
ETH Library

Characterization of Interrupt
Handling in Board Management
Controllers

Bachelor Thesis

Author(s):
Oberdörfer, Tobias

Publication date:
2021-09

Permanent link:
https://doi.org/10.3929/ethz-b-000533013

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000533013
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Bachelor’s Thesis Nr. 353b

Systems Group, Department of Computer Science, ETH Zurich

Characterization of Interrupt Handling in Board Management Controllers

by

Tobias Oberdörfer

Supervised by

Daniel Schwyn
Dr. Michael Giardino

Prof. Dr. Timothy Roscoe

March 2021 – September 2021

Abstract

Outside the Systems Group at ETH Zurich, there are not many research possibilities in regards
to Board Management Controllers (BMC). However, research into them is nevertheless significant
as BMCs are responsible for many things, one of them being the emergency response on hardware
faults. Even with such a critical responsibility, the response time of the BMC interrupt handler
on the Enzian system, developed at ETH, was preliminarily measured in the order of hundreds of
milliseconds [1]. Further, this vital system could not be characterized in detail up to this point, as
no tools to do so worked on the operating system of the BMC.

This work shows how it is possible to get some tracing to work for the OpenBMC-based kernel
in use on Enzian. Additionally, a test suite named the TestBench, was created to trace multiple
Linux tools repeatedly and consistently. Inefficiencies in the current implementation were found
utilizing these tools and the improvements to them reduce the total response time of the interrupt
handling by 30-45%.

i

Acknowledgements

Throughout the writing of this thesis, I have received a a lot of support and assistance. Without
all of that, this work would not have turned out the way it has.

First, I would like to thank my supervisor Prof. Dr. Timothy Roscoe for the possibility to work
on such an exciting and cutting edge project like Enzian and for all the helpful comments throughout
my time working on it.

It is hard to find words to express my utmost gratitude towards my co-supervisors Dr. Michael Gi-
ardino and Daniel Schwyn that invested countless hours helping me understand the complexity of
the Enzian system. I am incredibly grateful for the always helpful answers they gave whenever I
asked them, no matter how basic, and the fantastic feedback they provided me.

I would also like to thank everyone else in the Enzian Group of ETH Zurich, specifically
Dr. David Cock, for answering my questions during the weekly Enzian meetings and so often giving
very insightful tips. An additional thank you to Ben Fiedler for the excellent idea on how to improve
this work.

Lastly, I wish to express my appreciation for all the help my friends and family gave me while
writing this thesis. In particular, I would like to thank my roommates for being my sounding board
and all the astute thoughts they had for me. Special thanks also go out to all my friends and family
members that proofread this work and gave me so valuable feedback. An enormous thank you goes
to my girlfriend who encouraged me along the way to keep working and for all the breaks we had
that fully recharged me.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 1
1.3 Solution . 2

2 Background 3
2.1 Enzian . 3
2.2 Baseboard Management Controller . 3

2.2.1 Linux as a real-time system . 4
2.2.2 EnzianBMC — OpenBMC on Enzian . 5
2.2.3 Yocto Project — Chosen build system for EnzianBMC 5
2.2.4 The power-manager . 6

2.3 Interrupts and interrupt handling . 8
2.3.1 Fault interrupt path on the Enzian BMC . 8

2.4 Tracing and profiling . 8
2.4.1 Trace and profiling tools available for Linux 10
2.4.2 Other tools used for characterization . 13

3 Interrupt characterization design 16
3.1 What needs to be done . 16

3.1.1 Outside Python . 16
3.1.2 Within Python . 17
3.1.3 Installing instrumentation on EnzianBMC . 18
3.1.4 EnzianBMC as a real-time system . 19

3.2 Created tooling . 20
3.2.1 The TestBench . 20
3.2.2 EvaluationScripts . 22

4 Implementation 23
4.1 Getting some tools to work . 23

4.1.1 dmesg . 23
4.1.2 Perf . 24
4.1.3 Python logging . 24
4.1.4 Adding tracepoints to xgpio driver . 25

4.2 The TestBench . 26
4.2.1 Part running on the Enzian BMC . 27
4.2.2 Test scripts on BMC . 34

iii

CONTENTS iv

4.2.3 Part running locally . 35
4.3 Evaluation scripts . 35

4.3.1 Parsing the TestBench output . 36
4.3.2 Gaining insights from parsed data . 38

5 Evaluation 39
5.1 Tracing generally . 39

5.1.1 Timing in Python . 39
5.1.2 Relative time between Python and tools . 40
5.1.3 Logging overhead of Python . 41

5.2 Interrupt handler latencies . 42
5.2.1 Using the TestBench . 42
5.2.2 Improvements on latency . 44

6 Conclusion 49

References 50

A Appendix I
A.1 Step-by-step guides . I

A.1.1 Building a fresh EnzianBMC kernel . I
A.1.2 Backporting perf patches to work on EnzianBMC I
A.1.3 Kernel build configuration . II
A.1.4 Applying a kernel patch to EnzianBMC using Yocto III

A.2 Git patches . IV
A.2.1 Git patch backporting perf changes for OpenEmbedded version 3.2 IV

List of Listings

1 Two commands to set maximal kernel log level. 23
2 Use journalctl to get logging output from the fault service. 24
3 Example of how logging is used to profile the scram in fault_service. 25
4 Output of the fault service during scram with added tracing. 25
5 Partial header file for adding tracepoints to xgpio driver. 26
6 Use of the defined tracepoint in the xgpio driver. 26
7 Interface defined by the BaseCmd class . 28
8 Most important part of the ToProfile class . 30
9 New D-Bus method added to the fault service for easier scram response 31
10 Primary functionality of FanScramProfile() . 31
11 Most important part of the TestEnvironment class 32
12 The LoadedEnvironment class’ implementation of runEnvironmentTest() 33
13 Combination of parts that amount to the TestBench 34
14 A reduced TestBench output using multiple commands. 37
15 Overhead test of the Python time module. 40
16 Reduced timingTestPerfDmesg.py output without clock source. 40
17 timingTestPerfDmesg.py output for perf with monotonic raw clock source. 40
18 Initial characterization of interrupt handling in ms using directScram. 42
19 Initial characterization of interrupt handling in ms using FanScramProfile(). 43
20 Parsed SMBus communication difference between fanScram and directScram 44
21 Beginning of linux-enzianbmc.bbappend to configure Yocto to apply kernel patches. . III

v

Chapter 1

Introduction

It is a critical issue if an emergency response system in any state-of-the-art computer system takes
hundreds of milliseconds to react. The timeliness of this emergency response can determine whether
the hardware is damaged or not, for example, if the cooling system malfunctions. Unfortunately,
such a slow response time is the case for the current implementation of the fault interrupt handler
custom-built for the Enzian Board Management Controller (BMC). Furthermore, the characteri-
zation of this emergency response was not done up to now, as the necessary tracing tools on the
Enzian BMC kernel (EnzianBMC) were not yet working.

In this work, we address these critical issues by first showing how to get tracing and profiling
tools on EnzianBMC to work in the different stages throughout the interrupt handler. These, now
functioning, Linux tools are then combined with the custom-built TestBench to trace the emergency
shutdown function repeatedly and consistently. Doing so led to the discovery of inefficiencies that,
after improvement, reduced the response time by up to 45%.

1.1 Motivation

While many Board Management Controllers are proprietary and therefore inaccessible for general
research, this is not the case for the BMC of the Enzian project in the Systems Group at ETH
Zurich. This opens the avenue to work on and improve upon existing BMC software.

In preliminary experiments on the Enzian BMC the emergency shutdown function on an idle
system took around 200ms [1]. This emergency shutdown, called a scram, is triggered by the BMC
whenever any critical hardware issues are detected. Examples of such issues are overvoltage, over-
current, or simply the cooling fans not working correctly. Any of these issues could damage hardware
components like a CPU or an FPGA. Because of this, it is essential to shut these components down
as quickly as possible to protect them from further harm. Hence for such a vital function to the
system’s health, the preliminary scram response time measured is very significant.

1.2 Challenges

Improving the emergency response time of the EnzianBMC is possible by characterizing the interrupt
handler doing this shutdown. This characterization can be done using tracing or profiling, which
both give information on where the most significant time is lost within the current implementation.

One challenge to achieving this characterization is the sheer complexity of today’s servers, even
more so of the Enzian project. After understanding some parts of Enzian and its Board Management
Controller, the next challenge is that the kernel running on Enzian’s BMC does not have any working

1

CHAPTER 1. INTRODUCTION 2

tracing or profiling tools to do the characterization. Knowing there are multiple tools available for
Linux to characterize different places in the kernel, finding a way of combining the output from
them was another. The last challenge known from the beginning was that any Linux distribution,
even for an embedded system, is non-deterministic by design. This non-determinism stems from
many sources like parallel execution or the possibility of an interrupt occurring at any time. Other
causes can be scheduling or simply non-deterministic choices taken in software.

1.3 Solution

Before getting tracing or profiling tools to work on EnzianBMC, knowledge of which tools are even
available in Linux is required. For that reason, we discuss the available tools in the background.
There we also analyze which tools could be used to characterize the interrupt handler and which
can be used on EnzibanBMC.

The Yocto Project, described in subsection 2.2.3, is the build system for the operating system
(OS) of the Enzian BMC which is also used to add tracing tools. Unfortunately, adding them was
more than using the respective Yocto recipes. Problems encountered ranged from missing patches
for the tool in question to the embedded system not having enough flash memory to store the final
image with everything added.

We ended up using the Linux tool perf and multiple Python scripts for the characterization.
Dmesg was used initially for kernel driver timing but replaced with higher fidelity tracing using
perf and kernel driver tracepoints. Python logging with the time module was used to profile the
biggest part of EnzianBMC, called the power-manager, because of less overhead compared to other
available options.

To work around the non-deterministic nature of Linux while characterizing the interrupt han-
dling, all tool usage had to have reproducibility in mind. This way, it is possible to show statistical
insights throughout the power-manager and the kernel by repeatedly running the same test. To
achieve this reproducibility, the so-called TestBench described in section 4.2 was implemented.

Utilizing the tools we brought into working conditions on EnzianBMC, it is possible to charac-
terize the interrupt handler. The results of our initial characterization, which we again found to
be in the order of hundreds of milliseconds, together with the inefficiencies found in the current
implementation, can be seen in chapter 5. Some of these inefficiencies were expected and are now
validated, while most of them were further inspected and improved. All improvements combined
resulted in around 45% reduction in emergency response time.

Chapter 2

Background

Characterization of the interrupt handler on the EnzianBMC needs a breadth of knowledge. This
includes tools that can access the necessary parts within the kernel to application layer programs
executed using an interpreter. Which hardware triggers interrupts, how the EnzianBMC receives
them or what the power-manager issues as a response to these interrupts.

Some of this needed knowledge is discussed in this section. It starts with what the Enzian
platform is, followed by what is usually defined as a Board Management Controller. Because BMCs
interact closely with the physical world, real-time systems are presented. An introduction to the
build system for EnzianBMC called the Yocto Project is followed by one about the main components
of the power-manager doing the fault interrupt handling. What interrupts are and a graphical
representation of the path a fault interrupt takes on the EnzianBMC can be seen in section 2.3.
Lastly, we introduce different tools available on Linux used for tracing in this work, including those
that were actually used and those we failed to get working with reasons why.

2.1 Enzian

The Systems Group of ETH Zurich developed a heterogeneous server-class computer named Enzian.
This server consists of a 48-core Marvell Cavium ThunderX processor alongside a Xilinx Virtex
UltraScale+ XCVU9P FPGA as the main FPGA. The BMC is an Enclustra Mercury ZX5 [2]
module sporting a Xilinx XC7Z015 System on Chip (SoC)[3]. The latter has as an embedded
system beside a CPU and an FPGA, 1 GiB SDRAM and 576 MiB flash memory.

Much work for the Enzian project went into the BMC software stack as existing software had
to be modified to work with the newly created board. This work on the EnzianBMC includes
implementing drivers, real-time tasks, and making the BMC work according to its responsibilities
as a fail-safe for the Enzian board. As a fail-safe, the BMC has to react to issues and, in particular,
faults across the Enzian server and power off components before they are damaged. Powering off
these components is a vital goal of the EnzianBMC, but its timeliness was never checked because
no tooling to do so worked.

2.2 Baseboard Management Controller

Baseboard Management Controllers (BMC) are usually on the motherboard of another system
as a specialized service processor to monitor the state of that system. This other system can
be any hardware device needing monitoring, such as a smartphone, personal computer, network
device, or server like Enzian. Besides possibly communicating information about the system’s state

3

CHAPTER 2. BACKGROUND 4

over the network to an administrator, they also allow the latter to remotely manage the device.
These management capabilities can range from power cycling, initializing or configuring the primary
system, to completely reflashing it. Even though BMCs are widespread, no universal definition of
what they exactly should be capable of or contain exists and as such the specifics of them can differ
widely.

A BMC in servers like Enzian can commonly access internal physical variables such as tem-
perature, power supply voltage and current, fan speeds, and OS functions. They can not only log
all of these variables, but if some stray outside specified limits, they power off the primary system
to safeguard it from further damage. This damage to hardware can be from overcurrent breaking
components to heat destroying them without appropriate cooling. Powering off or rebooting the
primary system is possible in the first place because the BMC is often not connected to the same
power rails or power supply as the rest of the device.

BMCs generally are not standardized, often closed platform, and highly vendor-specific. They
still do mostly align with the Intelligent Platform Management Interface (IPMI) [4] standard, even
though it is now advised by Intel [5] to use a more modern standard like DMTF Redfish[6].

The software running on BMCs is similarly not standardized, and the only well-developed and
documented open-source project is OpenBMC [7]. It is very modular, based on Linux and D-Bus,
and implements configurable BMC functionality. This functionality contains most of what a typical
BMC software stack has to be capable of, including power, cooling, and network management
and support for sensors, logging, and simulation. OpenBMC has as founding organizations and
supporters Microsoft, Intel, IBM, Google, Facebook, and an extensive and active community. It is
configured and built using the Yocto build system described in more detail in subsection 2.2.3.

In general, because of the complexity involved in a BMC, configuring one securely is very hard.
This leads to them being excellent attack vectors often neglected and hence part of the top five
hardware attack vectors [8].

2.2.1 Linux as a real-time system

In addition to giving remote access to hardware, the control loops running on a BMC are there to
shut down the main machine if it is outside of its safe bounds. Hence BMCs and their operating
system should operate as close to real-time as possible. The Enzian board has, in addition to the
CPU, an FPGA producing an immense amount of heat. For this reason, it is even more relevant
to check sensors and to shut the system off within as little time as possible if something should be
amiss.

Real-time systems often interact closely with the physical world and hence are very sensitive
in respect to their execution time. Such real-time systems are built into cars, planes, or industrial
robots. They have to react to changing circumstances within a specific time window as otherwise
they run into critical failures. These critical failures can mean permanent damage or even physical
harm to people. Real-time systems are usually built up such that each abstraction layer gives
guarantees to the layers above. These guarantees do not exist in the Linux kernel by default and
consequently also not in EnzianBMC.

Linux PREEMPT_RT patch

Even if the Linux kernel is by default far from a real-time operating system there do exist efforts
to reduce the disparity. The most prominent of these efforts is the Linux PREEMPT_RT kernel
patch [9].

CHAPTER 2. BACKGROUND 5

One of the most pressing issues this patch tries to address is the fact that in the default Linux
kernel many systems are by design non-preemptible. This means that once they start running, they
will run until they finish with whatever work they have to do. In regular applications, where the
Linux kernel is not used as part of a real-time system, this is not a problem as we are talking about
sub-millisecond delays.

However, this is not the case for real-time systems in general and is a primary source of problems
when using Linux as one. There are different approaches to different subsystems within the kernel
to fix these issues. One of the main ideas is replacing or modifying subsystems with equivalently
functioning systems that can be preempted.

One such example in the PREEMPT_RT patch is converting the typical Linux interrupt han-
dlers into preemptible kernel threads. Another modified subsystem is the mutex locks within the
kernel being made preemptible through reimplementation with rtmutexes. For a more detailed
explanation of what the PREEMPT_RT patch changes within the Linux kernel see their official
website [9].

2.2.2 EnzianBMC — OpenBMC on Enzian

Enzian is a racked server-class machine, which means users may not always have physical access. For
this reason, it also supports maintenance of the board in the form of a Board Management Controller
(see section 2.2). As OpenBMC is configurable and compatible with all types of embedded BMCs
the kernel running on the Enzian BMC is OpenBMC version 3.2 with modifications and additions.
The main parts added are the power-manager described in 2.2.4, which consists primarily of four
services, as well as a modified driver from Xilinx for GPIO interrupt handling. This OpenBMC
kernel with all adjustments is called EnzianBMC.

As EnzianBMC is still a BMC, its primary goal is to keep the board in a running state. Mean-
ing the EnzianBMC powers the rest of the server on and off, checks the state of the hardware, and
importantly keeps the ThunderX CPUs and Xilinx FPGAs from overheating. Most of this func-
tionality goes through the services of the power-manager. Because the power-manager runs on the
Board Management Controller, it has access to many internal physical variables. Some of those are
voltage and current regulators on different rails of the CPU and FPGA. Others are the fan speeds
and temperature sensors throughout the case.

Another essential part of the BMC on Enzian is to give everyone working with Enzian’s the
possibility of rebooting, shutting down, programming the FPGA or even flashing a new OS remotely.
If no physical changes to hardware are necessary, most of these can be achieved through a series of
steps regardless of the current running state of the system. Using these features, fixing, for example,
a deadlocked kernel without physical access becomes possible.

2.2.3 Yocto Project — Chosen build system for EnzianBMC

The Yocto Project or Yocto is an open-source collaboration project that is described as not being a
distribution but creating one for you [10]. As BMC’s are embedded devices, and OpenBMC already
uses the Yocto Project and OpenEmbedded within it, the former was chosen as the build system for
EnzianBMC. Yocto features very high reproducibility as it compiles everything from scratch while
using caching of prebuild binaries for speed improvements. It is further very scalable and gives
many configuration options using abstractions named meta layers and recipes. The possibility to
search for such meta layers and recipes does exist [11] and was used in this work. After appending
these to a project, they add the defined features to the system. Because of these abstractions and
the possibilities they offer Yocto comes with the cost of higher complexity and a steeper learning

CHAPTER 2. BACKGROUND 6

curve. The products received from a successful Yocto build are a toolchain for this system, a root file
system, a kernel image, and a bootloader image. The latter three are used to flash a tracing-enabled
kernel to the Enzian BMC. Detailed steps on how to create these files for EnzianBMC can be seen
in subsection A.1.1.

Compared to other build systems like Buildroot[12], based around cross-compilation with make-
files, Yocto is faster because of actual caching and also has more industry support. A similar system
that could be used but is not meant for a BMC like EnzianBMC is the OpenWrt project[13]. This
is because it is more geared towards network devices and hence less flexible for a general embedded
system like the BMC with all of its sensors and responsibilities. One could even think of using a
normal distribution like Arch or Debian and adjust it for an embedded system, but this would be
challenging as they are not optimized for that purpose.

2.2.4 The power-manager

The power-manager at this time is mainly in the form of four Python services: the GPIO, Power,
Fault, and Telemetry service and an interrupt handler receiving GPIO interrupts written in C. All
four Python services are accessible and communicate using D-Bus and have an executable wrapper
script called <name of service>_service.py. These wrapper scripts are in the main directory of the
power-manager repository and used to start the services in a D-Bus main loop. At boot, systemd
similarly uses these scripts to start the power-manager. The actual functionality of the Python
services is implemented in the respective src/enzian/dbus/<service name>.py files within the
power-manager repository.

Descriptions of what functionality each part of the power-manager implements, which mecha-
nisms are used, and how they interact with each other follow.

XGPIO driver

The XGPIO driver is a modified Xilinx xgpio kernel driver. The kernel calls this driver when an
interrupt from hardware arrives for which it is responsible. Once called, the xgpio driver, using a
shadow register, will determine the pins that changed in value. For each of these values the driver
does the translation to the GPIO pin mapping within the kernel. It then calls further up the stack
ending in the GPIO service sending D-Bus signals for precisely those translated GPIO pins. Any
services running on the EnzianBMC can subscribe to these signals to get notified once they change.

GPIO service

The GPIO service handles all GPIO communication from Python by the power-manager with the
hardware. All signals from the other services and even the shell script go into this service and are
then sent over GPIO to hardware. As this service is the only one receiving GPIO interrupts from
the kernel, the primary interrupt handler within the power-manager is added here. This handler
method is named irq_handler and, after getting the GPIO value, sends this value with the correct
pin name out over D-Bus. Sending it results in all other handlers in services of the power-manager
connected to this specific pin name being executed.

Power service

The power service is the main interaction point of the power-manager to communicate with different
devices or change the whole system state over SMBus and I2C. The interaction with various devices
is implemented in separate device classes abstracting each device-specific interface into one common

CHAPTER 2. BACKGROUND 7

one. Additionally, this communication to hardware is done in a single-threaded fashion, which is
crucial as both SMBus and I2C can not handle contention. The power service exposes a lot of its
functionality through D-Bus and is the primary way of configuring and querying the hardware.

One example of a method exposed to configure hardware is set_device_control, which can
be used to set configuration values like fan speed. Setting specific binary values on the power
sequencers can be achieved by another method called device_write. A more critical method is the
common_power_up, which powers up and initializes the CPU, FPGA, and the fans in the correct
order. This order has to be done strictly according to specifications as otherwise hardware could
be damaged. All this exposed functionality is used by the other services, such as the fault service,
to set the fan speed or configure the power sequencers to shut off the power during an emergency
response. The common_power_up can similarly be used by any service or even an external script to
power up the system.

Fault service

A relatively small service but one with essential functionality is the fault service. It decides for all
signals that it receives what the appropriate reaction is. This decision logic depends on the type of
interrupt handler called.

There exists the generic alert_handler checking the received signal against which signals are
configured to result in an emergency shutdown. If the received signal is one of them, the scram
method is executed. Then there is the fault_handler method directly connected to the GPIO
service on the fan fault pin. This interrupt handler method shuts everything off as a security
measure when the fan bus reports a fault. Lastly, there is the unknown_alert_handler which listens
for device alerts from unknown devices and always results in a shutdown. This is done because we
can not determine which device has an issue if we do not know where the alert originated from.

This scram method called by the above handlers uses internally both the GPIO and power
service to shut off the Enzian board as quickly as possible. The method primarily characterized
throughout this work is this scram because the speed of this method is crucial for the health of the
system.

Telemetry service

The telemetry service is a minor service and not (yet) widely used. It is possible to add device
monitors to this service, each defining one value to be read from a specific device. When started,
this service will read the values of the monitors defined in set intervals that are configurable. Reading
of values is done using exposed methods of the power service. The telemetry service additionally
implements the functionality of sending the accumulated telemetry data as a signal on D-Bus. This,
in turn, can be used to make a dashboard about the most critical system values like voltage and
current draw of the Enzian board.

Helper scripts

Helper scripts are, for example, the start_services.py starting the above four services. This start
script is also run at the start-up of the BMC and can be used to get the services running again
should a systemctl restart not do so. Another useful script is the shell.py executed with the
argument bring_up, which internally makes use of power_sequence_bringup.py. These two scripts
combined create an interactive Python shell with all four power-manager services in the environ-
ment as objects and many more utility methods already defined. Examples of such methods are
init_sequencers, which initializes the sequencers of the different hardware rails to get them into

CHAPTER 2. BACKGROUND 8

a consistent state, common_power_down and common_power_up, which power down or up the regu-
lators, and init_bringup_script, which does more initialization.

2.3 Interrupts and interrupt handling

Interrupts are events changing the execution flow of a program and can be generated by hardware
or the CPU cores. When an interrupt occurs, the current flow of execution is suspended, and an
interrupt handler runs. The first thing the called interrupt handler does is figure out who fired this
interrupt and respond accordingly. For a Board Management Controller fault interrupts by voltage,
current, and temperature sensors are vital because handling them can reduce further damage to
the system. These interrupts usually notify the system of bounds that are transgressed and hence
probable imminent issues with the hardware. If the interrupt handler did not begin emergency
measures, it will jump back to where progress was suspended. This jump back is done to provide
the illusion that nothing happened to the running processes.

Generally, there are two properties of interrupts. One is if they are synchronous or asynchronous,
the other is if they are maskable or non-maskable. Synchronous interrupts can happen inside the
CPU by executing code. Because faults can happen anytime, these interrupts from hardware that
the faults trigger and EnzianBMC receive are asynchronous. The difference between maskable
and non-maskable interrupts is that maskable interrupts can be ignored by configuring them as
such, but a non-maskable one can not. The power-manager on EnzianBMC uses such masking to
ignore any faults that occur during powerup, during a normal shutdown, and after an emergency
shutdown. The fault interrupts happening during these short periods of time are not indicative of
actual defects but rather that some parts of hardware are not yet ready. Examples are under-voltage
during powerup of the regulators or overcurrent during start-up of some components.

For more detailed information about interrupt handling in operating systems in general, one can
take a look at Interrupt Handling Schemes in Operating Systems [14].

2.3.1 Fault interrupt path on the Enzian BMC

The characterization in this work is done in particular on the custom interrupt handler for hardware
faults. The path taken by a fault interrupt through EnzianBMC can be seen as a block diagram
in Figure 2.1. Even if this specific path is characterized here, the tools shown can be used for any
other interrupt handler as well.

An interrupt notifying the CPU of an event is as usual for interrupts first demultiplexed to be
then handed over to the appropriate software stack. In the case of EnzianBMC, the software that
will handle the fault events characterized is the modified xgpio driver. After this driver found that
pin values changed it hands the interrupt over to the power-manager. The power-manager receiving
this interrupt decides in the fault service if the machine should be shut down as a security measure.
If this is the case, the fault service using the power service talks through the kernel over the I2C
bus back to the relevant hardware to shut off the power.

2.4 Tracing and profiling

Whenever software is too slow for what it is supposed to achieve, there are two options. Either
to rewrite all of it from scratch in a more performant way or improve the speed of the existing
implementation. The former is often not feasible for multiple purposes like complexity, available
features, or simply not having the time a rewrite takes. To improve software, on the other hand,

CHAPTER 2. BACKGROUND 9

Figure 2.1: Hardware interrupt path through EnzianBMC in green.

knowing where the bottlenecks in the existing implementation are is necessary. Finding these is
where tracing and profiling tools can help, even if the distinction between them is often not very
well defined. There is generally not much up-to-date research on tracing or profiling Linux, but
information can be found in mailing lists and in writeups [15].

We define tracing as recording information about the execution of a program in great detail and
high frequency. Because of this high detail tracing is used to understand what goes on beneath
the many layers of abstraction in modern software. Tracers look for specific instrumentation points
within the executed code to get such a level of detail. The Linux kernel has multiple types of
these instrumentation points called kprobes, uprobes, User-level Statically Defined Tracing (USDT)
probes, and tracepoints. Their differences are subtle, but knowing that solely USDT probes and
uprobes are used in userspace applications is sufficient for this work. Whenever these tracepoints
are hit during execution, they are saved as an event to a trace file. Each event contains information
about when precisely which tracepoint was hit with which data. This data can be from nothing to
all the information accessible at that point in time. The information contained in these trace files
is then later used to understand what happened during execution.

Closely related to tracing is logging. It is defined as the high-level analysis of less frequent events
and is typically used for a different reason than tracing. A part of the EnzianBMC characterization
is using logging regardless to augment trace data.

Profiling is defined as a dynamic program analysis that measures a few program properties
like space and time complexity. Profiling tools can often give first insights but do so with coarse
granularity. Because of this, they usually can tell where inefficiencies are in source code but not
precisely how they are reached. To be able to say the latter, a more fine-grained trace of the program
execution is necessary.

CHAPTER 2. BACKGROUND 10

2.4.1 Trace and profiling tools available for Linux

As the scope of this work is to characterize the interrupt handling of an embedded Linux system,
we have many different frameworks and tools from the Linux ecosystem to choose from. A tool
differs from a framework in that users commonly interact with a tool and a framework mainly offers
capabilities to tools. Many Linux tools often have widely overlapping functionality in userland, the
kernel, and directly on hardware because the same framework in the background is used. Given
that no dedicated tracing on EnzianBMC was done up to this point, it was unclear which of the
widely used and open source options would be ideal for the task of characterization.

The tools listed below are in order of relevance to doing the characterization of the interrupt
handler on EnzianBMC and to get an overview of tools in existence for future reference. This is by
no means an exhaustive list of tools for tracing and profiling on Linux, but all the (non-proprietary)
tools thought appropriate for the task. Which of those can work on EnzianBMC was mostly figured
out by trial and error. They were tried because of their functionality but ultimately not used for
different reasons like not having enough storage capacity on EnzianBMC. Given these issues are
resolved, for example, with an external drive for more storage, trying at least some of them again
is worth it.

More details regarding system performance can be found in the book called “Systems Perfor-
mance: Enterprise and the Cloud” [16] by Brendan Gregg and on his homepage [15].

Perf

perf, perf tool, perf command or sometimes called perf_events and originally Performance Counters
for Linux (PCL) is a performance analyzing tool in Linux [17]. It has been available in the Linux
kernel since version 2.6.31 and was initially there to instrument CPU performance counters. A
Yocto recipe exists that, after being fixed, is used to get perf successfully onto the EnzianBMC. perf
can use any instrumentation points placed at logical locations in code, making it now more potent
than it originally was. These are not only performance counters in Linux anymore but also system
calls, file system operations, bus interactions, scheduling events, etc.

These perf_events have low overhead when the frequency at which the tracepoints are hit is
low1. Further, they do not impact the performance of the running system much. This is achieved
by disabling any instrumentation points when not in use and dynamically creating tracepoints using
the respective frameworks when needed.

Because the perf command-line tool is so feature-rich, it is split into subcommands that have
similar features grouped. Some of those subcommands are the following:

• perf record records events for later reporting. It will produce a .data output file in a binary
format containing all the traced events that were configured.

• perf report is a simple command breaking down events in a given trace file by different
metrics like process or function and many more. This is the subcommand most often used
when quickly checking what is happening on a system.

• perf timechart is the tool whenever a visualization of system behavior during a work-
load is needed. The trace file this subcommand is expecting can be created by running
perf timechart record or an adequately configured perf record command.

1This is the case because the only low-level tracing we are interested in are the fault interrupts and the bus
interactions caused by these interrupts. Both of these are compared to other tracepoints like CPU counters and more
a lot less frequent.

CHAPTER 2. BACKGROUND 11

• perf script is the primary programmatical way of interacting with the created trace file.
Executed without any arguments, however, it will print a detailed trace of the recorded work-
load.

Because perf is so feature-rich and it was possible to fix its Yocto recipe, it is used throughout
this work. Further, every kernel module can easily be extended to implement static tracepoints
directly accessible by perf.

Extended Berkley Package Filter

The first instantiation of the Extended Berkley Package Filter (eBPF) [18] was added to Linux 3.15
and is an extension to the BSD Package Filter [19]. eBPF allows loading any eBPF program to
run in the kernel. Because the kernel has unrestricted access to many more system variables and
processes than userspace programs, eBPF is not only interesting for tracing and profiling but also
for other applications like security [20].

One nice feature of eBPF is the low overhead compared to userspace tracing tools for high-
frequency tracing. This speedup is gained by not sending the tracepoint data to userspace but
directly filtering it inside the kernel. In addition to not doing any calculations in userspace this
simultaneously means having fewer context switches.

As eBPF is part of the Linux kernel, it can be activated with the CONFIG_BPF_SYSCALL
menuconfig flag in normal distributions and similarly in Yocto. Because eBPF is only a framework
for tracing, profiling, and much more, it is not helpful for most users in itself but only in combination
with tools using it. Some tools that use eBPF are BCC, bpftrace, and ply.

BCC and bpftrace

BPF Compiler Collection (BCC) [21] is a toolkit for creating efficient kernel tracing and manip-
ulation programs using the bpf syscall in Linux. It includes many useful tools and examples and
crucially enables writing eBPF programs very quickly in Python. As BCC uses eBPF in the back-
ground, their capabilities are the same but BCC offers better usability.

bpftrace [22] is a high-level tracing language that uses BCC to interact with eBPF in Linux.
The C-like language allows for quick and efficient use of eBPF. Because BCC code is very complex
and has a higher skill floor than bpftrace the latter is more accessible.

For eBPF and either BCC or bpftrace, there exist readymade Yocto recipes for installing them
on EnzianBMC. The issue that arises during installation is that both of those recipes install a full
LLVM compiler [23] with eBPF support built-in. They do so because BCC uses LLVM to compile
the written filters into executable eBPF code. As the LLVM compiler is around 200MB in size, the
image to flash onto the BMC grows by too much, given that our BMC only has roughly 500MB of
flash storage for everything.

Making a custom recipe that tries to reduce the additional size might be possible, but while
other tools needing less work are good enough, this overhead is not worth it.

ply

ply [24] is an open-source frontend that uses the bpf syscall to make use of the eBPF virtual machine
inside the Linux kernel. Compared to BCC and bpftrace, ply is designed with embedded systems
in mind and hence does not need LLVM installed. Its only prerequisites are a libc and the Linux
BPF support built into the kernel. ply would be perfect for Enzian as everything needed locally
on the BMC is the small ply binary compiled against the EnzianBMC headers. This is a major

CHAPTER 2. BACKGROUND 12

advantage over BCC and bpftrace with their need for storage while still being very efficient and
able to connect to most of the events that the other tools can. ply’s scripting language for filtering
over the different events is further easy to learn and concise.

There are multiple reasons why ply is not used to characterize the interrupt handler on En-
zianBMC. One is that ply was missed in the first search for existing tracing tools on Linux as it
is not yet widely known. At present, there does also not exist a Yocto recipe to install ply easily.
Additionally, ply is still under heavy development and has neither a stable nor well-documented
language except for a few examples. Lastly and most importantly, perf was already fully working
by the time ply was found.

OProfile

OProfile [25], an open-source project initially released in 2001, was one of the first tracers that
worked very well to do system-wide and single process profiling. It had little overhead from the
beginning and even support for call graphs. Besides perf and eBPF, OProfile has the most features
out of the box. It provided those features for a long time using its own framework of a Linux kernel
driver and a daemon. In Linux kernel version 2.6.31 this framework got dropped in favor of the
more general and powerful Performance Counters for Linux. Since the kernel release 5.12 a few
months back, OProfile is not part of the kernel anymore, but its very user-friendly userspace tools
continue to work using the perf_event subsystems. Because it is not part of the kernel anymore,
it now has to be installed as a package. Doing so with Yocto was possible until the Yocto Project
2.5 Release. In the migration information of this particular release is mentioned under point 4.13.2
Removed Recipes [26]; “oprofile: The functionality of this recipe is replaced by perf and keeping
compatibility on an ongoing basis with musl is difficult.”

The version of Yocto Project currently used by EnzianBMC is 3.2, which means this recipe does
not exist anymore. Even though it ought to be possible, no further work was put into researching
how to install it anyways. If the developers of the Yocto Project decided to remove OProfile and
suggest perf, there is no reason to question their verdict.

LTTng

Linux Trace Toolkit: next generation [27], or LTTng for short, is one of the newer open-source
endeavors to cater to high-performance tracing in Linux. It is more of a toolkit comprised of many
tools to trace the Linux kernel than a single tool or framework. It does so using its own frame-
work and allows tracing of user applications and the kernel simultaneously. This allows LTTng to
do almost everything the other tools can with high performance and without in-kernel program-
ming. LTTng operates using kernel modules to provide the tracing capabilities and is reasonably
lightweight.

An exciting feature of LTTng is that it has good support to trace Java, Python, and C/C++ on
top of the standard kernel tracepoints. It is very flexible by either streaming the events to a remote
machine, tracing them locally, monitoring live events, only keeping a set size snapshot or directly
the ring buffer’s content on a persistent file. There already exists a Yocto recipe for LTTng, which
should make installing it relatively straightforward.

LTTng was not chosen to characterizing the interrupt handler over perf for the simple reason
that its existing Yocto recipe did not work immediately either. As far as was checked, the issue is
similar to other tools the final size of the image2.

2It does not right away look like exactly the same size issue. Because of this and its features, taking another look
at LTTng for future tracing efforts on EnzianBMC is worth it.

CHAPTER 2. BACKGROUND 13

SystemTap

SystemTap [28] is one of the tracers that uses its own framework, is very powerful, quite a bit more
complex but generally regarded as less safe. It works by building kernel modules from user scripts
against the Linux kernel it is running on and then loading them. Besides root access, the kernel’s
only other prerequisites are a C/C++11 compiler to compile the scripts, elfutils to parse debugging
information, and Python for the tools themselves.

SystemTap had issues in the past with kernel panics or freezes. This was often the case because
SystemTap was the first to use new kernel tracing capabilities that might not be entirely bug-
free. Even though it is now supposed to be safer, it is still suggested only to use SystemTap in
development or fault-tolerant environments. Regardless of that, SystemTap has an existing Yocto
recipe that should make it very manageable to install on EnzianBMC.

SystemTap was not used because of its expectation that all debug symbols are available at run
time. In normal circumstances, when compiling a kernel from scratch, this is not an issue. However,
similarly to BCC and bpftrace, this is challenging on the BMC of Enzian because fitting all debug
symbols on the available flash memory is not possible. Furthermore, the suggestion to only use it in
fault-tolerant environments, with the BMC being a critical component, made the decision to favor
other tools relatively easy.

Others tools worth mentioning

There do exist more tracers on Linux; some worth mentioning are ftrace [29], strace [30], sysdig [31],
and dtrace4linux [32]. Most of these are either less supported, in development, or have fewer
capabilities than the others mentioned.

ftrace is one of the Linux internal tracers to find out what is going on inside the kernel where
it can be used for debugging or tracing latencies and performance. Although ftrace is typically
considered the Linux tool called the function tracer, it is multiple tracing utilities aggregated.
ftrace uses in the background the tracefs file system similar as perf can and is as such not needed3.

strace only traces on each syscall of a program using an outdated API. Further, it has as a bug
“A traced process runs slowly” [30].

sysdig is relatively new and gives a complex set of kernel-level instrumentation and analysis tools
to provide deep system visibility, with native support for containers. It is not used because of its
primary focus on cloud systems like Kubernetes.

dtrace4linux is an effort to port Sun DTrace to Linux, which would have some exciting capabil-
ities if it were stable and integrated deeper into the Linux kernel.

2.4.2 Other tools used for characterization

Because a big part of the power-manager is written in Python, the tools and modules used to trace
or profile it are mentioned here. For each of the options, the argument why it was not used is given.

Other Linux tooling commonly not categorized as tracers but used throughout this work are
dmesg and systemd-journald. Even though the purpose of these two is not tracing, they are still
helpful if other tools are impossible to set up.

Python tracing and profiling

To achieve the goal of characterizing the interrupt handler, it was imperative to be able to trace or
profile the services written in Python. Python has many packages available in regards to tracing

3Additionally, the perf ftrace command is a wrapper around ftrace.

CHAPTER 2. BACKGROUND 14

and profiling. Some that could characterize the power-manager code and are mentioned in chapter 3
are summarized below, grouped by the type how they would. These groups are the profilers like
scalene [33] and cProfile [34] as well as tracing tools like CPython [35] compiled with --dtrace
and stapsdt [36]. The third group with the timeit [37] and time [38] module is the only one we
ended up using.

Currently, no other Python profiling package than scalene is worth installing. It can do more
than all others, including but not limited to a lower slow down, multiprocess support, memory, and
GPU profiling. Another welcome feature for developers who often can not optimize library code
is the differentiation of time spent in user code versus libraries. Even as the Python profiling tool
with close to the least overhead, it still has an overhead from 26% to 54% [33].

The profiler shipped with Python is cProfile. cProfile is mentioned here because of the sole
fact that it does not have to be installed and hence can be used without any additional work. But
as can be seen in comparison with scalene, the overhead incurred by cProfile is even higher.

Because of this significant execution time overhead incurred by the Python profiling modules
they were not chosen for the characterization of the interrupt handler on EnzianBMC.

To trace Python there exist two primary ways. At a lower level with the interaction of the kernel,
or using function hooks like sys.settrace() from Python itself. The latter is precisely what the
trace [39] module does. As this is on the same level and with similar techniques to cProfile the
overhead incurred is again bigger than can be achieved with other options.

Achieving high-frequency tracing with the interaction of the kernel is possible since Python 3.6
by compiling the CPython interpreter with the --dtrace option adding USDT probes to it. As
these tracepoints are on the layer of the interpreter implementation, they have a high time resolution
and simultaneously high code resolution. Running a CPython interpreter with --dtrace enabled,
tracepoints for every function entry and return, the garbage collector start and end, as well as every
line in source code, can be traced. Python with --dtrace would allow for tracing with regular Linux
tracing tools, but this will also produce a lot more tracing information than is needed requiring a
lot of post-processing.

If using CPython with tracepoints or compiling it anew is not an option, there exists the
stapsdt [36] package for x86_64 architectures4. There does not exist a recipe by Yocto to install
but generally allows tracing of Python code using dynamically created USDT probes generated with
the libstapsdt library [41].

Other than adding USDT probes to the Python code or using built-in Python modules there still
exists the third option of modifying the source code itself to do something similar to tracing. For
this artificial tracing either the timeit [37] module or the normal time [38] module are worth
considering.

The former is neither tracing nor truly profiling but can measure execution time very precisely.
timeit is very much intended to be used for snippets of code in isolation. This is because the
functionality of timeit is achieved by running the code snippet thousands of times while measuring
each cycle’s execution time. As such, it is not used to trace the power-manager as a whole but to
figure out the overhead tracing produces in idealized examples.

The other module to consider is time which since Python 3.7 and on UNIX-based systems has
4This essential point of only x86_64 support is not mentioned clearly in either the module or the libstapsdt library.

The only indications for this library to only be available to x86_64 architectures are part of a name in the Makefile, and
the single comment // TODO (mmarchini) add other architectures (this only works for x86_64) on line 9
in the sdtnote.c source file [40].

CHAPTER 2. BACKGROUND 15

the method clock_gettime_ns(clock_id). Here the first argument defines the clock source to be
used, which can be, for example, time.CLOCK_MONOTONIC_RAW. The returned value by this method
is the time in nanoseconds and with that precise enough to use for tracing of the power-manager
services.

dmesg

dmesg [42] is short for display message and does nothing more than what its name suggests; printing
the messages of the kernel ring buffer to the console. It can do so with a timestamp in the form of
[seconds.microseconds] similarly to perf, but choosing which clock source it uses is not possible.
Reading the kernel ring buffer it can still be helpful to look for rough relative timings of different
kernel modules, drivers, or the kernel itself.

If dynamic debug print support is built into the kernel, it is possible to enable and disable debug
prints over the debugfs system specially designed for debugging purposes without many rules for
developers. This freedom of being able to write to these files whatever is used by dynamic debug
to be able to define which functions to enable with which options.

systemd-journald

The primary purpose of systemd-journald [43] or just journald is to collect and store structured
logging data from different sources through the system in a central and easily accessible place. Such
sources are log messages from the kernel, the libc syslog syscall, and the native Journal API. The
systemd service manager additionally invokes all service processes with the standard output and
standard error connected to journald by default.

The command-line utility to read out these journal logs in a pleasant manner is journalctl.
journalctl has many additional options, of which the below are the two used in the TestBench.
First the lines option, which tells journalctl how many journal entries we are interested in seeing5.
The second one used is follow, changing the behavior of journalctl from just printing already
existing journal entries to doing so continuously also for newly added entries.

5This is equivalent to reading the whole journal log using journalctl and then calling tail on the output with the
same number of lines.

Chapter 3

Interrupt characterization design

One of the main goals of a Board Management Controller is to react to changes in hardware.
The BMC kernel is notified about such changes over hardware interrupts to the CPU and then
has to decide how to handle them, possibly invoking an emergency shutdown. The challenge in
characterizing the interrupt handler of EnzianBMC lies in the fact that many components are
working together to achieve the goal. As such, it is necessary to understand all components and
measure them and their different properties simultaneously. Even more, some parts work together
only over a loose message-based connection, which makes it difficult to take measures of single
components by themselves still acting as part of the whole.

We first take a look at what needs to be done to characterize such a complex system and which
tools can be used to trace the kernel or the Python-based part of the power-manager. The differ-
ences between installing instrumentation on an embedded system like EnzianBMC and a normal
distribution for a personal computer are mentioned. Following that is an argument why it would
be good that EnzianBMC is a real-time system and also why it is not done in this work.

3.1 What needs to be done

The fault interrupt handler on EnzianBMC has different components working together which makes
tracing them as one somewhat hard. As such, the better option is tracing each part and then later
combining the traces gathered. We divide the system to narrow down the scope of the tools that
need to be used to do the respective tracing. The characterization of the modified Xilinx xgpio
driver and the kernel is discussed in the first part, the tracing design for the power services in the
second. Two ways are examined in subsection 3.1.3 of how it is possible to get tools in a working
state onto the Enzian BMC. The last part of this section is a short argument why applying the
PREEMPT_RT patch to EnzianBMC is generally a good idea but not done in this work.

3.1.1 Outside Python

Before any part of the power-manager in Python code is notified of changes in hardware, the
interrupt event already went through the kernel and the modified Xilinx xgpio driver.

Hence the first place in software that will get called after the hardware interrupt is triggered is
the global interrupt handler of Linux. This global handler looks up the registered handlers for this
type of interrupt and hands it over to our modified xpgio driver. Tracing this part of the Linux
kernel would be possible using tracepoints within the kernel. Finding inefficiencies in the Linux
kernel is outside of the scope of this work which is why this part of the interrupt handler is assumed

16

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 17

as a minimal static overhead. This assumption is reasonable given that this part of the kernel is
widely used and hence already well optimized.

There exist different methods to trace the xgpio driver called by the global interrupt handler.
As we are in a development environment in which leaking information from the kernel is acceptable,
the already existing kernel-debug prints can be used. Reading these debug prints is possible using
dmesg, which prints the kernel’s message buffer while adding a timestamp to each message. After
initial testing, the timestamp added by dmesg to the output was found to be insufficiently precise.
Modifications to the xgpio driver can get higher precision tracing information about the interrupts
that are handled. These tracepoints added can be enabled and picked up by most tools that support
dynamic tracepoints like perf and eBPF.

If the power-manager sees that the machine is outside its safe bounds, it will shut off the
relevant power rails and hence the CPU and FPGA. The decision logic to do so is in the fault
service, which uses the power service to send the commands for a shutdown over SMBus and I2C.
Hence to completely characterize the interrupt handler tracing the communication on the SMBus
and the I2C bus is necessary. Tracing these channels with a self-built kernel like EnzianBMC is
relatively easy. The only requirement to do so is activating and enabling the respective Linux kernel
tracepoints for those busses. With that many standard Linux tools can access these tracepoints on
the I2C and SMBus read, write and result functions.

Besides these hardware communication channels, there are additional communication channels
in use throughout the fault interrupt response. The hardware communication to the CPU we
assumed constant. The xgpio driver using IO signaling to Python and the power-manager services
using inter-process communication over D-Bus. The challenging problem to solve here is measuring
the time of all these communication channels. If the interrupt handler ran alone on EnzianBMC,
it would be possible to follow a single interrupt from when it triggers in hardware to the changes
it entails while measuring each communication step along the way. However, as a Linux system is
never wholly idle, this becomes a lot harder. Making this even more challenging is that more than
one type of communication channel is in use. As such, all communication channels must be traced
simultaneously and critically with the same clock source for timestamps. The latter is required to
be able to combine the gathered traces later.

Grouping the different communication channels away as an abstraction is a solution to this
problem. Henceforth whenever communication time is mentioned, think of it as the time needed
to do the communication over whichever channel is used in that interaction. This abstraction also
makes the time measurement of communication easier because we can compare the relative time
from the send operation of one component in the interrupt chain to the respective receive operation
of the next.

3.1.2 Within Python

In addition to tracing the interrupt response inside the kernel space the Python-based part of the
power-manager also needs to be characterized. Theoretically tracing this Python part is not difficult
because Python has many modules capable of doing so, as seen in section 2.4.2.

Unfortunately, both the built-in module cProfile and the scalene package have for our use
case relatively high overhead. As such, both of those are not a possible solution to timing in the
power-manager. The trace module is similarly not used for this reason of an overhead, but more
importantly, it does not offer a precise enough time resolution either.

Compiling the CPython interpreter with the --dtrace option is likewise not ideal because much
more information than needed is gathered. Doing this might have worked and was a fallback option
despite the additional post-processing and possible non-negligible overhead. Ideal for tracing the

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 18

power-manager would be the stapsdt python package. But as mentioned in section 2.4.2 it currently
works only on x86_64. Adding ARM support would likely be possible, but because libstapsdt has
parts even written in assembly, the port of this library to ARM is outside the scope of this work.

The only option left is to measure the time exactly where needed, followed by somehow saving
this measurement. Doing so offers a more precise measurement of time with less overhead and the
possibility for quick progress of the actual emergency shutdown. Getting time in high precision
on Unix based systems is possible with the time.clock_gettime_ns(clk_id) method from the
Python built-in time module. This high-precision timing is offered with an overhead of around 4
microseconds as can be seen in subsection 5.1.1. As it turns out, it is imperative to define this
method argument clk_id for tracing-related purposes for mainly two reasons.

First, if you do not use a monotonic raw clock source, the time you get might not be the raw
hardware-based time but time subject to the Network Time Protocol (NTP) and similar. Secondly,
combining timing information from within Python to other Linux tracing tools is only truly possible
using the same clock source everywhere. Using the same clock source means getting some guarantees
that at least the relative time between all the tools used for different measurements is correct.

Regardless of how precise the time taken is, it still takes roughly 4 microseconds to get this time.
Because of that, it is nearly impossible to get to a similar time resolution as kernel tracers that do
so in tens of nanoseconds.

Outputting this now relatively precise time measurement has to be done in either a performant
way or in such a way as not to slow down the interrupt handler heavily. The latter option was
chosen because the power-manager is already using the Python logging framework and as such,
saving the timestamps was very easy. This way, the overhead is minimal during the tracing itself
as the logging can be done after the interrupt handler is finished. Additionally, it is possible to
easily differentiate the tracing outputs between the different power-manager services running, as
the gathered data will be in the respective journal log.

3.1.3 Installing instrumentation on EnzianBMC

To improve the interrupt handling response time on EnzianBMC, figuring out where improvement
effort is best applied is crucial. Tracing and profiling can help, but both are often only done during
optimization and not on production systems, so default configurations usually do not include the
relevant tools. The default EnzianBMC built does not have any working tracing or profiling tools
installed either. However, they are needed to characterize the interrupt handler outside the Python-
based part of the power-manager. On an embedded system like the Enzian BMC, installing new
tooling is more challenging then on other distributions that are not optimized for embedded systems.
This comes down to not having any internet connection1 nor installation and build tools. As such,
adding new tools to EnzianBMC was done in two ways: copying using SSH and installing at built
time.

Copy and run

The easiest way to get instrumentation onto EnzianBMC, which is usable without dependencies
and network connectivity, is to use SSH to copy them. This can work well for anything whose
dependencies are already met, such as Python using standard modules, simple shell scripts, or any
standalone executable binary compiled for EnzianBMC. Cross-compiling such a binary needs the

1No internet connectivity helps avoid exposing the powerful system that is the BMC to the outside world, even
by mistake.

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 19

build root of EnzianBMC to link against and an ARM build toolchain which both could be achieved
using Buildroot [12].

Install at built time

Expecting the tracing and profiling tools to need kernel modifications, rebuilding the kernel using
Yocto Project was more efficient for anything that was not copied and run. This includes stan-
dalone binaries that could be copied after being successfully built because the build root folder for
EnzianBMC is already in a fully working state on the build server.

This means adding new tools and libraries to either kernel or userland on the EnzianBMC is
done by including recipes for those. Doing so through Yocto might be an overhead compared to
cross-compiling them from a build root manually for some tools but can also be significantly less
work for others. Adding a new tool to Yocto can be done in three ways needing increasingly more
effort: Yocto has a built-in option to add the tool, a recipe for it is already available, or the recipe
has to be created.

In the best-case scenario, the recipe for the tool in question is defined already by the Yocto
Project itself, meaning it is enough to add an option into the build configuration. Because in
Yocto this option exists for many Linux tracing tools2, the initial idea was to use this to test out
the different tracing tools. Unfortunately, as mentioned in subsection 2.4.1 many of these build
configurations on EnzianBMC did not immediately work. Section 4.1.2 describes the work done to
get the recipe of perf working.

The second scenario is someone else created a recipe, in which case adding the whole recipe and
enabling it should be enough to get the tool working.

If the tool to be put on the EnzianBMC is custom-made and needs installation, or no one created
a recipe yet, creating one is the last option. Creating a recipe using the Yocto Project requires more
knowledge than just adding one to a project and configuring it3.

3.1.4 EnzianBMC as a real-time system

Because the goal of EnzianBMC is to shut down the main machine as quickly as possible if something
is awry, it being a real-time system as described in subsection 2.2.1 makes a lot of sense. That Linux,
a multi-purpose open-source operating system runnable on many different architectures and widely
different scales, can work well as a real-time system is not unthinkable, but in practice, very hard.
There exist people who would like to use Linux as one, which is why there are efforts to improve
the Linux kernel’s real-time capabilities.

The most noteworthy of these is the Linux PREEMPT_RT patch. This patch tries, as described
in section 2.2.1, to fix multiple significant issues of the Linux kernel with respect to a real-time
system. In the end, even if the Linux PREEMPT_RT patch presents itself as an excellent first entry
point to make EnzianBMC more real-time capable, the possible gain from doing so is currently not
worth the overhead. Applying this patch to the current kernel build is not trivial and presently
there exist other avenues where speedup can be gained easier.

2perf, ftrace, systemtap, oprofile, LTTng do exist and were tried with this option.
3In the course of this thesis, a custom recipe was temporarily added for the libstapsdt library, the backend to the

Python package stapsdt seen in section 2.4.2.

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 20

3.2 Created tooling

Most operating systems and computers are generally viewed as being non-deterministic, with Linux
being no exception. This is a consequence of the many processes running in parallel, having asyn-
chronous interrupts incoming from the real world, and preempting running processes for more im-
portant ones. Because of this, the need for running the same measurements multiple times was clear
from the beginning. This poses the challenge to bring this non-deterministic system automatically
and reliably into a similar state to run all the necessary measurements.

In addition to the non-determinism, the created tool also needs to solve the aggregation of
information from the different tools in use. This arises due to not being able to create dynamic USDT
probes within the Python power-manager on the ARM-based EnzianBMC hardware. Otherwise, it
would have been possible to let a chosen tool like perf handle all of the needed aggregation through
tracepoints.

The decision to write a big part of the tooling in Python was made without much hesitation. This
has multiple reasons, one being Python is, for the most part, directly executable on the EnzianBMC
as it is already in use for the power-manager. Others are that using Python means the tool can very
quickly be adjusted in place without the need of recompilation and that it can be run interactively.

3.2.1 The TestBench

The created tool which runs different tests was named the TestBench. It will repeatedly gather all
output from other tools used to trace and profile in a modular way and save it into a single place.

By the time the TestBench started to take shape, it was clear that the modularity was very
much needed for adding and removing different tools quickly. This is the case in view of the many
ways it is possible to trace the different elements from the interrupt to shut down and the issue of
not knowing from the start which ones will work well.

The TestBench is built up of the following three layers. The lowest layer can be thought of as
the tool abstractions called commands for the different interaction methods with them. The next
layer up are the profiles defining how to enter an emergency response from software repeatedly. The
last layer is an abstraction for the different states the EnzianBMC can be in during a measurement
with the TestBench.

Diverse interaction methods

The challenging part of creating the TestBench in a modular way was to be able to support the
various forms of how to interact with different Linux tools.

Luckily, all Linux tools chosen have a command-line interface. The most general way for the
TestBench to start a multitude of tools is to use their respective command-line interface. The issue
to solve with this approach is that while some tools might need only to be run once at the end
of tracing, others might need to run while the EnzianBMC is handling the interrupt. Another
additional point to think of is that these tools can sometimes not be run in sequence, but have to
run in parallel.

What follows are the general ideas of what capabilities the abstractions of the Linux tools for
the TestBench have to have.

Dmesg (see section 2.4.2) interaction is used to get some basic timing information from the xgpio
driver without changing anything about the driver. dmesg has by far the most effortless interaction
compared to all the tools in use. This is due to dmesgs only feature being it printing out the content

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 21

of the kernel message buffer. With a single command run after the EnzianBMC did the scram, it
is possible to get all of the debug messages that occurred in the kernel, given the buffer didn’t overfill.

Journalctl (see section 2.4.2) is used to get the logging information of the power-manager. Ac-
cording to the general use of journalctl, it should only be a single call after the scram to read the
respective logs. In the end, it was easier to call it with --lines=0 as an argument and let it run
during the emergency response. This way, tracing for only the current interrupt response is in the
output, removing the need to find the correct trace in the log later.

Perf (see section 2.4.1) currently has the most complex interaction from the tools implemented
as modules in the TestBench. This arises from the complexity and possibilities perf has. Perf has
to be run while the emergency response happens to do the tracing. This will create an output file
containing all the traces. Given this trace file created by perf record there exist different sub-
commands of perf, each giving different insights into the gathered data within it. These different
outputs are produced by calling perf again with that specific option and the output file from before.

Repeatedly entering emergency shutdown

One goal of this TestBench is to be able to run the same experiment repeatedly. To do so means
the TestBench can start, and after precisely one emergency response, it stops the test run. Waiting
after the TestBench start for the hardware to throw a fault interrupt was not an option for obvious
reasons, which left as the only option to force the emergency shutdown. Causing a fault interrupt
on the Enzian BMC, which results in a scram, can be done in two ways. Either electrically pulling
the fan fault line low, which needs access to the BMC to add a physical probe, or doing something
in software that looks similar enough to an actual defect in hardware. In the end, the latter option
seemed more appropriate because constantly having a physical probe attached to the BMC and
syncing this probe to software is more complex than doing both in software.

The two ways that are used by the TestBench were called the direct scram and the fan scram.
Both can repeatedly and reliably be triggered from software and result in much of EnzianBMC
behaving like during an actual hardware defect. As a significant part of the custom interrupt
handler is written in Python the direct scram is directly calling the same method the fault service
calls after deciding to scram. fan scram uses the power service to reconfigure temperature thresholds
in the hardware sensor of the fans. Doing so allows it to set the fault temperature below the current
temperature. This results immediately in an actual fan temperature fault interrupt arriving on
EnzianBMC.

Measurement environments

Because of the complexity in following the interrupt and its response throughout the kernel, it
was not feasible to test the interrupt handler of EnzianBMC on different kernels. The refinement
of this idea is to do the same set of modular tests while EnzianBMC is in different states, so-
called environments. Environments contain from how the EnzianBMC is configured to what else is
executed at the same time as the interrupt handler runs. As the aggregation of tracing tool outputs
already necessitated the TestBench, it was comparatively easy to add support for changing but
reproducible environments. As initially it was not yet known which environments are interesting to
look at and what changes to the environment would be interesting to compare with each other this
addition had to be again very modular.

CHAPTER 3. INTERRUPT CHARACTERIZATION DESIGN 22

3.2.2 EvaluationScripts

Although the TestBench gathers outputs of tools over multiple runs over diverse environments and
creates a lot of data to sift through, it does not do so itself. This is done by the EvaluationScripts,
which were created to get insights into the EnzianBMCs interrupt and response chain using this
gathered data.

The EvaluationScripts are written in Python and designed similarly in a modular way to how
the TestBench is. This decision was taken to easier accommodate a priori unknown evaluations
which might, later on, be interesting to do. These scripts roughly fit into three different categories.
Doing this grouping allows for them to be maybe reused in the future.

Parsing is done in a way to give relatively easy access to the raw parsed data of the TestBench
itself. The challenge here is that the parsing of the output of a tool added to the TestBench will
depend on that very output, as the tools do not always have the same output format. This entails
that most of the parsing scripts are specific to the output of the tool they are supposed to parse.
Hence other than the coarse concept of how such an output can be parsed they do not have much
in common with each other.

These parsing scripts make working with their output easier by doing sanity checks and clean
the data. Cleaning here means removing the Linux tools’ unnecessary output because this infor-
mation will clutter the next steps. On the other hand, sanity checks are needed for the simple
reason that the used tools sometimes do not behave the way we might expect them to. This can
result in outputs parsed incorrectly, which can easily ruin the evaluation afterward if not checked for.

Calculation and aggregation of the parsed output is done sequentially on the TestBench data.
The calculation step solves the challenge of not being able to measure communication time as easily
on the different channels, but still giving this information to the next step. This step is not limited
to this specific case but can also be used to do any sort of calculation on the provided data, like
resizing all timestamps to the same unit.

The aggregation step after the calculation is designed for later evaluation of several measurements
effortlessly. This same step furthermore helps evaluation between different types of environments.

Evaluation is the category containing scripts that return the post-processed data from the Test-
Bench in some human-readable format. This format can either be the data in some concise format
or directly visualizations. The latter is not always necessary, but it is challenging to gain insights
quickly from the data without visualization.

Chapter 4

Implementation

Characterization of the interrupt handler on the EnzianBMC needs tools that can trace the interrupt
throughout the whole system. As no Linux trace tools were in working condition, we describe
in section 4.1 what we configured for dmesg, how the perf recipe was fixed, and how tracing the
power-manager using the time module and logging works. This is followed by section 4.2 describing
how the abstraction, repeatability, and consistency of the TestBench is implemented. At the end of
this chapter, we explain how to parse the TestBench output and visualize this gathered data.

4.1 Getting some tools to work

Unfortunately, as mentioned in the background, many of the tools tried were not straightforward to
get working on EnzianBMC. As such, the steps needed for those used to characterize the interrupt
handling are shown here. How to activate timestamps for the otherwise working dmesg is described
first, followed by a description of how the Yocto recipe for perf is fixed. Lastly, the implementation
details of how tracing Python without the enormous overhead incurred by profiling and without
USDT probes works.

4.1.1 dmesg

dmesg is the display message utility. The timestamps for dmesg are activated in the kernel build
menu (see subsection A.1.3 for how) along with support for dynamic printk support. For this to
work, setting a high enough log level and enabling the respective debug prints of the xgpio driver
was necessary.

1 echo 8 > /proc/sys/kernel/printk
2 echo -n ’func xgpio_handle_channel_irq +pf; func xgpio_irqhandler +pf’ >

/sys/kernel/debug/dynamic_debug/control↪→

Listing 1: Two commands to set maximal kernel log level.

The former is possible using the first commands in Listing 1 , whereas the latter can be achieved
using the debugfs subsystem with the last command. The option +p tells dynamic debug that we
want to enable the available debug call site defined after func. The f configures it to additionally
print the function name of the call site1.

1To disable a call site again or to remove only some options from it use the same command but a minus instead
of a plus.

23

CHAPTER 4. IMPLEMENTATION 24

4.1.2 Perf

Perf was decided to be the tool to use for tracing of I2C, SMBus, and more within the kernel. Perf is
mighty and, more importantly, included in the Linux kernel. Despite having a premade Yocto recipe
and being part of the Linux kernel, perf was tricky to get working on EnzianBMC. If the setup from
the Yocto Wikipedia for tracing and profiling [44] would work, then all you would need to do is add
EXTRA_IMAGE_FEATURES += " debug-tweaks tools-profile" to your Yocto build configuration.
A description of what is added using these two additional image features can be found on the Yocto
wiki page for tracing and profiling [44].

If you configure an otherwise clean current EnzianBMC kernel to use these extra image features,
it fails at build time. The issue here comes from the fact that EnzianBMC is not based on the
newest upstream Linux kernel and hence is missing some commits2.

As perf is defined in the kernel source tree [17] it is missing some patches that were only added in
newer kernel versions and are not part of the source for our recipe. This meant to build EnzianBMC
with perf these newer patches to perf had to be backported for which a step-by-step description
can be found in subsection A.1.2. All of the needed fixes, after making sure they worked reliably,
were combined into the single git patch seen in subsection A.2.1. Applying this patch to the current
EnzianBMC based on OpenBMC version 3.2 results in compilation with a fully functioning perf.

An otherwise unmodified EnzianBMC with this patch has working perf, but many tracepoints
within the Linux kernel will be missing as they have to be enabled in the kernel menuconfig.
Additionally, it might be that perf only returns hex addresses meaning the debug symbols are
missing. Adding those at build-time is an option that will increase the size of the produced image
by a lot. This issue is alleviated by not including debug symbols and then only manually installing
the necessary debug symbols afterward using dbg-pkgs3.

4.1.3 Python logging

Because the time module has the least overhead from all tracing and profiling modules for Python
seen in section 2.4.2, using it with logging is the chosen option for tracing Python. Luckily, the
Python logging framework is already in use by the power-manager to log information about its
current state and is known to be working. systemd is used to start the power-manager services
and as such journald described in section 2.4.2 will receive all log messages made within the power-
manager.

In Listing 2 you can see how to read the journal log of the fault service continuously without
previous entries. To read the logs of the other power-manager services replace the Fault within it
with any of GPIO, Power or Telemetry.

1 journalctl _SYSTEMD_UNIT=systems.enzian.Fault.service --lines=0 --follow

Listing 2: Use journalctl to get logging output from the fault service.

Even if journalctl adds a timestamp to each log entry, this timestamp is not precise enough
to use for tracing. This is reasonable because, under normal circumstances, one would only use
the human-readable timestamp in a log to see when an event roughly happened. Adding to the
log message a more precise timestamp enables tracing in the precision with which it is possible to
measure time.

2Work is currently being done to upgrade the EnzianBMC to a newer version of the Linux kernel. After that is
done using the tools-profile configuration directly should be tried again.

3Most of this is described in some detail also on the Yocto Project tracing and profiling wiki page.

CHAPTER 4. IMPLEMENTATION 25

As the built-in time module has the least overhead in Listing 3 is an example of how it is
used throughout this work to profile the power-manager. This code snippet is again from the fault
service, more precisely the fault_handler method, which will be called whenever a fault line is
activated. Specifically, take note of the added lines 2, 4, and 6. Both lines two and four will get the
time and in between of them, the emergency response method is called. Because masking the scram
is still part of the response to the fault, but already after the power was cut off from the CPU and
the FPGA, the time is taken before the mask and only afterward in line six logged.

1 # Scram before logging - time is of the essence.
2 start = time.clock_gettime_ns(time.CLOCK_MONOTONIC_RAW)
3 scram(self.logger, self.gpio, self.power)
4 end = time.clock_gettime_ns(time.CLOCK_MONOTONIC_RAW)
5 self.mask_scram()
6 self.logger.error("fault_handler scram start at %.6f end at %.6f", start, end)

Listing 3: Example of how logging is used to profile the scram in fault_service.

After having added the tracing using logging throughout the power-manager an output of the
before shown journalctl command during a scram will look something like Listing 4. The first line
is the default output from journalctl followed by the log entries. For brevity, all output except the
fault_handler method output is removed. Each log entry is printed with a timestamp, the system
name, and the service name. The number in square brackets at the end of the service name is its
PID during runtime. This generic information is followed by the log level and the system name of
the service logged. For tracing, the ERROR log level is misused to see the log entry whenever any
logging is activated. The last thing per printed line is the log message from the service. In our case,
this is always some way of identifying what in the source code this entry is tracing as well as when
it started and ended. The latter three will be later combined with knowledge of where they are to
gain useful tracing information about the power-manager.

1 -- Logs begin at Fri 2021-07-16 14:46:35 UTC. --
2 ...
3 Sep 02 08:39:28 schibenstoll02-bmc systems.enzian.power-manager.fault[17980]: [ERROR

systems.enzian.Fault] fault_handler start at 6138237913074 end at 6138390072720↪→

4 ...

Listing 4: Output of the fault service during scram with added tracing.

4.1.4 Adding tracepoints to xgpio driver

The EnzianBMC kernel before this step was able to be used for tracing the I2C and SMBus inter-
actions with decent time resolution. However, as dmesg was not precise enough, tracepoints were
added to the modified Xilinx xgpio driver.

Following instructions [45] a new header file for the xgpio driver was created. This header file con-
tains the definition of the two xgpio USDT probes using the macros defined in <linux/tracepoint.h>.
In Listing 5 you can see how some of the macros are used to create a tracepoint definition that out-
puts the same information as the respective debug print it will be placed at.

The first argument, here irqhandler, is the name of this tracepoint. This is followed by the defini-
tion of what type the arguments to this tracepoint should have, as well as what name. TP_STRUCT

CHAPTER 4. IMPLEMENTATION 26

defines the struct used to save the information from this tracepoint in the internal kernel buffer. The
TP_fast_assign can be seen as a restricted C-style code block, which defines how the arguments
are used to fill the information buffer. Lastly, we also define how this tracepoint is then outputted
from the kernel struct.

1 ...
2 TRACE_EVENT(irqhandler,
3 TP_PROTO(unsigned long ipisr),
4 TP_ARGS(ipisr),
5 TP_STRUCT__entry(
6 __field(unsigned long, ipisr)
7),
8 TP_fast_assign(
9 __entry->ipisr = ipisr;

10),
11 TP_printk("xgpio handler called, ipisr=0x%lx", __entry->ipisr)
12);
13 ...

Listing 5: Partial header file for adding tracepoints to xgpio driver.

After having created the correct header called gpio-xilinx-trace.h, we can now include this new
header and use its functions to define static tracepoints. An example of how the functions created
by the macros inside the trace header can be used is seen in Listing 6. The only lines added are
those seen in this example from lines five to seven, where line five is added for efficiency reasons.

1 ...
2 ipisr = xgpio_readreg(mm_gc->regs + XGPIO_IPISR_OFFSET);
3 pr_debug("xgpio handler called, ipisr=0x%lx\n", ipisr);
4

5 if(trace_irqhandler_enabled()) {
6 trace_irqhandler(ipisr);
7 }
8 ...

Listing 6: Use of the defined tracepoint in the xgpio driver.

After defining those probes and adding them to the EnzianBMC with a kernel patch, they
directly worked. How to apply such a patch to EnzianBMC can be seen in subsection A.1.4.
Making the output of these added tracepoints the same as the debug prints meant easier switching
of dmesg for perf in the TestBench.

4.2 The TestBench

Given a running EnzianBMC kernel with tracing tools, the next step is to use those to characterize
the interrupt handling. To do this more efficiently, the amalgamation of scripts called the Test-
Bench was created. It can parse the outputs of any tools over different runs in diverse configurable
environments. Utilizing this TestBench, it is possible to compare various configurations statistically
along with the possibility for someone to compare them with newer versions of EnzianBMC in the
future. The latter is not only restricted to running the same suite of measurements or do the same

CHAPTER 4. IMPLEMENTATION 27

type of calculations. Instead, one can add new types of parsing using old data or alternatively add
new tools to gather more data on each future run. Writing the TestBench mostly in Python allows
for very modular and yet quick development, which enables the ease of adding new parts.

The TestBench is conceptually split into two categories. On the one hand, we have the part
executed on the EnzianBMC (see subsection 4.2.1). This includes all the modules to use different
tracing tools from the EnzianBMC, the defined environments in which to run them and the scripts
which glue these parts together. Additionally, some scripts that can be used to test specific things
like logging overhead in Python are also part of this category. On the other hand, we have the
scripts that run on the machine where the gathered data will be saved described in subsection 4.2.3.
These scripts run the part of the TestBench on the EnzianBMC multiple times over SSH and copy
the gathered data back after each run.

4.2.1 Part running on the Enzian BMC

Copied to the Enzian BMCs is only part of the TestBench, namely the onBMC folder. This folder
contains all the scripts written to use tools like perf and the main TestBench script used to execute a
run. The top level of the onBMC folder has the main script runTestBench.py, which ties all scripts
in the subfolders testBench and bmcUtils together. The execution of this script results in the
measurements of one interrupt with its response chain for each environment configured. Generally,
the TestBench is implemented abstractly in three layers to solve the design challenges.

As the main layer, we have the scripts that serve as abstract modules of the tools they implement
to the rest of the TestBench. This part solves the need to combine possibly many different tools
and their usage into a package that can be quickly modified but also executed repeatedly and
consistently. Each of these modules is implemented as a Python class, named after the commands
they implement.

To give the possibility to force the interrupt in modular ways another layer was added. These
so-called profiles define, after the environments are set up, and all the tools are tracing, what needs
to be invoked to achieve an interrupt being triggered.

Another layer is the abstraction for the different environments that should be tested. These are
defined again as classes extending from the same Python base class, where each of them can take a
list of commands and profiles. After setting up the environment, these classes are then run separately
for each defined profile and command. Between each run of measurement, the environment will be
reset to achieve the goal of running them as consistently as possible.

Command class

The Python classes wrapping tools are an important part of the TestBench to solve the challenge
of having to use multiple different tools. These classes are called commands and are specific to the
tool they abstract for the rest of the TestBench. Each one of them extends from the same base
class called the BaseCmd seen in Listing 7. Using the interface defined by the BaseCmd they can
have a wide range of capabilities and even be made configurable. To do so, the BaseCmd class has
three essential abstract methods. Their definitions are runRecord(self), stopRecord(self) and
the runScript(self, out_to_file).

The first of the three essential methods is the runRecord(self), which as its name suggests will
start the recording. The conceptual idea here is that some commands can use this method to start
the tool they abstract before the interrupt occurs. The TestBench makes sure to start all commands
before the interrupt will be forced. Abstractions similar to the one for dmesg, which only have to
run after the interrupt transpired, can implement this method with a simple pass.

CHAPTER 4. IMPLEMENTATION 28

1 class BaseCmd(ABC):
2 ...
3 def _time_sync(self):
4 ...
5 @abstractmethod
6 def runRecord(self):
7 ...
8 @abstractmethod
9 def stopRecord(self):

10 ...
11 @abstractmethod
12 def runScript(self, out_to_file=None):
13 ...

Listing 7: Interface defined by the BaseCmd class

stopRecord(self) follows the same design philosophy and is used by commands to know when
to stop their respective tools. Once this method is called on a command object the interrupt is
already over. No promise of how long ago the interrupt took place is made.

runScript(self, out_to_file) was added for efficiency reasons to be able to move any labour
intensive post-processing away from stopRecord(self). The idea of this method is not to have to
wait too long until the stop propagates. This is done not necessarily for the sake of the commands
themselves, but because anything running on the BMC slows everything else down. Resetting
resource-intensive environments is one of the workloads that should be stopped asap to have again
more available CPU cycles for post-processing. The single argument given to this method is a string
defining if the output of this tool should go into a file or not if the string is None. This means with a
runScript("./out.txt") call the command should write its output to the text file named out.txt.

There do exist more methods in BaseCmd, but not all of them are as crucial as the previous
three. One of the less important ones is _time_sync(self). This time sync function is used
by the commands that implement it to make a marker in the trace file to synchronize the start
of a trace with all other commands. Even if the header of this method is defined in the base
class, each command class that wants to make use of time sync needs to call it at the end of the
runRecord(self). The evaluation scripts can use these time sync events within the trace to easier
synchronize or check that all tools do have the same relative time. The latter is crucial to be able
to say anything about the timing between trace information from different tools.

Implementations of commands

Currently, the TestBench has six commands extending from BaseCmd and abstracting amongst
other things dmesg, journalctl, and perf. Two of them, RunAllCmd() and PIDCmd(), are not wrap-
ping a tracing tool in Linux, but rather show another way of using this interface defined by BaseCmd.

The RunAllCmd() is a utility command created to combine multiple other commands extending
from BaseCmd into a single one. This enables us to create and configure multiple commands and
combine them as we see fit. During a single interrupt we only have to start this run all command
once to start and later stop all others.

The PIDCmd() is similarly a command that is useful for a specific goal to tracing besides calling
other tools. Showing the correct name of the different power-manager services instead of only
their process ID makes understanding the results a lot easier, which is what this command is for.
It implements the functionality to get the mapping from power-manager service PID to its name

CHAPTER 4. IMPLEMENTATION 29

and does so for each environment reset. The latter is required because resetting the environment
includes restarting the power-manager services. Additionally, this command can be configured
using its argument prioritize to set the Linux scheduling priority of the vital processes of the
power-manager.

The PerfCmd() is an abstraction for the generic perf record and perf script. As such, this
implementation of the BaseCmd is currently the most complex one. Part of this intricacy originates
from the many possible configuration options it offers. Some but not all of them are:

• command_identification is a string that will be used to identify this instantiation of the perf
abstraction.

• trace_targets is an array of strings as defined by perf record to tell it which events should
be traced. An example is [’i2c:*’,’smbus:*’,’xgpio:*’], where this will instruct perf to
record all I2C, SMBus and xgpio tracepoints.

• record_args are additional command-line arguments to define for the perf record being
used for tracing.

• use_clock_monotonic_raw is of type boolean. If true, this appends to the record argument
array ["--clockid", "CLOCK_MONOTONIC_RAW"]. This argument --clockid will inform perf
to use as a clock source for its timestamps monotonic raw.

• script_args as the name suggests are additional arguments to perf script. These work
analogously to the record_args for the record subcommand of perf.

• trace_filters is similarly only used in the post-processing stage of the PerfCmd().
[’pid’,’time’,’event’,’trace’] is an example array, which will then become the comma
seperated argument for the perf script filter argument.

To give any command object the instruction to start tracing use the runRecord() method. Dur-
ing start, the Linux perf command built to run is for example perf record -e ’i2c:*’,’smbus:*’
-o perf_I2C_smbus.data. Using this command to start a subprocess of which the reference is saved
within the command object solves the problem of needing to run multiple commands in parallel.
Here the argument given to the perf output option -o is also generated by the abstraction module.
Because the PerfCmd() uses all the functionality needed to implement most tools, as well as for
brevity, it is the only command class described in such detail.

In the same way to how a Linux command is built for perf record during start, there will be
one built for perf script during the script call. This time the script_args will be used as well
as the output filename of perf script as the input filename.

Other such commands implemented to be able to trace the full interrupt chain within En-
zianBMC are DmesgCmd(), PerfTimechartCmd() and JournalCmd(). DmesgCmd() is the easiest
wrapper implemented as dmesg is called once before tracing, to clear the kernel message buffer, and
once at the end, to get the messages. PerfTimechartCmd() is analogous to the normal perf abstrac-
tion. Their only difference is that this command calls the timechart subcommand instead of the
script subcommand. JournalCmd() is similar to the perf wrapper. All it does is call the journalctl
command seen in Listing 2 for different services, the same way the perf record subcommand is
called.

CHAPTER 4. IMPLEMENTATION 30

Profile class

Waiting for an actual fault in hardware to happen to trace it is not an option for the TestBench.
Doing so can not be done in a reliable and reproducible way. Another issue would be that we do
not want an actual fault in the hardware as this could potentially destroy the board. Because of
this, the TestBench must programmatically launch an interrupt that looks to tracing the same as
an actual interrupt thrown by the hardware. As this work is primarily interested in the response of
the EnzianBMC to a fault interrupt, we only look at reproductions of such interrupts. Throughout
the power-manager code, the response to such an interrupt is called a scram.

1 ...
2 class ToProfile(ABC):
3 ...
4 @abstractmethod
5 def doAction(self):
6 # e.g. fault.direct_scram()
7 pass
8

9 @abstractmethod
10 def cleanUp(self):
11 pass
12 ...

Listing 8: Most important part of the ToProfile class

The ToProfile() base class seen in Listing 8 is used by the TestBench to repeatedly initiate
such a scram response. Which form of interrupt is seen by most of the EnzianBMC on a call of
doAction() depends on the implementation of the respective profile.

The general idea of the abstract doAction() method is that once executed it initiates something
looking exactly like a fault interrupt. Doing so is possible in multiple ways, two of which are explored
and described in more detail. cleanUp() is the method that will be called after all commands
stopped recording. As a forced interrupt response was never intended on the BMC this method
gives the profile the possibility to clean up afterwards.

Implementations of profiles

At present two different implementations of the profile interface exist called DirectScramProfile()
and FanScramProfile(). The way these two implementations coerce a scram response on the BMC
differ significantly. The second profile changes some hardware configuration such that the hardware
will throw a fault interrupt even without faulting hardware. DirectScramProfile() is called this
way because all it does is call the newly added D-Bus method of the fault service. This direct
method of forcing a scram response does not go through the xgpio driver as it starts after the
decision logic within the power-manager.

This supplementary method called direct scram is only used for tracing and can be seen in List-
ing 9. Lines two through six define that this method is to be exposed onto the system D-Bus. The
direct_scram(self) itself uses the power-manager internal function called scram() which contains
all of the code that defines the scram response of the power-manager. Tracing the response of this
forced scram on the BMC is done much the same way as described in subsection 4.1.3.

To use this newly added method, the DirectScramProfile() has as a reference to the D-Bus
object of the fault service saved. In the doAction() call it then uses this reference to initiate the

CHAPTER 4. IMPLEMENTATION 31

response with self.fault_service.direct_scram(). A nice characteristic of doing it this way is
that no clean up is required.

1 ...
2 @dbus.service.method(
3 dbus_interface=FAULT_INTERFACE_NAME,
4 in_signature="",
5 out_signature=""
6)
7 def direct_scram(self):
8 ...
9 scram(self.logger, self.gpio, self.power)

10 ...

Listing 9: New D-Bus method added to the fault service for easier scram response

1 ...
2 def doAction(self):
3 ...
4 read_temp = from_dbus(self.power_service.read_device_monitor("fans",

"T_INTERNAL"))↪→

5 self.power_service.set_device_threshold("fans", "T_INTERNAL", "FAULT_HIGH",
read_temp-10)↪→

6 time.sleep(1)
7

8 def cleanUp(self):
9 ...

10 self.power_service.set_device_threshold("fans", "T_INTERNAL", "FAULT_HIGH",
self.reset_temp)↪→

11 self.power_service.clear_device_faults("fans")

Listing 10: Primary functionality of FanScramProfile()

FanScramProfile() seen in Listing 10 works very differently. It instead uses the power service to
reconfigure a faulting threshold on hardware. Specifically, the temperature sensor threshold called
"T_INTERNAL" of the fans is changed. As can be seen in lines four and five, this profile will first
read the current temperature on the doAction() call and then set the threshold ten degrees Celcius
lower. This results in this device immediately throwing a temperature fault as now the faulting
threshold is exceeded. This fault signal initiated was not one on which the power-manager called
an emergency response before and hence it was necessary to change the device configuration of the
power-manager to do so.

Because this profile changes the hardware configuration of the BMC to force a scram response,
we now have to use the cleanUp() method of the profile interface. As seen in line ten of List-
ing 10 to reset the configuration means to set the device threshold back to the actual faulting
threshold of the BMC. Additionally, the device is notified that the fault is handled by using the
clear_device_faults method of the power service.

CHAPTER 4. IMPLEMENTATION 32

Environment class

Characterizing the interrupt handling response without controlling the environment in which this
interrupt happens is not ideal. For this reason, the TestBench has the option to define the state
of the EnzianBMC in which the tracing should be done using a so-called environment. Similar to
before, we have a common base class this time named TestEnvironment. It implements an interface
again for the rest of the TestBench while using profiles and commands to do so.

In Listing 11 the runEnvironmentTest(self, trace_cmd:BaseCmd, to_profile:ToProfile,
output_path="./") is the only existing abstract method in this base class. The setting in which
to run the characterization is set up by this method, but how this is done and what it entails for
the EnzianBMC depends on the implementation. Other interesting but not abstract methods in
this class are called _prepare and _finalize. The only method that has to be implemented by
each environment class and will be directly called by the TestBench is the runEnvironmentTest.
Starting the command given in trace_cmd with the scram profile to_profile at some point during
this method call is a must for all implementations. Additionally, every implementation has to call
_prepare exactly once before running the trace_cmd command.

1 ...
2 class TestEnvironment(ABC):
3 ...
4 def _prepare(self, trace_cmd:BaseCmd, to_profile:ToProfile, output_path="./"):
5 trace_cmd.setOutputPath(f"{output_path}/{self.identifier}")
6 trace_cmd.setOutputFile(to_profile.getOutputName())
7 self.gpio_service, self.power_service, self.fault_service, self.telemetry_service

= resetPowerMng(self.logger, logLevel=to_profile.getGlobalLogLevel(),
fixate_to_core=self.fixate_to_core)

↪→

↪→

8 to_profile.setDbusServices(self.gpio_service, self.power_service,
self.fault_service, self.telemetry_service)↪→

9 ...
10 @abstractmethod
11 def runEnvironmentTest(self, trace_cmd:BaseCmd, to_profile:ToProfile,

output_path="./"):↪→

12 raise NotImplementedError
13 ...

Listing 11: Most important part of the TestEnvironment class

_ finalize is used to finish the tracing by calling the runScript() method on the command
and logs that this environment is done tracing. As such, if the runEnvironmentTest does this
finalization step itself calling _finalize is not needed.

The call _prepare is a must, because this resets the power-manager and reconnects to the
services afterward. This can be seen in line seven of Listing 11. Handing the new power-manager
service references to the profile in use, which can be seen in line eight. Restarting the power-manager
helps to get our system in as consistent a state as possible before each tracing run. Reconfiguring
the output path is also done in this method to include information in which environment it runs.

The method resetPowerMng called to reset the power-manager does a few things. First it
uses the systemd command-line interface to restart all of the power-manger services. After having
restarted them and if instructed to fixate all services to a single core, it will do so by deactivating
all other cores. Lastly, after reconnecting to the services using D-Bus it will then set the python log
levels on each of them to the defined value in the profile and return their references.

CHAPTER 4. IMPLEMENTATION 33

Implementations of environments

In what state exactly the EnzianBMC is situated in during the characterization of the interrupt can
change the results measured. In production, it might not be possible to decide precisely what else
is running on the BMC, wherefore taking measurements in different environments is vital to have
informative characteristics. The TestBench has the following three environments implemented:

• IdleEnvironment is the EnzianBMC in the idle state. Meaning nothing other than the kernel
and the power-manager are running. The state the EnzianBMC is in during this tracing
environment is the same as it should be in most of the time.

• TelemetryEnvironment additionally to running the tracing, will use the telemetry service
to listen to some monitors. The goal is to emulate extra load on the BMC, similar to an
administrator using the BMC for telemetry checking.

• LoadedEnvironment tries to do a similar thing as is done with the telemetry but on the level
of Linux. This approximates well what could happen if the BMC is running other software
besides the power-manager.

Seen in Listing 12 is the environment implementation of LoadedEnvironment. Given that this
implementation covers everything the other two do, only this environment is described in greater
detail. The comments in this method describe nicely the different conceptual parts of it.

1 ...
2 def runEnvironmentTest(self, trace_cmd:BaseCmd, to_profile:ToProfile,

output_path="./"):↪→

3 self._prepare(trace_cmd, to_profile, output_path)
4 # Start the dohell script.
5 os.system("rm /tmp/stopDohell")
6 os.system("./testBench/dohell.sh &> /dev/null")
7 # Do actual test
8 trace_cmd.runRecord()
9 to_profile.doAction()

10 trace_cmd.stopRecord()
11 # Stop the dohell script
12 os.system("touch /tmp/stopDohell")
13 ...

Listing 12: The LoadedEnvironment class’ implementation of runEnvironmentTest()

After resetting the power-manager and setting up the command and profile, this environment
implementation starts the external script called dohell.sh. This script is a modified version of a load
generating script used by some in the Linux real-time community [46]. With the preparations of the
environment done, lines eight through ten do the actual tracing of the interrupt response. Afterward
stopping the load on the system, i.e. the dohell.sh, is done by creating the file /tmp/stopDohell
for which the load generation will check.

Combining them into the TestBench

The combination of the three previously discussed abstractions, namely the tool wrapping com-
mands, the scram response initiating profiles and the environment specifications amounts to the

CHAPTER 4. IMPLEMENTATION 34

TestBench. There are many ways of combining objects of these classes, one of which is shown
in Listing 13. Any combination that works is then useful to characterize the interrupt response on
the EnzianBMC.

1 # A perf command for SMBus and I2C
2 smbus_i2c_perf_cmd = PerfCmd("i2c_perf_cmd", trace_targets=[’i2c:*’,’smbus:*’],
3 trace_filters=[’pid’,’time’,’event’,’trace’],
4 do_time_sync=False, use_clock_monotonic_raw=True)
5 commands = [smbus_i2c_perf_cmd]
6 # If you want the BMC to run single core (might be beneficial for tracing)
7 FIX_SINGLE_CORE = True
8 # Define the profiles to use
9 profile:list[ToProfile] = [DirectScramProfile(global_loglevel="INFO")]

10 # Choose on which environments to run
11 environments:list[TestEnvironment] = [
12 IdleEnvironment(logger, fixate_to_core=FIX_SINGLE_CORE)
13]
14 additionalRunComments = ""; currentRunFolder = "./out"
15 # run only specific environments
16 doEnvironments(environments, commands, profiles, currentRunFolder)
17 # Log and shut off the power
18 logger.info(currentRunConfiguration(environments, commands, profiles,

additionalRunComments))↪→

19 finishTestBench(FIX_SINGLE_CORE)

Listing 13: Combination of parts that amount to the TestBench

This minimal example has all the pieces of the actual TestBench used to obtain the evaluations
of this thesis. The only difference is that the actual TestBench script contained in runTestBench.py
employs all existing commands, profiles and environments in multiple different configurations.

Running this minimal example, the Linux perf command is used to trace a direct scram, while
the EnzianBMC is restricted to a single core and idle. Other than creating the respective objects,
this is entirely done within the doEnvironments call on line 16. This method expects as the first
three arguments the environments, profiles and commands. The last argument given to it is the
path to where the output of the tracing is saved. doEnvironments will sequentially execute every
combination of environment, command and profile. As the argument lists in this example only
contain one object each, the output will only be from a single tracing run.

The two methods in lines 18 and 19 are part of the utility methods created for the TestBench.
The currentRunConfiguration will return a string containing informing about all the configura-
tions that are currently set. For reproducibility, this information is added to every output of the
TestBench. finishTestBench in addition to activating all cores again shuts off the power to the
CPU and FPGA on EnzianBMC. The power to those was on in the first place to power them down
during the interrupt response.

4.2.2 Test scripts on BMC

In addition to the TestBench there are also some test scripts in the onBMC folder. These scripts
were used to test various properties of the tools and the system throughout the course of this thesis.

One of these scripts is the timingTestPerfDmesg.py script. It is used to test the time difference
of how close perf and dmesg timestamps get to the Python ones for the same event. After testing

CHAPTER 4. IMPLEMENTATION 35

some different events, the one chosen for perf was the file close operation.
Hence the script does for the number of rounds defined a time measurement in Python followed

by a file close and another time measurement. Simultaneously we use the Python abstraction
provided by the TestBench to trace all syscalls:sys_enter_close system events. Part of the
information saved by the test script during each round is the file descriptor of the file closed. Using
this crucial number after the test is done we can search for the file close syscall of this specific file
and read out its timestamp given by perf.

The chosen event for dmesg was directly writing a message to /dev/kmsg. This might take
longer than a single file close operation but using an unbuffered file is still the fastest way to have
a shared event with Python.

4.2.3 Part running locally

The TestBench also has a local part to where the gathered data is saved. This part of the TestBench
runs the remote part on the EnzianBMC multiple times and copies back the collected data. The
local scripts at the start will first copy the relevant folder containing all needed scripts to the remote
EnzianBMC and only then execute them there. These scripts are contained in the onBMC folder
and copying it first means one can run tests on multiple BMCs without having to copy the TestBench
manually. This is usually the better case because of the assurance of having the same TestBench
source on the BMC.

The main scripts of this local part of the TestBench are the three bash scripts runOnRemote,
syncDown, and doMultipleTestBench. These three scripts combined with the remote part on the
BMC will put every interrupt handler test run into a local folder called syncFolder. Each times-
tamped run has all the gathered tracing data for each profile and environment configured. Every
single script has a specific purpose where runOnRemote and syncDown may be used by themselves
for theirs.

• runOnRemote copies first the onBMC folder to the BMC. After that, it executes remotely
the Python script given as the first argument. This is most often used to execute the runTest-
Bench Python script on the configured EnzianBMC. Rsync is used to reduce testing time
overhead when copying for each run.

• syncDown is a tiny script, as all it does is using rsync to copy over the measurements gathered
by TestBench executions.

• doMultipleTestBench will do multiple TestBench runs on the configured EnzianBMC and
copy the measurements back down. It will do the former by first checking the EnzianBMC
status. If it is up, then it uses the runOnRemote script to run the TestBench remotely. After
each time runOnRemote with runTestBench as an argument runs successfully, doMultipleTest-
Bench copies back the just created measurements. Additionally, whenever the remote BMC
responds strangely, this script will try to restart it over SSH4.

4.3 Evaluation scripts

After implementing different tests and then running them multiple times, raw measurements are
gathered, but nearly no insights are gained from them. These only come from the evaluation scripts,

4Restarting the Enzian BMC over SSH or even manually over the console might sometimes fail. The last possible
solution for restarting, in that case, is using the JTAGinterface exposed by the BMC.

CHAPTER 4. IMPLEMENTATION 36

a group of Python scripts used to parse and evaluate the output of the TestBench. These scripts
additionally combine information over many runs to make statistical statements possible. The
structure of these is split into roughly four categories, namely the parse, calculation, evaluation
scripts, and other utilities.

Calculation scripts are descriptively named after what they compute. The scramDeltas.py
calculates, for example, relative time deltas for disjoint parts and how much time is approximately
lost on communication is calculated by communicationLatencies.py. Parse scripts are those scripts
prefix with parse and a command name as a suffix5. They are closely related to the command they
parse because the output generated by each abstracted tool can differ widely. The utility scripts
implement common functionality needed throughout other scripts like reading in and sanity checking
the TestBench output file or converting and parsing timestamps.

The essential part of all of these evaluation scripts is how to parse the TestBench output. With
this knowledge, it is easy to add new scripts augmenting the existing ones or gaining completely
new insights.

4.3.1 Parsing the TestBench output

The goal was to lose as little tracing information from the abstracted tools as possible. To achieve
this, the output of the TestBench is fundamentally unstructured. The only known fact about
the output is that it contains results returned by the command and the first line defining the
command that generated it. #Output from <command_identification> follows: is the form
of this first line, where command_identification is the identifier defined in the BaseCmd class
described in section 4.2.1 and as such in each command. When using the implemented utility
command RunAllCmd() this line is used as a delimiter between the outputs of each subcommand.
All parsing implemented is done using regular expressions in Python. Regular expressions or short
regex is a way of defining a search pattern used by string-searching algorithms.

Running multiple commands in parallel is the primary way of tracing done during this work. Do-
ing so allows the combination of the information gained by different Linux tools on the EnzianBMC
during a single interrupt response. The output of such a RunAllCmd() seen in Listing 14 simply
contains the outputs of each command abstraction. This is why understanding the separate parts
of this output give an idea of how to parse the complete one.

The first two lines starting at the beginning are made by the PID utility command. Here we see
that this command only returns the name of the process and its current process identifier. We have
to read these PIDs for every run on the TestBench because restarting the power-manager means
spawning new processes for each service. Parsing this output with a regular expression will return
the mapping of PID to name.

Lines three through eleven show the reduced output of a journalctl command on the fault service.
A full line of this output and how to parse it was already seen in Listing 4. These are the logging
messages done throughout the fault service and hence can be exactly matched. Each of them is an
interval during the scram response where the power-manager executes a specific set of operations.
A description of the grouping and their naming follows6:

• fan set is the interval of the scram response during which the fans of the BMC are set to max
as a security measure.

• cpu reset is the time used to reset the CPU. This time interval is the shortest by far and
5The suffix may contain information about the configuration of the command it parses.
6The order seen here is the same in which the sets of operations are done by the power-manager.

CHAPTER 4. IMPLEMENTATION 37

1 #Output from pid_cmd follows:
2 testBench: 7968; gpio: 8018; power: 8028; fault: 8059; telemetry: 1488;
3 #Output from fault_journal_cmd follows:
4 -- Logs begin at Tue 2021-07-20 16:14:37 UTC. --
5 [...] fan set start at 11724735.771436 end at 11724773.780939
6 [...] cpu reset start at 11724773.780939 end at 11724777.917078
7 [...] pac_fpga start at 11724777.917078 with end at 11724832.825500
8 [...] pac_cpu start at 11724832.825500 end at 11724887.731378
9 [...] finished all start at 11724735.771436 to 11724893.570735

10 [...] fault_handler start at 11724735.670636 end at 11724896.269073
11 #Output from smbus_perf_cmd follows:
12 8028 11724.739123: smbus:smbus_write: i2c-4 a=052 f=0000 c=0 BYTE_DATA l=1 [(nil)hD]
13 8028 11724.739662: smbus:smbus_result: i2c-4 a=052 f=0000 c=0 BYTE_DATA wr res=0
14 8028 11724.739795: smbus:smbus_read: i2c-4 a=052 f=0000 c=3a BYTE_DATA
15 8028 11724.740501: smbus:smbus_reply: i2c-4 a=052 f=0000 c=3a BYTE_DATA l=1 [(nil)hD]
16 8028 11724.740506: smbus:smbus_result: i2c-4 a=052 f=0000 c=3a BYTE_DATA rd res=0
17 ...
18 8063 11724.935225: xgpio:irqhandler: xgpio handler called, ipisr=0x1
19 8063 11724.935236: xgpio:handle_channel_irq: xgpio handle channel 1 interrupt, val=0x1fff0d5c,

changed=0x20, mask=0x1fff0df8, rising=0x1fff0df8, falling=0x1fff0df8↪→

20 ...
21 #Output from perf_timechart_cmd follows:
22 time cpu task name wait time sch delay run time
23 [tid/pid] (msec) (msec) (msec)
24 ...
25 11724.736359 [0001] python[8059] awakened:

dbus-broker[1310]↪→

26 11724.736376 [0000] <idle> 0.016 0.000 1.135
27 11724.736415 [0001] python[8059] 0.000 0.016 1.292
28 11724.736511 [0000] dbus-broker[1310] awakened:

python[8028]↪→

29 11724.736529 [0001] <idle> 1.292 0.000 0.113
30 11724.736531 [0000] dbus-broker[1310] 1.135 0.016 0.155
31 ...

Listing 14: A reduced TestBench output using multiple commands.

contains the fault service communicating with the GPIO service and the latter resetting the
CPU.

• pac_fpga and pac_cpu are the sets of operations that shut down the power for both the FPGA
and CPU respectively. The suffix of this name defines which part it is in the scram method
as both have near identical power-manager source code.

• finished all or sometimes also called inside_all is the time interval containing all above plus
the original logging by the power-manager that the emergency response finished.

• fault_handler is the time it takes the power-manager in Python to handle the interrupt until
shutdown, similarly to finished all. In essence, this gives us the additional logging overhead
we cause with all other tracing in Python. This same output is called direct_scram if the
scram is called directly over D-Bus and not through a fault.

Example output from a perf command tracing the SMBus and the xgpio driver can be seen
in lines eleven through twenty. This output comes from filtering the recorded perf data for PID,
timestamp, event, and trace. The first two always have the same form for any event and are followed

CHAPTER 4. IMPLEMENTATION 38

by the event’s name. We get the PID, timestamp, event name, and message on the initial parsing
pass. Using the unique event name, it is possible to decide how to parse the message part. Parsing
of the SMBus and I2C messages is done by matching for the address a=<address> and command
c=<command>. For the xgpio debug information, the parsing is done similarly for the val=<value>
and then converting this hexadecimal value into which actual GPIO pins changed their value.

The last part of this output originates from a perf command which can be used by perf timechart
in Linux. This subcommand of perf can create a time chart about the processes that were run on
each CPU. The evaluation scripts use the same tracing information to calculate how much CPU
time is lost on other processes. Using the insights gained, it is possible to say if some other pro-
cesses should be set to a lower priority or ultimately killed. Given line 22, there is no further need
to describe this output.

4.3.2 Gaining insights from parsed data

Having all of this data now allows us to reach our goal of characterizing the interrupt handling
on EnzianBMC. Moreover, this data does not have to be only tracing output anymore, but it is
augmented with additional calculations as well as aggregated over many different iterations. How
to use this information to understand interrupt handling better, now depends on where the interest
lies.

Indeed, one way is to look at the data returned by the calculation scripts directly. Even if
helpful in some instances by giving the highest amount of detail, often this does not tell a clear
enough story. The remainder of the evaluation scripts exist to give more precise insights at a first
glance. These insights are then either directly printed out or worked with further. Whenever new
questions arise, new parts can be added to these scripts answering them, given enough information
is contained in the data. Some of the insights returned for this work are the following:

• Measured bounds on the latency of the scheduling between power-manager services. These
include a comparison between different environments and the impact that prioritization of
these services has.

• How much time the different grouped operations of the power-manager scram response take.

• What are the physically measured lower bounds on the SMBus for communication with hard-
ware.

• The time from when the modified Xilinx driver receives a fan fault interrupt to when the
power-manager code receives this signal.

The visualizations scripts make some of these insights clearer by producing visualizations. To
do so matplotlib.pyplot [47] and then the tikzplotlib [48] package is used.

Chapter 5

Evaluation

Characterizing the response of the interrupt handler on the EnzianBMC was done in steps because of
its complexity. Which experiments and how they were done to make statements about the interrupt
handling response time in EnzianBMC are described in this chapter.

First, in section 5.1 the general experiments about tracing are described. These gave important
information about how precise the tracing is using the newly created TestBench and they also gave
the first insights into the interrupt handling response. This is followed by section 5.2 showing the
results achieved using the TestBench to find inefficiencies and their improvements.

5.1 Tracing generally

Tracing is per definition on a low level and with high frequency but without a clear boundary to
profiling. For the characterization of the actual emergency response, it is important to know how
much overhead our tracing generates.

As such, here we take a look at the results of what takes how long to trace and log. At first, we
measure the time timing in Python takes, followed by a look at the relative time between the tools
and Python, and lastly, the overhead generated by logging in Python.

5.1.1 Timing in Python

Since no Python package was deemed optimal for tracing or profiling the power-manager, other
options had to be tested. As discussed in section 2.4.2 this other option is the time module by
Python.

No exact information is available about the overhead taking time in Python costs, so it was
tested with a minimal code snippet. The only metric we can look at is the total execution time
it takes to get the time, as the actual measurement of it during the method call is unknown. We
approximate the actual measurement by assuming it is taken midway through the method.

The test for the generated overhead of the Python shipped time module can be seen in List-
ing 15. For this test we used Python’s timeit mentioned in section 2.4.2. As can be seen, the
deviation of the timing between runs is negligible compared to their absolute difference. Further,
time.clock_gettime_ns(...) is undoubtedly very fast with 4 microseconds on average.

This code snippet is called 20,000 times locally on the EnzianBMC while the board is idle.
It is crucial to do it on the EnzianBMC because the resources available can make a massive
difference in the results. On my personal computer, the same code snippet takes 218 nsec for
clock_gettime_ns(). This is a relative speed decrease of two between the embedded system that
is Enzian and a last-generation gaming laptop.

39

CHAPTER 5. EVALUATION 40

1 root@enzian-bmc:# python3 -m timeit -n 20000 -s ’import time’ ’timed =
time.clock_gettime_ns(time.CLOCK_MONOTONIC_RAW)’↪→

2 20000 loops, best of 5: 4.08 usec per loop
3 root@enzian-bmc:# python3 -m timeit -n 20000 -s ’import time’ ’timed =

time.clock_gettime_ns(time.CLOCK_MONOTONIC_RAW)’↪→

4 20000 loops, best of 5: 4.06 usec per loop

Listing 15: Overhead test of the Python time module.

5.1.2 Relative time between Python and tools

Knowing the Python time.clock_gettime_ns() is the way to go for timing in Python, it is neces-
sary to check whether it is actually the same relative time that other tools use. This is necessitated
by our calculations using all timestamps in the traces together.

The script to test this is called timingTestPerfDmesg.py. Using this script with perf in the
default configuration, we get the outputs seen in lines one through six in Listing 16. Default
configuration here is use_clock_monotonic_raw=False not defining the clock source of perf in the
PerfCmd abstraction of the TestBench. The same test is done for dmesg using the DmesgCmd of
the TestBench as well.

1 Using i2c_perf_cmd is: perf record -e syscalls:sys_enter_close -o
../testing/i2c_perf_cmd/perf_perf.data↪→

2 ...
3 -5026.0 usec before test and 5072.0 after in iteration 198; 46.0 usec execution of loop
4 -5026.0 usec before test and 5072.0 after in iteration 199; 46.0 usec execution of loop
5 The average delta time from Python time to the perf timestamp is -5026.0 usec
6 All times are in order for 200 iterations of perf.
7 Created dmesg_cmd command to run.
8 Opened the dev/kmsg successfully, starting now
9 ...

10 -5017.0 usec before test and 9585.0 after in iteration 200; 4568.0 usec execution of loop
11 -5020.0 usec before test and 9611.0 after in iteration 201; 4591.0 usec execution of loop
12 The average delta time from Python time to the dmesg timestamp is -5018.0 usec

Listing 16: Reduced timingTestPerfDmesg.py output without clock source.

Looking at the output of this test script, one can see quickly that neither dmesg nor perf return
the same relative time as python with the monotonic raw clock source. We also see that the time
difference to Python is more or less the same for the total of 200 test rounds carried out. Similarly,
we see that the time difference between perf and dmesg is less than 20 microseconds, which leads
to the conclusion that both use the same clock source, but it is not Linux monotonic raw.

1 Using i2c_perf_cmd is: perf record -e syscalls:sys_enter_close -o
../testing/i2c_perf_cmd/perf_perf.data --clockid CLOCK_MONOTONIC_RAW↪→

2 ...
3 21.0 usec before test and 26.0 after in iteration 198; 47.0 usec execution of loop
4 22.0 usec before test and 25.0 after in iteration 199; 47.0 usec execution of loop
5 The average delta time from Python time to the perf timestamp is 22.0 usec
6 All times are in order for 200 iterations of perf.

Listing 17: timingTestPerfDmesg.py output for perf with monotonic raw clock source.

CHAPTER 5. EVALUATION 41

Perf and hence also its abstraction PerfCmd give us the option to define the clock source.
Using this feature in perf the relative time difference between it and the time we measure near-
simultaneously in Python is very close, as can be seen in Listing 17. The about 20 microseconds
difference seen between the time measured in Python and the one we read from the perf output
can be attributed to mainly two things. First, the roughly four microseconds it takes Python to
measure the time can not be neglected. Second, the operation synching perf and Python in this
script is a file close operation, which in itself does take some time in Python and the kernel.

Dmesg, on the other hand, does not have any options to set, so the results seen before can not be
improved upon. It might be possible to use two perf instances running simultaneously, one with raw
monotonic clock source and one without, to somehow readjust the time of dmesg. This was never
tried as directly switching to USDT probes and perf for the xgpio driver gave identical possibilities.

5.1.3 Logging overhead of Python

Similar to the question of the fastest way to determine the time in Python, we must know the
effort required to store this information. Knowing this effort required the response time measure-
ment can consider the overhead produced of taking the measurement itself. The aforementioned is
approximated by measuring the time of the scram twice and incorporating the information gained
from subsection 5.1.1.

The first of these two measurements is the time of the whole scram method plus logging. This
time can be read out from the TestBench output as the fault_handler or direct_scram time de-
scribed in subsection 4.3.1. The second measurement is done within the power-manager scram
method and can similarly be read from the TestBench output. This second time is called the in-
side_all_delta. After subtracting this time from the previous one, we are left with an approximation
of how long our logging took.

To figure out this average logging overhead inside the power-manager the TestBench for all
existing profiles and environments is run 50 times. All improvements are already applied as this
gives us the most significant impact of logging on our measurements. The only command used for
these test runs is the JournalCmd for the fault service of the power-manager as this will return all
needed data to be able to calculate the logging overhead.

Profile Environment Mean
inside_all_delta

Mean
total logging

Std Max

fanScram idleEnv 199.686 2.639 0.323 3.778
directScram idleEnv 153.360 2.692 0.444 3.996
fanScram telemetryEnv 191.927 2.607 0.140 2.939

directScram telemetryEnv 157.844 2.550 0.501 5.617
fanScram LoadedEnv 682.308 2.468 0.152 2.693

directScram LoadedEnv 571.374 2.509 0.128 2.743

Table 5.1: Logging overhead of scram method in the power-manager in ms.

In Table 5.1 we can see the logging overhead inside the scram method of the power-manager
in milliseconds across all runs. The data is given per profile in each environment, where in-
side_all_delta is the total time of the scram method. Additionally, you can see the mean logging
overhead; the standard deviation of this logging overhead and the maximal overhead it took in these
50 runs.

CHAPTER 5. EVALUATION 42

Given this data, we see that logging is with about 1% of the total runtime of the scram function
less overhead than normal profiling with scalene or cProfile takes. These modules will return
much more information, but that additional information is currently not interesting to us. Another
insight is that we do not need to take into account how long it takes to measure the time itself
because with at most five microseconds doing so, it is two orders of magnitude faster.

As already logging five times results in about 1% overhead, we noticed that logging throughout
Python takes a lot of time and should, whenever possible, be avoided. This insight leads directly
to the log level suggestions as improvements to the scram latency in section 5.2.2.

5.2 Interrupt handler latencies

With working tracing tools and the TestBench as implemented in section 4.2 it was finally possible
to characterize the interrupt handler on EnzianBMC. The modularity of the TestBench with the
different environments allows running a set of tests in different system circumstances. The repeata-
bility of the same test over multiple runs gives us experimental bounds on the expected response
time of the interrupt handler.

5.2.1 Using the TestBench

As the TestBench is highly configurable, it was used to get a rough overview of where inefficiencies
are during diverse states the EnzianBMC could be in. This gave hints to where improvements
should be possible, which then resulted in the speedups seen in section 5.2.2. While using the
TestBench, strange differences in run time between the implemented profiles were noticed. Where
these differences were coming from and what the implications for the TestBench are is discussed
in section 5.2.1.

Inital characterization

Throughout the creation of the TestBench some experiments were done to try out the implemented
features. During those, data was measured in single runs and with a variety of different configura-
tions of the EnzianBMC. By and large, the essential data seen was similar to the one shown below
in Listing 18 and Listing 19. In both of these tables are the averaged out times over all deltas of
the first entire TestBench measured over 25 runs with all useful commands in all configurations.
Only Listing 19 has the xgpio to scram time, as on a direct scram over D-Bus we skip this part of
the normal emergency response. At this stage, the EnzianBMC was state of the art without any
improvements.

Environment Scram
method

Fan set max CPU reset pac FPGA pac CPU

idleEnv 284.127 43.439 7.204 111.971 113.829
telemetryEnv 286.837 54.328 5.894 109.747 109.503
LoadedEnv 940.719 138.254 8.652 379.437 393.014

Listing 18: Initial characterization of interrupt handling in ms using directScram.

Multiple insights are already apparent from these experiments. The most crucial but expected
one is that majority of the interrupt response time is spent in the Python-based power-manager
(scram method). The roughly three to seven milliseconds seen in Listing 19 from the earliest

CHAPTER 5. EVALUATION 43

Environment xgpio to
scram

Scram
method

Fan set
max

CPU reset pac FPGA pac CPU

idleEnv 2.303 330.392 90.209 6.855 112.189 113.487
telemetryEnv 2.507 320.475 88.786 6.276 108.857 109.182
LoadedEnv 7.446 1236.908 333.461 7.640 456.165 415.574

Listing 19: Initial characterization of interrupt handling in ms using FanScramProfile().

measurement point in the xgpio driver to the start of the scram method in the fault service is time
that is hard to improve. Most of that comparatively short time is spent outside of custom code or
at least in the kernel. Similarly improving the time spent in the driver or even before it will not be
necessary as long as there is still an interpreted language like Python on the response path.

Something eye-catching in both profile runs is the amount of time the part of the emergency
response titled pac FPGA and pac CPU take1. Both of them correspond to deltas powering down
the FPGA and CPU power. Together, these two make up between 68% and 82% of the total scram
method time, depending on which profile is used.

The time difference between the DirectScramProfile() and the FanScramProfile() in all
environments is discussed later2. It originates from the time delta measured that set the fans to
maximal power, called fan set max in in Listing 18 and Listing 19.

Looking generally at the environments, the TestBench shows using the above 3x response time
of the LoadedEnvironment that the state the EnzianBMC is in has a massive impact on respon-
siveness. This also shows the importance of having a tool like the TestBench that can run the
same experiments under several distinct settings. Easing the addition of new environmental set-
tings or adjusting existing ones makes it easy to test out experiments on a multitude of settings and
compare their impact. Additionally, coordinating multiple tools like perf and the power-manager
reproducible would be very tedious.

Difference between TestBench profiles

During the initial characterization, we see noticeable differences in execution time between the two
implemented profiles. The so-called fanScram is always slower than directScram despite there being
no change other than how the scram method is called. This difference can not be attributed to the
method of calling because the measured code is the same.

Through detailed inspection of the traces, additional SMBus interaction for the fanScram can
be found. These communication messages are parsed and a reduced form is shown in Listing 20.
Notice how all of them have i2c-4 in their message. This number four is information on which bus
the message is sent. On the EnzianBMC, this bus is called PWR_FAN and has the power and fan
alerts on it. There are only four commands used in the additional messages and for the repeated
commands the only change is some data bits (not shown). Further, these messages contain only
two addresses, namely the addresses 0x00c and 0x052 (read out from a=<address>)3.

From the datasheet of the fan controller MAX31785 [49] used we learn that the command 0x00
is a page change and 0x80 checks for reasons of faults. The controller needs the 0x00 because it

1These two intervals are prefixed with pac because the devices written to in the power-manager during them is so.
This abbreviation comes from the sequencers type ISPPAC, which stands for In-System Programmable Programmable
Analog Circuit.

2To figure out where this difference comes from is a deep dive into how the I2C interaction with the fan controller
works.

3The rest of the I2C information traced by perf is less relevant to figure out what is happening.

CHAPTER 5. EVALUATION 44

1 Read on PWR_FAN command 0 with message: i2c-4 a=00c f=0000 c=0 BYTE
2 Read on PWR_FAN command 79 with message: i2c-4 a=052 f=0000 c=79 WORD_DATA
3 Read on PWR_FAN command 7e with message: i2c-4 a=052 f=0000 c=7e BYTE_DATA
4 Write on PWR_FAN command 0 with message: i2c-4 a=052 f=0000 c=0 BYTE_DATA ...
5 Read on PWR_FAN command 80 with message: i2c-4 a=052 f=0000 c=80 BYTE_DATA
6 ... (11 times)

Listing 20: Parsed SMBus communication difference between fanScram and directScram

supports up to 11 temperature sensors and six remote voltages on one bus address. Combining this
information allowed the conclusion that the eleven times near identically repeated commands are
the checks for which of the fans faulted. Hence, as expected, the fanScram is generally a better
approximation to an actual fault in the hardware, because this checks which sensors are faulty,
which is not done during a directScram.

5.2.2 Improvements on latency

During the initial characterization of the interrupt handling on the EnzianBMC the TestBench was
able to find a few inefficiencies. The most significant ones were further explored and in the end all
successfully improved upon. The first improvement described is for inter-process communication
between the power-manager services followed by the observed speedups of the different improve-
ments compared to the state-of-the-art EnzianBMC. The last part is improvements for when the
EnzianBMC is under high load.

Inefficiencies of inter-process communication

After the initial characterization, the part of the emergency response shutting down the CPU and
the FPGA was improved first. As it turned out, the overhead here is caused by the inter-process
communication of the fault service issuing device writes to the power service.

To test this overhead, the power service was logged on the device_write() method. This
method is called by the fault service 20 times during the emergency shut down of the CPU and
FPGA each. Because the accumulated time inside the method of the power service did not take as
long, the communication was further inspected. The communication cost for this interaction was
calculated by subtracting the cumulative working time used within the power service from the total
time these method calls took in the fault service.

These calculations show that only about 70% of the total time for shutting down the CPU and
FPGA each was spent doing so. In the interest of checking if these calculations are correct, an
additional method called device_write_multiple() was implemented in the power-manager. This
method allows to do the same as device_write() but for all signals at once. This meant reducing
the 40 inter-process remote method calls to two. As can be seen in Figure 5.1 this consolidation
of signals reduced the communication and hence the total time for these deltas by about 34.2%
compared to the state-of-the-art. This corresponds to about 69.6% of the total improvements to be
gained for this code path in the idle environment.

Scram latency improvements

The primary goal for doing tracing and profiling is to be able to improve the latency of the interrupt
handling on EnzianBMC. This is crucial as we want the software running to react as quickly as pos-

CHAPTER 5. EVALUATION 45

State of the Art Aggregate pac calls All together
0

50

100

ti
m
e
(m

s)

Figure 5.1: Comparision of pac delta consolidation across configurations.
Blue the FPGA pac delta and orange the CPU pac delta.

sible to hardware issues to reduce the probability of actual failures. Using the created TestBench a
few inefficiencies were able to be found that can be easily fixed. Following is the list of improvements
to the power-manager. Each improvement can be seen in Figure 5.2 with the total runtime of the
interrupt response using it. The data for this graph was created using the TestBench over 50 runs
for the idleEnv environment and fanScram4.

State
of the

Art

Reduc
ing I2C trans.

Aggre
gate pac calls

Log-le
vel ER

ROR
All to

gether
0

50

100

150

200

250

ti
m
e
(m

s)

Figure 5.2: Scram method run times in milliseconds with diverse improvements.

One minor improvement has to do with the order of messages sent over I2C while doing the
emergency shut down. Setting the fan speeds to maximal power is the first thing the scram method
does. During this fan_set, as it is called throughout this work, the power service is used first to
initialize the fan controllers and then set the fan speed. Doing both directly after each other instead
of two initializations first removes I2C transactions for setting the correct page on the controller.

4This configuration of environment and profile is chosen because it is fast to run. Similar or even better performance
gains are seen on all other combinations tested.

CHAPTER 5. EVALUATION 46

This improved ordering was found during the deep dive on the issue discussed in section 5.2.1 and
its improvement on the global runtime can be seen in Figure 5.2. Even if this change is only a 3.6%
latency decrease right now, it can be kept once the power-manager is rewritten in a more performant
language.

Compared to the current implementation, the most significant improvement with roughly 27%
speedup can be achieved by reducing the 40 inter-process communication of the power-manager
services down to two.

The most accessible and still massive improvement to implement is to set the global log level
for Python throughout the power-manager to the ERROR log level. Doing so will disable almost all
logging for the power-manager, but at the same time, a speed improvement compared to state-of-
the-art of about 17% can be obtained. This speedup is gained in its entirety by not interacting with
journald to output logging messages and is the direct solution to the conclusion in subsection 5.1.3
that python logging is painfully slow.

The last comparison in Figure 5.2 is all of the suggested improvements combined. All of them
together results in a total latency speedup of about 45% to the current implementation of the
power-manager. Even with this emergency shutdown’s boost in response time, the roughly 150
milliseconds are still very significant for such a vital system.

Linux scheduling influence

Process scheduling can currently have a high impact on scram latency. The Enzian BMC being
an embedded system, this impact can especially be seen when the restricted resources run low. To
characterize this impact, we use the TestBench to trace all scheduler events in Linux in addition
to the usual information for a single run. This allows us to examine the wait time incurred by
scheduling during the emergency response and how Linux schedules the power-manager services.
The TestBench is configured to run only the LoadedEnvironment, as there, the impact can be seen
the clearest. Further, this experiment is done without any other improvements.

In figure Figure 5.3 a time chart of the scheduling latencies for the critical processes can be seen.
These processes are named on the left, with the suffix being the processor core on which it was run.
Neither rest_<core ID> nor logging_<core ID> is a single running process. rest_<core ID> is
the accumulation of all other processes running on EnzianBMC while the interrupt handler is char-
acterized. The main process taking up all the CPU time seen in Figure 5.3 is the dohell.sh script
started to simulate load on EnzianBMC. logging_<core ID> is the accumulation of everything
logging-related like journald and perf5. The other five shown are, beside the three important power-
manager services, the TestBench and the dbus-broker service used to communicate. The x-axis is
the time in milliseconds since the start of the scram response. The red part is the wait-time of each
process until it gets to run, which is in blue.

To reduce the impact of low running resources on the BMC it is possible to prioritize the critical
processes like the dbus-broker and the power-manager services. Under Linux, this can be achieved by
using renice -n <priority> <PID> where the priority value can be between -20 and 19. Anything
below the base priority zero will mean it will be scheduled faster.

This renice command is used in Figure 5.4 to set the priority of all critical processes to -15 6.
During the experiments run by the TestBench, this is possible by configuring the PIDCmd to renice
them.

5In Figure 5.4 it is possible to see the evenly spaced logging messages the power service will do for each device
write.

6Note that the logging is not niced, because we do not care if the log is late by even a few seconds.

CHAPTER 5. EVALUATION 47

0 50 100 150 200 250 300 350
dbus-broker_1
dbus-broker_0

gpio-srv_1
gpio-srv_0

power-srv_1
power-srv_0
fault-srv_1
fault-srv_0

testBench_1
testBench_0

logging_1
logging_0

rest_1
rest_0

ms from start of scram response

Figure 5.3: Timechart of processes during fan scram in doHell environment.

0 50 100 150 200 250

dbus-broker_1
dbus-broker_0

gpio-srv_1
gpio-srv_0

power-srv_1
power-srv_0
fault-srv_1
fault-srv_0

testBench_1
testBench_0

logging_1
logging_0

rest_1
rest_0

ms from start of scram response

Figure 5.4: Timechart of niced processes during fan scram in doHell environment.

CHAPTER 5. EVALUATION 48

When looking at these time charts, particular attention should be paid to the power service on
core zero and the logging processes. If the power-manager is not niced, they will share core zero,
and the power service is repeatedly preempted for both logging and other processes.

Comparing the 355.4 milliseconds run in Figure 5.3 to the one in Figure 5.4 with nicing taking
around 236.5 milliseconds, we see a reduction of roughly 33% of the total run time. This speedup can
almost entirely be attributed to the fact that the power-manager gets with nicing always CPU time
when necessary, even during high load on EnzianBMC. There is significant speedup seen precisely
in the idle environment because, in those experiments, there is nothing compute-heavy besides the
power-manager to run on the CPUs anyway.

Chapter 6

Conclusion

The Board Management Controller of the Enzian project has a custom interrupt handler broadly
called the power-manager. The current implementation handles faults in the hardware with a
response latency of hundreds of milliseconds, which could lead to the system components being
damaged in case of a hardware failure. Regrettably, this latency could not easily be improved as no
trace tooling to find inefficiencies worked on EnzianBMC.

In this work, the available tracing and profiling tools on Linux are first summarized to argue
which are ideal for characterization. Many of the tried Yocto recipes did not work immediately.
Perfs recipe was no different, but as it was comparatively easy to fix and perf still potent, we fixed
it for the OpenBMC version 3.2 and with that also the current EnzianBMC. The Python logging
framework was used to trace the power-manager because the other options available did not work
on EnzianBMC or had too high an overhead.

Additionally, a new tool named the TestBench was created to gather many traces consistently
and repeatedly. This TestBench helps counteract the fact that the Linux system is not a deter-
ministic real-time system. The TestBench and the scripts used for evaluation are developed in a
modular way enabling a straightforward addition of new data gathering or visualization methods.

This first characterization of the interrupt handling on the EnzianBMC using the newly available
capabilities unearthed various inefficiencies such as logging and inter-process communication. The
suggested improvements resulted in a speedup of roughly 45% for the scram response time, these
are by no means the only ones possible, but only the first found and quickest to implement. Future
work on this using the tooling created could yield further performance benefits.

How the TestBench currently handles gathered data is not ideal, as this results in tedious post-
processing in need of revisiting. Moreover, expanding the current TestBench to more environments
and profiles could lead to further insights missed by the current implementation.

Future work beside these additions could be fixing other Yocto recipes for EnzianBMC to have
more tracing tools available. Similarly, upgrading the kernel EnzianBMC is based on should be
considered as this would likely lead to some recipes either directly working or needing fewer fixes.

49

Bibliography

[1] C. Heimhofer, “Towards high-assurance Board Management Controller software,” Master’s the-
sis, Swiss Federal Institute of Technology Zurich, 2021.

[2] Enclustra. (2021) Mercury ZX5. Accessed on September 03, 2021. [Online]. Available: https:
//www.enclustra.com/en/products/system-on-chip-modules/mercury-zx5/#backtotopanchor

[3] Xilinx. (2021) Zynq-7000 SoC. Accessed on September 03, 2021. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[4] Intel. (2013) Intelligent Platform Management Interface Specification Second
Generation. Version 2.0 revision 1.1; Accessed on July 02, 2021. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/
ipmi-second-gen-interface-spec-v2-rev1-1.html

[5] A Joint Message from the IPMI Promoters. Accessed on May 02, 2021. [Online]. Avail-
able: https://web.archive.org/web/20210502094846/https://www.intel.com/content/www/
us/en/products/docs/servers/ipmi/ipmi-home.html

[6] DMTF Redfish Developer Hub. Accessed on May 02, 2021. [Online]. Available:
https://redfish.dmtf.org/

[7] (2020) OpenBMC. Accessed on July 02, 2021. [Online]. Available: https://github.com/
openbmc/openbmc/tree/dunfell

[8] Eclypsium. (2019) Understanding the top 5 common firmware and hardware attack vectors.
Accessed on September 05, 2021. [Online]. Available: https://eclypsium.io/wp-content/
uploads/2019/09/Attack-Vector-Paper.pdf

[9] Real-Time Linux Wiki. Accessed on September 01, 2021. [Online]. Available: https:
//rt.wiki.kernel.org/index.php/Main_Page

[10] Yocto Project. Accessed on July 01, 2021. [Online]. Available: https://www.yoctoproject.org/

[11] OpenEmbedded Layer Index. Accessed on September 03, 2021. [Online]. Available:
https://layers.openembedded.org/layerindex/branch/master/recipes/

[12] Buildroot. Accessed on September 03, 2021. [Online]. Available: https://buildroot.org/

[13] OpenWrt documentation. Accessed on September 03, 2021. [Online]. Available: https:
//openwrt.org/docs/start

50

https://www.enclustra.com/en/products/system-on-chip-modules/mercury-zx5/#backtotopanchor
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-zx5/#backtotopanchor
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://web.archive.org/web/20210502094846/https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html
https://web.archive.org/web/20210502094846/https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html
https://redfish.dmtf.org/
https://github.com/openbmc/openbmc/tree/dunfell
https://github.com/openbmc/openbmc/tree/dunfell
https://eclypsium.io/wp-content/uploads/2019/09/Attack-Vector-Paper.pdf
https://eclypsium.io/wp-content/uploads/2019/09/Attack-Vector-Paper.pdf
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://www.yoctoproject.org/
https://layers.openembedded.org/layerindex/branch/master/recipes/
https://buildroot.org/
https://openwrt.org/docs/start
https://openwrt.org/docs/start

BIBLIOGRAPHY 51

[14] P. Mejia-Alvarez, L. E. L. del Foyo, and A. Diaz-Ramirez, Interrupt Handling Schemes
in Operating Systems. Midtown Manhattan, New York City: Springer, Cham, 2018,
https://doi.org/10.1007/978-3-319-94493-7.

[15] B. D. Gregg. Brendan D. Gregg homepage. Accessed on July 04, 2021. [Online]. Available:
https://www.brendangregg.com/

[16] ——, Systems Performance: Enterprise and the Cloud, 2nd Edition (2020). 75 Arlington
Street Suite 300, Boston: Addison-Wesley, 2020, iSBN: 978-0136820154.

[17] perf(1) — Linux manual page, Mar. 2020, accessed on September 07, 2021. [Online]. Available:
https://man7.org/linux/man-pages/man1/perf.1.html

[18] eBPF, accessed on September 07, 2021. [Online]. Available: https://ebpf.io/

[19] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architecture for User-Level
Packet Capture,” in Proceedings of the USENIX Winter 1993 Conference Proceedings on
USENIX Winter 1993 Conference Proceedings, ser. USENIX’93. USA: USENIX Association,
1993, p. 2.

[20] B. D. Gregg. (2017) Security Monitoring with eBPF. Accessed on September 03, 2021.
[Online]. Available: https://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_
monitoring.pdf

[21] BPF Compiler Collection (BCC). Accessed on September 03, 2021. [Online]. Available:
https://github.com/iovisor/bcc

[22] bpftrace. Accessed on September 03, 2021. [Online]. Available: https://github.com/iovisor/
bpftrace

[23] LLVM Compiler Infrastructure Documentation, accessed on September 03, 2021. [Online].
Available: https://llvm.org/docs/

[24] T. Waldekranz. (2018) ply a dynamic tracer for Linux. Accessed on September 03, 2021.
[Online]. Available: https://wkz.github.io/ply/

[25] J. Levon, OProfile, accessed on September 03, 2021. [Online]. Available: https:
//oprofile.sourceforge.io/about/

[26] (2018) 4.13.2 Removed Recipes. Accessed on September 06, 2021. [Online]. Available:
https://docs.yoctoproject.org/current/ref-manual/migration-2.5.html#removed-recipes

[27] Linux Trace Toolkit: Next Generation (LTTng), accessed on September 03, 2021. [Online].
Available: https://lttng.org/

[28] SystemTap, accessed on September 03, 2021. [Online]. Available: https://sourceware.org/
systemtap/

[29] S. R. et al., ftrace - Function Tracer, 2008, accessed on July 04, 2021. [Online]. Available:
https://www.kernel.org/doc/Documentation/trace/ftrace.txt

[30] strace(1) — Linux manual page, Oct. 2020, accessed on September 03, 2021. [Online].
Available: https://man7.org/linux/man-pages/man1/strace.1.html

https://www.brendangregg.com/
https://man7.org/linux/man-pages/man1/perf.1.html
https://ebpf.io/
https://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring.pdf
https://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring.pdf
https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://llvm.org/docs/
https://wkz.github.io/ply/
https://oprofile.sourceforge.io/about/
https://oprofile.sourceforge.io/about/
https://docs.yoctoproject.org/current/ref-manual/migration-2.5.html#removed-recipes
https://lttng.org/
https://sourceware.org/systemtap/
https://sourceware.org/systemtap/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://man7.org/linux/man-pages/man1/strace.1.html

BIBLIOGRAPHY 52

[31] D. Inc., sysdig(8) — Linux manual page, accessed on September 03, 2021. [Online]. Available:
https://man7.org/linl=ux/man-pages/man8/sysdig.8.html

[32] dtrace4linux, Linux port of DTrace, accessed on September 03, 2021. [Online]. Available:
https://github.com/dtrace4linux/linux

[33] E. D. Berger, “Scalene: Scripting-Language Aware Profiling for Python,” CoRR, vol.
abs/2006.03879, 2020. [Online]. Available: https://arxiv.org/abs/2006.03879

[34] The Python Profilers - cProfile Module Reference, version 3.9; Accessed on September 03,
2021. [Online]. Available: https://docs.python.org/3/library/profile.html#module-cProfile

[35] This is Python version 3.9.7, accessed on September 03, 2021. [Online]. Available:
https://github.com/python/cpython/tree/3.9

[36] M. Marchini. stapsdt 0.1.1. Accessed on September 03, 2021. [Online]. Available:
https://pypi.org/project/stapsdt/

[37] timeit — Measure execution time of small code snippets, accessed on September 03, 2021.
[Online]. Available: https://docs.python.org/3/library/timeit.html

[38] time — Time access and conversions, accessed on September 09, 2021. [Online]. Available:
https://docs.python.org/3/library/time.html?highlight=time#module-time

[39] trace — Trace or track Python statement execution, accessed on September 03, 2021. [Online].
Available: https://docs.python.org/3/library/trace.html

[40] M. Marchini. TODO (mmarchini) add other architectures (this only works for x86_64).
Accessed on September 06, 2021. [Online]. Available: https://github.com/sthima/libstapsdt/
blob/a982e58b83cba95069a888d85f36ba21ac370453/src/sdtnote.c#L9

[41] ——. libstapsdt. Accessed on September 03, 2021. [Online]. Available: https://github.com/
sthima/libstapsdt/

[42] K. Zak and T. Ts’o, dmesg(1) — Linux manual page, Jun. 2021, accessed on September 03,
2021. [Online]. Available: https://man7.org/linux/man-pages/man1/dmesg.1.html

[43] systemd-journald.service(8) — Linux manual page, accessed on September 03, 2021. [Online].
Available: https://man7.org/linux/man-pages/man8/systemd-journald-audit.socket.8.html

[44] Yocto Project - Tracing and Profiling. Accessed on August 28, 2021. [Online]. Available:
https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#General_Setup

[45] S. Rostedt. (2010) Using the TRACE_EVENT() macro (part 3). Accessed on September 06,
2021. [Online]. Available: https://lwn.net/Articles/383362/

[46] I. Molnar. (2005) my ’dohell’ script is embarrasingly simple. Accessed on September
03, 2021. [Online]. Available: https://groups.google.com/g/linux.kernel/c/Gc4uncIrVo4/m/
Kr18NJfDiAwJ

[47] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science Engineering,
vol. 9, no. 3, pp. 90–95, 2007.

https://man7.org/linl = ux/man-pages/man8/sysdig.8.html
https://github.com/dtrace4linux/linux
https://arxiv.org/abs/2006.03879
https://docs.python.org/3/library/profile.html#module-cProfile
https://github.com/python/cpython/tree/3.9
https://pypi.org/project/stapsdt/
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/time.html?highlight=time#module-time
https://docs.python.org/3/library/trace.html
https://github.com/sthima/libstapsdt/blob/a982e58b83cba95069a888d85f36ba21ac370453/src/sdtnote.c#L9
https://github.com/sthima/libstapsdt/blob/a982e58b83cba95069a888d85f36ba21ac370453/src/sdtnote.c#L9
https://github.com/sthima/libstapsdt/
https://github.com/sthima/libstapsdt/
https://man7.org/linux/man-pages/man1/dmesg.1.html
https://man7.org/linux/man-pages/man8/systemd-journald-audit.socket.8.html
https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#General_Setup
https://lwn.net/Articles/383362/
https://groups.google.com/g/linux.kernel/c/Gc4uncIrVo4/m/Kr18NJfDiAwJ
https://groups.google.com/g/linux.kernel/c/Gc4uncIrVo4/m/Kr18NJfDiAwJ

BIBLIOGRAPHY 53

[48] N. Schlömer. tikzplotlib - The artist formerly known as matplotlib2tikz.
DOI:10.5281/zenodo.5180111; accessed on September 03, 2021. [Online]. Available:
https://github.com/nschloe/tikzplotlib

[49] M. Integrated, Maxim 6-Channel Intelligent Fan Controller MAX31785, Aug. 2012, revision
3; accessed on September 05, 2021. [Online]. Available: https://datasheets.maximintegrated.
com/en/ds/MAX31785.pdf

[50] Yocto Project Quick Build. Accessed on July 04, 2021. [Online]. Available: https:
//docs.yoctoproject.org/brief-yoctoprojectqs/index.html

[51] G. Kroah-Hartman. (2020) [patch 5.4 90/90] perf bench: Share some global variables
to fix build with gcc 10. Accessed on September 05, 2021. [Online]. Available:
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2257273.html

[52] A. C. de Melo. (2020) libtraceevent: Fix build with binutils 2.35. Accessed on September
05, 2021. [Online]. Available: https://patchwork.kernel.org/project/linux-trace-devel/patch/
20200725010623.GA194964@decadent.org.uk/#23521869

[53] C. Du. (2020) perf: Make perf able to build with latest libbfd. Accessed on September
05, 2021. [Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/acme/linux.
git/commit/?id=0ada120c883d

[54] J. Fitzhardinge. (2013) bug.h File Reference. Accessed on September 05, 2021.
[Online]. Available: https://docs.huihoo.com/doxygen/linuUnknownx/kernel/3.7/include_
2linux_2bug_8h.html

https://github.com/nschloe/tikzplotlib
https://datasheets.maximintegrated.com/en/ds/MAX31785.pdf
https://datasheets.maximintegrated.com/en/ds/MAX31785.pdf
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2257273.html
https://patchwork.kernel.org/project/linux-trace-devel/patch/20200725010623.GA194964@decadent.org.uk/#23521869
https://patchwork.kernel.org/project/linux-trace-devel/patch/20200725010623.GA194964@decadent.org.uk/#23521869
https://git.kernel.org/pub/scm/linux/kernel/git/acme/linux.git/commit/?id=0ada120c883d
https://git.kernel.org/pub/scm/linux/kernel/git/acme/linux.git/commit/?id=0ada120c883d
https://docs.huihoo.com/doxygen/linuUnknownx/kernel/3.7/include_2linux_2bug_8h.html
https://docs.huihoo.com/doxygen/linuUnknownx/kernel/3.7/include_2linux_2bug_8h.html

Appendix A

Appendix

A.1 Step-by-step guides

A.1.1 Building a fresh EnzianBMC kernel

Building a new EnzianBMC kernel means first cloning into the EnzianBMC repository on the Enzian
build server. After that, following the steps outlined in the quick start guide by Yocto [50] from the
building images chapter onwards is sufficient. For minor modifications and more so while developing,
use the command-line devtool. To build the kernel, use the bitbake enianbmc-image command
as usual. Once the devicetree_image, kernel_image, and the ubifs_image, the root file system, are
ready, they can be flashed. After flashing them, it is possible to boot the new EnzianBMC.

The quickest way of doing so at the time of this thesis depends if it is only a development boot
or not. If so, then using the netboot function in the EnzianBMC uboot to boot from tftpboot
directly is ideal. This takes the least amount of time and allows for a quick turnaround time
on kernel changes. To use this netboot function, use the command setenv bootscript_image
bmc/<username or place>/uboot.scr. After this all that is left to do is run dhcp to get an IP
address in uboot and run netboot to actually boot.

If permanent flashing to the EnzianBMC is desired use the following steps from within uboot:

• setenv bootimage_root bmc/<username or place>/ to set the correct root directory for
the rest of the commands.

• setenv bootimage_version enzianbmc-<myversion> sets the folder name within the root
directory defined where the three files generated by Yocto need to be.

• dhcp will again get an IP address while in uboot.

• run update_dtb updates the device tree of the EnzianBMC.

• run update_kernel updates the kernel image.

• run update_rootfs puts the new root file system in the flash memory of the EnzianBMC.

• reboot the EnzianBMC with the newly flashed kernel.

A.1.2 Backporting perf patches to work on EnzianBMC

The first built error had less to do with perf itself but more with how newer versions of GCC (like
version 10 used by us) handle globals [51]. Prefixing some global variables in the source code of perf
with bench_ and putting them in the header file fixed this sharing issue.

I

APPENDIX A. APPENDIX II

As Yocto recipes only call systematically different other build systems in a reproducible way the
next problem had to be fixed in the Makefile used to compile perf. This is the case because some
dependencies of perfs Makefile 1 changed behavior in a non-backward compatible way. The applied
patch was found in a Linux kernel patch [52].

After finally being able to start compiling perf during the built time, the first actual error within
perf’s source came up. This time a library that perf uses changed some macros to inline functions,
which meant that perf would fail to find them2. The patch [53] that was backported can handle
both versions of the library, even if this would not be necessary for our use case of compiling perf
for exactly this version of EnzianBMC.

The last error to fix before perf built for the first time successfully into an EnzianBMC had again
to do with the Makefile for perf. The issue this time was that the Makefile tries to use Python 2 to
silently install something, while Python 2 is not available any more on this system. We did not even
search for a patch for this, as it was fixed by just deleting the offending part of the Makefile. While
using perf it was not once noted that there was an issue with this step of the Makefile missing.

Even though EnzianBMC did now compile with perf added to it, perf was not very usable in
that first build. This was because the kernel did not yet have tracepoint support throughout the
kernel built into it. Surprisingly activating the correct flags in menuconfig to get tracepoint support
broke the build again. This built error was the least informative of all and took a while to track
down. In the end, it was a BUILD_BUG_ON macro3, which breaks compilation the same way as
during an actual compilation error, but only if its condition is true [54]. The condition that was true
and hence created this compilation error was a MAX_FILTER_STR_VAL ≤ 256 in the include
path of SMBus 4. A fix that did result in a successful built of an EnzianBMC kernel with usable
perf was just to set this filter value bound from 256 to 258.

These fixes were combined into the single patch seen in subsection A.2.1 that then can be applied
during a built for EnzianBMC. After applying this patch to the EnzianBMC kernel and enabling
perf if will successfully compile and be in a working state.

A.1.3 Kernel build configuration

Most kernel tracing and profiling are, as expected, not enabled by default for any Linux kernel
build. It was a prerequisite to correctly configure the kernel using the Yocto kernel configuration
menu before building the EnzianBMC kernel with support for tracing and profiling. Using Yocto,
one can interactively do this configuration through menuconfig using bitbake -c menuconfig
virtual/kernel, given that the Yocto built environment is activated in this shell.

Initially, while working with dmesg instead of custom tracepoints, activating the following two
options at build time was necessary. The first was Show timing information on printks found in
the printk and dmesg options of the main menuconfig. This will result in timestamps being printed
for each printk message. Secondly also Enable dynamic printk() support is activated to compile all
pr_debug messages into the kernel, which will result in a roughly 2% size increase. Alternatively,
it would have been possible to add the DEBUG flag to the xgpio driver, but as the original idea
with dmesg was not to modify anything about that driver, the previous option was chosen.

1In binutils 2.35, ’nm -D’ changed to show symbol versions along with symbol names, which then messed up the
Makefile of perf using nm.

2The exact macros changed were the bfd_section_* within libbfd.
3The BUILD_BUG macros should be used for code that relies on certain constants being set and to use compile-

time-evaluated conditions to detect if someone changes it.
4The exact relative path was include/trace/events/smbus.h

APPENDIX A. APPENDIX III

The most critical group of flags to enable tracing can all be set within the tracers category,
which itself is again a subcategory of kernel hacking.

• Kernel Function Tracer is needed to be able to trace every kernel function. This is possible
by inserting a 5-byte No-Operation to be later patched dynamically into a tracer call.

• Enable uprobe-based dynamic events is activated to ensure all perf-probe subcommands can be
used if desired. Generally, this option allows users to add tracing on top of userspace dynamic
events.

• enable/disable function tracing dynamically is chosen to impact the typical performance of the
system as little as possible. This is achieved by setting No-Operations at every location that
ftrace can trace until enabled dynamically later on.

• Trace gpio events activate as the names suggest tracing events for the GPIO subsystem. This
is useful to be able to trace the GPIO pins the power-manager is using.

After having set these configurations, the kernel can be built and if everything went well should
have all kernel tracing functionality.

A.1.4 Applying a kernel patch to EnzianBMC using Yocto

Whenever some changes to the kernel of EnzianBMC are needed, they are added in Yocto as incre-
mental git patches. Doing so is very easy as adding the patch file to the meta-enzianbmc/recipes-
kernel/linux/linux-enzianbmc folder within the build directory is everything. It does need to
have a unique name in that folder because the next part is configuring Yocto Project to use it.
This configuration is nothing more than adding this unique file name as an SRC_URI to meta-
enzianbmc/recipes-kernel/linux/linux-enzianbmc.bbappend. This file for this work with added trac-
ing is shown in Listing 21.

1 SRC_URI += "file://enzianbmc.dts;subdir=git/arch/arm/boot/dts"
2 SRC_URI += "file://kernel.patch;patchdir=${S}"
3 SRC_URI += "file://xilinx-gpio-irq.patch;patchdir=${S}"
4 SRC_URI += "file://backport-patches-perf.patch"
5 SRC_URI += "file://xilinx-gpio-tracing.patch;patchdir=${S}"
6 ...

Listing 21: Beginning of linux-enzianbmc.bbappend to configure Yocto to apply kernel patches.

APPENDIX A. APPENDIX IV

A.2 Git patches

A.2.1 Git patch backporting perf changes for OpenEmbedded version 3.2

From 5c6396d09adefa170db65e1ace1eb524f4f9ad88 Mon Sep 17 00:00:00 2001
From: OpenEmbedded <oe.patch@oe>
Date: Wed, 14 Jul 2021 11:55:22 +0200
Subject: [PATCH] Patch for backported patches of perf and some hacking to get
tracing to work

include/linux/trace_events.h | 2 +-
tools/lib/traceevent/Makefile | 2 +-
tools/perf/Makefile.perf | 3 ---
tools/perf/bench/bench.h | 5 +++++
tools/perf/bench/futex-hash.c | 13 +++++++------
tools/perf/bench/futex-lock-pi.c | 12 ++++++------
tools/perf/util/srcline.c | 17 ++++++++++++++++-
7 files changed, 36 insertions(+), 18 deletions(-)

diff --git a/include/linux/trace_events.h b/include/linux/trace_events.h
index 2bcb4dc6df1a..d23e8555e22a 100644
--- a/include/linux/trace_events.h
+++ b/include/linux/trace_events.h
@@ -388,7 +388,7 @@ struct trace_event_file {

#define PERF_MAX_TRACE_SIZE 2048

-#define MAX_FILTER_STR_VAL 256 /* Should handle KSYM_SYMBOL_LEN */
+#define MAX_FILTER_STR_VAL 258 /* Should handle KSYM_SYMBOL_LEN */

enum event_trigger_type {
ETT_NONE = (0),

diff --git a/tools/lib/traceevent/Makefile b/tools/lib/traceevent/Makefile
index 46cd5f871ad7..6cc2c357559e 100644
--- a/tools/lib/traceevent/Makefile
+++ b/tools/lib/traceevent/Makefile
@@ -262,7 +262,7 @@ define do_generate_dynamic_list_file

xargs echo "U W w" | tr ’ ’ ’\n’ | sort -u | xargs echo‘;\
if ["$$symbol_type" = "U W w"];then \

(echo ’{’; \
- $(NM) -u -D $1 | awk ’NF>1 {print "\t"$$2";"}’ | sort -u;\
+ $(NM) -u -D $1 | awk ’NF>1 {sub("@.*", "", $$2); print "\t"$$2";"}’

| sort -u;\↪→

echo ’};’; \
) > $2; \

else \
diff --git a/tools/perf/Makefile.perf b/tools/perf/Makefile.perf
index 91ef44bfaf3e..04e947fe7a69 100644

APPENDIX A. APPENDIX V

--- a/tools/perf/Makefile.perf
+++ b/tools/perf/Makefile.perf
@@ -785,9 +785,6 @@ install-bin: install-tools install-tests

install-traceevent-plugins↪→

install: install-bin try-install-man

-install-python_ext:
- $(PYTHON_WORD) util/setup.py --quiet install --root=’/$(DESTDIR_SQ)’
-
’make install-doc’ should call ’make -C Documentation install’
$(INSTALL_DOC_TARGETS):

$(QUIET_SUBDIR0)Documentation $(QUIET_SUBDIR1) $(@:-doc=)
diff --git a/tools/perf/bench/bench.h b/tools/perf/bench/bench.h
index 6c9fcd757f31..1cc3074d2af0 100644
--- a/tools/perf/bench/bench.h
+++ b/tools/perf/bench/bench.h
@@ -10,6 +10,11 @@

* PA-RISC uses different madvise values from other architectures and
* needs to be special-cased.
*/

+
+#include <sys/time.h>
+
+extern struct timeval bench__start, bench__end, bench__runtime;
+
#ifdef __hppa__
ifndef MADV_HUGEPAGE
define MADV_HUGEPAGE 67

diff --git a/tools/perf/bench/futex-hash.c b/tools/perf/bench/futex-hash.c
index 58ae6ed8f38b..e0af7aca2fee 100644
--- a/tools/perf/bench/futex-hash.c
+++ b/tools/perf/bench/futex-hash.c
@@ -35,7 +35,8 @@ static unsigned int nfutexes = 1024;
static bool fshared = false, done = false, silent = false;
static int futex_flag = 0;

-struct timeval start, end, runtime;
+//struct timeval start, end, runtime;
+struct timeval bench__start, bench__end, bench__runtime;
static pthread_mutex_t thread_lock;
static unsigned int threads_starting;
static struct stats throughput_stats;

@@ -101,8 +102,8 @@ static void toggle_done(int sig __maybe_unused,
{

/* inform all threads that we’re done for the day */
done = true;

- gettimeofday(&end, NULL);
- timersub(&end, &start, &runtime);

APPENDIX A. APPENDIX VI

+ gettimeofday(&bench__end, NULL);
+ timersub(&bench__end, &bench__start, &bench__runtime);
}

static void print_summary(void)
@@ -112,7 +113,7 @@ static void print_summary(void)

printf("%sAveraged %ld operations/sec (+- %.2f%%), total secs = %d\n",
!silent ? "\n" : "", avg, rel_stddev_stats(stddev, avg),

- (int) runtime.tv_sec);
+ (int) bench__runtime.tv_sec);
}

int bench_futex_hash(int argc, const char **argv)
@@ -156,7 +157,7 @@ int bench_futex_hash(int argc, const char **argv)

threads_starting = nthreads;
pthread_attr_init(&thread_attr);

- gettimeofday(&start, NULL);
+ gettimeofday(&bench__start, NULL);

for (i = 0; i < nthreads; i++) {
worker[i].tid = i;
worker[i].futex = calloc(nfutexes, sizeof(*worker[i].futex));

@@ -199,7 +200,7 @@ int bench_futex_hash(int argc, const char **argv)
pthread_mutex_destroy(&thread_lock);

for (i = 0; i < nthreads; i++) {
- unsigned long t = worker[i].ops/runtime.tv_sec;
+ unsigned long t = worker[i].ops/bench__runtime.tv_sec;

update_stats(&throughput_stats, t);
if (!silent) {

if (nfutexes == 1)
diff --git a/tools/perf/bench/futex-lock-pi.c b/tools/perf/bench/futex-lock-pi.c
index 08653ae8a8c4..8cb33f6e9086 100644
--- a/tools/perf/bench/futex-lock-pi.c
+++ b/tools/perf/bench/futex-lock-pi.c
@@ -34,7 +34,7 @@ static bool silent = false, multi = false;
static bool done = false, fshared = false;
static unsigned int ncpus, nthreads = 0;
static int futex_flag = 0;

-struct timeval start, end, runtime;
+//struct timeval start, end, runtime;
static pthread_mutex_t thread_lock;
static unsigned int threads_starting;
static struct stats throughput_stats;

@@ -61,7 +61,7 @@ static void print_summary(void)

printf("%sAveraged %ld operations/sec (+- %.2f%%), total secs = %d\n",
!silent ? "\n" : "", avg, rel_stddev_stats(stddev, avg),

APPENDIX A. APPENDIX VII

- (int) runtime.tv_sec);
+ (int) bench__runtime.tv_sec);
}

static void toggle_done(int sig __maybe_unused,
@@ -70,8 +70,8 @@ static void toggle_done(int sig __maybe_unused,
{

/* inform all threads that we’re done for the day */
done = true;

- gettimeofday(&end, NULL);
- timersub(&end, &start, &runtime);
+ gettimeofday(&bench__end, NULL);
+ timersub(&bench__end, &bench__start, &bench__runtime);
}

static void *workerfn(void *arg)
@@ -178,7 +178,7 @@ int bench_futex_lock_pi(int argc, const char **argv)

threads_starting = nthreads;
pthread_attr_init(&thread_attr);

- gettimeofday(&start, NULL);
+ gettimeofday(&bench__start, NULL);

create_threads(worker, thread_attr);
pthread_attr_destroy(&thread_attr);

@@ -204,7 +204,7 @@ int bench_futex_lock_pi(int argc, const char **argv)
pthread_mutex_destroy(&thread_lock);

for (i = 0; i < nthreads; i++) {
- unsigned long t = worker[i].ops/runtime.tv_sec;
+ unsigned long t = worker[i].ops/bench__runtime.tv_sec;

update_stats(&throughput_stats, t);
if (!silent)

diff --git a/tools/perf/util/srcline.c b/tools/perf/util/srcline.c
index 4105682afc7a..5b1796e98866 100644
--- a/tools/perf/util/srcline.c
+++ b/tools/perf/util/srcline.c
@@ -139,16 +139,31 @@ static void find_address_in_section(bfd *abfd, asection

*section, void *data)↪→

bfd_vma pc, vma;
bfd_size_type size;
struct a2l_data *a2l = data;

+ flagword flags;

if (a2l->found)
return;

- if ((bfd_get_section_flags(abfd, section) & SEC_ALLOC) == 0)

APPENDIX A. APPENDIX VIII

+ //if ((bfd_get_section_flags(abfd, section) & SEC_ALLOC) == 0)
+#ifdef bfd_get_section_flags
+ flags = bfd_get_section_flags(abfd, section);
+#else
+ flags = bfd_section_flags(section);
+#endif
+ if ((flags & SEC_ALLOC) == 0)

return;

pc = a2l->addr;
+#ifdef bfd_get_section_vma

vma = bfd_get_section_vma(abfd, section);
+#else
+ vma = bfd_section_vma(section);
+#endif
+#ifdef bfd_get_section_size

size = bfd_get_section_size(section);
+#else
+ size = bfd_section_size(section);
+#endif

if (pc < vma || pc >= vma + size)
return;

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,

Master’s thesis and any other degree paper undertaken during the course of studies, including the

respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Characterization of Interrupt Handling in Board Management Controllers

Oberdörfer Tobias

Zurich, 10.09.2021

