
diss . eth no. 28066

L E A R N I N G D E E P M O D E L S W I T H
P R I M I T I V E - B A S E D R E P R E S E N TAT I O N S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

presented by

despoina paschalidou

Diploma in Electrical and Computer Engineering
Aristotle University of Thessaloniki

born on 8 June 1991

citizen of Switzerland

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Andreas Geiger, co-examiner
Prof. Dr. Vittorio Ferrari, co-examiner

Prof. Dr. Federico Tombari, co-examiner
Prof. Dr. Manolis Savva, co-examiner

2021

Despoina Paschalidou: Learning Deep Models with Primitive-Based Representa-
tions, © 2021

To my parents who always wanted me to become a Doctor.

A B S T R A C T

Humans develop a common-sense understanding of the physical behaviour
of the world, within the first year of their life. We are able to identify 3D
objects in a scene, infer their geometric and physical properties, predict
physical events in dynamic environments and act based on our interaction
with the world. Our understanding of our surroundings relies heavily on
our ability to properly reason about the arrangement of elements in a scene.
Inspired by early works in cognitive science that stipulate that the human
visual system perceives objects as a collection of semantically coherent parts
and in turn uses them to easily associate unknown objects with object parts
whose functionality is already known, researchers developed compositional
representations capable of capturing the functional composition and spatial
arrangement of objects and object parts in a scene. In the first two parts
of this dissertation, we propose learning-based solutions for recovering
the 3D object geometry using semantically consistent part arrangements.
Finally, we introduce a network architecture that synthesizes indoor envi-
ronments as object arrangements, whose functional composition and spatial
configuration follows clear patterns that are directly inferred from data.

First, we present an unsupervised learning-based approach for recover-
ing shape abstractions using superquadric surfaces as atomic elements. We
demonstrate that superquadrics lead to more expressive part decomposi-
tions while being easier to learn than cuboidal primitives. Moreover, we
provide an analytical solution to the Chamfer loss which avoids the need
for computational expensive reinforcement learning or iterative prediction.

Next, we introduce a novel 3D primitive representation that defines
primitives using an Invertible Neural Network (INN) that implements
homeomorphic mappings between a sphere and the target object. Since
this representation does not impose any constraint on the shape of the
predicted primitives, they can capture complex geometries using an order
of magnitude fewer parts than existing primitive-based representations. We
consider this representation a first step towards bridging the gap between
interpretable and high fidelity primitive-based reconstructions.

Subsequently, we introduce a structure-aware representation that jointly
recovers the geometry of a 3D object as a set of primitives as well as its
latent hierarchical structure without any part-level supervision. Our model
recovers the higher level structural decomposition of various objects in the

v

form of a binary tree of primitives, where simple parts are represented
with fewer primitives and more complex parts are modeled with more
components. We demonstrate that considering the latent hierarchical layout
of an object into parts facilitates reasoning about the 3D object geometry.

Finally, we propose a neural network architecture for synthesizing indoor
scenes by plausibly arranging objects within the scene boundaries. In par-
ticular, given a room type (e.g. bedroom, living room) and its shape, our
model generates meaningful object arrangements by sequentially placing
objects in a permutation-invariant fashion. In contrast to prior work, which
poses scene synthesis as a sequence generation problem, our model gener-
ates rooms as unordered sets of objects. This allows us to perform various
interactive scenarios such as room completion, failure case correction, object
suggestions with user-provided constraints etc.

To summarize, we propose novel primitive-based representations that
do not limit the available shape vocabulary on a specific set of shapes
such as cuboids, spheres, planes etc. Next, we introduce a structure-aware
representation that considers part relationships and represents object parts
with multiple levels of granularity, where geometrically complex parts are
modeled with more components and simpler parts with fewer components.
Finally, we propose a network architecture that generates indoor scenes by
properly arranging objects within a room’s boundaries. Our model enables
new interactive applications for semi-automated scene authoring that were
not possible before.

vi

Z U S A M M E N FA S S U N G

Bereits im ersten Jahr unseres Lebens entwickeln wir ein gutes Verständnis
für das physikalische Verhalten der Welt. Wir sind in der Lage 3D-Objekte
in einer Szene zu identifizieren, auf deren geometrischen und physikali-
schen Eigenschaften zu schliessen, physikalische Ereignisse in dynamischen
Umgebungen vorherzusagen und basierend auf unserer Interaktion mit der
Welt zu handeln. Das Verständnis unserer Umgebung hängt stark davon
ab, inwieweit wir das Arrangement von Elementen in einer Szene richtig
analysieren können. Inspiriert von früheren Arbeiten der Kognitionswissen-
schaft , die besagen, dass das menschliche visuelle System Objekte als eine
Sammlung von semantisch kohärenten Teilen erkennt und diese wiederum
nutzt, um unbekannte Objekte mit Objektteilen deren Funktionalität bereits
bekannt ist, zu assoziieren, haben Forscher Kompositionsdarstellungen
entwickelt. Diese Darstellungen können die funktionale Einrichtung und
räumliche Anordnung von Objekten und Objektteilen in einer Szene erfas-
sen. Im ersten Teil dieser Dissertation schlagen wir lernbasierte Lösungen
vor, zur Wiederherstellung der 3D-Objektgeometrie unter Verwendung
von semantisch konsistenten Teilanordnungen. Im zweiten Teil stellen wir
eine Netzwerkarchitektur vor, die Innenräume mit Objektanordnungen
synthetisiert, deren semantische/funktionale EInrichtung und räumliche
Anordnung klaren Mustern folgt, die unmittelbar aus Daten abgeleitet
werden.

Wir stellen zuerst einen Ansatz, der sich auf unüberwachtes Lernen ba-
siert, zur Wiederherstellung von Formabstraktionen unter Verwendung
von superquadratischen Oberflächen (Superquadric Surfaces) als Elemente
vor. Wir zeigen, dass Superquadrate (Superquadrics) zu ausdrucksstärke-
ren Teilzerlegungen führen und gleichzeitig einfacher zu erlernen sind, im
Vergleich zu quaderförmige Primitive. Darüber hinaus bieten wir eine analy-
tische Lösung für den Chamfer-Verlust (Chamfer Loss), die rechenintensives
Bestärkendes Lernen oder iterative Vorhersage überflüssig macht.

Zunächst, führen wir eine neuartige 3D-Primitivdarstellung ein, die die
Primitive mit Hilfe eines invertierbaren neuronalen Netzes (INN) definiert,
das homeomorphische Zuordnungen (Homeomorphic Mappings) zwischen
einer Sphäre und dem Zielobjekt implementiert. Da diese Darstellung
keine Beschränkung auf die Form der Primitiven auferlegt, können sie
komplexe Geometrien mit einer Grössenordnung weniger Teile repräsentie-

vii

ren erfassen. Wir betrachten diese Darstellung als einen ersten Schritt die
Kluft zwischen interpretierbaren und originalgetreuen primitiv-basierten
Rekonstruktionen zu überbrücken.

Darüber hinaus führen wir eine strukturbewusste Darstellung ein, die die
Geometrie eines 3D-Objekts als Primitiven und seine latente hierarchische
Struktur wiedererlangt. Unser Modell erlangt die übergeordnete struktu-
relle Dekomposition verschiedener Objekte in Form eines Binärbaums von
Primitiven, wobei einfache Teile mit weniger Primitiven und komplexere
Teile mit mehr Komponenten modelliert werden. Wir zeigen, dass die Be-
rücksichtigung des latenten hierarchischen Aufbaus eines Objekts in Teilen,
die Argumentation über die 3D-Objektgeometrie erleichtert.

Wir bieten schliesslich eine Netzwerkarchitektur zur Synthese von Innen-
raumszenen durch die plausible Anordnung von Objekten innerhalb der
Szenengrenzen an. Anhand eines Raumtypes (z.B. Schlafzimmer, Wohnzim-
mer) und seiner Form, erzeugt unser Modell sinnvolle Objektanordnungen,
indem es die Objekte nacheinander, auf eine permutationsinvariante Weise,
aufstellt. Im Gegensatz zu früheren Arbeiten, die Szenensynthese als Se-
quenzgenerierung (Sequence Generation Problem) darstellen, synthetisiert
unser Modell Räume als ungeordnete Reihe von Objekten. Dies ermöglicht
verschiedene interaktive Szenarien wie Raumvervollständigung, Fehler-
korrekturen, Objektvorschläge mit benutzerdefinierten Einschränkungen
usw.

Zusammenfassend kann man festhalten, dass wir neue primitiv-basierte
Darstellungen vorschlagen, die das verfügbare Formenvokabular nicht auf
eine Reihe spezifischer Formen beschränkt wie z.B. Quader, Sphären, Ebe-
nen usw. Darauffolgend, führen wir eine strukturbewusste Darstellung ein,
die Teilbeziehungen berücksichtigt und Objektteile mit mehreren Abstrak-
tionsebenen modelliert, wobei geometrisch komplexe Teile mit mehrere
Komponenten und einfache Teile mit wenigere Komponenten modelliert
werden. Anschliessend schlagen wir eine Netzwerkarchitektur vor, die In-
nenraumszenen erzeugt, indem sie eine sinnvolle Anordnung von Objekten
innerhalb der Raumgrenzen bildet und neuartige interaktive Anwendungen
für die halbautomatisierte Erstellung von Szenen ermöglicht.

viii

P U B L I C AT I O N S

The following publications are included as a whole or in parts in this
dissertation:

• Despoina Paschalidou, Amlan Kar, Maria Shugrina Karsten Kreis,
Andreas Geiger, Sanja Fidler. ”ATISS: Autoregressive Transformers
for Indoor Scene Synthesis”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2021

• Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, Sanja
Fidler. ”Neural Parts: Learning Expressive 3D Shape Abstractions
with Invertible Neural Networks”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2021

• Despoina Paschalidou, Luc van Gool, Andreas Geiger. ”Learning
Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2020

• Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger. ”Superquadrics
Revisited: Learning 3D Shape Parsing beyond Cuboids”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2019

Furthermore, the following publication for which I was major contributor
was part of my PhD research, but is nevertheless not covered in this thesis.
The topics of this publication are outside of the scope of the material covered
here:

• Despoina Paschalidou, Ali Osman Ulusoy, Carolin Schmitt, Luc van
Gool, Andreas Geiger. ”RayNet: Learning Volumetric 3D Reconstruc-
tions with Ray Potentials”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018

ix

A C K N O W L E D G E M E N T S

First and foremost, I would like to thank my advisor Prof Andreas Geiger
for his guidance and for always trying to teach me how to decide what are
the right questions one should ask when doing research. Moreover, I want
to express my gratitude to Andreas for taking a chance on me, in the first
place and offering me an amazing opportunity to do my PhD under his
mentorship. This thesis would have never been in its current state without
his guidance. Without his continuous support, understanding and kindness
I would not be the person that I am today and for this I am deeply indebted
to Andreas. Instead of pushing me to work on his ideas, Andreas always
gave me the freedom to work on topics that I was excited about and was
always eager to help me and support me towards achieving my goals and
for this I feel extremely lucky. Throughout my PhD, Andreas tried to teach
me how to better organize my time and my chaotic way of thinking as well
as help me find my place in research and while I still need to work on my
time management I believe that he did an amazing job. I am also grateful
to him for creating a wonderful environment at AVG that always fostered
curiosity, creativity and inclusivity. Some of my favourite memories during
my PhD are during our ski and CVPR retreats, where we had the chance
to discuss research, come up with project ideas, play cards, go skiing and
do hikes in the Schwäbische Alb. For all these reasons, I can not imagine a
better mentor than Andreas.

Furthermore, I would like to thank my second advisor Prof Luc van
Gool for hosting me for 1.5 yeas at CVL at ETH Zurich. I am very grateful
that he trusted me and allowed me to pursue the research directions that I
was excited about. I genuinely enjoyed our discussions during my stay at
ETH and I strongly believe that his support, generosity and kind treatment
makes CVL a fantastic scientific environment to do research.

I also feel grateful and blessed for the opportunity to work with Prof
Sanja Fidler during my PhD. Sanja is a great role model both as a researcher
and as a woman, an amazing mentor and it was a privilege to closely
interact with her during my one year internship at NVIDIA. I am deeply
inspired by her enthusiasm towards research, eagerness to help and her
amazing guidance and I hope that one day I will be able to collaborate with
her again. During my stay at NVIDIA, I learned a lot, in particular about
generative models, and I was able to become more confident about myself,

xi

my research interests and my ideas. This would have not been possible
without Sanja’s kindness, generosity and support. Sanja made sure that
I was integrated in her group and offered me the intellectual freedom to
work on problems that I was excited about. Working with Sanja has been
one of my dreams since I was a Master student in Greece and I could not
have been more happy about having this dream come true.

I am also indebted to David Novotny and Prof Andrea Vedaldi for giving
me the great opportunity to join FAIR London and spend 4 wonderful
months working with them, learning more about the very popular neural
radiance fields and doing cool research using real world data. Working
with David has been a very exciting experience in particular when we
were brainstorming about the next research steps. His passion for research,
patience and willingness to discuss with me at any date or time made my
time at FAIR a great experience.

During my PhD, I was also blessed to get to know Prof Michael Black.
Even though I was not able to collaborate with Michael, I was always
impressed by his passion and excitement for research, his involvement in
all the ongoing projects of his group, his support, kind personality and
humbleness. I still remember feeling in awe, every time I was attending one
of his talks during our joint group meetings. Michael’s vision for the future
of the field had a huge impact on my perception as a researcher and as a
person. I will always be grateful for his support, kindness and advice and I
really hope that in the future I will be able to collaborate with him. This
will be another dream coming true.

Special gratitude goes to Prof Federico Tombari, Prof Vittorio Ferrari and
Prof Manoli Savva for promptly agreeing to participate in my jury. Thank
you so much for taking the time to review my thesis.

The unique environment at both MPI, ETH and NVIDIA allowed me to
interact and collaborate with amazing researchers that had a huge impact on
my personal and career development. First, I would like to thank Ali Osman
Ulusoy for collaborating with me during my baby steps as a researcher.
Osman is both a great researcher and an amazing person and I feel grateful
that I was able to work and learn from him. I also feel blessed for my
collaboration with Amlan Kar, Masha Shugrina and Karsten Keris during
my time at NVIDIA. All of them made me feel that I am part of the group
and definitely contributed into making my internship at NVIDIA one of
my favourite memories during my PhD. Thank you so much!

My PhD would definitely have been a very boring experience if it wasn’t
for the AVG and PS members. Everyone at both AVG and PS contributed

xii

into making MPI a fantastic place to do research. To my first officemates
David Stutz and Yiyi Liao, thank you so much for making the first months
of my PhD less lonely. I am very lucky that I can call both of you my friends.
I would particularly like to thank people in Andreas’s and Michael’s groups
for the great memories that we shared: Joel, Benjamin, Lars, Michael, Michi,
Simon, Aseem, Eshed, Kashyap, Aditya, Songyou, Katja, Axel, Xu, Caro,
Qianli, Timo, Partha, Mohamed, Ahmed, Eric, Sergey, Soubhik, Gul. I
would like to particularly thank Joel and Caro for taking the time to help
me improve my skiing skills. Without Joel and Caro, I would probably
still be afraid of the slopes. So thank you very much for making me more
fearless.

When I think about my time at MPI, I recall the wonderful moments
that we shared in particular with Vasilis Choutas and Georgios Pavlakos.
Georgios is one of the most passionate researchers in our field that has
managed to remain humble and kind despite his great accomplishments.
His advice, feedback and support have definitely made me a better person
and I am very lucky that he is my friend. While I knew Vasilis since my
time in Thessaloniki, during our PhD we became close friends and I could
not be more proud for all the great things he has achieved. I am grateful for
his generosity, hospitality and kindness and for the fact that I know that I
can always rely on him in case of need. Vasilis with his wife Evangelia have
supported me throughout one of the most difficult periods of my PhD. If
they weren’t there, I am not sure that I would have managed to overcome
this challenge. For this and many other reasons, I am very blessed to have
you both as my friends. To the rest of the Greek mafia at Tubingen: Giannis,
Dimitris, Rea, Atalanti, Alexandros thank you so much for making my time
in Tubingen such an enjoyable experience.

Looking back at the time I spent at CVL, I am very happy I had the
chance to meet Menelos Kanakis and Evangelos (Evan) Ntavelis. Both of
you made my time at CVL a wonderful experience and I feel very lucky for
meeting you. Even though I was always overwhelmed with deadlines and
things that needed to be done, you always made sure that I was doing ok.
Thank you very much for your patience with me, the emotional support
and your positivity. You are both great friends and I am very lucky to have
you in my life. I would also like to express my gratitude to Kevis-Kokitsi
Maninis for making me feel welcome when I first joined the CVL. Whenever
I was overwhelmed with stress, Kevis was always there to make me feel
better. I would also like to particularly thank the CVL members: Christos,

xiii

Stam, Danda, Ajad, David, Martin, Dario, Thomas, Janine, Alex, Andreas,
Goutam for their hospitality and for making me feel part of the CVL family.

I also owe a big shout out to the amazing Melanie Feldhofer, Kerstin Mc-
Gaughey, Camelia Fritz, Kris Haberer, Christina Krueger, Christine Braun-
Roth for acting as a shield against any logistical and bureaucratic issues.
Your kindness and support play a key role in making both MPI and ETH a
wonderful place to do research and I am beyond grateful for all the things
you provide us every day.

Without a doubt, the PhD is a very lonely endeavour. However, I was
very lucky that I was able to share this journey with awesome people. With-
out Alexandros Lazaridis, Konstantina Goni, Nam Le, Apostolos Avranas,
Christos Zalidis, Triantafyllos Afouras, George Tsolaridis, George Pap-
padopoulos, Christos Tsirigotis, Vagia Tsiminaki, Christina Pinneri, Ada
Xatzipanagiotou, Dimitra Loupi, Rosa Pujades, Tamas Borbath my PhD
would have been pretty lonely.

This thesis is dedicated to my parents for always being by my side,
supporting me, loving me and believing that I am a much better person
than I actually am. Their boundless love and support have allowed me to
spread my wings and pursue my dreams. I hope that even though I didn’t
study Medicine and my career choices led me far away from home they are
happy and proud for the things that I have accomplished throughout this
journey. Next, I would like to thank my brothers George and Panagiotis
for always loving and supporting me. Your passion, strength, perseverance
and strive for always becoming a better person is a huge inspiration for
me and I could not be more proud of you. Most importantly thank you
for being a beacon of positive energy and courage in my life. Without you,
my life would have been much more challenging. I also owe a big thanks
to my favourite aunt Litsa who supported me and guided me when I first
moved in Germany. Thank you for always loving me, believing in me and
for being my greatest supporter.

The most special thanks goes to Angelos. There are not enough words
that could possibly describe my feelings for you. Therefore I will only say
that I feel blessed for having you in my life and I look forward to our next
adventures. Without your love and support this dissertation would not have
been possible.

xiv

C O N T E N T S

List of Figures xix
List of Tables xxii
1 introduction 1

2 learning 3d shape parsing beyond cuboids 7

2.1 Related Work . 9

2.2 Method Overview . 13

2.2.1 Reconstruction Loss . 13

2.2.2 Parsimony Loss . 16

2.2.3 Superquadric Parametrization 16

2.3 Experimental Evaluation . 17

2.3.1 Superquadrics vs. Cuboids 18

2.3.2 Results on ShapeNet dataset 20

2.3.3 Shape Abstraction from a Single RGB Image 24

2.3.4 Results on SURREAL dataset 25

2.3.5 Analytical Loss Formulation 26

2.4 Implementation Details . 27

2.4.1 Metrics Computation 28

2.4.2 Parsimony Loss Details 29

2.5 Discussion . 29

3 learning expressive 3d shape abstractions with in-
vertible networks 31

3.1 Related Work . 33

3.2 Method . 35

3.2.1 Primitives as Homeomorphic Mappings 35

3.2.2 Network Architecture 37

3.2.3 Training . 38

3.3 Experimental Evaluation . 42

3.3.1 Datasets . 42

3.3.2 Metrics . 42

3.3.3 Baselines . 43

3.3.4 Representation Power 45

3.3.5 Reconstruction Accuracy 45

3.4 Ablation Study . 48

3.4.1 Invertibility . 48

3.4.2 Effect of pθ(·) . 51

xv

xvi contents

3.4.3 Loss Functions . 52

3.4.4 Sensitivity to initialization 57

3.4.5 Semantic Consistency 58

3.5 Implementation Details . 59

3.5.1 Network Architecture 59

3.5.2 Training Protocol . 61

3.5.3 Sampling Strategy . 62

3.6 Discussion . 63

4 learning unsupervised hierarchical part decomposi-
tion of 3d objects 67

4.1 Related Work . 69

4.2 Method Overview . 71

4.2.1 Network Architecture 72

4.2.2 Primitive Parametrization 76

4.2.3 Network Losses . 76

4.3 Experimental Evaluation . 79

4.3.1 3D Reconstruction on ShapeNet 82

4.3.2 Volumetric Reconstruction 85

4.3.3 3D Reconstruction on D-FAUST 85

4.4 Implementation Details . 86

4.4.1 Network Architecture 86

4.4.2 Training . 88

4.4.3 Sampling Strategy . 89

4.4.4 Empirical Analysis of Loss Formulation 90

4.5 Discussion . 92

5 atiss : autoregressive transformers for indoor scene

synthesis 95

5.1 Related Work . 97

5.2 Method . 99

5.2.1 Autoregressive Set Generation 99

5.2.2 Network Architecture 101

5.2.3 Training and Inference 103

5.3 Experimental Evaluation . 104

5.3.1 Datasets . 104

5.3.2 Baselines . 104

5.3.3 Evaluation Metrics . 106

5.3.4 Scene Synthesis . 107

5.3.5 Applications . 108

5.3.6 Perceptual Study . 111

contents xvii

5.4 Ablation Study . 111

5.4.1 Mixture of Logistic distributions 112

5.4.2 Layout Encoder . 112

5.4.3 Transformers with Ordering 113

5.5 Implementation Details . 114

5.5.1 Network Architecture 114

5.5.2 Object Retrieval . 116

5.5.3 Training Protocol . 117

5.6 Limitations . 117

5.7 Discussion . 118

6 discussion 119

6.1 Summary of Contributions . 119

6.2 Directions for Future Research 120

a additional implementation details 123

a.1 Superquadrics Revisited: Learning 3D Shape Parsing beyond
Cuboids . 123

a.1.1 Derivation of Pointcloud-to-Primitive Loss 123

a.1.2 Empirical Analysis of Reconstruction Loss 125

a.2 Learning Unsupervised Hierarchical Part Decomposition of
3D Objects . 128

a.2.1 Occupancy Function . 128

a.3 ATISS: Autoregressive Transformers for Indoor Scene Synthesis133

a.3.1 3D-FRONT Data Preprocessing 133

a.3.2 Perceptual Study . 135

b additional experimental results 139

b.1 Superquadrics Revisited: Learning 3D Shape Parsing beyond
Cuboids . 139

b.1.1 Qualitative Results on SURREAL 139

b.2 Learning Unsupervised Hierarchical Part Decomposition of
3D Objects . 139

b.2.1 Additional Results on D-FAUST 139

b.2.2 Additional Results on ShapeNet 144

b.3 Neural Parts: Learning Expressive 3D Shape Abstractions . . 148

b.3.1 Experiment on D-FAUST 148

b.3.2 Experiment on FreiHAND 149

b.3.3 Experiment on ShapeNet 152

b.3.4 Semantically Consistent Abstractions 157

b.4 ATISS: Autoregressive Transformers for Indoor Scene Synthesis161

b.4.1 Applications . 161

xviii contents

b.4.2 Scene Synthesis . 164

L I S T O F F I G U R E S

Figure 2.1 3D Shape Parsing. 8

Figure 2.2 Superquadrics Shape Space 12

Figure 2.3 Explicit Superquadric Equation 17

Figure 2.4 Reconstruction Loss . 18

Figure 2.5 Training Evolution . 19

Figure 2.6 Qualitative Results on ShapeNet dataset 19

Figure 2.7 Attention to Details . 20

Figure 2.8 Qualitative Results on Motorbikes 21

Figure 2.9 Qualitative Results on Animals 22

Figure 2.10 Qualitative Results on Chairs 22

Figure 2.11 Evolution of Primitives 23

Figure 2.12 Single Image 3D Reconstruction on ShapeNet objects 24

Figure 2.13 Qualitative Results on SURREAL dataset 25

Figure 2.14 Analytical Loss Formulation 26

Figure 2.15 Volume-based Network Architecture 28

Figure 3.1 Expressive Primitives 32

Figure 3.2 Neural Parts: Method Overview 36

Figure 3.3 Conditional Coupling Layer 39

Figure 3.4 Trade-off Reconstruction Quality and # Primitives . . 44

Figure 3.5 Human Body Modelling 45

Figure 3.6 Single Image 3D Reconstruction on D-FAUST 46

Figure 3.7 Single Image 3D Reconstruction on FreiHAND 47

Figure 3.8 Single Image 3D Reconstruction on ShapeNet 48

Figure 3.9 Impact of the INN . 49

Figure 3.10 Predicted Primitives with AtlasNet-sphere 50

Figure 3.11 Conditional Coupling Layer 51

Figure 3.12 Training Convergence w/o pθ(·) 52

Figure 3.13 Ablation Study on Loss Terms 54

Figure 3.14 Impact of Lnorm . 55

Figure 3.15 Predicted Primitives w/o Normal Consistency Loss . 56

Figure 3.16 Predicted Primitives w/o Overlapping Loss 56

Figure 3.17 Impact of Lcover . 57

Figure 3.18 Predicted Primitives w/o Coverage Loss 57

Figure 3.19 Sensitivity to Initialization 58

Figure 3.20 Semantic Consistency 59

xix

xx list of figures

Figure 3.21 Feature Extractor . 60

Figure 3.22 Conditional Homeomorphism 61

Figure 4.1 Hierarchical Part Decomposition 68

Figure 4.2 Level of Detail. 69

Figure 4.3 Network Architecture 73

Figure 4.4 Structure Network . 74

Figure 4.5 Predicted Hierarchies on D-FAUST 80

Figure 4.6 Single Image 3D Reconstruction on ShapeNet 81

Figure 4.7 Predicted Hierarchies on ShapeNet 83

Figure 4.8 Volumetric Reconstruction 84

Figure 4.9 Single Image 3D Reconstruction on D-FAUST 86

Figure 4.10 Feature Encoder Architectures 87

Figure 4.11 Network Architecture Overview 88

Figure 4.12 Geometry Network . 89

Figure 4.13 Impact of Proximity Loss 91

Figure 5.1 ATISS: Motivation . 96

Figure 5.2 ATISS: Method Overview 99

Figure 5.3 Training Overview . 103

Figure 5.4 Qualitative Scene Synthesis Results 105

Figure 5.5 Scene Diversity . 107

Figure 5.6 Generalization Beyond Training Data 108

Figure 5.7 Scene Completion . 109

Figure 5.8 Failure Case Detection and Correction 110

Figure 5.9 Object Suggestion . 110

Figure 5.10 Structure Encoder . 115

Figure 5.11 Attribute Extractor . 116

Figure 5.12 Failure Cases . 117

Figure A.2 Empirical Analysis of Reconstruction Loss 127

Figure A.3 Implicit Surface Function of Superquadrics 128

Figure A.4 Implicit Surface Function 130

Figure A.5 Implicit Surface Function 131

Figure A.6 Implicit Surface Function 132

Figure A.7 Number of object occurrences in Bedrooms and Li-
braries . 134

Figure A.8 Number of object occurrences in Living Rooms and
Dining Rooms . 135

Figure A.9 Perceptual Study UI 136

Figure B.1 Additional Qualitative Results on SURREAL dataset 140

Figure B.2 Additional Qualitative Results on D-FAUST 141

list of figures xxi

Figure B.3 Semantic Predictions on D-FAUST 142

Figure B.4 Qualitative Results on D-FAUST 143

Figure B.5 Full Hierarchies . 144

Figure B.6 Full Hierarchies . 145

Figure B.7 Single Image 3D Reconstruction on ShapeNet 146

Figure B.8 Single Image 3D Reconstruction on ShapeNet 147

Figure B.9 Single Image 3D Reconstruction on D-FAUST 149

Figure B.10 Single Image 3D Reconstruction on D-FAUST 150

Figure B.11 Single Image 3D Reconstruction on FreiHAND 151

Figure B.12 Single Image 3D Reconstruction on ShapeNet Cars . 152

Figure B.13 Single Image 3D Reconstruction on ShapeNet Air-
planes . 154

Figure B.14 Single Image 3D Reconstruction on ShapeNet Lamps 156

Figure B.15 Single Image 3D Reconstruction on ShapeNet Chairs 157

Figure B.16 Representation Consistency 158

Figure B.17 Temporal Consistency of Predicted Primitives 159

Figure B.18 Semantic Vertices by SMPL-X 159

Figure B.19 Failure Case Detection and Correction 161

Figure B.20 Object Suggetion . 162

Figure B.21 Scene Completion . 163

Figure B.22 Object Placement . 164

Figure B.23 Absolute Difference between Object Co-occurrence
in Bedrooms . 166

Figure B.24 Absolute Difference between Object Co-occurrence
in Living Rooms . 167

Figure B.25 Absolute Difference between Object Co-occurrence
in Dining Rooms . 167

Figure B.26 Absolute Difference between Object Co-occurrence
in Libraries . 168

Figure B.27 Difference of Per-Object Frequencies 169

Figure B.28 Qualitative Scene Synthesis Results on Bedrooms . . 170

Figure B.29 Qualitative Scene Synthesis Results on Living Rooms 171

Figure B.30 Qualitative Scene Synthesis Results on Dining Rooms 172

Figure B.31 Qualitative Scene Synthesis Results on Libraries . . . 173

L I S T O F TA B L E S

Table 2.1 Quantiative Evaluation on Shapenet objects 23

Table 3.1 Ablation Study of INN 50

Table 3.2 Ablation Study on pθ(·) 52

Table 3.3 Ablation Study on Loss Terms 53

Table 4.1 Single Image Reconstruction on ShapeNet 82

Table 4.2 Single Image Reconstruction on D-FAUST 85

Table 4.3 Sampling strategy . 90

Table 4.4 Number of sampled points. 90

Table 4.5 Sampling Strategy . 90

Table 4.6 Impact of Proximity Loss 92

Table 5.1 Scene Synthesis Quantitative Comparison on 3D-
FRONT . 107

Table 5.2 Generation Time Comparison 109

Table 5.3 Network Parameters Comparison 109

Table 5.4 Perceptual Study on Scene Synthesis 111

Table 5.5 Ablation Study on the Number of Logistic Distribu-
tions . 112

Table 5.6 Ablation Study on the Layout Encoder Architecture . 113

Table 5.7 Ablation Study on Ordering 113

Table B.1 Single Image 3D Reconstruction on D-FAUST 148

Table B.2 Single Image 3D Reconstruction on ShapeNet Cars . 153

Table B.3 Single Image 3D Reconstruction on ShapeNet Air-
planes . 155

Table B.4 Single Image 3D Reconstruction on ShapeNet Lamps 155

Table B.5 Single Image 3D Reconstruction on ShapeNet Chairs 157

Table B.6 Scene Syntethis Quantitative Comparison on 3D-
FRONT . 165

xxii

1
I N T R O D U C T I O N

If we knew what it was we were doing, it would not be
called research, would it?

— Albert Einstein

Within the last few years, artificial deep neural networks (DNNs) have
fundamentally transformed a large number of research fields in computer
science [16, 23, 172, 155] and cognitive science [184]. While DNNs have
demonstrated super-human performance on a variety of applications such
as image classification [102, 48], object detection [63, 156], semantic segmen-
tation [115, 74, 21] etc., they fail to demonstrate similar capabilities on more
complex perceptual tasks such 3D scene understanding that require high-
level reasoning. An important challenge towards building intelligent agents
that robustly perceive and interact with their environment is developing a
powerful cognitive model capable of perceiving the world at a functional
level. Namely, we need to develop representations that can simultaneously
encode object-specific information i.e. geometry, appearance, semantic iden-
tity, part decomposition etc. as well as reason about relationships between
elements in a scene such as i.e. spatial arrangement of objects, functional
composition etc.

Early attempts towards this goal focus primarily on recovering the 3D ge-
ometry [120, 146, 127, 213, 83, 29] and appearance [122, 76, 215, 200, 157] of
objects in a scene. An alternative line of research [12, 147, 191, 141] focuses
on compositional representations that capture relationships between objects
and object parts. Encapsulating the concept of composition in scene repre-
sentations can tremendously benefit various perceptual tasks that require
interacting with the environment (i.e. decide how to interact with objects),
manipulating and editing scenes (i.e. change the characteristics of specific
regions of a scene), recognising unknown objects without incorporating
prior knowledge, interactively creating 3D content etc.

Existing compositional representations focus primarily on capturing the
inherent structure of a 3D object as semantically consistent part arrangements.
The key motivation behind decomposing objects using a set of parts that
have a consistent semantic identity across different object instances is that
the recovered parts can be leveraged as priors for associating unknown

1

2 introduction

or partially visible objects with object parts whose functionality is already
known. In the early days of computer vision, researchers explored various
shape primitives for capturing the part geometries such as 3D polyhedral
shapes [164], generalized cylinders [12] and geons [10] for representing
3D parts. More recent works [191, 141, 72, 37] have demonstrated the
ability of neural networks to learn part-level geometries using 3D cuboids
[191, 130, 226], superquadric surfaces [141, 143], spheres [72], convex solids
[37, 25], star domains [92] or more general neural primitives [140].

The goal of this dissertation is to recover compositional representations of
objects and scenes. In Part I and II, we address the expressivity of primitive-
based representations and propose unsupervised learning-based solutions
that accurately capture the 3D object geometry as a set of semantically
meaningful part arrangements. In Part III, we focus our attention beyond
objects and address the task of scene generation. In particular, we propose
a generative model that populates indoor environments by generating plau-
sible object arrangements that faithfully capture the spatial and functional
relationships of objects in a room i.e. nightstand next to a bed, chairs around
table etc.

Part I: Expressive Part-based Representations: Abstracting complex 3D
shapes with parsimonious part-based representations has been a long
standing goal in computer vision. Tulsiani et al. [191] were among the first
to revisit shape primitives in the context of deep learning. In particular,
they propose inferring shape abstractions by learning to assemble cuboidal
primitives. Given a voxelized 3D object shape as input, a 3D convolutional
neural network is used to regress the shape and transformation parameters
of a small set of 3D cuboids. The assembled shape is compared against the
ground truth mesh based on a distance-field loss. Concurrently, Zou et al.
[226] propose a generative recurrent neural network (RNN) that synthesizes
multiple plausible shapes based on a set of 3D primitives. Similarly, Niu
et al. [130] employ an RNN that iteratively predicts 3D cuboids as well as
their symmetry and connectivity relationships from RGB images.

In Chapter 2, we present a learning-based solution to the scene abstraction
problem which goes beyond the 3D cuboidal primitives by exploiting
superquadrics as atomic elements. We demonstrate that superquadrics
lead to more expressive 3D scene parses while being easier to learn than
3D cuboids. Moreover, we provide an analytical solution to the Chamfer
loss which avoids the need for computational expensive reinforcement
learning or iterative prediction. Our model learns to parse 3D objects into
consistent superquadric representations without any part-level supervision.

introduction 3

We perform extensive experiments on various ShapeNet [19] categories
as well as the SURREAL human body dataset [194] and demonstrate the
flexibility of our model in capturing fine details and complex poses that
could not have been represented using cuboids.

While superquadric surfaces and the more general convex solids [37, 25]
allow for a richer shape vocabulary than 3D cuboids they still have lim-
ited representation capacity, thus fail to accurately reconstruct complex 3D
geometries using a small number of primitives/parts. To address this limita-
tion, in Chapter 3, we introduce Neural Parts, a 3D primitive representation
that defines primitives using an Invertible Neural Network (INN) which
implements homeomorphic mappings between a sphere and the target
object. The INN allows us to compute the inverse mapping of the home-
omorphism, which in turn, enables the efficient computation of both the
implicit surface function of a primitive and its mesh, without any additional
post-processing. Our model learns to parse 3D objects into semantically
consistent part arrangements without any part-level supervision. We con-
duct evaluations on ShapeNet [19], D-FAUST [13] and FreiHAND [225]
and demonstrate that our primitives simultaneously achieve geometrically
accurate and semantically meaningful reconstructions using an order of
magnitude fewer primitives than state-of-the-art shape abstraction methods.

Part II: Structure-Aware Part-based Representations: Structure-aware rep-
resentations go beyond part-level geometry and seek to recover the geom-
etry of each part together with the latent structure of the object. Li et al.
[106] propose to represent 3D shapes using a symmetry hierarchy [203] and
train a recursive neural network to predict its hierarchical structure. Their
network learns a hierarchical organization of bounding boxes and then fills
them with voxelized parts. More recently, Mo et al. introduce StructureNet
[124] a supervised method which leverages a graph neural network to rep-
resent shapes as n-ary graphs. Similarly, Hu et al. [79] propose a supervised
model that recovers the 3D structure of a cable-stayed bridge as a binary
parsing tree. Notably, the majority of existing structure-aware representa-
tions require supervision in terms of part relations as well as primitive
annotations. However, this kind of annotation is hardly ever available.

We address this challenge, in Chapter 4, where we introduce a structure-
aware representation that jointly recovers the 3D object geometry as a set
of primitives as well as their latent hierarchical structure without any part-
level supervision. In particular, we employ a neural network that learns
to recursively partition an object into its constituent parts by building
a latent space that encodes both the part-level hierarchy and the part

4 introduction

geometries. The predicted hierarchical decomposition is represented as an
unbalanced binary tree of primitives, where simple parts are represented
with fewer primitives and more complex parts are modelled with more
components. Our experiments on the ShapeNet [19] and D-FAUST [13]
datasets demonstrate that considering the organization of parts indeed
facilitates reasoning about 3D geometry.

Part III: Structure-Aware Object-based Representations for Scene Syn-
thesis: In the last part of this thesis, we shift our attention from objects and
focus on scenes and in particular on the task of generating realistic syn-
thetic scenes by plausibly arranging objects within the scene’s boundaries.
In Chapter 5, we introduce ATISS, a network architecture for controllable
indoor scene synthesis [139]. Given a room type (e.g. bedroom, living room)
and its shape, our model generates meaningful object arrangements by
sequentially placing objects in a permutation-invariant fashion. We train
ATISS to maximize the log-likelihood of all possible permutations of object
arrangements in a collection of training scenes, labeled only with object
classes and 3D bounding boxes. In contrast to prior work that requires
supervision either in the form of relation graphs [197, 218, 117] or scene
hierarchies [109] for capturing the object relationships, ATISS infers func-
tional and spatial relations between objects directly from data. Evaluations
on four room types in the 3D-FRONT dataset [54] demonstrate that our
model consistently generates plausible room layouts that are more realistic
than existing methods.

Part I

Expressive Part-based Representations

2
L E A R N I N G 3 D S H A P E PA R S I N G B E Y O N D C U B O I D S

Everything in nature is formed upon the sphere, the
cone and the cylinder. One must learn to paint these
simple figures and then one can do all that he may
wish.

— Paul Cézane

Evolution has developed a remarkable visual system that allows humans
to robustly perceive their 3D environment. It has long been hypothesized
[10] that the human visual system processes the vast amount of raw visual
input into compact parsimonious representations, where complex objects
are decomposed into a small number of shape primitives that can each be
represented using low-dimensional descriptions. Indeed, experiments show
that humans can understand complex scenes from renderings of simple
shape primitives such as cuboids or geons [11].

Likewise, machines would tremendously benefit from being able to
parse 3D data into compact low-dimensional representations. Such rep-
resentations would provide useful cues for recognition, detection, shape
manipulation and physical reasoning such as path planning and grasping.
In the early days of computer vision, researchers explored shape primitives
such as 3D polyhedral shapes [164], generalized cylinders [12], geons [10]
and superquadrics [147]. However, it proved very difficult to extract such
representations from images due to the lack of computation power and
data at the time. Thus, the research community shifted their focus away
from the shape primitive paradigm.

In the last decade, major breakthroughs in shape extraction were due to
deep neural networks coupled with the abundance of visual data. Recent
works focus on learning 3D reconstruction using 2.5D [73, 142, 80, 212],
volumetric [34, 62, 207, 82, 71, 162], mesh [68, 113] and point cloud [53, 151]
representations. However, none of the above are sufficiently parsimonious or
interpretable to allow for higher-level 3D scene understanding as required
by intelligent systems.

Recently, shape primitives have been revisited in the context of deep
learning. In particular, [191, 226, 130] have demonstrated that deep neural
networks enable to reliably extract 3D cuboids from meshes and RGB im-

7

8 learning 3d shape parsing beyond cuboids

(a) Input Mesh

(b) Cuboids[191]

(c) Superquadric Surfaces(Ours)

Figure 2.1: 3D Shape Parsing. We consider the problem of learning to parse unstruc-
tured 3D data (e.g., meshes or point clouds) into compact part-based representations.
Prior work [191, 226, 130] has considered cuboid representations (b) which capture
the overall object structure, but lack expressiveness. In this work, we propose an
unsupervised model for superquadrics (c), which allows us to capture details such
as the body of the airplane and the ears of the rabbit.

ages. Inspired by these works, we propose a novel deep neural network
that efficiently extracts parsimonious 3D representations in an unsuper-
vised fashion, conditioned on a 3D shape or 2D image as input. We note
that 3D cuboid representations used in prior works [191, 226, 130] are not
sufficiently expressive to model many natural and man-made shapes as
illustrated in Fig. 2.1, and as a result, cuboid-based representations typically
require a large number of primitives to accurately represent common shapes.
To address this limitation, we propose to utilize superquadrics, which have
been successfully used in computer graphics [9] and classical computer
vision [147, 178, 185]. Superquadrics are able to represent a diverse class of

2.1 related work 9

shapes such as cylinders, spheres, cuboids, ellipsoids in a single continuous
parameter space (see Fig. 2.1+2.2). Moreover, their continuous parametriza-
tion is particularly amenable to deep learning, as their shape is smooth
and varies continuously with their parameters. This allows for faster opti-
mization, and hence faster and more stable training as evidenced by our
experiments.

Second, we provide an analytical closed-form solution to the Chamfer
distance function which can be evaluated in linear time wrt. the number
of primitives. This allows us to compute gradients wrt. the model pa-
rameters using standard error backpropagation [167] without resorting to
computational expensive reinforcement learning techniques as required
by prior work [191]. We consequently mitigate the need for designing an
auxiliary reward function. Instead, we formulate a simple parsimony loss
to favor configurations with a small number of primitives. We demon-
strate the strengths of our model by learning to parse 3D shapes from
the ShapeNet [19] and the SURREAL [194]. We observe that our model
converges faster than [191] and leads to more accurate reconstructions. The
code to reproduce the experiments presented in this chapter can be found
at https://github.com/paschalidoud/superquadric_parsing.

2.1 related work

In this section, we discuss the most relevant work on deep learning-based
3D shape modeling approaches and review the origins of superquadric
representations.

3D Shape Reconstruction: The simplest representation for 3D reconstruc-
tion from one or more images are 2.5D depth maps as they can be in-
ferred using standard 2D convolutional neural networks [73, 142, 82, 212].
Since depth maps are view-based, these methods require additional post-
processing algorithms to fuse information from multiple viewpoints in
order to capture the entire object geometry. As opposed to depth maps,
volumetric representations [62, 71, 34, 162, 183] naturally capture the entire
3D shape. While, hierarchical 3D data structures such as octrees accelerate
3D convolutions, the high memory requirements remain a limitation of
existing volumetric methods. An alternative line of work [53, 152] focuses
on learning to reconstruct 3D point sets. A natural limitation of these ap-
proaches is the lack of surface connectivity in the representation. To address
this limitation, [113, 68, 199, 159] proposed to directly learn 3D meshes.
While mesh-based representations yield smooth reconstructions, they are

https://github.com/paschalidoud/superquadric_parsing

10 learning 3d shape parsing beyond cuboids

prone to generating self-intersecting meshes and tend to have high memory
requirements. To mitigate this, more recently, researchers revisited the im-
plicit representations and propose to represent the 3D shape as the level-set
of a distance function implemented as a neural network [120, 136, 27]. While
some of the aforementioned models are able to capture fine surface details,
none of them lends itself to parsimonious, semantic interpretations. In this
work, we utilize superquadrics which provide a concise and yet accurate
representation with significantly less parameters.

Constructive Solid Geometry: Towards the goal of concise representations,
researchers exploited constructive solid geometry (CSG) [104] for shape
modeling [173, 51]. Sharma et al. [173] leverage an encoder-decoder archi-
tecture to generate a sequence of simple boolean operations to act on a set of
primitives that can be either squares, circles or triangles. In a similar line of
work, Ellis et al. [51] learn a programmatic representation of a hand-written
drawing, by first extracting simple primitives, such as lines, circles and
rectangles and a set of drawing commands that is used to synthesize a
LATEX program. In contrast to [173, 51], our goal is not to obtain accurate
3D geometry by iteratively applying boolean operations on shapes. Instead,
we aim to decompose the depicted object into a parsimonious interpretable
representation where each part has a semantic meaning associated with
it. Besides, our method does not suffer from ambiguities of an iterative
construction process, where different executions lead to the same result.

Learning-based Scene Parsing: Recently, shape primitives have been revis-
ited in the context of deep learning [191, 226, 130]. Niu et al. [130] propose
to use a recurrent neural network (RNN) to iteratively predict cuboid prim-
itives as well as symmetry relationships from RGB images. They first train
an encoder which encodes the input image and its segmentation into a
80-dimensional latent code. Starting from this root feature, they iteratively
decode the structure into cuboids, splitting nodes based on adjacency and
symmetry relationships. In related work, Zou et al. [226] utilize LSTMs
in combination with mixture density networks to generate cuboid repre-
sentations from depth maps encoded by a 32-dimensional feature vector.
However, both works [130, 226] require supervision in terms of the prim-
itive parameters as well as the sequence of predictions. This supervision
must either be provided by manual annotation or using greedy heuristics
as in [130, 226].

In contrast, our approach is unsupervised and does not suffer from am-
biguities caused by different possible prediction sequences that lead to
the same cuboid assembly. Furthermore, [130, 226] exploit simple cuboid

2.1 related work 11

representations which do not capture more complex shapes that are com-
mon in natural and man-made scenes (e.g., curved objects, spheres). In
this work, we propose to use superquadrics [9] which yield a more diverse
shape vocabulary and hence lead to more expressive scene abstractions as
illustrated in Fig. 2.1.

Recently, Tulsiani et al. [191] proposed a method for 3D shape abstrac-
tion using a non-iterative approach which does not require supervision.
In particular, they use a convolutional network architecture for predicting
the shape and pose parameters of 3D cuboids as well as their probabil-
ity of existence. They demonstrate that learning shape abstraction from
data allows for obtaining consistent parses across different instances in an
unsupervised fashion.

In this work, we extend the model of Tulsiani et al. [191] in the following
directions. First, we utilize superquadrics, instead of cuboids, which leads
to more accurate scene abstractions. Second, we demonstrate that the bi-
directional Chamfer distance is tractable and doesn’t require reinforcement
learning [205] or specification of rewards [191]. In particular, we show that
there exists an analytical closed-form solution which can be evaluated in
linear time. This allows us to compute gradients wrt. the model parameters
using standard error propagation [167] which facilitates learning. In addi-
tion, we add a new simple parsimony loss to favor configurations with a
small number of primitives.

Superquadric Surfaces: Superquadrics are a parametric family of surfaces
that can be used to describe cubes, cylinders, spheres, octahedra, ellipsoids
etc. [9]. In contrast to geons [10], superquadric surfaces can be described
using a fairly simple parameterization. In contrast to generalized cylin-
ders [10], superquadrics are able to represent a larger variety of shapes.
See Fig. 2.2 for an illustration of the shape space.

In 1986, Pentland introduced superquadrics to the computer vision com-
munity [147]. Solina et al. [178] formulated the task of fitting superquadrics
to a point cloud as a least-squares minimization problem. Chevalier et al.
[28] followed a two-stage approach, where the point cloud is first parti-
tioned into regions and then each region is fit with a superquadric. For a
thorough survey on superquadrics we refer reader to [81, 177] for details.

In contrast to these classical works on superquadric fitting using non-
linear least squares, we present the first approach to train a deep network
to predict superquadrics directly from 2D or 3D inputs. This allows our
network to distill statistical dependencies wrt. the arrangement and ge-
ometry of the primitives from data, leading to semantically meaningful

12 learning 3d shape parsing beyond cuboids

Figure 2.2: Superquadric Shape Space. Superquadrics are a parametric family of
surfaces that can be used to describe cubes, cylinders, spheres, octahedral ellipsoids,
etc. [9]. This figure visualizes superquadrics when varying the shape parameters ε1
and ε2, while keeping the size parameters α1, α2 and α3 constant.

parts at inference time. Towards this goal, we utilize a convolutional net-
work that predicts superquadric poses and attributes, and develop a novel
loss function that allow us to train this network efficiently from data. Our
model is able to directly learn superquadric surfaces from an unordered
3D point cloud without any supervision on the primitive parameters nor a
3D segmentation as input.

2.2 method overview 13

2.2 method overview

Given an input I (e.g., image, volume, point cloud) and an oriented point
cloud X of the target object, our goal is to estimate the parameters θ
of a neural network φθ(I) that predicts a set of M primitives that best
describe the target object. Every primitive is fully described by a set of
parameters that define its shape, size and its position and orientation in the
3D space. Additional details for the parameterization of the superquadric
representation are provided in Sec. 2.2.3.

Since not all objects and scenes require the same number of primitives,
we enable our model to predict a variable number of primitives, hence
allowing it to decide whether a primitive should be part of the assembled
object or not. To achieve this, we follow [191] and associate every primitive
with a binary random variable zm ∈ {0, 1} which follows a Bernoulli
distribution p(zm) = γzm

m (1− γm)1−zm with parameter γm. The random
variable zm indicates whether the mth primitive is part of the scene (zm = 1)
or not (zm = 0). We refer to these variables as existence variables and
denote the set of all existence variables as z = {z1, . . . , zM}. Our goal is
to learn a neural network φθ(I) which maps an input I to a primitive
representation P = {(λm, γm)}M

m=1 that comprises the primitive parameters
λm and the existence probability γm for M primitives. Note that M is only
an upper bound on the number of predicted primitives. The final primitive
representation is obtained by sampling the existence of each primitive,
zm ∼ Bernoulli(γm).

One of the key challenges when training such models is related to the
lack of direct supervision in the form of primitive annotations. However,
despite the absence of supervision, one can still measure the discrepancy
between the predicted object and the target object. Towards this goal, we for-
mulate a bi-directional reconstruction objective LD(P ,X) and incorporate a
Minimum Description Length (MDL) prior Lγ(P), which favors parsimony,
i.e. a small number of primitives. Our overall loss function is given as:

L(P ,X) = LD(P ,X) + Lγ(P) (2.1)

2.2.1 Reconstruction Loss

The reconstruction loss measures the discrepancy between the predicted
shape and the target shape. While we experimented with the truncated
bi-directional loss of Tulsiani et al. [191], we empirically found that the
standard Chamfer distance [53] works better in practice and results in less

14 learning 3d shape parsing beyond cuboids

local minima. An empirical analysis on this can be found in Sec. A.1.2. Thus,
we use the Chamfer distance in our experiments

LD(P ,X) = LP→X(P ,X) + LX→P(X ,P) (2.2)

where LP→X measures the distance from the predicted primitives P to the
point cloud X and LX→P measures the distance from the point cloud X
to the primitives P . We weight the two distance measures in (2.2) with 1.2
and 0.8, respectively, which empirically led to good results.

Primitive-to-Pointcloud: We represent the target point cloud as a set of
3D points X = {xi}N

i=1. Similarly, we approximate the continuous surface
of primitive m by a set of points Ym = {ym

k }
K
k=1. Details of our sampling

strategy are provided in Sec. 2.4. This discretization allows us to express the
distance between a superquadric and the target point cloud in a convenient
form. In particular, for each point on the primitive ym

k , we compute its
closest point on the target point cloud xi, and average this distance across
all points in Ym as follows:

Lm
P→X(P ,X) =

1
K

K

∑
k=1

∆m
k (2.3)

where
∆m

k = min
i=1,..,N

‖Tm(xi)− ym
k ‖2 (2.4)

denotes the minimal distance from the k’th point ym
k on the m’th primitive

to the target point cloud X . Here, Tm(x) = R(λm) x + t(λm) is a function
that transforms a 3D point xi in world coordinates into the local coordinate
system of the mth primitive. Note that both R and t depend on λm and are
hence estimated by our network.

By taking the expectation wrt. the existence variables z and assuming
independence of the existence variables: p(z) = ∏m p(zm), we obtain the
joint loss over all primitives as

LP→X(P ,X) = Ep(z)

[
M

∑
m=1
Lm

P→X(P ,X)

]

=
M

∑
m=1

γm Lm
P→X(P ,X)

(2.5)

Note that this loss encourages the predicted primitives to stay close to the
target point cloud.

2.2 method overview 15

Pointcloud-to-Primitive: While LP→X measures the distance from the
primitives to the point cloud, LX→P measures the distance from the point
cloud to the primitives to ensure that each observation is explained by at
least one primitive. We start by defining ∆m

i as the minimal distance from
point xi to the surface of the m’th primitive:

∆m
i = min

k=1,..,K
‖Tm(xi)− ym

k ‖2 (2.6)

Note that in contrast to (2.4), we minimize over the K points from the
estimated primitive. Similarly to (2.5), we take the expectation of ∆m

i over
p(z). In contrast to (2.5), we sum over each point in the target point cloud
X and retrieve the distance to the closest primitive m that exists (zm = 1):

LX→P(X ,P) = Ep(z)

[
∑

xi∈X
min

m|zm=1
∆m

i

]
(2.7)

Note that naïve computation of Eq. 2.7 becomes very slow for a large
number of primitives M as it requires evaluating the quantity inside the
expectation 2M times. In this work, we propose a novel approach to simplify
this computation that results in a linear number of evaluations. Without
loss of generality, let us assume that the ∆m

i ’s are sorted in ascending order:

∆1
i ≤ ∆2

i ≤ · · · ≤ ∆M
i (2.8)

Assuming this ordering, we can state the following: if the first primitive
exists, the first primitive will be the one closest to point xi of the target
point, if the first primitive does not exist and the second does, then the
second primitive is closest to point xi and so on and so forth. More formally,
this property can be stated as follows:

min
m|zm=1

∆m
i =

∆1
i , if z1 = 1

∆2
i , if z1 = 0, z2 = 1

...

∆M
i , if zm = 0, . . . , zM = 1

(2.9)

This allows us to simplify Eq. 2.7 as follows

LX→P(X ,P) = ∑
xi∈X

M

∑
m=1

∆m
i γm

m−1

∏̄
m=1

(1− γm̄) (2.10)

16 learning 3d shape parsing beyond cuboids

where γm̄ is a shorthand notation which denotes the existence probability
of a primitive closer than primitive m. Note that this function requires only
M, instead of 2M, evaluations of the function ∆m

i . For a detailed derivation
of (2.10), we refer the reader to Sec. A.1.1.

2.2.2 Parsimony Loss

Despite the bidirectional loss formulation above, our model suffers from
the trivial solution LD(P ,X) = 0 which is attained for γ1 = · · · = γm = 0.
Moreover, multiple primitives with identical parameters yield the same
loss function as a single primitive by dispersing their existence probability.
We thus introduce a regularizer loss on the existence probabilities γ which
alleviates both problems:

Lγ(P) = max

(
α− α

M

∑
m=1

γm, 0

)
+ β

√√√√ M

∑
m=1

γm (2.11)

The first term of (2.11) makes sure that the aggregate existence probability
over all primitives is at least one (i.e., we expect at least one primitive to
be present) and the second term enforces a parsimonious scene parse by
exploiting a loss function sub-linear in ∑m γm which encourages sparsity. α
and β are weighting factors which are set to 1.0 and 10−3 respectively.

2.2.3 Superquadric Parametrization

Having specified our network and the loss function, we now provide details
about the superquadric representation and its parameterization λ. Note
that, in this section, we omit the primitive index m for clarity. Superquadrics
define a family of parametric surfaces that can be fully described by a set
of 11 parameters [9]. The explicit superquadric equation defines the surface
vector r as

r(η, ω) =

α1 cosε1 η cosε2 ω

α2 cosε1 η sinε2 ω

α3 sinε1 η

 −π/2 ≤ η ≤ π/2

−π ≤ ω ≤ π
(2.12)

where α = [α1, α2, α3] determine the size and ε = [ε1, ε2] determine the
global shape of the superquadric.

Following common practice [195], we bound the values ε1 and ε2 to
the range [0.1, 1.9] so as to prevent non-convex shapes which are less

2.3 experimental evaluation 17

Figure 2.3: Explicit Superquadric Equation. A 3D vector r(η, ω) defines a closed
surface in space as η (latitude angle) and ω (longitude angle) change in the given
intervals (2.12). The rigid body transformation Tm(x) maps a point from the world
coordinate system to the local coordinate system of the mth primitive.

likely to occur in practice. Eq. 2.12 produces a superquadric in a canonical
pose. In order to allow any position and orientation, we augment the
primitive parameter λ with an additional rigid body motion represented
by a translation vector t = [tx, ty, tz] and a quaternion q = [q0, q1, q2, q3]
which determine the coordinate system transformation T (x) = R(λ) x +
t(λ) above. This transformation as well as the angles η, ω and the scale
parameters α1, α2, α3 are illustrated in Fig. 2.3.

2.3 experimental evaluation

In this section, we present a set of experiments to evaluate the perfor-
mance of our network in terms of parsing an input 3D shape into a set of
superquadric surfaces.

Datasets: We provide results on two 3D datasets. First, we use the aeroplane,
chair and animals categories from ShapeNet [19]. Following [191], we train
one model per object category using a voxelized binary occupancy grid
of size 32× 32× 32 as input. Second, we use the SURREAL dataset from
Varol et al. [194] which comprises humans in various poses (e.g., standing,

18 learning 3d shape parsing beyond cuboids

Figure 2.4: Reconstruction Loss wrt. #Primitives. We illustrate the reconstruction
loss on the test set of the ShapeNet animal category for a different number of
primitives. Superquadrics (orange) consistently outperform cuboid primitives (blue)
due to their diverse shape vocabulary that allows them to better capture fine details
of the input shapes.

walking, sitting). Using the SMPL model [116], we rendered 5000 meshes,
from which 4500 are used for training and 500 for testing.

Baselines: Most related to ours is the cuboid parsing approach of Tulsiani
et al. [191]. Other approaches to cuboid-based scene parsing [130, 226]
require ground-truth shape annotations and thus cannot be fairly compared
to unsupervised techniques. We thus compare to Tulsiani et al. [191], using
their publicly available code1.

2.3.1 Superquadrics vs. Cuboids

We first compare the modeling accuracy of superquadric surfaces wrt.
cuboidal shapes which have been extensively used in related work [191, 226,
130]. Towards this goal, we fit animal shapes from ShapeNet by optimizing
the distance loss function in (2.2) while varying the maximum number of
allowed primitives M. To ensure a fair comparison, we use the proposed
model for both cases. Note that this is trivially possible as cuboids are a
special case of superquadrics. To minimize the effects of network initializa-
tion and local minima in the optimization, we repeat the experiment three
times with random initializations and visualize the average loss in Fig. 2.4.

1 https://github.com/shubhtuls/volumetricPrimitives

https://github.com/shubhtuls/volumetricPrimitives

2.3 experimental evaluation 19

Figure 2.5: Training Evolution. We visualize the qualitative evolution of su-
perquadrics (top) and cuboids (bottom) during training. Superquadrics converge
faster to more accurate representations, whereas cuboids cannot capture details
such as the open mouth of the dog, even after convergence.

Figure 2.6: Qualitative Results on ShapeNet dataset. We visualize predictions for
the object categories animals, aeroplane and chairs from the ShapeNet dataset. The
top row illustrates the ground-truth meshes from every object. The middle row
depicts the corresponding predictions using the cuboidal primitives estimated by
[191]. The bottom row shows the corresponding predictions using our learned
superquadric surfaces. Similarly to [191], we observe that the predicted primitive
representations are consistent across instances. For example, the primitive depicted
in green describes the right wing of the aeroplane, while for the animals class, the
yellow primitive describes the front legs of the animal.

The results show that for any given number of primitives, superquadrics
consistently achieve a lower loss, and hence higher modeling fidelity.

We further visualize the qualitative evolution of the network during
training in Fig. 2.5. This figure demonstrates that compared to cuboids,
superquadrics better model the object shape, and more importantly that
the network is able to converge faster.

20 learning 3d shape parsing beyond cuboids

Figure 2.7: Attention to Details. Superquadrics allow for modeling fine details such
as the tails and ears of animals as well as the wings and the body of the airplanes
and wheels of the motorbikes which are hard to capture using cuboids.

2.3.2 Results on ShapeNet dataset

We evaluate the quality of the predicted primitives using our reconstruction
loss from (2.2) on the ShapeNet dataset and compare to the cuboidal primi-
tives as estimated by Tulsiani et al. [191]. We associate every primitive with
a unique color, thus primitives illustrated with the same color correspond
to the same object part. For both approaches we set the maximal number
of primitives to M = 20. From Fig. 2.6, we observe that our predictions
consistently capture both the structure as well as fine details (e.g., body,
tails, head), whereas the corresponding cuboidal primitives from [191] focus
mainly on the structure of the predicted object.

Fig. 2.7 shows additional results in which our model successfully predicts
animals, airplanes and also more complicated motorbike parts. For instance,
we observe that our model is able to capture the open mouth of the dog
using two superquadrics as shown in Fig. 2.7 (left-most animal in third
row). In addition, we notice that our model dynamically allocates a variable
number of primitives depending on the complexity of the input shape. For
example, the left-most airplane in Fig. 2.6, is modelled with 6 primitives
whereas the jetfighter (right-most) that has a more complicated shape
is modelled with 9 primitives. This can also be observed for the animal

2.3 experimental evaluation 21

Figure 2.8: Qualitative Results on Motorbikes. Our network learns semantic map-
pings of various object parts of different objects within the same category. Our
expressive shape abstractions allow for differentiating between different types of
motorbikes (scooter, racing bike, chopper etc.), by sucessfully capturing the shape
of various indicative parts such as the wheels or the front fork of the bike.

category, where our model chooses a single primitive for the body of the cat
(rightmost animal in Fig. 2.6) while for all the rest it uses two. We remark
that our expressive shape abstractions allow for differentiating between
different types of objects such as scooter/chopper/racebike (see Fig. 2.8) or
airliner/fighter by truthfully capturing the shape of the individual object
parts.

22 learning 3d shape parsing beyond cuboids

Fig. 2.9+2.10 depicts additional predictions on the animal and the chair
object class of the ShapeNet dataset. We observe that for both categories
our model consistently captures both the structure and the fine details of
the depicted object. Note that chairs that have rounded legs are associated
with flattened ellipsoids (Fig. 2.10), this would not have been possible only
with cuboids.

Figure 2.9: Qualitative Results on Animals. We visualize the predictions of our
network on the animals class of the ShapeNet dataset. We remark the consistency
across primitives and animal parts as well as the ability of our model to cpature
details such as ears and tails of animals that could have not beeen captured using
cuboidal primitives

Figure 2.10: Qualitative Results on Chairs We visualize the predictions of our
network on the chairs class of the ShapeNet dataset. We observe the consistency
across corespondences between primitives and object parts as well as the ability of
our model to capture the shape of rounded parts.

Fig. 2.11 visualizes the training evolution of the predicted superquadrics
for three object categories. While initially, the model focuses on the overall
structure of the object using mostly blob-shaped superquadrics (ε1 and
ε2 close to 1.0), as training progresses it starts attending to details. After
convergence, the predicted superquadrics closely match the shape of the
corresponding (unknown) object parts.

Finally, we compare the reconstruction quality of our model to [191] wrt.
the mean Chamfer distance and the mean Volumetric IoU of the predicted

2.3 experimental evaluation 23

Figure 2.11: Evolution of Primitives. We illustrate the evolution of superquadrics
during training. Note how our model first focuses on the overall structure of the
object and starts to attend to finer details at later iterations.

Chamfer Distance Volumetric IoU

Chairs Aeroplanes Animals Chairs Aeroplanes Animals

Cuboids [191] 0.0121 0.0153 0.0110 0.1288 0.0650 0.3339

Superquadrics 0.0006 0.0003 0.0003 0.1408 0.1808 0.7506

Table 2.1: Quantitative Evaluation on ShapeNet objects. We report the mean Cham-
fer distance (smaller is better) and the mean Volumetric IoU (larger is better) for
our model compared to [191].

primitives. Volumetric IoU is defined as the quotient of the volume of
the two meshes’ intersection and the volume of their union. We obtain
unbiased estimates of the volume of the intersection and the union by
randomly sampling points from the bounding volume and determining if
the points lie inside our outside the ground truth / predicted mesh.

Results are summarized in Tab. 2.1 and we note that our model achieves
superior performance in both metrics. Note that in contrast to [191] our
primitives are optimized for the Chamfer distance, thus it is expected
that our model will outperform [191] wrt. this metric. Moreover, note that
cuboids are a special case of superquadrics, thus fitting objects with cuboids
is expected to lead to worse results compared to superquadrics.

24 learning 3d shape parsing beyond cuboids

2.3.3 Shape Abstraction from a Single RGB Image

In this section, we use the proposed reconstruction loss to extract shape
primitives from RGB images instead of occupancy grids. Towards this
goal, we render the ShapeNet models to images, and train an image-based
network to minimize the same reconstruction loss also used for our volume-
based architecture.

More specifically, we replace the volumetric encoder with a ResNet18 [75],
after removing the last fully connected layer. The extracted features are
subsequently passed to five independent heads that regress translation t,
rotation q, size α, shape ε and probability of existence γ for each primitive.
During training, we uniformly sample 1000 points, from the surface of the
target object, as well as 200 points from the surface of every superquadric.
For optimization, we use ADAM [96] with a learning rate of 0.001 and a
batch size of 32 for 40k iterations. We observe that our model accurately
captures shape primitives even from a single RGB image as input.

Figure 2.12: Single Image 3D Reconstruction on ShapeNet objects. We visualize
predictions for various ShapeNet object categories using a single RGB image as
input to our model.

2.3 experimental evaluation 25

Figure 2.13: Qualitative Results on SURREAL dataset. Our network learns seman-
tic mappings of body parts across different body shapes and articulations. For
instance, the network uses the same primitive for the left forearm across instances.

2.3.4 Results on SURREAL dataset

In addition to ShapeNet, we also demonstrate results on the SURREAL
human body dataset in Fig. 2.13. The benefits of superquadrics over simpler
shape abstractions are accentuated in this dataset due to the complicated
shapes of the human body. Note that our model successfully captures

26 learning 3d shape parsing beyond cuboids

1 2 3 4 5 6 7 8

Number of samples

10−3

10−2

10−1

R
el

at
iv

e
va

ri
an

ce
of

gr
ad

ie
n
t

Tulsiani et al.

Ours

0.0

0.5

1.0

1.5

T
im

e
p

er
it

er
at

io
n

(s
)Tulsiani et al.

Ours

(a) Gradient Variance and Iteration Time.

0 10000 20000 30000 40000

Number of iterations

10−3

10−2

T
ra

in
in

g
lo

ss
:

an
im

a
ls Tulsiani et al.

Ours

(b) Evolution of Training Loss.

Figure 2.14: Analytical Loss Formulation.Fig. 2.14a depicts the variance of the
gradient estimates for γ over 300 iterations (solid) as well as the computation time
per iteration (dashed) for [191] (blue) and our method (orange). Our analytical loss
function provides gradients with orders of magnitude less variance while at the
same time decreasing runtime. In Fig. 2.14b, we compare the training loss evolution
of [191] (blue) to ours (orange). The sampling based approach of [191] leads to large
oscillations while ours converges smoothly.

details that require modeling beyond cuboids: For instance, our model
predicts pointy octahedral shapes for the feet, ellipsoid shapes for the head
and a flattened elongated superellipsoid for the main body without any
supervision on the primitive parameters. Another interesting aspect of our
model is the consistency of the predicted primitives, i.e., the same primitives
(highlighted with the same color) consistently represent feet, legs, arms
etc. across different poses. For more complicated poses, correspondences
are sometimes mirrored. We speculate that this behavior is caused by
symmetries of the human body.

2.3.5 Analytical Loss Formulation

In this section, we compare the evolution of our training loss in Equation
(2.2) to the evolution of the training loss proposed by Tulsiani et al. [191]
in Fig. 2.14b. While it is important to mention that the absolute values are
not comparable due to the slightly different loss formulations, we observe
that our loss converges faster with less oscillations. Note that at iteration
20k, [191] starts updating the existence probabilities using reinforcement
learning [205] which further increases oscillations. In contrast, our loss
function decays smoothly and does not require sampling-based gradient
estimation.

2.4 implementation details 27

To further analyze the advantages of our analytical loss formulation,
we calculate the variance of the gradient estimates for the existence prob-
abilities γ over 300 training iterations. Fig. 2.14a compares the variance
of the gradients of [191] to the variance of the gradients of the proposed
analytical loss (solid lines). Note that the variance in our gradient is orders
of magnitude lower compared to [191] as we do not require sampling [205]
for approximating the gradients. Simultaneously, we obtain a lower runtime
per iteration (dashed lines). While using more samples lowers the variance
of gradients approximated using Monte Carlo estimation [191], runtime
per iteration increases linearly with the number of samples. In contrast, our
method does not require sampling and outperforms [191] in terms of run-
time even for the case of gradient estimates based on a single sample. We
remark that in both cases the runtime is computed for the entire iteration,
considering both, the forward and the backward pass.

2.4 implementation details

Our network architecture comprises an encoder and a set of linear layers
followed by non-linearities that independently predict the pose, shape and
size of the superquadric surfaces. The encoder architecture is chosen based
on the input type (e.g. image, voxelized input, etc.). In our experiments,
for a binary occupancy grid as input, our encoder consists of five blocks of
3D convolution layers, followed by batch normalization and Leaky ReLU
non-linearities. The result is passed to five independent heads that regress
translation t, rotation q, size α, shape ε and probability of existence γ for
each primitive. An overview of our training architecture is provided in
Fig. 2.15.

Note that, for the image-based experiment of Sec. 2.3.3 we replace the
encoder architecture in Fig. 2.15 with a ResNet18 [75].

For evaluating our loss (2.2), we sample points on the superquadric
surface. To achieve a uniform point distribution, we sample η and ω as
proposed in [148]. During training, we uniformly sample 1000 points, from
the surface of the target object, as well as 200 points from the surface of
every superquadric. Note that sampling points on the surface of the objects
results in a stochastic approximator of the expected loss. The variance of this
approximator is inversely proportional to the number of sampled points.
We experimentally observe that our model is not sensitive to the number of
sampled points. For optimization, we use ADAM [96] with learning rate
0.001 and a batch size of 32 for 40k iterations. To further increase parsimony,

28 learning 3d shape parsing beyond cuboids

Figure 2.15: Volume-based Network Architecture. We visualize the layers that
comprise our network architecture. Cubes denote operations that are conducted on
3-dimensional volumes, while rectangles correspond to K-dimensional features. The
number above each shape (cube or rectangle) corresponds to the dimensionality of
that layer. For instance, 163 × 4 denotes a feature map of size 163 and 4 channels.
Following, our notation, M corresponds to the maximum number of primitives
predicted.

we then fix all parameters except γ for additional 5k iterations. This step
removes remaining overlapping primitives as also observed in [191].

2.4.1 Metrics Computation

In this section, we provide additional details regarding the quantitative
comparison of Tab. 2.1. For evaluation, we report two metrics the mean
Chamfer distance and the mean Volumetric IoU. Volumetric IoU is defined
as the quotient of the volume of the two meshes’ intersection and the
volume of their union. We obtain unbiased estimates of the volume of the
intersection and the union by randomly sampling points from the bounding
volume and determining if the points lie inside our outside the ground truth
/ predicted mesh. The computation of the Chamfer distance is discussed in
detail in Sec. 2.2.1.

2.5 discussion 29

2.4.2 Parsimony Loss Details

We would also like to briefly provide some additional details for our
parsimony loss. For completeness, we restate the parsimony loss of (2.11)

Lγ(P) = max

(
α− α

M

∑
m=1

γm, 0

)
+ β

√√√√ M

∑
m=1

γm (2.13)

Note that the
M

∑
m=1

γm corresponds to the expected number of primitives in

the predicted parsing. Note that our model suffers from the trivial solution
LD(P ,X) = 0 which is attained for γ1 = · · · = γm = 0. To avoid this
solution, we introduce the first term of Eq. 2.13 that penalizes the prediction
when the expected number of primitives is less than 1. The second term
penalizes the prediction when the expected number of primitives is large.
Note that the maximum value of the second term is β

√
M, while the

maximum value of the first term is α. Therefore, in order to allow the model
to use more than one primitive, we set β to a value smaller than α. Typically
α = 1.0 and β = 10−3.

2.5 discussion

We have presented the first learning-based approach for parsing 3D ob-
jects into consistent superquadric representations. Our model successfully
captures both the structure as well as the details of the target objects by
accurately learning to predict superquadrics in an unsupervised fashion
during training. While our model more faithfully captures the geometry
of 3D objects in comparison to cuboidal primitives, superquadric surfaces
are still relatively simple, namely they cannot capture arbitrarily complex
geometries without utilizing a large number of parts. However, increasing
the number of parts results in less meaningful shape abstractions. This
problem is addressed in Chapter 3.

Moreover, while our analytical solution to the Chamfer loss allows us
to efficiently train our model without the need for reinforcement learning
or iterative prediction, minimizing the discrepancy between the target
and the predicted shape solely based on bidirectional Chamfer loss is
problematic as it leads to various local minima, such as primitives that
do not occupy meaningful space. To address this, we believe that jointly
optimizing for the Chamfer distance and the Intersection over Union (IoU),

30 learning 3d shape parsing beyond cuboids

which seeks to enforce that the volume of the target and the predicted
match, would be more beneficial. Moreover, we believe that developing
hierarchical strategies as in [226] would allow us to also reason about
higher-level part relationships. This problem is addressed in Chapter 4.

3
L E A R N I N G E X P R E S S I V E 3 D S H A P E A B S T R A C T I O N S
W I T H I N V E RT I B L E N E T W O R K S

There is geometry in the humming of the strings, there
is music in the spacing of the spheres.

— Pythagoras

Recovering the geometry of a 3D shape from a single RGB image is a
fundamental task in computer vision and graphics. Existing shape recon-
struction models utilize a neural network to learn a parametric function
that maps the input image into a mesh [113, 68, 86, 199, 211, 134], a point-
cloud [53, 151, 2, 84, 186, 211], a voxel grid [14, 34, 57, 159, 162, 180, 208]
or an implicit surface [120, 27, 136, 168, 209, 121]. An alternative line of
research focuses on compact low-dimensional representations that recon-
struct 3D objects by decomposing them into simpler parts, called primitives
[191, 141, 37, 61]. Primitive-based representations seek to infer semantically
consistent part arrangements across different object instances and provide a
more interpretable alternative, compared to representations that only focus
on capturing the global object geometry. In Chapter 2, we proposed an
unsupervised model for decomposing a 3D object into its constituent parts
using superquadric surfaces as geometric primitives. While superquadric
surfaces allow for a more diverse shape vocabulary in comparison to previ-
ous works, they still have limited representation power and cannot capture
complex geometries. Similarly, more recent primitive-based approaches that
rely on spheres [72] and convexes solids[37, 25] require a large number of
primitives for extracting geometrically accurate reconstructions. However,
using more primitives comes at the expense of the interpetability of the
reconstruction, namely the final decompositions are less meaningful.

To address this, in this chapter, we introduce Neural Parts, a novel
3D primitive representation that is more expressive and interpretable, in
comparison to alternatives that are limited to convex shapes. We argue that a
primitive should be a non trivial genus-zero shape with well defined implicit
and explicit representations. These characteristics allow us to efficiently
combine primitives and accurately represent arbitrarily complex geometries.
To this end, we pose the task of primitive learning as the task of learning a
family of homeomorphic mappings between the 3D space of a simple genus-

31

32 learning expressive 3d shape abstractions with invertible networks

(a) Convexes

(b) Neural Parts

Figure 3.1: Expressive Primitives. We address the trade-off between reconstruc-
tion quality and sparsity (i.e. number of parts) in primitive-based methods. Prior
work [191, 141, 143, 37] has considered convex shapes as primitives, which due to
their simplicity, require a large number of parts to accurately represent complex
shapes. This results in less interpretable shape abstractions (i.e. primitives are not
identifiable parts e.g. legs, arms etc.). In this work, we propose Neural Parts, a
novel 3D primitive representation that can represent arbitrarily complex genus-
zero shapes and thus yields geometrically more accurate and semantically more
meaningful parts compared to simpler primitives.

zero shape (e.g. sphere, cube, ellipsoid) and the 3D space of the target object.
We implement this mapping using an Invertible Neural Network (INN)
[45]. Being able to map 3D points in both directions allows us to efficiently
compute the explicit representation of each primitive, namely its tesselation
as well as the implicit representation, i.e. the relative position of a point
wrt. the primitive’s surface. In contrast to prior work [191, 141, 37, 143]
that directly predict the primitive parameters (i.e. centroids and sizes for
cuboids and superquadrics and hyperplanes for convexes), we employ the
INN to fully define each primitive. Note that while a homeomorphism
preserves the genus of the shape it does not constrain it in any other way.
As a result, while existing primitives are constrained to a specific family of
shapes (e.g. ellipsoids), our primitives can capture arbitrarily complicated
genus-zero shapes (see Fig. 3.1). We demonstrate that Neural Parts can be

3.1 related work 33

learned in an unsupervised fashion (i.e. without any primitive annotations),
directly from unstructured 3D point clouds by ensuring that the assembly
of predicted primitives accurately reconstructs the target.

In summary, we make the following contributions: We propose the
first model that defines primitives as a homeomorphic mapping between
two topological spaces through conditioning an INN on an image. Since
the homeomorphism does not impose any constraints on the primitive
shape, our model effectively decouples geometric accuracy from parsimony
and as a result captures complex geometries with an order of magnitude
fewer primitives. Experiments on ShapeNet [19], D-FAUST [13] and Frei-
HAND [225] demonstrate that our model can parse objects into more
expressive and semantically meaningful shape abstractions compared to
models that rely on simpler primitives. The code to reproduce the exper-
iments presented in this chapter can be found at https://paschalidoud.
github.io/neural_parts.

3.1 related work

Learning-based 3D reconstruction approaches can be categorized based
on the type of their output representation to: depth-based [87, 73, 142, 47],
voxel-based [34, 207, 57, 159], point-based [53, 151, 2], mesh-based [113, 68,
86], implicit-based [120, 27, 136] and primitive-based [191, 130, 141]. Here,
we primarily focus on primitive-based methods that are more relevant to the
model presented in this chapter. Since our formulation is independent of a
specific INN implementation, a thorough discussion of INNs is beyond the
scope of this work, thus we refer the reader to [4] for a detailed overview.

3D Representations: Voxels [14, 34, 207, 57, 159, 180, 208] naturally capture
the 3D geometry by discretizing the shape into a regular grid. While several
efficient space partitioning techniques [119, 162, 183, 71, 161] have been
proposed to address their high memory and computation requirements,
their application is still limited. A promising new direction explored learn-
ing a deformation of the grid itself to better capture geometric details [58].
Pointclouds [53, 151, 2, 84, 186, 211] are more memory efficient but lack sur-
face connectivity, thus post-processing is necessary for generating the final
mesh. Most mesh-based methods [113, 68, 86, 199, 211, 64, 134, 24, 37, 219]
naturally yield smooth reconstructions but either require a deformable
template mesh [199] or represent the geometry as an atlas of multiple map-
pings [68, 39, 118]. To address these limitations, implicit models [120, 27,
136, 168, 209, 121, 128, 131, 6, 201, 60, 26, 129, 7, 67, 169, 83, 30, 146, 158, 132]

https://paschalidoud.github.io/neural_parts
https://paschalidoud.github.io/neural_parts

34 learning expressive 3d shape abstractions with invertible networks

have recently gained popularity. These methods represent a 3D shape as the
level-set of a distance or occupancy field implemented as a neural network,
that takes a context vector and a query point and predicts either a signed
distance value [136, 121, 7, 67, 181] or a binary occupancy value [120, 27]
for the query point. While these methods result in accurate reconstructions,
they lack interpretability as they do not consider the part-based object
structure. Instead, in this work, we focus on part-based representations and
showcase that our model simultaneously yields both geometrically accurate
and interpretable reconstructions. Furthermore, in contrast to implicit mod-
els, that require expensive iso-surfacing operations (i.e. marching cubes) to
extract a mesh, our model directly predicts a high resolution mesh for each
part, without any post-processing.

Structured-based Representations: This line of research seeks to decom-
pose 3D shapes into semantically meaningful simpler parts using either
supervision in terms of the primitive parameters [226, 130, 106, 124, 59, 107,
174, 111] or without any part-level annotations [191, 141, 40, 143, 61, 37, 93].
Neural Parts perform primitive-based learning in an unsupervised man-
ner. Traditional primitives include cuboids [191, 130, 226, 106, 124, 50],
superquadrics [141, 143], convexes [37, 25, 56], CSG trees [173] or shape
programms [51, 187, 114]. Due to the simplicity of the shapes of traditional
primitives, the reconstruction quality of existing part-based methods is
coupled with the number of primitives, namely a larger number of primi-
tives results in more accurate reconstructions (see Fig. 3.5). However, these
reconstructions are less parsimonious and the constituent primitives of-
ten lack a semantic interpretation (i.e. are not recognizable parts). Instead,
Neural Parts are not restricted to convex shapes and can capture complex
geometries with a few primitives. In recent work, [60] propose a 3D repre-
sentation that decomposes space into a structured set of implicit functions
[61]. However, extracting a single part from their prediction is not possible.
This is not the case for our model.

Shape Deformations: Deforming a single genus-zero shape into more
complicated shapes with graph convolutions [199], MLPs [68, 190] and
Neural ODEs [69] has demonstrated impressive results. Groueix et al. [68]
were among the first to employ an MLP to implement a homeomorphism
between a sphere and a complicated shape. Note that since the deformation
is implemented via an MLP, computing the inverse mapping becomes
infeasible. Very recently, [69] proposed to learn the deformation of a single
ellipsoid using several Neural ODEs. While [69] propose an invertible
model, it does not consider any part decomposition or latent object structure.

3.2 method 35

Instead, we use the inverse mapping of the homeomorphism to define the
predicted shape as the union of primitives, by discarding points from a
part’s surface that are internal to any other part. Thus our model learns to
combine multiple genus-zero primitives and is able to reconstruct shapes
of arbitrary genus. In addition, we formulate our optimization objective
using both the forward and the inverse mapping of the homeomorphism,
which in turn allows us to utilize both volumetric and surface information
during training. This facilitates imposing additional constraints on the
predicted primitives e.g. normal consistency and parsimony and improves
performance.

3.2 method

Given an input image we seek to learn a representation with M primi-
tives that best describes the target object. We define our primitives via a
deformation between shapes that is parametrized as a learned homeomorphism
implemented with an Invertible Neural Network (INN). Using an INN
allows us to efficiently compute the implicit and explicit representation
of the predicted shape and impose various constraints on the predicted
parts. In particular, for each primitive, we seek to learn a homeomorphism
between the 3D space of a simple genus-zero shape and the 3D space of
the target object, such that the deformed shape matches a part of the target
object. Due to its simple implicit surface definition and tesselation, we
employ a sphere as our genus-zero shape. We refer to the 3D space of the
sphere as latent space and to the 3D space of the target as primitive space.

In Sec. 3.2.1, we present the explicit and implicit representation of our
primitives as a homeomorphism of a sphere. Subsequently, in Sec. 3.2.2,
we present our novel architecture for predicting multiple primitives using
homeomorphisms conditioned on the input image. Finally, in Sec. 3.2.3, we
formulate our optimization objective.

3.2.1 Primitives as Homeomorphic Mappings

A homeomorphism is a continuous map between two topological spaces
Y and X that preserves all topological properties. Intuitively a homeomor-
phism is a continuous stretching and bending of Y into a new space X. In
our 3D topology, a homeomorphism φθ : R3 → R3 is

x = φθ(y) and y = φ−1
θ (x) (3.1)

36 learning expressive 3d shape abstractions with invertible networks

Figure 3.2: Method Overview. Our model comprises two main components: A
Feature Extractor which maps an input image into a per-primitive shape embedding
and a Conditional Homeomorphism that deforms a sphere into M primitives and
vice-versa. First, the feature encoder maps the input to a global feature representation
F. Then, for every primitive m, F is concatenated with a learnable primitive embed-
ding Pm to generate the shape embedding Cm for this primitive. The Conditional
Homeomorphism φθ(·; Cm) is implemented by a stack of L conditional coupling
layers. Applying the forward mapping on a set of points Ys, randomly sampled on the
surface of the sphere, generates points on the surface of the m-th primitive Xm

p (3.9).
Using the inverse mapping φ−1

θ (·; Cm), allows us to compute whether any point in 3D
space lies inside or outside a primitive (3.7). We train our model using both surface
(Lrec,Lnorm) and occupancy (Locc) losses to simultaneously capture fine object details
and volumetric characteristics of the target object. The use of the inverse mapping
allows us to impose additional constraints (e.g. discouraging inter-penetration) on
the predicted primitives (Loverlap,Lcover).

where x and y are 3D points in X and Y and φθ : Y → X, φ−1
θ : X →

Y are continuous bijections. In our setting, Y and X correspond to the
latent and the primitive space respectively. Using the explicit and implicit
representation of a sphere with radius r, positioned at (0, 0, 0) and the
homeomorphic mapping from (3.1), we can now define the implicit and
explicit representation of a single primitive.

Explicit Representation: The explicit representation of a primitive, parametrized
as a mesh with vertices Vp and faces Fp, can be obtained by applying the
homeomorphism on the sphere vertices V and faces F as follows:

Vp = {φθ(vj), ∀ vj ∈ V}
Fp = F .

(3.2)

3.2 method 37

Note that applying φθ on the sphere vertices V alters their location in
the primitive space, while the vertex arrangements (i.e. faces) remain un-
changed. Furthermore, since our primitives are defined as a deformation of
a sphere mesh of arbitrarily high resolution, we can also obtain primitive
meshes of arbitrary resolutions without any post-processing, e.g. marching-
cubes.

Implicit Representation: The implicit representation of a primitive can be
derived by applying the inverse homeomorphic mapping on a 3D point x
as follows

g(x) = ‖φ−1
θ (x)‖2 − r. (3.3)

To evaluate the relative position of a point x wrt. the primitive surface it
suffices to evaluate whether φ−1

` (x) lies inside, outside or on the surface of
the sphere. Namely, points that are internal to the sphere are also inside
the primitive and points that are outside the sphere are also outside the
primitive surface. Note that computing g(x) in (3.3) is only possible because
φθ(x) is implemented with an INN.

Multiple Primitives: The homeomorphism in (3.1) implements a single
deformation. However, we seek to predict multiple primitives (i.e. deforma-
tions) conditioned on the input. Hence, we define a conditional homeomor-
phism as:

x = φθ(y; Cm) and y = φ−1
θ (x; Cm) (3.4)

where Cm is the shape embedding for the m-th primitive and is predicted
from the input. Note that for different shape embeddings a different home-
omorphism is defined.

3.2.2 Network Architecture

Our architecture comprises two main components: (i) the feature extractor
that maps the input to a vector of per-primitive shape embeddings {Cm}M

m=1
and (ii) the conditional homeomorphism that learns a homeomorphic mapping
conditioned on the shape embedding. The overall architecture is illustrated
in Fig. 3.2.

Feature Extractor: The first part of the feature extractor module is a ResNet-
18 [75] that extracts a feature representation F ∈ RD from the input image.
Subsequently, for every primitive m, F is concatenated with a learnable
primitive embedding Pm ∈ RD to derive a shape embedding Cm ∈ R2D for
this primitive.

38 learning expressive 3d shape abstractions with invertible networks

Conditional Homeomorphism: We implement the INN using a Real NVP
[46] due to its simple formulation. A Real NVP models a bijective mapping
by stacking a sequence of simple bijective transformation functions. For
each bijection, typically referred to as affine coupling layer, given an input
3D point (xi, yi, zi), the output point (xo, yo, zo) is

xo = xi

yo = yi

zo = zi exp (sθ (xi, yi)) + tθ (xi, yi)

(3.5)

where sθ : R2 → R and tθ : R2 → R are scale and translation functions
implemented with two arbitrarily complicated networks. Namely, in each
bijection, the input is split into two, (xi, yi) and zi. The first part remains
unchanged and the second undergoes an affine transformation with sθ(·)
and tθ(·). We follow [46] and we enforce that consecutive affine coupling
layers scale and translate different input dimensions. Namely, we alternate
the splitting between the dimensions of the input randomly.

However, the original Real NVP cannot be directly applied in our setting
as it does not consider a shape embedding. To address this, we augment
the affine coupling layer as follows: we first map (xi, yi) into a higher
dimensional feature vector using a mapping, pθ(·), implemented as an
MLP. This is done to increase the relative importance of the input point
before concatenating it with the high-dimensional shape embedding Cm.
The conditional affine coupling layer becomes

xo = xi

yo = yi

zo = zi exp (sθ ([Cm; pθ (xi, yi)]))

+ tθ ([Cm; pθ (xi, yi)])

(3.6)

where [·; ·] denotes concatenation. A graphical representation of our condi-
tional coupling layer is provided in Fig. 3.3.

3.2.3 Training

Due to the lack of primitive annotations, we train our model by minimizing
the geometric distance between the target and the predicted shape. In the
following, we define the implicit and explicit representation of the predicted
shape as the union of M primitives.

3.2 method 39

Figure 3.3: Conditional Coupling Layer. Pictorial representation of (3.20). The
input point (xi, yi, zi) is passed into a coupling layer that scales and translates
one dimension of the input based on the other two and the per-primitive shape
embedding Cm. The scale factor s and the translation amount t are predicted by
two MLPs, sθ(·) and tθ(·). pθ(·) is another MLP that increases the dimensionality
of the input point before it is concatenated with Cm.

The implicit surface of the m-th primitive can be derived from (3.3), by
applying the inverse homeomorphic mapping on points in 3D space as
follows

gm(x) = ‖φ−1
θ (x; Cm)‖2 − r, ∀ x ∈ R3 (3.7)

The implicit surface representation of the predicted object is defined as the
union of all per-primitive implicit functions

G(x) = min
m∈0...M

gm(x), (3.8)

namely a point is inside the predicted shape if it is inside at least one
primitive.

Similarly, the explicit representation of the m-th primitive is a set of points
on its surface, let it be Xm

p , that are generated by applying the forward
homeomorphic mapping on points on the sphere surface Ys in the latent
space

Xm
p = {φθ(yj; Cm), ∀ yj ∈ Ys}. (3.9)

To generate points on the surface of the predicted shape Xp, we first need
to generate points on the surface of each primitive and then discard the

40 learning expressive 3d shape abstractions with invertible networks

ones that are inside any other primitive. From (3.8) this can be expressed as
follows:

Xp = {x | x ∈
⋃
m
Xm

p s.t. G(x) ≥ 0}. (3.10)

Loss Functions: Our loss L seeks to minimize the geometric distance be-
tween the target and the predicted shape and is composed of five loss
terms:

L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt)

+ Loverlap(Xo) + Lcover(Xo)
(3.11)

where Xt = {{xi, ni}}N
i=1 comprises surface samples of the target shape

and the corresponding normals, and Xo = {{xi, oi}}V
i=1 denotes a set of

occupancy pairs, where xi corresponds to the location of the i-th point
and oi denotes whether xi lies inside (oi = 1) or outside (oi = 0) the
target. Note that our optimization objective comprises both occupancy
(3.13) and surface losses (3.12)+(3.14), since they model complementary
characteristics of the target object e.g. the surface loss attends to fine details
that may have small volume, whereas the occupancy loss more efficiently
models empty space. We empirically observe that using both significantly
improves reconstruction (see Sec. 3.4).

Reconstruction Loss: We measure the surface reconstruction quality using
a bidirectional Chamfer loss between the points Xp on the surface of the
predicted shape and the points on the target object Xt as follows:

Lrec(Xt,Xp) =
1
|Xt| ∑

xi∈Xt

min
xj∈Xp

‖xi − xj‖2
2 +

1
|Xp| ∑

xj∈Xp

min
xi∈Xt

‖xi − xj‖2
2

(3.12)

The first term of (3.12) measures the average distance of all ground truth
points to the closest predicted points and the second term measures the
average distance of all predicted points to the closest ground-truth points.

Occupancy Loss: The occupancy loss ensures that the volume of the pre-
dicted shape matches the volume of the target. Intuitively, we want to ensure
that the free and the occupied space of the predicted and the target object
coincide. To this end, we convert the implicit surface of the predicted shape

3.2 method 41

from (3.8) to an indicator function and compute the binary cross-entropy
loss over all volume samples Xo

Locc(Xo) = ∑
(x,o)∈Xo

Lce

(
σ

(
−G(x)

τ

)
, o
)

. (3.13)

Lce(·, ·) is the cross-entropy loss, σ(·) is the sigmoid function and τ is a
temperature hyperparameter that defines the sharpness of the boundary

of the indicator function. Note that σ
(
−G(x)

τ

)
is 1 when x is inside the

predicted shape and 0 otherwise.

Normal Consistency Loss: The normal consistency loss ensures that the
orientation of the normals of the predicted shape will be aligned with the
normals of the target. We penalize misalignments between the predicted
and the target normals by minimizing the cosine distance as follows

Lnorm(Xt) =
1
|Xt| ∑

(x,n)∈Xt

(
1−

〈
∇xG(x)
‖∇xG(x)‖2

, n
〉)

(3.14)

where 〈·, ·〉 is the dot product. Note that the surface normal of the predicted
shape for a point x is simply the gradient of the implicit surface wrt. to
point x and can be efficiently computed with automatic differentiation.

Overlapping Loss: To encourage semantically meaningful shape abstrac-
tions, (i.e. primitives represent different object parts), we introduce a non-
overlapping loss that penalizes any point in space that is internal to more
than λ primitives

Loverlap(Xo) =
1
|Xo|

max

(
0,

M

∑
m=1

σ

(
−gm(x)

τ

)
− λ

)
(3.15)

Coverage Loss: The coverage loss makes sure that all primitives cover
parts of the predicted shape. In practice, it prevents degenerate primitive
arrangements, where some primitives are very small and do not contribute
to the reconstruction. We implement this loss by encouraging that each
primitive contains at least k points of the target object:

Lcover(Xo) =
M

∑
m=1

∑
x∈Nm

k

max (0, gm(x)) . (3.16)

Here Nm
k ⊂ {(x, o) ∈ Xo|o = 1} contains the k points with the minimum

distance from the m-th primitive.

42 learning expressive 3d shape abstractions with invertible networks

3.3 experimental evaluation

3.3.1 Datasets

We evaluate our model on D-FAUST [13], FreiHAND [225] and ShapeNet [19].
D-FAUST contains 38, 640 meshes of humans performing various tasks such
as “chicken wings" and “running on spot". We follow [143] and use 70%,
20% and 10% for the train, test and validation splits. Furthermore, we
filter out the first 20 frames for each sequence that contain the unnatural
“neutral pose" necessary for calibration purposes. Note that for D-FAUST,
we do not normalize meshes to the unit cube in order to retain the vari-
ety of the human body. For ShapeNet [19], we perform category specific
training using the same image renderings and train/test splits as [34]. For
D-FAUST [13], we follow the experimental evaluation proposed in [143]
and for FreiHAND [225], we select the first 5000 hand poses and generate
meshes using the provided MANO parameters [165]. We render them from
a fixed orientation and use 70%, 20%, 10% for the train, test and validation
splits.

3.3.2 Metrics

We evaluate our model and our baselines using the volumetric Intersection-
over-Union (IoU) and the Chamfer-L1 distance. We obtain unbiased low-
variance estimates for the IoU by sampling 100, 000 points from the bound-
ing volume and determining if the points lie inside or outside the tar-
get/predicted mesh. Similarly, we obtain an unbiased low-variance estima-
tor of the Chamfer-L1 distance by sampling 10, 000 points on the surface of
the target/predicted mesh.

Volumetric IoU is defined as the quotient of the volume of the intersection
of the target Ot and the predicted Op object and the volume of their union.

IoU(Ot, Op) =
| V(Ot ∩Op) |
| V(Ot ∪Op) |

(3.17)

where V(.) is a function that computes the volume of a mesh.
The Chamfer-L1 distance is defined between a set of points sampled on

the surface of the target and the predicted mesh. We denote X = {xi}N
i=1

3.3 experimental evaluation 43

the set of points sampled on the surface of the target mesh and Y = {yi}M
i=1

the set of points sampled on the surface of the predicted mesh.

Chamfer-L1(X ,Y) = 1
N ∑

x∈X
min
y∈Y
‖x− y‖+ 1

M ∑
y∈Y

min
x∈X
‖y− x‖ (3.18)

The first term of (3.18) measures the completeness of the predicted shape,
namely how far is on average the closest predicted point from a ground-
truth point. The second term measures the accuracy of the predicted shape,
namely how far on average is the closest ground-truth point from a pre-
dicted point. Note that during the evaluation we do not sample points on
the sphere to generate points on the surface of the primitives. Instead we
use the predicted meshes to ensure that the generated points are uniformly
distributed on the surface of the predicted object.

3.3.3 Baselines

In this section, we provide additional details regarding our baselines. For
a fair comparison, all baselines use the same feature extractor network,
namely ResNet18 [75].

SQs: In SQs [141], the authors employ a convolutional neural network
(CNN) to regress the parameters of a set of superquadric surfaces that best
describe the target object, in an unsupervised manner, by minimizing the
Chamfer-distance between points on the target and the predicted shape.
In order to have predictions, with variable number of primitives, each
primitive is associated with an existence probability. When the existence
probability of a primitive is below a threshold this primitive is not part of
the assembled object. We train SQs [141]1 using the provided PyTorch [144]
implementation with the default parameters. Similar to our model, we
sample 200 points on the surface of each primitive and 2, 000 on the surface
of the target object. We train SQs with a batch size of 32 until convergence.

H-SQs: H-SQs [143] consider a hierarchical, geometrically more accurate
decomposition of parts using superquadrics. In particular, H-SQs employ
a neural network architecture that recursively partitions objects into their
constituent parts by building a latent vector that jointly encodes both
the part-level hierarchy and the part geometries. H-SQs are trained in an
unsupervised fashion, with an occupancy loss function such that the model
learns to classify whether points sampled in the bounding box that contains

1 https://superquadrics.com/

https://superquadrics.com/

44 learning expressive 3d shape abstractions with invertible networks

OccNet SQs H-SQs CvxNet Ours

0 10 20 30 40 50

primitives

0.5

0.6

0.7

IO
U

0 10 20 30 40 50

primitives

0.05

0.10

0.15

0.20

C
h
a
m

fe
r-
L

1

Figure 3.4: Trade-off Reconstruction Quality and # Primitives. We evaluate the
reconstruction quality of primitive-based methods on the D-FAUST test set for dif-
ferent number of primitives. Neural Parts (purple) outperform CvxNet (turquoise),
SQs (orange) and H-SQs (magenta) in terms of both IoU (↑) and Chamfer-L1 (↓) for
any primitive configuration, even when using as little as 2 primitives. In addition,
we show that our reconstructions are competitive to OccNet (dashed) which does
not provide a primitive-based representation and requires expensive post-processing
for extracting surface meshes.

the target object lie insider or outside the union of the predicted primitives.
We train H-SQs [143] using the PyTorch code provided by the authors. Note
that the maximum number of primitives for H-SQs needs to be a power
of 2, hence we train with a different number of primitives than the other
baselines. Again, we train H-SQs with a batch size of 32 until convergence.

CvxNet: CvxNet [37] propose to reconstruct a 3D shape as a collection of
convex hulls. We train CvxNet [37]2 using the provided TensorFlow [1]
code with the default parameters. To ensure that the evaluation is consistent
and fair, we extract meshes using their codebase and evaluate the predicted
primitives using our evaluation code. For all datasets, we train CvxNet with
a batch size of 32 until convergence using their default parameters.

OccNet: In our evaluation, we also include OccNet [120]3 which we train
using the provided code by the authors. In particular, OccNet is trained with
a batch size of 32 until convergence. While OccNet does not consider any
part-based decomposition of the target object and is not directly comparable
with our model, we include it in our analysis as a typical representative of
powerful implicit shape extraction techniques

2 https://cvxnet.github.io/
3 https://github.com/autonomousvision/occupancy_networks

https://cvxnet.github.io/
https://github.com/autonomousvision/occupancy_networks

3.3 experimental evaluation 45

Figure 3.5: Human Body Modelling. We visualize the target mesh and the predicted
primitives with Neural Parts (first row) and CvxNet (second) using 1, 2, 5, 8 and 10
primitives.

3.3.4 Representation Power

In this experiment, we train our model and our baselines on D-FAUST for
different number of primitives and measure their reconstruction quality
wrt. IoU and Chamfer-L1 distance. In particular, we train our model for 2, 5
and 8 primitives, CvxNet [37] and SQs [141] for 5, 10, 25 and 50 primitives
and H-SQs [143] for 4, 8, 16 and 32 primitives. We observe that our model
achieves more accurate reconstructions for any given number of primitives
and is competitive to OccNet that does not reason about parts. In particular,
our model achieves 67.3% IOU with only 5 primitives, whereas CvxNet,
with 10 times more primitives, achieves 62% (see Fig. 3.4). In Fig. 3.5, we
provide a qualitative comparison of reconstructions with different number
of parts and we observe that Neural Parts accurately capture the human
limbs with as little as one or two primitives, whereas CvxNet cannot capture
the arms even with 10 primitives.

3.3.5 Reconstruction Accuracy

Dynamic FAUST: In this experiment, we compare CvxNet and SQs with
50 primitives and H-SQs for a maximum number of 32 primitives to Neural
Parts with 5 primitives to showcase that our model can capture the human
body’s geometry using an order of magnitude less primitives. Qualitative
results from the predicted primitives using our model and the baselines

46 learning expressive 3d shape abstractions with invertible networks

Target OccNet SQs H-SQs CvxNet Ours

Figure 3.6: Single Image 3D Reconstruction on D-FAUST. The input image is
shown on the first column and the rest contain predictions of all methods: OccNet
(second), primitive-based predictions with superquadrics (third and fourth) and
convexes (fifth) and ours with 5 primitives (last).

are summarized in Fig. 3.6. Note that OccNet is not directly comparable
with part-based methods, however, we include it in our analysis as a typical
representative of powerful implicit shape extraction techniques. We observe
that while all methods roughly capture the human pose, Neural Parts result
in a part assembly that is very close to the target object. While CvxNet with
50 primitives yield fairly accurate reconstructions, the final representation
lacks any part-level semantic interpretation. The quantitative evaluation of
this experiment is provided in Fig. 3.4.

FreiHAND: Similarly, we train our model, CvxNet and SQs with 5 and
H-SQs with 8 primitives on the FreiHAND dataset and we observe that Neu-

3.3 experimental evaluation 47

Input OccNet SQs H-SQs CvxNet Ours

OccNet SQs H-SQs CvxNet Ours

IoU 0.891 0.693 0.768 0.832 0.879

Chamfer-L1 0.038 0.093 0.077 0.059 0.057

Figure 3.7: Single Image 3D Reconstruction on FreiHAND. We compare our model
with OccNet, SQs and CvxNet with 5 primitives and H-SQs with 8 primitives. Our
model outperforms all primitive based methods in terms of both IoU (↑) and
Chamfer-L1 (↓) distance.

ral Parts yield more geometrically accurate reconstructions that faithfully
capture fine details, i.e. the position of the thumb, (see Fig. 3.7). In contrast,
CvxNet, H-SQs, SQs focus primarily on the structure of the predicted shape
and miss out fine details.

ShapeNet: We train our model with 5 primitives and CvxNet with 5 and 25
primitives on cars, planes and chairs and observe that our model results in
more accurate reconstructions than CvxNet with both 5 and 25 primitives
(see Fig. 3.8). When increasing the number of primitives to 25, CvxNet
improves in terms of reconstruction quality but the predicted primitives
lack semantic interpretation. For the case of chairs and planes, CvxNet with
25 primitives accurately capture the object’s geometry, but when we reduce
the primitives to 5 entire object parts are missing.

48 learning expressive 3d shape abstractions with invertible networks

Input OccNet CvxNet-5 CvxNet-25 Ours

IoU OccNet CvxNet - 5 CvxNet - 25 Ours

cars 0.763 0.650 0.666 0.697

planes 0.451 0.425 0.448 0.454

chairs 0.432 0.364 0.392 0.412

Figure 3.8: Single Image 3D Reconstruction on ShapeNet. We compare Neural
Parts to OccNet and CvxNet with 5 and 25 primitives. Our model yields semantic
and more accurate reconstructions with 5× less primitives.

3.4 ablation study

In this section, we investigate how various components of our system affect
the performance of Neural Parts on the single-view 3D reconstruction task
on the D-FAUST dataset. In Sec. 3.4.1, we examine the impact of the INN
on the performance of our model. Next, in Sec. 3.4.2, we investigate the
impact of pθ(·) and in Sec. 3.4.3, we discuss the effect of each loss term on
the overall performance of our model. Unless stated otherwise, we train all
models with 5 primitives for 300 epochs.

3.4.1 Invertibility

In this section, we examine the impact of the Invertible Neural Network
(INN) on the performance of Neural Parts. To this end, we implement a
variant of our model that does not consider the inverse mapping of the
homeomorphism, namely without the φ−1

θ (x). As a result, for this variant it

3.4 ablation study 49

is not possible to compute the union of parts, as formulated in (3.10), namely
we cannot discard points on a primitive’s surface that are internal to another
primitive when generating points on the surface of the predicted shape.
Moreover, we cannot impose any additional constraints on the predicted
primitives. Therefore, we train this variant using the reconstruction loss
between the target Xt and the predicted X p̂ shape, Lrec(Xt,X p̂) from (3.12)
as follows:

Lrec(Xt,X p̂) =
1
|Xt| ∑

xi∈Xt

min
xj∈X p̂

‖xi − xj‖2
2 +

1
|X p̂| ∑

xj∈X p̂

min
xi∈Xt

‖xi − xj‖2
2

(3.19)
where X p̂ = x ∈ ⋃

m Xm
p , namely the union of surface points on each

primitive.
Furthermore, we introduce an additional baseline that replaces the INN

with an MLP. Similar to AtlasNet [68], we use a 4-layer MLP to learn the
homeomorphic mappings between the sphere and the target object. Since
the homeomorphism is implemented via an MLP it is not possible to define
its inverse mapping. Thus, also this baseline is trained using the loss of
(3.19). Note that this baseline is slightly different from AtlasNet [68] because
instead of having a single MLP for each homeomorphism, we have one MLP
for the M homeomorphisms. In particular, for this baseline, we implement
the decoder architecture proposed in [68].

(a) w/o φ−1
θ (x) (b) AtlasNet (c) Ours (d) w/o φ−1

θ (x) (e) AtlasNet (f) Ours

Figure 3.9: Impact of the INN. We visualize the predicted primitives for our model
(third and sixth column), a variant of our model that ignores the inverse mapping
of the homeomorphism (first and fourth column) and the AtlasNet-sphere baseline
that implements the homeomorphism with an MLP.

Tab. 3.1 summarizes the quantitative comparison between our model and
the aforementioned baselines. Note that for the AtlasNet-sphere baseline,
we cannot compute the IoU since it is not possible to enforce that the
predicted primitives do not degenerate to “sheets”, which contain no points
(zero volume primitives). Indeed, from our evaluation, we observe that

50 learning expressive 3d shape abstractions with invertible networks

almost all predicted primitives (see Fig. 3.10) have zero volume and also
inverted normals, which means that the sphere has folded on itself (self-
intersections). This is only possible if the MLP is not implementing a
homeomorphism. Due to the aforementioned issues, the AtlasNet-sphere
cannot be used for learning primitives, however, we validate that it achieves
high scores in terms of Chamfer-L1 distance, which is justified as AtlasNet-
sphere is optimized solely on this metric.

w/o φ−1
θ (x) AtlasNet - sphere Ours

IoU 0.639 ∗ 0.673

Chamfer-L1 0.119 0.087 0.097

Table 3.1: Ablation Study of INN. This table shows a quantitative comparison of
our model wrt. a variant of our model that does not consider the inverse mapping
of the homeomorphism and a second baseline that replaces the INN with an MLP
for learning the homeomorphic mapping. We refer to the latter as AtlasNet - sphere,
as it is a variant of the original AtlasNet method [68]. We note that our model
outperforms both baseline both in terms of IoU and Chamfer-L1 distance.

On the contrary, our method always learns valid homeomorphisms
even when the inverse mapping (φ−1

θ (·)) is not used during training.
This stems from the use of the invertible network, which implements
a bijection that makes self-intersections impossible. Formally, for a self-
intersection, two different points on the sphere need to be mapped onto
the same point on the primitive space. However, this contradicts the bijec-
tion; hence our model cannot have self-intersections. This becomes evident
from Fig. 3.9a+Fig. 3.9d, where we observe that the predicted primitives
do not have inverted normals. Note that without the inverse mapping we
cannot enforce that primitives will not interpenetrate, hence they are not
semantically meaningful.

Figure 3.10: Predicted primitives with AtlasNet-sphere. We visualize the indi-
vidual primitives for the predictions of AtlasNet-sphere. Note that some of the
predicted primitives are hollow (first, third, sixth and eighth), some have holes
(second, seventh) and all of them have inverted normals.

3.4 ablation study 51

3.4.2 Effect of pθ(·)

The original Real NVP [46] cannot be directly applied in our setting as
it does not consider a shape embedding. To address this, we augment
the affine coupling layer as follows: we first map (xi, yi) into a higher
dimensional feature vector using a mapping, pθ(·), implemented as an
MLP. This is done to increase the relative importance of the input point
before concatenating it with the high-dimensional shape embedding Cm.
The conditional affine coupling layer becomes

xo = xi

yo = yi

zo = zi exp (sθ ([Cm; pθ (xi, yi)])) + tθ ([Cm; pθ (xi, yi)])

(3.20)

where [·; ·] denotes concatenation. A graphical representation of our condi-
tional coupling layer is provided in Fig. 3.11a. In this section, we examine
the impact of the mapping pθ(·) on the performance of our model. In
particular, instead of first mapping the input point (xi, yi, zi) into a higher
dimensional space and then concatenating it with the per-primitive shape
embedding Cm, we concatenate it as is (see Fig. 3.11b).

(a) Ours (b) Conditional Coupling Layer w/o pθ(·)

Figure 3.11: Conditional Coupling Layer. Pictorial representation of our conditional
affine coupling layer. The input point (xi, yi, zi) is passed into a coupling layer that
scales and translates one dimension of the input based on the other two and the
per-primitive shape embedding Cm. The scale factor s and the translation amount t
are predicted by two MLPs, sθ(·) and tθ(·). pθ(·) is another MLP that increases the
dimensionality of the input point before it is concatenated with Cm.

We observe that removing pθ(·) makes it harder for the network to
produce a scaling and translation dependent on the input point due to
the large difference in the number of dimensions compared to the shape

52 learning expressive 3d shape abstractions with invertible networks

w/o pθ(·) Ours

0 50 100 150 200 250 300

epochs

0.02

0.03

0.04

0.05

T
ra

in
in

g
L

o
ss

(a) Evolution of Training Loss

0 50 100 150 200 250 300

epochs

0.5

0.6

0.7

0.8

0.9

T
ra

in
in

g
Io

U

(b) Evolution of Training IoU

Figure 3.12: Training Convergence w/o pθ(·). We illustrate the training evolution
over 300 epochs in terms of training loss from (3.11) and IoU for our method with
(purple) and without pθ(·) (red). We observe that our method converges smoother
and to a lower loss and higher IoU when using pθ(·).

embedding Cm. This results in slower convergence in comparison to our
full model (see Fig. 3.12). Moreover, we also notice that the reconstruction
quality becomes worse both in terms of IoU and Chamfer-L1 distance (see
Tab. 3.2).

w/o pθ(·) Ours

IoU 0.638 0.673

Chamfer-L1 0.106 0.097

Table 3.2: Ablation Study on pθ(·). This table shows a numeric comparison of our
approach wrt. a variant of our model that does not utilize pθ(.), namely instead of
first mapping the input point (xi, yi, zi) into a higher dimensional space, we directly
concatenate the input point with the per-primitive shape embedding Cm.

3.4.3 Loss Functions

Neural Parts are trained in an unsupervised fashion, without any primitive
annotations. To address, the lack of part-level supervision, we learn this
task by minimizing the geometric distance between the target and the
predicted shape. In this section, we discuss how each loss term affects the
performance of our model on the single-view 3D reconstruction task. In
particular, we train 5 variants of our model and for each one we omit one of
the loss terms. We provide both quantitative (see Tab. 3.3) and qualitative

3.4 ablation study 53

comparison (see Fig. 3.13) for the 5 different scenarios. For a fair comparison
all models are trained for the same number of epochs.

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

IoU 0.642 0.643 0.669 0.670 0.668 0.673

Chamfer-L1 0.125 0.150 0.096 0.098 0.096 0.097

Table 3.3: Ablation Study on Loss Terms. We investigate the impact of each loss
term on the reconstruction accuracy of our model. We report the IoU (↑) and the
Chamfer-L1 distance (↓) on the single-view 3D reconstruction task on D-FAUST
dataset.

w/o Reconstruction Loss: The reconstruction loss is a bidirectional Cham-
fer loss between the surface points on the target and the predicted shape.
We note that removing Lrec(Xt,Xp) results in degenerate primitive arrange-
ments that fail to capture the object geometry.

w/o Occupancy Loss: The occupancy loss enforces that the free and the oc-
cupied space of the predicted and the target object will coincide. Therefore,
when we remove Locc(Xo) from our optimization objective, we observe
that the predicted primitives accurately represent geometric parts of the
human body but fail to capture the empty space (see hands and legs in
first column of Fig. 3.13). Note that the points on the primitive surface that
capture empty space have a small distance from points on the target object
and as a result, Lrec(Xt,Xp) has small values for these points, which makes
it difficult to penalize them for covering unoccupied space.

w/o Normal Consistency Loss: The normal consistency loss enforces that
the normals of the predicted primitives will be aligned with the normals
of the target object. We notice that when we remove Lnorm(Xt), our model
yields non-overlapping primitives that accurately capture the geometry of
different human body parts (see Fig. 3.15). However, at the locations where
one primitive meets its adjacent, the predicted primitives have inconsistent
normals, hence the connections seem unnatural. This can be better seen in
Fig. 3.14, where we provide close-ups on the locations where two primitives
meet and compare with our model. Our model, yields primitives with
smooth transitions that look more natural.

w/o Overlapping Loss: The overlapping loss encourages semantically mean-
ingful shape abstractions, where primitives represent distinct geometric
parts. To this end, we introduce the Loverlap(Xo) loss from (3.15) to discour-

54 learning expressive 3d shape abstractions with invertible networks

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

w/o Locc w/o Lrec w/o Lnorm w/o Loverlap w/o Lcover Ours

Figure 3.13: Ablation Study on Loss Terms. Qualitative evaluation of the impact of
the 5 loss terms on the performance of our model. We train Neural Parts, without
each loss term and visualize the predicted primitives.

3.4 ablation study 55

(a) w/o Lnormal (b) Ours

(c) w/o Lnormal (d) Ours

Figure 3.14: Impact of Lnorm. When removing the Lnorm from the optimization
objective, the predicted primitives are semantically meaningful but the transitions
between one primitive to another are not smooth i.e. do not have consistent normals.
This becomes more evident when looking at the locations where primitives meet
(marked with a red rectangle). In contrast, our model has smooth transitions and
looks more “organic”.

age having multiple primitives “containing” the same points from the target
object. The reconstructions without the overlapping loss accurately capture
the geometry of the human body but fail to yield semantically meaningful
shape abstractions, since primitives completely penetrate one another (see
Fig. 3.13). In Fig. 3.16, we visualize the predicted primitives for various
humans and we notice that while they accurately capture the geometry of
the human body, they do not correspond to meaningful geometric parts. In
particular, there are 2 primitives that describe the right leg (primitive illus-
trated in blue and orange), 2 for the left leg (primitives illustrated in orange
and green) and 3 for the main body (blue, light blue and green). Since, we
want our primitives to correspond to semantic parts, this behaviour is not
desirable.

w/o Coverage Loss: The coverage loss makes sure that all primitives will
“cover” parts of the target object. In practice, it prevents primitives with
minimal volume (see Fig. 3.18, fourth column) that do not contribute to
the reconstruction. In Fig. 3.18, we note that when we remove Lcover(Xo)

56 learning expressive 3d shape abstractions with invertible networks

Figure 3.15: Predicted Primitives w/o Normal Consistency Loss. We visualize the
predicted primitives when training without the Lnormal and we observe that even
though the predicted primitives are expressive and have a semantic interpretation,
the locations where the primitives meet do not have consistent normals.

Figure 3.16: Predicted Primitives w/o Overlapping Loss. We visualize the predicted
primitives when training without the Loverlap and we observe that even though the
predicted primitives are expressive and accurately capture the 3D geometry of the
human body, they do not have a semantic interpretation, namely multiple primitives
describe the same object part.

3.4 ablation study 57

from our optimization objective, a primitive degenerates to a “sheet” that
contains no points but only has surface area (Fig. 3.17).

Figure 3.17: Impact of Lcover. When removing the Lcover some primitives become
very thin (with minimum volume) and do not contribute to the reconstruction loss.

Figure 3.18: Predicted Primitives w/o Coverage Loss. We visualize the predicted
primitives when training without the Lcover and observe that although some of
them are expressive and efficiently capture the 3D geometry, some primitives have
minimum volume hence, do not cover parts of the object and in turn, do not
contribute to the reconstruction loss.

3.4.4 Sensitivity to initialization

In this section, we investigate the sensitivity of our model to initialization,
namely we showcase that our model consistently yields almost identical
semantic parts for different random initializations. In particular, we train

58 learning expressive 3d shape abstractions with invertible networks

Target Run #1 Run #2 Run #3

Figure 3.19: Sensitivity to Initialization. The input image is shown on the first
column and the rest contain predictions of our method when trained three different
times with three different random seeds.

our model three times with three different random seeds on D-FAUST with
6 primitives and visualize the predicted primitives on various humans in
Fig. 3.19. We observe that while some of the predicted parts for Run#1
are slightly different from the parts in Run#2, 3, they are still semantically
meaningful.

3.4.5 Semantic Consistency

We now investigate the ability of our model to decompose 3D objects into
semantically consistent parts. Similar to [37], we use 5 representative vertex
indices provided by SMPL-X [145] (i.e. thumbs, toes and nose) and compute
the classification accuracy of those points when using the label of the closest
primitive. We compare with CvxNet with 5 and 50 primitives and note that
Neural Parts are more semantically consistent (see Fig. 3.20).

3.5 implementation details 59

L-thumb R-thumb L-toe R-toe Nose

CvxNet-5 61.1% 67.1% 98.2% 91.2% 98%

CvxNet-50 29% 37% 56.3% 58.1% 52%

Ours 91.9% 88.2% 99.8% 92.5% 100%

Figure 3.20: Semantic Consistency. We report the classification accuracy of semantic
vertices on the human body using the label of the closest primitive. Our predicted
primitives are consistently used for representing the same human part.

3.5 implementation details

In this section, we provide a detailed description of our network architecture.
We then describe our training protocol, our sampling strategy and provide
details on the computation of the metrics during training and testing.
Finally, we also provide additional details regarding our baselines.

3.5.1 Network Architecture

Here we describe the architecture of each individual component of our
model, illustrated in Fig. 3.2. Our architecture comprises two main compo-
nents: (i) a feature extractor that maps the input into a vector of per-primitive
shape embeddings {Cm}M

m=1 and (ii) the conditional homeomorphism that
learns a family of homeomorphic mappings between the sphere and the
target shape, conditioned on the shape embedding.

Feature Extractor: The first part of the feature extractor is the feature encoder.
In our experiments, the feature encoder is implemented with a ResNet-18

architecture [75] that is pre-trained on ImageNet [38]. From the original

60 learning expressive 3d shape abstractions with invertible networks

Figure 3.21: Feature Extractor.. The feature extractor predicts a vector of per-
primitive shape embeddings {Cm}M

m=1 conditioned on the input image. Note that
depending on the type of the input (e.g. pointcloud, voxel grid), a different feature
encoder module needs to be employed.

architecture, we remove the final fully connected layer and keep only the
feature vector of length 512 after average pooling. Subsequently, we use
2 fully connected layers to map this to the global feature vector F ∈ R256.
During training, we use the pre-trained batch statistics for normalization.
The primitive embedding {Pm}M

m=1 is a matrix of size M× 256, that stores
a vector per-primitive index that is concatenated with the global image
feature F and outputs a vector of shape embeddings {Cm ∈ R512}M

m=1
for every primitive. A pictorial representation of the feature extractor is
provided in Fig. 3.21.

Conditional Homeomorphism: The conditional homeomorphism is imple-
mented with a Real NVP [46]. It comprises 4 coupling layers and each
coupling layer consists of three components: sθ(·) that predicts the scaling
factor s, tθ(·) that predicts the translation amount t and pθ(·) that maps the
input 3D point to a higher dimensional space before concatenating it with
the per-primitive shape embedding Cm. In particular, sθ(·) is a 3-layer MLP
with hidden size equal to 256. After each layer we add ReLU non-linearities
except for the last layer, where we use a hard tanh with thresholds −10 and
10 (see Fig. 3.22a). Note that we use the tanh to avoid numerical instabilities
when computing the exponential of the scaling factor. tθ(·) is implemented
with the same architecture apart from the tanh activation in the final layer
(see Fig. 3.22b). Finally, pθ(·) is implemented with a 2-layer MLP with ReLU
non-linearities with hidden size 256 and output size 128. An illustration of
the components of the conditional homeomorphism is provided in Fig. 3.22.

3.5 implementation details 61

(a) sθ(·) predicts the scaling factor s (b) tθ(·) predicts the translation amount t

(c) pθ(·) maps the input point (xi , yi , zi) into a higher dimensional feature
space

Figure 3.22: Conditional Homeomorphism. The conditional homeomorphism is the
backbone of our architecture that given a vector of per-primitive shape embeddings
and a set of points on the sphere in the latent space maps them in the primitive
space of the target object and vice versa. Here, we visualize sθ(·), tθ(·) and pθ(·)
that comprise our affine coupling layer.

In particular, we split the dimensions of the input point (xi, yi, zi) in order
to scale and translate one of them based on the other two. In practice, this
is efficiently implemented via masking one of the dimensions, as illustrated
in Fig. 3.22c with gray. For completeness, in equation 3.21 we provide the
inverse of the conditional affine coupling layer of (3.5),

xi = xo

yi = yo

zi = (zo − tθ ([Cm; pθ (xo, yo)])) exp (−sθ ([Cm; pθ (xo, yo)]))

(3.21)

3.5.2 Training Protocol

In all our experiments, we use the Adam optimizer [96] with learning rate
η = 10−4 and no weight decay. For the other hyperparameters of Adam we
use the PyTorch defaults. Depending on the number of primitives, we train
our model with a different batch size and a different number of iterations.

62 learning expressive 3d shape abstractions with invertible networks

In particular, for 2 primitives, we use a batch size of 6 for 100k iterations
and we aggregate the gradients over 2 batches. For the experiments, with
5 primitives, we use a batch size of 4 for 150k iterations and we again
aggregate the gradients over 2 batches. For 8 and 10 primitives, we use
a batch size of 4 for 200k iterations and aggregate the gradients over 4
batches. We do not perform any data augmentation.

We weigh the loss terms of (3.11) with 1.0, 0.1, 0.01, 0.1, 0.01. Note that
we use smaller weights for Lnorm and Lcover since they act as regularizers
and we want our model to focus primarily on learning geometrically accu-
rate and semantically meaningful primitives. The impact of each term is
discussed in detail in Sec. 3.4.3. The temperature parameter τ in the occu-
pancy Locc and the overlap loss Loverlap is set to 4× 10−3. In addition, the
k term for the Loverlap is set to 1.95 since we want to penalize overlapping
primitives but ensure that they will be connected. Note that k = 1 results
in disconnected primitives and k = 2 allows primitives to overlap in pairs
of two. Hence we select k = 1.95 as we empirically observe that it balances
connectivity and interpenetration. Finally, we set the k to be equal to 10 for
the Lcover, as we empirically observe that it leads to good performance.

3.5.3 Sampling Strategy

In this section, we discuss our sampling strategy for generating the surface
samples Xt = {xi, ni}N

i=1, the occupancy pairs Xo = {xi, oi}V
i=1 and the

points on the sphere surface Ys = {yj}K
j=1.

Surface Samples: We generate samples on the surface of the target mesh by
sampling a face with probability proportional to its area and then sampling
a point uniformly in that face. We use the corresponding face normals to
generate point-normal pairs from the target mesh. During training, we
randomly sample 2, 000 points and normals on the target mesh.

Occupancy Pairs: We generate occupancy pairs by sampling 100, 000 points
uniformly in the unit cube centered at (0, 0, 0) for each mesh. Subsequently,
we compute which of these points lie inside or outside the mesh to generate
the occupancy labels. However, because the target objects have a small
volume compared to the unit cube, resampling uniformly from the 100, 000
occupancy pairs results in a small amount of points with positive labels.
This yields bad reconstructions for parts with small volume such as hands
and fingers. To address this, we sample from an unbalanced distribution
that, in expectation, results in an equal number of points with positive and

3.6 discussion 63

negative labels. However, we also compute importance sampling weights
in order to reweigh our loss and create an unbiased estimator of the loss
with uniform sampling similar to [141]. During training, we sample 5, 000
occupancy pairs.

Sphere Points: In order to generate points on the surface of each primitive,
we sample points uniformly on the surface of a sphere with radius r by
sampling points from a 3-D isotropic Gaussian and normalizing their length
to r. Note that this does not generate uniform samples on the surface of
the primitive due to different amounts of stretching and contracting of the
sphere by each homeomorphism. However, we empirically observe that
this sampling does not impact negatively the training of our model, thus
we leave sampling uniformly on the surface of each primitive for future
work. During training we sample 200 points for each primitive. In addition,
to generate meshes for the predicted primitives, we also need to compute
sphere surface points and corresponding faces. We achieve this using the
UV parametrization of the sphere [35]. For visualization purposes we use
2, 000 points sampled uniformly in latitude and longitude.

3.6 discussion

We have presented a novel primitive representation that is more expressive
and interpretable in comparison to alternatives that are limited to simpler
geometric primitives such as convex shapes. In particular, we posed the
task of primitive learning as the task of learning a family of homeomorphic
mappings between the 3D shape of a simple genus-zero shape and the 3D
shape of the target object. In contrast to prior work that directly predicts
the primitive parameters, we employ an INN to fully define each primitive.
Utilizing an INN allows us to easily define both the implicit and explicit
representation of each part. Our experiments demonstrate that our model
yields geometrically accurate and semantically meaningful shape abstrac-
tions using only a small number of components. In addition, we show that
Neural Parts outperform existing methods, that rely on simpler shapes,
both in terms of accuracy and semantic consistency.

While Neural Parts can be learned in an unsupervised fashion, i.e. with-
out any primitive annotations, 3D supervision in the form of a watertight
mesh is still required. We believe that it would be desirable to relax this
need of supervision and in future work attempt to learn the part-based de-
composition using differentiable rendering techniques. Additionally, while
Neural Parts do not impose any constraint on the predicted primitives, they

64 learning expressive 3d shape abstractions with invertible networks

still are genus-zero shape. Ideally, we would like to also relax this constraint
and be able to also have primitives of arbitrary genus.

Part II

Structure-Aware Part-based Representations

4
L E A R N I N G U N S U P E RV I S E D H I E R A R C H I C A L PA RT
D E C O M P O S I T I O N O F 3 D O B J E C T S

The whole is greater than the sum of parts.
— Aristotle

Within the first year of their life, humans develop a common-sense
understanding of the physical behavior of the world [8]. This understanding
relies heavily on the ability to properly reason about the arrangement of
objects in a scene. Early works in cognitive science [78, 10, 99] stipulate that
the human visual system perceives objects as a hierarchical decomposition
of parts. Interestingly, while this seems to be a fairly easy task for the
human brain, computer vision algorithms struggle to form such a high-
level reasoning, particularly in the absence of supervision.

The structure of a scene is tightly related to the inherent hierarchical
organization of its parts. At a coarse level, a scene can be decomposed into
objects and at a finer level each object can be represented with parts and
these parts with finer parts. Structure-aware representations go beyond
part-level geometry and focus on global relationships between objects and
object parts. In this work, we propose a structure-aware representation that
considers part relationships (Fig. 4.1) and models object parts with multiple
levels of abstraction, namely geometrically complex parts are modeled with
more components and simple parts are modeled with fewer components.
Such a multi-scale representation can be efficiently stored at the required
level of detail, namely with less parameters (Fig. 4.2).

Recent breakthroughs in deep learning led to impressive progress in 3D
shape extraction by learning a parametric function, implemented as a neural
network, that maps an input image to a 3D shape represented as a mesh [113,
68, 86, 199, 211, 134], a pointcloud [53, 151, 2, 84, 186, 211], a voxel grid [14,
34, 57, 159, 162, 180, 208], 2.5D depth maps [87, 73, 142, 47] or an implicit
surface [120, 27, 136, 168, 209, 121]. These approaches are mainly focused on
reconstructing the geometry of an object, without taking into consideration
its constituent parts. This results in non-interpretable reconstructions. To
address the lack of interpretability, researchers shifted their attention to
representations that employ shape primitives [191, 141, 107, 40, 37, 61,
140]. In Chapter 2 and 3, we introduced two primitive representations

67

68 learning unsupervised hierarchical part decomposition of 3d objects

Figure 4.1: Hierarchical Part Decomposition. We consider the problem of learning
structure-aware representations that go beyond part-level geometry and focus on
part-level relationships. Here, we show our reconstruction as an unbalanced binary
tree of primitives, given a single RGB image as input. Note that our model does not
require any supervision on object parts or the hierarchical structure of the 3D object.
We show that our representation is able to model different parts of an object with
different levels of abstraction, leading to improved reconstruction quality.

that allow for both geometrically accurate and semantically meaningful
shape abstractions. However, while they can recover the part-based object
decomposition, they cannot explicitly reason about part relationships.

To address this, in this chapter, we propose a novel neural network
architecture that recovers the latent hierarchical layout of an object without
structure supervision. In particular, we employ a neural network that learns
to recursively partition an object into its constituent parts by building
a latent space that encodes both the part-level hierarchy and the part
geometries. The predicted hierarchical decomposition is represented as
an unbalanced binary tree of primitives. More importantly, this is learned
without any supervision neither on the object parts nor their structure.
Instead, our model jointly infers these latent variables during training.

In summary, we make the following contributions: We jointly learn
to predict part relationships and per-part geometry without any part-
level supervision. The only supervision required for training our model
is a watertight mesh of the 3D object. Our structure-aware representa-

4.1 related work 69

Figure 4.2: Level of Detail. Our network represents an object as a tree of primitives.
At each depth level d, the target object is reconstructed with 2d primitives, This
results in a representation with various levels of detail. Naturally, reconstructions
from deeper depth levels are more detailed. We associate each primitive with a
unique color, thus primitives illustrated with the same color correspond to the
same object part. Note that the above reconstructions are derived from the same
model, trained with a maximum number of 24 = 16 primitives. During inference,
the network dynamically combines representations from different depth levels to
recover the final prediction (last column).

tion yields semantic shape reconstructions that compare favorably to the
state-of-the-art 3D reconstruction approach of [120], using significantly
less parameters and without any additional post-processing. Moreover,
our learned hierarchies have a semantic interpretation, as the same node
in the learned tree is consistently used for representing the same ob-
ject part. Experiments on the ShapeNet [19] and the Dynamic FAUST
(D-FAUST) dataset [13] demonstrate the ability of our model to parse ob-
jects into structure-aware representations that are more expressive and
geometrically accurate compared to approaches that only consider the
3D geometry of the object parts [191, 141, 61, 36]. The code to repro-
duce the experiments presented in this chapter can be found at https:
//github.com/paschalidoud/hierarchical_primitives.

4.1 related work

We now discuss the most related primitive-based and structure-aware shape
representations.

Supervised Structure-Aware Representations: The model presented in
this chapter is related to methods that learn structure-aware shape repre-
sentations that go beyond mere enumeration of object’s parts and recover
the higher level structural decomposition of objects based on part-level

https://github.com/paschalidoud/hierarchical_primitives
https://github.com/paschalidoud/hierarchical_primitives

70 learning unsupervised hierarchical part decomposition of 3d objects

relations [123]. Li et al. [106] represent 3D shapes using a symmetry hier-
archy [203] and train a recursive neural network to predict its hierarchical
structure. Their network learns a hierarchical organization of bounding
boxes and then fills them with voxelized parts. Note that, this model con-
siders supervision in terms of segmentation of objects into their primitive
parts. Closely related to [106] is StructureNet [124] which leverages a graph
neural network to represent shapes as n-ary graphs. StructureNet considers
supervision both in terms of the primitive parameters and the hierarchies.
Likewise, Hu et al. [79] propose a supervised model that recovers the 3D
structure of a cable-stayed bridge as a binary parsing tree. In contrast our
model is unsupervised, i.e., it does not require supervision neither on the
primitive parts nor the part relations.

Physics-Based Structure-Aware Representations: The task of inferring
higher-level relationships among parts has also been investigated in dif-
ferent settings. Xu et al. [210] recover the object parts, their hierarchical
structure and each part’s dynamics by observing how objects are expected
to move in the future. In particular, each part inherits the motion of its
parent and the hierarchy emerges by minimizing the norm of these lo-
cal displacement vectors. Kipf et al. [100] explore the use of variational
autoencoders for learning the underlying interaction among various mov-
ing particles. Steenkiste et al. [193] extend the work of [66] on perceptual
grouping of pixels and learn an interaction function that models whether
objects interact with each other at multiple frames. For both [100, 193], the
hierarchical structure emerges from interactions at multiple timestamps. In
contrast to [210, 100, 193], our model does not relate hierarchies to motion,
thus we do not require multiple frames for discovering the hierarchical
structure.

Supervised Primitive-Based Representations: Zou et al. [226] exploit
LSTMs in combination with a Mixture Density Network (MDN) to learn a
cuboid representation from depth maps. Similarly, Niu et al. [130] employ
an RNN that iteratively predicts cuboid primitives as well as their symmetry
and connectivity relationships from RGB images. More recently, Li et al.
[107] utilize PointNet++ [151] for predicting per-point properties that are
subsequently used for estimating the primitive parameters, by solving a
series of linear least-squares problems. In contrast to [226, 130, 151], which
require supervision in terms of the primitive parameters, our model is
learned in an unsupervised fashion. In addition, modelling primitives with
superquadrics, allows us to exploit a larger shape vocabulary that is not
limited to cubes as in [226, 130] or spheres, cones, cylinders and planes

4.2 method overview 71

as in [107]. Another line of work, complementary to ours, incorporates
the principles of constructive solid geometry (CSG) [104] in a learning
framework for shape modeling [173, 51, 187, 114]. These works require rich
annotations for the primitive parameters and the sequence of predictions.

Unsupervised Shape Abstraction: Closely related to our model are the
works of [191, 141] that employ a convolutional neural network (CNN)
to regress the parameters of the primitives that best describe the target
object, in an unsupervised manner. Primitives can be cuboids [191] or
superquadrics [141] and are learned by minimizing the discrepancy between
the target and the predicted shape, by either computing the truncated bi-
directional distance [191] or the Chamfer-distance between points on the
target and the predicted shape [141]. While these methods learn a flat
arrangement of parts, our structure-aware representation decomposes the
depicted object into a hierarchical layout of semantic parts. This results
in part geometries with different levels of granularity. Our model differs
from [191, 141] also wrt. the optimization objective. We empirically observe
that for both [191, 141], the proposed loss formulations suffer from various
local minima that stem from the nature of their optimization objective.
To mitigate this, we use the more robust classification loss proposed in
[120, 27, 136] and train our network by learning to classify whether points
lie inside or outside the target object. Very recently, [61, 36] explored such
a loss for recovering shape elements from 3D objects. Genova et al. [61]
leverage a CNN to learn to predict the parameters of a set of axis-aligned
3D Gaussians from a set of depth maps rendered at different viewpoints.
Similarly, Deng et al. [36] employ an autoencoder to recover the geometry
of an object as a collection of smooth convexes. In contrast to [61, 36], our
model goes beyond the local geometry of parts and attempts to recover the
underlying hierarchical structure of the object parts.

4.2 method overview

In this section, we describe our novel neural network architecture for
inferring structure-aware representations. Given an input I (e.g., RGB image,
voxel grid) our goal is to learn a neural network φθ , which maps the input
to a set of primitives that best describe the target object. The target object
is represented as a set of pairs X = {(xi, oi)}N

i=1, where xi corresponds to
the location of the i-th point and oi denotes its label, namely whether xi
lies inside (oi = 1) or outside (oi = 0) the target object. We acquire these N
pairs by sampling points inside the bounding box of the target mesh and

72 learning unsupervised hierarchical part decomposition of 3d objects

determine their labels using a watertight mesh of the target object. During
training, our network learns to predict shapes that contain all internal
points from the target mesh (oi = 1) and none of the external (oi = 0).
Additional details for our sampling strategy can be found in Sec. 4.4.3 We
discuss our sampling strategy in our sup.

Instead of predicting an unstructured set of primitives, we recover a hier-
archical decomposition over parts in the form of a binary tree of maximum
depth D as

P = {{pd
k}

2d−1
k=0 | d = {0 . . . D}} (4.1)

where pd
k is the k-th primitive at depth d. Note that for the k-th node at

depth d, its parent is defined as pd−1
b k

2 c
and its two children as pd+1

2k and pd+1
2k+1.

At every depth level, P reconstructs the target object with {1, 2, . . . ,M}
primitives. M is an upper limit to the maximum number of primitives and
is equal to 2D. More specifically, P is constructed as follows: the root node
is associated with the root primitive that represents the entire shape and is
recursively split into two nodes (its children) until reaching the maximum
depth D. This recursive partition yields reconstructions that recover the
geometry of the target shape using 2d primitives, where d denotes the
depth level (see Fig. 4.2). Throughout this chapter, the term node is used
interchangeably with primitive and always refers to the primitive associated
with this particular node.

Every primitive is fully described by a set of parameters λd
k that define its

shape, size and position in 3D space. Since not all objects require the same
number of primitives, we enable our model to predict unbalanced trees,
i.e. stop recursive partitioning if the reconstruction quality is sufficient.
To achieve this our network also regresses a reconstruction quality for each
primitive denoted as qd

k . Based on the value of each qd
k the network dynam-

ically stops the recursive partitioning process resulting in parsimonious
representations as illustrated in Fig. 4.1.

4.2.1 Network Architecture

Our network comprises three main components: (i) the partition network that
recursively splits the shape representation into representations of parts, (ii)
the structure network that focuses on learning the hierarchical arrangement
of primitives, namely assigning parts of the object to the primitives at
each depth level and (iii) the geometry network that recovers the primitive
parameters. An overview of the proposed pipeline is illustrated in Fig. 4.3.

4.2 method overview 73

Figure 4.3: Network Architecture. Given an input I (e.g., image, voxel grid), our
network predicts a binary tree of primitives P of maximum depth D. The feature
encoder maps the input I into a feature vector c0

0. Subsequently, the partition net-
work splits each feature representation cd

k in two {cd+1
2k , cd+1

2k+1}, resulting in feature
representations for {1, 2, 4, . . . , 2d} primitives where cd

k denotes the feature repre-
sentation for the k-th primitive at depth d. Each cd

k is passed to the structure network
that "assigns" a part of the object to a specific primitive pd

k . As a result, each pd
k

is responsible for representing a specific part of the target shape, denoted as the
set of points X d

k . Finally, the geometry network predicts the primitive parameters λd
k

and the reconstruction quality qd
k for each primitive. To compute the reconstruction

loss, we measure how well the predicted primitives match the target object (Object
Reconstruction) and the assigned parts (Part Reconstruction). We use plate notation to
denote repetition over all nodes k at each depth level d. The final reconstruction is
shown on the right.

The first part of our pipeline is a feature encoder, implemented with a ResNet-
18 [75], ignoring the final fully connected layer. Instead, we only keep the
feature vector of length F = 512 after average pooling.

Partition Network: The feature encoder maps the input I to an intermediate
feature representation c0

0 ∈ RF that describes the root node p0
0. The partition

network implements a function pθ : RF → R2F that recursively partitions
the feature representation cd

k of node pd
k into two feature representations,

one for each children {pd+1
2k , pd+1

2k+1}:

pθ(cd
k) = {c

d+1
2k , cd+1

2k+1}. (4.2)

Each primitive pd
k is directly predicted from cd

k without considering the
other intermediate features. This implies that the necessary information for
predicting the primitive parameterization is entirely encapsulated in cd

k and
not in any other intermediate feature representation.

74 learning unsupervised hierarchical part decomposition of 3d objects

(a)

(b)

Figure 4.4: Structure Network. We visualize the centroids hd
k and the 3D points X d

k
that correspond to the estimated part pd

k for the first three levels of the tree. Fig. 4.4b
explains visually Eq. (4.4). We color points based on their closest centroid hd

k . Points
illustrated with the color associated to a part are labeled “internal” (o = 1). Points
illustrated with gray are labeled “external” (o = 0).

Structure Network: Due to the lack of ground-truth supervision in terms of
the tree structure, we introduce the structure network that seeks to learn a
pseudo-ground truth part-decomposition of the target object. More formally,
it learns a function sθ : RF → R3 that maps each feature representation cd

k
to hd

k a spatial location in R3.

4.2 method overview 75

One can think of each hd
k as the (geometric) centroid of a specific part of

the target object. We define

H = {{hd
k}

2d−1
k=0 | d = {0 . . . D}} (4.3)

the set of centroids of all parts of the object at all depth levels. From H and
X , we are now able to derive the part decomposition of the target object as
the set of points X d

k that are internal to a part with centroid hd
k .

Note that, in order to learn P , we need to be able to partition the target
object into 2d parts at each depth level. At the root level (d = 0), h0

0 is the
centroid of the target object and X 0

0 is equal to X . For d = 1, h1
0 and h1

1
are the centroids of the two parts representing the target object. X 1

0 and
X 1

1 comprise the same points as X 0
0 . For the external points, the labels

remain the same. For the internal points, however, the labels are distributed
between X 1

0 and X 1
1 based on whether h1

0 or h1
1 is closer. That is, X 1

0 and
X 1

1 each contain more external labels and less internal labels compared to
X 0

0 . The same process is repeated until we reach the maximum depth.
More formally, we define the set of points X d

k corresponding to primitive
pd

k implicitly via its centroid hd
k :

X d
k =

{
Nk(x, o) ∀(x, o) ∈ X d−1

b k
2 c

}
(4.4)

Here, X d−1
b k

2 c
denotes the points of the parent. The function Nk(x, o) assigns

each (x, o) ∈ X d−1
b k

2 c
to part pd

k if it is closer to hd
k than to hd

s(k) where s(k) is

the sibling of k:

Nk(x, o) =

(x, 1) ‖hd
k − x‖ ≤ ‖hd

s(k) − x‖ ∧ o = 1

(x, 0) otherwise
(4.5)

Intuitively, this process recursively associates points to the closest sibling
at each level of the binary tree where the association is determined by the
label o. Fig. 4.4 illustrates the part decomposition of the target shape using
H. We visualize each part with a different color.

Geometry Network: The geometry network learns a function rθ : RF →
RK × [0, 1] that maps the feature representation cd

k to its corresponding
primitive parametrization λd

k and the reconstruction quality prediction qd
k :

rθ(cd
k) = {λ

d
k , qd

k}. (4.6)

76 learning unsupervised hierarchical part decomposition of 3d objects

4.2.2 Primitive Parametrization

For primitives, we use superquadric surfaces. For a detailed analysis of the
use of superquadrics as geometric primitives, we refer the reader to [81, 141].
Below, we focus on the properties most relevant to us. For any point x ∈ R3,
we can determine whether it lies inside or outside a superquadric using its
implicit surface function which is commonly referred to as the inside-outside
function:

f (x; λ) =

((
x
α1

) 2
ε2
+

(
y
α2

) 2
ε2

) ε2
ε1

+

(
z

α3

) 2
ε1

(4.7)

where α = [α1, α2, α3] determine the size and ε = [ε1, ε2] the shape of
the superquadric. If f (x; λ) = 1.0, the given point x lies on the surface
of the superquadric, if f (x; λ) < 1.0 the corresponding point lies inside
and if f (x; λ) > 1.0 the point lies outside the superquadric. To account for
numerical instabilities that arise from the exponentiations in (4.7), instead of
directly using f (x; λ), we follow [81] and use f (x; λ)ε1 . Finally, we convert
the inside-outside function to an occupancy function, g : R3 → [0, 1]:

g(x; λ) = σ (s (1− f (x; λ)ε1)) (4.8)

that results in per-point predictions suitable for the classification problem
we want to solve. σ(·) is the sigmoid function and s controls the sharpness
of the transition of the occupancy function. To account for any rigid body
motion transformations, we augment the primitive parameters with a trans-
lation vector t = [tx, ty, tz] and a quaternion q = [q0, q1, q2, q3] [70], which
determine the coordinate system transformation T (x) = R(λ) x + t(λ).
Note that in (4.7), (4.8) we omit the primitive indexes k, d for clarity. Visual-
izations of (4.8) are provided in Sec. A.2.1.

4.2.3 Network Losses

Our optimization objective L(P ,H;X) is a weighted sum over four terms:

L(P ,H;X) = Lstr(H;X) + Lrec(P ;X) + Lcomp(P ;X) + Lprox(P) (4.9)

Structure Loss: Using H and X , we can decompose the target mesh into
a hierarchy of disjoint parts. Namely, each hd

k implicitly defines a set of
points X d

k that describe a specific part of the object as described in (4.4). To

4.2 method overview 77

quantify how well H clusters the input shape X we minimize the sum of
squared distances, similar to classical k-means:

Lstr(H;X) = ∑
hd

k∈H

1
2d − 1 ∑

(x,o)∈X d
k

o ‖x− hd
k‖2 (4.10)

Note that for the loss in (4.10), we only consider gradients with respect to
H as X d

k is implicitly defined via H. This results in a procedure resembling
Expectation-Maximization (EM) for clustering point clouds, where comput-
ing X d

k is the expectation step and each gradient updated corresponds to
the maximization step. In contrast to EM, however, we minimize this loss
across all instances of the training set, leading to parsimonious but consis-
tent shape abstractions. An example of this clustering process performed at
training-time is shown in Fig. 4.4.

Reconstruction Loss: The reconstruction loss measures how well the pre-
dicted primitives match the target shape. Similar to [61, 36], we formulate
our reconstruction loss as a binary classification problem, where our net-
work learns to predict the surface boundary of the predicted shape by
classifying whether points in X lie inside or outside the target object. To
do this, we first define the occupancy function of the predicted shape at
each depth level. Using the occupancy function of each primitive defined
in (4.8), the occupancy function of the overall shape at depth d becomes:

Gd(x) = max
k∈0...2d−1

gd
k

(
x; λd

k

)
(4.11)

Note that (4.11) is simply the union of the per-primitive occupancy functions.
We formulate our reconstruction loss wrt. the object and wrt. each part of
the object as follows

Lrec(P ;X) = ∑
(x,o)∈X

D

∑
d=0

L
(

Gd(x), o
)
+ (4.12)

D

∑
d=0

2d−1

∑
k=0

∑
(x,o)∈X d

k

L
(

gd
k

(
x; λd

k

)
, o
)

(4.13)

where L(·) is the binary cross entropy loss. The first term is an object
reconstruction loss (4.12) and measures how well the predicted shape at each
depth level matches the target shape. The second term (4.13) which we
refer to as part reconstruction loss measures how accurately each primitive

78 learning unsupervised hierarchical part decomposition of 3d objects

pd
k matches the part of the object it represents, defined as the point set X d

k .
Note that the part reconstruction loss enforces non-overlapping primitives, as
X d

k are non-overlapping by construction. We illustrate our reconstruction
loss in Fig. 4.3.

Compatibility Loss: This loss measures how well our model is able to
predict the expected reconstruction quality qd

k of a primitive pd
k . A standard

metric for measuring the reconstruction quality is the Intersection over
Union (IoU). We therefore task our network to predict the reconstruction
quality of each primitive pd

k in terms of its IoU wrt. the part of the object X d
k

it represents:

Lcomp(P ;X) =
D
∑
d=0

2d−1

∑
k=0

(
qd

k − IoU(pd
k ,X d

k)
)2

(4.14)

During inference, qd
k allows for further partitioning primitives whose IoU

is below a threshold qth and to stop if the reconstruction quality is high
(the primitive fits the object part well). As a result, our model predicts
an unbalanced tree of primitives where objects can be represented with
various number of primitives from 1 to 2D. This results in parsimonious
representations where simple parts are represented with fewer primitives.
We empirically observe that the threshold value qth does not significantly
affect our results, thus we empirically set it to 0.6. During training, we do
not use the predicted reconstruction quality qd

k to dynamically partition the
nodes but instead predict the full tree.

Proximity Loss: This term is added to counteract vanishing gradients due
to the sigmoid in (4.8). For example, if the initial prediction of a primitive is
far away from the target object, the reconstruction loss will be large while its
gradients will be small. As a result, it is impossible to “move” this primitive
to the right location. Thus, we introduce a proximity loss which encourages
the center of each primitive pd

k to be close to the centroid of the part it
represents:

Lprox(P) =
D

∑
d=0

2d−1

∑
k=0
‖t(λd

k)− hd
k‖2 (4.15)

where t(λd
k) is the translation vector of the primitive pd

k and hd
k is the

centroid of the part it represents. We demonstrate the vanishing gradient
problem in Sec. 4.4.4.2.

4.3 experimental evaluation 79

4.3 experimental evaluation

In this section, we provide evidence that our structure-aware representation
yields semantic shape abstractions while achieving competitive (or even
better results) than various state-of-the-art shape reconstruction methods,
such as [120]. Moreover, we also investigate the quality of the learned
hierarchies and show that the use of our structure-aware representation
yields semantic scene parsings.

Datasets: First, we use the ShapeNet [19] subset of Choy et al. [34], train-
ing our model using the same image renderings and train/test splits as
Choy et al. Furthermore, we also experiment with the Dynamic FAUST
(D-FAUST) dataset [13], which contains meshes for 129 sequences of 10

humans performing various tasks, such as "running", "punching" or "shake
arms". For each sequence, we filter out the first 20 frames that contain the
unnatural "neutral pose" necessary for calibration purposes. We randomly
divide these sequences into training (91), test (29) and validation (9).

Baselines: Closely related to our model are the shape parsing methods of
[191] and [141] that employ cuboids and superquadric surfaces as primitives.
We refer to [141] as SQs and we evaluate using their publicly available code1.
Moreover, we also compare to the Structured Implicit Function (SIF) [61]
that represent the object’s geometry as the isolevel of the sum of a set of
Gaussians and to the CvxNets [36] that represent the object parts using
smooth convex shapes. Finally, we also report results for OccNet [120],
which is the state-of-the-art implicit shape reconstruction technique. Note
that in contrast to us, [120] does not consider part decomposition or any
form of latent structure.

Evaluation Metrics: We evaluate our model and our baselines using the
volumetric Intersection over Union (IoU) and the Chamfer-L1 distance. Note
that as our method does not predict a single mesh, we sample points from
each primitive proportionally to its area, such that the total number of
sampled points from all primitives is equal to 100k. For a fair comparison,
we do the same for [191, 141]. Below, we discuss in detail the computation
of the volumetric IoU and the Chamfer-L1.

Volumetric IoU is defined as the quotient of the volume of the intersection
of the target Stargetand the predicted Spred mesh and the volume of their
union. We obtain unbiased estimates of the volume of the intersection and
the union by randomly sampling 100k points from the bounding volume

1 https://superquadrics.com

https://superquadrics.com

80 learning unsupervised hierarchical part decomposition of 3d objects

Figure 4.5: Predicted Hierarchies on D-FAUST. We visualize the input RGB image
(a), the prediction (b) and the predicted hierarchy (c). We associate each primitive
with a color and we observe that our network learns semantic mappings of body
parts across different articulations, e.g. node (3, 3) is used for representing the upper
part of the left leg, whereas node (1, 1) is used for representing the upper body.

4.3 experimental evaluation 81

(a) Input (b) SQs (c) Ours (d) Input (e) SQs (f) Ours

Figure 4.6: Single Image 3D Reconstruction. The input image is shown in (a, d),
the other columns show the results of our method (c, f) compared to [141] (b, e).

and determining if the points lie inside or outside the target / predicted
mesh,

IoU(Spred, Starget) =
| V(Spred ∩ Starget) |
| V(Spred ∪ Starget) |

(4.16)

where V(.) is a function that computes the volume of a mesh.
We obtain an unbiased estimator of the Chamfer-L1 distance by sampling

100k points on the surface of the target Starget and the predicted Spred mesh.
We denote X = {xi}N

i=1 the set of points sampled on the surface of the
target mesh and Y = {yi}N

i=1 the set of points sampled on the surface of
the predicted mesh. We compute the Chamfer-L1 as follows:

Dchamfer(X ,Y) = 1
N ∑

xi∈X
min

yj∈∪Y
‖xi − yj‖+

1
N ∑

yi∈∪Y
min
xj∈X
‖yi − xj‖ (4.17)

The first term of (4.17) measures the completeness of the predicted shape,
namely how far is on average the closest predicted point from a ground-
truth point. The second term measures the accuracy of the predicted shape,
namely how far on average is the closest ground-truth point from a pre-
dicted point. To ensure a fair comparison with our baselines, we use the
evaluation code of [120] for the estimation of both the Volumetric IoU and
the Chamfer-L1.

82 learning unsupervised hierarchical part decomposition of 3d objects

Chamfer-L1 IoU

OccNet [120] SQs [141] SIF [61] CvxNets [36] Ours OccNet [120] SQs [141] SIF [61] CvxNets [36] Ours

Category

airplane 0.147 0.122 0.065 0.093 0.175 0.571 0.456 0.530 0.598 0.529

bench 0.155 0.114 0.131 0.133 0.153 0.485 0.202 0.333 0.461 0.437

cabinet 0.167 0.087 0.102 0.160 0.087 0.733 0.110 0.648 0.709 0.658

car 0.159 0.117 0.056 0.103 0.141 0.737 0.650 0.657 0.675 0.702

chair 0.228 0.138 0.192 0.337 0.114 0.501 0.176 0.389 0.491 0.526

display 0.278 0.106 0.208 0.223 0.137 0.471 0.200 0.491 0.576 0.633

lamp 0.479 0.189 0.454 0.795 0.169 0.371 0.189 0.260 0.311 0.441

speaker 0.300 0.132 0.253 0.462 0.108 0.647 0.136 0.577 0.620 0.660

rifle 0.141 0.127 0.069 0.106 0.203 0.474 0.519 0.463 0.515 0.435

sofa 0.194 0.106 0.146 0.164 0.128 0.680 0.122 0.606 0.677 0.693

table 0.189 0.110 0.264 0.358 0.122 0.506 0.180 0.372 0.473 0.491

phone 0.140 0.112 0.095 0.083 0.149 0.720 0.185 0.658 0.719 0.770

vessel 0.218 0.125 0.108 0.173 0.178 0.530 0.471 0.502 0.552 0.570

mean 0.215 0.122 0.165 0.245 0.143 0.571 0.277 0.499 0.567 0.580

Table 4.1: Single Image Reconstruction on ShapeNet. Quantitative evaluation of
our method against OccNet [120] and primitive-based methods with superquadrics
[141] (SQs), SIF [61] and CvxNets [36]. We report the volumeteric IoU (higher is
better) and the Chamfer-L1 distance (lower is better) wrt. the ground-truth mesh.

4.3.1 3D Reconstruction on ShapeNet

We now evaluate the proposed model on the ShapeNet dataset using three
different tasks: (a) RGB single-view 3D reconstruction (b) volumetric 3D
reconstruction (i.e., using a voxel representation as input) and (c) inter-
pretability of the representation. For the first experiment, we report qualita-
tive and quantitative results of our model and we compare against various
state-of-the-art methods on the task of single view 3D reconstruction. Sub-
sequently, we compare our method wrt. to [191, 141] that were originally
introduced for volumetric 3D reconstruction and finally we empirically
show that our model leads to semantic and interpretable representations
that are consistent across objects of the same class.

4.3.1.1 Single Image 3D Reconstruction

We evaluate our model on the single-view 3D reconstruction task and
compare against various state-of-the-art methods. We follow the standard
experimental setup and train a single model for the 13 ShapeNet objects.
Both our model and [141] are trained for a maximum number of 64 prim-
itives (D = 6). For SIF [61] and CvxNets [36] the reported results are

4.3 experimental evaluation 83

(a) Input

(b) Prediction
(c) Predicted Hierarchy

(d) Input

(e) Prediction (f) Predicted Hierarchy

Figure 4.7: Predicted Hierarchies on ShapeNet. Our model recovers the geometry
of an object as an unbalanced hierarchy over primitives, where simpler parts (e.g.
base of the lamp) are represented with few primitives and more complex parts (e.g.
wings of the plane) with more.

computed using 50 shape elements. Note, that both [141] and our method
use significantly fewer than 50 primitives on average.

The quantitative results are reported in Tab. 4.1. We observe that our
model outperforms the primitive-based baselines in terms of the IoU as well
as the OccNet [120] for the majority of objects (7/13). Regarding Chamfer-
L1, our model is the second best amongst primitive representations, as

84 learning unsupervised hierarchical part decomposition of 3d objects

(a) Input (b) [191] (c) [141] (d) Ours (e) Input (f) [191] (g) [141] (h) Ours

(i) Predicted Hierarchy (j) Predicted Hierarchy

(k) Input (l) [191] (m) [141] (n) Ours (o) Input (p) [191] (q) [141] (r) Ours

(s) Predicted Hierarchy (t) Predicted Hierarchy

Figure 4.8: Volumetric Reconstruction. We note that our reconstructions are ge-
ometrically more accurate. In contrast to [141], our model yields reconstructions
where the legs of the animals are not connected. Furthermore, our model accurately
captures the ears and tails of the different animals.

[141] is optimized for this metric. This also justifies that [141] performs
worse in terms of IoU. While our model performs on par with existing
state-of-the-art primitive representations in terms of Chamfer-L1, it also
recovers hierarchies, which none of our baselines do.

A qualitative comparison of our model with SQs [141] is depicted in
Fig. 4.6. Fig. 4.7 visualizes the learned hierarchy for this model. We observe
that our model recovers unbalanced binary trees that decompose a 3D
object into a set of parts.

4.3 experimental evaluation 85

IoU Chamfer-L1

SQs [141] 0.608 0.189

Ours 0.699 0.098

Table 4.2: Single Image Reconstruction on D-FAUST. We report the volumetric
IoU and the Chamfer-L1 wrt. the ground-truth mesh for our model and [141].

4.3.2 Volumetric Reconstruction

Our model is closely related to the works of Tulsiani et al. [191] and
Paschalidou et al. [141]. Both [191, 141] were originally introduced using a
binary occupancy grid as an input to their model, thus we also compare
our model with [191, 141] using a voxelized input of size 32× 32× 32. We
evaluate the modelling accuracy of these three methods on the animal class
of the ShapeNet dataset. To ensure a fair comparison, we use the feature
encoder proposed in [191] for all three. A qualitative evaluation is provided
in Fig. 4.8.

Our model yields more detailed reconstructions compared to [191, 141].
For example, in our reconstructions the legs of the animals are not connected
and the tails better capture the geometry of the target shape. Again, we
observe that our network predicts semantic hierarchies, where the same
node is used for representing the same part of the animal.

4.3.3 3D Reconstruction on D-FAUST

We also report results on the Dynamic FAUST (D-FAUST) dataset [13],
which is very challenging due to the fine structure of the human body.
We evaluate our model on the single-view 3D reconstruction task and
compare with [141]. Both methods are trained for a maximum number
of 32 primitives (D = 5). Fig. 4.5 illustrates the predicted hierarchy on
different humans from the test set. We note that the predicted hierarchies
are indeed semantic, as the same nodes are used for modelling the same
part of the human body. Fig. 4.9 compares the predictions of our model
with SQs. We observe that while our baseline yields more parsimonious
abstractions, their level of detail is limited. On the contrary, our model
captures the geometry of the human body with more detail. This is also
validated quantitatively, from Tab. 4.2. Note that in contrast to ShapeNet, D-
FAUST does not contain long, thin (e.g. legs of tables, chairs) or hollow parts

86 learning unsupervised hierarchical part decomposition of 3d objects

(a) Input (b) SQs (c) Ours (d) Input (e) SQs (f) Ours

Figure 4.9: Single Image 3D Reconstruction. Qualitative comparison of our recon-
structions (c, f), to [141] that does not consider any form of structure (b, e). The input
RGB image is shown in (a, d). Note how our representation yields geometrically
more accurate reconstructions, while being semantic, e.g., the primitive colored in
blue consistently represents the head of the human while the primitive colored in
orange captures the left thigh.

(e.g. cars), thus optimizing for either Chamfer-L1 or IoU leads to similar
results. Hence, our method outperforms [141] also in terms of Chamfer-L1,
despite the fact that [141] is optimized for this metric. Due to lack of space,
we only illustrate the predicted hierarchies up to the fourth depth level.
The full hierarchies are provided in the Fig. B.5+Fig. B.6.

4.4 implementation details

In this section, we provide a detailed description of our network architec-
ture. We then describe our sampling strategy and provide details on the
metrics we use both for training and testing. Finally, we show how various
components influence the performance of our model on the single-view 3D
reconstruction task.

4.4.1 Network Architecture

Here we describe the architecture of each individual component of our
model, shown in Fig. 4.3.

4.4 implementation details 87

Feature Encoder: The feature encoder depends on the type of the in-
put, namely whether it is an image or a binary occupancy grid. For the
single view 3D reconstruction task, we use a ResNet-18 architecture [75]
(Fig. 4.10a), which was pretrained on the ImageNet dataset [38]. From the
original design, we ignore the final fully connected layer keeping only the
feature vector of length F = 512 after average pooling. For the volumetric
3D reconstruction task, where the input is a binary occupancy grid, we
use the feature encoder proposed in [141](Fig. 4.10b). Note that the feature
encoder is used as a generic feature extractor from the input representation.

(a) Single-view 3D Reconstruction

(b) Volumetric 3D Reconstruction

Figure 4.10: Feature Encoder Architectures. Depending on the type of the input, we
employ two different network architectures. (a) For the single view 3D reconstruction
task we use a ResNet-18 architecture [75] (b) For a binary occupancy grid as an
input, we leverage the network architecture of [141].

Partition Network: The partition network implements a function pθ :
RF → R2F that recursively partitions the feature representation cd

k of node
pd

k into two feature representations, one for each child {pd+1
2k , pd+1

2k+1}. The
partition network (Fig. 4.11a) comprises two fully connected layers followed
by RELU non linearity.

88 learning unsupervised hierarchical part decomposition of 3d objects

(a) Partition Network (b) Structure Network

Figure 4.11: Network Architecture Overview. The partition network (4.11a) is simply
one hidden layer fully connected network with RELU non linearity. The gray dotted
lines indicate the recursive partition of the feature representation. Similarly, the
structure network (4.11b) consists of two fully connected layers followed by RELU
non linearity.

Structure Network: The structure network maps each feature represen-
tation cd

k to hd
k a spatial location in R3. The structure network (Fig. 4.11b)

consists of two fully connected layers followed by RELU non linearity.

Geometry Network: The geometry network learns a function rθ : RF →
RK × [0, 1] that maps the feature representation cd

k to its corresponding
primitive parametrization λd

k and the reconstruction quality prediction
qd

k . In particular, the geometry network consists of five regressors that
predict the parameters of the superquadrics (size ff, shape ffl and pose as
translation t and rotation R) in addition to the reconstruction quality qd

k .
Fig. 4.12 presents the details of the implementation of each regressor.

4.4.2 Training

In all our experiments, we use the Adam optimizer [96] with learning
rate 0.0001 and no weight decay. For other hyperparameters of Adam
we use the PyTorch defaults. We train all models with a batch size of 32
for 40k iterations. We do not perform any additional data augmentation.
We weigh the loss terms of (4.9) with 0.1, 0.01, 0.01 and 0.1 respectively,
in order to enforce that during the first stages of training the network
will focus primarily on learning the hierarchical decomposition of the 3D
shape (Ls + Lp). In this way, after the part decomposition is learned, the
network also focuses on the part geometries (Lr). We also experimented
with a two-stage optimization scheme, where we first learn the hierarchical

4.4 implementation details 89

(a) Shape (b) Size

(c) Translation (d) Rotation

(e) Reconstruction quality

Figure 4.12: Geometry Network. We detail the specifics of each regressor for pre-
dicting the primitive parameters λd

k and the reconstruction quality qd
k .

part decomposition and then learn the hierarchical representation, but we
observed that this made learning harder.

4.4.3 Sampling Strategy

Sampling a point inside the target mesh has a probability proportional to
the volume of the mesh. This yields bad reconstructions for thin parts of the
object, such as legs of chairs and wings of aeroplanes. In addition, biasing
the sampling towards the points inside the target mesh, results in worse
reconstructions as also noted in [120]. To address the first issue (properly
reconstructing thin parts), we use an unbalanced sampling distribution
that, in expectation, results in sampling an equal number of points inside
and outside the target mesh. To counter the second (biased sampling),
we construct an unbiased estimator of the loss by weighing the per-point
loss inversely proportionally to its sampling probability. We refer to our
sampling strategy as unbiased importance sampling. Note that throughout all
our experiments, we sample 10k points in the bounding box of the target
mesh using our sampling strategy.

90 learning unsupervised hierarchical part decomposition of 3d objects

IoU Chamfer-L1

Uniform 0.383 0.073

Biased 0.351 0.041

Importance 0.491 0.073

Table 4.3: Sampling strategy

IoU Chamfer-L1

Importance 2k 0.370 0.074

Importance 5k 0.380 0.076

Importance 10k 0.491 0.073

Table 4.4: Number of sampled points.

Table 4.5: Sampling Strategy. We evaluate the performance of our model while
varying the sampling scheme and the number of the sampled points inside the
bounding box of the target mesh. We report the volumetric IoU (higher is better)
and the Chamfer distance (lower is better) on the test set of the "chair category".

4.4.4 Empirical Analysis of Loss Formulation

In this section, we investigate the impact of how various components of our
model affect the performance on the single-image 3D reconstruction task.

4.4.4.1 Impact of Sampling Strategy

We first discuss how the sampling strategy affects the performance of our
model. Towards this goal, we evaluate our model on the single-view 3D
reconstruction task using three different sampling strategies: (a) uniform
sampling in the bounding box that contains the target object (b) biased
sampling (namely sampling an equal number of points inside and outside
the target mesh without reweighing) and (c) unbiased importance sampling
as described in Sec. 4.4.3. All models are trained on the "chair" object cate-
gory of ShapeNet using the same network architecture, the same number
of sampled points (N =10k) and the same maximum number of primitives
(D = 16). The quantitative results on the test set of the "chair" category are
shown in Table 4.5. We observe that the proposed importance sampling
strategy achieves the best results in terms of IoU.

Furthermore, we also examine the impact of the number of sampled
points on the performance of our model. In particular, we train our model
on the “chair” category while varying the number of sampled points inside
the bounding box that contains the target mesh. As expected, increasing
the number of sampled points results in an improvement in reconstruction
quality. We empirically found that sampling 10k points results in the best
compromise between training time and reconstruction performance.

4.4 implementation details 91

4.4.4.2 Impact of Proximity loss

In this section, we explain empirically the vanishing gradient problem that
emerges from the use of the sigmoid in the occupancy function of (4.8).
To this end, we train two variants of our model, one with and without
the proximity loss of (4.15). For this experiment, we train both variants on
D-FAUST for the single image 3D reconstruction task. Both models are
trained for a maximum number of 32 primitives and s = 10 and for the
same number of iterations.

(a) Input (b) without (c) Ours (d) Input (e) without (f) Ours

Figure 4.13: Impact of Proximity Loss. We visualize the predictions of two two
models, one trained with (Ours) and one without the proximity loss term. On the
left, we visualize the input RGB image (a, d), in the middle the predictions without
the proximity loss (b,c) and on the right the predictions of our model with this
additional loss term.

Fig. 4.13 illustrates the predictions of both variants. We remark that
the predictions of the model that was trained without the proximity loss
are less accurate. Note that due to the vanishing gradient problem, the
network is not able to properly "move" primitives and as a result, instead
of reconstructing the hands of the humans using two or four primitives,
the network uses only one. Interestingly, the reconstructions in some cases
e.g. (e) do not even capture the human shape properly. However, even
though the reconstruction quality is bad, the network is not able to fix it
because the gradients of the reconstruction loss are small (even though the
reconstruction loss itself is high). This is also validated quantitatively, as
can be observed from Table 4.6.

92 learning unsupervised hierarchical part decomposition of 3d objects

IoU Chamfer-L1

Ours w/o proximity loss 0.605 0.171

Ours 0.699 0.098

Table 4.6: Impact of Proximity Loss. We investigate the impact of the proximity
loss. We report the volumetric IoU and the Chamfer distance for two variants of our
model, one with and without the proximity loss term.

4.5 discussion

We have proposed a learning-based approach that jointly predicts part
relationships together with per-part geometries in the form of a binary tree
of primitives without requiring any part-level annotations during training.
Our model yields geometrically accurate shape abstractions that outperform
existing part-based techniques while performing competitively with more
flexible implicit shape representations. Our formulation allows us to recover
higher-level relationships between parts such as spatial proximity, however
we believe that a more sophisticated mechanism that would automatically
yield semantic components would be more desirable.

Part III

Structure-Aware Object-based Representations
for Scene Synthesis

5
AT I S S : AU T O R E G R E S S I V E T R A N S F O R M E R S F O R
I N D O O R S C E N E S Y N T H E S I S

What I cannot create, I do not understand.
— Richard Feyman

We demonstrated in Part I, that we can learn to recover the 3D object
geometry as a set of semantically meaningful parts without any part level
supervision. Subsequently, in Part II, we presented a structure-aware repre-
sentation for 3D objects that jointly reasons about the part geometries and
their hierarchical layout in the space and we demonstrated that considering
the arrangement of parts facilitates learning geometrically accurate recon-
struction. In this chapter, we focus our attention on 3D scenes and instead
of considering the arrangement of primitives that best describe a 3D object,
we seek to develop a generative model that synthesizes scenes by plausibly
arranging objects in an indoor environment.

Generating synthetic 3D content that is both realistic and diverse is
a long-standing problem in computer vision and graphics. In the last
decade, there has been increased demand for tools that automate the
creation of 3D artificial environments for applications like video games
and AR/VR, as well as general 3D content creation [216, 20, 217]. These
tools can also synthesize data to train computer vision models, avoiding
expensive and laborious annotations. Generative models [97, 65, 46, 98, 196]
have demonstrated impressive results on synthesizing photorealistic images
[32, 15, 89, 33, 90] and intelligible text [154, 16], and are beginning to be
adopted for the generation of 3D environments.

Recent works proposed to solve the scene synthesis task by incorporating
procedural modeling techniques [153, 149, 88, 41] or by generating scene
graphs with generative models [109, 197, 223, 117, 150, 221, 218, 94, 44],
whose nodes are associated with objects in the scene and edges model
relationships between them. Procedural modeling requires specifying a
set of rules for the scene formation process, but acquiring these rules is
a time-consuming task, requiring skills of experienced artists. Similarly,
graph-based approaches require scene graph annotations, which may be
laborious to obtain.

95

96 atiss : autoregressive transformers for indoor scene synthesis

Figure 5.1: Motivation In addition to fully automatic layout synthesis (A), our
formulation in terms of unordered sets of objects allows our model to be used for
novel interactive applications with versatile user control: scene completion given
any number of existing furniture pieces of any class pinned to a specific location by
the user (B), and object suggestions with user-provided constraints (object centroid
constraint shown in red) (C).

Another line of research utilizes CNN-based [198, 163] and transformer-
based [202] architectures to generate rooms by autoregressively selecting
and placing objects in a scene, i.e. one after the other. These approaches
represent scenes as ordered sequences of objects. Typically, the ordering
is defined using the spatial arrangement of objects in a room (e.g. left-to-
right) [85] or the object class frequency (e.g. most to least probable) [163,
202]. Such orderings impose unnatural constraints on the scene generation
process, inhibiting practical applications. For example, in [163, 202], which
order objects by class frequency, the probability of a bed (more common)
appearing after an ottoman (less common) in the training set is zero. As
a result, these methods cannot generate more common objects after less
common objects, which makes them impractical for interactive tasks like
general room completion and partial room re-arrangement, where input is
unconstrained (e.g. Fig.5.1B).

To address these limitations, we pose scene synthesis as an unordered
set generation problem and introduce ATISS, a novel autoregressive trans-
former architecture to model this process. Given a room type (e.g. bedroom,
living room) and its shape, our model generates meaningful furniture
arrangements by sequentially placing objects in a permutation-invariant
fashion. We train ATISS to maximize the log-likelihood of all possible per-
mutations of object arrangements in a collection of training scenes, labeled
only with object classes and 3D bounding boxes, which are easier to obtain,
than costly support relationship [197] or scene graph annotations [109].
Unlike existing works [198, 163, 202], we propose the first model to perform
scene synthesis as an autoregressive set generation task. ATISS is significantly
simpler to implement and train, requires fewer parameters and is up to 8×
faster at run-time than the fastest available baseline [202]. Furthermore, we
demonstrate that our model generates more plausible object arrangments
without any post-processing on the predicted layout. Our formulation al-

5.1 related work 97

lows applying a single trained model to automatic layout synthesis and to
a number of interactive scenarios with versatile user input (Fig.5.1), such
as automatic placement of user-provided objects, object suggestion with
user-provided constraints, and room completion.

5.1 related work

Manually building diverse and visually plausible 3D content for indoor
and outdoor environments is a time consuming task that requires selecting
and placing a large number of diverse assets in a scene. To address this, the
research community has recently shifted their attention to the development
of generative models that can perform the laborious task of synthetic
content creation. Synthetic data has been extensively used in many domains
such as autonomous driving [166, 160, 49, 3, 206, 149, 88, 95], indoor scene
understanding [220, 179, 110, 171, 5, 222, 54, 112], robotics [204], optical
flow estimation [17, 176] etc. In this section, we discuss the most relevant
literature on interior scene synthesis, as well as transformer architectures
[196] in the context of generative modeling.

Procedural Modeling with Grammars: Procedural modeling describes
methods that recursively apply a set of functions for content synthesis.
Grammars are a formal instantiation of this idea and have been used for
modeling 3D structures such as plants [182], buildings and cities [125, 135],
indoor [153] and outdoor [149] scenes. [182] employed reversible-jump
MCMC to control the output of stochastic context-free grammars. Meta-
Sim [88] learned a model that modifies attributes of scene graphs sampled
from a known probabilistic context-free grammar to match visual statistics
between generated and real data. [41] extended this model to also learn
to sample from the grammar, allowing context dependent relationships to
be learnt. Concurrently, [150] employed Grammar-VAE [103] to generate
scenes using a scene grammar generated from annotated data. In contrast,
our model implicitly encapsulates inter-object relationships, without having
to impose hand-crafted constraints.

Graph-based Scene Synthesis: Representing scenes as graphs has been
extensively studied in literature [109, 197, 223, 117, 150, 221, 218, 94, 44].
Zhou et al. [223] introduced a neural message passing algorithm for scene
graphs that predicts the category of the next object to be placed at a specific
location. Similarly, [109, 221, 150, 117] utilized a VAE [97] to synthesize 3D
scenes as parse trees [150], adjacency matrices [221], scene graphs [117]

98 atiss : autoregressive transformers for indoor scene synthesis

and scene hierarchies [109]. Concurrently, [197, 218] adopted a two-stage
generation process that disentangles planning the scene layout from instan-
tiating the scene based on this plan. Note that graph-based models require
supervision either in the form of relation graphs [197, 218, 117] or scene
hierarchies [109]. In contrast, ATISS infers functional and spatial relations
between objects directly from data labeled only with object classes and 3D
bounding boxes.

Autoregressive Scene Synthesis: Closely related to ATISS are autoregres-
sive indoor scene generation models [198, 163, 202]. Ritchie et al. [163]
introduced a CNN-based architecture that operates on a top-down image-
based representation of a scene and inserts objects in it sequentially by
predicting their category, location, orientation and size with separate net-
work modules. [163] requires supervision in the form of 2D bounding boxes
as well as auxiliary supervision such as depth maps and object segmenta-
tion masks. In concurrent work, Wang et al. [202] introduced SceneFormer, a
series of transformers that autoregressively add objects in a scene similar to
[163]. Both [163, 202] use separate models to generate object attributes (e.g.
category, location) that are trained independently and represent scenes as
ordered sequences of objects, ordered by the category frequency. In contrast,
we propose a simpler architecture that consists of a single model trained
end-to-end to predict all attributes. We provide experimental evidence that
our model generates more realistic object arrangements while being sig-
nificantly faster. While [163, 202] assume a fixed ordering of the objects
in each scene, our model does not impose any constraint on the ordering
of objects. Instead, during training, we enforce that our model generates
objects with all orderings, in a permutation invariant fashion. This allows
us to represent scenes as unordered sets of objects and perform various
interactive tasks such as rearranging any object in a room or suggesting
new objects given any room.

Transformers for Set Generation: Transformer models [196] demonstrated
impressive results on various tasks such as machine translation [175, 133],
language-modeling [16, 42], object detection [108, 18, 224], image recogni-
tion [48, 188], semantic segmentation [214] as well as on image [138, 91, 22,
52, 189] and music [43] generation tasks. While there are works [105, 101]
that utilize the permutation equivariance property of transformers for un-
ordered set processing and prediction, existing generative models with
transformers assume ordered sequences [16, 22, 31] even when there exists
no natural order such as for pointclouds [126] and objects in a scene [202].
Instead, we introduce an autoregressive transformer for unordered set gen-

5.2 method 99

Figure 5.2: Method Overview. Starting from a scene with M objects and a floor
layout, the layout encoder maps the floor into a feature representation F and the
structure encoder maps the objects into a context embedding C = {Cj}M

j=1. The
floor layout feature F, the context embedding C and a learnable query vector q
are then passed to the transformer encoder that predicts q̂. Using q̂ the attribute
extractor autoregressively predicts the attribute distributions that are used to sample
the attributes for the next object to be generated.

eration that enforces that the probability of adding a new element in the set
is invariant to the order of the elements already in the set. We show that for
the scene synthesis task, our model outperforms transformers that consider
ordered sets of elements in every metric.

5.2 method

Given an empty or a partially complete room of a specific type (e.g. bed-
room) together with its shape, as a top-down orthographic projection of its
floor, we want to learn a generative model that populates the room with
objects, whose functional composition and spatial arrangement is plausible.
To this end, we propose an autoregressive model that represents scenes as
unordered sets of objects (Sec. 5.2.1) and describe our implementation using
a transformer network (Sec. 5.2.2). Finally, we analyse the training and
inference details of our method (Sec. 5.2.3).

5.2.1 Autoregressive Set Generation

Let X = {X1, . . . ,XN} denote a collection of scenes where each Xi =(
Oi, Fi) comprises the unordered set of objects in the scene Oi = {oi

j}M
j=1

and its floor layout Fi. To compute the likelihood of generating Oi we need

100 atiss : autoregressive transformers for indoor scene synthesis

to accumulate the likelihood of generating {oi
j}M

j=1 autoregressively in any
order. This is formally written as

pθ(Oi|Fi) = ∑
Ô∈π(Oi)

∏
j∈Ô

pθ(oi
j | oi

<j, Fi), (5.1)

where pθ(oi
j | oi

<j, Fi) is the probability of the j-th object, conditioned on the
previously generated objects and the floor layout, and π(·) is a permutation
function that computes the set of permutations of all objects in the scene.
As a result, the log-likelihood of the whole collection X is

log pθ(X) =
N

∑
i=1

log

 ∑
Ô∈π(Oi)

∏
j∈Ô

pθ(oi
j | oi

<j, Fi)

 . (5.2)

However, training our generative model to maximize the log-likelihood
of (5.2) poses two problems: (a) the summation over all permutations is
intractable and (b) (5.2) does not ensure that all orderings will have high
probability. The second problem is crucial because we want our generative
model to be able to complete any partial set in a plausible way, namely we
want any generation order to have high probability. To this end, instead of
maximizing (5.2), we maximize the likelihood of generating a scene in all
possible orderings, p̂θ(·), which is defined as

log p̂θ(X) =
N

∑
i=1

log

 ∏
Ô∈π(Oi)

∏
j∈Ô

pθ(oi
j | oi

<j, Fi)

=

N

∑
i=1

∑
Ô∈π(Oi)

∑
j∈Ô

log pθ(oi
j | oi

<j, Fi).

(5.3)

Note that training our generative model with (5.3) allows us to approximate
the summation over all permutations using Monte Carlo sampling thus
solving both problems of (5.2).

Modelling Object Attributes: We represent objects in a scene as labeled 3D
bounding boxes and model them with four random variables that describe
their category, size, orientation and location, oj = {cj, sj, tj, rj}. The category
cj is modeled using a categorical variable over the total number of object
categories C in the dataset. For the size sj ∈ R3, the location tj ∈ R3 and

5.2 method 101

the orientation rj ∈ R1, we follow [170, 192] and model them with mixture
of logistics distributions

sj ∼
K

∑
k=1

πs
klogistic(µs

k, σs
k)

tj ∼
K

∑
k=1

πt
klogistic(µt

k, σt
k)

rj ∼
K

∑
k=1

πr
klogistic(µr

k, σr
k)

(5.4)

where πs
k, µs

k and σs
k denote the weight, mean and variance of the k-th

logistic distribution used for modeling the size. Similarly, πt
k, µt

k and σt
k and

πr
k, µr

k ans σr
k refer to the weight, mean and variance of the k-th logistic of

the location and orientation, respectively. In our setup, the orientation is the
angle of rotation around the up vector and the location is the 3D centroid
of the bounding box.

Similar to prior work [163, 202], we predict the object attributes in an au-
toregressive manner: object category first, followed by position, orientation
and size as follows:

pθ(oj | o<j, F) =

pθ(cj|o<j, F)pθ(tj|cj, o<j, F)pθ(rj|cj, tj, o<j, F)pθ(sj|cj, tj, rj, o<j, F).
(5.5)

This is a natural choice, since we want our model to consider the object
class before reasoning about the size and the position of an object. To avoid
notation clutter, we omit the scene index i from (5.5).

5.2.2 Network Architecture

The input to our model is a collection of scenes in the form of 3D labeled
bounding boxes with their corresponding room shape. Our network consists
of four main components: (i) the layout encoder that maps the room shape
to a global feature representation F, (ii) the structure encoder hθ that maps
the M objects in the scene into per-object context embeddings C = {Cj}M

j=1,
(iii) the transformer encoder τθ that takes F, C and a query embedding q
and predicts the features q̂ for the next object to be generated and (iv) the
attribute extractor that predicts the attributes of the next object. Our model
is illustrated in Fig. 5.2. The layout encoder is simply a ResNet-18 [75] that
extracts a feature representation F ∈ R64 for the top-down orthographic
projection of the floor.

102 atiss : autoregressive transformers for indoor scene synthesis

Structure Encoder: The structure encoder hθ maps the attributes of the j-th
object into a per-object context embedding Cj as follows:

hθ : RM ×R3 ×R3 ×R1 → RLc ×RLs ×RLt ×RLr

(c, s, t, r) 7→ [λ(c); γ(s); γ(t); γ(r)]
(5.6)

where Lc, Ls, Lt, Lr are the output dimensionalities of the embeddings used
to map the category, the size, the location and the orientation into a higher
dimensional space respectively and [· ; ·] denotes concatenation. For the
object category cj we use a learnable embedding λ(·), whereas for the size
sj, the position tj and the orientation rj, we use the positional encoding of
[196] as follows

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)) (5.7)

where p can be any of the size, position or orientation attributes and γ(·)
is applied separately in each attribute’s dimension. The set of per-object
context vectors synthesizes the context embedding C that encapsulates
information for the existing objects in the scene and is used to condition
the next object to be generated. Before passing the output of (5.6) to the
transformer encoder, we map each Cj to 64 dimensions using a linear
projection.

Transformer Encoder: We follow [196, 42] and implement our encoder τθ

as a multi-head attention transformer without any positional encoding. This
allows us to learn a parametric function that computes features that are
invariant to the order of Cj in C. We use these features to predict the next
object to be added in the scene, creating an autoregressive model. The input
set of the transformer is

I = {F}∪{Cj}M
j=1∪q, with M the number of objects in the scene. q ∈ R64

is a learnable object query vector that allows the transformer to predict
output features q̂ ∈ R64 used for generating the next object to be added in
the scene. The use of a query token is akin to the use of a mask embedding
in Masked Language Modelling [42] or the class embedding for the Vision
Transformer [172].

5.2 method 103

Figure 5.3: Training Overview: Given a scene with M objects (coloured squares),
we first randomly permute them and then keep the first T objects (here T = 3).
We task our network to predict the next object to be added in the scene given the
subset of kept objects (highlighted with grey) and its floor layout feature F. Our
loss function is the negative log-likelihood (NLL) of the next object in the permuted
sequence (green square).

Attribute Extractor: We autoregressively predict the attributes of the next
object to be added in the scene using one MLP for each attribute. More
formally, the attribute extractor is defined as follows:

cθ : R64 → RC q̂ 7→ ĉ (5.8)

tθ : R64 ×RLc → R3×3×K (q̂, λ(c)) 7→ t̂ (5.9)

rθ : R64 ×RLc ×RLt → R1×3×K (q̂, λ(c), γ(t)) 7→ r̂ (5.10)

sθ : R64 ×RLc ×RLt ×RLr → R3×3×K (q̂, λ(c), γ(t), γ(r)) 7→ ŝ (5.11)

where ĉ, ŝ, t̂, r̂ are the predicted attribute distributions and cθ , tθ , rθ and sθ

are mappings between the latent space and the low-dimensional space of
attributes. For the object category, cθ predicts C class probabilities, whereas,
tθ , rθ and sθ predict the mean, variance and mixing coefficient for the K
logistic distributions for each attribute. To predict the object properties in
an autoregressive manner, we need to condition the prediction of a property
on the previously predicted properties. Thus, instead of only passing q̂
to each MLP, we concatenate it with the previously predicted attributes,
mapped in a higher-dimensional space using the embeddings λ(·) and γ(·)
from (5.6).

5.2.3 Training and Inference

During training, we choose a scene from the dataset and apply a random
permutation π(·) on its M objects. Then, we randomly select the first T
objects to compute the context embedding C. Conditioned on C and F, our

104 atiss : autoregressive transformers for indoor scene synthesis

network predicts the attribute distributions of the next object to be added in
the scene and is trained to maximize the log-likelihood of the T + 1 object
from the permuted scene. A pictorial representation of the training process
is provided in Fig. 5.3. To indicate the end of sequence, we augment the C
object classes with an additional class, which we refer to as end symbol.

During inference, we start with an empty context embedding C = ∅ and
the floor representation F of the room to be populated and autoregressively
sample attribute values from the predicted distributions of (5.8)-(5.11) for
the next object. Once a new object is generated, it is appended to the context
C to be used in the next step of the generation process until the end symbol
is generated. A pictorial representation of the generation process can be
found in Fig. 5.2. In order to transform the predicted labeled bounding
boxes to 3D models we use object retrieval. In particular, we retrieve the
closest object from the dataset in terms of the euclidean distance of the
bounding box dimensions.

5.3 experimental evaluation

In this section, we provide an extensive evaluation of our method, com-
paring it to existing baselines. We further showcase several interactive use
cases enabled by our method, not previously possible.

5.3.1 Datasets

We train our model on the 3D-FRONT dataset [54] which contains a collec-
tion of 6, 813 houses with roughly 14, 629 professionally designed rooms,
populated with 3D furniture objects from the 3D-FUTURE dataset [55].
In our evaluation, we focus on four room types: (i) bedrooms, (ii) living
rooms, (iii) dining rooms and (iv) libraries. After pre-processing to filter
out uncommon object arrangements and rooms with unnatural sizes, we
obtained 5996 bedrooms, 2962 living rooms, 2625 dining rooms and 622
libraries. We use 21 object categories for the bedrooms, 24 for the living and
dining rooms and 25 for the libraries. The preprocessing steps are discussed
in detail in Sec. A.3.1.

5.3.2 Baselines

We compare our model with FastSynth [163] and SceneFormer [202]. Note
that both methods were originally evaluated on the SUNCG dataset [179],

5.3 experimental evaluation 105

Scene Layout
Training
Sample FastSynth SceneFormer Ours

Figure 5.4: Qualitative Scene Synthesis Results. Synthesized scenes for three room
types: bedrooms (1st+2nd row), living room (3rd row), dining room (4th row) using
FastSynth, SceneFormer and our method. To showcase the generalization abilities
of our model we also show the closest scene from the training set (2nd column).

which is currently unavailable, thus we retrained both on 3D-FRONT using
the augmentation techniques described in the original papers. We also com-
pare with a variant of our model that generates scenes as ordered sequences
of objects (Ours+Order). To incorporate the order information to the input,
we utilize a positional embedding [196] and a fixed ordering based on the
object frequency as described in [202]. To ensure fair comparison, we use
the same object retrieval for all methods and no rule-based post-processing
on the generated layouts.

FastSynth: In FastSynth [163], the authors employ a series of image-based
CNNs to sequentially predict the attributes of the next object to be added
in the scene. In addition to 2D labeled bounding boxes they have auxiliary
supervision in the form of object segmentation masks, depth maps, wall
masks etc. For more details, we refer the reader to [198]. During training,
they assume that there exists an ordering of objects in each scene, based
on the average size of each category multiplied by its frequency of oc-

106 atiss : autoregressive transformers for indoor scene synthesis

currences in the dataset. Each CNN module is trained separately and the
object properties are predicted in an autoregressive manner: object category
first, followed by location, orientation and size. We train [163]1 using the
provided PyTorch [144] implementation with the default parameters until
convergence.

SceneFormer: In SceneFormer [202], the authors utilize a series of trans-
formers to autoregressively add objects in the scene, similar to [163]. In
particular, they train a separate transformer for each attribute and they pre-
dict the object properties in an autoregressive manner: object category first,
followed by orientation, location and size. Similar to [163], they also treat
scenes as ordered sequences of objects ordered by the frequency of their cat-
egories. We train [202]2 using the provided PyTorch [144] implementation
with the default parameters until convergence.

5.3.3 Evaluation Metrics

We evaluate our generative model wrt. its ability to generate realistic fur-
niture arrangements. To measure the realism of the generated scenes, we
follow prior work [163] and report the KL divergence between the object
category distributions of synthesized and real scenes from the test set and
the classification accuracy of a classifier trained to discriminate real from
synthetic scenes. In particular, for the KL divergence, we measure the fre-
quency of object category occurrences in the generated scenes and compare
it with the frequency of object occurrences in real scenes. Regarding the
scene classification accuracy, we train a classifier to distinguish real from
generated scenes. Our classifier is an Alexnet [102] pre-trained on ImageNet,
that takes as input a 2562 top-down image-based representation of a room
and predicts whether this scene is real or synthetic. We also report the
FID [77] between top-down orthographic projections of synthesized and
real scenes from the test set, which we compute using [137] on 2562 images.
We repeat the metric computation for FID and classification accuracy 10
times and report the average.

1 https://github.com/brownvc/fast-synth
2 https://github.com/cy94/sceneformer

https://github.com/brownvc/fast-synth
https://github.com/cy94/sceneformer

5.3 experimental evaluation 107

Fa
st

Sy
nt

h
Sc

en
eF

or
m

er
O

ur
s

Figure 5.5: Scene Diversity. We show three generated scenes conditioned on three
different floor plans for bedrooms and dining rooms. Every triplet of columns
corresponds to a different floor plan.

FID Score (↓) Scene Classification Accuracy Category KL Divergence (↓)

FastSynth SceneFormer Ours+Order Ours FastSynth SceneFormer Ours+Order Ours FastSynth SceneFormer Ours+Order Ours

Bedrooms 40.89 43.17 38.67 38.39 0.883 0.945 0.760 0.562 0.0064 0.0052 0.0533 0.0085

Living 61.67 69.54 35.37 33.14 0.945 0.972 0.694 0.516 0.0176 0.0313 0.0372 0.0034
Dining 55.83 67.04 35.79 29.23 0.935 0.941 0.623 0.477 0.0518 0.0368 0.0278 0.0061
Library 37.72 55.34 35.60 35.24 0.815 0.880 0.572 0.521 0.0431 0.0232 0.0183 0.0098

Table 5.1: Scene Synthesis Quantitative Comparison on 3D-FRONT. We report the
FID score (↓) at 2562 pixels, the KL divergence (↓) between the distribution of object
categories of synthesized and real scenes and the real vs. synthetic classification
accuracy for all methods. Classification accuracy closer to 0.5 is better.

5.3.4 Scene Synthesis

We start by evaluating the performance of our model on generating plausi-
ble object configurations for various room types, conditioned on different
floor plans. Fig. 5.4 provides a qualitative comparison of four scenes gener-
ated with our model and baselines. In some cases, both [163, 202] generate
invalid room layouts with objects positioned outside room boundaries or
overlapping. Instead, our model consistently synthesizes realistic object
arrangements. We validate this quantitatively in Tab. 5.1, where we com-
pare the generated scenes wrt. their similarity to the original data from
3D-FRONT. Synthesized scenes sampled from our model are almost indis-
tinguishable from scenes from the test set, as indicated by the classification
accuracy in Tab. 5.1, which is consistently around 50%. Our model also

108 atiss : autoregressive transformers for indoor scene synthesis

Scene
Layout FastSynth SceneFormer Ours

Scene
Layout FastSynth SceneFormer Ours

Figure 5.6: Generalization Beyond Training Data. We show four synthesized bed-
rooms conditioned on four room layouts that we manually designed.

achieves lower FID scores for all room types and generates category distri-
butions that are more faithful to the category distributions of the test set,
expressed as lower KL divergence.

To showcase that our model generates diverse object arrangements we
visualize 3 generated scenes conditioned on the same floor plan for all meth-
ods (Fig. 5.5). We observe that our generated scenes are consistently valid
and contain diverse object arrangements. In comparison [163, 202] struggle
to generate plausible layouts particularly for the case of living rooms and
dining rooms. We hypothesize that these rooms are more challenging than
bedrooms, for the baselines, due to their significantly smaller volume of
training data, and the large number of constituent objects per scene (20 on
average, as opposed to 8). To investigate whether our model also generates
plausible layouts conditioned on floor plans with uncommon shapes that
are not in the training set, we manually design unconventional floor plans
(Fig. 5.6) and generate bedroom layouts. While both [163, 202] fail to gen-
erate valid scenes, our model synthesizes diverse object layouts that are
consistent with the floor plan. Finally, we compare the computational re-
quirements of our architecture to [163, 202]. Our model is significantly faster
(Tab. 5.2), while having fewer parameters (Tab. 5.3) than both [163, 202].
Note that [163] is orders of magnitude slower because it requires rendering
every individual object added in the scene.

5.3.5 Applications

In this section, we present three applications that greatly benefit by our
unordered set formulation and are crucial for creating an interactive scene
synthesis tool.

5.3 experimental evaluation 109

Partial Scene FastSynth SceneFormer Ours+Order Ours

Figure 5.7: Scene Completion. Given a partial scene (left column), we visualize
scene completions using our model and our baselines. Our model consistently
generates plausible layouts.

Bedroom Living Dining Library

FastSynth [163] 13193.77 30578.54 26596.08 10813.87

SceneFormer [202] 849.37 731.84 901.17 369.74

Ours [163] 102.38 201.59 201.84 88.24

Table 5.2: Generation Time Comparison.
We measure time (ms) to generate a scene,
conditioned on a floor plan.

FastSynth [163] SceneFormer [202] Ours

38.180 129.298 36.053

Table 5.3: Network Parameters Com-
parison. We report the number of net-
work parameters in millions.

Scene Completion: Starting from a partial scene, the task is to populate
the empty space in a meaningful way. Since both [163, 202] are trained on
sorted sequences of objects, they first generate frequent objects (e.g. beds,
wardrobes) followed by less common objects. As a result, incomplete scenes
that contain less common objects cannot be correctly populated. This is
illustrated in Fig. 5.7, where all baselines fail to add objects in a scene that
contains two armchairs, resulting in bedrooms without beds. For the case
where a scene contains two armchairs and two nightstands [163, 202] again
fail to generate any object. Our model successfullly generates plausible
completions with multiple objects such as lamps, wardrobes and dressing
tables.

Failure Case Detection and Correction: We showcase that our model is
able to identify and correct unnatural object arrangements. Given a scene,
we compute the likelihood of each object, according to our model, condi-
tioned on the other objects in the scene. We identify problematic objects
as those with low likelihood and sample a new location from our gener-
ative model to rearrange it. We test our model in various scenarios such
as overlapping objects, objects outside the room boundaries and objects
in unnatural positions and show that it successfully identifies problematic
objects (highlighted in green in Fig. 5.8) and rearranges them into a more

110 atiss : autoregressive transformers for indoor scene synthesis

Figure 5.8: Failure Case Detection and Correction. We use a partial room with
unnatural object arrangements. Our model identifies the problematic objects (first
row, in green) and relocates them into meaningful positions.

Lamp Double Bed Cabinet TV-stand Wardrobe Nothing

Figure 5.9: Object Suggestion. A user specifies a region of acceptable positions to
place an object (marked as red boxes, 1st row) and our model suggests suitable
objects (2nd row) to be placed in this location.

plausible position. Note that this task cannot be performed by methods
that consider ordering because they assign very low likelihood to common
objects appearing after rare objects e.g. beds after cabinets.

Object Suggestion: We now test the ability of our model to provide object
suggestions given a scene and user specified location constraints. To perform
this task we sample objects from our generative model and accept the ones
that fullfill the constraints provided by the user. Fig. 5.9 shows examples
of location constraints (red box in top row) and the corresponding objects
suggested (bottom row). Note that even when the user provided region is
partially outside the room boundaries (4th, 5th column), suggested objects
always reside in the room. Moreover, if the acceptable region overlaps with
another object, our model suggests adding nothing (6th column). This task
requires computing the likelihood of an object conditioned on an arbitrary
scene, which [202, 163] cannot perform due to ordering.

5.4 ablation study 111

5.3.6 Perceptual Study

We conducted two paired Amazon Mechanical Turk perceptual studies
to evaluate the quality of our generated layouts against [163] and [202].
We sample 6 bedroom layouts for each method from the same 211 test set
floor plans. Users saw 2 different rotating 3D scenes per method randomly
selected from 6 pre-rendered layouts. Random layouts for each floor plan
were assessed by 5 different workers to evaluate agreement and diversity
across samples for a total of 1055 question sets per paired study. Generated
scenes of [163] were judged to contain errors like interpenetrating furniture
41.4% of the time, nearly twice as frequently as our method, while [202]
performs significantly worse (Tab. 5.4). Regarding realism, the scenes of
[163] were more realistic than ours in only 26.9% of the cases. We conclude
that our method outperforms the baselines in the key metric, generation of
realistic indoor scenes, by a large margin. Additional details are provided
in Sec. A.3.2.

Method Condition Mean Error
Frequency ↓

More ↑
Realistic

Realism
CI 99%

FastSynth [163] vs. Ours 0.414 0.269 [0.235, 0.306]
SceneFormer [202] vs. Ours 0.713 0.165 [0.138, 0.196]
Ours vs. Both 0.232 0.783 [0.759, 0.805]

Table 5.4: Perceptual Study Results. Aggregated results for two A/B paired tests.
Our method was judged more realistic with high confidence (binomial confidence
interval with α = 0.01 reported) and contained fewer errors.

5.4 ablation study

We now investigate how various components of our model affect its perfor-
mance on the scene synthesis task. In Sec. 5.4.1, we investigate the impact
of the number of logistic distributions in the performance of our model.
Next, in Sec. 5.4.2, we examine the impact of the architecture of the layout
encoder. In Sec. 5.4.3, we compare ATISS with two variants of our model
that consider ordered sets of objects. Unless stated otherwise, all ablations
are conducted on the bedroom scenes of the 3D-FRONT [54] dataset.

112 atiss : autoregressive transformers for indoor scene synthesis

5.4.1 Mixture of Logistic distributions

We represent objects in a scene as labeled 3D bounding boxes and model
them with four random variables that describe their category, size, orien-
tation and location, oj = {cj, sj, tj, rj}. The category cj is modeled using
a categorical variable over the total number of object categories C in the
dataset. For the size sj ∈ R3, the location tj ∈ R3 and the orientation
rj ∈ R1, we follow [170, 192] and model them with a mixture of logistic
distributions respectively. In this experiment, we test our model with dif-
ferent numbers for logistic distributions for modelling the object attributes.
Results are summarized in Tab. 5.5.

FID (↓) Classification Accuracy (↓) Category Distribution (↓)

K = 1 41.71 ± 0.4008 0.7826 ± 0.0080 0.0491

K = 5 40.41 ± 0.2491 0.5667 ± 0.0405 0.0105

K = 10 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085

K = 15 40.41 ± 0.4504 0.5980 ± 0.0074 0.0095

K = 20 40.39 ± 0.3964 0.6680 ± 0.0035 0.0076

Table 5.5: Ablation Study on the Number of Logistic Distributions. This table
shows a quantitative comparison of our model with different numbers of K logistic
distributions for modelling the size, location and orientation of each object.

As it is expected, using a single logistic distribution (first row in Tab. 5.5)
results in worse performance, since it does not have enough representation
capacity for modelling the object attributes. We also note that increasing
the number of logistic distributions beyond 10 hurts performance wrt. FID
and classification accuracy. We hypothesize that this is due to overfitting. In
our experiments we set K = 10.

5.4.2 Layout Encoder

We further examine the impact of the layout encoder on the performance of
our model. To this end, we replace the ResNet-18 architecture [75], with an
AlexNet [102]. From the original architecture, we remove the final classifier
layers and keep only the feature vector of length 9216 after max pooling.
We project this feature vector to 64 dimensions with a linear projection
layer. Similar to our vanilla model, we do not use an AlexNet pre-trained

5.4 ablation study 113

on ImageNet because we empirically observed that it resulted in worse
performance.

FID (↓) Classification Accuracy (↓) Category Distribution (↓)

AlexNet 40.40 ± 0.2637 0.6083 ± 0.0034 0.0064
ResNet-18 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085

Table 5.6: Ablation Study on the Layout Encoder Architecture. This table shows a
quantitative comparison of ATISS with two different layout encoders.

Tab. 5.6 compares the two variants of our model wrt. to the FID score, the
classification accuracy and the KL-divergence. We remark that our method
is not particularly sensitive to the choice of the layout encoder. However,
using an AlexNet results in slightly worse performance, hence we utilize a
ResNet-18 in all our experiments.

5.4.3 Transformers with Ordering

In this section, we analyse the benefits of synthesizing rooms as unordered
sets of objects in contrast to ordered sequences. To this end, we train
two variants of our model that utilize a positional embedding [196] to
incorporate order information to the input. The first variant is trained
with random permutations of the input (Ours+Perm+Order), similar to
our model, whereas the second with a fixed ordering based on the object
frequency (Ours+Order) as described in [163, 202]. We compare these
variants to our model on the scene synthesis task and observe that the
variant with the fixed ordering (second row Tab. 5.7) performs significantly
worse as the classifier can identify synthesized scenes with 76% accuracy.
Moreover, we remark that besides enabling all the previously presented
applications, training with random permutations also improves the quality

FID (↓) Classification Accuracy (↓) Category Distribution (↓)

Ours+Perm+Order 40.18 ± 0.2831 0.6019 ± 0.0060 0.0089

Ours+Order 38.67 ± 0.5552 0.7603 ± 0.0010 0.0533

Ours 38.39 ± 0.3392 0.5620 ± 0.0228 0.0085

Table 5.7: Ablation Study on Ordering. This table shows a quantitative comparison
of our approach wrt. two variants of our model that represent rooms as ordered
sequence of objects.

114 atiss : autoregressive transformers for indoor scene synthesis

of the synthesized scenes (first row Tab. 5.7). However, our model that is
permutation invariant, namely the prediction is the same regardless of the
order of the partial scene, performs even better (third row Tab. 5.7). We
conjecture that the invariance of our model will be more even more crucial
for training with either larger datasets or larger scenes i.e. scenes with
more objects, because observing a single order allows reasoning about all
permutations of the partial scene.

5.5 implementation details

In this section, we provide a detailed description of our network architecture.
We then describe our training protocol and provide details on the metrics
computation during training and testing. Finally, we also provide additional
details regarding our baselines.

5.5.1 Network Architecture

Here we describe the architecture of each individual component of our
model illustrated in Fig. 5.2. Our architecture comprises four components:
(i) the layout encoder that maps the room shape to a global feature represen-
tation F, (ii) the structure encoder that maps the M objects in a scene into
per-object context embeddings C = {Cj}M

j=1, (iii) the transformer encoder that
takes F, C and a query embedding q and predicts the features q̂ for the next
object to be generated and (iv) the attribute extractor that autoregressively
predicts the attributes of the next object.

Layout Encoder: The first part of our architecture is the layout encoder that
is used to map the room’s floor into a global feature representation F. We
follow [198] and we model the floor plan with its top-down orthographic
projection. This projection maps the floor plan into an image, where pixel
values of 1 indicate regions inside the room and pixel values of 0 otherwise.
The layout encoder is implemented with a ResNet-18 architecture [75] that
is not pre-trained on ImageNet [38]. We empirically observed that using
a pre-trained ResNet resulted in worse performance. From the original
architecture, we remove the final fully connected layer and replace it with a
linear projection to 64 dimensions, after average pooling.

Structure Encoder: The structure encoder maps the attributes of each object
into a per-object context embedding Cj. For the object category cj, we use a
learnable embedding, which is simply a matrix of size C× 64, that stores a

5.5 implementation details 115

Figure 5.10: Structure Encoder. The structure encoder predicts the per-object context
embeddings Cj conditioned on the object attributes. For the object category cj,
we use a learnable embedding λ(·), whereas for the location tj, the size sj and
orientation rj we employ the positional encoding from (5.12). Note that the positional
encoding γ(·) is applied separately in each dimension of tj and sj.

per-object category vector, for all C object categories in the dataset. For the
size sj, the position tj and the orientation rj, we use the positional encoding
of [196] as follows

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)) (5.12)

where p can be any of the size, position or orientation attributes and γ(·) is
applied separately in each attribute’s dimension. In our experiments, L is set
to 32. The output of each embedding layer, used to map the category, size,
location and orientation in a higher dimensional space, are concatenated
into an 512-dimensional feature vector, which is then mapped to the per-
object context embedding Cj ∈ R64, using a linear projection layer. A
pictorial representation of the structure encoder is provided in Fig. 5.10.

Transformer Encoder: We follow [196, 42] and implement our transformer
encoder as a multi-head attention transformer without any positional en-
coding. Our transformer consists of 4 layers with 8 attention heads. The
queries, keys and values have 64 dimensions and the intermediate represen-
tations for the MLPs have 1024 dimensions. To implement the transformer
architecture we use the transformer library provided by Katharopoulos et al.

116 atiss : autoregressive transformers for indoor scene synthesis

[91]3. The input set of the transformer is I = {F} ∪ {Cj}M
j=1 ∪ q, where M

denotes the number of objects in the scene and q ∈ R64 is a learnable object
query vector that allows the transformer to predict output features q̂ ∈ R64

used for generating the next object to be added in the scene.

(a) tθ(·) predicts the parameters of the mix-
ture of logistics distribution for the location
t.

(b) sθ(·) predicts the parameters of the mix-
ture of logistics distribution for the size s.

Figure 5.11: Attribute Extractor. The attribute extractor consists of four MLPs that
autoregressively predict the object attributes. Here we visualize the MLP tθ(·) for
the location attribute (left side) and the MLP sθ(·) for the size attribute (right side).

Attribute Extractor: The attribute extractor autoregressively predicts the
attributes of the next object to be added in the scene. The MLP for the
object category is a linear layer with 64 hidden dimensions that predicts C
class probabilities per object. The MLPs for the location, orientation and
size predict the mean, variance and mixing coefficient for the K logistic
distributions for each attribute. In our experiments we set K = 10. The
size, location and orientation attributes are predicted using a 2-layer MLP
with RELU non-linearities with hidden size 128 and output size 64. A
pictorial representation for the MLPs tθ(·) and σθ(·) used to predict the
parameters of the mixture of logistics distribution for the location and the
size is provided in Fig. 5.11. Note that rθ is defined in a similar manner.

5.5.2 Object Retrieval

During inference, we select 3D models from the 3D-FUTURE dataset [55] to
be placed in the scene based on the predicted category, location, orientation
and size. In particular, we perform nearest neighbor search through the 3D-
FUTURE dataset[55] to find the closest model in terms of object dimensions.
While prior work [163, 202] explored more complex object retrieval schemes

3 https://github.com/idiap/fast-transformers

https://github.com/idiap/fast-transformers

5.6 limitations 117

based on object dimensions and object cooccurrences (i.e. favor 3D model
of objects that frequently co-occur in the dataset), we note that our simple
object retrieval strategy consistently resulted in visually plausible rooms.
We leave more advanced object retrieval schemes for future research.

5.5.3 Training Protocol

In all our experiments, we use the Adam optimizer [96] with learning rate
η = 10−4 and no weight decay. For the other hyperparameters of Adam
we use the PyTorch defaults: β1 = 0.9, β2 = 0.999 and ε = 10−8. We train
all models with a batch size of 128 for 100k iterations. During training,
we perform rotation augmentation with random rotations between [0, 360]
degrees. To determine when to stop training, we follow common practice
and evaluate the validation metric every 1000 iterations and use the model
that performed best as our final model.

5.6 limitations

Figure 5.12: Failure Cases. We visualize various failure cases of our model for
different toom types.

Lastly, we discuss the limitations of our model and show some examples
of failure cases in Fig. 5.12. One type of failure case that is illustrated in
Fig. 5.12 is overlapping objects, in particular chairs for the case of living
rooms and dining rooms (see second and third column in Fig. 5.12). As
we already mentioned before, to be able to use the 3D-FRONT dataset,
we performed intense filtering to remove objects that intersect with each
other. However, we found out that not all problematic arrangements were
removed from the dataset, which we hypothesize is the reason for such
failure cases. Another type of failure case that we observed, which is also
related to the existence of problematic rooms in our training data, is the
unnatural orientation of objects (e.g. chair facing the bookshelf in first
column of Fig. 5.12 or chair facing opposite of the table in last column of

118 atiss : autoregressive transformers for indoor scene synthesis

Fig. 5.12.) Note that these failure cases are quite rare, as also indicated by
our quantitative analysis (see Tab. 5.1) as well as the perceptual study in
5.3.6 but our method does not guarantee error-free layouts and there is
room for improvement.

Our approach is currently limited to generating object properties using
a specific ordering (category first, followed by location, then orientation
and lastly size). To further expand the interactive possibilities of our model,
we believe that, in the future, object attributes should be generated in an
order invariant fashion, similar to the objects in the scene. Furthermore,
in our current formulation, the object retrieval is disconnected from the
attribute generation. As a result we cannot guarantee that the retrieved
objects would match with existing objects in the scene. To address this, it
might be beneficial to also incorporate style as an additional object attribute
to allow for improved object retrieval. Incorporating style information,
would also allows us to generate rooms conditioned on a specific style.

5.7 discussion

We have presented ATISS, a novel autoregressive transformer architecture
for synthesizing 3D rooms as unordered sets of objects. Our method gen-
erates realistic scenes that advance the state-of-the-art for scene synthesis.
In addition, our novel formulation enables new interactive applications for
semi-automated scene authoring, such as general scene completion, object
suggestions, anomaly detection and more. We believe that our model is an
important step not only toward automating the generation of 3D environ-
ments, with impact on simulation and virtual testing, but also toward a new
generation of tools for user-driven content generation. By accepting a wide
range of user inputs, our model mitigates societal risks of task automation,
and promises to usher in tools that enhance the workflow of skilled laborers,
rather than replacing them.

We believe that the interactive possibilities of ATISS can be further ex-
panded by considering order invariance to object attributes and incorpo-
rating style information. As any machine learning model, our model can
introduce learned biases for indoor scenes, and we believe it is important
to investigate learning from less structured and more widely available data
sources to make this model applicable to a wider range of cultures and
environments.

6
D I S C U S S I O N

Research is formalized curiosity. It is poking and
prying with a purpose.

— Zora Neale Hurston

6.1 summary of contributions

In this dissertation, we addressed the task of learning compositional repre-
sentations both for objects and scenes. In particular, in Part I, we developed
primitive-based representations that allow for semantically meaningful
and geometrically accurate shape abstractions. In Part II, we proposed a
structure-aware representation that jointly recovers the 3D object geometry
as a binary tree of primitives that reasons both about the part geome-
try as well as the part-level relations. Finally, in Part III, we propose a
transformer-based network architecture that synthesizes indoor environ-
ments by autoregressively placing objects within the scene’s boundaries.

In Chapter 2, we proposed the first learning-based solution for parsing
3D objects into consistent superquadric representations. Our model suc-
cessfully captures both the structure as well as the details of the target
objects by accurately learning to predict superquadrics in an unsupervised
fashion, directly from data. Employing superquadric surfaces as geometric
primitives allows for capturing details that cannot be captured by cuboidal
primitives. Due to their diverse shape vocabulary, superquadrics surfaces
are easier to learn and yield higher quality reconstructions in comparison
to cuboids. More importantly, the predicted primitives are semantically
coherent, namely the same primitive is consistently used for representing
the same object part across different object instances. This is a valuable trait
of our representation that is not enforced by any loss term, instead our
model automatically learns to associate specific object parts with specific
primitives. We illustrated that our model yields more interpretable recon-
structions both in D-FAUST humans and ShapeNet objects while being
more geometrically accurate.

In Chapter 3, we presented Neural Parts, a novel 3D primitive represen-
tation that defines primitives using an Invertible Neural Network (INN)
which implements homeomorphic mappings between a sphere and the tar-

119

120 discussion

get shape. Using an INN to parametrize the homeomorphism allows us to
compute both the inverse and the forward mapping of the homeomorphism,
which in turn, enables efficient computation of both the implicit surface
function of a primitive and its mesh without any additional post-processing.
We consider Neural Parts a step towards bridging the gap between seman-
tically meaningful and geometrically accurate primitive-based representa-
tions. Our evaluations on various ShapeNet objects, FreiHAND hands and
D-FAUST humans showcase that Neural Parts compare favorably to the
state-of-the-art primitive-based representations that rely on simpler shapes
both in terms of reconstruction quality and semantic consistency.

In Chapter 4, we presented a learning-based approach that jointly predicts
part relationships together with per-part geometries in the form of a binary
tree of primitives without requiring any part-level annotations during
training. In particular, we introduce a neural network architecture that
recursively partitions an object into a set of semantically meaningful parts.
We illustrated that considering the part-level structure facilitates learning
and yields geometrically accurate reconstructions that outperform existing
part-based representations, while performing on part with more flexible
implicit shape representations.

In Chapter 5, we introduced ATISS, a novel autoregressive transformer
architecture for synthesizing 3D rooms as unordered sets of objects. Our
formulation results in realistic scenes and enables various applications
such as scene completion with any object, detection of unnaturally placed
objects as well as object suggestions. These tasks were not possible with
existing approaches that represent scenes as ordered sequences of objects.
Our extensive experiments on various rooms from the 3D-FRONT dataset
demonstrate the ability of ATISS to generate more realistic scenes in com-
parison to prior work. Moreover, due to the simplicity of our framework,
ATISS has fewer learnable parameters, is simpler to implement and train
and generates scenes up to 8× faster than existing scene synthesis pipelines.

6.2 directions for future research

We believe that our work opens up many exciting research directions to-
wards developing compositional representations for both objects and scenes.
Below, we discuss some challenges that we believe should be considered in
future work.

Due to the lack of supervision in terms of part-level annotations, existing
unsupervised shape abstraction models seek to infer parts by minimizing

6.2 directions for future research 121

the discrepancy between the target and the predicted shape [191, 141,
61, 143, 37, 140]. However, while optimizing for the geometry enforces
that the reconstructed primitives are geometrically accurate, it does not
guarantee that the inferred parts will be either semantically meaningful
(i.e. a primitive corresponds to an identifiable part e.g. leg, arms etc.)
or semantically consistent (i.e. the same primitive is consistently used
for representing the same semantic part). Therefore, we believe that an
exciting future research direction is to exploit additional cues for learning
meaningful shape abstractions. For example, motion naturally encapsulates
the concept of object parts as well as how they are structured in space,
thus we anticipate that semantically meaningful shape abstractions can
naturally emerge by considering how contiguous regions of an object
move/deform across time. While motion is a useful cue for part-based
decomposition of non-rigid shapes such as animals, humans etc., it cannot
be easily applied for the majority of rigid man-made objects such as e.g.
cups, nightstand drawers, etc. To this end, another exciting direction for
future research is learning shape abstractions based on the functionality of
parts. Typically, functionality-related knowledge about object parts can be
derived by modelling how they interact with each other.

Moreover, another exciting research direction is the development of
methods that utilize the part-based representations for generating novel 3D
shapes such as objects, humans, animals, artificially generated creatures etc.
Generating 3D content that is both realistic and diverse is a long-standing
problem in computer vision and graphics, since manually creating 3D
content is an extremely expensive and laborious endeavour that typically
needs to be conducted by experienced artists. During the last decade, there
has been an increased demand for tools that automate the 3D content
creation process for applications like video games, AR/VR as well as
general 3D content creation. Due to their special characteristics, part-based
representations are the ideal intermediate representation for such tasks as
they allow to automatically interact and edit specific parts of the generated
object. While such tools have been proposed before1, they are exclusively
focused on 2D image generation. However, we believe that it is crucial to
also develop similar tools that can generate content in 3D.

Finally, another promising direction for future research is the develop-
ment of compositional representation that go beyond a single object and
reason about multiple objects in a scene. We believe that such representa-
tions are crucial for various applications, such as autonomous driving and

1 https://ai.googleblog.com/2020/11/using-gans-to-create-fantastical.html

https://ai.googleblog.com/2020/11/using-gans-to-create-fantastical.html

122 discussion

AR/VR, that require reasoning and interacting with different elements of
the environment. We hypothesize that existing primitive-based methods
cannot be directly employed for reconstructing scenes into semantically
consistent parts since they cannot capture neither simple concepts such
as empty space nor higher level semantics between elements of the scene.
In addition, while for the case of a single object a few primitives might
yield meaningful abstractions, for the case of scenes the number of inferred
primitives needs to be increased in order ensure that the inferred primitives
robustly capture the scene structure. We believe that combining such a
holistic scene representations with a generative model would allow us to
build interactive tools with control over the object arrangements, object
parts and part relationships.

A
A D D I T I O N A L I M P L E M E N TAT I O N D E TA I L S

a.1 superquadrics revisited : learning 3d shape parsing be-
yond cuboids

a.1.1 Derivation of Pointcloud-to-Primitive Loss

This section provides the derivation of the pointcloud-to-primitive distance
LX→P(X ,P) in (2.10). For completeness, we restate our notation briefly.
We represent the target point cloud as a set of 3D points X = {xi}N

i=1 and
we approximate the continuous surface of the mth primitive by a set of 3D
points Ym = {ym

k }
K
k=1. We further denote Tm(x) = R(λm) x + t(λm) as the

mapping from world coordinates to the local coordinate system of the mth

primitive.
The pointcloud-to-primitive distance, LX→P, measures the distance from

the point cloud to the primitives to ensure that each observation is explained
by at least one primitive. It can be expressed as:

LX→P(X ,P) = Ep(z)

[
∑

xi∈X
min

m|zm=1
∆m

i

]
(A.1)

where ∆m
i denotes the minimal distance from point xi to the surface of the

m’th primitive:
∆m

i = min
k=1,..,K

‖Tm(xi)− ym
k ‖2 (A.2)

Assuming independence of the existence variables p(z) = ∏m p(zm), we
can replace the expectations in (A.1) with summations as follows:

LX→P(X ,P) = ∑
z1

· · ·∑
zM

[
∑

xi∈X
min

m|zm=1
∆m

i

]
p(z) (A.3)

Naïve computation of (A.3) has exponential complexity, i.e. for M primitives
it requires evaluating the quantity inside the expectation 2M times. Our
key insight is that (A.3) can be evaluated in linear time if the distances ∆m

i
are sorted. Without loss of generality, we assume that the distances are
sorted in ascending order. This allows us to state the following: if the first

123

124 additional implementation details

primitive exists, the first primitive will be the one closest to point xi of the
target point, if the first primitive does not exist and the second does, then
the second primitive is closest to point xi and so forth. More formally, this
property can be stated as follows:

min
m|zm=1

∆m
i =

∆1
i , if z1 = 1

∆2
i , if z1 = 0, z2 = 1

...

∆M
i , if zm = 0, . . . , zM = 1

(A.4)

Using (A.4) we can simplify (A.3) as follows. We start to carry out the
summations over the existence variables one by one. Starting with the
summations over z1, (A.3) becomes:

LX→P(X ,P) = ∑
xi∈X

γ1 ∑
z2

· · ·∑
zM

∆1
i

M

∏̄
m=2

p(zm̄)︸ ︷︷ ︸
(†)

+

(1− γ1)∑
z2

· · ·∑
zM

[
min

m≥2|zm=1
∆m

i

] M

∏̄
m=2

p(zm̄)

(A.5)

The expression, marked with (†) corresponds to the case for z1 = 1,
namely the 1st primitive is part of the scene. From Eq. A.4, we know that
minm|zm=1 ∆m

i = ∆1
i for z1 = 1, thus the expression marked with (†), can

be simplified as follows,

(†) = γ1∆1
i ∑

z2

· · ·∑
zM

M

∏̄
m=2

p(zm̄)︸ ︷︷ ︸
this term evaluates to 1

= γ1∆1
i (A.6)

Following this strategy, we can iteratively simplify the remaining terms
in (A.5) and arrive at the analytical form of the pointcloud-to-primitive
distance stated in (2.10):

LX→P(X ,P) = ∑
xi∈X

[
γ1∆1

i + (1− γ1)γ2∆2
i + · · ·+ (1− γ1)(1− γ2) . . . γM∆M

i

]
= ∑

xi∈X

M

∑
m=1

∆m
i γm

m−1

∏̄
m=1

(1− γm̄)

(A.7)

A.1 superquadrics revisited : learning 3d shape parsing beyond cuboids 125

Note that our current formulation assumes that at least one primitive exists
in the scene. However, this assumption can be easily relaxed by introducing
a “virtual primitive" with a fixed distance to every 3D point on the target
point cloud.

a.1.2 Empirical Analysis of Reconstruction Loss

In this section, we provide empirical evidence regarding our claim that our
Chamfer-based reconstruction loss leads to more stable training compared
to the truncated bi-directional loss of Tulsiani et al. [191]. Towards this goal,
we directly optimize/train for the primitive parameters, i.e., not optimizing
the weights of a neural network but directly fitting the primitives. We
perform this experiment on a 2D toy example and compare the results
when using the proposed loss to the results using the truncated distance
formulation in [191]. We visualize the evolution of parameters for both
optimization objectives as training progresses. We observe that the truncated
loss proposed in [191] is more likely to converge to local minima (e.g. figures
A.2k-A.2o), while our loss consistently avoids them.

126 additional implementation details

(a) Iteration 0 (b) Iteration 10 (c) Iteration 20 (d) Iteration 30 (e) Iteration 40

(f) Iteration 50 (g) Iteration 60 (h) Iteration 70 (i) Iteration 80 (j) Iteration 90

(k) Iteration 100 (l) Iteration 110 (m) Iteration 120 (n) Iteration 130 (o) Iteration 140

A.1 superquadrics revisited : learning 3d shape parsing beyond cuboids 127

(a) Iteration 150 (b) Iteration 160 (c) Iteration 170 (d) Iteration 180 (e) Iteration 190

(f) Iteration 200 (g) Iteration 210 (h) Iteration 220 (i) Iteration 230 (j) Iteration 240

(k) Iteration 250 (l) Iteration 260 (m) Iteration 270 (n) Iteration 280 (o) Iteration 290

Figure A.2: Empirical Analysis of Reconstruction Loss. We illustrate the evolution
of two cuboid abstractions using our reconstruction loss with Chamfer distance and
the truncated bi-directional loss of Tulsiani et al. [191].

128 additional implementation details

a.2 learning unsupervised hierarchical part decomposition

of 3d objects

a.2.1 Occupancy Function

In this section, we provide illustrations of the occupancy function g for
different primitive parameters and for different sharpness values. For any
point x ∈ R3, we can determine whether it lies inside or outside a su-
perquadric using its implicit surface function which is commonly referred
to as the inside-outside function:

f (x; λ) =

((
x
α1

) 2
ε2
+

(
y
α2

) 2
ε2

) ε2
ε1

+

(
z

α3

) 2
ε1

(A.8)

where α = [α1, α2, α3] determine the size and ε = [ε1, ε2] determine the
shape of the superquadric. If f (x; λ) = 1.0, the given point x lies on the
surface of the superquadric, if f (x; λ) < 1.0 the corresponding point lies
inside and if f (x; λ) > 1.0 the point lies outside the superquadric. To
account for numerical instabilities that arise from the exponentiations in
(4.7), instead of directly using f (x; λ), we follow [81] and use f (x; λ)ε1 .
In addition, we also convert the inside-outside function to an occupancy
function, g : R3 → [0, 1]:

g(x; λ) = σ (s (1− f (x; λ)ε1)) (A.9)

that results in per-point predictions suitable for the classification problem
we want to solve. σ(·) is the sigmoid function and s controls the sharpness
of the transition of the occupancy function. As a result, if g(x; λ) < 0.5
the corresponding point lies outside and if g(x; λ) > 0.5 the point lies
inside the superquadric. Fig. A.3 visualizes the range of the implicit surface

Figure A.3: Implicit Surface Function of Superquadrics. We visualize the 2D slice
of f (xi) and g(xi) for a superquadric with α1 = α2 = α3 = ε1 = ε2 = 1.

A.2 learning unsupervised hierarchical part decomposition of 3d objects 129

function of superquadrics of (A.8) and (A.9). Fig. A.4+A.5+A.6 visualize
the implicit surface function for different values of ε1 and ε2 and different
values of sharpness s. We observe that without applying the sigmoid to
(4.7) the range of values of (4.7) varies significantly for different primitive
parameters.

130 additional implementation details

(a) ε1 = 0.25, and ε2 = 0.25

(b) ε1 = 0.25, and ε2 = 0.5

(c) ε1 = 0.25, and ε2 = 1.0

(d) ε1 = 0.25, and ε2 = 1.5

Figure A.4: Implicit Surface Function. We visualize the implicit surface function
for different primitive parameters and for different sharpness values. The surface
boundary is drawn with red.

A.2 learning unsupervised hierarchical part decomposition of 3d objects 131

(a) ε1 = 1.0, and ε2 = 0.25

(b) ε1 = 1.0, and ε2 = 0.5

(c) ε1 = 1.0, and ε2 = 1.0

(d) ε1 = 1.0, and ε2 = 1.5

Figure A.5: Implicit Surface Function. We visualize the implicit surface function
for different primitive parameters and for different sharpness values. The surface
boundary is drawn with red.

132 additional implementation details

(a) ε1 = 1.5, and ε2 = 0.25

(b) ε1 = 1.5, and ε2 = 0.5

(c) ε1 = 1.5, and ε2 = 1.0

(d) ε1 = 1.5, and ε2 = 1.5

Figure A.6: Implicit Surface Function. We visualize the implicit surface function
for different primitive parameters and for different sharpness values. The surface
boundary is drawn with red.

A.3 atiss : autoregressive transformers for indoor scene synthesis 133

a.3 atiss : autoregressive transformers for indoor scene

synthesis

a.3.1 3D-FRONT Data Preprocessing

We evaluate our model on the 3D-FRONT dataset [54], which is one of
the few available datasets that contain indoor environments. 3D-FRONT
contains a collection of 6813 houses with roughly 14629 professionally de-
signed rooms, populated with 3D furniture objects from the 3D-FUTURE
dataset [55]. In our experiments, we focused on four room types: (i) bed-
rooms, (ii) living rooms, (iii) dining rooms and (iv) libraries. Unfortunately,
3D-FRONT contains multiple problematic rooms with unnatural sizes, mis-
classified objects as well as objects in unnatural positions e.g. outside the
room boundaries, lamps on the floor, overlapping objects etc. Therefore, in
order to be able to use it, we had to perform thorough filtering to remove
problematic scenes. In this section, we present in detail the pre-processing
steps for each room type.

The 3D-FRONT dataset provides scenes for the following room types: bed-
room, diningroom, elderlyroom, kidsroom, library, livingdiningroom, livingroom,
masterbedroom, nannyroom, secondbedroom that contain 2287, 3233, 233, 951,
967, 2672, 1095, 3313, 16 and 2534 rooms respectively. Since some room
types have very few rooms we do not consider them in our evaluation.

Bedroom: To create training and test data for bedroom scenes, we consider
rooms of type bedroom, secondbedroom and masterbedroom, which amounts to
8134 rooms in total. We start by removing rooms of unnatural sizes, namely
rooms that are larger than 6m × 6m in floor size and taller than 4m. Next,
we remove infrequent objects that appear in less than 15 rooms, such as
chaise lounge sofa, l-shaped sofa, barstool, wine cabinet etc. Subsequently,
we filter out rooms that contain fewer than 3 and more than 13 objects,
since they amount to a small portion of the dataset. Since the original
dataset contained various rooms with problematic object arrangements
such overlapping objects, we also remove rooms that have objects that are
overlapping as well as misclassified objects e.g. beds being classified as
wardrobes. This results in 5996 bedrooms with 21 object categories in total.
Fig. A.7a illustrates the number of appearances of each object category in
the 5996 bedroom scenes and we remark that the most common category is
the nightstand with 8337 occurrences and the least common is the coffee
table with 45.

134 additional implementation details

Library: We consider rooms of type library that amounts to 967 scenes in
total. For the case of libraries, we start by filtering out rooms with unnatural
sizes that are larger than 6m × 6m in floor size and taller than 4m. Again we
remove rooms that contain overlapping objects, objects positioned outside
the room boundaries as well as rooms with unnatural layouts e.g. single
chair positioned in the center of the room. We also filter out rooms that
contain less than 3 objects and more than 12 objects since they appear
less frequently. Our pre-processing resulted in 622 rooms with 19 object
categories in total. Fig. A.7b shows the number of appearances of each object
category in the 622 libraries. The most common category is the bookshelf
with 1109 occurrences and the least common is the wine cabinet with 19.

0 1000 2000 3000 4000 5000 6000 7000 8000

Objects

coffee table
sofa

armchair
dressing chair

children cabinet
kids bed

bookshelf
shelf
stool
desk

dressing table
single bed

table
cabinet

chair
tv stand

ceiling lamp
pendant lamp

double bed
wardrobe

nightstand

(a) Bedrooms

0 200 400 600 800 1000

Objects

wine cabinet
dining table

wardrobe
multi seat sofa

loveseat sofa
round end table

cabinet
stool

console table
shelf

armchair
chinese chair

corner side table
dining chair
ceiling lamp
lounge chair

pendant lamp
desk

bookshelf

(b) Libraries

Figure A.7: Number of object occurrences in Bedrooms and Libraries.

Living Room: For the living rooms, we consider rooms of type livingroom
and livingdiningroom, which amounts to 3767 rooms. We follow a similar
process as before and we start by filtering out rooms with unnatural sizes.
In particular, we discard rooms that are larger than 12m × 12m in floor
size and taller than 4m. We also remove uncommon objects that appear
in less than 15 rooms such as bed and bed frame. Next, we filter out
rooms that contain less than 3 objects and more than 13 objects, since they
are significantly less frequent. For the case of living rooms, we observed
that some of the original scenes contained multiple lamps without having
any other furniture. Since this is unnatural, we also removed these scenes
together with some rooms that had either overlapping objects or objects
positioned outside the room boundaries. Finally, we also remove any scenes
that contain any kind of bed e.g. double bed, single bed, kid bed etc. After
our pre-processing, we ended up with 2962 living rooms with 24 object
categories in total. Fig. A.8a visualizes the number of occurrences of each
object category in the living rooms. We observe that the most common

A.3 atiss : autoregressive transformers for indoor scene synthesis 135

0 2000 4000 6000 8000

Objects

chaise longue sofa
lazy sofa

desk
chinese chair

wardrobe
shelf

round end table
l shaped sofa
wine cabinet

cabinet
loveseat sofa

bookshelf
ceiling lamp

stool
lounge chair

console table
armchair

multi seat sofa
tv stand

dining table
corner side table

coffee table
pendant lamp

dining chair

(a) Living Rooms

0 2000 4000 6000 8000 10000

Objects

chaise longue sofa
lazy sofa

desk
chinese chair

shelf
wardrobe

round end table
l shaped sofa
wine cabinet
loveseat sofa

bookshelf
cabinet

ceiling lamp
stool

lounge chair
armchair

console table
multi seat sofa

tv stand
corner side table

coffee table
dining table

pendant lamp
dining chair

(b) Dining Rooms

Figure A.8: Number of object occurrences in Living Rooms and Dining Rooms.

category is the dining chair with 9009 occurrences and the least common is
the chaise lounge sofa with 30.

Dining Room: For the dining rooms, we consider rooms of type diningroom
and livingdiningroom, since the diningroom scenes amount to only 233 scenes.
This results in 3233 rooms in total. For the dining rooms, we follow the
same filtering process as for the living rooms and we keep 2625 rooms with
24 objects in total. Fig. A.8b shows the number of occurrences of each object
category in the dining rooms. The most common category is the dining
chair with 9589 occurrences and the least common is the chaise lounge sofa
with 19.

To generate the train, test and validation splits, we split the preprocessed
rooms such that 70% is used for training, 20% for testing and 10% for
validation. Note that the 3D-FRONT dataset comprises multiple houses
that may contain the same room, e.g the exact same object arrangement
might appear in multiple houses. Thus splitting train and test scenes solely
based on whether they belong to different houses could result in the same
room appearing both in train and test scenes. Therefore, instea of randomly
selecting rooms from houses but we select from the set of rooms with
distinct object arrangements.

a.3.2 Perceptual Study

We conducted two paired Amazon Mechanical Turk perceptual studies to
evaluate the quality of our generated layouts against FastSynth [163] and
SceneFormer [202]. To this end, we first sampled 211 floor plans from the
test set and generated 6 scenes per floor plan for each method; no filtering or
post-processing was used, and samples were randomly and independently
drawn for all methods. Originally, we considered rendering the rooms with
the same furniture objects for each floor plan to allow participants to only

136 additional implementation details

focus on the layout itself, which is the main focus of this work. However,
since the object retrieval is done based on the object dimensions, rescaling
the same furniture piece to fit all predicted dimensions would result in
unrealistically deformed pieces that could skew perceptual judgements
even more heavily. To avoid having participants focusing on the individual
furniture pieces, we added prominent instructions to focus on the layout
and not the properties of selected objects (see Fig. A.9). Each 3D room was
rendered as an animated gif using the same camera rotating around the
room.

Figure A.9: Perceptual Study UI. A/B paired questions with rotating 3D scenes
(zoom in).

In each user study, users were shown paired question sets: two rooms
generated using our method and two generated with the baseline con-
ditioned on the same floor plan. We randomly selected two out of the
6 pre-rendered scenes for the given floor plan, and 5 different workers
answered the question set about every floor plan. Namely, the majority of
the 6 layouts were shown more than once on average. A / B order was
randomized to avoid bias. The question sets posed the same two questions
about scenes generated with program A and B, in order to let users focus
on the details of the results and to assess errors of the generated layouts.
The last question forced participants to choose between A or B, based on
which scene looks more realistic.

Specifically, users were instructed to pay attention to errors like interpen-
etrating furniture and furniture outside of the floor area and answer if none,
one or both layouts for each method had errors. We aggregated these statis-

A.3 atiss : autoregressive transformers for indoor scene synthesis 137

tics to obtain average error rate per layout, with our method performing
nearly twice better than the best baseline [163]. The results on realism in
Tab. 5.4 (first and second row) specify the fraction of the times users chose
the baseline over ours. For example, [163] was judged more realistic than
ours only 26.9% of the time. Because there was no intermediate option, this
means that 73.1% of the time our method was preferred. The last line in
Tab. 5.4, aggregated preference for our method across both studies.

Workers were compensated $0.05 per question set for a total of USD $106.
The participation risks involved only the regular risks associated with the
use of a computer.

B
A D D I T I O N A L E X P E R I M E N TA L R E S U LT S

b.1 superquadrics revisited : learning 3d shape parsing be-
yond cuboids

b.1.1 Qualitative Results on SURREAL

In this section, we provide additional qualitative results on the SURREAL
human body dataset. In Fig. B.1, we illustrate the predicted primitives of
humans in various poses and articulations.

We remark that our model is able to accurately capture the various
human body parts using superquadric surfaces. Another interesting aspect
of our model, which is also observed in [191], is related to the fact that
our model uses the same primitive (highlighted with the same color) to
represent the same actual human body part. For example, the head is
typically captured using the primitive illustrated with red. For some poses
these correspondences are lost. We speculate that this is because the network
does not know whether the human is facing in front or behind.

b.2 learning unsupervised hierarchical part decomposition

of 3d objects

b.2.1 Additional Results on D-FAUST

In this section, we provide additional qualitative results on the D-FAUST
dataset [13]. Furthermore, we also demonstrate that the learned hierarchies
are indeed semantic as the same node is used to represent the same part of
the human body. Similar to the experiment of Sec. 4.3.3, we evaluate our
model on the single-view 3D reconstruction task, namely given a single RGB
image as an input, our network predicts its geometry as a tree of primitives as
an output. We compare our model with [141]. Both methods were trained
for a maximum number of 32 primitives until convergence. For our method,
we set the sharpness value s = 10.

In Fig. B.2+B.4, we qualitatively compare our predictions with [141]. We
remark that even though [141] is more parsimonious, our predictions are

139

140 additional experimental results

Figure B.1: Qualitative Results on SURREAL. Our network learns semantic map-
pings of body parts across different body shapes and articulations. For instance, the
network uses the same primitive for the left forearm across instances.

more accurate. For example, we note that our shape reconstructions capture
the details of the muscles of the legs that are not captured in [141]. For
completeness, we also visualize the predicted hierarchy up to the fourth
depth level. Another interesting aspect of our model, which is also observed

B.2 learning unsupervised hierarchical part decomposition of 3d objects 141

(a) Input (b) SQs[141] (c) Ours (d) Input (e) SQs[141] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[141] (k) Ours (l) Input (m) SQs[141] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure B.2: Qualitative Results on D-FAUST. Our network learns semantic map-
pings of body parts across different body shapes and articulations while being
geometrical more accurate compared to [141].

in [141, 191] is related to the semanticness of the learned hierarchies. We
note that our model consistently uses the same node for representing the
same part of the human body. For instance, node (4, 15), namely the 15-th
node at the 4-th depth level, consistently represents the right foot, whereas,
node (4, 12) represents the left foot. This is better illustrated in Fig. B.3. In
this figure, we only color the primitive associated with a particular node,
for various humans, and we remark that the same primitive is used for
representing the same body part. Finally, another interesting characteristic

142 additional experimental results

(a) Node (4, 0)

(b) Node (3, 3)

(c) Node (4, 3)

(d) Node (4, 12)

Figure B.3: Semantic Predictions on D-FAUST. To illustrate that our model indeed
learns semantic hierarchical layouts of parts, here we color a specific node of the
tree for various humans and we observe that it consistently corresponds to the same
body part.

B.2 learning unsupervised hierarchical part decomposition of 3d objects 143

of our model is related to its ability to use less primitives for reconstructing
humans, with smaller bodies. In particular, while the lower part of the
human body is consistently represented with the same set of primitives,
the upper part can be represented with less depending on the size and the
articulation of the human body. This is illustrated in Fig. B.4, where we
visualize the predictions of our model for such scenarios.

(a) Input (b) SQs[141] (c) Ours (d) Input (e) SQs[141] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[141] (k) Ours (l) Input (m) SQs[141] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure B.4: Qualitative Results on D-FAUST. Our network learns semantic map-
pings of body parts across different body shapes and articulations. Note that the
network predicts less primitives for modelling the upper part of the human body.

Below, we provide the full hierarchies of the results on D-FAUST from
Fig. 4.5+Fig. 4.9.

144 additional experimental results

Figure B.5: Full Hierarchies of Fig. 4.5. Please zoom-in for details

b.2.2 Additional Results on ShapeNet

In this section, we provide additional qualitative results on various object
types from the ShapeNet dataset [19]. Furthermore, we also demonstrate
the ability of our model to predict semantic hierarchies, where the same
node is used for representing the same part of the object. We compare our
model qualitatively with [141]. In particular, we train both models on the
single-view 3D reconstruction task, using the same image renderings and
train/test splits as [34]. Both methods are trained for a maximum number
of 64 primitives. For our method, we empirically observed that a sharpness
value s = 10 led to good reconstructions. Note that we do not compare
qualitatively with [61, 36] as they do not provide code. Finally, we also
compare our model with [191, 141] on the volumetric reconstruction task,
where the input to all networks is a binary voxel grid. For a fair comparison,
all models leverage the same feature encoder architecture proposed in [141].

In Fig. B.8+B.7, we qualitatively compare our predictions with [141]
for various ShapeNet objects. We observe that our model yields more
accurate reconstructions compared to our baseline. Due to the use of the
reconstruction quality qd

k , our model dynamically decides whether a node
should be split or not. For example, our model represents the phone in
Fig. B.8 (a) using one primitive (root node) and the phone in Fig. B.8 (b),
that consists of two parts, with two primitives. This can be also noted
for the case of the displays Fig. B.8 (g+j). For more complicated objects,
such as aeroplanes, tables and chairs, our network uses more primitives

B.2 learning unsupervised hierarchical part decomposition of 3d objects 145

Figure B.6: Full Hierarchies of Fig. 4.9. Please zoom-in for details.

146 additional experimental results

to accurately capture the geometry of the target object. Note that for this
experiment we set the threshold for qd

k to 0.8.

(a) Input (b) SQs[141] (c) Ours (d) Input (e) SQs[141] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[141] (k) Ours (l) Input (m) SQs[141] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure B.7: Single Image 3D Reconstruction on ShapeNet. We visualize the pre-
dictions of our model on various ShapeNet objects and compare to [141]. For objects
that are represented with more than two primitives, we also visualize the predicted
hierarchy.

Our network associates the same node with the same part of the object, as
it can be seen from the predicted hierarchies in Fig. B.8+B.7. For example,
for the displays the second primitive at the first depth level is used for
representing the monitor of the display, for the aeroplanes the 4-th primitive
in the second depth level is used for representing the front part of the
aeroplanes.

B.2 learning unsupervised hierarchical part decomposition of 3d objects 147

(a) Input (b) SQs[141] (c) Ours (d) Input (e) SQs[141] (f) Ours

(g) Input (h) SQs[141] (i) Ours (j) Input (k) SQs[141] (l) Ours

(m) Predicted Hierarchy (n) Predicted Hierarchy

(o) Input (p) SQs[141] (q) Ours (r) Input (s) SQs[141] (t) Ours

(u) Predicted Hierarchy (v) Predicted Hierarchy

Figure B.8: Single Image 3D Reconstruction on ShapeNet. We visualize the pre-
dictions of our model on various ShapeNet objects and compare to [141]. For objects
that are represented with more than two primitives, we also visualize the predicted
hierarchy.

148 additional experimental results

b.3 neural parts : learning expressive 3d shape abstractions

b.3.1 Experiment on D-FAUST

In this section, we provide additional information regarding our exper-
iments on D-FAUST dataset [13]. D-FAUST contains 38, 640 meshes of
humans performing various tasks such as “chicken wings", “running on
spot", “shake arms" etc. We follow [143] and use 70%, 20% and 10% for the
train, test and validation splits. Furthermore, we filter out the first 20 frames
for each sequence that contain the unnatural “neutral pose" necessary for
calibration purposes. Note that in contrast to [143], we do not normalize
the meshes to the unit cube in order to retain the variety of the human body
i.e. tall and short humans. This makes the single view 3D reconstruction
task harder, as all models need to efficiently capture both the pose and the
size of the human.

Tab. B.1 summarizes the quantitative results from Fig. Fig. 3.4. We notice
that for all primitive-based baselines, increasing the number of parts results
in improved reconstruction quality in terms of volumetric IoU and Chamfer-
L1 distance. Instead, Neural Parts, decouple the number of primitives from
the reconstruction accuracy as the performance of our model is independent
of the number of the predicted primitives. This is expected, since our
primitives are highly expressive and our model can capture the 3D shape
geometry using even a single primitive (see Fig. B.9). We argue that this
is a desirable property, as Neural Parts enable us to select the number of
parts based on the expected number of semantic parts and not the desired
reconstruction quality.

SQs H-SQs CvxNet Ours
OccNet 5 10 25 50 4 8 16 32 5 10 25 50 2 5 8 10

IoU 0.691 0.514 0.565 0.616 0.607 0.559 0.595 0.623 0.610 0.582 0.607 0.622 0.621 0.675 0.673 0.676 0.678

Chamfer-L1 0.102 0.147 0.129 0.114 0.116 0.161 0.148 0.126 0.129 0.183 0.161 0.139 0.121 0.101 0.097 0.090 0.095

Table B.1: Single Image 3D Reconstruction on D-FAUST. We report the volumetric
IoU (↑) and the Chamfer-L1 (↓) wrt. the ground-truth mesh for our model compared
to primitive-based methods SQs [141] H-SQs [143], CvxNet [36] for various number
of primitives and the non primitive-based OccNet [120]. We observe that our model
outperforms all primitive-based baselines with only 2 primitives.

B.3 neural parts : learning expressive 3d shape abstractions 149

Target Ours #1 Ours #2 Ours #5 Ours #8 Ours #10

Figure B.9: Single Image 3D Reconstruction on D-FAUST. The input image is
shown on the first column and the rest contain predictions of our method with
different number of primitives.

In Fig. B.10, we provide additional experimental results on the single-view
3D reconstruction task on D-FAUST. In particular, we compare our model
with 5 primitives, with CvxNet and SQs with 50 primitives and H-SQs
with 32 primitives. We observe that while CvxNet and H-SQs accurately
capture the geometry of the human body, their predicted primitives lack any
semantic interpretation, as primitives do not correspond to actual geometric
parts of the human body. Instead, SQs lead to semantic and parsimonious
shape abstractions that are not accurate. On the other hand, Neural Parts
achieve both semantic interpretability and high reconstruction quality.

b.3.2 Experiment on FreiHAND

In this section, we provide additional information regarding our exper-
iments on FreiHAND dataset [225]. For FreiHAND, we select the first
5000 hand poses and generate meshes using the provided MANO parame-
ters [165]. We render them from a fixed orientation and use 70%, 20%, 10%
for the train, test and validation splits. Note that MANO does not generate
watertight meshes, thus we need to post-process the meshes in order to
create occupancy pairs. This is achieved by adding triangular faces using
the following vertex indices 38, 92, 234, 239, 279, 215, 214, 121, 78, 79, 108,
120, 119, 117, 118, 122.

In Fig. B.11, we provide additional qualitative results on the single-
view 3D reconstruction task on FreiHAND. We compare our model with

150 additional experimental results

Target OccNet SQs H-SQs CvxNet Ours

Figure B.10: Single Image 3D Reconstruction on D-FAUST. The input image is
shown on the first column and the rest contain predictions of all methods: OccNet
(second), primitive-based predictions with superquadrics (third and fourth) and
convexes (fifth) and ours with 5 primitives (last).

B.3 neural parts : learning expressive 3d shape abstractions 151

5 primitives to SQs and CvxNet with 5 primitives and H-SQs with 8.
Note that for H-SQs we can only use a maximum number of primitives
that is a power of 2. H-SQs with 4 primitives performed poorly; thus
we increased the number of parts. We observe that Neural Parts yield
semantically meaningful parts that accurately capture the hand geometry.
Note that accurately modeling objects with non-rigid parts, such as the
flexible human fingers, requires primitives that can bend arbitrarily (see
thumb in second row Fig. B.11). This is only possible with Neural Parts, as
we do not impose any kind of constraint on the primitive shape.

Input OccNet SQs H-SQs CvxNet Ours

Figure B.11: Single Image 3D Reconstruction on FreiHAND. We compare our
model with OccNet, SQs and CvxNet with 5 primitives and H-SQs with 8 primitives.

152 additional experimental results

b.3.3 Experiment on ShapeNet

Input OccNet CvxNet-5 CvxNet-25 Ours

Figure B.12: Single Image 3D Reconstruction on ShapeNet Cars. We compare
Neural Parts to OccNet and CvxNet with 5 and 25 primitives. Our model yields
semantic and more accurate reconstructions with 5 times less primitives.

For our experiments on the ShapeNet dataset [19] we use the same image
renderings and train/test splits of Choy et al. [34]. In order to determine
whether points lie inside or outside the target mesh (i.e. for generating
the occupancy pairs Xo) we need the meshes to be watertight. For this, we
follow [120] and use the code provided by Stutz et al. [180]1 which performs
TSDF-fusion on random depth renderings of the object, to create watertight
meshes of the object. In Fig. B.12, we provide additional qualitative results

1 https://github.com/davidstutz/mesh-fusion

https://github.com/davidstutz/mesh-fusion

B.3 neural parts : learning expressive 3d shape abstractions 153

OccNet CvxNet - 5 CvxNet - 25 Ours

IoU 0.763 0.650 0.666 0.697
Chamfer-L1 0.186 0.218 0.210 0.185

Table B.2: Single Image 3D Reconstruction on ShapeNet Cars. Quantitative evalu-
ation of our method against OccNet [120] and CvxNet [37] with 5 and 25 primitives.

on various ShapeNet cars and compare our model with 5 primitives to
CvxNet with 5 and 25 and with the non primitive-based OccNet.

154 additional experimental results

Input OccNet CvxNet-5 CvxNet-25 Ours

Figure B.13: Single Image 3D Reconstruction on ShapeNet Airplanes. We compare
Neural Parts to OccNet and CvxNet with 5 and 25 primitives. Our model yields
semantic and more accurate reconstructions with 5 times less primitives.

Subsequently, we train Neural Parts with 5 primitives and compare with
CvxNet with 5 and 25 primitives on ShapeNet planes (Fig. B.13 + Tab. B.3),
ShapeNet lamps (Fig. B.14 + Tab. B.4) and ShapeNet chairs (Fig. B.15 +
Tab. B.5). In Fig. B.13, we provide a qualitative evaluation of our model
with CvxNet and OccNet on various planes. We observe that Neural Parts
yield more geometrically accurate and semantically meaningful shape
abstractions than CvxNet with multiple primitives, i.e. the same primitive
is consistently used for representing the tail and the wings of the airplanes.
This is also validated quantitatively in Tab. B.3, where we see that our model
outperforms CvxNet in terms of IoU and Chamfer-L1 both with 5 and 25

B.3 neural parts : learning expressive 3d shape abstractions 155

OccNet CvxNet - 5 CvxNet - 25 Ours

IoU 0.451 0.425 0.448 0.454
Chamfer-L1 0.218 0.267 0.245 0.220

Table B.3: Single Image Reconstruction on ShapeNet Airplanes. Quantitative eval-
uation of our method against OccNet [120] and CvxNet [37] with 5 and 25 primitives.

primitives. We observe that CvxNet with 5 primitives cannot represent fine
details and as a result parts of the target object are not captured, e.g. the
turbines of airplanes.

This becomes more evident for the case of lamps, where 5 primitives do
not have enough representation power for modelling complex shapes such
as the lamp shade or the lamp body (see Fig. B.14 third column), thus entire
object parts are missing. Similarly, also for the case of chairs, CvxNet with
5 primitives fail to accurately capture the object’s geometry (see Fig. B.15

third column). For example, 5 primitives are not enough for representing
the legs of the chair. Instead our model with the same number of parts
consistently captures the 3D geometry. On the contrary, CvxNet with 25
primitives yield more geometrically accurate reconstructions, however, the
reconstructed primitives are not as semantically meaningful.

OccNet CvxNet - 5 CvxNet - 25 Ours

IoU 0.339 0.246 0.278 0.318
Chamfer-L1 0.514 0.613 0.537 0.347

Table B.4: Single Image 3D Reconstruction on ShapeNet Lamps. Quantitative
evaluation of our method against OccNet [120] and CvxNet [37] with 5 and 25

primitives.

156 additional experimental results

Input OccNet CvxNet-5 CvxNet-25 Ours

Figure B.14: Single Image 3D Reconstruction on ShapeNet Lamps. We compare
Neural Parts to OccNet and CvxNet with 5 and 25 primitives. Our model yields
semantic and more accurate reconstructions with 5 times less primitives.

B.3 neural parts : learning expressive 3d shape abstractions 157

OccNet CvxNet - 5 CvxNet - 25 Ours

IoU 0.432 0.364 0.392 0.412
Chamfer-L1 0.312 0.587 0.557 0.337

Table B.5: Single Image Reconstruction on ShapeNet Chairs. Quantitative evalua-
tion of our method against OccNet [120] and CvxNet [37] with 5 and 25 primitives.

Input OccNet CvxNet-5 CvxNet-25 Ours

Figure B.15: Single Image 3D Reconstruction on ShapeNet Chairs. We compare
Neural Parts to OccNet and CvxNet with 5 and 25 primitives. Our model yields
semantic and more accurate reconstructions with 5 times less primitives.

b.3.4 Semantically Consistent Abstractions

In this section, we provide additional information regarding our Seman-
tic Consistency experiment from Sec. 3.4.5. Furthermore, since D-FAUST

158 additional experimental results

contains 4D scans of humans in motion, we also evaluate the temporal
consistency of the predicted primitives on various actions.

Figure B.16: Representation Consistency. Our predicted primitives are consistently
used for representing the same human part for different humans.

b.3.4.1 Temporal Consistency

In this section, we provide a qualitative analysis on the temporal consistency
of the predicted primitives. Results are summarized in Fig. B.17. We observe
that Neural Parts consistently use the same primitive for representing the
same object part regardless of the breadth of the part’s motion. Notably,
this temporal consistency is an emergent property of our method and not
one that is enforced with any kind of loss.

B.3 neural parts : learning expressive 3d shape abstractions 159

Figure B.17: Temporal Consistency of Predicted Primitives. We note that Neural
Parts yield primitives that preserve their semantic identity while different humans
perform various actions.

Figure B.18: Semantic Vertices by SMPL-X. We highlight the 5 vertex indices that
we use to identify left thumb (L-thumb), right thumb (R-thumb), left toe (L-toe),
right toe (R-toe) and nose.

b.3.4.2 Semantic Consistency

In this experiment, we provide additional information regarding the Se-
mantic Consistency experiment from Sec. 3.4.5. In particular, we evaluate
whether a specific human part is represented consistently by the same
primitive (see Fig. B.16). To measure this quantitatively, we select 5 repre-

160 additional experimental results

sentative vertices on each target mesh (the vertex indices are provided by
SMPL-X [145]) and measure the classification accuracy of those points when
using the label of the closest primitive. A visualization of the 5 vertices
on the human body is given in Fig. B.18. Note that the vertex indices are
consistent across all subjects because D-FAUST meshes are generated using
SMPL [116].

B.4 atiss : autoregressive transformers for indoor scene synthesis 161

Figure B.19: Failure Case Detection and Correction. Starting from a room with an
unnatural object arrangement, our model identifies the problematic objects (first
row and third row, in green) and relocates them into meaningful positions (second
and fourth row).

b.4 atiss : autoregressive transformers for indoor scene syn-
thesis

b.4.1 Applications

In this section, we provide additional qualitative results for various interac-
tive applications that benefit greatly by our unordered set formulation.

b.4.1.1 Failure Case Detection And Correction

In this experiment, we investigate whether our model is able to identify
unnatural furniture layouts and reposition the problematic objects such that
they preserve their functional properties. In particular, we identify prob-
lematic objects as those with low likelihood and as soon as a problematic
object is identified, we sample a new location from our generative model
to reposition it. Fig. B.19 shows additional qualitative results on this task.
The first and third row show examples of unnatural object arrangements,
together with the problematic object, highlighted in green, for each sce-
nario. We note that our model successfully identifies objects in unnatural
positions e.g. flying bed (first row, first column Fig. B.19), light inside the

162 additional experimental results

Sofa Nightstand Nothing Lamp Stool Armchair

TV-stand Lamp Sofa Cabinet Bookshelf Cabinet

Figure B.20: Object Suggestion. A user specifies a region of acceptable positions to
place an object (marked as red boxes, first and third row) and our model suggests
suitable objects (second and fourth row) to be placed in this location.

bed (first row, third column Fig. B.19) or table outside the room boundaries
(third row, fourth column Fig. B.19) as well as problematic objects that
do not necessarily look unnatural, such as a cabinet blocking the corridor
(first row, sixth column Fig. B.19), a chair facing the wall (third row, first
column Fig. B.19) or a lamp being too close to the table (third row, third
column Fig. B.19). After having identified the problematic object, our model
consistently repositions it at plausible position.

b.4.1.2 Object Suggestion

For this task, we examine the ability of our model to provide object sug-
gestions given a scene and user specified location constraints. For this
experiment, the user only provides location constraints, namely valid posi-
tions for the centroid of the object to be generated. Fig. B.20 shows examples
of the location constraints, marked with red boxes, (first and third row) and
the corresponding objects suggested by our model (second and fourth row).
We observe that our model consistently makes plausible suggestions, and

B.4 atiss : autoregressive transformers for indoor scene synthesis 163

Pa
rt

ia
lS

ce
ne

C
om

pl
et

io
n

1
C

om
pl

et
io

n
2

Figure B.21: Scene Completion. Starting from a partially complete scene (first row),
we visualize two examples of scene completions using our model (second and third
row).

for the cases that a user specifies a region that overlaps with other objects
in the scene, our model suggests adding nothing (first row, third column
Fig. B.20). In Fig. B.20, we also provide two examples, where our model
makes different suggestions based on the same location constraints, such
as sofa and nightstand for the scenario illustrated in the first and second
column and stool and armchair for the scenario illustrated in the fifth and
sixth column in the first row.

b.4.1.3 Scene Completion

Starting from a partial scene, we want to evaluate the ability of our model
to generate plausible object arrangements. To generate the partial scenes,
we randomly sample scenes from the test set and remove the majority of
the objects in them. Fig. B.21 shows examples for various partial rooms
(first row Fig. B.21), as well as two alternative scene completions using
our model (second and third row Fig. B.21). We observe that our model
generates diverse arrangements of objects that are consistently meaningful.
For example, for the case where the partial scene consists of a chair and

164 additional experimental results

TV-stand Bookshelf Sofa Wardrobe Chair Coffee table

Figure B.22: Object Placement. Starting from a partially complete scene, the user
specifies an object to be added in the scene and our model places it at a reason-
able position. The first rows illustrates the starting scene and the second row the
generated scened using the user specified object (third row).

a bed (last column Fig. B.21), our model generates completions that have
nightstands surrounding the bed as well as a desk in front of the chair.

b.4.1.4 Object Placement

Finally, we showcase the ability of our model to add a specific object in a
scene on demand. Fig. B.22 illustrates the original scene (first row) and the
complete scene (second row) using the user specified object (third row). To
perform this task, we condition on the given scene and instead of sampling
from the predicted object category distribution, we use the user provided
object category and sample the rest of the object attributes i.e. translation,
size and orientation. Also in this task, we note that the generated objects
are realistic and match the room layout.

b.4.2 Scene Synthesis

In this section, we provide additional qualitative results for our scene
synthesis experiment on the four 3D-FRONT rooms. Moreover, since, we
repeat the FID score and classification accuracy computation 10 times, in
Tab. B.6, we also report the standard deviation for completeness.

Conditioned on a floor plan, we evaluate the performance of our model
on generating plausible furniture arrangements and compare with Fast-
Synth [163] and SceneFormer [202]. Fig. B.28 provides a qualitative com-
parison of generated bedroom scenes conditioned on the same floor layout
using our model and our baselines. We observe that in contrast to [163, 202],
our model consistently generates layouts with more diverse objects. In

B.4 atiss : autoregressive transformers for indoor scene synthesis 165

FID Score (↓) Scene Classification Accuracy Category KL Divergence (↓)

FastSynth SceneFormer Ours FastSynth SceneFormer Ours FastSynth SceneFormer Ours

Bedrooms 40.89 ± 0.5098 43.17 ± 0.6921 38.39 ± 0.3392 0.883 ± 0.0010 0.945 ± 0.0009 0.562 ± 0.0228 0.0064 0.0052 0.0085

Living 61.67 ± 1.2136 69.54 ± 0.9542 33.14 ± 0.4204 0.945 ± 0.0010 0.972 ± 0.0010 0.516 ± 0.0075 0.0176 0.0313 0.0034
Dining 55.83 ± 1.0078 67.04 ± 1.3043 29.23 ± 0.3533 0.935 ± 0.0019 0.941 ± 0.0008 0.477 ± 0.0027 0.0518 0.0368 0.0061
Library 37.72 ± 0.4501 55.34 ±0.1056 35.24 ± 0.2683 0.815 ± 0.0032 0.880 ± 0.0009 0.521 ± 0.0048 0.0431 0.0232 0.0098

Table B.6: Scene Syntheis Quantitative Comparison on 3D-FRONT. We report the
FID score (↓) at 2562 pixels, the KL divergence (↓) between the distribution of object
categories of synthesized and real scenes and the real vs. synthetic classification
accuracy for all methods. Classification accuracy closer to 0.5 is better.

particular, [202] typically generates bedrooms that consist only of a bed, a
wardrobe and less frequently also a nightstand, whereas both our model
and FastSynth synthesize rooms with more diverse objects. Similarly gener-
ated scenes for living rooms and dining rooms are provided in Fig. B.29

and Fig. B.30 respectively. We observe that for the case of living rooms
and dining rooms both baselines struggle to generate plausible object ar-
rangements, namely generated objects are positioned outside the room
boundaries, have unnatural sizes or populate a small part of the scene. We
hypothesize that this might be related to the significantly smaller amount of
training data compared to bedrooms. Instead our model, generates realistic
living rooms and dining rooms. For the case of libraries (see Fig. B.31),
again both [163, 202] struggle to generate functional rooms.

b.4.2.1 Object Co-occurrence

To further validate the ability of our model to reproduce the probabilities
of object co-occurrence in the real scenes, we compare the probabilities of
object co-occurrence of synthesized scenes using our model, FastSynth [163]
and SceneFormer [202] for all room types. In particular, in this experi-
ment, we generate 5000 scenes using each method and report the difference
between the probabilities of object co-occurrences between real and synthe-
sized scenes. Fig. B.23 summarizes the absolute differences for the bedroom
scenes. We observe that our model better captures the object co-occurrence
than baselines since the absolute differences for most object pairs are con-
sistently smaller.

This is also validated for the case of living rooms (Fig. B.24), dining
rooms (Fig. B.25) and libraries (Fig. B.26), where our model better captures
the object co-occurrences than both FastSynth [163] and SceneFormer [202].
Note that from our analysis it becomes evident that while our method better
reproduces the probabilities of object co-occurrence from the real scenes, all

166 additional experimental results

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p
ch

ai
r

ch
ild

re
n

ca
bi

ne
t

co
ffe

e
ta

bl
e
de

sk

do
ub

le
be

d

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

ki
ds

be
d

ni
gh

ts
ta

nd

pe
nd

an
t
la
m

p
sh

el
f

sin
gl
e

be
d

so
fa

st
oo

l

ta
bl

e

tv
st
an

d

war
dr

ob
e

armchair

bookshelf

cabinet

ceiling lamp

chair

children cabinet

coffee table

desk

double bed

dressing chair

dressing table

kids bed

nightstand

pendant lamp

shelf

single bed

sofa

stool

table

tv stand

wardrobe

Ours

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p
ch

ai
r

ch
ild

re
n

ca
bi

ne
t

co
ffe

e
ta

bl
e
de

sk

do
ub

le
be

d

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

ki
ds

be
d

ni
gh

ts
ta

nd

pe
nd

an
t
la
m

p
sh

el
f

sin
gl
e

be
d

so
fa

st
oo

l

ta
bl

e

tv
st
an

d

war
dr

ob
e

FastSynth

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p
ch

ai
r

ch
ild

re
n

ca
bi

ne
t

co
ffe

e
ta

bl
e
de

sk

do
ub

le
be

d

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

ki
ds

be
d

ni
gh

ts
ta

nd

pe
nd

an
t
la
m

p
sh

el
f

sin
gl
e

be
d

so
fa

st
oo

l

ta
bl

e

tv
st
an

d

war
dr

ob
e

SceneFormer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure B.23: Absolute Difference between Object Co-occurrence in Bedrooms. We
visualize the absolute difference of the probabilities of object co-occurrence com-
puted between real and synthesized scenes using ATISS (left), FastSynth (middle)
and SceneFormer (right). Larger differences correspond to warmer colors and are
worse.

methods are able to generate scenes with plausible object co-occurrences.
This is expected, since learning the categories of objects to be added in a
scene is a significantly easier task in comparison to learning their sizes and
positions in 3D space.

Finally, in Fig. B.27, we visualize the per-object difference in frequency
of occurrence between synthesized and real scenes from the test set for all
room types. We observe that our model generates object arrangements with
comparable per-object frequencies to real rooms. In particular, for the case
of living rooms (B.27b), dining rooms (B.27c) and libraries (B.27d) that are
more challenging rooms types due to their smaller size, our model has an
even smaller discrepancy wrt. the per-object frequencies.

b.4.2.2 Computational Requirements

In this section, we provide additional details regarding the computational
requirements of our method, presented in Tab. 5.2 and Tab. 5.3. We observe
that ATISS requires significantly less time to generate a scene compared
to [202, 163]. Note that the computational cost varies depending on the
room type, due to the different average number of objects for each room
type. Living rooms and dining rooms are typically larger in size, thus more
objects need to be generated to cover the empty space. All reported timings
are measured on a machine with an NVIDIA GeForce GTX 1080 Ti GPU.

B.4 atiss : autoregressive transformers for indoor scene synthesis 167

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

armchair

bookshelf

cabinet

ceiling lamp

chaise longue sofa

chinese chair

coffee table

console table

corner side table

desk

dining chair

dining table

l shaped sofa

lazy sofa

lounge chair

loveseat sofa

multi seat sofa

pendant lamp

round end table

shelf

stool

tv stand

wardrobe

wine cabinet

Ours

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

FastSynth

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

SceneFormer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure B.24: Absolute Difference between Object Co-occurrence in Living Rooms.
We visualize the absolute difference of the probabilities of object co-occurrence
computed between real and synthesized scenes using ATISS (left-most column),
FastSynth (middle column), SceneFormer (right-most column). Lower is better.

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

armchair

bookshelf

cabinet

ceiling lamp

chaise longue sofa

chinese chair

coffee table

console table

corner side table

desk

dining chair

dining table

l shaped sofa

lazy sofa

lounge chair

loveseat sofa

multi seat sofa

pendant lamp

round end table

shelf

stool

tv stand

wardrobe

wine cabinet

Ours

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

FastSynth

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

tv
st
an

d

war
dr

ob
e

w
in

e
ca

bi
ne

t

SceneFormer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure B.25: Absolute Difference between Object Co-occurrence in Dining
Rooms. We visualize the absolute difference of the probabilities of object co-
occurrence computed between real and synthesized scenes using ATISS (left-most
column), FastSynth (middle column), SceneFormer (right-most column). Lower is
better.

168 additional experimental results

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

war
dr

ob
e

w
in

e
ca

bi
ne

t

armchair
bookshelf

cabinet
ceiling lamp

chaise longue sofa
chinese chair

coffee table
console table

corner side table
desk

dining chair
dining table

dressing chair
dressing table
l shaped sofa

lazy sofa
lounge chair
loveseat sofa

multi seat sofa
pendant lamp

round end table
shelf
stool

wardrobe
wine cabinet

Ours

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

war
dr

ob
e

w
in

e
ca

bi
ne

t

FastSynth

ar
m

ch
ai
r

bo
ok

sh
el
f

ca
bi

ne
t

ce
ili

ng
la
m

p

ch
ai
se

lo
ng

ue
so

fa

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

co
ns

ol
e

ta
bl

e

co
rn

er
sid

e
ta

bl
e
de

sk

di
ni

ng
ch

ai
r

di
ni

ng
ta

bl
e

dr
es

sin
g

ch
ai
r

dr
es

sin
g

ta
bl

e

l sh
ap

ed
so

fa

la
zy

so
fa

lo
un

ge
ch

ai
r

lo
ve

se
at

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

ro
un

d
en

d
ta

bl
e
sh

el
f

st
oo

l

war
dr

ob
e

w
in

e
ca

bi
ne

t

SceneFormer

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure B.26: Absolute Difference between Object Co-occurrence in Libraries. We
visualize the absolute difference of the probabilities of object co-occurrence com-
puted between real and synthesized scenes using ATISS (left-most column), Fast-
Synth (middle column), SceneFormer (right-most column). Lower is better.

Even though the implementations are not directly comparable, since we
cannot guarantee that all have been equally optimized, our findings meet
our expectations. Namely, FastSynth [163] requires rendering the scene each
time a new object is added, thus it is expected to be significantly slower than
both SceneFormer and our model. On the other hand, SceneFormer [202]
utilizes four different transformer models for generating the attributes of
each object, hence it is expected to be at least four times slower than our
model, when generating the same number of objects.

B.4 atiss : autoregressive transformers for indoor scene synthesis 169

ta
bl

e

ce
ili

ng
la
m

p

co
ffe

e
ta

bl
e

ki
ds

be
d

so
fa

sh
el
f

ar
m

ch
ai
r

ch
ild

re
n

ca
bi

ne
t

ca
bi

ne
t

bo
ok

sh
el
f

dr
es

sin
g

ch
ai
r

pe
nd

an
t
la
m

p
st
oo

l

ch
ai
r

ni
gh

ts
ta

nd

dr
es

sin
g

ta
bl

e

war
dr

ob
e

de
sk

tv
st
an

d

do
ub

le
be

d

sin
gl
e

be
d

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

D
iff

er
en

ce
o
f

F
re

q
u

en
cy

o
f

O
cc

u
re

n
ce

0.000 0.000 0.000 0.000
0.001

0.001 0.002 0.002 0.002 0.002

0.002
0.003

0.003 0.003 0.003

0.004 0.004

0.006 0.006

0.007

0.010

0.004

0.008

0.000

0.003

0.000
0.000

0.001

0.004
0.004

0.002

0.001

0.006

0.000

0.008

0.019

0.003

0.008

0.004

0.001
0.002

0.006

0.004

0.009

0.000

0.001

0.000

0.002

0.001

0.000

0.001

0.002

0.000

0.002

0.004

0.001

0.018

0.002

0.015

0.006

0.003

0.001

0.010

Ours

FastSynth

SceneFormer

(a) Bedrooms

ch
ai
se

lo
ng

ue
so

fa

l sh
ap

ed
so

fa
de

sk

la
zy

so
fa

m
ul

ti
se

at
so

fa

pe
nd

an
t
la
m

p

tv
st
an

d

ch
in

es
e

ch
ai
r

sh
el
f

ro
un

d
en

d
ta

bl
e

st
oo

l

bo
ok

sh
el
f

ar
m

ch
ai
r

lo
un

ge
ch

ai
r

ce
ili

ng
la
m

p

war
dr

ob
e

co
ns

ol
e

ta
bl

e

ca
bi

ne
t

lo
ve

se
at

so
fa

di
ni

ng
ta

bl
e

w
in

e
ca

bi
ne

t

di
ni

ng
ch

ai
r

co
ffe

e
ta

bl
e

co
rn

er
sid

e
ta

bl
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
iff

er
en

ce
o
f

F
re

q
u

en
cy

o
f

O
cc

u
re

n
ce

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002
0.003 0.003 0.003 0.003 0.003 0.003

0.004

0.008

0.001
0.002

0.001 0.000 0.001

0.012

0.003
0.002 0.002

0.002

0.009

0.004

0.014

0.008
0.009

0.002

0.006
0.005

0.002
0.003

0.006

0.046

0.010

0.0030.003 0.003 0.003 0.003

0.007

0.010

0.016

0.001 0.001 0.000
0.002

0.004

0.010

0.003

0.005

0.000

0.005
0.003

0.006

0.017

0.005

0.071

0.008
0.007

Ours

FastSynth

SceneFormer

(b) Living Rooms

de
sk

lo
ve

se
at

so
fa

la
zy

so
fa

bo
ok

sh
el
f

war
dr

ob
e

l sh
ap

ed
so

fa

ch
ai
se

lo
ng

ue
so

fa

ro
un

d
en

d
ta

bl
e

ce
ili

ng
la
m

p

w
in

e
ca

bi
ne

t

ch
in

es
e

ch
ai
r

co
ffe

e
ta

bl
e

sh
el
f

co
ns

ol
e

ta
bl

e

ar
m

ch
ai
r

m
ul

ti
se

at
so

fa

ca
bi

ne
t

di
ni

ng
ta

bl
e

co
rn

er
sid

e
ta

bl
e

st
oo

l

tv
st
an

d

pe
nd

an
t
la
m

p

lo
un

ge
ch

ai
r

di
ni

ng
ch

ai
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
iff

er
en

ce
o
f

F
re

q
u

en
cy

o
f

O
cc

u
re

n
ce

0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.005 0.005 0.005 0.006

0.012
0.014

0.001
0.004

0.000

0.007

0.000

0.005

0.000
0.002

0.008

0.001 0.001

0.008

0.003

0.007

0.015

0.020

0.001 0.001

0.022

0.005

0.013
0.015

0.020

0.116

0.001

0.006

0.001

0.009

0.001
0.003 0.002 0.002

0.007

0.004

0.000 0.001
0.002

0.015

0.007

0.014

0.007
0.004

0.009

0.013

0.001

0.008

0.015

0.095

Ours

FastSynth

SceneFormer

(c) Dining Rooms

l sh
ap

ed
so

fa

w
in

e
ca

bi
ne

t

dr
es

sin
g

ch
ai
r

ce
ili

ng
la
m

p

co
ffe

e
ta

bl
e

ar
m

ch
ai
r

m
ul

ti
se

at
so

fa

ch
ai
se

lo
ng

ue
so

fa

war
dr

ob
e

dr
es

sin
g

ta
bl

e
st
oo

l

co
ns

ol
e

ta
bl

e

lo
ve

se
at

so
fa

ca
bi

ne
t

di
ni

ng
ta

bl
e

co
rn

er
sid

e
ta

bl
e

la
zy

so
fa

ro
un

d
en

d
ta

bl
e

lo
un

ge
ch

ai
r

de
sk

sh
el
f

pe
nd

an
t
la
m

p

di
ni

ng
ch

ai
r

ch
in

es
e

ch
ai
r

bo
ok

sh
el
f

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
iff

er
en

ce
of

F
re

q
u

en
cy

of
O

cc
u

re
n

ce

0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004
0.005

0.006
0.008 0.009

0.011

0.014

0.018

0.000

0.003

0.000 0.000 0.001

0.003 0.003

0.000

0.005

0.002 0.003
0.002

0.003

0.007
0.005

0.011

0.000
0.002

0.029

0.007 0.007 0.007
0.005

0.007

0.082

0.001 0.001 0.001

0.022

0.000 0.001
0.003

0.000

0.005

0.001 0.001 0.001

0.004
0.002 0.002

0.011

0.002
0.000

0.017

0.002

0.009

0.028

0.002 0.003

0.011

Ours

FastSynth

SceneFormer

(d) Libraries

Figure B.27: Difference of Per-Object Frequencies. We visualize the absolute dif-
ference between the per-object frequency of generated and real scenes using our
method, FastSynth [163] and SceneFormer [202] for all room types. Lower is better.

170 additional experimental results

Scene Layout Training Sample FastSynth SceneFormer Ours

Figure B.28: Qualitative Scene Synthesis Results on Bedrooms.

B.4 atiss : autoregressive transformers for indoor scene synthesis 171

Scene Layout Training Sample FastSynth SceneFormer Ours

Figure B.29: Qualitative Scene Synthesis Results on Living Rooms.

172 additional experimental results

Scene Layout Training Sample FastSynth SceneFormer Ours

Figure B.30: Qualitative Scene Synthesis Results on Dining Rooms.

B.4 atiss : autoregressive transformers for indoor scene synthesis 173

Scene Layout Training Sample FastSynth SceneFormer Ours

Figure B.31: Qualitative Scene Synthesis Results on Libraries.

B I B L I O G R A P H Y

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow: A system for
large-scale machine learning. arXiv.org, 1605.08695, 2016.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas.
Learning representations and generative models for 3d point clouds. In Proc.
of the International Conf. on Machine learning (ICML), 2018.

[3] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars Mescheder, Andreas
Geiger, and Carsten Rother. Augmented reality meets deep learning for car
instance segmentation in urban scenes. In Proc. of the British Machine Vision
Conf. (BMVC), 2017.

[4] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing
inverse problems with invertible neural networks. In Proc. of the International
Conf. on Learning Representations (ICLR), 2019.

[5] Iro Armeni, Zhi-Yang He, Amir Roshan Zamir, JunYoung Gwak, Jitendra
Malik, Martin Fischer, and Silvio Savarese. 3d scene graph: A structure for
unified semantics, 3d space, and camera. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV), 2019.

[6] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and
Yaron Lipman. Controlling neural level sets. In Advances in Neural Information
Processing Systems (NIPS), 2019.

[7] Matan Atzmon and Yaron Lipman. SAL: sign agnostic learning of shapes
from raw data. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2562–2571, 2020.

[8] Renée Baillargeon. Infants’ physical world. Current directions in psychological
science, 13(3):89–94, 2004.

[9] Alan H Barr. Superquadrics and angle-preserving transformations. IEEE
Computer Graphics and Applications (CGA), 1981.

[10] Irving Biederman. Human image understanding: Recent research and a
theory. Computer Vision, Graphics, and Image Processing, 1986.

175

176 bibliography

[11] Irving Biederman. Recognition-by-components: a theory of human image
understanding. Psychological Review, 94(2):115, 1987.

[12] I Binford. Visual perception by computer. In IEEE Conference of Systems and
Control, 1971.

[13] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dy-
namic FAUST: registering human bodies in motion. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[14] André Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Genera-
tive and discriminative voxel modeling with convolutional neural networks.
arXiv.org, 1608.04236, 2016.

[15] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training
for high fidelity natural image synthesis. In Proc. of the International Conf. on
Learning Representations (ICLR), 2019.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

[17] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source
movie for optical flow evaluation. In Proc. of the European Conf. on Computer
Vision (ECCV), 2012.

[18] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-
formers. In Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[19] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan,
Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao
Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d
model repository. arXiv.org, 1512.03012, 2015.

[20] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and
Thomas A. Funkhouser. Attribit: content creation with semantic attributes.
In The 26th Annual ACM Symposium on User Interface Software and Technology,
UIST’13, St. Andrews, United Kingdom, October 8-11, 2013, 2013.

bibliography 177

[21] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), 40(4):834–848, 2018.

[22] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David
Luan, and Ilya Sutskever. Generative pretraining from pixels. In Proc. of the
International Conf. on Machine learning (ICML), 2020.

[23] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christo-
pher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models
trained on code. arXiv.org, 2021.

[24] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaako Lehtinen, Alec Ja-
cobson, and Sanja Fidler. Learning to predict 3d objects with an interpolation-
based differentiable renderer. In Advances in Neural Information Processing
Systems (NIPS), 2019.

[25] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating
compact meshes via binary space partitioning. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 42–51, 2020.

[26] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao
Zhang. BAE-NET: branched autoencoder for shape co-segmentation. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), 2019.

[27] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape
modeling. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[28] Laurent Chevalier, Fabrice Jaillet, and Atilla Baskurt. Segmentation and
superquadric modeling of 3d objects. In International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG), 2003.

178 bibliography

[29] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions
in feature space for 3d shape reconstruction and completion. In arXiv.org,
volume 2003.01456, 2020.

[30] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions
in feature space for 3d shape reconstruction and completion. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[31] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparse transformers. arXiv.org, 2019.

[32] Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[33] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2:
Diverse image synthesis for multiple domains. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020.

[34] Christopher Bongsoo Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and
Silvio Savarese. 3d-r2n2: A unified approach for single and multi-view 3d
object reconstruction. In Proc. of the European Conf. on Computer Vision (ECCV),
2016.

[35] A. H. J. Christensen. A note on geodesic polyhedra: Triangulation and
contouring of spheres. Comput. Graph., 3(4):163–165, 1978.

[36] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hin-
ton, and Andrea Tagliasacchi. Cvxnets: Learnable convex decomposition.
arXiv.org, 2019.

[37] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hin-
ton, and Andrea Tagliasacchi. Cvxnets: Learnable convex decomposition.
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[38] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet:
A large-scale hierarchical image database. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2009.

[39] Zhantao Deng, Jan Bednařík, Mathieu Salzmann, and Pascal Fua. Better patch
stitching for parametric surface reconstruction. 2020.

[40] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C
Russell, and Mathieu Aubry. Learning elementary structures for 3d shape
generation and matching. In Advances in Neural Information Processing Systems
(NIPS), 2019.

bibliography 179

[41] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised
learning of scene structure for synthetic data generation. In Proc. of the
European Conf. on Computer Vision (ECCV), 2020.

[42] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[43] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Rad-
ford, and Ilya Sutskever. Jukebox: A generative model for music. arXiv.org,
2020.

[44] Xinhan Di, Pengqian Yu, Hong Zhu, Lei Cai, Qiuyan Sheng, and Changyu
Sun. Structural plan of indoor scenes with personalized preferences. arXiv.org,
2020.

[45] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear inde-
pendent components estimation. In Proc. of the International Conf. on Learning
Representations (ICLR), 2015.

[46] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real NVP. In Proc. of the International Conf. on Learning Representations
(ICLR), 2017.

[47] Simon Donne and Andreas Geiger. Learning non-volumetric depth fusion
using successive reprojections. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[48] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In Proc. of
the International Conf. on Learning Representations (ICLR), 2021.

[49] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. In Proc. Conf. on
Robot Learning (CoRL), 2017.

[50] Anastasia Dubrovina, Fei Xia, Panos Achlioptas, Mira Shalah, Raphaël Groscot,
and Leonidas J. Guibas. Composite shape modeling via latent space factoriza-
tion. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), pages
8139–8148. IEEE, 2019.

180 bibliography

[51] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum.
Learning to infer graphics programs from hand-drawn images. In Advances
in Neural Information Processing Systems (NIPS), 2018.

[52] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for
high-resolution image synthesis. 2021.

[53] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation
network for 3d object reconstruction from a single image. Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[54] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li, Zengqi Xun, Chengyue
Sun, Yiyun Fei, Yu Zheng, Ying Li, Yi Liu, Peng Liu, Lin Ma, Le Weng,
Xiaohang Hu, Xin Ma, Qian Qian, Rongfei Jia, Binqiang Zhao, and Hao
Zhang. 3d-front: 3d furnished rooms with layouts and semantics. arXiv.org,
abs/2011.09127, 2020.

[55] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve J.
Maybank, and Dacheng Tao. 3d-future: 3d furniture shape with texture.
arXiv.org, abs/2009.09633, 2020.

[56] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomír Mech, Nathan Carr,
Tamy Boubekeur, Rui Wang, and Subhransu Maji. Learning generative models
of shape handles. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[57] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape induction from
2d views of multiple objects. In Proc. of the International Conf. on 3D Vision
(3DV), 2017.

[58] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire,
and Sanja Fidler. Learning deformable tetrahedral meshes for 3d reconstruc-
tion. In Advances in Neural Information Processing Systems (NIPS), 2020.

[59] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and
Hao Zhang. SDM-NET: deep generative network for structured deformable
mesh. In ACM SIGGRAPH Conference and Exhibition on Computer Graphics and
Interactive Techniques in Asia (SIGGRAPH Asia), 2019.

[60] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas A.
Funkhouser. Local deep implicit functions for 3d shape. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2020.

[61] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman,
and Thomas Funkhouser. Learning shape templates with structured implicit
functions. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2019.

bibliography 181

[62] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learn-
ing a predictable and generative vector representation for objects. In Proc. of
the European Conf. on Computer Vision (ECCV), 2016.

[63] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[64] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), 2019.

[65] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in Neural Information Processing Systems (NIPS),
2014.

[66] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expecta-
tion maximization. In Advances in Neural Information Processing Systems (NIPS),
2017.

[67] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Im-
plicit geometric regularization for learning shapes. In Proc. of the International
Conf. on Machine learning (ICML), 2020.

[68] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and
Mathieu Aubry. AtlasNet: A papier-mâché approach to learning 3d surface
generation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[69] Kunal Gupta and Manmohan Chandraker. Neural mesh flow: 3d manifold
mesh generationvia diffeomorphic flows. arXiv.org, 2020.

[70] William Rowan Hamilton. Xi. on quaternions; or on a new system of imagi-
naries in algebra. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 33(219):58–60, 1848.

[71] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface
prediction for 3d object reconstruction. arXiv.org, 1704.00710, 2017.

[72] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge J. Belongie. Du-
alsdf: Semantic shape manipulation using a two-level representation. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[73] Wilfried Hartmann, Silvano Galliani, Michal Havlena, Luc Van Gool, and Kon-
rad Schindler. Learned multi-patch similarity. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2017.

182 bibliography

[74] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
R-CNN. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2017.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016.

[76] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Roman Shapovalov,
Tobias Ritschel, Andrea Vedaldi, and David Novotný. Unsupervised learning
of 3d object categories from videos in the wild. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

[77] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. In Advances in Neural Information Processing Systems
(NIPS), 2017.

[78] Donald D Hoffman and Whitman A Richards. Parts of recognition. Cognition,
18(1-3):65–96, 1984.

[79] Fangqiao Hu, Jin Zhao, Yong Hunag, and Hui Li. Learning structural graph
layouts and 3d shapes for long span bridges 3d reconstruction. arXiv.org,
abs/1907.03387, 2019.

[80] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin
Huang. Deepmvs: Learning multi-view stereopsis. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[81] Ales Jaklic, Ales Leonardis, and Franc Solina. Segmentation and Recovery of
Superquadrics, volume 20 of Computational Imaging and Vision. Springer, 2000.

[82] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. SurfaceNet:
an end-to-end 3d neural network for multiview stereopsis. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2017.

[83] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias
Nießner, and Thomas Funkhouser. Local implicit grid representations for 3d
scenes. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2020.

[84] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. GAL: geometric adversarial
loss for single-view 3d-object reconstruction. In Proc. of the European Conf. on
Computer Vision (ECCV), 2018.

[85] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori.
Layoutvae: Stochastic scene layout generation from a label set. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2019.

bibliography 183

[86] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik.
Learning category-specific mesh reconstruction from image collections. In
Proc. of the European Conf. on Computer Vision (ECCV), 2018.

[87] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view
stereo machine. In Advances in Neural Information Processing Systems (NIPS),
2017.

[88] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan,
Matt Rusiniak, David Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim:
Learning to generate synthetic datasets. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV), 2019.

[89] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[90] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and improving the image quality of StyleGAN.
2020.

[91] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are rnns: Fast autoregressive transformers with linear attention.
In Proc. of the International Conf. on Machine learning (ICML), 2020.

[92] Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Neural star domain as
primitive representation. arXiv.org, 2020.

[93] Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Neural star domain as
primitive representation. In Advances in Neural Information Processing Systems
(NIPS), 2020.

[94] Mohammad Keshavarzi, Aakash Parikh, Xiyu Zhai, Melody Mao, Luisa Cal-
das, and Allen Y. Yang. Scenegen: Generative contextual scene augmentation
using scene graph priors. arXiv.org, 2020.

[95] Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. Drivegan:
Towards a controllable high-quality neural simulation. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021.

[96] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proc. of the International Conf. on Learning Representations (ICLR),
2015.

[97] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. Proc.
of the International Conf. on Learning Representations (ICLR), 2014.

184 bibliography

[98] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible
1x1 convolutions. In Advances in Neural Information Processing Systems (NIPS),
2018.

[99] Katherine D Kinzler and Elizabeth S Spelke. Core systems in human cognition.
Progress in brain research, 164:257–264, 2007.

[100] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
Zemel. Neural relational inference for interacting systems. In Proc. of the
International Conf. on Machine learning (ICML), 2018.

[101] Adam R. Kosiorek, Hyunjik Kim, and Danilo J. Rezende. Conditional set
generation with transformers. arXiv.org, 2020.

[102] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2012.

[103] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar
variational autoencoder. In Proc. of the International Conf. on Machine learning
(ICML), pages 1945–1954. PMLR, 2017.

[104] David H Laidlaw, W Benjamin Trumbore, and John F Hughes. Constructive
solid geometry for polyhedral objects. In ACM Trans. on Graphics, 1986.

[105] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and
Yee Whye Teh. Set transformer: A framework for attention-based permutation-
invariant neural networks. In Proc. of the International Conf. on Machine learning
(ICML), 2019.

[106] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao (Richard) Zhang,
and Leonidas J. Guibas. GRASS: generative recursive autoencoders for shape
structures. ACM Trans. on Graphics, 36(4), 2017.

[107] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas Guibas.
Supervised fitting of geometric primitives to 3d point clouds. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[108] Lingyun Luke Li, Bin Yang, Ming Liang, Wenyuan Zeng, Mengye Ren, Sean
Segal, and Raquel Urtasun. End-to-end contextual perception and prediction
with interaction transformer. In Proc. IEEE International Conf. on Intelligent
Robots and Systems (IROS), pages 5784–5791, 2020.

[109] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais
Khan, Ariel Shamir, Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and
Hao (Richard) Zhang. GRAINS: generative recursive autoencoders for indoor
scenes. ACM Trans. on Graphics, 2019.

bibliography 185

[110] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos Tzoumanikas,
Qing Ye, Yuzhong Huang, Rui Tang, and Stefan Leutenegger. Interiornet:
Mega-scale multi-sensor photo-realistic indoor scenes dataset. In Proc. of the
British Machine Vision Conf. (BMVC), 2018.

[111] Yichen Li, Kaichun Mo, Lin Shao, Minhyuk Sung, and Leonidas J. Guibas.
Learning 3d part assembly from a single image. In Proc. of the European Conf.
on Computer Vision (ECCV), 2020.

[112] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Sai Bi, Zexiang Xu, Hong-
Xing Yu, Kalyan Sunkavalli, Milos Hasan, Ravi Ramamoorthi, and Manmohan
Chandraker. Openrooms: An end-to-end open framework for photorealistic
indoor scene datasets. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[113] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning
explicit surface representations. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[114] Yunchao Liu, Zheng Wu, Daniel Ritchie, William T Freeman, Joshua B Tenen-
baum, and Jiajun Wu. Learning to describe scenes with programs. In Proc. of
the International Conf. on Learning Representations (ICLR), 2019.

[115] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015.

[116] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans. on
Graphics, 2015.

[117] Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B. Tenenbaum. End-
to-end optimization of scene layout. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020.

[118] Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and Michael J. Black.
SCALE: Modeling clothed humans with a surface codec of articulated local
elements. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[119] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), 2015.

[120] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function

186 bibliography

space. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[121] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmot-
lagh, and Anders Eriksson. Implicit surface representations as layers in neural
networks. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2019.

[122] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance
fields for view synthesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020.

[123] Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir G. Kim,
and Qi-Xing Huang. Structure-aware shape processing. In ACM Trans. on
Graphics, pages 13:1–13:21, 2014.

[124] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and
Leonidas Guibas. Structurenet: Hierarchical graph networks for 3d shape
generation. In ACM Trans. on Graphics, 2019.

[125] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van
Gool. Procedural modeling of buildings. ACM Trans. on Graphics, 2006.

[126] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. Poly-
gen: An autoregressive generative model of 3d meshes. In Proc. of the Interna-
tional Conf. on Machine learning (ICML), 2020.

[127] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as
compositional generative neural feature fields. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

[128] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger.
Occupancy flow: 4d reconstruction by learning particle dynamics. In Proc. of
the IEEE International Conf. on Computer Vision (ICCV), 2019.

[129] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger.
Differentiable volumetric rendering: Learning implicit 3d representations
without 3d supervision. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020.

[130] Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d shape structure
from a single RGB image. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[131] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and
Andreas Geiger. Texture fields: Learning texture representations in function
space. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019.

bibliography 187

[132] Michael Oechsle, Michael Niemeyer, Christian Reiser, Lars Mescheder, Thilo
Strauss, and Andreas Geiger. Learning implicit surface light fields. In Proc. of
the International Conf. on 3D Vision (3DV), 2020.

[133] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural
machine translation. In Proceedings of the Third Conference on Machine Trans-
lation: Research Papers, WMT 2018, Belgium, Brussels, October 31 - November 1,
2018, 2018.

[134] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep
mesh reconstruction from single RGB images via topology modification
networks. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2019.

[135] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In ACM
Trans. on Graphics, 2001.

[136] Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and
Steven Lovegrove. Deepsdf: Learning continuous signed distance functions
for shape representation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[137] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy resizing libraries
and surprising subtleties in FID calculation. arXiv.org, 2021.

[138] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In Proc. of the International
Conf. on Machine learning (ICML), 2018.

[139] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas
Geiger, and Sanja Fidler. Atiss: Autoregressive transformers for indoor scene
synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[140] Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja
Fidler. Neural parts: Learning expressive 3d shape abstractions with invertible
neural networks. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[141] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. Superquadrics
revisited: Learning 3d shape parsing beyond cuboids. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[142] Despoina Paschalidou, Ali Osman Ulusoy, Carolin Schmitt, Luc van Gool,
and Andreas Geiger. Raynet: Learning volumetric 3d reconstruction with
ray potentials. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

188 bibliography

[143] Despoina Paschalidou, Luc van Gool, and Andreas Geiger. Learning unsuper-
vised hierarchical part decomposition of 3d objects from a single rgb image.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[144] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv.org, 1606.02147, 2016.

[145] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed
A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expressive body
capture: 3d hands, face, and body from a single image. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[146] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and An-
dreas Geiger. Convolutional occupancy networks. In Proc. of the European
Conf. on Computer Vision (ECCV), 2020.

[147] Alex Pentland. Parts: Structured descriptions of shape. In Proc. of the Conf. on
Artificial Intelligence (AAAI), 1986.

[148] Maurizio Pilu and Robert B. Fisher. Equal-distance sampling of supercllipse
models. In Proc. of the British Machine Vision Conf. (BMVC), 1995.

[149] Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric Cam-
eracci, Gavriel State, Omer Shapira, and Stan Birchfield. Structured domain
randomization: Bridging the reality gap by context-aware synthetic data. In
Proc. IEEE International Conf. on Robotics and Automation (ICRA), 2019.

[150] Pulak Purkait, Christopher Zach, and Ian Reid. SG-VAE: scene grammar
variational autoencoder to generate new indoor scenes. In Proc. of the European
Conf. on Computer Vision (ECCV), 2020.

[151] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in
Neural Information Processing Systems (NIPS), 2017.

[152] G.J. Qi, X.S. Hua, Y. Rui, T. Mei, J. Tang, and H.J. Zhang. Concurrent multiple
instance learning for image categorization. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2007.

[153] Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu.
Human-centric indoor scene synthesis using stochastic grammar. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[154] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. arXiv.org,
2019.

bibliography 189

[155] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.
In Proc. of the International Conf. on Machine learning (ICML), 2021.

[156] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[157] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone,
Patrick Labatut, and David Novotný. Common objects in 3d: Large-scale
learning and evaluation of real-life 3d category reconstruction. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2021.

[158] Edoardo Remelli, Artem Lukoianov, Stephan R. Richter, Benoît Guillard,
Timur M. Bagautdinov, Pierre Baqué, and Pascal Fua. Meshsdf: Differentiable
iso-surface extraction. 2020.

[159] Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia,
Max Jaderberg, and Nicolas Heess. Unsupervised learning of 3d structure
from images. In Advances in Neural Information Processing Systems (NIPS), 2016.

[160] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In Proc. of the European Conf. on
Computer Vision (ECCV), 2016.

[161] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. Oct-
NetFusion: Learning depth fusion from data. In Proc. of the International Conf.
on 3D Vision (3DV), 2017.

[162] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[163] Daniel Ritchie, Kai Wang, and Yu-An Lin. Fast and flexible indoor scene
synthesis via deep convolutional generative models. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[164] Lawrence G. Roberts. Machine perception of three-dimensional solids. PhD thesis,
Massachusetts Institute of Technology, 1963.

[165] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands:
modeling and capturing hands and bodies together. ACM Transactions on
Graphics, 36(6):245:1–245:17, 2017.

[166] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio
Lopez. The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016.

190 bibliography

[167] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986.

[168] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV), 2019.

[169] Shunsuke Saito, Tomas Simon, Jason M. Saragih, and Hanbyul Joo. Pifuhd:
Multi-level pixel-aligned implicit function for high-resolution 3d human
digitization. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[170] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and other
modifications. In Proc. of the International Conf. on Learning Representations
(ICLR), 2017.

[171] Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra, Abhishek Kadian,
Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, and Vladlen Koltun. Habitat: A platform for embodied AI research.
In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019.

[172] Gilad Sharir, Asaf Noy, and Lihi Zelnik-Manor. An image is worth 16x16

words, what is a video worth? In Proc. of the International Conf. on Learning
Representations (ICLR), 2021.

[173] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and
Subhransu Maji. Csgnet: Neural shape parser for constructive solid geometry.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[174] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha
Chaudhuri, and Radomír Mech. Parsenet: A parametric surface fitting network
for 3d point clouds. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Proc. of the European Conf. on Computer Vision
(ECCV), 2020.

[175] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume
2 (Short Papers), 2018.

[176] Maria Shugrina, Ziheng Liang, Amlan Kar, Jiaman Li, Angad Singh, Karan
Singh, and Sanja Fidler. Creative flow+ dataset. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

bibliography 191

[177] Franc Solina. Volumetric models in computer vision-an overview. Journal of
Computing and Information technology, 1994.

[178] Franc Solina and Ruzena Bajcsy. Recovery of parametric models from range
images: The case for superquadrics with global deformations. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), 1990.

[179] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth image.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[180] David Stutz and Andreas Geiger. Learning 3d shape completion from laser
scan data with weak supervision. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[181] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop,
Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler.
Neural geometric level of detail: Real-time rendering with implicit 3D shapes.
arXiv preprint arXiv:2101.10994, 2021.

[182] Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Mech, and Vladlen
Koltun. Metropolis procedural modeling. ACM Trans. on Graphics, 2011.

[183] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks:
Efficient convolutional architectures for high-resolution 3d outputs. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), 2017.

[184] Josh Tenenbaum. Building machines that learn and think like people. In
Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018. International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC,
USA / ACM, 2018.

[185] Demetri Terzopoulos and Dimitris N. Metaxas. Dynamic 3d models with
local and global deformations: deformable superquadrics. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 1990.

[186] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Mar-
cotegui, François Goulette, and Leonidas J. Guibas. Kpconv: Flexible and
deformable convolution for point clouds. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV), 2019.

[187] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T Freeman,
Joshua B Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape
programs. In Proc. of the International Conf. on Learning Representations (ICLR),
2019.

192 bibliography

[188] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &
distillation through attention. arXiv.org, 2020.

[189] Shubham Tulsiani and Abhinav Gupta. Pixeltransformer: Sample conditioned
signal generation. In Proc. of the International Conf. on Machine learning (ICML),
2021.

[190] Shubham Tulsiani, Nilesh Kulkarni, and Abhinav Gupta. Implicit mesh
reconstruction from unannotated image collections. arXiv.org, 2020.

[191] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra
Malik. Learning shape abstractions by assembling volumetric primitives. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[192] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. In The 9th ISCA
Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016, 2016.

[193] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhu-
ber. Relational neural expectation maximization: Unsupervised discovery of
objects and their interactions. In Proc. of the International Conf. on Learning
Representations (ICLR), 2018.

[194] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black,
Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[195] Narunas Vaskevicius and Andreas Birk. Revisiting superquadric fitting: A
numerically stable formulation. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 2017.

[196] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems (NIPS), pages
5998–6008, 2017.

[197] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and
Daniel Ritchie. Planit: planning and instantiating indoor scenes with relation
graph and spatial prior networks. ACM Trans. on Graphics, 2019.

[198] Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. Deep convo-
lutional priors for indoor scene synthesis. ACM Trans. on Graphics, 37(4):70:1–
70:14, 2018.

bibliography 193

[199] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang
Jiang. Pixel2mesh: Generating 3d mesh models from single rgb images. In
Proc. of the European Conf. on Computer Vision (ECCV), 2018.

[200] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard
Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and
Thomas A. Funkhouser. Ibrnet: Learning multi-view image-based rendering.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[201] WeiyueXu Wang, Qiangeng Xu, Duygu Ceylan, Radomir Mech, and Ulrich
Neumann. Disn: Deep implicit surface network for high-quality single-view
3d reconstruction. In Advances in Neural Information Processing Systems (NIPS),
2019.

[202] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner. Sceneformer:
Indoor scene generation with transformers. arXiv.org, 2020.

[203] Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhi-
Quan Cheng, and Yueshan Xiong. Symmetry hierarchy of man-made objects.
In EUROGRAPHICS, 2011.

[204] Philippe Weinzaepfel, Gabriela Csurka, Yohann Cabon, and Martin Humen-
berger. Visual localization by learning objects-of-interest dense match regres-
sion. In CVPR, 2019.

[205] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[206] Magnus Wrenninge and Jonas Unger. Synscapes: A photorealistic synthetic
dataset for street scene parsing. arXiv.org, abs/1810.08705, 2018.

[207] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In Advances in Neural Information Processing Systems
(NIPS), 2016.

[208] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping
Zhang. Pix2vox: Context-aware 3d reconstruction from single and multi-view
images. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019.

[209] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomír Mech, and Ulrich
Neumann. DISN: deep implicit surface network for high-quality single-view
3d reconstruction. In Advances in Neural Information Processing Systems (NIPS),
2019.

194 bibliography

[210] Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman,
Joshua B Tenenbaum, and Jiajun Wu. Unsupervised discovery of parts, struc-
ture, and dynamics. In Proc. of the International Conf. on Learning Representations
(ICLR), 2019.

[211] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge J. Belongie, and
Bharath Hariharan. Pointflow: 3d point cloud generation with continuous
normalizing flows. In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2019.

[212] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth
inference for unstructured multi-view stereo. Proc. of the European Conf. on
Computer Vision (ECCV), 2018.

[213] Lior Yariv, Matan Atzmon, and Yaron Lipman. Universal differentiable
renderer for implicit neural representations. arXiv.org, 2003.09852, 2020.

[214] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang. Cross-modal self-
attention network for referring image segmentation. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[215] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural
radiance fields from one or few images. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2021.

[216] Lap-Fai Yu, Sai Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F.
Chan, and Stanley J. Osher. Make it home: automatic optimization of furniture
arrangement. ACM Trans. on Graphics, 2011.

[217] Lap-Fai Yu, Sai Kit Yeung, and Demetri Terzopoulos. The clutterpalette: An
interactive tool for detailing indoor scenes. IEEE Trans. Vis. Comput. Graph.,
2016.

[218] Song-Hai Zhang, Shaokui Zhang, Wei-Yu Xie, Cheng-Yang Luo, and Hong-Bo
Fu. Fast 3d indoor scene synthesis with discrete and exact layout pattern
extraction. arXiv.org, 2020.

[219] Xiuming Zhang, Sean Ryan Fanello, Yun-Ta Tsai, Tiancheng Sun, Tianfan Xue,
Rohit Pandey, Sergio Orts-Escolano, Philip L. Davidson, Christoph Rhemann,
Paul E. Debevec, Jonathan T. Barron, Ravi Ramamoorthi, and William T.
Freeman. Neural light transport for relighting and view synthesis. arXiv.org,
2008.03806, 2020.

[220] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee,
Hailin Jin, and Thomas A. Funkhouser. Physically-based rendering for indoor
scene understanding using convolutional neural networks. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2017.

bibliography 195

[221] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth,
Etienne Vouga, and Qixing Huang. Deep generative modeling for scene
synthesis via hybrid representations. ACM Trans. on Graphics, 2020.

[222] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou.
Structured3d: A large photo-realistic dataset for structured 3d modeling. In
Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[223] Yang Zhou, Zachary While, and Evangelos Kalogerakis. Scenegraphnet:
Neural message passing for 3d indoor scene augmentation. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2019.

[224] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai.
Deformable DETR: deformable transformers for end-to-end object detection.
Proc. of the International Conf. on Learning Representations (ICLR), 2021.

[225] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus,
and Thomas Brox. Freihand: A dataset for markerless capture of hand pose
and shape from single rgb images. In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2019.

[226] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem.
3d-prnn: Generating shape primitives with recurrent neural networks. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV), 2017.

C U R R I C U L U M V I TA E

personal data

Name Despoina Paschalidou
Date of Birth June 8, 1991

Place of Birth Athens, Greece
Citizen of Greece

education

2017 – 2021 Autonomous Vision Group and Computer Vision
Lab
ETH Zürich and Max Planck Institute for Intelligent
Systems
Doctoral Studies

2009 – 2015 Aristotle University of Thessaloniki
Diploma (M.Eng) in Electrical and Computer Engi-
neering

2006– 2009 1st Lyceum of Mikra
High-School

professional experience

2021 Research Intern
Facebook AI Research, London, United Kingdom

2020–2021 Research Intern
NVIDIA AI Research, Toronto Canada

2019–2020 Research Assistant
ETH Zürich

2017–2019 Research Assistant
Max Planck Institute for Intelligent Systems, Tübin-
gen Germany

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	2 Learning 3D Shape Parsing beyond Cuboids
	2.1 Related Work
	2.2 Method Overview
	2.2.1 Reconstruction Loss
	2.2.2 Parsimony Loss
	2.2.3 Superquadric Parametrization

	2.3 Experimental Evaluation
	2.3.1 Superquadrics vs. Cuboids
	2.3.2 Results on ShapeNet dataset
	2.3.3 Shape Abstraction from a Single RGB Image
	2.3.4 Results on SURREAL dataset
	2.3.5 Analytical Loss Formulation

	2.4 Implementation Details
	2.4.1 Metrics Computation
	2.4.2 Parsimony Loss Details

	2.5 Discussion

	3 Learning Expressive 3D Shape Abstractions with Invertible Networks
	3.1 Related Work
	3.2 Method
	3.2.1 Primitives as Homeomorphic Mappings
	3.2.2 Network Architecture
	3.2.3 Training

	3.3 Experimental Evaluation
	3.3.1 Datasets
	3.3.2 Metrics
	3.3.3 Baselines
	3.3.4 Representation Power
	3.3.5 Reconstruction Accuracy

	3.4 Ablation Study
	3.4.1 Invertibility
	3.4.2 Effect of pbold0mu mumu subsection()
	3.4.3 Loss Functions
	3.4.4 Sensitivity to initialization
	3.4.5 Semantic Consistency

	3.5 Implementation Details
	3.5.1 Network Architecture
	3.5.2 Training Protocol
	3.5.3 Sampling Strategy

	3.6 Discussion

	4 Learning Unsupervised Hierarchical Part Decomposition of 3D Objects
	4.1 Related Work
	4.2 Method Overview
	4.2.1 Network Architecture
	4.2.2 Primitive Parametrization
	4.2.3 Network Losses

	4.3 Experimental Evaluation
	4.3.1 3D Reconstruction on ShapeNet
	4.3.2 Volumetric Reconstruction
	4.3.3 3D Reconstruction on D-FAUST

	4.4 Implementation Details
	4.4.1 Network Architecture
	4.4.2 Training
	4.4.3 Sampling Strategy
	4.4.4 Empirical Analysis of Loss Formulation

	4.5 Discussion

	5 ATISS: Autoregressive Transformers for Indoor Scene Synthesis
	5.1 Related Work
	5.2 Method
	5.2.1 Autoregressive Set Generation
	5.2.2 Network Architecture
	5.2.3 Training and Inference

	5.3 Experimental Evaluation
	5.3.1 Datasets
	5.3.2 Baselines
	5.3.3 Evaluation Metrics
	5.3.4 Scene Synthesis
	5.3.5 Applications
	5.3.6 Perceptual Study

	5.4 Ablation Study
	5.4.1 Mixture of Logistic distributions
	5.4.2 Layout Encoder
	5.4.3 Transformers with Ordering

	5.5 Implementation Details
	5.5.1 Network Architecture
	5.5.2 Object Retrieval
	5.5.3 Training Protocol

	5.6 Limitations
	5.7 Discussion

	6 Discussion
	6.1 Summary of Contributions
	6.2 Directions for Future Research

	A Additional Implementation Details
	A.1 Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids
	A.1.1 Derivation of Pointcloud-to-Primitive Loss
	A.1.2 Empirical Analysis of Reconstruction Loss

	A.2 Learning Unsupervised Hierarchical Part Decomposition of 3D Objects
	A.2.1 Occupancy Function

	A.3 ATISS: Autoregressive Transformers for Indoor Scene Synthesis
	A.3.1 3D-FRONT Data Preprocessing
	A.3.2 Perceptual Study

	B Additional Experimental Results
	B.1 Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids
	B.1.1 Qualitative Results on SURREAL

	B.2 Learning Unsupervised Hierarchical Part Decomposition of 3D Objects
	B.2.1 Additional Results on D-FAUST
	B.2.2 Additional Results on ShapeNet

	B.3 Neural Parts: Learning Expressive 3D Shape Abstractions
	B.3.1 Experiment on D-FAUST
	B.3.2 Experiment on FreiHAND
	B.3.3 Experiment on ShapeNet
	B.3.4 Semantically Consistent Abstractions

	B.4 ATISS: Autoregressive Transformers for Indoor Scene Synthesis
	B.4.1 Applications
	B.4.2 Scene Synthesis

	Curriculum Vitae

