1-Q3).

4.3.3 Bidirectional Throughput

Usually, the advertised bandwidth is per direction. The following tests aim
to see whether the virtual clusters can reach a bidirectional throughput of
around 200 Gbps. We used the osu bibw microbenchmark and ib send bw,
ib write bw and iperf3 with the flag for bidirectional transfer.

4.3.3.1 Bidirectional MPI Throughput

Figure 4.13: Bidirectional MPI point-to-point throughput using two nodes with one process per node

We will again start with the MPI benchmark. GCE performs similar to the
unidirectional case and AWS is a bit slower. This is another hint that those
two providers do not have their software stacks fully optimised or that their
hardware cannot sustain 100 Gbps bidirectionally. Figure 4.13 shows that
Azure reaches close to 180 Gbps before the throughput rate drops again,
probably due to increased buffering times. The physical cluster is the only

31

4.3. Point-to-Point throughput

one that reaches the full 200 Gbps and seems to be able to provide this
throughput consistently.

4.3.3.2 Bidirectional IB Throughput

Figure 4.14: Bidirecitonal IB point-to-point throughput using two nodes using ib send with the –bidirectional flag

In Figure 4.14 we see that with the elimination of the variabilities that
the MPI implementation brings in, Azure is also able to provide its peak
throughput rate for bidirectional traffic consistently. Unfortunately, we can-
not say much about AWS as the curve is just too short to see something
interesting. AWS again has the smallest variance out of the three as seen in
previous tests and the Slingshot interconnect based cluster has the largest
one for medium-sized messages. Similar to the single-stream unidirectional

Figure 4.15: Bidirecitonal IB point-to-point throughput using two nodes using ib write with the –bidirectional flag

case we can see in Figure 4.15 that the physical cluster again has almost no
variability which is most likely due to writing directly to the memory of the
second machine and circumventing the CPU in doing so. The virtual cluster
shows a bit more variance which is probably due to some virtualization of

32

4.3. Point-to-Point throughput

the main memory and thus the CPU cannot be completely bypassed. But
again these two platforms have similar performance.

4.3.3.3 Bidirectional TCP Throughput

(a) Single stream (b) 16 parallel streams

Figure 4.16: Bidirectional TCP point-to-point throughput using two nodes and 1 MiB messages. The box is defined by
the first and third quartile while the orange line represents the median. The whiskers extend to Q1− 1.5 · IQR and
Q3 + 1.5 · IQR (IQR=Q1-Q3).

We used the –bidir flag for iperf3 to evaluate the TCP performance and per-
formed 25 iterations. In Figure 4.16a we can see that the single-stream per-
formance is no higher than for the unidirectional test with only one stream.
But in Figure 4.16b we can see some interesting things. First, we note the odd
behaviour of the physical cluster. Its throughput is no higher than it was for
the multiple stream unidirectional test. To eliminate the chance of it being
an exception due to network congestion we reran the test a second time on
another day and got the same overall picture. This could again be to due to
the fact that the network stack is not optimized for this many streams. AWS
and Azure have similar performance with Azure having a bit less variance.
The cluster on GCE has a lower throughput, but also considerably higher
than for the unidirectional test. This strengthens our assumption that GCE
and AWS do not have fully optimized software stacks as their hardware is
capable of providing high transmission rates or using multiple NIC’s in the
case of GCE.

4.3.4 Throughput Stress Test

In this last test we want to evaluate how the clusters handle a sustained load
over for 15 minutes. To this end we only used the osu bw and ib send bw
benchmarks as it did not make sense to us to run the ib write bw benchmark
as it showed such similar performance to the aforementioned ib send bw
benchmark. In Figure 4.17a we see that Google has the lowest performance
out of the four clusters under scrutiny and it also has the most outliers. The
other two virtualised clusters seem to hold their throughput consistently

33

4.4. Hoverboard Analysis

(a) MPI (b) IB,for AWS only 8 KiB packets

Figure 4.17: Stress Test for roughly 15 minutes with 1 MiB packets. The box is defined by the first and third quartile
while the orange line represents the median. The whiskers extend to Q1− 1.5 · IQR and Q3 + 1.5 · IQR (IQR=Q1-Q3).

over the 15 minutes with only a few outliers. The physical cluster has by far
the most consistent throughput over the 15 minutes. In the ib send bw the
Slingshot interconnect based cluster again has the highest and most consis-
tent throughput albeit begin a bit lower. The clusters on AWS and Azure
show more variance and outliers as can be seen in Figure 4.17b.

4.4 Hoverboard Analysis

As we show in Section 3.1.1 Google relies on the Hoverboard Programming
Model with the Hoverboard- and the direct path to bypass it. If a lot of
data is sent between two virtual machines a direct route between these two
VM’s is established, such that the traffic does not have to go through the
dedicated Hoverboard Gateway. The goal of that is to get a more stable
connection for applications that depend on a stable low latency and high
throughput connection.

4.4.1 Testing Method / Benchmark

To see how Googles Hoverboard Programming Model behaves and performs
we needed to create our own test as this is not a standard behaviour and not
something that is normally tested. In this section, we will explain how our
test works.
To control the usage (how extensively a connection is used) in the test we use
busy waiting5 to ”sleep” for certain amounts of time to control the amount
of data that is sent and to simulate bursty and continuous flows. We use
different levels of burstiness (different sleep times: 1s, 1ms, 1µs, 1ns, 0s) as
we do not know what the threshold would be. To be able to plot the results
and not only have single data points, we took 30 measurements per sleep

5Busy waiting is a technique of active sleeping. Instead of calling a function to sleep like
usleep which entails a context switch, the process is kept in a loop until the amount of time
to sleep for has passed.

34

4.4. Hoverboard Analysis

Algorithm 1 Hoverboard Test(X, repetitions)

sleeptimes← [1s, 1ms, 1µs, 1ns, 0s, 1ns, 1µs, 1ms, 1s]
for s ∈ sleeptimes do

for i← 1 to 30 do
tstart ← current time
for j← 1 to repetitions do

if rank is 0 then
send X bytes
receive X bytes

else
receive X bytes
send X bytes

end if
end for
tstop ← current time
latency← (tstop − tstart)/repetitions
sleep(s)

end for
end for

time and decreased the sleep time progressively. We were also interested to
see whether this direct connection between the two VM’s would be installed
permanently after it gets triggered. Thus after we arrived at the lowest sleep
time (0s) we progressively increased the sleep time again such that we can
see if the latency increases again or if it stays at the same lower level as if we
would send data in a continuous stream. To simulate bursts of small contin-
uous flows we added the option to have a different number of iterations (we
call it repetition) between sleeping. We used the blocking MPI Send() and
MPI Recv() methods of MPI to send and receive data. Algorithm 1 gives
a high-level overview of the test and the full source code can be found in
Appendix A.

4.4.2 Results

In this section we will use the aforementioned benchmark that is described
in Section 4.4.1 to evaluate the behaviour and performance. In Figure 4.18a
we executed 100 iterations over which we averaged between the sleeping
and in Figure 4.18b we executed only a single iteration between sleeping.
Additionally we ran the test 10 times and plotted the mean with a band
around it that is given by the minimum and maximum. Per sleep time
interval 30 iterations of the above procedure are executed.
To be sure that any detected behaviour has nothing to do with virtualisation,
we also ran the test on the other two cloud solution provider as well as on the

35

4.5. Operating System Noise

(a) 100 repetitions (b) 1 repetitions

Figure 4.18: Hoverboard Test with sequentially sent 1MiB packets

non-virtualised cluster. We can see that for AWS, Azure and the Slingshot
interconnect based cluster the results of the two tests look similar, despite
what we assume is some network noise and more distinct in Figure 4.18b as
it is only a single run and not averaged over 100 runs. The interesting case
is the latency plot for GCE. In 4.18a, where we send 100 1 MiB packets after
each other without sleeping, we see that the latency is the same throughout
the whole execution around 0.8 ms. But in 4.18b where we only send one
packet between sleeping, we can see that the latency changes throughout
the execution with different sleep times. First, we have a latency of roughly
1.8 ms and after that, we only have a latency of 0.8 ms, the same as in
the case where we have a continuous flow of data. Additionally, there is
more variance in the data if we sleep for a whole second. As we have not
reverse-engineered their architecture and software we can only assume that
this change in latency is due to the change in path that the packets take. In
other words, we think that the flow exceeds the necessary usage threshold to
trigger the ”installation” of a direct path between the two VM’s as described
by Google [20]. And thus the delay and variance that stems from processing
the packets in the dedicated Hoverboard Gateway to determine its path are
gone. Instead, the two VM’s now each have an entry in their routing table of
the other VM. It is interesting to note that as soon as the rate of traffic gets
lower, the latency increases again. This means that those paths are indeed
dynamic as they say in their paper [20] about their Andromeda architecture.
We can conclude that on GCE, applications that have bursty traffic, will have
a higher latency than applications that have a continuous flow of data. It is
worth taking note that again the Azure cluster performs the most similar to
a physical cluster with almost identical latency.

4.5 Operating System Noise

In this section, we analyse the operating system noise on the different sys-
tems as this also has an impact on the rate at which network traffic can be

36

4.5. Operating System Noise

Platform OS tmin Overhead Interval
AWS c5n.18xlarge CentoOS 7 7.50 ns 1.95% 11.55 s

MS AzureStandard HC44rs CentoOS 7 7.42 ns 0.37% 44.14 s
GCP N2-standard-80 CentoOS 7 6.43 ns 0.73% 18.66 s

Slingshot interconnect based
cluster

SUSE Linux Enterprise Server
15 SP1

9.80 ns 0.07% 198.26 s

Table 4.2: System / Node and its operating system, tmin represents the minimum loop time (measurement accuracy),
serial noise overhead and the interval is the time it took to reach the 105 detours (iterations that took longer than the
threshold)

sent. If the data/packets cannot be processed fast enough, we cannot receive
all data and thus it needs to be resent or we cannot send everything in the
first place. We used the Netgauge benchmark suite for this test, more specifi-
cally its noise test. This test computes a fixed amount of work and measures
how long it took to perform this computation. If this time is above a cer-
tain threshold, this specific execution is considered a selfish detour and is
stored. Only measurements that are higher than the threshold are stored to
manage the huge number of measurements. The threshold is set relative to
tmin which is the optimal, noiseless execution time on the specific system.
This means that the benchmark can be run on a wide variety of systems
without the need to manually adjust tmin. The threshold is chosen as 9 · tmin
to filter out cache misses that happen due to storing the selfish detours. tmin
is evaluated in a separate step, outside the benchmark loop to improve the
sampling frequency. The benchmark is run until 105 detours are registered.
For more detailed information and explanations on the design, choices see
[25]. In Table 4.2 the different tmin’s along the operating system that was
used while running this benchmark are listed. Moreover, the interval shows
the time it took for the benchmark to reach the stopping condition of 105

detours. The Overhead shows the ratio of the execution of the benchmark
loop that took longer than the threshold and the total number of times it
was run:

Overhead =
Selfish Detours

Total #executions
. (4.1)

This determines how much noise the systems encountered. The significantly
higher tmin of the Slingshot cluster is most likely due to the lower frequency
of the AMD EPYC CPU that it runs and has nothing to do with noise on
the system. Figure 4.19 shows the scatter plots of the recorded detours on
the four systems we evaluated. The AWS cluster hast the most noise out of
the four systems as can be seen in Table 4.2. Figure 4.19a shows that most
detours appear to lie around 0.1µs and between 1ns and 10ns, but there
is no periodic pattern and a lot of random noise. In Figure 4.19b we see
that the most detours lie between 1ns and 10ns, but with a lot less random
noise than for AWS. There is again no periodic detours, but more regular
noise at 0.1µs and some random detours that take 1ms. GCE has noticeably
more random noise, but again most of the detours are within between 1ns

37

4.6. Performance per Dollar

(a) AWS (b) Azure

(c) GCE (d) Slingshot

Figure 4.19: Scatter plot of 105 detours on the different systems

and 10ns. In contrast to Azure, Figure 4.19c shows that we have two more
detour lengths around 0.1µs that occur regularly. The slingshot based cluster
is the only one that shows some periodic noise, but it does not occur in a
regular pattern. Figure 4.19d additionally shows that the fourth cluster also
has the most noise between 1ns and 10ns, but also that detours at around
10µs occur more regularly.
We conclude that most of the noise for all four systems lies between 1ns and
10ns, but with different amounts of random noise. Thus we conclude that
none of the systems has low regular noise. Nonetheless, the non-virtualised
cluster has by far the least amount of noise and none of the virtualised
clusters, not even Azure, come close to it. In terms of random noise, GCE
fares not much worse than Azure and AWS performs the worst in terms
of random noise occurring on the system. But again, Azure performs the
best and has the lowest total noise out of the virtualised clusters followed
by GCE and AWS.

4.6 Performance per Dollar

As we have seen in the previous chapters the network performance between
the three providers for HPC cloud solutions differs significantly. In this
last comparison, we want to evaluate whether the price is correlated to the

38

4.6. Performance per Dollar

Hourly
Price

Region Provider Cores memory Bandwidth

c5n.18xlarge 3.888 USD US East
(Ohio)

Amazon 36 192 GiB 100 Gbps

c5n.9xlarge 1.944 USD US East
(Ohio)

Amazon 18 96 GiB 50 Gbps

c6gn.9xlarge 2.7648
USD

US East
(Ohio)

Amazon 32 128 GiB 100 Gbps

HC44rs 3.168 USD US East Microsoft 44 352 GiB 100 Gbps
n2-

standard-
80

3.88472
USD

US Central
(Iowa)

Google 40 320 GiB 100 Gbps

Table 4.3: Hourly price of different virtual machines. Additionally, important parameters that have an influence on the
price are included.

performance and whether it is justified. This analysis is partly based on our
experience encountered during our evaluation phase. On AWS there is no
additional cost for the EFA and ENA and it is included in the hourly price
of the virtual machine. This can be seen in Table 4.3, the price doubles, if the
c5n.18xlarge instances is used instead of the c5n.9xlarge but so do the number
of cores and the amount of memory. But notice that not both VM’s have
a 100 Gbps bandwidth. The same holds for Azure where the Accelerated
Networking does not increase the hourly price of the virtual machine. On
GCE instead, the billing works differently. If one chooses to use the Tier 1
networking to get higher bandwidth, the hourly price of the VM is increased
[29]. On all three providers, the hourly cost per VM is highly dependent on
the region they are run in, this difference can be more than a dollar per VM
per hour.
Our clusters existed during a period of approximately three months and our
bills show some interesting things. On Azure one pays a significant amount
for the persistent storage that is used to store the cluster. The storage needed
to store the cluster is negligible on AWS, but on the other hand, the time that
a network address translation gateway is running can make up a significant
amount of the total bill. Especially, if the cluster is only used infrequently.
On GCE the costs to run the virtual machines make up the largest part of
the bill and there are no significant additional costs.
From the cost of the virtual machines, Azure delivers to most performance.
The difference in performance compared to the other providers justifies the
additional cost that stems from the used persistent memory. Considering
the costs in Table 4.3 AWS and Google deliver similar performance for a
similar price. But Amazon offers instances with its in-house designed AWS
Graviton 2 ARM-based [2] processors at a cheaper price in all regions. We
did not use them despite their support for 100 Gbps networking because a
similar CPU platform was important to us. Additionally, the costs can be
reduced if not 100 Gbps networking is needed because cheaper instances can
be used which holds for all providers. Moreover, Google offers customers

39

4.6. Performance per Dollar

the possibility to design their own virtual machines with the amount of
memory and processing cores that are needed. Only the used resources are
billed which can lead up to a 40% decrease in cost depending on the used
instance family.

40

Chapter 5

Conclusion and Outlook

In our evaluation of the different cloud providers, we saw that Microsoft
uses mostly components that are also used to build traditional physical high
performance computing clusters. Amazon and Google each built a custom
solution for their cloud services which is also used for high performance in-
stances. Both of them try to provide a highly specialised infrastructure that
is suited for tightly coupled workloads that need a stable connection with
low latency and high throughput. All three providers have instances on of-
fer that are built for compute-intensive workloads, but the ones of Google
do not support 100 Gbps bandwidth, instead GCE offers general-purpose
instances that provide 100 Gbps networking.
These different design choices are reflected in the results we analysed in
the evaluation phase. Azure has almost identical performance to the real
cluster in all aspects that we tested. The area where it lacks the most is OS
noise, but it is still significantly better than AWS, which has the most OS
noise, and GCE. While AWS and GCE lack some performance in general,
we suspect that their software stack is not fully optimized as we need mul-
tiple concurrent streams to get the most out of the corresponding instances.
This can be seen best in the comparison between single and multi-stream
unidirectional and bidirectional communication. We were able to show a
performance difference between bursty and continuous flows on GCE in-
stances which supposedly stems from their architecture. The Hoverboard
Programming Model directs all flows over a dedicated gateway, but for
communication-intensive applications, this additional latency gets circum-
vented by ”installing” a direct path between the two instances.
As mentioned before Azure performs the closest to a non-virtualised cluster.
At a competitive price, Microsoft offers also the most similar hardware to
what is used in non-virtualised clusters. Amazon and Google also provided
reasonable performance at the same price, but both do not fully support
the IB modes of transport. Thus even if no IB verbs are used, Azure is the

41

preferred provider for an HPC cluster in the cloud as it is similarly priced
to the other two providers but performs significantly better.

On Azure the HPC optimized instances that we used run as dedicated in-
stances by default. Due to the aforementioned limitations of the quota we
were not able to run the instances on GCE and AWS in single-tenancy. In-
teresting future work would be to run benchmarks on instances that run in
single tenancy on all providers to see if the performance gap can be reduced
or even closed that exists between Azure and the other two providers. This
could show if the performance difference or at least some of it in comparison
to Azure and the non-virtualised cluster is due to sharing of hardware. Ad-
ditionally, clusters with instances that provide a higher network bandwidth
could be built on AWS and Azure to see how they fare. Can they provide
the same relative performance as they did with the 100 Gbps instances?
Moreover, collective operations that MPI provides such as MPI Scatter or
MPI Gather can be analysed with larger clusters which we could not build
do due to the quota limitations described in Section 3.2.3.

42

Appendix A

Hoverboard Test code

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#include <stdint.h>

#include <time.h>

#define add_time(now , expected , s, ns) \

{ \

expected.tv_sec = now.tv_sec + add_s; \

expected.tv_nsec = now.tv_nsec + add_ns; \

}

#define cmp_time_leq(time1 , time2) (time1.tv_sec < time2.tv_sec ?

1 : (time1.tv_sec == time2.tv_sec && time1.tv_nsec < time2.

tv_nsec ? 1 : 0))

int runner(long int message_size , int repetitions , FILE *datafile

);

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

int main(int argc , char *argv [])

{

if (argc != 4)

{

printf("not enough args provided [msg_size , time , #

repetitions , output file name\n");

exit (0);

}

// parse arguments

long int msg_size = atoi(argv [1]);

int repetitions = atoi(argv [2]);

char *datafile_name = argv [3];

43

FILE *datafile = fopen(datafile_name , "w");

int returncode = runner(msg_size , repetitions , datafile);

fclose(datafile);

return 0;

}

/**

* runs the Hoverboard Test (MPI send/recv loop)

*

* @param message_size [bytes]

* @param repetitions for how many times we send the message

before we sleep

* @param datafile file to write output to (opened as write file)

*/

int runner(long int message_size , int repetitions , FILE *datafile

)

{

int my_rank , num_procs;

MPI_Init(NULL , NULL);

MPI_Comm_size(MPI_COMM_WORLD , &num_procs);

MPI_Comm_rank(MPI_COMM_WORLD , &my_rank);

MPI_Status stat;

// check if we have two processes

if (num_procs != 2)

{

if (my_rank == 0)

{

printf("We need two processes\n");

}

MPI_Finalize ();

exit (0);

}

// allocate buffer

uint8_t *s_buf = (uint8_t *) malloc(message_size * sizeof (*

s_buf));

uint8_t *r_buf = (uint8_t *) malloc(message_size * sizeof (*

r_buf));

// set values in buffer to zero

for (int i = 0; i < message_size * sizeof (* s_buf); i++)

{

s_buf[i] = (uint8_t)0;

r_buf[i] = (uint8_t)0;

}

int tag_send0 = 42;

int tag_send1 = 43;

//write header

if (my_rank == 0)

{

44

fprintf(datafile , "Hoverboard test - Increasing sleep

time (%ld bytes)\n", message_size);

fprintf(datafile , "time , BW [MB/s], message size ,

iterations , sleep time\n");

fflush(datafile);

}

double start , end , measured_time , total_start , total_end , tmp

;

long add_s , add_ns;

struct timespec now , expected;

double sleep_times [9] = {1, 1e-3, 1e-6, 1e-9, 0, 1e-9, 1e-6,

1e-3, 1};

total_start = MPI_Wtime ();

// For each sleep time we execute 30 iterations of the inner

loop. In the inner loop we execute #repetition many

iterations of senc/recv

for (int l = 0; l < sizeof(sleep_times) / sizeof(sleep_times

[0]); l++)

{

double sleep_time = sleep_times[l];

double sleep_time_ns = sleep_time * 1e9;

printf("rank: %d, sleep time: %.9f\n", my_rank ,

sleep_time);

fflush(stdout);

for (int i = 0; i < 30; i++)

{

start = MPI_Wtime ();

for (int j = 0; j < repetitions; j++)

{

if (my_rank == 0)

{

MPI_Send(s_buf , message_size * sizeof (*s_buf)

, MPI_UINT8_T , 1, tag_send0 ,

MPI_COMM_WORLD);

MPI_Recv(r_buf , message_size * sizeof (*r_buf)

, MPI_UINT8_T , 1, tag_send1 ,

MPI_COMM_WORLD , &stat);

}

else

{ // rank == 1

MPI_Recv(r_buf , message_size * sizeof (*r_buf)

, MPI_UINT8_T , 0, tag_send0 ,

MPI_COMM_WORLD , &stat);

MPI_Send(s_buf , message_size * sizeof (*s_buf)

, MPI_UINT8_T , 0, tag_send1 ,

MPI_COMM_WORLD);

}

}

end = MPI_Wtime ();

// write the results to the output file

45

if (my_rank == 0)

{

measured_time = end - start;

tmp = repetitions * 2 * message_size / 1e6;

fprintf(datafile , "%f, %f, %ld , %d, %.9f\n",

measured_time , tmp / measured_time ,

message_size , repetitions , sleep_time);

fflush(datafile);

// busy waiting

if (sleep_time_ns >= 1e9)

{

add_s = sleep_time_ns / 1e9;

add_ns = (long)sleep_time_ns % (long)1e9;

}

else

{

add_s = 0;

add_ns = sleep_time_ns;

}

clock_gettime(CLOCK_REALTIME , &now);

add_time(now , expected , add_s , add_ns);

while (cmp_time_leq(now , expected))

{

clock_gettime(CLOCK_REALTIME , &now);

}

}

}

}

total_end = MPI_Wtime ();

// print the total time it took to complete the test into the

output file

if (my_rank == 0)

{

printf("\nTotal time needed to run the test: %.2f seconds

\n", total_end - total_start);

}

free(s_buf);

free(r_buf);

MPI_Finalize ();

return 0;

}

46

Appendix B

Additional Plots

In this appendix are additional plots that were omitted in the thesis. They
they show the different layers of the network stack in a single plot per
provider. This is done with the aim to see the differences between MPI,
TCP and IB performance. As note all benchmarks run for the same message
sizes in their default ”run all message sizes” the lines do not start and end
at the same message sizes for all benchmarks. Note that we often have dif-
ferent ordinate axis scaling to depict the differences between the different
network stack layers better.

B.1 Per Provider Latency Plots

In this section we have additional latency plots. We omit the multi-stream
benchmark and Google as only a single benchmark remains without the
mutli-stream MPI evaluation.

(a) AWS (b) Azure (c) Slingshot

Figure B.1: Per provider latency plots.

47

B.2. Per Provider Throughput Plots

(a) AWS (b) Azure (c) Slingshot

Figure B.2: Per provider latency plots, zoomed in on the dashed rectangle of Figure B.1

B.2 Per Provider Throughput Plots

In this section of the appendix B we have the per provider plots for the dif-
ferent throughput microbenchmarks. The boxplot represents the through-
put of the TCP benchmarks and we do not provide in zoomed in plots for
GCE as there is nothing to compare the single MPI benchmark to. The box
in the boxplots is defined by the first and third quartile while the orange
line represents the median and the whiskers extend to Q1− 1.5 · IQR and
Q3 + 1.5 · IQR (IQR = Q1−Q3).

B.2.1 Single Stream Unidirectional Throughput

In this section the per provider plots for single stream unidirectional com-
munication can be found.

48

B.2. Per Provider Throughput Plots

(a) AWS (b) Azure

(c) GCE (d) Slingshot

Figure B.3: Per provider single-stream throughput plots

(a) AWS (b) Azure (c) Slingshot

Figure B.4: Per provider single-stream throughput plots, zoomed in on the dashed rectangle of Figure B.3.

B.2.2 Multiple Stream Unidirectional Throughput

Here we have the plots to compare the throughput of MPI, TCP and IB with
16 parallel streams for the different providers. Note that we have a different
ordinate scale for GCE.

49

B.2. Per Provider Throughput Plots

(a) AWS (b) Azure

(c) GCE (d) Slingshot

Figure B.5: Per provider multi-stream throughput plots for multiple streams.

(a) AWS (b) Azure (c) Slingshot

Figure B.6: Per provider multi-stream throughput plots for multiple streams, zoomed in on the dashed rectangle of
Figure B.5

B.2.3 Bidirectional Throughput

This section of the appendix compares the bidirectional throughput per
provider. Note that we have two TCP boxplots, the upper one is the multi-
stream run while the lower is the benchmark with a single stream.

50

B.2. Per Provider Throughput Plots

(a) AWS (b) Azure

(c) GCE (d) Slingshot

Figure B.7: Per provider bidirectional throughput plots.

(a) AWS (b) Azure (c) Slingshot

Figure B.8: Per provider bidirectional throughput plots, zoomed in on the dashed rectangle of Figure B.7.

B.2.4 IB Single- vs Multi-Stream Throughput

In this section we have the plots to compare the single and 16 stream unidi-
rectional throughput of the different IB uverbs ib send and ib write.

51

B.2. Per Provider Throughput Plots

(a) AWS (b) Azure (c) Slingshot

Figure B.9: Per provider single- / multi-stream IB throughput plots

(a) AWS (b) Azure (c) Slingshot

Figure B.10: Per provider single- / multi-stream IB throughput plots, zoomed in on the dashed rectangle of Figure B.9.

52

Bibliography

[1] Amazone Elastic Compute Cloud. https://aws.amazon.com/de/ec2/

?ec2-whats-new.sort-by=item.additionalFields.postDateTime&

ec2-whats-new.sort-order=desc.

[2] ARM. https://www.arm.com/.

[3] Centro Svizzero di Calcolo Scientifico (CSCS). https://www.cscs.ch.

[4] Cori Supercomputer. https://www.nersc.gov/systems/cori/.

[5] iperf3 Github. https://github.com/esnet/iperf.

[6] Libfabric. https://ofiwg.github.io/libfabric/.

[7] Microsoft Azure. https://azure.microsoft.com/de-de/.

[8] MVAPICH. https://mvapich.cse.ohio-state.edu/.

[9] OpenMPI. https://www.open-mpi.org/.

[10] OSU Benchmark. https://mvapich.cse.ohio-state.edu/

benchmarks/.

[11] NVIDIA Corporation & affiliates. HPC-X. https://developer.

nvidia.com/networking/hpc-x.

[12] NVIDIA Corporation & affiliates. Nvidia Collective Communication
Library (NCCL). https://developer.nvidia.com/nccl.

[13] NVIDIA Corporation & affiliates. Perftest. https://community.

mellanox.com/s/article/perftest-package and https://github.

com/linux-rdma/perftest.

53

https://aws.amazon.com/de/ec2/?ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://aws.amazon.com/de/ec2/?ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://aws.amazon.com/de/ec2/?ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://www.arm.com/
https://www.cscs.ch
https://www.nersc.gov/systems/cori/
https://github.com/esnet/iperf
https://ofiwg.github.io/libfabric/
https://azure.microsoft.com/de-de/
https://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://developer.nvidia.com/networking/hpc-x
https://developer.nvidia.com/networking/hpc-x
https://developer.nvidia.com/nccl
https://community.mellanox.com/s/article/perftest-package
https://community.mellanox.com/s/article/perftest-package
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest

Bibliography

[14] NVIDIA Corporation & affiliates. Unreliable Datagram
Transport Mode. https://docs.mellanox.com/display/

RDMAAwareProgrammingv17/Transport+Modes.

[15] Inc. Amazon Web Services. Amazon software stack. https://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/efa.html.

[16] Inc. Amazon Web Services. AWS Parallel Cluster. https://aws.

amazon.com/hpc/parallelcluster/.

[17] Sourav Chakraborty, Shulei Xu, Hari Subramoni, and Dhabaleswar
Panda. Designing Scalable and High-Performance MPI Libraries on
Amazon Elastic Fabric Adapter. In 2019 IEEE Symposium on High-
Performance Interconnects (HOTI), pages 40–44, 2019.

[18] Intel Corporation. Intel MPI. https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/mpi-library.html.

[19] Intel Corporation. Intel oneAPI Toolkits Instal-
lation Guide for Linux* OS. https://software.

intel.com/content/www/us/en/develop/documentation/

installation-guide-for-intel-oneapi-toolkits-linux/top/

installation/install-using-package-managers/yum-dnf-zypper.

html.

[20] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshu-
man Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno,
Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Ol-
son, Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil
Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata,
Yossi Richter, Uday Naik, and Amin Vahdat. Andromeda: Perfor-
mance, Isolation, and Velocity at Scale in Cloud Network Virtualiza-
tion. In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 373–387, Renton, WA, April 2018. USENIX
Association.

[21] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek
Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek
Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa,
Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar
Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In

54

https://docs.mellanox.com/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.mellanox.com/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://aws.amazon.com/hpc/parallelcluster/
https://aws.amazon.com/hpc/parallelcluster/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html

Bibliography

15th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 51–66, Renton, WA, April 2018. USENIX Associa-
tion.

[22] Giulia Guidi, Marquita Ellis, Aydin Buluç, Katherine Yelick, and David
Culler. 10 Years Later: Cloud Computing is Closing the Performance
Gap. Companion of the ACM/SPEC International Conference on Performance
Engineering, Apr 2021.

[23] HashiCorp. Terraform. https://www.terraform.io/.

[24] Torsten Hoefler, Torsten Mehlan, Andrew Lumsdaine, and Wolfgang
Rehm. Netgauge: A Network Performance Measurement Frame-
work. In Proceedings of High Performance Computing and Communications,
HPCC’07, volume 4782, pages 659–671. Springer, Sep. 2007.

[25] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Character-
izing the Influence of System Noise on Large-Scale Applications by
Simulation. In SC ’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis, pages 1–11, 2010.

[26] Google LLC. Cloudy Cluster. http://cloudycluster.com/.

[27] Google LLC. Google Compute Engine. https://cloud.google.com/

compute.

[28] Google LLC. Multiple Streams on GCE. https://cloud.google.com/

compute/docs/networking/benchmarking-higher-bandwidth-vms#

performing_the_benchmark.

[29] Google LLC. Price of Tier 1 networking on GCE. https://cloud.

google.com/compute/all-pricing#high_bandwidth_configuration.

[30] Google LLC. TCP window size.
https://cloud.google.com/architecture/

tcp-optimization-for-network-performance-in-gcp-and-hybrid.

[31] Google LLC. Use Intel MPI 2018 and MPI collective tunings. https://
cloud.google.com/compute/docs/instances/create-hpc-vm#tune.

[32] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting, 2011-09-28 2011.

[33] Microsoft. Accelerated Networking. https://

docs.microsoft.com/en-us/azure/virtual-network/

create-vm-accelerated-networking-cli.

55

https://www.terraform.io/
http://cloudycluster.com/
https://cloud.google.com/compute
https://cloud.google.com/compute
https://cloud.google.com/compute/docs/networking/benchmarking-higher-bandwidth-vms#performing_the_benchmark
https://cloud.google.com/compute/docs/networking/benchmarking-higher-bandwidth-vms#performing_the_benchmark
https://cloud.google.com/compute/docs/networking/benchmarking-higher-bandwidth-vms#performing_the_benchmark
https://cloud.google.com/compute/all-pricing#high_bandwidth_configuration
https://cloud.google.com/compute/all-pricing#high_bandwidth_configuration
https://cloud.google.com/architecture/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/architecture/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/compute/docs/instances/create-hpc-vm#tune
https://cloud.google.com/compute/docs/instances/create-hpc-vm#tune
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli

Bibliography

[34] Microsoft. Azure Batch. https://azure.microsoft.com/en-gb/

services/batch/.

[35] Microsoft. Azure Cycle Cloud. https://azure.microsoft.com/

en-gb/features/azure-cyclecloud/.

[36] Rusty Russell IBM Corp oration (Editor). Virtio PCI Card Specification
v0.9.5 DRAFT, May 2012. https://ozlabs.org/~rusty/virtio-spec/
virtio-0.9.5.pdf.

[37] T. Rahn, D. De Sensi, K. Taranov, and T. Hoefler. The-
sis Repository. https://spclgitlab.ethz.ch/tobiasrahn/

noise-estimation-in-hpc-cloud-networks.git.

[38] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Duncan
Roweth, and Torsten Hoefler. An In-Depth Analysis of the Slingshot
Interconnect, 2020.

[39] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. A Cloud-
Optimized Transport Protocol for Elastic and Scalable HPC. IEEE Micro,
40(6):67–73, 2020.

[40] Paul Teich. Vertical Integration Is Eating The
Datacenter, Part Two. www.nextplatform.com,
2020. https://www.nextplatform.com/2020/02/03/

vertical-integration-is-eating-the-datacenter-part-two/.

[41] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,
Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup.
Is Big Data Performance Reproducible in Modern Cloud Networks? In
17th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20), pages 513–527, Santa Clara, CA, February 2020. USENIX
Association.

[42] Shulei Xu, S. Mahdieh Ghazimirsaeed, Jahanzeb Maqbool Hashmi,
Hari Subramoni, and Dhabaleswar K. Panda. MPI Meets Cloud: Case
Study with Amazon EC2 and Microsoft Azure. In 2020 IEEE/ACM
Fourth Annual Workshop on Emerging Parallel and Distributed Runtime Sys-
tems and Middleware (IPDRM), pages 41–48, 2020.

56

https://azure.microsoft.com/en-gb/services/batch/
https://azure.microsoft.com/en-gb/services/batch/
https://azure.microsoft.com/en-gb/features/azure-cyclecloud/
https://azure.microsoft.com/en-gb/features/azure-cyclecloud/
https://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
https://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
https://spclgitlab.ethz.ch/tobiasrahn/noise-estimation-in-hpc-cloud-networks.git
https://spclgitlab.ethz.ch/tobiasrahn/noise-estimation-in-hpc-cloud-networks.git
https://www.nextplatform.com/2020/02/03/vertical-integration-is-eating-the-datacenter-part-two/
https://www.nextplatform.com/2020/02/03/vertical-integration-is-eating-the-datacenter-part-two/

BSc thesis: Noise Estimation in HPC
Cloud Networks

Tobias Rahn
March 5, 2021

Advisor: Daniele De Sensi (ddesensi@ethz.ch)
Professor: Prof. Dr. T. Hoefler
Start time: 08.03.2021
End time: 08.09.2021

The final report is to be submitted electronically. All copies remain property of the Scalable
Parallel Computing Laboratory.

Introduction
In the last years, all the major cloud providers started designing and deploying solutions for
running HPC workloads in the cloud. However, a detailed evaluation of such solutions is still
missing. In particular, it is not clear if and by how much the workloads running on this ”HPC
Clouds” would be affected by network congestion (also known as network noise). Network
noise could lead to application unbalance, and this is a problem for tightly synchronized
applications such as deep neural networks training, but also for HPC applications in general.
The main idea is to analyze network performance and variability, by using both
microbenchmarks and real HPC and Cloud applications, similar to what has recently been
done for an HPC interconnection network. The impact of different software stacks (MPI,
TCP, QUIC, etc...) also needs to be analyzed. The project will be particularly focused on the
HPC solutions provided by the major cloud providers (Amazon EC2, Microsoft Azure, and
Google GCE). There are major network software stack differences between providers. For
example, Amazon bypasses the OS through libfabric, Google can offload part of the network
processing to the NIC, and Microsoft relies on the Mellanox/InfiniBand stack, and these need
to be compared, by analyzing PROs and CONs of each of them. Moreover, because part of
the protocol processing might run in the OS, we also need to estimate/correlate the impact of
OS noise on network performance, for example by using netgauge.

Project description
1. Review the main HPC solutions provided by the largest cloud providers (Amazon,

Microsoft, and Google), understand and describe their main differences in terms of
the network stack and if and what type of mechanisms they have in place to deal with
congestion and noise.

2. Define a set of microbenchmarks and real applications to assess the performance of
such clusters and their sensitivity to network noise. A starting point could be the
microbenchmarks used for the analysis of the Slingshot interconnect. This step also

includes to estimate the amount of compute hours (and the cost) needed to run the
microbenchmarks.

3. Set up a small HPC cluster on each of these platforms to run the aforementioned
microbenchmarks and applications.

4. Analyze and visualize the collected data and compare the three different providers
between them, and also against a non-virtualized HPC system. By either running the
same set of experiments or by using already available data (e.g. data from the
Slingshot paper).

Milestones / project plan
The goal is to be done in 24 weeks.
I will proceed in the order of the points given above. First I will look into the solutions of the
three HPC cloud providers to analyze them in general and especially to get a deep
understanding of their network stack. Then I will continue by defining microbenchmarks and
looking for real applications to run on these clusters to analyze their performance. After that,
I will setup a small cluster on all three services to run the aforementioned microbenchmarks
and applications. The last step is to visualize the data and compare the solutions of the three
different cloud providers Amazon, Google and Microsoft against each other and
non-virtualized HPC systems.
I reserved the most time for task two, as analyzing the system and defining the microbench-
marks, that could outline weaknesses, is the core of this project. The work done in points 2.
and 4. is / could be an iterative process of defining microbenchmarks, running and analyzing
them. It thus may happen that I have to redefine and rerun the benchmarks because
something has to be done differently, that I only realized when I analyzed the results. I want
to reserve some time at the end to finish up the final report and to tie up loose ends.

week task

1 administration and read first papers

2-3 review of HPC cloud solutions

4-5 in-depth analysis of the network stack

6-12 define microbenchmarks and estimate cost

13-14 set up small HPC cluster

15-17 run microbenchmarks and real applications

18-21 analyze and visualize data to compare the
three providers

22-24 finish final report

Project administration
The supervisor Daniele De Sensi and the student Tobias Rahn agreed to meet weekly on
Thursday at 5PM CET for 30 minutes to discuss the progress and potential questions.
The student is advised to write a weekly report at the end of each week and to send it to his
advisors. The idea of the weekly report is to briefly summarize the work, progress and any
findings made during the week, to plan the actions for the next week, and to bring up open
questions and points.
Final Report The final report has to be presented at the end of the project and a digital
copy needs to be handed in and remains property of the SPCL. This task description has to
be attached to the final report.

Deliverables
● Scripts and programs used to run the benchmarks and Applications on the clusters
● collected data of the microbenchmark and application runs
● Scripts and programs used to analyze the data
● written report (documentation of the process, discussion of results and a conclusion)

Success criteria
The goal of this project is to:

● Provide a review of the three HPC cloud providers
● Define a set of microbenchmarks to analyze the performance of HPC cloud providers
● Analyze how those HPC Clouds are affected by network congestion / noise by using

the above microbenchmarks and how they differ from traditional HPC systems
● Investigate the impact of OS noise on network performance in HPC clouds

We do this in order to better understand the impact of network congestion on the
performance of HPC Clouds.

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,

Master’s thesis and any other degree paper undertaken during the course of studies, including the

respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their

courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it

in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire

content of the written paper.

