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Problem Statement
Robust digital virtualization of nonlinear dynamical systems

2

Reference system

(real-life)

HFM features:

Complex dynamics

Nonlinear behaviour

Parametric dependencies on:

• Geometric features

• Material properties

• EOPs:

Environmental conditions

Operational conditions

• Excitation 

High Fidelity Model
(finite element model)

Virtual representation

parametric Reduced Order 

Model
(low-order, equivalent model)

Low-order representation that:

Captures underlying dynamics

Reproduces physical behaviour

Retains parametric dependencies 

Computationally efficient

Konstantinos Vlachas
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Problem Statement
Condition deterioration or damage during operation

3

Adapt subspaces on varying dynamics 

Real-time information for policy-makers

State ‘as-is’

Uncertainties on EOPs

Damage and condition 

deterioration

Adapt and optimize pROM performance

pROM

framework

Monitoring 

Data

State and response data

Virtual representation

( Digital-Twin )

High Fidelity Model
(finite element model)

parametric Reduced Order 

Model
(low-order, equivalent model)

Ground truth 

representation

Reference system

(real-life)
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Physical Interpretation:

Dynamic response under any input state spans 

low-dimensional subspace approximation of S 

Evaluate training instances

of dynamic structural response

Approximate solution manifold S 

based on dominant components

28.09.2021 4Konstantinos Vlachas

Approach conceptualization
Parametric ROM (pROM) as forward simulator

High Fidelity Model
(finite element model)

Reference system

(real-life)
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Approach conceptualization
Projection-based pROM as forward simulator

Physical Dimensionality Reduced Dimensionality

Space of physical coordinates

Full-order HFM dynamics 

Bi-directional 

Mapping

• Captures high fidelity dynamics

• Approximates time domain quantities

• Retains parametric dependencies

• Inverse mapping exists

• Propagates dynamics in reduced space => Efficiency

Low-order subspace

Propagate pROM dynamics
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Physical Dimensionality Reduced Dimensionality

Space of physical coordinates

Full-order HFM dynamics 

Low-order subspace

Propagate pROM dynamics

Bi-directional 

Mapping

Proper Orthogonal Decomposition

Approach conceptualization
Projection-based pROM as forward simulator
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( Initial ) parametric ROM framework

• Projection-based approach relying on POD subspaces

• Propagates dynamics forward in time in reduced coordinates

• Utilizes local ROMs through clustering to retain dependencies

throughout domain of operation

Earthquake induced damage / System deterioration

The pROM is no longer able to perform estimation tasks accurately

Subspaces on training set do not sufficiently capture occurring phenomena

=> Performance bottleneck

Approach conceptualization
Adaptive pROM for robust Structural Health Monitoring

Adaptivity in a pROM context

Condition indicator to highlight failure of ROM on the fly

Update subspace / Approximate deformation modes anew

=> Adaptive pROM 

Konstantinos Vlachas
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Approach conceptualization
Adaptivity through data assimilation

Adaptivity in a pROM context

Condition indicator to highlight failure of ROM on the fly

Update subspace / Approximate deformation modes anew

=> Adaptive pROM 

Update pROM “on-the-fly” through

correction on POD modes 

Noisy input signal from sparsely

monitored system

Condition indicator highlights pROM

performance failure at time tk

Data-driven mapping approximates system’s 

deformed configuration from monitoring data

Output approximation is employed to 

estimate “modes of deformation”

Updated modes are utilized to adjust pROM

projection basis
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Approach conceptualization
Adaptive pROM framework based on data assimilation

Offline / Training Strategy:

 Derive initial pROM as forward simulator :

Examples:

 Initial linear state and nonlinearities during operation to represent damage

 Initial nonlinear state and deterioration effects during operation

 Assemble Damage Indicator :

 Deterministic nature based on response comparison metrics

 Relies on limited nodal measurements

 Includes input noise / exploit noise statistics to define activation threshold

 Gaussian Process Regression (GPR) trained on residual response: 

 GPR trained on pool of snapshots, without compromising efficiency

Examples:

• GPR trained on certain parametric states representing damage

Online / During Operation:

• Monitor residual response between pROM and monitoring data

• If indicator signals “ROM Performance Deteriorates”:

 Employ GPR estimation to reconstruct full residual state

 Enrichment mode = pROM approximation + GPR residual

 Enrich pROM by using corrected modes in Basis
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Implementation details
Configurations and scenarios

Hysteretic spring model

 Total restoring force:

 Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:

: Control smoothness and shape of hysteresis

: Degradation/Deterioration effects

: Linear/Hysteretic contribution weighting

Cantilever Beam Case Study

 Stochastic ground motion excitation

 Parametrized Boundary => Nonlinear rotational spring

 Limited number of nodes monitored

Damage Scenario:

 Derive ROM based on “design” case study

 Induce damage by activating parametric boundary

 Use indicator to detect failure

 Employ GPR-based scheme to assemble deformed modes

 Refine POD-Basis
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Implementation details
Configurations and scenarios

Hysteretic Bouc-Wen spring model

 Total restoring force:

 Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:

: Control smoothness and shape of hysteresis

: Degradation/Deterioration effects

: Linear/Hysteretic contribution weighting

Cantilever Beam Case Study

 Stochastic ground motion excitation

 Parametrized Boundary => Nonlinear rotational spring

 Limited number of nodes monitored

Damage Scenario:

 Derive ROM based on “design” case study

 Induce damage by activating parametric boundary

 Use indicator to detect failure

 Employ GPR-based scheme to assemble deformed modes

 Refine POD-Basis

Scenario A:

• Initial “design” case study is linear

• Nonlinear spring is activated during operation

Scenario B:

• Initial “design” case study is nonlinear

• Damage is represented through degradation / 

deterioration effects during operation
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Implementation details
Configurations and scenarios

Plane Frame Case Study

 Stochastic parametrized ground motion excitation ( Amplitude )

 Nonlinear parametric rotational spring on all nodal connections

 Limited number of nodes monitored

Damage Scenario:

 Derive ROM based on “design” case study

 Induce damage by activating parametric springs

 Use indicator to detect failure

 Employ GPR-based scheme to assemble deformed modes

 Refine POD-Basis

Scenario C:

• Initial “design” case study is linear

• Nonlinear spring is activated during operation

• Evaluation earthquake not included in training set
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Linear vs Nonlinear response examples for different Bouc-Wen activation parameters

Implementation details
Configurations and scenarios
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Response examples with Bouc-Wen degradation phenomena during operation

Implementation details
Configurations and scenarios
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Implementation details
Damage indicator and GPR-scheme

Damage Indicator

 Deterministic nature based on response comparison metrics

=> Mahalanobis distance (MD) measure

 Relies on limited nodal measurements ( 5-10% nodal output measured )

 Includes input noise ( 3% ) / exploit noise statistics to define activation threshold

=> Alert threshold from Chi-Square distribution (0.01% significance level)

Gaussian Process Regression (GPR) 

 Trained based on residual responses between monitoring data and pROM

 GPR trained on pool of snapshots, without compromising online efficiency

 Input: Response information from monitoring channels 

Output: Additive correction on full coordinate space

 Leverage local and physical degree-of-freedom correlations

 Software: gpytorch implementation with MultitaskGPModel and RBFKernel()

Noisy measurement data

Measurement Data

Vector of random values

St. Dev. of 

measurement signals

Noise level

Damage Indicator

Response on monitoring channels ( displacements & rotations)   

Output => Performance failure alert signal 
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Implementation details
Damage indicator and GPR-scheme

Linear vs Nonlinear 

response example (Scenario A)

Bouc-Wen degradation phenomena 

during operation (Scenario B)
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Implementation details
Damage indicator and GPR-scheme

Gaussian Process Regression (GPR) 

 Trained based on residual between monitoring data and pROM

 Input : Response information in monitoring channels (displacements & rotations)

Input = True response - pROM estimation (monitored coordinates)

 Output: Response approximation through additive correction on full coordinate space

Output = True response - pROM estimation (all coordinates)

=> pROM Basis Enrichment mode = pROM approximation + GPR residual

 GPR trained on pool of snapshots, without compromising online efficiency

 Leverage local and physical degree-of-freedom correlations

 Assemble indirect correlation matrices between response in 

each physical coordinate / degree-of-freedom

 Leverage correlations to define output window for each 

monitored input channel

 Overlapping to ensure quality of approximation

Example correlation pattern

Example monitored channel

Potential region of accurate 

response approximation
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Case studies
Accuracy performance of the framework

Healthy pROM uses

initial linear Basis (Scenario A)

GPR-pROM adapts

projection Basis (Scenario A)
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Case studies
Accuracy performance of the framework

GPR-pROM adapts

projection Basis (Scenario C)
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Case studies
Accuracy performance of the framework

GPR-pROM adapts

projection Basis (Scenario C)

Confidence Bounds of 

GPR-pROM prediction (Scenario C)
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Case studies
Accuracy performance of the framework

GPR approximation

on first mode (Scenario C)

GPR approximation

on fourth mode (Scenario C)

GPR approximation

on sixth mode (Scenario C)

Reduced-order of pROM : 4 modes



||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)
28.09.2021 22Konstantinos Vlachas

Concluding remarks
Limitations and outlook

 Extends performance range of traditional projection-based pROMs

 Captures underlying dynamics and dependencies during damage or condition deterioration scenarios

 Achieves on the fly correction of the pROM based on sparse measurements

 Provides confidence bounds for response estimation

 May be adapted as an approximative, online low-cost surrogate for Structural Health Monitoring applications

- Hyper-Reduction implications for additional efficiency need further investigation

- GPR approximation scheme fails to capture higher order modes

- GPR approximation performance is strongly dependent on noise level

- GPR input-output channels discretization needs to be automated and optimized

The proposed adaptive GPR-pROM framework 

Next short-term steps:

 Generalize implementation – adjust overall scope:

Train pROM on earthquake database => Estimate damage in real-case scenarios

 Couple with filtering scheme to demonstrate potential on parameter/state/input estimation 
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Question session
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