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Abstract

Over the last decades, complex deep neural networks have revolutionized Artificial Intel-
ligence (AI) research. These models can now achieve impressive performances on various
complex tasks like recognition, detection and image semantic segmentation, achieving ac-
curacy close to, or even better, than human perception. However, these neural networks
require to be both deep and complex and this complexity constitutes a danger for the
safety verification (certification) and interpretability of a neural network model.

This project explores the certification properties of complex neural networks by taking
them into ”shallow waters”. First, a detailed investigation of efficient model distillation
techniques is conducted. Then, using the shallow models trained with these distillation
methods, several of their properties are further explored, among them adversarial robust-
ness and their performance under parameter reduction procedures. Finally, by combining
network’s convex relaxation with model compression, the certification area of shallow
student models (derived from either normally or robustly trained teacher networks) is
researched. Through all of these experimental results, it is empirically demonstrated and
proved that model distillation leads to shallow models with larger certification areas than
their equivalent complex teacher networks. Therefore, based on this thesis evidence, shal-
low distillated networks constitute a possible solution to the safety and interpretability
issues that modern complex Artificial Intelligence (AI) models face.
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Acronyms

In this report the following abbreviations are widely used especially in the experimental sec-
tion of the project (Chapter 8):

• AI: Artificial Intelligence.

• DNN: Deep Neural Network.

• GPU: Graphics Processing Unit.

• CV: Convolutional Layer.

• MP: Max-Pooling.

• FC: Fully-Connected.

• LR: Learning Rate.

• CNN: Convolutional Neural Network.

• ReLU: Rectified Linear Unit.

• SGD: Stochastic Gradient Descent.
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London.

iii





Contents

Acknowledgements iii

Contents v

1 Introduction 1

2 Background 3
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Convolution Neural Network (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Max-Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.4 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Model Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Requirements Capture 11

4 Model Distillation 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Distillation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Matching the Logits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Ranging the Teacher’s Temperature . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Adversarial Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Parameter Reduction 19
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Pruning Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Method Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Computational and Parameter Benefits . . . . . . . . . . . . . . . . . . . . 21

6 Adversarial Robustness 23
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Types of Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.1 Fast Gradient Sign Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



Contents

6.2.2 Projected Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3 Basic Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.4 Momentum Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Adversarial Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Robust Classifier & Certification Properties 29
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Network’s Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Provably Robust ReLU-based Classifier . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Efficient Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Certification Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.5.1 Robust Error Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5.2 Certification Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Experiments 35
8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Model Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2.1 Teacher Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2.2 Matching the Logits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.3 Ranging the Teacher’s Temperature . . . . . . . . . . . . . . . . . . . . . . 44

8.3 Parameter Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3.1 Best Student Model - SVHN . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3.2 Best Student Model - CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.4 Adversarial Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.5 Provably Robust Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.5.1 Baseline & Robust Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5.2 Models’ Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.5.3 Prune Filtering of the Best Student Models . . . . . . . . . . . . . . . . . . 54
8.5.4 Models’ Progressive Gradient Descent (PGD) Robustness . . . . . . . . . 55

8.6 Certification Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.6.1 Certification Area for Baseline Models . . . . . . . . . . . . . . . . . . . . 57
8.6.2 Certification Area for Robust Model . . . . . . . . . . . . . . . . . . . . . . 58
8.6.3 Certification Area & Number of Parameters . . . . . . . . . . . . . . . . . 58
8.6.4 Improve Robustness & Certification Area of the Distillated Models . . . . 59

9 Evaluation 65

10 Conclusion and Further Work 69

Bibliography 71

A Mathematical Derivations 75
A.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Proof of Robust Error Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Experiments 79
B.1 Learning Curves for Teacher Models in SVHN Distillation Experiments . . . . . 79
B.2 Ranging the Temperature Detailed Accuracy Results - Robust Model . . . . . . . 80
B.3 Ranging the Temperature Detailed Accuracy Results . . . . . . . . . . . . . . . . 82

C Certification Area & Number of Parameters 87
C.1 CIFAR-10 Dataset Certification Area Graphs . . . . . . . . . . . . . . . . . . . . . 87
C.2 SVHN Dataset Certification Area Graphs . . . . . . . . . . . . . . . . . . . . . . . 88

vi



Chapter 1

Introduction

In recent years, the field of Machine Learning has demonstrated impressive performances on
various tasks, especially visual tasks, that have applications in unpredictable environments
such as self-driving cars and autonomous flying vehicles. State-of-the-art neural networks
can now efficiently solve complex problems like object recognition, object detection and im-
age semantic segmentation with very high confidence. Efficient Machine Learning algorithms
have been the object of study for several decades but due to a significant increase in the num-
ber of available data as well as recent advancements in hardware, there is now the necessary
computational power to make these algorithms feasible. But this boost in performance comes
at the cost of deeper and more complex models and this complexity poses serious threats
to safety and interpretability. As complex machine learning models have slowly started con-
trolling elements of our daily lives and are in charge of cars or airplanes, the issue of trust
becomes more and more relevant. In the past few years, progress in the field of Artificial
Intelligence (AI) has involved increasingly data-driven, black box approaches. Now more
than ever, there is the need to define a regulatory framework and standards for the safe use
of machine learning-based systems.

In light of this, the European Union has launched their first version of the Ethics Guidelines
for Trustworthy Artificial Intelligence 1 in 2019. These guidelines have started to influence
rule making across industries. For the aviation industry, which poses many interesting exam-
ples of safety critical applications, the European Union Aviation Safety Agency (EASA) has
derived their own roadmap to create a certification framework that enables the introduction
of AI applications without compromising safety.

Daedalean AI 2, a startup based in Zurich, builds relevant safety-critical applications using
machine learning which will have to be compliant with future certification standards. Their
operation covers industries from general aviation to urban air mobility. Using machine learn-
ing and computer vision, Daedalean’s visual system enables autonomous flying capabilities
to completely and reliably replace the human pilot. Their autopilot software is developed ac-
cording to strict software regulatory rules and standards under the “Software Considerations
in Airborne Systems and Equipment Certification” (DO-178C).

In 2019, Daedalean AI started a collaboration with EASA (European Union Aviation Safety
Agency) in an Innovation Partnership Contract (IPC) on the Concepts of Design Assurance for
Neural Networks (CoDANN). The purpose of this project was ”to investigate ways to gain
confidence in the use of products embedding machine learning-based systems (and more
specifically neural networks) and develop general guidelines towards the certification of deep
neural networks in order to expand the current aviation regulatory framework”. The first

1https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
2Daedalean AI - official website: https://www.daedalean.ai
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1. Introduction

round of this IPC was concluded with the publication of a joint report on the “Learning
Assurance for Neural Network” 3. In 2020, the second round of the IPC was launched to
further investigate and extend these guidelines for autonomous autopilot systems for aircrafts
of near future. The motivation of this Master Thesis Project is to contribute to the above work
and the second round of the IPC through an investigation and comparison of the certification
properties of deep neural networks and shallow distillated models.

The remainder of this report is structured as follows:

• Chapter 2 presents background information related to the project, including related work
and a brief introduction to CNNs followed by fundamental principles of model compres-
sion, adversarial attacks as well as certification area.

• Chapter 3 captures and specifically analyses the project objectives.

• In Chapter 4, a number of model distillation techniques is presented and discussed in
detail. A complete discussion about the reasons behind distillation’s success is also
presented in this chapter.

• Chapter 5 is oriented around parameter reduction. More specifically, it lays down the
theoretical background behind ”Pruning Filters” [30] method and its benefits in terms
of parameter reduction as well as computational cost.

• In Chapter 6, a wide variety of adversarial attacks are presented and described in full
detail.

• Chapter 7 is based on the work conducted by Eric Wong et al. in [47] and describes a
method based on network’s relaxation to design and build robust ReLU-based classi-
fiers.

• Chapter 8 is concerned with the experimental implementation to investigate the project
objectives as described in Chapter 3 using the theoretical knowledge and methods de-
scribed in Chapters 4, 5, 6 and 7.

• Chapter 9 includes a critical appraisal of the work presented in this Master Thesis project.

3https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
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Chapter 2

Background

This part of the report serves as the literature review of the project and the place where we lay
down some of the fundamental principles as well as the notation used in this thesis. In this
chapter, the concept of model distillation is presented, followed by a discussion on adversarial
attacks and their danger for a neural network. Finally, mathematical details of certification
are also presented here.

2.1 Related Work

As mentioned in the previous chapter, the idea of model distillation is not a new concept to
the machine learning community. In the late 80s, Cybenko [18] mathematically demonstrated
that a neural network with only one hidden layer consisting of units with sigmoid activations
can efficiently approximate any target function with the only requirement to be a sufficiently
wide hidden layer. Empirical evidence though disproves Cybenko since shallow neural net-
works are often less accurate than deep neural network models. Zeng and Martinez [51]
used neural networks and synthetic data produced by the RANDOM algorithm to approx-
imate ensembles of classifiers. Following their work, Bucilå, Caruana and Nicolescu-Mizil
[17] presented a method for compressing large ensembles into faster and smaller models of
equivalent performance. In their experiments, the shallow mimic networks were trained on
synthetic examples generated using the MUNGE algorithm.

Dauphin and Bengio ([19] & [23]) made use of SIFT features in their attempt to train effi-
cient large, high-accuracy shallow models on the large-scale ImageNet dataset. A number
of research papers (e.g. [20],[34],[46],[45],[22],[26],[36]) suggest that deep neural networks
are more efficient and accurate compared to shallow models for tasks like image analysis
and speech acoustic modeling. Furthermore, Cohen and Shashua [16] as well as Liang and
Srikant [37] proved empirically that the representational efficiency of deep neural networks
grows exponentially with depth favoring deep complex neural networks over shallow mod-
els. More recently, Ba and Caruana (in [7] & [27]) demonstrated that shallow neural networks
can approximate / learn the target functions that more complex deep neural networks have
learnt during training. In their work, the distillation of knowledge occurs by minimising the
squared difference between the logits (the input to the output softmax layer of the classifier
model) produced by the deep models and the logits produced by the shallow models. Hinton,
Vinyals and Dean ([25] & [32]), building on Caruana’s previous work, demonstrated a new
way of knowledge distillation by ”raising the temperature of the output softmax layer of the
deep neural network model” to produce soft targets and finally proved that ”matching the
logits” is a specific form of this more generic distillation method.

During the last years, the topic of adversarial attacks has been an active field of research in the

3



2. Background

machine learning community. Recent work by Goodfellow et al. [31] has demonstrated that
adversarial examples (data points that are indistinguishable to the human eye from correct
examples) can be produced and successfully fool the machine learning models. Different
strategies have been followed over the years to design models that withstand adversarial
perturbations ([28] & [15]). In recent years, model distillation has been considered multiple
times as an effective method to design models robust to adversarial attacks. Currently, there
is no conclusive evidence of distillation’s success since it has been both empirically proved
([43] & [42]) and disproved [13] as an efficient design method for adversarial robustness.

As it is obvious, there is the need for robust neural networks, models that can demonstrate
conclusive robustness against norm-bounded perturbations. In other words, networks where
a certificate of robustness exists. Different robust optimization methods have been employed
over the years ( [31], [38], [48], [44], [11]) that focus on linear neural network models. Singh
et. al [24] presented DeepZ, a method to certify neural network robustness based on abstract
interpretation, while Eric Wong and Zico Kolter [47] proposed a method to train robust ReLU
classifiers via the ”convex outer adversarial polytope” technique.

In summary, the aforementioned works have proposed different model distillation techniques
and properties. However, they only consider model distillation as a method to only train
accurate shallow neural networks. Effective defenses against adversarial attacks have been
focused only on adversarial training or robust optimization principles. Our work in this
thesis is fundamentally associated with the field of distillation ([7], [25] & [27]) but it also
relates to the connection between distillation and adversarial robustness. Finally, building on
the work by Eric Wong and Zico Kolter [47] and using the empirical results from different
distillation techniques, we will examine the effect that distillation has on the certification area
of both normally and robustly trained models.

2.2 Notation

As in any other machine learning model, the objective of a deep neural network is to ap-
proximate some unknown target function f ∗. The network defines a mapping y = f (x; θ)
and learns the set of parameters θ that yields the best approximation function. In this thesis,
the predictive neural network model is denoted as fθ with θ being the set of the network’s
parameters. The predictive models used in our analysis are Deep Neural Networks (DNNs)
with K-hidden layers (artificial neural networks (ANNs) with multiple layers between their in-
puts and outputs). More precisely, Convolutional Neural Networks (CNNs) consist the main
neural network tool throughout the present thesis report. The set of the learned parameters
θ consists of the weights as well as the biases of each layer. Mathematically, θ := (Wi, bi) with
Wi and bi denoting the weights and bias of the i-th layer of network respectively. Each unit in
the network has a non-linear activation function in their output denoted by h. Furthermore,
the labelled training and test datasets are denoted by (X ,Y), and (Xtest,Ytest) respectively.

For evaluation purposes of the models, clean accuracy is the metric frequently used. It is the
fraction of predictions that the predictive model classifies correctly over the total number of
data points being tested.

Definition 2.1 Let fθ be a predictive model and the test set (Xtest,Ytest)=(x1, y1), (x2, y2), ..., (xN , yN),
the clean accuracy is defined as :

CleanAccuracy :=
∑(x,y)∈(Xtest,Ytest)

I( fθ = y)

N
(2.1)

4



2.3. Convolution Neural Network (CNN)

where I is the indicator function:

I(y = x) =
{

1 x = y
0 x 6= y

Finally, in different parts of our analysis perturbations, and more precisely norm-bounded
perturbations, are used.

Definition 2.2 A perturbation ball in input space is denoted by Bε and for norm-bounded
perturbations around point x is defined as:

Bε(x) := {x′ | ‖x− x′‖ < ε} (2.2)

where ε > 0.

2.3 Convolution Neural Network (CNN)

This section presents a detailed discussion on Convolution Neural Networks (CNNs). Starting
with an overview of their architecture, followed by a detailed analysis of the fundamental
convolutional layer and the max-pooling layer which are both used in our experiments later
on. Finally, an analysis of the use of the CNN architecture for classification tasks is presented
since image classification is the main focus of the experimentation part of this report.

2.3.1 Overview

Convolutional Neural Network (CNN) is a machine learning architecture with significant
applications in the field of computer vision and ”inspired by the natural visual perception
mechanism of the living creatures” [33]. CNN is a variant of deep neural network that in-
volves convolutional and fully-connected layers which share their weights and diminish the
amount of total parameters. It uses feature maps to extract significant features and retain
important information. Sub-sampling and pooling layers are also widely used with the main
purpose to be dimensionality reduction.

2.3.2 Convolutional Layer

The convolutional layers aim to learn feature representations of the inputs. Each convolutional
layer consists of multiple kernels used to convolve the input and produce the feature maps.
In a feature map, each neuron is linked to a neighbourhood of neurons in the previous layer
of the CNN. This neighbourhood is also known as the neuron’s receptive field.

Figure 2.1: Illustration of Convolutional Layer & Receptive Field (Source: [33])

5



2. Background

Each feature map is computed in two steps: first a convolution between the input with a
known kernel takes place. Then, the result is passed through a non-linear activation function.

Definition 2.3 Using the notation described above, the (i,j) element of m-feature map in the
k-layer is derived mathematically as:

yk
i,j,m = hk((wk

m)
T ∗ xk

i,j + bk
m) (2.3)

where xk
i,j is the input centered around (i,j) in the k-th layer, wk

m and bk
m are the weights and

bias of the k-th layer respectively and hk is the activation in the k-th layer of the network.

2.3.3 Max-Pooling Layer

Figure 2.2: (Left): The input has size of [64x64x32] and is max-pooled with filter size 2x2 and stride 2 into output
of size [32x32x32]. Notice that the depth / number of channels is preserved. (Right): Mathematical example in a
single channel slice. The max pooling operation takes place with filter 2x2 and stride 2. In each pooling region, the
maximum number is passed on the next layer.

The pooling operation constitutes a vital component of the CNN architecture. Pooling sig-
nificantly decreases the amount of connections between convolutional layers. It keeps the
computational cost at a low level while preserving all the important information. There are
several pooling methods but throughout this report only max-pooling layers are frequently
used.

Max-pooling layers, similar to convolutional layers, apply a kernel to the input feature map
and generate an output feature map which is composed by the maximum value elements in
each region defined by the kernel size.

Definition 2.4 In the max-pooling operation, the (i,j) element of m-feature map is derived
mathematically as:

ai,j,m = max
k,l∈Jij

yk,l,m (2.4)

where ai,j,m is the pooling output at (i,j), yk,l,m is the input value at (k,l) inside the pooling
region Jij in the (i,j) neighbourhood defined by the pooling kernel in the m-feature map.

2.3.4 Classification Task

Convolutional Neural Networks (CNNs) represent a huge breakthrough in image analysis, es-
pecially in the fields of classification and recognition. ”Their architecture resembles the visual
perception mechanism of the living creatures whose cells in the visual cortex are responsible
for detecting light in receptive fields” as Hubel and Wiesel described in their study [21].

A typical CNN architecture for classification (an illustration example of which appears in the
graph below) is composed of three main parts:

6



2.3. Convolution Neural Network (CNN)

Figure 2.3: Illustration of the different parts of a CNN architecture tasked with image classification

1. The input part: The image that needs to be classified by the CNN architecture

2. The feature extraction part: This part of the CNN involves convolution and pooling
operations to create multiple feature maps. In each layer, different filters are applied
along with a non-linear activation function to generate the different feature maps. For
image classification, ReLU activation function, a non-linear and non-saturated function,
is frequently chosen for this task.

Figure 2.4: ReLU non-linear activation function graph

Definition 2.5 ReLU is a non-linear function that sets the negative values to zero and
maintains the positive values. Since it uses only the maximum operation is faster com-
pared to other non-linear functions. ReLU activation function is mathematically de-
scribed as:

ai,j,m = max(0, zi,j,m) (2.5)

where ai,j,m and zi,j,m are the output and input of the function respectively at location
(i,j) in the m-th feature map / m-th channel.

The final step of the feature extraction part includes the flattening of the last feature
maps into one long vector which consists the characteristic features of the input image.

3. The classification part: It is the final stage in the classification pipeline. It is composed
of a fully-connected artificial neural network (ANN) whose input is the characteristic
feature vector of the feature extraction part. The number of the neuron units in the final
fully-connected layer (also known as output layer) equals to the number of possible
classification classes. While the hidden units can use different non-linear activation
functions (ReLU is a popular choice like in the feature extraction part), the output layer

7



2. Background

uses softmax activation function to map the non-normalized output of a network to a
probability distribution over possible classification classes.

Definition 2.6 Let N the possible classification classes. The softmax operation is de-
noted by σ and is defined mathematically as:

σ(z)i =
ezi

∑N
j=1 ezj

(2.6)

for i ∈ (1,2,...N) and z = (z1, z2, ..., zN). The standard exponential function is applied to
each element zi of the output layer and is normalized by the sum of all the exponentials.
The softmax operation ensures that the sum of the outputs in the final layer of the CNN
is equal to 1.

As in any other machine learning network, the learning of the model’s parameters happens
through training. For the model’s training, a loss function is required. The loss function quan-
tifies how close the predictions of the CNN model are to the true labels of the images. Let θ de-
note all the parameters of a CNN model with labelled training set (X ,Y)=(x1, y1), ..., (xN , yN).

Definition 2.7 The total loss of a CNN model can be calculated as follows:

L =
1
N
∗

N

∑
i=1

l(θ, xn, yn) (2.7)

The goal of any training algorithm is to minimize the value of the loss function by adjusting
the weights and biases of the neurons. The best set of parameters are computed through
the minimization of the loss function. Ideally, this should be zero and in that case the CNN
model perfectly classifies all the samples. In practice though, this would lead to overfitting
the training data, in other words the CNN model has memorised the data rather than learn
the target function and tends to perform poorly on new unseen data samples. For that reason,
a different set of images known as validation set is used during training with the only goal
to efficiently estimate the performance of the model in unseen data (not encountered at the
training stage) and stop the training process at the right time.

2.4 Model Compression

The conception of model compression (distillation) is to produce a shallow neural network
model (a neural network with a small number of hidden layers) that can mimic (approximate)
more complex models. The deep complex models are known as teacher models and the
shallow models as student models.

Definition 2.8 Let f ∗ be an unknown target function, fθ a K-layer predictive model and gθ a
L-layer predictive model where L << K. Distillation is defined as the process to achieve the
following approximation:

f ∗ ≈ fθ ≈ gθ (2.8)

For reasons discussed later on in the report, the shallow student networks can learn more
precise functions (closer to the true target function) when trained via model compression
rather than when trained on the original dataset used to train the complex models. Model
distillation is one of the main fields of focus in this thesis report. Therefore, different strategies
as well as a discussion about the reasons behind distillation’s success will be analysed in the
next chapters.
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2.5. Adversarial Attacks

2.5 Adversarial Attacks

Adversarial attacks are small undetectable perturbations of the input data points that are
sufficient to fool the neural networks and change their output prediction.

Definition 2.9 Let fθ be a well-trained predictive model and Bε a norm-bounded perturbation
ball around the data point x ∈ X . x’ is a adversarial example if and only if:

fθ(x′) 6= p (2.9)

where fθ(x) = p and x′ ∈ Bε.

There has been a great research interest in the design of adversarial attacks. According to
Barreno (in ([8],[9] & [10]), and Ozdag [41], the adversarial attacks of machine learning models
can be described in categories as they are illustrated in figure 2.5.

Figure 2.5: Adversarial attacks categorized based on Influence, Specificity and Security Violation

The influence of the adversarial attacks is an important taxonomy factor. Causative attacks tar-
get the training process while exploratory and evasion attacks take place after the training is
completed with the former method exploiting misclassifications without altering the training
process and the latter method modifying the input data. For the security violation criterion,
attacks are characterized based on the state of the system after the attack (for instance false
positives). Targeted attacks target specific data points while indiscriminate attacks exploit in
a random non-targeted manner.

Furthermore, another categorization strategy has been described extensively in literature (Big-
gio and Roli [12], Chakraborty et al. [14], Yuan [50]). This categorization strategy (illustrated
in figure 2.6) takes into account the different capabilities that adversarial attacks might have,
their goals and their knowledge (complete or partial) of the machine learning system.

Figure 2.6: Adversarial attacks categorized based on Target, Frequency and Knowledge of the system
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White box attacks require a complete knowledge of the machine learning systems, while
Grey box and Black box attacks have some and no knowledge respectively. Based on their
frequency adversarial attacks can be one-time or iterative (multiple times) attacks. Finally, a
targeted attack targets a specific class while a untargeted attack does not.

For the evaluation of the models’ robustness, different adversarial attacks are used throughout
our analysis and they will be detailedly described in the next chapters.

2.6 Certification

As it is obvious, there is a growing interest in the challenging topic of accessing and verifying
(certifying) robustness properties of neural networks. In other words, given a fθ trained
model on a training set (X ,Y), certification is interested in measuring the model’s robustness
by examining for each point x whether its neighbourhood produces the same classification
result. In other words, what is the maximum distance ε in the neighbourhood of the data
point x such that the point can not be turned into an adversarial example.

Definition 2.10 A verification problem for any predictive model fθ can be defined as the
following robust optimisation problem [29]:

J (x, fθ , ε) = min
x′∈Bε

c ∗ fθ(x′) (2.10)

where c is a matrix encoding the specification or the relation between the outputs of the
network that needs to verified (certified).

Using c := eycorrect - eywrong , the sign of J indicates if there is any point in the Bε ball that flips
the model’s prediction. More specifically, if J > 0, there exists no input in Bε ball while if J <
0, then there exists at least one input in the ε-neighbourhood of x where model prediction is
incorrect.

There are two ways to verify any predictive model fθ given a dataset X :

1. Verify that all points x ∈ X over the same fixed local perturbation ball Bε remain
unchanged to the perturbations.

2. For every point x ∈ X , find a different local perturbation ball Bε for which the network’s
output is guaranteed to not change.

Certification is the last part of our experimental results and these methods will be analyzed
in detail in the next chapters.
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Chapter 3

Requirements Capture

The primary objective of this thesis project is to investigate model distillation as well as its
applications in areas like adversarial robustness and certification. Up until this point, there
has been a short introduction of the project’s motivation and an overview of the background
knowledge that is required for the project. Potential advantages and disadvantages of model
distillation have been briefly discussed in the literature review section. The project investiga-
tion will involve different model distillation techniques and will be oriented around models’
robustness as well as their certification area. Although the aforementioned objectives are
quite broad, for each task research can be oriented around the following issues:

Model Distillation

1. Implement different model distillation techniques that have been described in the litera-
ture as efficient model compression methods.

2. Investigate the factors that contribute to successful knowledge distillation.

3. How do the results of different distillation techniques compare with each other ?

4. Are there any disadvantages of distillating complex deep neural networks ?

Parameter Reduction

1. Investigate whether a decrease in the amount of parameters of complex deep neural
networks is possible without, or slightly, affecting the overall clean accuracy of the
model.

2. Having an efficient method in place, study whether the combination of model distil-
lation and parameter reduction can result in shallow models with small number of
parameters and accuracy comparable to complex deep neural networks.

Adversarial Robustness

1. Implement different adversarial attack techniques on both deep neural networks and
shallow distillated neural networks.

2. Study the relationship of clean accuracy and adversarial robustness.

3. Investigate with empirical evidence whether model distillation results in robust models.
In other words, compare the performance of deep teacher neural networks and shallow
distillated student neural networks under the same settings of adversarial attacks.

11
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Certification Area

1. Implement a normally trained and a robustly trained classifier with the same architec-
ture that will be used for comparison.

2. Make use of the conclusions in the previous research areas (Model Distillation, Parame-
ter Reduction and Adversarial Robustness) and create efficient shallow distillated mod-
els of the two classifiers.

3. Study the different factors that might affect the certification area of a deep neural net-
work model.

4. Investigate whether model distillation has any effect on the certification area of the
models compared to their equivalent complex teacher deep neural networks.

5. Are the empirical results independent of the method (robustly or non-robustly tech-
nique) that the teacher model has been trained with?

To answer the aforementioned questions and successfully execute the different research tasks,
our analysis will be focused on image classification on publicly available research image
datasets, more specifically in the SVHN dataset and the CIFAR-10 dataset. While the predic-
tive models used throughout this report will be primarily Convolutional Neural Networks
(CNNs) as they are described in Chapter 2. In the next chapters, we will lay down the the-
oretical knowledge needed for the experimental section of the project (Chapters 4, 5, 6 & 7)
and the experimental setup as well as the research’s empirical results (Chapters 8 & 9).
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Chapter 4

Model Distillation

This chapter presents a detailed discussion on model distillation. Starting with the funda-
mental principles behind compression, followed by a detailed description of the distillation
techniques that are used in the experimental analysis in the next chapters. Finally, a discus-
sion about the reasons behind distillation’s success is also presented here.

4.1 Overview

As it was mentioned in a previous chapter, the conception of model compression (distillation)
is to create a shallower, more concise model to resemble the behaviour of a deep complex
neural network, as it is described by the [2.8] equation. Distillation works by passing a
large unlabelled dataset through the well-trained deep complex neural network, also known
as the teacher model, and collect its predictions on these data points. These predictions
will be used as the training labels for the shallow network, known as the student model.
The target of distillation is not to make the student model as accurate as possible but to
distillate the teacher’s knowledge into it. In other words, the student model should mimic /
approximate the function learned by the complex network by making the same correct and
wrong predictions as the teacher model.

Figure 4.1: Model Compression Pipeline: A large unlabelled dataset is passed through the teacher model. The
teacher’s predictions are collected and used along with the large unlabelled dataset for the training of the shallow
student network.

Research in the field of model distillation has demonstrated that shallow models actually
do have the capacity to efficiently learn complex functions. Empirical data, though, shows
that shallow models can not achieve accuracy comparable to the teacher models, if they are
trained only on the original dataset. The intermediate step of training a high accurate teacher
model and collecting its predictions on a new large dataset constitutes a necessary stage in
the model distillation process.
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4. Model Distillation

4.2 Distillation Techniques

This section analyzes three techniques that are used in the experimental part of the project
to study model distillation. However, these methods have not been chosen randomly. All
of the techniques offer easy and fast implementation. In particular, the first two techniques,
”Matching the Logits” & ”Ranging the Teacher’s Temperature”, can be frequently found in
different research papers on the field and they have both demonstrated significant results in
image classification, which is the area that the experimental analysis is focused on. Finally,
the ”Adversarial Distillation” technique is inspired by the Adversarial Training of a neural
network model and is used only in the final set of experiments.

4.2.1 Matching the Logits

This approach is described and primarily used by [7]. In this technique, the teacher networks
are trained as for any classification task, using softmax activation in their output layer and
cross entropy loss function. The shallow student networks are trained on the logarithmic
probability values z, known as logits, which are inputs to the output softmax layer of the
network. For the students’ training, mean square error loss function is used instead of cross
entropy loss, effectively turning the classification task into a regression problem. For this
technique to produce good quality results, the student models need to be trained on the
predictions of the trained teacher models on a new large unlabelled dataset X ∗.

We can formulate this distillation technique as the learning objective of a regression problem
given the training dataset X = (x1, y1), (x2, y2), ..., (xN , yN) and a large unlabelled dataset
X ∗ = (x∗1 , x∗2 , ..., x∗M) where M >> N. The teacher model fθ is initially trained on the training
dataset X . Using the trained teacher model’s predictions on the unlabelled dataset X ∗, the
teacher logit z fθ

i for each datapoint x∗i ∈ X ∗ is produced. Then, the learning objective function
is defined as [7]:

L =
1
M
∗

M

∑
i=1

(z fθ

i − zgθ

i )2 (4.1)

where zgθ

i is the logit produced by the student model for each datapoint x∗i ∈ X ∗.

With this technique, the shallow student model learns the teacher’s function by placing em-
phasis on all prediction targets. Instead of just training using only the teacher’s final predic-
tions as the labels, training using the logits provides the logarithmic relationships of probabil-
ity predictions between the class labels learned by the teacher model.

Figure 4.2: Graphical Illustration of the ”Matching the Logits” Distillation Technique. The logits crafted by the
teacher model on the large unlabelled dataset are used as the target labels during the student model’s training.
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4.2.2 Ranging the Teacher’s Temperature

Deep neural networks deployed in classification tasks output probabilities using a softmax
activation output layer that turns the logit zi computed for each class into a probability qi by
comparing zi with all the other z logits.

qi =
exp(zi)

∑j exp(zj)
(4.2)

Temperature is a value (T) that the logit is divided by before the softmax activation layer, as
described in [4.3]. When the temperature is 1, the softmax activation function is computed
directly on the logits, as shown in [4.2]. Using a temperature less than 1, the model com-

putes the softmax function on
logits

T
resulting in larger arithmetic values compared to those

using temperature of 1. Performing softmax activation on larger values creates ”hard targets”
and makes the model more confident but, at the same time, also more conservative. Using

a temperature higher than 1, the model computes the softmax activation on
logits

T
resulting

in smaller arithmetic values compared to those using temperature of 1. Using a higher tem-
perature creates ”soft targets” and produces a softer probability distribution over the classes
making the model more easily excited and as a result greater diversity but also more mistakes
are allowed.

qi =
exp(zi/T)

∑j exp(zj/T)
(4.3)

This distillation technique is based on tuning this temperature parameter (T) to an ideal
region, which depends on the model’s architecture as well as the data points used during
training, to produce the best soft or hard targets. The shallow student models are trained
using cross-entropy loss function on these targets generated by the teacher network when
passing a unlabelled dataset through it.

Figure 4.3: Graphical Illustration of the ”Ranging the Teacher’s Temperature” Distillation Technique. The soft /
hard targets generated by dividing the teacher network’s logits on the large unlabelled dataset with the temperature
parameter (T). These targets are used as target labels during the training of the student model.

This technique is a simpler modified version of the method proposed in [25]. In this paper,
the proposed method includes a weighted averaged of these ”soft / hard” targets as well as
the correct labels (if they are known) of the unlabelled dataset. Interestingly enough, it can be
proved mathematically that ”Matching the Logits” is a special case of this paper’s proposed
method in the high temperature limit (high temperature compared to the magnitude of the
logits).

However, only the aforementioned simplified method is used throughout the experimental
analysis of the project since the labels of the unlabelled datasets are not usually known when
conducting model compression.
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4. Model Distillation

4.2.3 Adversarial Distillation

This technique is inspired by adversarial training and described in [39]. Adversarial Distilla-
tion constitutes a modified version of ”Matching the Logits” distillation method. In adversar-
ial training, predictive models are trained using perturbed samples instead of normal data
points in order to gain some level of robustness against adversarial attacks during training.

Mathematically, if X = (x1, y1), (x2, y2), ..., (xN , yN) is the training set, in adversarial training
the data points endure small perturbations and a new training set is produced that consists
of Xδ = (x∗1 , y1), ..., (x∗N , yN) where

x∗i = xi + δ (4.4)

with δ being the small perturbation in the space. The predictive models are trained using this
new Xδ dataset and the clean label targets ((y1), ..., (yN)).

Adversarial distillation is designed around an analogous pipeline. Similar to the ”Matching
the Logits” method, the shallow student networks are trained on the logarithmic probability
values z, known as logits, which are inputs to the output softmax layer of the network. The
prediction logits of the teacher model on a new unlabelled dataset X ∗ are used as the logit
targets for the distillation procedure. The only difference with the previous method lies on
the unlabelled dataset that the student models use for training. Instead of using the same
unlabelled dataset X ∗ with the teacher model, the student model is trained on the perturbed
unlabelled dataset X ∗δ but still trying to match the ”clean logit targets”.

Figure 4.4: Graphical Illustration of the ”Adversarial Distillation” Technique. The logits produced by the teacher
model on the large unlabelled dataset are used as the target labels for the student model. During the student model’s
training, the perturbed unlabelled dataset is used.

Adversarial distillation can be formulated as the learning objective of a regression problem
given the training dataset X = (x1, y1), (x2, y2), ..., (xN , yN), a large unlabelled dataset X ∗ =
(x∗1 , x∗2 , ..., x∗M) where M >> N and the perturbed X ∗δ derived from the unlabelled dataset, as
described in [4.4]. The teacher model fθ is initially trained on the training dataset X . Using
the trained teacher model’s predictions on the unlabelled dataset X ∗, the teacher logit z fθ

i for
each datapoint x∗i ∈ X ∗ is produced. Then, the learning objective function is defined as:

L =
1
M
∗

M

∑
i=1

(z fθ

i − zgθ

i )2 (4.5)

where zgθ

i is the logit produced by the student model for each datapoint x∗i ∈ X ∗δ .
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4.3 Discussion

As it has been shown in the literature, model distillation enables networks to achieve higher
accuracy compared to the same architecture networks trained directly on the original data.
There is a variety of reasons why this can happen:

1. Some datasets include errors in their training labels that might confuse the network. A
well-trained teacher model can eliminate some of these errors making effectively the
learning process easier for the shallow student model.

2. With methods like ”Matching the Logits” and ”Adversarial Distillation” where logits are
used as the targets for the distillation procedure, the student model learns to mimic the
complex function by having more information from the deep complex teacher model.
Instead of just using the original labels, the student models are given now information
about the different classes and their relationship with each other. E.g. the logits [15,
10,20,30] and [5,-10,0,10] will both result in class 4 prediction but the differences between
the classes are completely different and contain a significant amount of knowledge
information that boosts the performance of the student network.

3. Learning from the original labels can be extremely difficult sometimes for a shallow
neural network, especially if the complexity of the target function is really high. Distilla-
tion targets, on the other hand, are far easier to learn, since the complex teacher model
through methods like ”Ranging the Teacher’s Temperature” can produce and provide
the student model with simpler labels.

4. In methods like ”Matching the Logits” and ”Adversarial Distillation”, even if the teacher
models make wrong predictions, the uncertainty of the complex network and its pro-
duced logits can be far more informative to guide the student network to learn a more
accurate target function than the original labels because of the extra information they
convey.

Although model distillation has the potential produce shallow models with high accuracy
comparable to complex deep neural networks, research has demonstrated that high accuracy
comes with an increase in the amount of parameters. In their paper Caruana et al. (as
described in [27]) have showed (as we also investigate in the experimental section of the
project in the next chapters) that the student models, although have fewer number of layers,
they need to be wider (need to have more hidden units for fully-connected layers or more
channels for convolutional layers). To overcome this drawback and be able to produce shallow
neural networks with a small amount of parameters, parameter reduction methods will be
used. In the next chapter, the parameter reduction technique, that is used in our experimental
analysis in Chapter 8, is described in detail.
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Chapter 5

Parameter Reduction

The previous chapter analysed model distillation of complex deep neural networks and de-
scribed different distillation techniques in detail. As it was clearly stated, shallower models
tend to need a much larger number of parameters in order to be efficient and have a clean
accuracy comparable to their teacher complex neural networks. What happens, though, if the
neural networks need to operate under a certain parameter budget ? This chapter addresses
this problem and investigates whether neural networks can go under a certain parameter
reduction without affecting their overall performance.

5.1 Overview

Over the last years, there has been a broad tendency in the machine learning world to design,
build and train deeper neural networks with an overall increase in the number of parameters
and convolution operations. These deep complex neural networks, although extremely ac-
curate, come with significant costs when employed in mobile devices, sensors or embedded
systems where power and computational resources may be limited.

Different methodologies have been developed over the years to decrease the storage (number
of parameters) of deep neural network models. In the early years, research was focused on
removing weights with small magnitudes from the fully-connected part (also known as clas-
sification part) of a Convolutional Neural Network (CNN). This process could be followed
by a retraining of the smaller model to regain its original accuracy [4]. However, some of
the problems remained intact. Although, with these methods a significant amount of pa-
rameters could potentially be eliminated, since the majority of parameters is located in the
fully-connected part of a convolutional neural network, in principle many disadvantages were
still present. The parameters in the fully-connected part of a CNN constitute the majority of
the network’s total parameters but they contribute only a small amount to the total compu-
tational time of the network. Nowadays, many deep complex convolutional neural networks
are located in an online server and they have to function under a certain time budget. Recent
efforts to reduce parameters have been focused on removing unnecessary filter weights from
the convolutional layers located in the feature extraction part of a CNN. In this way, they
reduce both the number of parameters of the network along with its total computational cost.

In this section, Pruning Filters [30], a method to efficiently remove parameters from the feature
extraction part of a CNN, is described in detail. This method is used in the experimental part
of the project that is presented in the Chapter 8. There have been several reasons for choosing
to make use of this particular method:

1. Deep CNNs with large capacity tend to have a large amount of redundancy among its
different filters and feature channels.
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2. By removing non-essential filters, both the number of parameters as well as the compu-
tational cost of the network are significantly reduced.

3. In the previous chapter, it was stated that distillated models need a increase in their
parameter budget in order to have accuracies comparable to the teacher model. A sig-
nificant amount of the experimental section of the project is oriented around the relation-
ship between the number of parameters in the feature extraction part of a Convolutional
Neural Network and its effect on the distillation accuracy. Under these conditions, it
is only logical to investigate parameter reduction methods targeting the convolutional
layers of a CNN and create models which combine the benefits of model distillation and
parameter reduction.

4. This method is both efficient and easy to implement. Unlike pruning weights, pruning
filters has no requirement of extra specialized hardware.

5.2 Pruning Filters

Pruning Filters of a Convolutional Neural Network is a parameter reduction method that is
described in [30] and is used in the experimental part of this thesis project for reasons that are
elaborated above. This section targets to outline the pruning process as well as its advantages
and provide a mathematical analysis of this method as it is detailedly described in [30].

5.2.1 Method Description

”Pruning filters” [30] is a method to ”efficiently prune filters of well-trained Convolutional
Neural Networks (CNNs) with relatively low weight magnitudes to produce new CNNs with
reduced computation costs without introducing irregular sparsity while minimising the accu-
racy drop”. The method is based on the computation of L1-norm on the different filters. In
each layer of the CNN, the sum of its absolute weights is calculated. The method involves
pruning a certain number of filters with the smallest sum of absolute weights. ”When a filter
is pruned, its feature map and its corresponding kernel in the next convolutional layer are
also removed from the new network”.

Figure 5.1: Graphical Illustration of Pruning Filters Method. (Left) The convolution process from the ith layer to i+1
layer of a well-trained network without filter pruning. (Right) The convolution process from the ith layer to i+1 layer
of a well-trained network where Filter2 is pruned. White color indicates that this filter and its corresponding filter map
have been removed.
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5.2.2 Method Mathematical Analysis

In the i-th convolutional layer, let ni denote the input channels and with hi and wi the height
and width of the input feature maps respectively. Each convolutional layer takes the feature
maps xi ∈ Rni∗hi∗wi as the inputs, convolves it and produces the output feature maps xi+1 ∈
Rni+1∗hi+1∗wi+1 . This convolutional operation is achieved, as it is described in Chapter 2, by
applying filters denoted by F ∈ Rni∗k∗k on the ni input channels where each filter generates a
feature map and consists of ni kernels K ∈ Rk∗k.

Figure 5.2: Graphical Illustration of Pruning Filters Method. In the figure, the blue filter is pruned resulting in the
removal of its corresponding feature map and related kernels in the next layer. Source: [30]

According to this method, the filter’s significance in each layer is determined by its L1-norm
||Fi,j||1 = ∑ |Fi,j|. ”The importance of this sum comes from the fact that small sums tend to
produce feature maps with insignificant contribution to the network’s output. The parame-
ter reduction is achieved by pruning these weak filters, their corresponding filter maps and
kernels in the next convolutional layer”.

Algorithm 1: Pseudo-algorithm for the Pruning Filters Method [30]
Step 1:

For every filter Fi,j, compute the sum of its absolute kernel weights sj = ∑ni
k=1 ∑ |Kk|;

while (There is no drop in the model’s accuracy) do
Step 2: Prune k filters with the smallest sum of absolute kernel weights. Remove also
their associated kernels in the next convolutional layer ;

Step 3: Generate a new kernel matrix for both layers i and i+1. Duplicate the
remaining kernel weights to the new network ;

Step 4: Increase the k filters to be pruned ;

end

5.2.3 Computational and Parameter Benefits

The total number of operations from the ith layer to the next equal ni+1 ∗ ni ∗ k2 ∗ hi+1 ∗ wi+1.
As demonstrated in Figure 5.2.2, when one filter Fi,j is pruned, its corresponding map and the
associated kernel in the next layer are eliminated as well. These actions save ni ∗ k2 ∗ hi+1 ∗wi+1
operations for the corresponding map and ni+2 ∗ k2 ∗ hi+2 ∗wi+2 operations for the associated
kernel. In terms of computation cost, pruning k filters of layer i results in a reduction of
k/ni+1 of the computation cost for both layers (layer i and layer i + 1).
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Chapter 6

Adversarial Robustness

In Chapter 2, there has been a short introduction to the different categories of adversarial
attacks grouped by factors like their influence, their specificity, their knowledge of the system
under attack as well as their frequency and target. In this chapter, a wide range of adversarial
attacks are presented and described in full detail. These attacks are used to measure adver-
sarial robustness of a complex deep neural network as well as its distillated shallow model in
the experimental section in Chapter 8.

6.1 Overview

Adversarial examples, as described in the equation [2.9], are input samples to machine learn-
ing models created by performing small perturbations to the original clean data points with
the intent of misleading and fooling the machine learning algorithms. The majority of models
can be fooled by perturbations so small in magnitude to be perceptible to the human eye. As
it is described in [31] by Goodfellow, a variety of research experiments has demonstrated that
”different network architectures trained on different subsets of the same training dataset X
tend to misclassify the same adversarial example”, effectively exposing weaknesses in the cur-
rent machine learning training algorithms. Initial explanations of the adversarial examples’
source were oriented around the idea of non-linearity of the deep neural networks. However,
Goodfellow et al. in their work disproved this hypothesis.

Figure 6.1: Adversarial Example that causes the misclassification of the input image with high confidence. Source: [31]

Many state-of-the-art deep neural networks, even though they have excellent performance on
their respective test sets, fail to learn the true underlying principles, a fact that makes them
susceptible to adversarial attacks.

Effective defense against adversarial examples is difficult to find since there is no theoretical
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model of the construction process of adversarial examples.

Definition 6.1 In general, adversarial examples are solutions to the following non-linear and
non-convex optimisation problem:

min
δ
‖δ‖

such that fθ(x + δ) = p
with x + δ ∈ Bε

(6.1)

where fθ be a well-trained predictive, fθ(x) = p and Bε a norm-bounded perturbation ball
around the data point x ∈ X .

Since this optimization problem is non-linear and non-convex, there is no efficient theoretical
tool for fully describing its solutions. Another reason for neural networks’ weak robustness
is the amount of data they use for training and testing, a very small amount of all the many
possible inputs they might encounter in the real world. Finally, although different types of
defenses have been designed over the years, these are neither adaptive nor universal. In other
words, they may prevent one adversarial attack method while they leave other vulnerabilities
exposed and ready to be used in another type of adversarial attack.

6.2 Types of Adversarial Attacks

In this section, the different types of attacks used in the experimental section in Chapter 8
are described in detail. These methods will be used to assess and compare the adversarial
robustness of both the complex teacher neural network and its distillated shallow student
model.

6.2.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is described by Goodfellow et. al. in [31] and is
one of the most computationally efficient adversarial attack and very easy to implement. Its
implementation involves the computation of the sign of cost function of the predictive model.
By adding a small amount of error value to each data sample following with the direction of
the sign of the cost function, this method can produce efficient adversarial examples.

Definition 6.2 Mathematically, Fast Gradient Sign Method (FGSM) can be represented by the
following equation [31]:

x∗ ⇐ x + ε ∗ sgn(∇x J(x, f , θ)) (6.2)

where x is the original sample, J(x, f , θ) is the cost function and the parameter ε refers to the
l∞ perturbation and defined as ε := ||x∗ − x||∞.

Early experiments have shown that this type of attack, despite its simplicity, is remarkably
powerful. As it is obvious from the equation above, the FGSM attack is designed to attack
neural networks by exploiting their learning procedure through gradients. The idea behind
this technique is to modify the input data sample in order to maximize, instead of minimizing
(target of model’s training), the cost loss function based on the same backpropagated gradi-
ents. Alternatively stated, this technique makes use of the gradients of the loss function to
create adversarial examples that maximize the cost function J(x, f , θ).
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6.2.2 Projected Gradient Descent

The Projected Gradient Descent (PGD) method is described in [3] and on the surface looks
very similar to the Fast Gradient Sign Method (FGSM) attack. The main difference between
the two methods is the frequency of attack. Fast Gradient Sign Method is a One-Time attack
whereas Projected Gradient Descent is Iterative. Instead of calculating the gradient of the
cost function once and adding a large error value, Projected Gradient Descent calculates a
new gradient in each iteration and adds a much smaller perturbation to each data point. In
short, Projected Gradient Descent constitutes a more powerful, multi-step version of the Fast
Gradient Sign Method.

Definition 6.3 Mathematically, Projected Gradient Descent (PGD) can be represented by the
following equation [3]:

x∗t+1 ⇐ Πx+S (x∗t + α ∗ sgn(∇x J(x, f , θ)) (6.3)

where x is the original sample, J(x, f , θ) is the cost function, S the set of all samples in the
dataset and the parameter α refers to the small l∞ perturbation constant.

Further research on the field of adversarial attacks has demonstrated that all the local maxima
found by PGD have similar loss values, both for normally trained and adversarially trained
neural networks. This finding (in [3]) suggests that robustness against the PGD adversary
yields robustness against all first-order adversaries (in other words attacks that rely only on
first-order information). It is proven that as long as the adversary uses only gradients of the
loss function with respect to the input, there is no better local maxima than the ones found
by PGD. Therefore in the community, PGD attack with sufficient iterations is considered a
strong state-of-the-art attack. For that reason, PGD robustness will be the main concentration
in the experimental part of the project.

6.2.3 Basic Iterative Method

The Basic Iterative Method is described in [6] and is another variant of the Fast Gradient
Method (FGSM) mostly targeting images. Like the Projected Gradient Descent, this method
is iterative. The technique involves the computation of the gradient numerous times using a
small step size and clipping the pixel values to guarantee that are in an ε-neighbourhood of
the original input.

Definition 6.4 Mathematically, Basic Iterative Method (BIM) can be represented by the fol-
lowing equation [6]:

x∗t+1 ⇐ Clipx,ε(x∗t + a ∗ sgn(∇)x J(x∗t , f , θ)) (6.4)

where x is the original sample, J(x∗t , f , θ) is the cost function and the parameter α refers to
the small l∞ perturbation constant.

If X is a source image, the Clip function is a function which performs per-pixel clipping of
that image X’, so the result will be in the l∞ ε-neighbourhood of the source image X. In

Clipx,ε(X’)(x, y, z) = min(255, X(x, y, z) + ε, max(0, X− ε, X’)) (6.5)

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).
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6.2.4 Momentum Iterative Method

The Momentum Iterative Method is described in [49] and constitutes an improvement of the
fast gradient method (FGM), a generalization of FGSM which is defined as [49]:

Definition 6.5

x∗ ⇐ x + ε ∗ ∇x J(x, f , θ))

||∇x J(x, f , θ))||2
(6.6)

where x is the original sample, J(x, f , θ) is the cost function and the parameter ε refers to the
l∞ perturbation and defined as ε := ||x∗ − x||∞ and adversarial example meets the L2-norm
bound ||x∗ − x||2 ≤ ε.

In mathematics, the momentum technique accelerates the solution of gradient algorithms
by making use of a correction vector. In each iteration, this vector gets updated and the
accumulation of the previous gradients contribute to the success of this attack by helping the
algorithm to avoid essentially week local maxima or minima.

Definition 6.6 Mathematically, the Momentum Iterative Method (MIM) can be represented
by the following equation [49]:

x∗ ⇐ x + α ∗ sign(gt+1)

with gt+1 ⇐ gt +
∇x J(x∗, f , θ))

||∇x J(x∗, f , θ))||1
(6.7)

where x is the original sample, J(x∗t , f , θ) is the cost function and the parameter α refers to
the small l∞ perturbation constant.

6.3 Adversarial Robustness

Robustness against adversarial attacks is a desired property for the contemporary state-of-
the-art neural networks and therefore it is an active field of research in the area of Artificial
Intelligence. In machine learning, the goal of any predictive fθ model trained on a training set
X with an underlying distribution D is to minimize the Empirical Risk Minimization (ERM)
which is defined as:

E(x,y)∼D [L(x, f , θ)] (6.8)

where L is the loss function.

Unfortunately, solutions to the Empirical Risk Minimization (ERM) problem, although they
provide high accuracy predictive models for a certain task, they leave many exposed weak-
nesses which can be exploited by modern adversarial attack algorithms (like the aforemen-
tioned ones described in section 6.2).

The ultimate goal of this field of research is to provide the framework where predictive models
can both learn the target function and also be robust to adversarial attacks, in other words
gain adversarial robustness. To achieve adversarial robustness though, the neural network’s
training process needs to change and the Empirical Risk Minimization (ERM) optimization
problem needs to be slightly modified.
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Definition 6.7 Let fθ be a predictive model trained on a training set X with an underlying
distribution D. Adversarial Robustness can be seen as the following optimization problem of
an adversarially modified Empirical risk minimization (ERM) function:

min
θ

H(θ)

where H(θ) = E(x,y)∼D[max
δ∈S
L(x + δ, f , θ)]

(6.9)

For each data point x ∈ X , S is the set of allowed perturbations.

In Chapter 8, using the aforementioned types of adversarial attacks, a comparison of the
adversarial robustness between the teacher and the student model is presented. The reason
behind this experiment is to examine whether model distillation alters the adversarial ro-
bustness of the teacher model by making the network shallower. In other words, if model
distillation boosts, aggravates or leaves intact the adversarial robustness of the shallow stu-
dent model compared to the teacher model under a series of adversarial attacks in a wide
variety of settings.
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Chapter 7

Robust Classifier & Certification Properties

The previous chapter analysed adversarial examples, presented some of the most common
adversarial attack methods and provided a review of the concept of adversarial robustness.
This chapter addresses the area of verification of neural networks. Emphasis will be given
on designing and building robust ReLU-based classifiers with a method based on network’s
relaxation. Finally, detailed definitions of different certification properties of a neural network
are also presented in this chapter.

7.1 Overview

Adversarial examples, as they are described in Chapter 6, are specifically designed data points
which are indistinguishable from the authentic to the human eye but they are built in a way
that enables them to fool the machine learning systems. No matter the defenses that are
used in today’s machine learning models, the potential risk of a classifier being fooled is
extremely high. Therefore, classifiers need to be designed such as they are guaranteed to
be robust to different types of adversarial perturbations. As it is described in Chapter 2,
verification is an optimization problem that effectively examines if there is any input in the
perturbation ball Bε for which the model’s prediction belongs to an incorrect class. To solve
this optimization equation [2.10], the problem needs to be ”relaxed” at some point whether
this is in its primal formulation (equivalently the forward pass through the network) or in
its dual formulation (equivalently in the backward pass through the network). Based on the
tightness of the solution, verification can be categorized into ”Tight Verification” and ”Non-
tight Verification”.

Definition 7.1 Let x be any input in X . Tight verification can be expressed mathematically as
[35]:

fθ(x′)
{

= fθ(x), ∀x′ ∈ Bε

6= fθ(x) (7.1)

where fθ is a well-trained predictive model and Bε denotes a norm-bounded perturbation ball
around the data point x ∈ X . If the equality holds, the network certifies while in the second
case there is an adversarial example in the perturbation ball Bε for this particular fθ predictive
model.

In tight verification, the relaxed adversarial polytope has one point in common with the
boundary of the true adversarial polytope while this differs in non-tight verification meth-
ods. This chapter is oriented around non-tight verification and its use to design classifiers
which are ”provably robust against norm-bounded adversarial perturbations via a convex
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7. Robust Classifier & Certification Properties

outer adversarial polytope” [47]. This method will be used to train robust classifiers in the
experimental section of this project and compare their certification area with their equivalent
shallow distillated models. Finally, this method has been chosen as it provides a way to
design provably robust classifiers with some of the best test error bounds in the literature.

7.2 Network’s Relaxation

Definition 7.2 For a neural network, the robust optimization problem [2.10] can be expressed
mathematically as follows [29]:

min
ẑk

c ∗ ẑk + d

subject to z1 ∈ Bε (input constraint)
ẑi+1 = Wi ∗ zi + bi, i = 1,..,K (affine constraints)

zi = h(ẑi), i = 2,..,K (activation constraints)

(7.2)

where Zε is the adversarial polytope and is defined as Zε(x) := (z|z = fθ(x′) ∀x′ ∈ Bε.

If the minimum value of the objective function c ∗ ẑk + d for all ẑk ∈ Zε is positive then it
guarantees that the networks certifies. In other words, there exists no input in Bε(x) that
can change the prediction of the network for a given input x. If the activation function h is
not convex then both the above mentioned optimization problem as well as the adversarial
polytope Zε(x) are non-convex. By replacing the activation function h with a set of constraints
defining a convex set ĥ(ẑi, li, ui), where li , ui are the upper and lower bounds in the range of
ẑi, the problem can be turned into convex. This approximation ĥ(ẑi, li, ui) is referred to as the
Convex Approximation technique [29].

Definition 7.3 If the perturbations are norm-bounded, the Zε(x) adversarial polytope is de-
fined as:

Zε(x) = { fθ(x + ∆) : ||∆||∞ ≤ ε} (7.3)

In the experimental part of the report, ReLU based classifiers are extensively used and there-
fore the rest of the optimization problem’s solution analysis will be oriented around ReLU
activations. If the activation h is ReLU and the predictive model is a k-layer feedforward
neural network then the [7.2] problem equations can be re-written as:

z1 ∈ Bε

ẑi+1 = Wi ∗ zi + bi, i = 1,..,K
zi = max(ẑi, 0), i = 2,..,K

(7.4)

The following figure demonstrates the linear relaxation of the ReLU activation function:

Figure 7.1: Convex ReLU function relaxation over the bounded [L,U]
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”Given known lower and upper bounds for the pre-ReLU activations, the ReLU-activation h
can be replaced in the aforementioned equations” by [47] (see [47] Appendix for proof):

z ≥ 0, z ≥ ẑ,−u ∗ ẑ + (u− l) ∗ z ≤ −u ∗ l (7.5)

7.3 Provably Robust ReLU-based Classifier

This sections presents the methodology and mathematical derivations of the method de-
scribed in [47] to train deep ReLU networks that are provably robust against norm-bounded
adversarial perturbations. The method uses relaxation of the ReLU activation function and
consists of two steps: construct the ”outer convex adversarial polytope” and efficiently opti-
mize over this bound using the dual problem formulation.

Figure 7.2: Demonstration of the real adversarial polytope and the external convex polytope. Source: [47]

This convex outer bound is effectively used to provide certification guarantees for the classifier.
As it is easily noticeable from the illustration above, if no data point inside this external convex
approximation (green region) exists that can fool the network and change its prediction, then
it is guaranteed that there is also no data point inside the true polytope (blue region) that can
achieve that. The robustness of the classifier is derived by the minimization of the worst-case
loss over the external convex polytope or equivalently by solving the following optimization
problem [47]:

Definition 7.4
min

ẑk
(ẑk)y∗ − (ẑk)y(target) = cT ∗ ẑk

subject to ẑk ∈ Ẑε where c := ey∗ − ey(target)

(7.6)

where x ∈ X is a sample, y∗ its label and Ẑε denotes the convex outer adversarial polytope.

In other words, given an example point x, by solving [7.6] the point in Ẑε that minimizes
the true class and maximizes some other target class can be computed. This constitutes a
Linear Program (LP). If the solutions of the Linear Program for all target classes are positive,
there is no adversarial norm-bounded perturbation of the given example point x that could
potentially mislead the network. This method though has two main drawbacks:

1. Although it can detect all adversarial example points, it might misclassify some normal
example points as well. In other words, this method provides zero false negatives but
might classify some normal points as possible adversarial examples.

2. This Linear Program’s solution is neither efficient nor tractable for every target class
in large deep complex neural networks since the amount of variables of the problem
equals to the total amount of all network’s activations.
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7.4 Efficient Optimization

The optimization problem [7.4] can be solved efficiently by making use of the dual formu-
lation of the problem. As described in [47], the dual problem’s form resembles an adjusted
version of the backprogration neural network. This effectively translates to the fact that a
provable robust lower bound of the primal formulation [7.4] can be efficiently computed with
only one backward pass of this modified neural network.

Definition 7.5 The dual problem is given by the following formulation (the following equa-
tions and solutions to the problem are derived by [47]):

max
α
Jε(xε, gθ(c, α))

where αi,j ∈ [0, 1], ∀i, j
(7.7)

The gθ(c, α)) is the k-layer backpropagation network defined for i = k− 1, ..., 2 as:

νk = −c

νi = WT
i νi+1, for i = k− 1, ..., 1

νi,j =



0, j ∈ I−i

νi,j, j ∈ I+i
ui,j

ui,j − li,j
[ν̂i,j]+ − αi,j[ν̂i,j]−, j ∈ Ii

(7.8)

where I−i , I+i , Ii denote the sets of activations in layer i in which the bounds are both negative,
positive or span zero respectively.

While the Jε(x, ν) is equal to:

−
k−1

∑
i=1

νT
i+1bi − xT ν̂1 − ε||ν̂1||1 +

k−1

∑
i=2

∑
j∈Ii

li,j|νi,j|+ (7.9)

As it is obvious, the dual formulation network is similar to the backpropagation network
with one additional free variable αi,j that can be optimized to improve the overall solution.
For reasons that are beyond the scope of this project, the αi,j is fixed in the method [47] that
will be used in our experiments and is equal to:

αi,j =
ui,j

ui,j − li,j
(7.10)

Final step to conclude the mathematical description of this method to train robustly ReLU
classifiers is the computation of the neccessary bounds to form the I−i , I+i , Ii sets. These
element-wise bounds can be computed using the ”Computing Activation Bounds” algorithms
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described below. The algorithm (described in [47]) uses a matrix to cumulatively calculate the
backward passes layer-by-layer and compute the lower and upper bounds in each pass.

Algorithm 2: Computing Activation Bounds Algorithm [47]

input: Given a network fθ , its parameters (Wi, bi), data point x and ball size ε;

//initialization;

ν̂1 := WT
1 , γ1 = bT

1 ;

l2 = xTWT
1 + bT

1 − ε||WT
1 ||1,:, u2 = xTWT

1 + bT
1 + ε||WT

1 ||1,: ;

// || ∗ ||1,: for a matrix denoted l1 norm for all columns ;

for i = 2, ..., k− 1 do: ;

//initialize new terms ;

form I−i , I+i , Ii, Di ;

νi,j = (Di)IiW
T
i , γi = bT

i ;

//propagate existing terms ;

νj,Ii = νj,Ii DiWT
i for j = 2, ...i− 1 ;

γj = γjDiWT
i for j = 1, ...i− 1 ;

ν̂1 = ν̂1DiWT
i ;

//compute bounds ;

ϕi = xT ν̂1 + ∑i
j=1 γj ;

li+1 = ϕi − ε||ν̂1||1,: + ∑i
j=2 ∑i′∈I〉 lj,i′ [−νj,i′ ]+;

ui+1 = ϕi + ε||ν̂1||1,: −∑i
j=2 ∑i′∈I〉 lj,i′ [νj,i′ ]+;

end for ;

output: bounds (li, ui)

where D a diagonal matrix defined as:

(Di)i,j =


0, j ∈ I−i

1, j ∈ I+i

ai,j, j ∈ Ii and ai,j as in [7.10]

(7.11)

Using the lower bounds developed through the dual formulation of the optimization prob-
lem and the ”Computing Activation Bounds” algorithm, a robust classifier to norm-bounded
perturbations can be designed and built by minimizing the worst case loss over convex outer
polytope [47]:

Definition 7.6 Training a robust classifier to norm-bounded perturbations is an optimization
problem which can be expressed as [47]:
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min
θ
H(θ)

where: H(θ) =
N

∑
i=1

max
||∆||∞≤ε

L( fθ(xi + ∆), yi)
(7.12)

where fθ is the classifier, the dataset X = (x1, y1), ..., (xN , yN) ε defines the ball distance
around each point xi ∈ X , L the loss function while ∆ is the perturbation.

7.5 Certification Properties

In this section, certification properties of neural networks (using the bounds analyzed in detail
in the previous section) are discussed. The methods are described in [47] and include Robust
Error Bound and Certification Area. These properties will be extensively evaluated in the
last experimental section of the project and their definitions are presented in this section. For
completeness a full proof of the two properties’ definitions can be found in the Appendix A2.

7.5.1 Robust Error Bound

Definition 7.7 For a data point x ∈ X and label y∗, the model is guaranteed to be robust in
the perturbation ball Bε around x if and only if [47]:

Jε(x, gθ(ey∗1T − I)) ≥ 0 (7.13)

where J and gθ are defined in 7.7.

In other words, if the above relationship holds there is no x∗ example in the perturbation ball
Bε around x, ||x∗ − x||∞ ≤ ε for ε > 0, such that the output of the predictive is an incorrect
class ( fθ 6= y∗).

7.5.2 Certification Area

Certification area of a dataset X is defined as the set of ε distances for which a certification
guarantee exists for each point x ∈ X . In other words, the maximum ε value for each point
x ∈ X in which the classifier will not change its prediction.

Definition 7.8 The certification area can be expressed mathematically as the following opti-
mization problem [47]:

maximize ε

such that Jε(x, gθ(e fθ(x)1
T − I)) ≥ 0

(7.14)

The computation of the certificate of robustness, largest ε value, for each data point ∈ X can
be computed using numerical methods. In the experimental section of the project, Newton’s
method (see Appendix A1) will be used.
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Chapter 8

Experiments

In this chapter, the experiments in the field of model distillation, parameter reduction and ad-
versarial robustness (as described in Chapters 4, 5 & 6) are presented. Using the lessons learnt
from these experiments, a robust classifier, as discussed in Chapter 7, is implemented and is
used as the teacher model in a series of distillation experiments to compute the certification
properties of the shallow networks and answer the questions outlined in Chapter 3. Devel-
opment is undertaken in Python, a high level programming language which supports a large
number of Machine Learning languages which are essential for the development and evalua-
tion of deep learning models. During the following experiments, two of these languages are
used: Keras (Tensorflow Backend) and PyTorch.

8.1 Datasets

SVHN: SVHN [2] is a real-world image dataset for developing machine learning and object
recognition algorithms. It contains over 600,000 digit images that come from a significantly
hard, unsolved, real world problem (recognizing digits and numbers in natural scenery im-
ages). ”SVHN dataset is acquired from house numbers in Google StreetView images”. It
includes 73257 digits for training, 26032 digits for testing, and a 531131 images additional
extra training data that comes with labels. In the experiments, the 73257 digits training set is
referred to as the standard training set, the 26032 digits testing set as the test set and 531131
additional extra training data as the unlabelled or extra dataset.

Figure 8.1: Samples from the SVHN Dataset. Source: [2]
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The SVHN dataset consists of 32-by-32 colored (with 3 channels) images. Although the
dataset can be used as it stands, the following modification is performed: A majority of
the images usually include three numbers in their ”cropped-digits” version but their labels re-
fer only to the middle digit. As a result in the following experiments, the images are cropped
to contain only the middle number and the dataset is reformed to 32-by-17 colored images.

Figure 8.2: Example of the SVHN Dataset Image Pre-processing

CIFAR-10: CIFAR-10 is another dataset for developing object recognition algorithms based
on machine learning models. ”It is a labeled subset of the 80 million tiny images dataset [1]
collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset con-
sists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images” [5]. The classes are completely mutually exclusive. In
other words, there is no overlap between the classes.

Figure 8.3: Samples from the CIFAR-10 Dataset. Source: [5]

In the following experiments, the 50000 images training set is referred to as the standard
training set, the 10000 testing images as the test set. An extra set is needed in order to be used
as the unlabelled set during the distillation process. Unkile SVHN, CIFAR-10 does not come
with an extra set prepared. Luckily, CIFAR-10 is a subset of the 80 million tiny images dataset
[1] part of which can be used as our extra dataset. In his papers [[7], [27]], Caruana uses
the original CIFAR-10 dataset combined with 0.5M random images from the 80 million tiny
images dataset. CIFAR-100 is another labelled subset of the 80 million tiny images dataset
which is included in the Tensorflow (or Keras) API. This dataset is just like the CIFAR-10,
except it has 100 classes containing 600 images each. The two datasets combined consists
of 110.000 images (50.000 training images from CIFAR-10 & 60.000 images from CIFAR-100).
This 110.000 images dataset acts as the extra or unlabelled dataset in the experiments that
make use of the CIFAR-10 dataset.
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8.2 Model Distillation

8.2.1 Teacher Models

Figure 8.4: Teacher CNN’s Architecture - SVHN

SVHN: Using the standard training set, a Convolutional Neural Network (CNN) with 4
convolutional layers is trained with the following architecture (CV-CV-MP-CV-CV-MP-FC).

The CNN is trained using three different optimizers: Adam (with lr=0.001), SGD (with
lr=0.01) and RMSProp (with lr=0.001) using Cross-Entropy loss function and the results are
presented in the following table.

Table 8.1: CNN Experiments - SVHN Dataset

Name Optimizer Accuracy Test Set Accuracy Extra Set

CNN Adam 92.528% 96.281%
CNN-SGD Sgd 91.368% 95.658%
CNN-RMSProp Rmsprop 91.403% 95.728%

Since the correct labels of the extra dataset are provided, the accuracy in the extra set can
also be computed. It is worth mentioning that the trained CNNs in all three cases achieve a
higher accuracy in the extra dataset. The extra dataset comes from the same data distribution
but contains ”somewhat less difficult samples” according to the SVHN documentation and
this constitutes the reason for the increase in the model accuracy since the test set contains
”harder” data points. Two points can be made here:

1. The CNN teacher model, although not extremely complex, can generalize well and
hence work as the top performance network for this series of experiments in the SVHN
dataset.

2. Being able to achieve a high score in these sets means we can expect high scores for the
compressed models as well since distillation’s target is to make shallow models mimic
the function learned by the teacher model.

CIFAR-10: Using the standard training set, a Convolutional Neural Network with 6 convo-
lutional layers is trained with the following architecture (CV-CV-MP-CV-CV-MP-CV-CV-MP-
FC).

The CNN is trained using Adam optimizer (with lr=0.001) and Cross-Entropyy loss function.
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Figure 8.5: Teacher CNN’s Architecture - CIFAR10

It is worth mentioning that since CIFAR-10 is a more difficult dataset, a deeper model is used
(6 convolutional layers) in order to achieve a high accuracy of 82.560% in the test set.

For the rest of the experiments, these two CNN networks are used as the state-of-the-art
teacher models for each dataset trained with Adam optimizer.

8.2.2 Matching the Logits

This section contains the experimental results of distillating the aforementioned teacher mod-
els into three different shallow architectures consisting of either one fully-connected layer,
one convolutional layer prior to the fully-connected part or two convolutional layers prior
to the fully-connected part. Using the corresponding CNN teacher model for each dataset,
”Matching the Logits” distillation technique is implemented to train the shallow networks to
mimic the function learned by the teacher models. First step of the experiments is to train the
shallow networks with a similar number of parameters to the corresponding CNN teacher
model using the standard training set of each dataset, its hard labels and Cross-Entropy loss
function.

In the next phase of the experiment for both datasets, using the corresponding teacher CNN
model, the teacher’s logits of the two following sets are extracted:

1. Standard training set

2. Extra training set

The same series of experiments (described in the sub-sections below) are performed twice,
once with the logits from the standard training set (denoted as Experiment A) and once with
the logits from the extra training set (denoted as Experiment B). The models are trained using
the same optimizer (Adam optimizer) as in stage one but with Mean Square Error (MSE) loss
function. Through these experiments, several shallow network architectures are employed,
each one of them with different number of parameters. All architectures are tested on their
corresponding test sets.

Shallow Neural Net (SNN)

In this experiment, a standard shallow net (SNN) architecture consisting only of one hidden
fully-connected layer is implemented, trained and distillated as described above.

CIFAR-10: A SNN model with only one fully connected layer proved to be inadequate
to give a shallow model with a decently high accuracy since CIFAR-10 is a more complex
problem compared to the SVHN digit classification.
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SVHN: The SNN model with similar number of parameters to the teacher model (around
220k parameters) is trained on the standard training dataset and achieves an classification
accuracy of 69.197% in the test set which is around 20% less than the performance of the
teacher CNN. The distillation results using the ”Matching the Logits” technique for various
SNNs with different number of parameters are displayed in the [8.2] table and the [8.6] graph.

Table 8.2: SNN Experiments - SVHN Dataset

Name Number of Parameters Number of hidden units Accuracy (a) Accuracy (b)

SNN-180 220k 180 75.073% 79.041%
SNN-512 850k 512 78.092% 82.191%
SNN-2000 3.5M 2000 81.000% 83.908%
SNN-6000 9.5M 6000 81.404% 84.223%
SNN-10000 16M 10000 79.982% 85.057%
SNN-20000 32.5M 20000 81.635% 84.314%

SNN-180 220k 180 69.197% -
CNN 220k - 92.528% -

Figure 8.6: Graphical Illustration of SNN Accuracy Results - SVHN Dataset. The Green point represents the accuracy
of the CNN Teacher model while the Red point the accuracy of the SNN with same number of parameters with
the CNN and trained on the original data. Finally, the Orange and the Blue lines represent the series of distillation
experiments using the extra and the standard data respectively.

Remarks from these experiments:

1. The SNN networks trained on the original standard training set with hard labels achieve
a lower accuracy score than the ones (with same number of parameters) trained via
distillation.

2. Between the networks that are trained via distillation, those SNNs that make use of the
unlabelled dataset achieved a higher accuracy score.

3. The larger the width of the hidden layer (greater number of parameters / hidden units),
the better the accuracy that the networks achieve.
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Shallow Convolutional Neural Net (SCNN) - One Convolutional Layer

In this experiment, a shallow convolutional neural net (SCNN) architecture consisting of one
convolutional layer (CV-MP-FC) prior to the fully connected part is implemented.

SVHN: The SCNN model with similar number of parameters to the teacher model (around
220k) is trained on the original dataset and achieves a classification accuracy of 80.612% in the
test set which is around 12% less than the performance of the teacher CNN. The distillation
results using the ”Matching the Logits” technique for various SCNNs with different number
of parameters are displayed in the [8.3] table and the [8.7] graph.

Table 8.3: SCNN Experiments One Convolutional Layer - SVHN

Name Number of Parameters Number of channels Accuracy (a) Accuracy (b)

SCNN-h4 220k 4 82.049% 87.900%
SCNN-h16 850k 16 87.830% 89.409%
SCNN-h64 3.5M 64 87.061% 90.147%
SCNN-h172 9.5M 172 87.611% 89.717%
SCNN-h300 16M 300 87.481% 89.847%
SCNN-h600 32.5M 600 87.711% 90.062%

SCNN-SVHN 220k - 80.612% -
CNN 220k - 92.528% -

Figure 8.7: Graphical Illustration of SCNN Accuracy Results - SVHN Dataset. The Green point represents the
accuracy of the CNN Teacher model while the Red point the accuracy of the SCNN with same number of parameters
with the CNN and trained on the original data. Finally, the Blue and the Orange lines represent the series of distillation
experiments using the extra and the original data respectively.
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CIFAR-10: The SCNN model with similar number of parameters to the teacher model
(around 550k) and trained on the original dataset, achieved an accuracy of 63.970% in the
test set which is around 20% less than the performance of the teacher CNN. The distillation
results using the ”Matching the Logits” technique for various SCNNs with different number
of parameters are displayed in the [8.4] table and the [8.8] graph.

Table 8.4: SCNN Experiments One Convolutional Layer - CIFAR10

Name Number of Parameters Number of channels Accuracy (a) Accuracy (b)

SCNN-h16 450k 16 64.300% 64.460%
SCNN-h64 1.8M 64 67.170% 67.310%
SCNN-h256 7M 256 68.000% 68.100%
SCNN-h384 12M 384 67.890% 68.650%

SCNN-CIFAR10 450k - 63.970% -
CNN 550k - 82.560% -

Figure 8.8: Graphical Illustration of SCNN Accuracy Results - CIFAR10 Dataset. The Green point represents the
accuracy of the CNN Teacher model while the Red point the accuracy of the SCNN with same number of parameters
with the CNN and trained on the original data. Finally, the Blue and the Orange lines represent the series of distillation
experiments using the extra and the original data respectively.

Remarks from these experiments:

1. The SCNNs with one convolutional layer trained on the original standard training set
with hard labels achieve a lower accuracy score than the ones (with same number of
parameters) trained via distillation.

2. Between the networks that are trained via distillation, those SCNNs with one convolu-
tional layer that make use of the unlabelled dataset achieve a higher accuracy score.

3. The larger the number of channels (greater number of parameters), the better the accu-
racy that the networks achieve.

4. The SCNNs with one convolutional layer trained via distillation achieve a higher accu-
racy than the SNNs in the previous experiment.
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Shallow Convolutional Neural Net (SCNN) - Two Convolutional Layers

In this experiment, a shallow convolutional neural net (SCNN) architecture consisting of two
convolutional layers (CV-MP-CV-MP-FC) prior to the fully connected part is implemented.

SVHN: The SCNN model model, with similar number of parameters to the teacher model
(around 220k) and trained on the original dataset, achieved an accuracy of 82.916% in the
test set which is around 10% less than the performance of the teacher CNN. The results are
displayed in the [8.5] table and the [8.9] graph.

Table 8.5: SCNN Experiments Two Convolutional Layers - SVHN Dataset

Name Number of Parameters Number of channels Accuracy (a) Accuracy (b)

SCN-32-32 220k 32-32 89.159% 90.646%
SCN-64-128 850k 64-128 90.101% 91.361%
SCN-64-512 3.5M 64-512 90.485% 91.583%
SCN-350-1024 9.5M 350-1024 90.496% 91.637%

SCNN 220k - 82.916% -
CNN 220k - 92.528% -

Figure 8.9: Graphical Illustration of SCNN Accuracy Results - SVHN Dataset. The Green point represents the
accuracy of the CNN Teacher model while the Red point the accuracy of the SCNN with same number of parameters
with the CNN and trained on the original data. Finally, the Blue and the Orange lines represent the series of distillation
experiments using the extra and the original data respectively.
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CIFAR10: The SCNN model model, with similar number of parameters to the teacher model
(around 550k) and trained on the original dataset, achieved an accuracy of 65.890% in the test
set which is around 10% less than the performance of the teacher CNN. The results are
displayed in the [8.6] table and the [8.10] graph.

Table 8.6: SCNN Experiments Two Convolutional Layers - CIFAR10

Name Number of Parameters Number of channels Accuracy (a) Accuracy (b)

SCN-64-128 650k 64-128 71.990% 73.450%
SCN-64-512 2.5M 64-512 74.790% 75.120%
SCN-128-1024 6M 128-1024 75.140% 75.460%
SCNN-256-2048 12M 256-2048 75.190% 75.490%

SCNN 650k - 65.890% -
CNN 550k - 82.560% -

Figure 8.10: Graphical Illustration of SCNN Accuracy Results - CIFAR10 Dataset. The Green point represents the
accuracy of the CNN Teacher model while the Red point the accuracy of the SCNN with same number of parameters
with the CNN and trained on the original data. Finally, the Blue and the Orange lines represent the series of distillation
experiments using the extra and the original data respectively.

Remarks from these experiments :

1. The SCNNs with two convolutional layers trained on the original standard training set
with hard labels achieve a lower accuracy score than the ones (with same number of
parameters) trained via distillation.

2. Between the networks that are trained via distillation, those SCNNs with two convolu-
tional layers that make use of the unlabelled dataset achieved a higher accuracy score.

3. The larger the number of channels (greater number of parameters), the better the accu-
racy that the networks achieve.

4. The SCNNs with two convolutional layers trained via distillation achieve a higher ac-
curacy than the SNNs or the SCNNs with one convolutional layer from the previous
experiments. Finally, the best model has accuracy comparable to the CNN’s score.
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8.2.3 Ranging the Teacher’s Temperature

In this section, ”Ranging the Teacher’s Temperature” distillation technique is implemented.
This experiment examines the effect that ranging the temperature of the teacher model has
on the classification accuracy of the student model. Since ”Two Convolutional Layers” is
the architecture with the best performance of all shallow networks tested so far, the student
models in these experiments also employ only this approach. By ranging the teacher’s tem-
perature between 0 and 1, a output array with more conservative probabilities for the teacher
model is produced while by raising the temperature between 1 and 5 a output array with
softer probabilities for the teacher model is crafted. For the student model, the temperature
is kept at 1 for the creation of its output probabilities array. During the training of the models,
Cross-Entropy loss function is used to compare these two output arrays (from the teacher and
student model).

Various SCNNs with different number of parameters and temperature values are used as the
student models to distillate the teacher CNN models for each dataset. In the following sub-
sections for each dataset, only the students with the best accuracy for each SCNN architecture
are presented and compared with their equivalent best student model using the ”Matching
the Logits” distillation technique. The detailed distillation results for both datasets are de-
scribed in Appendix B3.

SVHN

Figure 8.11: Graphical Illustration of SCNN Accuracy Results For Different Temperatures - SVHN Dataset. The
Purple point represents the accuracy of the CNN Teacher model while the Red point the accuracy of the SCNN with
same number of parameters with the CNN and trained on the original data. The colored lines represent the series of
distillation experiments using various architectures and temperature values. Finally, the Red box represent the ”Ideal
Region”: the temperature region where all student models achieve the best classification accuracy.

Table 8.7: SCNN Experiments Two Convolutional Layers - SVHN

Name Number of Parameters Temperature Temp. Accuracy Logits Accuracy

SCN-32-32 220k 2.0 91.845% 90.646%
SCN-64-128 850k 1.5 92.306% 91.361%
SCN-64-512 3.5M 2.5 92.202% 91.583%
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CIFAR10

Figure 8.12: Graphical Illustration of SCNN Accuracy Results For Different Temperatures - CIFAR-10 Dataset. The
Dark Red point represents the accuracy of the CNN Teacher model while the Light Red point the accuracy of the
SCNN with same number of parameters with the CNN and trained on the original data. The colored lines represent
the series of distillation experiments using various architectures and temperature values. Finally, the Red box represent
the ”Ideal Region”: the temperature region where all student models achieve the best classification accuracy.

Table 8.8: SCNN Experiments Two Convolutional Layers - CIFAR10

Name Number of Parameters Temperature Temp. Accuracy Logits Accuracy

SCN-64-128 650k 4.5 76.570% 73.450%
SCN-64-512 2.5M 2.0 77.140% 75.120%
SCN-128-1024 6M 3.5 76.820% 75.460%

Remarks from these experiments:

1. The shallow student models trained via ”Ranging the Teacher’s Temperature” distilla-
tion technique achieve higher accuracy compared with their equivalent networks trained
via ”Matching the Logits” distillation technique.

2. Softer targets produce models with higher classification accuracy for both datasets.

3. Choosing the ideal temperature is necessary to produce the best accuracy possible stu-
dent model. In other words, this distillation technique has an extra hyper-parameter
(compared to the ”Matching the Logits” distillation technique) that needs to be fine-
tuned during training.
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8.3 Parameter Reduction

Up until this point in the experimental part of the project, two state-of-the art teacher CNNs
for both datasets were well-trained to achieve a high classification accuracy. Using the ”Match-
ing the Logits” distillation technique, different shallow student models were trained with
various widths and number of channels by matching the logits that both the teacher model
and the training model produced. With this method, it was empirically demonstrated that
shallow student neural networks need to be both deep and convolutional (since models with
two convolutional layers achieve higher accuracy than models with one convolutional layer
and in turn models with one convolutional layer achieve higher accuracy than models with
one fully connected layer). Furthermore, by raising the temperature of the teacher model
and choosing the optimal temperature value for each architecture and dataset, it was shown
that all student models trained with ”Ranging the Teacher’s Temperature” distillation tech-
nique can surpass in performance their equivalent models trained directly on the logits. It
is obvious that, although the best distillated models have a comparable accuracy to their cor-
responding state-of-the art CNNs and they are shallower (two convolutional layers instead
of four for SVHN dataset or six for the CIFAR10 dataset), there is a trade-off in the number
of parameters which is significantly increased. The next step is to investigate whether the
number of parameter can be decreased while maintaining the accuracy of the best student
distillated models. For that reason, the ”Pruning Filters” method (described in Chapter 5) is
implemented to the best accuracy student models for each dataset separately.

8.3.1 Best Student Model - SVHN

During the distillation experiments in the SVHN dataset described in the previous section,
the best accuracy student model was the SCNN-MIMIC-SVHN-h64-128 1.5 (see Appendix
B3). For this student model, the L1-norm for its weights is computed and is displayed in the
following two graphs:

Figure 8.13: Computation of the L1-norm of the weights of the 1st and the 2nd convolutional layer in the best
accuracy student model distillated for the SVHN dataset.

Based on the L1-norm the filters with value less than 25 in the 2nd convolutional layer (or
equivalently 46/128 filters in the 2nd convolutional layer) and the filters with value less than
2.5 in the 1st convolutional layer (or equivalently 27/64 filters) are removed. Further decrease
in the number of filters results in significant accuracy drop.

The resulted model SCNN-MIMIC-SVHN-h64-128 1.5 new has the same accuracy in both
the validation and the test set but only 500k parameters, a reduction of around 30% in the
number of parameters.
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Table 8.9: Pruning Filters Experiments - SVHN Dataset

Name Number of Parameters Accuracy Test Set

CNN 220k 92.528%
SCNN-MIMIC-SVHN-h64-128 1.5 850k 92.306%
SCNN-MIMIC-SVHN-h64-128 1.5 new 500k 92.306%

8.3.2 Best Student Model - CIFAR10

During the distillation experiments using the CIFAR-10 dataset described in the previous
section, the best accuracy student model was the SCNN-MIMIC-CIFAR10-h64-512 2.0 (see
Appendix B3). For this student model, the L1-norm for its weights is computed and is dis-
played in the following two graphs:

Figure 8.14: Computation of the L1-norm of the weights of the 1st and the 2nd convolutional layer in the best
accuracy student model distillated for the CIFAR-10 dataset.

Based on the L1-norm the filters with value less than 20 in the 2nd convolutional layer (or
equivalently 342/512 filters in the 2nd convolutional layer) and the filters with value less than
1.4 in the 1st convolutional layer (or equivalently 1/64 filters in the 1st convolutional layer)
are removed. Further decrease in the number of filters results in significant accuracy drop.

Table 8.10: Pruning Filters Experiments - CIFAR10 Dataset

Name Number of Parameters Accuracy Test Set

CNN 550k 82.560%
SCNN-MIMIC-CIFAR10-h64-512 2.0 2.5M 77.140%
SCNN-MIMIC-CIFAR10-h64-512 2.0 new 880k 77.140%

The resulted model SCNN-MIMIC-CIFAR10-h64-512 2.0 new has the same accuracy in both
the validation and the test set but only 880k parameters, a reduction of around 65% in the
number of parameters.
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8.4 Adversarial Robustness

In this part of the experiment, the shallow distillated models (filter pruned) with the best
accuracy in both SVHN and CIFAR10 datasets are tested for their out-of-the-box robustness
to adversarial non-targeted attacks. Their performance is compared to the performance of
their corresponding teacher models under the same series of attacks.

Using Cleverhans library [40] adversarial examples from the SVHN and CIFAR-10 test sets
are crafted using the methods (described in detail in Chapter 6) and the settings described in
the table below.

Table 8.11: Adversarial Attacks - Experiments’ Settings

Name Formulation Experimental Setup

Projected Gradient x∗0 = x ε ⊆ [0.0, 0.2]
Descent [3] x∗t+1 ⇐ Πx+S (x∗t + α ∗ sgn(∇x J(x, f , θ)) iterations = 100 & α = ε

2

Basic Iterative x∗0 = x ε ⊆ [0.0, 0.2]
Method [6] x∗t+1 ⇐ Clipx,ε(x∗t + a ∗ sgn(∇)x J(x∗t , f , θ)) iterations = 100 & α = ε

2

x∗0 = x
Momentum Iterative ε ⊆ [0.0, 0.2]

Method [49] x∗ ⇐ x + α ∗ sign(gt+1) iterations = 100

gt+1 ⇐ gt +
∇x J(x∗, f , θ))

||∇x J(x∗, f , θ))||1
α = ε

2

From these adversarial robustness experiments whose results are displayed in the following
graphs, it is obvious that for all tested attacks, the teacher models and the student models
show a similar behaviour (their accuracy after the attack is very close) for both datasets.
Sometimes the student model actually performs slightly better than the teacher model for
small values of ε, a fact that needs further investigation.

Figure 8.15: Basic Iterative Method: Blue Teacher - Orange Student (Left: SVHN Dataset & Right: CIFAR10
Dataset)
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Figure 8.16: Momentum Iterative Method: Blue Teacher - Orange Student (Left: SVHN Dataset & Right: CIFAR10
Dataset)

Figure 8.17: Projected Gradient Descent: Blue Teacher - Orange Student (Left: SVHN Dataset & Right: CIFAR10
Dataset)

Project Gradient Descent (PGD) is considered (for reasons discussed in Chapter 6) to be one
of the hardest adversarial attacks for neural networks. This method is used in this report
to further evaluate and more closely compare the teacher’s and student’s robustness. Small
values of ε are chosen between 0 and 0.1 and step size 0.001. Choosing small values of ε
is necessary since the networks are normally (not adversarially or robustly) trained. For
each ε value, the PGD adversarial examples of the test set are calculated with maximum 100
iterations and α = ε

2 .

Figure 8.18: Projected Gradient Descent (PGD) Attacks in the SVHN dataset. Orange is the student model after
filter pruning, Green is the student model prior to filter pruning and Blue is the teacher model.
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In the graph above, the best student model prior filter pruning and the best student model
after filter pruning are tested under the same adversarial PGD attacks. Empirically, it is
proven that filter pruning results only in a parameter decrease rather than an actual benefit in
terms of robustness since their performances are identical under the PGD attacks. Therefore,
for the rest of the experiments only the robustness of filter pruned models is tested.

Using PGD attacks in the SVHN dataset, for small ε values [0.0, 0.014], hence small per-
turbations, the student model performs slightly better (maximum 0.5% accuracy difference
between student and teacher model). ε in [0.0, 0.014] is actually the area of interest since both
models have a classification accuracy greater than 35% in the test set.

Figure 8.19: Projected Gradient Descent (PGD) Attacks in the SVHN dataset with ε at [0.0 - 0.014]. Orange is the
student model after filter pruning and Blue is the teacher model.

For large ε values hence large perturbations, the student model performs slightly worse (max-
imum 0.9% accuracy difference between teacher and student model) than the teacher model.
Nevertheless, in this region the accuracy drops dramatically in every step and reaches a
plateau at around 5% classification accuracy.

Figure 8.20: Projected Gradient Descent (PGD) Attacks in the SVHN dataset with ε at [0.015 - 0.050]. Orange is
the student model after filter pruning, Green is the student model prior to filter pruning and Blue is the teacher model.
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A similar behaviour was observed when repeating the PGD experiments with the student
and teacher models trained on CIFAR10 dataset. Using PGD attacks in the CIFAR-10 dataset,
for small ε values [0.0, 0.02], hence small perturbations, the student model performs better
(maximum 20% accuracy difference between student and teacher model). For large ε values
hence large perturbations, the student model performs slightly better (maximum 0.2% accu-
racy difference between teacher and student model) than the teacher model. Nevertheless, in
this region the accuracy drops dramatically in every step and reaches a plateau at around 8%
classification accuracy.

Figure 8.21: Projected Gradient Descent (PGD) Attacks in the CIFAR-10 dataset with ε at [0.0 - 0.1]. Orange is the
student model after filter pruning and Blue is the teacher model.

Figure 8.22: Projected Gradient Descent (PGD) Attacks in the CIFAR-10 dataset with ε at [0.0 - 0.02]. Orange is
the student model after filter pruning and Blue is the teacher model.
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8.5 Provably Robust Classifier

In this section, making use of the conclusions from the experiments in the previous sections,
two models with the same architecture are trained (one normally and one robustly using
the ”Convex Outer Adversarial Polytope” technique) and are used as the teacher models
for distillation experiments in the SVHN and CIFAR-10 datasets. Since the ”Convex Outer
Adversarial Polytope” technique (as described in detail in Chapter 7) is based only on ReLU
networks, the previously used architectures of the CNN teacher models in the sections above
cannot be used since they contain maximum pooling layers. Therefore, for each dataset a new
neural network architecture of four convolutional layers followed by a fully connected part is
defined. Instead of maximum pooling layers though, stride of two as well as padding of one
are used to reduce the dimensions of the network’s layers accordingly.

Figure 8.23: Teacher Classifier CNN’s Architecture

8.5.1 Baseline & Robust Models

SVHN: For the SVHN dataset, a CNN of four convolutional layers prior to the fully-connected
part (total 45k parameters) is used as the teacher’s architecture. During the models’ training,
Adam optimizer with learning rate of 0.001, kernel size of 4 and Cross-Entropy loss function
are used. The Robust model is trained in minibatches of size 20 (to avoid running out of
the available GPU memory) and ε = 0.01 using the ”Convex Outer Adversarial Polytope”
technique. For both models, early stopping is also applied to avoid overfitting. The Baseline
model achieves an accuracy of 85.960% and the Robust model has an accuracy of 74.220%.

Table 8.12: Accuracy Results, Robust Error Bounds and PGD Accuracy - SVHN

Name Robust ε Accuracy Test Set Robust Error Bound PGD Accuracy at ε = 0.01

Baseline Model No - 85.960% 100% 32.268%

Robust Model Yes 0.01 74.220% 46.7% 66.741%

CIFAR-10: For the CIFAR-10 dataset, a CNN of four convolutional layers prior to the fully-
connected part (total 250k parameters) is used as the teacher’s architecture. The models
are trained using the same settings as in the SVHN experiment above. The Baseline model
achieves an accuracy of 60.330% and the Robust model has an accuracy of 53.180%.

Table 8.13: Accuracy Results, Robust Error Bounds and PGD Accuracy - CIFAR-10

Name Robust ε Accuracy Test Set Robust Error Bound PGD Accuracy at ε = 0.01

Baseline Model No - 60.330% 100% 34.680%

Robust Model Yes 0.01 53.180% 68.7% 50.760%
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8.5.2 Models’ Distillation

In order to successfully distillate the neural networks (Baseline & Robust models), ”Matching
the Logits” distillation technique is used. Since the networks’ architectures are now simpler
than before, ”Matching the Logits” distillation technique prove to be enough to create power-
ful shallow nets that even manage to surpass the accuracy of their deep teacher networks.

Based on the experiments in the previous sections, architectures with one or two convolu-
tional layers produce student models that achieve high accuracy results (comparable to the
teacher models). Therefore in this subsection, the extra sets from both datasets are used. Stu-
dent models with two different architectures of one and two convolutional layers prior to the
fully-connected part and various numbers of channels are implemented during the distilla-
tion process. The distillation results are detailedly described in the following tables and they
confirm the observations made in the previous set of distillation experiments.

Table 8.14: SCNN Experiments One Convolutional Layer - SVHN

Training on Extra Training SVHN Dataset

Name # of Parameters / # of channels Baseline Accuracy Robust Accuracy

SCNN-MIMIC-h2 200k / 2 79.418% 73.882%
SCNN-MIMIC-h4 400k / 4 84.227% 74.635%
SCNN-MIMIC-h32 850k / 32 84.162% 74.577%
SCNN-MIMIC-h64 1.6M / 64 85.053% 74.781%

Training on Normal Training SVHN Dataset

Name # of Parameters / # of channels Accuracy

Baseline 45k / - 85.960%
Robust 45k / - 74.220%
SCNN-MIMIC-h2 200k / 2 79.179%

Notation: # = number

Table 8.15: SCNN Experiments Two Convolutional Layers - SVHN

Training on Extra Training SVHN Dataset

Name # of Parameters / # of channels Baseline Accuracy Robust Accuracy

SCNN-MIM-4-8 50k / 4-8 84.669% 73.955%
SCNN-MIM-h16-32 200k / 16-32 86.359% 74.589%
SCNN-MIM-h16-64 400k / 16-64 86.631% 74.474%
SCNN-MIM-h32-128 850k / 32-128 86.628% 74.569%

Training on Normal Training SVHN Dataset

Name # of Parameters / # of channels Accuracy

Baseline 45k / - 85.960%
Robust 45k / - 74.220%
SCNN-MIM-h4-8 50k / 4-8 84.869%

Notation: # = number
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Table 8.16: SCNN Experiments Two Convolutional Layers - CIFAR10

Training on Extra Training CIFAR-10 Dataset

Name # of Parameters / # of channels Baseline Accuracy Robust Accuracy

SCNN-MIM-4-8 260k / 4-8 56.220% 50.710%
SCNN-MIM-h16-32 1M / 16-32 59.250% 52.430%
SCNN-MIM-h16-64 2M / 16-64 58.920% 52.880%

Training on Normal Training CIFAR-10 Dataset

Name # of Parameters / # of channels Accuracy

Baseline 250k / - 60.330%
Robust 250k / - 53.180%
SCNN-MIM-h4-8 260k / 4-8 56.550%

Notation: # = number

8.5.3 Prune Filtering of the Best Student Models

In both datasets, for each one of the teacher networks (Baseline & Robust models) as well as
their corresponding best accuracy student models, the L1-norm of the filter weights is com-
puted. Based on the L1-norm, the filters with small values are removed without damaging
the network’s performance (as described in Chapter 5). Unlike, in the previous experiments
where the accuracy of the pruned models remained unchanged, the accuracy of some of the
models are slightly increased as it is described in the two following tables:

Table 8.17: Summary of Best (Baseline & Robust) Models - SVHN

Name # of Conv. Layers / # of Params. Accuracy Test Set

Baseline - / 45k 85.960%
SCNN-MIM-h16-64 16-64 / 400k 86.631%
SCNN-MIM-h16-64-new (pruned) 16-64 / 380k 86.631%

Robust - / 45k 74.220%
SCNN-MIM-h16-32 16-32 / 200k 74.589%
SCNN-MIM-h16-32-new (pruned) 16-32 / 160k 74.589%

Notation: # = number

Table 8.18: Summary of Best (Baseline & Robust) Models - CIFAR-10

Name # of Conv. Layers / # of Params. Accuracy Test Set

Baseline - / 250k 60.330%
SCNN-MIM-h16-32 16-32 / 1M 59.250%
SCNN-MIM-h16-32-new (pruned) 16-32 / 450k 59.250%

Robust - / 250k 53.180%
SCNN-MIM-h16-64 16-64 / 2M 52.880%
SCNN-MIM-h16-64-new (pruned) 16-64 / 550k 52.880%

Notation: # = number
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Figure 8.24: Computation of the L1-norm of the weights of the 1st and the 2nd convolutional layer in the best
accuracy Baseline student model distillated for the SVHN dataset.

Figure 8.25: Computation of the L1-norm of the weights of the 1st and the 2nd convolutional layer in the best
accuracy Robust student model distillated for the SVHN dataset.

8.5.4 Models’ Progressive Gradient Descent (PGD) Robustness

As in the previous sections, Progressive Gradient Descent (PGD) method is used to evaluate
and compare the teacher’s with the student’s adversarial robustness. Small values of ε are
chosen between 0.0 and 0.1 with step size of 0.001. For each ε value, the PGD adversarial
examples of the test set are calculated with maximum 100 iterations and α = ε

2 for the Baseline
and Robust models for both datasets.

From the results (presented in the graphs below), the following observations can be drawn:

1) As expected, the Robust model is far more robust to PGD attacks compared to the Baseline
model in both datasets.

Figure 8.26: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust Model and
Blue Line: Baseline) - Left: SVHN dataset and Right: CIFAR-10 dataset.
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2) The distillated models follow the same robustness order as their corresponding teacher
models above. The accuracy difference between the models though is significantly smaller.

Figure 8.27: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust Model
(Distillated) and Blue Line: Baseline (Distillated)) - Left: SVHN dataset and Right: CIFAR-10 dataset.

3) As in the experiments in the previous sections, the distillated models of the Baseline models
prove to be more robust than their corresponding teacher models for small values of ε.

Figure 8.28: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust Model
(Distillated) and Blue Line: Baseline (Distillated)) - Left: SVHN dataset and Right: CIFAR-10 dataset.

4) None of the distillated models (not even the student model that uses the Robust model as
its teacher) can surpass the adversarial robustness performance of the Robust model trained
with the ”Convex Outer Adversarial Polytope” technique.

Figure 8.29: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust (Distillated),
Blue Line: Baseline (Distillated) and Green Line: Robust Model) - Left: SVHN dataset and Right: CIFAR-10 dataset.
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8.6 Certification Area

This section’s research goal is to investigate the effect that distillation has on the certification
area of a neural network. According to the [47], ”for each example x on the network with
learnt function fθ(x), the largest value of ε can be computed for which a certificate of robust-
ness exists such that the output of fθ(x) provably cannot be flipped within this ε ball”. The
certification areas of the Baseline and Robust models as well as their respective distillated
networks for both datasets are calculated and compared.

8.6.1 Certification Area for Baseline Models

Using Newton’s method as described in [7.14], the certification areas for both the Baseline
model and the Baseline Distillated model are calculated and displayed on the graphs below:

Figure 8.30: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order
for the Baseline and the Best Accuracy Baseline Distillated Models. The blue line denotes the ε value that the Robust
model has been trained to be robust on (in our experiments ε = 0.01). Left: Baseline Model and Right: Best Accuracy
Baseline Distillated Model - SVHN Dataset

Figure 8.31: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order
for the Baseline and the Best Accuracy Baseline Distillated Models. The blue line denotes the ε value that the Robust
model has been trained to be robust on (in our experiments ε = 0.01). Left: Baseline Model and Right: Best Accuracy
Baseline Distillated Model - CIFAR-10 Dataset
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8.6.2 Certification Area for Robust Model

Using Newton’s method as described in [7.14], the certification areas for both the Robust
model and the Robust Distillated model are calculated and displayed on the graphs below:

Figure 8.32: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order
for the Robust and Best Accuracy Robust Distillated models. The blue line denotes the ε value that the Robust model
has been trained to be robust on (in our experiments ε = 0.01). Left: Robust Model and Right: Best Accuracy Robust
Distillated Model - SVHN Dataset

Figure 8.33: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order
for the Robust and Best Accuracy Robust Distillated models. The blue line denotes the ε value that the Robust model
has been trained to be robust on (in our experiments ε = 0.01). Left: Robust Model and Right: Best Accuracy Robust
Distillated Model - CIFAR-10 Dataset

Remarks from these experiments:

1. The certification area of the Baseline Distillated model is larger compared to the Base-
line network in both datasets. This observation shows that another advantage of the
distillation process of normally trained models is an increase in their certification area.

2. On the contrary, the certification area of the Robust models is much larger compared to
the Robust Distillated models.

8.6.3 Certification Area & Number of Parameters

In this subsection, the relationship between the number of parameters of the student model
and the certification area is investigated. For each distillated model (produced by either the
Baseline or Robust networks in both datasets) the certification area is calculated and the aver-
age ε value is computed (for completeness the graphical results are included in Appendix C).
From these experiments, although there is a general trend indicating that smaller networks
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have larger certification areas, there is no conclusive evidence about the existence of an ab-
solute direct relationship between the number of parameters of the student model and the
certification area, since for the SVHN dataset, smaller networks have larger certification areas
while for the CIFAR-10, the exact opposite holds. It is worth mentioning though that for
both datasets all distillated Baseline models have a larger certification area compared to the
Baseline model while all distillated Robust models have a smaller certification area compared
to the Robust model. This empirical evidence further backs the claim that distillation does
increase the adversarial robustness of the student models compared to their teacher networks
if the models are normally (not robustly) trained.

Table 8.19: Average ε Certification Area - SVHN Dataset

Name Trained Method Number of Parameters Average ε

BaselineModel Baseline 45k 0.00215

SCNN-MIMIC-h4-8 Baseline 50k 0.00313

SCNN-MIMIC-h16-32 Baseline 200k 0.00308

SCNN-MIMIC-h16-64 Baseline 400k 0.00254

RobustModel Robust 45k 0.01367

SCNN-MIMIC-h4-8 Robust 50k 0.00646

SCNN-MIMIC-h16-32 Robust 200k 0.00474

SCNN-MIMIC-h16-64 Robust 400k 0.00343

Table 8.20: Average ε Certification Area - CIFAR-10 Dataset

Name Trained Method Number of Parameters Average ε

BaselineModel Baseline 250k 0.00211

SCNN-MIMIC-h4-8 Baseline 260k 0.00259

SCNN-MIMIC-h16-32 Baseline 1M 0.00270

SCNN-MIMIC-h16-64 Baseline 2M 0.00274

RobustModel Robust 250k 0.00995

SCNN-MIMIC-h4-8 Robust 260k 0.00442

SCNN-MIMIC-h16-32 Robust 1M 0.00444

SCNN-MIMIC-h16-64 Robust 2M 0.00408

8.6.4 Improve Robustness & Certification Area of the Distillated Models

Ideally, we would like the distillated models to have the certification area and the robustness
of the Robust model. In the previous section, it was proven that using ”Matching the Logits”
distillation technique, the student models of the Robust network did not inherit these proper-
ties. In this subsections, three different ways to improve the robustness and certification area
of the Distillated Robust model are outlined:

1. Distillation using Ranging the Teacher’s Temperature Technique.
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2. Re-training Robustly the best accuracy Distillated Robust model.

3. Distillation using Adversarial Distillation Technique.

Ranging the Teacher’s Temperature Technique

In these experiments, the distillation procedure follows the ”Ranging the Teacher’s Temper-
ature” Technique. By ranging the teacher’s temperature between 0 and 1, a output array
with more conservative probabilities for the teacher model is produced while by raising the
temperature between 1 and 5 a output array with softer probabilities for the teacher model is
produced. For the student model, the temperature is kept at 1 for the creation of its output
probabilities array. During the training of the models, Cross-entropy loss function is used
to compare these two output arrays (from the teacher and student model) and and Adam
optimizer with learning rate of 0.001.

Figure 8.34: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust (Distillated
- Logits), Blue Line: Baseline (Distillated - Logits), Green Line: Robust Model and Red Line: Robust (Distillated -
Temperature)) - SVHN Dataset

By ranging the temperature in the ideal range for this model, models with higher accuracy
than using ”Matching the Logits” technique can be produced (the detailed results are pre-
sented in the Appendix B2). The best model from ranging the teacher’s temperature is the
SCNN-MIMIC-h32-128 0.1 model with accuracy of 74.846%. The same PGD attacks on this
model are performed and the certification area using Newton’s method is calculated. Al-
though, the adversarial robustness is slightly increased (results in the graph above), the certi-
fication area remains almost the same as in the distillated model using ”Matching the Logits”
distillation technique.
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Re-training Robustly

From both distillated models either using ”Matching the Logits” technique or ”Ranging the
Teacher’s Temperature” technique, it can be concluded that a model does not inherit the
robustness nor the certification area of a robustly trained teacher network. By retraining
robustly using the ”Convex Outer Adversarial Polytope” technique [47] for ε = 0.01 and for
only 3 epochs:

1) The lost robustness is re-gained (in fact the re-trained model is more robust than the
original robust model in some cases)

Figure 8.35: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust (Distillated),
Blue Line: Baseline (Distillated), Green Line: Robust Model and Red Line: Robust Model (Distillated Retrained
Robustly)) Left: SVHN dataset and Right: CIFAR-10 dataset.

2) The clean accuracy of the model is increased compared to the teacher Robust model.

Table 8.21: Accuracy Results, Robust Error Bounds and PGD Accuracy - SVHN Dataset

Name Robustly Trained ε Accuracy Test Set PGD Accuracy at ε = 0.01

Baseline Model No - 85.960% 32.268%

Robust Model Yes 0.01 74.220% 66.741%

Robust Model (MSE Distillated) No - 74.589% 47.984%

Robust Model (Retrained Distillated) Yes 0.01 78.423% 70.974%

Table 8.22: Accuracy Results, Robust Error Bounds and PGD Accuracy - CIFAR-10 Dataset

Name Robustly Trained ε Accuracy Test Set PGD Accuracy at ε = 0.01

Baseline Model No - 60.330% 34.680%

Robust Model Yes 0.01 53.180% 50.760%

Robust Model (MSE Distillated) No - 52.880% 46.430%

Robust Model (Retrained Distillated) Yes 0.01 56.660% 50.290%
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3) The certification area is increased as well since the distillated model is shallower and
robustly re-trained.

Figure 8.36: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order
for the Robust Distillated Re-Trained models on the two datasets. The blue line denotes the ε value that the Robust
model has been trained to be robust on (in our experiments ε = 0.01) and the red line denotes the maximum ε value
of the respective teacher Robust Model. Left: SVHN Dataset and Right: CIFAR-10 Dataset.

Re-training Robustly vs. Robustly Trained Shallow Net

The question we try to answer here is if distillation is an important part after all. For this
section, the shallow network with the same architecture as the Robust Model (Retrained
Distillated) model is trained robustly until a similar accuracy is achieved in the test set for
a valid and fair comparison and calculated its certification area. From the results, it can be
shown that the Robust Model (Retrained Distillated) achieves a much larger certification area
compared to Robust Shallow Network indicating that distillation constitutes a vital part to
the increase of a model’s certification area.

Figure 8.37: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order.
The blue line denotes the ε value that the Robust model has been trained to be robust on (in our experiments ε = 0.01)
and the red line denotes the maximum ε value of the respective teacher Robust Model. Left: Robust Distillated Re-
Trained model (Accuracy: 78.423%) and Right: Straight Robustly Trained Shallow Network (Accuracy: 80.015%) -
SVHN Dataset.
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Table 8.23: Average ε Certification Area - SVHN Dataset

Name Trained Method Average ε

RobustModel Robust 0.01367

Shallow SCNN Robust 0.00612

ReTrained SCNN Robust 0.01534

Figure 8.38: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order.
The blue line denotes the ε value that the Robust model has been trained to be robust on (in our experiments ε = 0.01)
and the red line denotes the maximum ε value of the respective teacher Robust Model. Left: Robust Distillated Re-
Trained model (Accuracy: 55.670%) and Right: Straight Robustly Trained Shallow Network (Accuracy: 56.660%) -
CIFAR-10 Dataset.

Table 8.24: Average ε Certification Area - CIFAR-10 Dataset

Name Trained Method Average ε

RobustModel Robust 0.00995

Shallow SCNN Robust 0.01044

ReTrained SCNN Robust 0.01232

Adversarial Distillation

As described in Chapter 4, Adversarial Distillation works by matching the clean logits of the
teacher model for the training data points with the logits that the student model generates
during training from their equivalent adversarial examples. In order to adversarially distillate
the teacher model, the adversarial examples are crafted using the architectures of the different
student models. More specifically, in every epoch the given state of the student model is used
to generate the adversarial examples (on-the-fly).

Table 8.25: Adversarial Distillation - Student On-The-Fly - Accuracy Results

Name Channels Accuracy Test Set

SCNN-MIMIC-h4-8 4-8 74.692%

SCNN-MIMIC-h16-32 16-32 74.720%

SCNN-MIMIC-h16-64 16-64 74.149%
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Figure 8.39: Accuracy in the test set under PGD Attacks with different ε values. (Orange Line: Robust (Distillated),
Blue Line: Robust Model and Green Line: Adversarially Distillated Model) - SVHN dataset

Figure 8.40: Maximum ε distances to the decision boundary of each data point of the test set in increasing ε order. The
blue line denotes the ε value that the Robust model has been trained to be robust on (in our experiments ε = 0.01) and
the red line denotes the maximum ε value of the respective teacher Robust Model. Left: Robust Distillated Re-Trained
model (Accuracy: 78.423%) and Right: Adversarially Distillated Model (Accuracy: 74.720%) - SVHN Dataset.

Table 8.26: Average ε Certification Area - SVHN Dataset

Name Trained Method Average ε

RobustModel Robust 0.01367

Distillated Robust Model - 0.00646

ReTrained SCNN Robust 0.01534

Adversarial Distill. SCNN Adversarially 0.00770

From these experiments, it is shown that adversarial distillation does result in distillated mod-
els with larger certification areas compared to the other two distillation techniques (”Matching
the Logits” and ”Ranging the Temperature of the Teacher model”) previously used. Never-
theless, its certification performance is significantly lower compared to the Robust Model
(Retrained Distillated). In summary, from all three possible tested solutions to improve the
certification performance and robustness of the network, only ”Re-Training” generates a net-
work with significantly improved certification and robustness results.
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Chapter 9

Evaluation

This chapter aims to conduct a critical appraisal of the work conducted in this Master Thesis
project compared to the original objectives. Starting from the objectives set out in the require-
ments capture in Chapter 3, the primal purpose of this project was to investigate certification
properties of compressed shallow neural networks. Thereinafter, this task was broken into
four major objective areas:

1. Model Distillation

2. Parameter Reduction

3. Adversarial Robustness

4. Certification Area

Model Distillation

The majority of the project work is oriented around model distillation techniques to compress
and train efficient shallow neural networks. Two different techniques were implemented
based on prior work by Caruana et al. ([7] & [27]) and Dean et al. ([25] & [32]). The two
distillation techniques (”Matching the Logits” & ”Ranging the Teacher’s Temperature”) were
used along with two different image datasets to efficiently compress deep complex neural
network models. These complex teacher models included either 4 convolutional layers (for
the SVHN dataset) or 6 convolutional layers (for the CIFAR-10 dataset) prior to their fully
connected part. Various network architectures with different number of parameters consisting
of either one fully connected layer, one convolutional layer or two convolutional layers prior
to the fully connected part were implemented and used as the student models in a series of
distillation experiments. Through these experiments, the following conclusions can be drawn:

1. In order to achieve a high classification accuracy score, the student model needs to be
convolutional. It was proven that architectures that include one or two convolutional
layers have a significant higher performance than student models with only one fully
connected layer.

2. The student model needs to be deep: the more convolutional layers, the better the
accuracy. From the experiments, student models with two convolutional layers achieve
higher accuracy than student models with only one convolutional layer prior to the fully
connected part.

3. Both distillation techniques produce models with accuracy comparable to their teacher
models when they have a large number of channels hence large number of parameters.
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4. Raising the temperature of the teacher model to the ”ideal region” (which depends
on the network’s architecture and the dataset) can result in better accuracy student
models compared to the same architecture student models using ”Matching the Logits”
distillation technique.

Although the experiments on both datasets confirm the distillation conclusions described
above, the final accuracy of the best student model in CIFAR-10 dataset is not very close to
the teacher model. Unlike in the SVHN dataset experiments where the best student model
achieved an accuracy of 92.306% (close to the teacher model’s accuracy of 92.528%), the best
student model in CIFAR-10 experiments achieved an accuracy of 77.140% while the teacher
model has an accuracy of 82.560% in the test set. This is the result of two main factors:

1. The CIFAR-10 is a more difficult dataset and a deeper teacher model was used (6 con-
volutional layers) in order to achieve a high accuracy (higher than 80%) compared to
SVHN dataset where a shallower teacher model (4 convolutional layers) model resulted
in an accuracy 92%. One of the aforementioned conclusions is that the deeper the
student model (more convolutional layers), the better the accuracy it achieves. In the ex-
periments, Shallow CNNs of only up to two convolutional layers were explored. While
for the SVHN dataset this consists 50% of the teacher’s convolutional layers, for the
CIFAR-10 it is only 1/3 of the teacher’s convolutional layers. It is justifiable to assume
that a SCNN with 3 convolutional layers could result in a better accuracy student model.

2. Unlike the SVHN dataset where more than 0.5M unlabelled images are provided, for
the CIFAR-10 experiments only 110.000 images (from the CIFAR-100 combined with
the CIFAR-10 training set) were used as the unlabelled dataset during the distillation
experiments. If a larger portion of images from the 80 tiny images dataset was used,
there would be a performance boost in all student models regardless their architecture.

Parameter Reduction

As noted in the distillation experiments, shallow distillated models require an increase in their
parameter budget in order to achieve a classification accuracy comparable to their teacher
models. Part of the project was about the investigation of parameter reduction methods to
create models which combine the benefits of model distillation and parameter reduction. Us-
ing the ”Pruning filters” [30] method, the number of parameters of the student Convolutional
Neural Networks (CNNs) was drastically diminished. Through these experiments, the compu-
tational cost of the student CNNs was decreased by removing a large number of insignificant
filters based on their L1-norm values. The experiments demonstrated that the shallow distil-
lated student models can, in fact, have less parameters (close to their teacher models’ number
of parameters) without affecting (in some cases even improving) their overall performance.

Adversarial Robustness

Adversarial robustness of the distillated models has been investigated in this experimental
task. Three different adversarial attack methods (Progressive Gradient Descent, Basic Iterative
Method and Momentum Iterative Method) were implemented to craft adversarial examples
with various perturbations. Both shallow student models and deep complex teacher models
were undertaken under the same series of attacks using the aforementioned methods. It was
found that shallow distillated neural networks demonstrate some robustness compared to
their teacher models. In particular, for small perturbations the best student in both datasets
proved to be more robust compared to their teacher models. While for large perturbations
their performance was almost identical to their teacher networks.
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The major objective of this task was to investigate the certification properties of shallow neural
networks and determine under which circumstances distillation benefits the certification area
of a neural network. To a large extend, this task was based on the prior work of Eric Wong et
al. [47]. Two models with the same architecture were trained: one normally trained and one
robustly trained using the ”Outer Convex Adversarial Polytope” technique described in [47].
These models were used as the teacher models in a series of distillation and certification prop-
erties experiments. It was found that distillation plays an important role in increasing the cer-
tification area of a neural network. More specifically, the certification area of normally trained
neural networks is increased when distillation is applied (all student models demonstrated a
higher certification area compared to their teacher model). On the other hand, distillation of
robustly trained teacher models resulted in shallow models with a smaller certification area
compared to their teacher model. Although this evidence disproves the claim that distillation
benefits the certification area of shallow models, through different experiments it was found
that by re-training the student model robustly results in an important increase in their certifi-
cation area compared to their teacher model. To further back the claim of the importance of
distillation, two shallow models with the same architecture were trained until they reached
the same accuracy in the two following ways:

1. The shallow neural network was trained straight robustly using the ”Outer Convex
Adversarial Polytope” technique (Model A).

2. The shallow neural network was first trained through distillation of a robustly trained
deep neural network. At a subsequent stage, it was re-trained robustly using the ”Outer
Convex Adversarial Polytope” technique (Model B).

It was found that Model B has a significant larger certification area compared to Model A as
well as its teacher model. In other words, it was shown that if distillation is part of a neural
network’s training process, it will enhance the network’s certification area.

Summary of Contributions

Finally, a summary of the main contributions of this project is listed below:

1. The empirical affirmation of distillation conclusions described by Caruana et al. in [27].

2. A clean comparison between two distillation techniques: ”Matching the Logits” [27]
and ”Ranging the Teacher’s Temperature [25].

3. Empirical demonstration of the dominance in terms of adversarial robustness of shallow
distillated networks compared to deep neural networks for small adversarial perturba-
tions.

4. The benefits of parameter reduction of shallow neural networks in terms of their com-
putational cost and certification area.

5. The extension of the prior work by Eric Wong et al. [47]: Proving that distillation can
result in shallow neural networks with enhanced certification area properties compared
to their deep complex teacher models.
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Chapter 10

Conclusion and Further Work

This project 1 explores the certification properties of deep neural networks by taking them into
”shallow waters”. The thesis brings together different research topics in the Machine Learning
field and carefully connects them in order to efficiently train shallow neural networks and
properly investigate and compare their certification properties. Throughout this process, the
project has presented some of the major challenges posed by model distillation as well as
possible solutions to address them.

As discussed in Chapter 9 in detail, starting with comparing and contrasting different model
distillation techniques, several conclusions common for all tested distillation methods were
drawn. It was found that in order to have a shallow student model with accuracy close to
its complex teacher model, the student network has to be convolutional (include at least one
convolutional layer) and deep (include several convolutional layers - less in number than
the teacher model). An apparent drawback of model distillation is the necessary increase
in the number of parameters of the student model. Pruning filters is an efficient solution
to this problem which reduces not only the number of parameters without affecting the stu-
dent network’s performance but also its computational cost. Furthermore, it was empirically
demonstrated that distillation has significant benefits in adversarial robustness (for small per-
turbations). Finally, through a series of experiments, it was shown that model distillation
can result in shallow neural networks with enhanced certification area properties compared
to their deep complex teacher models, regardless of the method that their teacher networks
have been trained with (normally or robustly).

Although a significant amount of work has been presented in this project, further research
can be conducted. First of all, it seems only natural to consider different network architec-
tures as well as possible alternatives to the training of robust classifiers. In this project, the
”Outer Convex Adversarial Polytope” technique by [47] has been considered as a method to
train provably robust classification networks. Other methods that may or may not include
convex looseness of bounds can be considered to train the teacher models which will be used
in a series of distillation and certification experiments. Furthermore, as discussed in Chapters
4 and 6, methods for crafting adversarial examples can be also used to adversarially train
neural networks. Additional and more complex adversarial attack methods should be con-
sidered and explored to adversarially train complex teacher models. Finally, by distillating
these adversarially trained networks, a further evaluation of the adversarial robustness and
certification properties of their corresponding shallow distillated neural networks should be
conducted.

1The source code for the Master Thesis project will be made available at https://github.com/

KonstantinosBarmpas/Shallow-Waters
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Appendix A

Mathematical Derivations

A.1 Newton’s Method

Let f be a well-defined function. Newton’s method calculates an approximate solution to the
equation

f (x) = 0 (A.1)

using an initial approximation of the solution which is denoted by x0. Iteratively, the New-
ton’s Method calculates the tangent line at the approximation point x0 and computes the
point that the tangent line crosses the x-axis (in the graph x1 for the tangent line at point x0)
and uses that crossing point as the new approximation for the next iteration.

Figure A.1: Newton’s Method Graphical Illustration
Source: https://tutorial.math.lamar.edu/classes/calci/newtonsmethod.aspx

Definition A.1 Newton’s Method: If xn is an approximation of the solution of f (x) = 0 and
if f ′(xn) 6= 0, the next best approximation is given by:

xn+1 = xn −
f (xn)

f ′(xn)
(A.2)

where f ′(xn) is the derivative of the function f at the point xn.
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A. Mathematical Derivations

A.2 Proof of Robust Error Bound

In this section, the proof for the Robust Error Bound explored in Chapter 7 of the thesis is
presented. Note that the content of this section is heavily derived from [47] and is presented
in this report for completeness.

Theorem Let L be a monotonic, translationally invariant loss function. For any data point
(x,y) and ε > 0, the worst case adversarial loss from 7.12 can be bounded by:

max
||∆||∞≤ε

L( fθ(x + ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y) (A.3)

where Jε and gθ are defined in Chapter 7.

Proof: Let’s rewrite the problem using the adversarial polytope Zε(x).

max
||∆||∞≤ε

L( fθ(x + ∆), y) = max
ẑk∈Zε(x)

(L(ẑk, y)) (A.4)

max
ẑk∈Zε(x)

(L(ẑk, y)) ≤ max
ẑk∈Zε(x)

(L(ẑk − (ẑk)y1, y)) = max
ẑk∈Zε(x)

(L(ẑk(I − ey IT), y)) (A.5)

Let C = I − ey IT. Since L is monotonic loss function, the upper bound can be found by using
the element-wise maximum over [Ck]i for all i 6= y and the minimum for i = y where [Ck]i = 0.
So,

max
ẑk∈Zε(x)

(L(Cẑk, y)) ≤ L(h(ẑk) (A.6)

where:

h(zk)i = max
ẑk∈Zε(x)

Ci ẑk (A.7)

This is the primal formulation of the problem described in Chapter 7. Using the dual formu-
lation it can be shown that:

Jε(x, gθ(−Ci)) ≤ min
ẑk∈Zε(x)

−Ci ẑk (A.8)

Multiplying with -1:

−Jε(x, gθ(−Ci)) ≥ min
ẑk∈Zε(x)

Ci ẑk (A.9)

Applying h:

h(zk)i ≤ −Jε(x, gθ(−Ci)) (A.10)

Applying this to all the elements of h gives the final upper bound:

max
||∆||∞≤ε

L( fθ(x + ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y) (A.11)
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A.2. Proof of Robust Error Bound

Definition A.2 For a data point x ∈ X and label y∗, the model is guaranteed to be robust in
the perturbation ball Bε around x if and only if [47]:

Jε(x, gθ(ey∗1T − I)) ≥ 0 (A.12)

where J and gθ are defined in Chapter 7.

Proof: J is lower bound on the LP problem described in Chapter 7. Combining this fact with
the certificate in equation above, for all y 6= f (x):

min
ẑk∈Zε(x)

(ẑk) f (x) − (ẑk)y ≥ 0 (A.13)
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Appendix B

Experiments

B.1 Learning Curves for Teacher Models in SVHN Distillation Ex-
periments

Figure B.1: Learning Curves for the CNN teacher model, the Shallow Neural Network (SNN), the one-convolutional
layer Shallow Network (SCNN) and the two-convolutional layers Shallow Network (SCNN) trained on the original data
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B. Experiments

B.2 Ranging the Temperature Detailed Accuracy Results - Robust
Model

Table B.1: SCNN Experiments Two Convolutional Layers with Teacher Temperature - Robust Model (SVHN) (1)

Name Teacher’s Temperature Accuracy (Temperature) Accuracy (MSE)

Number of Channels (L1-L2): 4-8 / Number of Parameters: 50k

SCNN-MIMIC-h4-8 0.1 0.1 74.289% -
SCNN-MIMIC-h4-8 0.2 0.2 74.216% -
SCNN-MIMIC-h4-8 0.3 0.3 74.685% -
SCNN-MIMIC-h4-8 0.4 0.4 74.458% -
SCNN-MIMIC-h4-8 0.5 0.5 74.343% -
SCNN-MIMIC-h4-8 0.6 0.6 74.155% -
SCNN-MIMIC-h4-8 0.7 0.7 74.163% -
SCNN-MIMIC-h4-8 0.8 0.8 74.182% -
SCNN-MIMIC-h4-8 0.9 0.9 74.174% -
SCNN-MIMIC-h4-8 1.0 1.0 74.213% -
SCNN-MIMIC-h4-8 1.5 1.5 74.155% -
SCNN-MIMIC-h4-8 2.0 2.0 74.643% -
SCNN-MIMIC-h4-8 2.5 2.5 74.439% -
SCNN-MIMIC-h4-8 3.0 3.0 74.424% -
SCNN-MIMIC-h4-8 3.5 3.5 74.285% -
SCNN-MIMIC-h4-8 4.0 4.0 74.566% -
SCNN-MIMIC-h4-8 4.5 4.5 74.305% -
SCNN-MIMIC-h4-8 5.0 5.0 73.901% -

SCNN-MIMIC-h4-8 On Logits - 73.955%

Number of Channels (L1-L2): 16-32 / Number of Parameters: 200k

SCNN-MIMIC-h16-32 0.1 0.1 74.293% -
SCNN-MIMIC-h16-32 0.2 0.2 74.547% -
SCNN-MIMIC-h16-32 0.3 0.3 74.405% -
SCNN-MIMIC-h16-32 0.4 0.4 74.424% -
SCNN-MIMIC-h16-32 0.5 0.5 74.435% -
SCNN-MIMIC-h16-32 0.6 0.6 74.293% -
SCNN-MIMIC-h16-32 0.7 0.7 74.547% -
SCNN-MIMIC-h16-32 0.8 0.8 74.274% -
SCNN-MIMIC-h16-32 0.9 0.9 74.309% -
SCNN-MIMIC-h16-32 1.0 1.0 74.316% -
SCNN-MIMIC-h16-32 1.5 1.5 74.458% -
SCNN-MIMIC-h16-32 2.0 2.0 74.213% -
SCNN-MIMIC-h16-32 2.5 2.5 74.451% -
SCNN-MIMIC-h16-32 3.0 3.0 74.213% -
SCNN-MIMIC-h16-32 3.5 3.5 74.324% -
SCNN-MIMIC-h16-32 4.0 4.0 74.105% -
SCNN-MIMIC-h16-32 4.5 4.5 74.489% -
SCNN-MIMIC-h16-32 5.0 5.0 74.520% -

SCNN-MIMIC-h16-32 On Logits - 74.589%
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B.2. Ranging the Temperature Detailed Accuracy Results - Robust Model

Table B.2: SCNN Experiments Two Convolutional Layers with Teacher Temperature - Robust Model (SVHN) (2)

Name Teacher’s Temperature Accuracy (Temperature) Accuracy (MSE)

Number of Channels (L1-L2): 16-64 / Number of Parameters: 400k

SCNN-MIMIC-h16-64 0.1 0.1 74.350% -
SCNN-MIMIC-h16-64 0.2 0.2 74.650% -
SCNN-MIMIC-h16-64 0.3 0.3 74.501% -
SCNN-MIMIC-h16-64 0.4 0.4 74.566% -
SCNN-MIMIC-h16-64 0.5 0.5 74.504% -
SCNN-MIMIC-h16-64 0.6 0.6 74.335% -
SCNN-MIMIC-h16-64 0.7 0.7 74.458% -
SCNN-MIMIC-h16-64 0.8 0.8 74.581% -
SCNN-MIMIC-h16-64 0.9 0.9 74.343% -
SCNN-MIMIC-h16-64 1.0 1.0 74.393% -
SCNN-MIMIC-h16-64 1.5 1.5 74.458% -
SCNN-MIMIC-h16-64 2.0 2.0 74.493% -
SCNN-MIMIC-h16-64 2.5 2.5 74.451% -
SCNN-MIMIC-h16-64 3.0 3.0 74.566% -
SCNN-MIMIC-h16-64 3.5 3.5 74.451% -
SCNN-MIMIC-h16-64 4.0 4.0 74.504% -
SCNN-MIMIC-h16-64 4.5 4.5 74.589% -
SCNN-MIMIC-h16-64 5.0 5.0 74.216% -

SCNN-MIMIC-h16-64 On Logits - 74.474%

Number of Channels (L1-L2): 32-128 / Number of Parameters: 850k

SCNN-MIMIC-h32-128 0.1 0.1 74.846% -
SCNN-MIMIC-h32-128 0.2 0.2 74.612% -
SCNN-MIMIC-h32-128 0.3 0.3 74.431% -
SCNN-MIMIC-h32-128 0.4 0.4 74.320% -
SCNN-MIMIC-h32-128 0.5 0.5 74.389% -
SCNN-MIMIC-h32-128 0.6 0.6 74.362% -
SCNN-MIMIC-h32-128 0.7 0.7 74.393% -
SCNN-MIMIC-h32-128 0.8 0.8 74.504% -
SCNN-MIMIC-h32-128 0.9 0.9 74.351% -
SCNN-MIMIC-h32-128 1.0 1.0 74.362% -
SCNN-MIMIC-h32-128 1.5 1.5 74.335% -
SCNN-MIMIC-h32-128 2.0 2.0 74.574% -
SCNN-MIMIC-h32-128 2.5 2.5 74.654% -
SCNN-MIMIC-h32-128 3.0 3.0 74.462% -
SCNN-MIMIC-h32-128 3.5 3.5 74.431% -
SCNN-MIMIC-h32-128 4.0 4.0 74.439% -
SCNN-MIMIC-h32-128 4.5 4.5 74.547% -
SCNN-MIMIC-h32-128 5.0 5.0 74.600% -

SCNN-MIMIC-h32-128 On Logits - 74.569%
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B. Experiments

B.3 Ranging the Temperature Detailed Accuracy Results

Table B.3: SCNN Experiments Two Convolutional Layers with Teacher Temperature - SVHN Dataset

Name Teacher’s Temperature Accuracy (d) Accuracy (b)

Number of Channels (L1-L2): 32-32 / Number of Parameters: 220k

SCNN-MIMIC-SVHN-h32-32 1.5 1.5 91.457% -
SCNN-MIMIC-SVHN-h32-32 2.0 2.0 91.845% -
SCNN-MIMIC-SVHN-h32-32 2.5 2.5 91.795% -
SCNN-MIMIC-SVHN-h32-32 3.0 3.0 91.545% -
SCNN-MIMIC-SVHN-h32-32 3.5 3.5 91.457% -
SCNN-MIMIC-SVHN-h32-32 4.0 4.0 91.334% -
SCNN-MIMIC-SVHN-h32-32 4.5 4.5 91.468% -
SCNN-MIMIC-SVHN-h32-32 5.0 5.0 91.338% -

SCNN-MIMIC-SVHN-h32-32 On Logits - 90.646%

Number of Channels (L1-L2): 64-128 / Number of Parameters: 850k

SCNN-MIMIC-SVHN-h64-128 1.5 1.5 92.306% -
SCNN-MIMIC-SVHN-h64-128 2.0 2.0 92.006% -
SCNN-MIMIC-SVHN-h64-128 2.5 2.5 92.018% -
SCNN-MIMIC-SVHN-h64-128 3.0 3.0 92.018% -
SCNN-MIMIC-SVHN-h64-128 3.5 3.5 91.825% -
SCNN-MIMIC-SVHN-h64-128 4.0 4.0 91.825% -
SCNN-MIMIC-SVHN-h64-128 4.5 4.5 91.895% -
SCNN-MIMIC-SVHN-h64-128 5.0 5.0 91.883% -

SCNN-MIMIC-SVHN-h64-128 On Logits - 91.361%

Number of Channels (L1-L2): 64-512 / Number of Parameters: 3.5M

SCNN-MIMIC-SVHN-h64-512 1.5 1.5 92.152% -
SCNN-MIMIC-SVHN-h64-512 2.0 2.0 91.160% -
SCNN-MIMIC-SVHN-h64-512 2.5 2.5 92.202% -
SCNN-MIMIC-SVHN-h64-512 3.0 3.0 91.964% -
SCNN-MIMIC-SVHN-h64-512 3.5 3.5 92.010% -
SCNN-MIMIC-SVHN-h64-512 4.0 4.0 92.010% -
SCNN-MIMIC-SVHN-h64-512 4.5 4.5 92.056% -
SCNN-MIMIC-SVHN-h64-512 5.0 5.0 91.522% -

SCNN-MIMIC-SVHN-h64-512 On Logits - 91.583%

(*) The SCNN-MIMIC-SVHN-h350-1024 experiments were not conducted due to the huge training time each model required. We expect similar results though.
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B.3. Ranging the Temperature Detailed Accuracy Results

Table B.4: SCNN Experiments Two Convolutional Layers with Teacher Temperature - SVHN Dataset

Name Teacher’s Temperature Accuracy (d) Accuracy (b)

Number of Channels (L1-L2): 32-32 / Number of Parameters: 220k

SCNN-MIMIC-SVHN-h32-32 0.1 0.1 90.734% -
SCNN-MIMIC-SVHN-h32-32 0.2 0.2 90.984% -
SCNN-MIMIC-SVHN-h32-32 0.3 0.3 90.596% -
SCNN-MIMIC-SVHN-h32-32 0.4 0.4 91.080% -
SCNN-MIMIC-SVHN-h32-32 0.5 0.5 91.172% -
SCNN-MIMIC-SVHN-h32-32 0.6 0.6 90.992% -
SCNN-MIMIC-SVHN-h32-32 0.7 0.7 91.049% -
SCNN-MIMIC-SVHN-h32-32 0.8 0.8 91.253% -
SCNN-MIMIC-SVHN-h32-32 0.9 0.9 91.461% -
SCNN-MIMIC-SVHN-h32-32 1.0 1.0 91.299% -

SCNN-MIMIC-SVHN-h32-32 On Logits - 90.646%

Number of Channels (L1-L2): 64-128 / Number of Parameters: 850k

SCNN-MIMIC-SVHN-h64-128 0.1 0.1 90.819% -
SCNN-MIMIC-SVHN-h64-128 0.2 0.2 91.257% -
SCNN-MIMIC-SVHN-h64-128 0.3 0.3 91.526% -
SCNN-MIMIC-SVHN-h64-128 0.4 0.4 91.272% -
SCNN-MIMIC-SVHN-h64-128 0.5 0.5 91.545% -
SCNN-MIMIC-SVHN-h64-128 0.6 0.6 91.299% -
SCNN-MIMIC-SVHN-h64-128 0.7 0.7 91.633% -
SCNN-MIMIC-SVHN-h64-128 0.8 0.8 91.679% -
SCNN-MIMIC-SVHN-h64-128 0.9 0.9 91.829% -
SCNN-MIMIC-SVHN-h64-128 1.0 1.0 91.902% -

SCNN-MIMIC-SVHN-h64-128 On Logits - 91.361%

Number of Channels (L1-L2): 64-512 / Number of Parameters: 3.5M

SCNN-MIMIC-SVHN-h64-512 0.1 0.1 91.207% -
SCNN-MIMIC-SVHN-h64-512 0.2 0.2 91.576% -
SCNN-MIMIC-SVHN-h64-512 0.3 0.3 91.299% -
SCNN-MIMIC-SVHN-h64-512 0.4 0.4 91.441% -
SCNN-MIMIC-SVHN-h64-512 0.5 0.5 91.848% -
SCNN-MIMIC-SVHN-h64-512 0.6 0.6 91.464% -
SCNN-MIMIC-SVHN-h64-512 0.7 0.7 92.071% -
SCNN-MIMIC-SVHN-h64-512 0.8 0.8 91.952% -
SCNN-MIMIC-SVHN-h64-512 0.9 0.9 92.083% -
SCNN-MIMIC-SVHN-h64-512 1.0 1.0 91.887% -

SCNN-MIMIC-SVHN-h64-512 On Logits - 91.583%

Number of Channels (L1-L2): 350-1024 / Number of Parameters: 9.5M

SCNN-MIMIC-SVHN-h350-1024 0.1 0.1 91.153% -
SCNN-MIMIC-SVHN-h350-1024 0.2 0.2 91.195% -
SCNN-MIMIC-SVHN-h350-1024 0.3 0.3 91.280% -
SCNN-MIMIC-SVHN-h350-1024 0.4 0.4 91.760% -
SCNN-MIMIC-SVHN-h350-1024 0.5 0.5 91.806% -
SCNN-MIMIC-SVHN-h350-1024 0.6 0.6 91.649% -
SCNN-MIMIC-SVHN-h350-1024 0.7 0.7 91.722% -
SCNN-MIMIC-SVHN-h350-1024 0.8 0.8 91.776% -
SCNN-MIMIC-SVHN-h350-1024 0.9 0.9 91.952% -
SCNN-MIMIC-SVHN-h350-1024 1.0 1.0 91.956% -

SCNN-MIMIC-SVHN-h350-1024 On Logits - 91.637%
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B. Experiments

Table B.5: SCNN Experiments Two Convolutional Layers with Teacher Temperature - CIFAR10

Name Teacher’s Temperature Accuracy (d) Accuracy (b)

Number of Channels (L1-L2): 64-128 / Number of Parameters: 650k

SCNN-MIMIC-CIFAR10-h64-128 0.1 0.1 71.990% -
SCNN-MIMIC-CIFAR10-h64-128 0.2 0.2 72.400% -
SCNN-MIMIC-CIFAR10-h64-128 0.3 0.3 73.050% -
SCNN-MIMIC-CIFAR10-h64-128 0.4 0.4 73.270% -
SCNN-MIMIC-CIFAR10-h64-128 0.5 0.5 73.350% -
SCNN-MIMIC-CIFAR10-h64-128 0.6 0.6 73.690% -
SCNN-MIMIC-CIFAR10-h64-128 0.7 0.7 73.990% -
SCNN-MIMIC-CIFAR10-h64-128 0.8 0.8 74.420% -
SCNN-MIMIC-CIFAR10-h64-128 0.9 0.9 74.430% -
SCNN-MIMIC-CIFAR10-h64-128 1.0 1.0 74.710% -

SCNN-MIMIC-CIFAR10-h64-128 On Logits - 73.450%

Number of Channels (L1-L2): 64-512 / Number of Parameters: 2.5M

SCNN-MIMIC-CIFAR10-h64-512 0.1 0.1 72.800% -
SCNN-MIMIC-CIFAR10-h64-512 0.2 0.2 72.640% -
SCNN-MIMIC-CIFAR10-h64-512 0.3 0.3 73.650% -
SCNN-MIMIC-CIFAR10-h64-512 0.4 0.4 73.350% -
SCNN-MIMIC-CIFAR10-h64-512 0.5 0.5 73.520% -
SCNN-MIMIC-CIFAR10-h64-512 0.6 0.6 74.930% -
SCNN-MIMIC-CIFAR10-h64-512 0.7 0.7 75.000% -
SCNN-MIMIC-CIFAR10-h64-512 0.8 0.8 75.200% -
SCNN-MIMIC-CIFAR10-h64-512 0.9 0.9 74.960% -
SCNN-MIMIC-CIFAR10-h64-512 1.0 1.0 75.260% -

SCNN-MIMIC-CIFAR10-h64-512 On Logits - 75.120%

Number of Channels (L1-L2): 128-1024 / Number of Parameters: 6M

SCNN-MIMIC-CIFAR10-h128-1024 0.1 0.1 73.130% -
SCNN-MIMIC-CIFAR10-h128-1024 0.2 0.2 73.810% -
SCNN-MIMIC-CIFAR10-h128-1024 0.3 0.3 73.670% -
SCNN-MIMIC-CIFAR10-h128-1024 0.4 0.4 74.020% -
SCNN-MIMIC-CIFAR10-h128-1024 0.5 0.5 73.690% -
SCNN-MIMIC-CIFAR10-h128-1024 0.6 0.6 74.250% -
SCNN-MIMIC-CIFAR10-h128-1024 0.7 0.7 74.670% -
SCNN-MIMIC-CIFAR10-h128-1024 0.8 0.8 73.870% -
SCNN-MIMIC-CIFAR10-h128-1024 0.9 0.9 75.770% -
SCNN-MIMIC-CIFAR10-h128-1024 1.0 1.0 76.670% -

SCNN-MIMIC-CIFAR10-h128-1024 On Logits - 75.460%

(*) The SCNN-MIMIC-CIFAR10-256-2048 experiments were not conducted due to the huge training time each model required. We expect similar results though.
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B.3. Ranging the Temperature Detailed Accuracy Results

Table B.6: SCNN Experiments Two Convolutional Layers with Teacher Temperature - CIFAR10

Name Teacher’s Temperature Accuracy (d) Accuracy (b)

Number of Channels (L1-L2): 64-128 / Number of Parameters: 650k

SCNN-MIMIC-CIFAR10-h64-128 1.5 1.5 75.920% -
SCNN-MIMIC-CIFAR10-h64-128 2.0 2.0 76.140% -
SCNN-MIMIC-CIFAR10-h64-128 2.5 2.5 76.200% -
SCNN-MIMIC-CIFAR10-h64-128 3.0 3.0 75.510% -
SCNN-MIMIC-CIFAR10-h64-128 3.5 3.5 75.320% -
SCNN-MIMIC-CIFAR10-h64-128 4.0 4.0 76.180% -
SCNN-MIMIC-CIFAR10-h64-128 4.5 4.5 76.570% -
SCNN-MIMIC-CIFAR10-h64-128 5.0 5.0 76.020% -

SCNN-MIMIC-CIFAR10-h64-128 On Logits - 73.450%

Number of Channels (L1-L2): 64-512 / Number of Parameters: 2.5M

SCNN-MIMIC-CIFAR10-h64-512 1.5 1.5 76.480% -
SCNN-MIMIC-CIFAR10-h64-512 2.0 2.0 77.140% -
SCNN-MIMIC-CIFAR10-h64-512 2.5 2.5 76.400% -
SCNN-MIMIC-CIFAR10-h64-512 3.0 3.0 76.700% -
SCNN-MIMIC-CIFAR10-h64-512 3.5 3.5 76.860% -
SCNN-MIMIC-CIFAR10-h64-512 4.0 4.0 75.480% -
SCNN-MIMIC-CIFAR10-h64-512 4.5 4.5 76.300% -
SCNN-MIMIC-CIFAR10-h64-512 5.0 5.0 76.810% -

SCNN-MIMIC-CIFAR10-h64-512 On Logits - 75.120%

Number of Channels (L1-L2): 128-1024 / Number of Parameters: 6M

SCNN-MIMIC-CIFAR10-h128-1024 1.5 1.5 76.330% -
SCNN-MIMIC-CIFAR10-h128-1024 2.0 2.0 76.310% -
SCNN-MIMIC-CIFAR10-h128-1024 2.5 2.5 76.360% -
SCNN-MIMIC-CIFAR10-h128-1024 3.0 3.0 75.750% -
SCNN-MIMIC-CIFAR10-h128-1024 3.5 3.5 76.820% -
SCNN-MIMIC-CIFAR10-h128-1024 4.0 4.0 76.050% -
SCNN-MIMIC-CIFAR10-h128-1024 4.5 4.5 76.330% -
SCNN-MIMIC-CIFAR10-h128-1024 5.0 5.0 75.710% -

SCNN-MIMIC-CIFAR10-h128-1024 On Logits - 75.460%

(*) The SCNN-MIMIC-CIFAR10-256-2048 experiments were not conducted due to the huge training time each model required. We expect similar results though.
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Appendix C

Certification Area & Number of Parameters

C.1 CIFAR-10 Dataset Certification Area Graphs

Figure C.1: Baseline Model

Accuracy: 60.330%
250k parameters

Figure C.2: Distillated Model

Accuracy: 56.220%
260k parameters

Figure C.3: Distillated Model

Accuracy: 59.250%
1M parameters

Figure C.4: Distillated Model

Accuracy: 58.920%
2M parameters
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C. Certification Area & Number of Parameters

Figure C.5: Robust Model

Accuracy: 53.180%
250k parameters

Figure C.6: Distillated Model

Accuracy: 50.710%
260k parameters

Figure C.7: Distillated Model

Accuracy: 52.430%
1M parameters

Figure C.8: Distillated Model

Accuracy: 52.880%
2M parameters

C.2 SVHN Dataset Certification Area Graphs

Figure C.9: Baseline Model

Accuracy: 60.330%
250k parameters
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C.2. SVHN Dataset Certification Area Graphs

Figure C.10: Distillated Model

Accuracy: 56.220%
260k parameters

Figure C.11: Distillated Model

Accuracy: 59.250%
1M parameters

Figure C.12: Distillated Model

Accuracy: 58.920%
2M parameters

Figure C.13: Robust Model

Accuracy: 53.180%
250k parameters

Figure C.14: Distillated Model

Accuracy: 50.710%
260k parameters

Figure C.15: Distillated Model

Accuracy: 52.430%
1M parameters

Figure C.16: Distillated Model

Accuracy: 52.880%
2M parameters
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