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Abstract

A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at c
mass energies between 189 and 209 GeV, corresponding to an integrated luminosity of 629.4 pb−1. Decays into a charm an
a strange quark or into a tau lepton and its neutrino are considered. No significant excess is observed and lower lim
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tion of the
mass of the charged Higgs boson are derived at the 95% confidence level. They vary from 76.5 to 82.7 GeV, as a func
H± → τν branching ratio.
 2003 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

In the Standard Model of the electroweak inter
tions [1] the masses of bosons and fermions are
plained by the Higgs mechanism [2]. This impli
the existence of one doublet of complex scalar fie
which, in turn, leads to a single neutral scalar Hig
boson. To date, this Higgs boson has not been
rectly observed [3,4]. Some extensions to the S
dard Model contain more than one Higgs doublet [
and predict Higgs bosons which can be lighter th
the Standard Model one and accessible at LEP. In
ticular, models with two complex Higgs doublets pr
dict two charged Higgs bosons, H±, which can be pair-
produced in e+e− collisions.

The charged Higgs boson is expected to de
through H+ → cs̄ or H+ → τ+ντ ,7 with a branching
ratio which is a free parameter of the models. T
process e+e− → H+H− gives then rise to thre
different signatures: cs̄c̄s, c̄sτ−ν̄τ and τ+ντ τ−ν̄τ .
These experimental signatures have to be disentan
from the large background of the e+e− → W+W−
process, characterised by similar final states.

Data collected at centre-of-mass energies
√

s =
189–209 GeV are analysed here, superseding prev
results [6]. Data from

√
s = 130–183 GeV [7] are

included to obtain the final results. Results from ot
LEP experiments are given in Ref. [8].

1 Supported by the German Bundesministerium für Bildu
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contr
numbers T019181, F023259 and T037350.

3 Also supported by the Hungarian OTKA fund under contr
number T026178.

4 Supported also by the Comisión Interministerial de Cienci
Tecnología.

5 Also supported by CONICET and Universidad Nacional de
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation
China.

7 The inclusion of the charge conjugate reactions is imp
throughout this Letter.
The analyses do not depend of flavour tagg
variables and are separately optimised for each of
three possible signatures.

2. Data and Monte Carlo samples

The search for pair-produced charged Higgs bos
is performed using 629.4 pb−1 of data collected in
the years from 1998 to 2000 with the L3 detec
[9] at LEP, at several average centre-of-mass ener
detailed in Table 1.

The charged Higgs cross section is calculated u
the HZHA Monte Carlo program [10]. As an examp
at

√
s = 206 GeV it varies from 0.28 pb for a Higg

mass,mH± , of 70 GeV to 0.17 pb formH± = 80 GeV.
To optimise selections and calculate efficiencies, s
ples of e+e− → H+H− events are generated with th
PYTHIA Monte Carlo program [11] formH± between
50 and 100 GeV, in steps of 5 GeV, and between
and 80 GeV, in steps of 1 GeV. About 1000 eve
for each final state are generated at each Higgs m
For background studies, the following Monte Ca
generators are used: KK2f [12] for e+e− → qq̄(γ ),
e+e− → µ+µ−(γ ) and e+e− → τ+τ−(γ ), BHWIDE
[13] for e+e− → e+e−, PYTHIA for e+e− → ZZ and
e+e− → Ze+e−, YFSWW [14] for e+e− → W+W−
and PHOJET [15] and DIAG36 [16] for hadron an
lepton production in two-photon interactions, resp
tively. The L3 detector response is simulated using
GEANT program [17] which takes into account t
effects of energy loss, multiple scattering and sho
ering in the detector. Time-dependent detector ine
ciencies, as monitored during the data taking per
are included in the simulations.

3. Data analysis

The analyses for all three final states are upda
since our previous publications at lower centre-
mass energies [6,7]: the searches in the H+H− → cs̄c̄s

http://creativecommons.org/licenses/by/3.0/
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Table 1
Average centre-of-mass energies and corresponding integrated luminosities

√
s (GeV) 188.6 191.6 195.5 199.5 201.7 204.9 206.4 208.0

Luminosity (pb−1) 176.8 29.8 84.2 83.3 37.2 79.0 130.8 8.3
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and c̄sτ−ν̄τ channels are based on a mass dep
dent likelihood interpretation of data samples selec
[18] for the studies of W pair-production, while a di
criminant variable is introduced for the search in
τ+ντ τ

−ν̄τ channel. These analyses are described
low.

3.1. Search in theH+H− → cs̄c̄schannel

The search in the H+H− → cs̄c̄s channel proceed
from a selection of high multiplicity events with ba
anced transverse and longitudinal momenta and w
visible energy which is a large fraction of

√
s. These

criteria reject events from low-multiplicity process
like lepton pair-production, events from two-phot
interactions and pair-production of W bosons wh
at least one boson decays into leptons. The ev
are forced into four jets by means of the DURHA
algorithm [19] and a neural network [18] discrim
nates between events which are compatible wit
four-jet topology and those from the large cross s
tion e+e− → qq̄(γ ) process in which four-jet even
originate from hard gluon radiation. The neural n
work inputs are the event spherocity, the energies
widths of the most and least energetic jets, the dif
ence between the energies of the second and third
energetic jets, the minimum multiplicity of calorime
ric clusters and charged tracks for any jet, the va
of they34 parameter of the DURHAM algorithm an
the compatibility with energy–momentum conserv
tion in e+e− collisions. After a cut on the outpu
of the neural network, two constrained fits are p
formed. The first four-constraint fit enforces ener
and momentum conservation, modifying the jet en
gies and directions. The second five-constraint (
fit imposes the additional constraint of the product
of two equal mass particles. Among the three p
sible jet pairings, the one is retained which is m
compatible with this equal mass hypothesis. Eve
with a low probability for the fit hypotheses are r
moved from the sample and a total of 5156 eve
t

are observed in data while 5112 are expected f
Standard Model processes. The corresponding si
efficiencies are between 70% and 80%, formH± =
60–95 GeV.

Likelihood variables [20] are built to discrimina
four-jet events compatible with charged Higgs prod
tion from the dominating background from W pa
production. A different likelihood is prepared for ea
simulated Monte Carlo sample corresponding to a
ferent Higgs boson mass. Seven variables are inclu
in the likelihoods:

• the minimum opening angle between paired je
• the difference between the largest and smalles

energies;
• the difference between the di-jet masses;
• the output of the neural network for the selecti

of four-jet events;
• the absolute value of the cosine of the polar an

of the thrust vector;
• the cosine of the polar angle at which the posit

charged8 boson is produced;
• the value of the quantity 2 ln|M|, whereM is

the matrix element for the e+e− → W+W− →
four fermionsprocess from the EXCALIBUR [22
Monte Carlo program, calculated using the fo
momenta of the reconstructed jets.

Fig. 1(a)–(c) shows the distributions of the la
three variables while Fig. 1(d) presents the distribut
of the likelihood variable formH± = 70 GeV. A cut
at 0.7 on this variable, which maximizes the sig
sensitivity, is applied as a final selection criterion,
all mass hypotheses. The numbers of observed
expected events are given in Table 2 and the selec
efficiencies in Table 3. The main contributions
the background come from hadronic W-pair dec
(70%) and from the e+e− → qq̄(γ ) process (26%)

8 Charge assignment is based on jet-charge techniques [21]
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sine of

histogram
)

Fig. 1. Distributions for the H+H− → cs̄c̄s channel of: (a) the absolute value of the cosine of the polar angle of the thrust axis, (b) the co
the polar angle of the positively charged boson, (c) the logarithm of the squared matrix element for the e+e− → W+W− process and (d) the
selection likelihood formH± = 70 GeV. The points represent the data and the open histogram the expected background. The hatched
indicates the expected distribution for a signal withmH± = 70 GeV and Br(H± → τν) = 0, multiplied by a factor of 10. The arrow in (d
shows the position of the cut.
ons
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Fig. 2 shows the 5C mass of the pair-produced bos
before and after the cut on the final likelihoods. Pe
from pair-production of W as well as Z bosons a
visible.

3.2. Search in theH+H− → cs̄τ−ν̄τ channel

The search in the H+H− → cs̄τ−ν̄τ channel se-
lects events with high multiplicity, two hadronic je
and a tau candidate. Tau candidates can be id
fied either as electrons or muons with momentum
compatible with that expected for leptons origin
ing from direct semileptonic decay of W pairs,
with narrow, low multiplicity jets with at least on
charged track, singled out from the hadronic ba
ground with a neural network [18]. The tau energy
reconstructed by imposing four-momentum conse
tion and enforcing the hypothesis of the product
of two equal mass particles. The events must h
a transverse missing momentum of at least 20 G
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Fig. 2. Reconstructed mass spectra in the H+H− → cs̄c̄s channel,
for data and expected background, for events (a) before,
(b) after, the cut on the likelihoods. The points represent the
and the open histogram the expected background. The exp
distribution formH± = 70 GeV and Br(H± → τν) = 0 is shown
as the hatched histogram.

and the absolute value of the cosine of the po
angle of the missing momentum is required to
less than 0.9. Finally, the di-jet invariant mass is
quired to be less than 100 GeV and the mass rec
ing against the di-jet system less than 130 GeV, t
selecting 1026 events in data while 979 are expe
from Standard Model processes, mainly from W pa
production where one of the W bosons decays into
Table 2
Number of observed data events and background expectatio
the three analysis channels. The uncertainty on the backgr
expectations is estimated to be 5%. The numbers of expe
signal events formH± = 70 GeV and Br(H± → τν) = 0, 0.5 and
1 are also given for the cs̄c̄s, c̄sτ−ν̄τ and τ+ντ τ−ν̄τ channels,
respectively

Channel

cs̄c̄s c̄sτ−ν̄τ τ+ντ τ−ν̄τ

Data 2296 442 141
Background 2228 464 141

Signal 100 76 50

Table 3
Selection efficiencies for various charged Higgs masses. The
ciencies are largely independent of the centre-of-mass energy
uncertainty on each efficiency is estimated to be 2%

Channel Selection efficiency (%)

mH± = 60 GeV 70 GeV 80 GeV 90 GeV 95 Ge

cs̄c̄s 62 62 50 58 64
cs̄τ−ν̄τ 38 51 43 43 39
τ+ντ τ−ν̄τ 26 30 33 34 36

tons and the other into hadrons. The signal efficie
is about 50%.

To discriminate the signal from the backgroun
mass dependent likelihoods [20] are built which co
tain eight variables:

• the di-jet acoplanarity;
• the angle of the tau flight direction with respe

to that of its parent boson in the rest frame of
latter;

• the di-jet mass;
• the quantity 2 ln|M| calculated using the four

momenta of the reconstructed jets and tau as
as the missing momentum and energy;

• the transverse momentum of the event, normal
to

√
s;

• the polar angle of the hadronic system, multipl
by the charge of the reconstructed tau;

• the sum
∑

θ of the angles between the tau can
date and the nearest jet and between the mis
momentum and the nearest jet;

• the energy of the tau candidate, calculated
the rest frame of its parent boson and sca
by

√
s.
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Fig. 3. Distribution for the H+H− → cs̄τ−ν̄τ channel of: (a) the cosine of the polar angle of the hadron system multiplied by the c
of the tau candidate, (b) the sum of the angles between the tau candidate and the nearest jet and between the missing momen
nearest jet, (c) the scaled energy of the tau candidate in the rest frame of the parent boson and (d) the selection likelihood formH± = 70 GeV.
The points represent the data and the open histogram the expected background. The hatched histogram indicates the expected di
mH± = 70 GeV and Br(H± → τν) = 0.5, multiplied by a factor of 5. The arrow in (d) shows the position of the cut.
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The distributions of the last three variables a
shown in Fig. 3(a)–(c). Fig. 3(d) presents an
ample of the distributions of the likelihood variab
for mH± = 70 GeV for data, background and sign
Monte Carlo. A cut at 0.6 is applied for all likel
hoods. This cut corresponds to the largest sensit
to a charged Higgs signal. Table 2 gives the nu
bers of observed and expected events, while the
lection efficiencies are given in Table 3. Over 95%
the background is due to W pair-production. Fig
shows the reconstructed mass of the pair-produ
bosons before and after the cut on the final like
hoods.

3.3. Search in theH+H− → τ+ντ τ
−ν̄τ channel

The signature for the leptonic decay channel i
pair of tau leptons. These are identified either via th
decay into electrons or muons, or as narrow jets.
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Fig. 4. Reconstructed mass spectra in the H+H− → cs̄τ−ν̄τ

channel, for data and expected background, for events (a) be
and (b) after, the cut on the likelihoods. The points represent
data and the open histogram the expected background. The exp
distribution formH± = 70 GeV and Br(H± → τν) = 0.5 is shown
as the hatched histogram.

The selection criteria are similar to those used
lower

√
s [6,7]. Low multiplicity events with large

missing energy and momentum are retained. To
duce lepton-pair background, an upper cut is pla
on the value of the event collinearity angle,ξ , de-
fined as the maximum angle between any pair
tracks. The distribution of this variable is show
in Fig. 5(a). The contribution from cosmic muo
is reduced by making use of information from t
time-of-flight system. Fig. 5(b) presents the dis
bution of the scaled visible energy,Evis/

√
s, for

events on which all other selection criteria are
plied.

The analysis is modified with respect to tho
previously published [6,7] in that the normalis
transverse missing momentum of the event,Pt/Evis,
whose distribution is shown in Fig. 5(c), is used a
linear discriminant variable on which no cut is applie

The efficiency of the H+H− → τ+ντ τ
−ν̄τ selec-

tion for several Higgs masses is listed in Table
The numbers of observed and expected events are
sented in Table 2. The background is mainly form
by W-pair production (60%), two-photon interactio
(26%) and lepton pair-production (9%).

4. Results

The number of selected events in each decay c
nel is consistent with the number of events expec
from Standard Model processes. A technique base
a log-likelihood ratio [4] is used to calculate a con
dence level (CL) that the observed events are con
tent with background expectations. For the cs̄c̄s and
cs̄τ−ν̄τ channels, the reconstructed mass distributio
shown in Figs. 2(b) and 4(b), are used in the calcu
tion, whereas for theτ+ντ τ

−ν̄τ channel, the distribu
tion of the normalised transverse missing moment
shown in Fig. 5(c), is used.

The systematic uncertainties on the backgro
level and the signal efficiencies are included in
confidence level calculation. These are due to fi
Monte Carlo statistics and to the uncertainty on
background normalisation. The former uncertainty
5% for the background and 2% for the signal Mon
Carlo samples. The uncertainty on the backgro
normalisation is 3% for the H+H− → cs̄c̄s chan-
nel and 2% for the c̄sτ−ν̄τ and τ+ντ τ

−ν̄τ chan-
nels. The systematic uncertainty on the signal e
ciency due to the selection procedure is estimated
varying the selection criteria and is found to be le
than 1%. These systematic uncertainties decreas
mH± sensitivity of the combined analysis by abo
200 MeV.

Fig. 6 compares the resulting background co
dence level, 1− CLb, for the data to the expectation
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he
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indicate the
Fig. 5. Distribution for the H+H− → τ+ντ τ−ν̄τ channel of: (a) the event collinearity angle,ξ , (b) the scaled visible energy and (c) t
normalised transverse missing momentum of the event. In (a) and (b) all other selection criteria are applied and the arrows indicate
the displayed variable. The points represent the data and the open histogram the expected background. The hatched histograms
expected signal distributions formH± = 70 GeV and Br(H± → τν) = 1.
the
d a
p-

a
x-

o

ck-
the absence of a signal, for three values of the H± →
τν branching ratio: Br(H± → τν) = 0, 0.5 and 1. The
68.3% and 95.4% probability bands expected in
absence of a signal are also displayed and denote
1σ and 2σ , respectively. A slight excess of data a
pears aroundmH± = 69 GeV for Br(H± → τν) = 0,
as previously observed [6]. It is compatible with
2.5σ upward fluctuation in the background. The e
cess is also compatible with a 2.9σ downward fluctua-
s

tion of the signal.9 As observed in Fig. 6(b) and (c), n
excess is present in the cs̄τ−ν̄τ andτ+ντ τ−ν̄τ chan-
nels aroundmH± = 69 GeV. Therefore, the cs̄c̄s excess
is interpreted as a statistical fluctuation in the ba
ground and lower limits at the 95% CL onmH± are

9 As an example, for Br(H± → τν) = 0.1, these figures are 1.8σ

and 2.7σ , respectively.
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of a
Fig. 6. The background confidence level, 1− CLb , as a function ofmH± for the data (solid line) and for the expectation in the absence
signal (dashed line), for three values of the H± → τν branching ratio. The shaded areas represent the symmetric 1σ and 2σ probability bands
expected in the absence of a signal.
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derived [4] as a function of Br(H± → τν). Data at√
s = 130–183 GeV [7] are included to obtain the lim

its. Fig. 7 shows the excludedmH± regions for each
of the final states and their combination, as a funct
of Br(H± → τν). Table 4 gives the observed and t
median expected lower limits for several values of
branching ratio.

In conclusion, refined analyses and larger cen
of-mass energies improve the sensitivity of the sea
for charged Higgs bosons produced in e+e− collisions
as compared to previous results [6,7]. No signific
Table 4
Observed and expected lower limits at 95% CL for different val
of the H± → τν branching ratio. The minimum observed limit is
Br(H± → τν) = 0.26

Br(H± → τν) Lower limits (GeV) at 95% CL

observed expected

0.0 76.7 77.5
0.26 76.5 75.6
0.5 76.6 76.5
1.0 82.7 84.6
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Fig. 7. Excluded regions for the charged Higgs boson in the p
of the H± → τν branching fraction versus mass, for the analy
of each final state and their combination. The dashed line indic
the median expected limit in the absence of a signal. Regions b
mH± = 50 GeV are excluded by data collected at the Z resona
[23] and at

√
s = 130–183 GeV [7].

excess is observed in data and a lower limit at 95%
on the charged Higgs boson mass is obtained as

mH± > 76.5 GeV,

independent of its branching ratio.
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