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Abstract 

In large-scale metal composite systems, comprising independent plated components coupled 

along weld lines, the response and encountered failure modes are governed by complex 

interactions of local instabilities with the spread of plasticity. The system scale, as well as the 

requirement of achieving mesh conformity throughout the domain, pose severe limitations on 

the modelling front and increase the associated computational demand substantially, thereby 

rendering extensive nonlinear analyses prohibitive. This work is motivated by the necessity for 

a versatile modelling strategy, enabling the accurate nonlinear response evaluation and 

assessment of large-scale composite systems under extreme static and dynamic loading.  

A high-fidelity modelling strategy is proposed, which enables the accurate response evaluation 

of composite systems in the range of large displacements, taking due account of geometric and 

material nonlinearity. The strategy utilises co-rotational Reissner-Mindlin shell elements, with 

an embedded hierarchic optimisation approach that addresses inaccuracies arising from locking 

phenomena. The proposed modelling approach is further enhanced with a dual super-element 

domain partitioning methodology, facilitating scalable parallel processing in High Performance 

Computing systems with distributed memory, which enables a substantial reduction in the 

computing wall-clock time to be achieved and potential memory bottlenecks to be overcome. 

A systematic methodology for surface coupling along a line is developed, based on a novel 

1-D coupling element formulation, which facilitates discrete constraint enforcement between 

surfaces of arbitrary relative spatial orientation discretised with non-conforming finite element 

meshes. The approach is applicable to any type of 2-D and 3-D elements and provides a 

systematic framework for geometric modelling of weld lines, coupling of independently 

discretised regions within a system, as well as for domain partitioning problems involving 

computationally heterogeneous partitions. Efficient translational and rotational coupling 

element formulations are further established for surfaces discretised with quadratic 

Reissner-Mindlin shell elements, and their performance is extensively assessed through patch 

tests, sensitivity analyses and verification studies. 

Several application studies involving extensive nonlinear analyses of geometrically complex, 

large-scale, composite structural systems are presented, to illustrate the versatility and 

computational efficiency of the unified modelling framework, encompassing partitioned high-

fidelity finite element modelling and the developed coupling capability.  
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Chapter 1 

Introduction 

1.1 Preamble 

Offshore platforms are large structural forms, designed to facilitate well drilling for the 

identification, extraction and processing of oil and natural gas deposits, alongside their 

temporary storage before transportation ashore and distribution to the global markets. A typical 

offshore platform configuration encompasses three principal compartments, namely the topside 

deck, the substructure and the foundation. The configuration of the last two is primarily dictated 

by the installation depth, and thereupon platforms can be fixed to the seabed with a jacket, 

compliance tower or tension leg sub-structure, semi-submerged, floating or installed on 

artificial floating islands. The most vital compartment is the topside deck, a large-scale 

integrated or modularised system where the essential equipment for extraction and processing 

of oil and gas deposits is installed. Typical topside modules include the well control, power 

generators, pumps/compressors for the product transportation ashore, helideck, flare boom and 

crane pedestals, while living quarters are further constructed to host the workforce in a great 

number of existing platforms (ESDEP [The European Steel Design Education Program], 2009). 

A typical piled steel jacket platform configuration is illustrated in Figure 1.1.  

The conventional offshore topside deck configuration encompasses composite deck panels, 

consisting of a chequered or flat steel plate spanning over densely arranged stringers. Deck 

panels are classified as stacked or flushed, depending on their relative arrangement with respect 

to a grillage system of primary and secondary steel components, as illustrated in Figure 1.2 (a)- 

(b), respectively. The primary steel layout comprises either truss members or deep plate girders, 
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connected to the substructure compartment columns to form a portal frame configuration which 

facilitates vertical load transferring and provides lateral stability against wind, wave and 

earthquake loading. On the other hand, the secondary steel layout typically comprises regular 

hot-rolled steel beams, spanning between the primary components to form a supporting grillage 

system for the floor panels and overlying equipment (ESDEP [The European Steel Design 

Education Program], 2009). In critical deck locations where equipment is installed, the 

provision of a dense grid of secondary beams underneath the equipment supports is 

necessitated, to ensure adequate capacity and stiffness of the deck plate locally. Consequently, 

secondary deck beams are distributed over the deck in a non-uniform fashion, dictated by the 

equipment loading magnitude and variability, as illustrated in Figure 1.2 (c).  

 

Figure 1.1: Typical jacket-based offshore platform topside (ESDEP [The European Steel 

Design Education Program], 2009) 



Chapter 1: Introduction 
 

3 
  

 

(a) 

 

(b) 

 

(c) 

Figure 1.2: Typical design details for stacked (a) and flushed (b) composite deck panels 

(ESDEP [The European Steel Design Education Program], 2009) and conventional offshore 

topside deck system configuration (c) 

Primary components
Secondary components 
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The employment of the conventional deck configuration described above leads to several 

shortcomings: (i) the secondary steel contributes towards 50% of the global deck weight, thus 

rendering the conventional configuration cost-inefficient, inasmuch as the capital costs in the 

offshore oil and gas industry being dictated by structural weight; (ii) the localised stiffness and 

strength provision in critical equipment locations poses the requirement for multiple time-

consuming and costly design modification processes, to accommodate equipment relocation 

during the platform design; (iii) the implementation of a large number of welded connections 

for the secondary steel layout is rendered cumbersome in offshore conditions, and hence the 

preassembly of the entire topside deck onshore and its subsequent transportation offshore is 

required, which is a resource-consuming and risky undertaking; and (iv) maintenance and life-

cycle cost reduction requires the application of several tons of corrosion-protective paint-spray 

over the surface of environmentally exposed steel components, which, beyond being costly, 

contributes substantially towards the global structural weight. 

Following the profit margin downturn in the offshore oil and gas industrial sector in 2014, 

significant research efforts have been initiated towards the establishment of a novel 

configuration for the topside deck. A joint industrial Research and Development (R&D) 

collaborative project between Imperial College London, POSCO and AMEC Foster Wheeler 

initiated in this direction in January 2015, entitled INFLOAT-INnovative FLoor systems for 

Offshore plAtform Topsides, with a specified duration of 4.5 years. The principal research 

objective of the project is the establishment of a systematic design methodology for offshore 

platform topside deck systems, underpinned by the employment of novel, all-steel, laser-

welded, large-scale, two-way-spanning sandwich composites.  

Sandwich composites comprise two thin and stiff faceplates connected to a structural core of 

discrete topological configuration via adhesion or welding. Owing to their discrete core 

topology, sandwich composites attain enhanced stiffness and strength characteristics in 

comparison to solid components of equivalent weight, as well as a fully efficient two-way 

spanning action with appropriate design. Furthermore, appropriate selection of the core 

topology allows for enhanced energy dissipation in cases of extreme accidental loading, such 

as blast, to be achieved, which is a governing design consideration in offshore topside decks. 

The identification and formal definition of geometric limitations, associated with the 

component manufacturing viability and the offshore application context, had been the focus of 
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several interactions between the INFLOAT project partners, where the provision of practical, 

technical and qualitative guidance from POSCO and AMEC Foster Wheeler was key.  

Taking the above into consideration, the prospect of sandwich composite systematic 

incorporation in offshore topside decks is anticipated to be an innovation of significant merit: 

(i) the efficient two-way spanning action afforded by sandwich composites allows for a 

substantial reduction, or even elimination, of secondary components, thus leading to an 

estimated global deck weight reduction of the order of 30%; (ii) the stiffness and strength 

uniformity of sandwich composites enables equipment relocation to any desired extent to be 

accommodated with appropriate core design; (iii) the establishment of an efficient prescribed 

connection scheme amongst adjacent panels significantly limits the connection detailing 

workload and associated cost, thus further enabling their potential implementation offshore; 

and (iv) the restriction of environmentally exposed steel surfaces to the panel faceplates and 

the primary components leads to a considerable reduction in the corrosion protective paint 

weight and the associated maintenance cost. The envisioned configuration of an offshore 

topside deck encompassing large-scale sandwich composites is illustrated in Figure 1.3. 

 

Figure 1.3: Envisioned offshore topside deck configuration comprising two-way spanning 

sandwich composites 

Notwithstanding the superior performance attributes of sandwich composites in comparison 

with conventional deck panels, their incorporation in a systematic design methodology for 

topside decks, adopted by engineering practice, necessitates the establishment of a substantial 

level of confidence in their mechanical properties and response attributes. These have not been 
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documented in the existing literature hitherto, and hence a broad experimental investigation of 

their response and principal failure modes has been conducted in the context of the INFLOAT 

project. Beyond physical testing, however, the extensive response investigation of the novel 

composite response under a variety of complex loading conditions encountered in topside 

decks, as well as the robustness assessment of the envisioned novel deck systems at a global 

level, require the establishment of a high-fidelity (HF) Finite Element (FE) modelling strategy. 

Following its successful validation against the experimental results, a HF FE modelling 

strategy would provide a reliable, systematic and highly accurate computational tool for the 

individual component and deck system performance assessment, which, in turn, would enable 

the establishment of a systematic design methodology for engineering practice.  

Nonetheless, in large-scale composite systems exhibiting substantial stress variations locally 

or comprising independent deformable plated components welded along a line, such as the 

sandwich composites core and faceplates or the faceplates and the primary steel components, 

the requirement of achieving mesh conformity poses severe limitations on the modelling front. 

Beyond compromising the modelling flexibility, the mesh conformity requirement 

unnecessarily increases the already substantial computational demand of large-scale systems, 

in respect of the wall-clock time and memory resources, potentially leading to memory 

bottlenecks in the case of extensive nonlinear analyses. The modelling of such systems would 

therefore greatly benefit from a selective discretisation approach, encompassing the 

employment of a dense mesh only in regions of substantial stress variation and the flexibility 

of coupling independently discretised substructures, as well as from the efficient use of modern 

parallel computing architectures. It is emphasised that the term non-conforming, which 

typically refers to types of FEs which do not fully observe the compatibility conditions, is 

employed here and throughout this thesis to refer to non-matching meshes, associated with 

lack of nodal alignment along the interface where they are adjoined. 

1.2 Scope and objectives 

The response of large-scale metal composite structural systems, comprising independent 

deformable plated components coupled along weld lines, is characterised by the manifestation 

of various forms of local instabilities in several locations over the domain. The interaction of 

local buckling phenomena with the spread of plasticity in the range of large displacements 
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results in highly complex stress states, which govern the global structural response and dictate 

the encountered failure modes. The accurate capturing of these complex interactions over the 

full nonlinear response range is thus necessitated for an accurate response evaluation of these 

systems in the range of large displacements. In this context, the objectives of the present thesis 

are outlined hereafter: 

i. Development of a systematic and robust HF FE modelling strategy for realistic 3-D 

nonlinear analysis of large-scale metal composite structural systems. The modelling of 

such systems using plate or shell elements typically suffers from inaccuracies 

associated with various forms of locking phenomena, resulting in deteriorated element 

performance and the exhibiting of an overly-stiff response. The proposed strategy 

utilises recently developed geometrically nonlinear co-rotational shell elements, with 

an embedded hierarchic optimisation approach that effectively allows for the relief of 

locking inaccuracies (Izzuddin & Liang, 2016; 2017). The proposed approach aims at 

providing an original and systematic modelling framework for extensive nonlinear 

analysis of complex composite systems, including the novel sandwich composites and 

the envisioned topside decks, taking due account of geometric and material 

nonlinearity.  

ii. Validation of the HF FE modelling strategy against experimental results. Successful 

validation of the proposed modelling strategy against physical tests on the novel 

sandwich composites, conducted in the context of the INFLOAT project, aims at 

establishing its effectiveness for realistic 3-D modelling of individual sandwich 

composites and large-scale composite systems. 

iii. Incorporation of domain partitioning capabilities in the HF FE modelling strategy. The 

employment of the HF modelling strategy in large-scale composite systems imposes 

prohibitive computing wall-clock time and demands on memory resources, potentially 

leading to memory bottlenecks. These shortcomings can be effectively overcome via 

the systematic incorporation of a dual super-element domain partitioning approach 

(Jokhio & Izzuddin, 2015), allowing for scalable parallel processing in High 

Performance Computing (HPC) systems with distributed memory. The provision of 

qualitative guidance for the establishment of the optimal partitioning configuration, 

further aims at providing a systematic methodology towards this direction.  
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Within the HF modelling strategy framework, the constraints of mesh conformity between 

independent shell substructures intersecting along a line impose significant limitations on the 

modelling front, while substantially increasing the computational demands. The challenge of 

coupling intersecting non-conforming meshes along a line, traversing their domain in an 

arbitrary orientation, has motivated the development of a novel and systematic methodology 

for surface-to-surface coupling along a 1-D interface. Within this context, the principal 

research objectives, highlighting the originality of the present thesis, are outlined below: 

i. Development of a novel and systematic algorithmic treatment for enforcing discrete

kinematic constraints along a 1-D interface of arbitrary orientation, extending to parallel

or intersecting planar, curved and folded surfaces that are discretised with non-

conforming meshes.

ii. Development and implementation of original and computationally efficient 1-D

translational and rotational coupling element formulations, applicable to surfaces

discretised with 2-D and 3-D FEs.

iii. Verification of the accuracy and effectiveness of the novel 1-D coupling element in

enforcing translational and rotational constraints.

iv. Demonstration of the combined modelling and computational benefits of the unified

modelling framework, encompassing the partitioned HF FE modelling strategy and the

novel 1-D coupling element, in realistic modelling of large-scale composite structural

systems, via a series of practical application studies in the context of offshore topside

structures.

1.3 Thesis outline 

Following a concise presentation of the background, scope and objectives of the research work 

in the present chapter, an extensive literature review on its underpinning aspects is provided in 

Chapter 2. An insight into sandwich structural composites is first given, in view of their 

envisioned incorporation in offshore platform topside deck systems. A brief description of the 

HF nonlinear FE modelling strategy principal aspects and the employed dual super-element 

domain partitioning methodology is provided thereafter. The chapter concludes with an 
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extensive review of contact and coupling methods applicable to mixed FE constrained 

equilibrium problems, and a comparative evaluation of alternative approaches for 

incorporation in the novel coupling formulation.  

In Chapter 3 consideration is given to the HF nonlinear FE modelling strategy and the concept 

of domain partitioning, with specific focus on sandwich structural composites. An insight is 

first provided into the hierarchic optimisation approach embedded in the employed shell FE 

local formulation for the alleviation of locking phenomena (Izzuddin & Liang, 2017). 

Subsequently, alternative co-rotational framework definitions for establishing local element 

coordinate systems are presented and their benefits for large-displacement and rotation 

analyses are conferred (Izzuddin and Liang, 2016). The focus is thereafter shifted to the 

description of the dual super-element domain partitioning approach and the concept of scalable 

parallel processing in HPC systems with distributed memory (Jokhio & Izzuddin, 2015).  

In Chapter 4, an original and systematic methodology for discrete kinematic constraint 

enforcement along a 1-D interface between shell surfaces of arbitrary relative spatial 

orientation with non-conforming meshes is presented. The general setting of surface-to-surface 

coupling along a line is first introduced, followed by an elaborate description of the algorithmic 

treatment for the 1-D interface discretisation into coupling elements, applicable to any surface 

type. The chapter proceeds with presenting the derivations of the general 1-D coupling element 

force vector and consistent tangent stiffness matrix expressions from energy variational 

principles and concludes with a discussion on the established integration schemes at the 

coupling element level.  

In Chapter 5, the developed translational and rotational 1-D coupling element formulations are 

presented, with the expressions of the coupling element energy functional, force vector and 

tangent stiffness matrix being derived for each respective constraint type. Subsequently, the 

results of a set of patch tests are presented, verifying the element performance to effectively 

enforce translational and rotational constraints individually and in conjunction. The chapter 

concludes with a series of sensitivity analyses for the developed 1-D coupling element.  

In Chapter 6, a series of verification studies for the novel 1-D coupling element is presented, 

which highlight its various performance aspects and potential shortcomings for a range of 

coupling problems, encompassing planar, curved and folded surfaces, intersecting or edgewise 
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adjoined along a straight or curved 1-D interface. The element performance in the range of 

large displacements is verified against equivalent monolithic FE models in each case. 

In Chapter 7, a series of application studies focusing on offshore topside decks is presented, 

with consideration being given to large-scale metal sandwich composites employed as deck 

components and passive explosion-protective barriers. The presented numerical studies aim at 

showcasing the versatility of the unified modelling framework, encompassing partitioned HF 

FE modelling and the developed coupling capability, for extensive nonlinear analysis of 

geometrically complex, large-scale, composite structural systems.   

In Chapter 8, a summary of the main conclusions and contributions of the current thesis is 

provided, alongside suggestions for future work towards further enhancements and extensions 

on partitioned modelling and the developed 1-D coupling formulation. 

Throughout this research, the implementation of the coupling formulation and the numerical 

modelling simulations have been undertaken using ADAPTIC (Izzuddin, 1991), a sophisticated 

general FE code for the adaptive nonlinear analysis of structures under static and dynamic 

loading. Mesh generation capabilities have been developed using MATLAB R2017b 

(MathWorks Inc., 2017) and use has also been made of Maple 2016.2 (Maplesoft, 2016) 

symbolic and numeric computing environments, mainly as an alternative platform for verifying 

the implementation of the coupling formulation. 
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Chapter 2 

Literature Review 

2.1 Introduction 

In the present chapter, a concise literature review on metal sandwich composites with 

rectangular and hexagonal honeycomb core topologies is provided, alongside a more 

extensive review on existing methods for discrete coupling constraint enforcement 

between non-conforming Finite Element (FE) meshes. The dual aim of the review 

presented herein is to provide: (i) insight into metal sandwich composites with 

honeycomb core topologies, highlighting the need for the systematic application of the 

high-fidelity (HF) partitioned modelling strategy discussed in Chapter 3; and (ii) insight 

into the principal mathematical optimisation formulations and discrete constraint 

algorithmic treatments employed in FE coupling problems, providing the context for the 

novel 1-D coupling element formulation developed and presented in Chapters 4 and 5. The 

main body of the chapter is therefore divided into two sections, individually addressing the 

objectives outlined above. It is emphasised that the term non-conforming is used herein to 

refer to non-matching coupled meshes, associated with lack of nodal alignment along the 

coupling interface, as discussed in Chapter 1. 

It should be noted that the review provided herein focuses on the principal aspects 

underpinning the methods and developments presented throughout this thesis, however 

further references to the literature are also made at various points in the text, where in 

each case the relevant framework is explicitly specified and discussed.  
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2.2 Metal honeycomb core sandwich composites 

A literature review on sandwich composites is provided in this section, focusing on metal 

honeycomb core configurations. The sandwich concept and a short review on 

commonly employed materials in sandwich construction are presented first. The focus is 

subsequently shifted to metal composites, where an overview of relevant industrial 

engineering applications is provided, with particular emphasis to the respective core 

configurations. Within this context, a discussion on the principal aspects of viable core 

topologies for large-scale, two-way spanning, all-metal sandwich composite configurations 

is also provided, along the lines of the requirements and limitations outlined within the 

INFLOAT project framework. Subsequently, a review on existing modelling and analysis 

approaches and methods of investigation for metal honeycomb core composites is given, 

showcasing the necessity of establishing a systematic HF partitioned nonlinear analysis 

approach for large-scale applications. The section concludes with a brief overview of the 

principal aspects of the developed modelling strategy, which will be later elaborated in 

Chapter 3. 

The sandwich concept 

Research undertaken in a broad spectrum of engineering fields over the past six decades, 

aiming towards the establishment of structural component configurations with optimal 

strength-to-weight (specific strength) and stiffness-to-weight (specific stiffness) ratios, 

progressively gave rise to sandwich construction. Owing to their cost-effectiveness, sandwich 

composites have been incorporated in the design of automotive, aeronautical, aerospace, naval 

and marine systems in a systematic fashion, while a substantial portion of the technical 

manufacturing industry is currently dedicated to their fabrication and mass-production.  

Sandwich composites or sandwich panels comprise three principal compartments (Allen, 

1969): (i) two thin and sufficiently stiff plates of dense material at the top and bottom of the 

panel, commonly referred to as faceplates, skins or covers; (ii) an intermediate thick layer of 

the same or lower density and material grade between the plates, commonly referred to as the 

core; and (iii) a certain connection scheme between the faceplates and the core, typically 

encompassing an adhesive material or welding. The mechanical properties and principal 

response attributes of sandwich composites, alongside their susceptibility to a variety of failure 
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modes, are primarily dictated by the core configuration and the material selection for the 

faceplates and core.  

From a mechanical viewpoint, the most vital compartment is the structural core. Its significance 

can be highlighted in several ways: (i) it maintains a constant distance between the faceplates, 

thereby enhancing the composite flexural stiffness; (ii) it serves as the principal load 

transferring mechanism between the faceplates; (iii) it serves as the principal shear resistance 

mechanism of the sandwich composite; and (iv) it contributes to the faceplate out-of-plane 

stability. Owing to the core configuration and density, as well as potentially the choice of 

material, its beneficial action comes at a minimal weight trade-off, and hence sandwich 

composites attain substantially enhanced stiffness and strength characteristics in comparison 

to solid components of equivalent weight. This is highlighted in Table 2.1 for typical core 

configurations, densities and material properties employed in sandwich construction.  

Table 2.1: Relative stiffness and strength of equivalent weight sandwich and solid 

components (Petras, 1999) 

 

 

 Materials 

Sandwich composites are currently employed in a wide range of weight-critical applications, 

extending from cardboard packaging and ski equipment to aerospace and ship vessels, or even 

composite satellite shells. The selection of material is primarily dictated by the type of 

application, environmental conditions, magnitude and type of loading, manufacturing process 

and life-cycle cost in relation to immediate cost for fabrication and construction.  

In the vast majority of weight-critical applications, composite materials of intrinsically low 

density are employed, in order to further enhance the already substantial weight-saving 

potential of sandwich composites. In specialised automotive, aerospace and aeronautical 
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applications, Fibre-Reinforced Polymers (FRP), Fibre-Reinforced Glass (FRG) and Glass-

Reinforced Plastic (GRP) are commonly employed for the faceplates, with the core potentially 

comprising a lower-density and/or strength material, such as aluminium, steel foil or resin-

impregnated paper (Plantema, 1966). For less specialised applications, cheaper solutions for 

the faceplates include mild or structural steel, aluminium alloy and plywood (Allen, 1969).  

In large-scale applications of sandwich composites, such as bridge decks and infrastructure 

systems, the magnitude and type of applied loading dictates the use of higher-density materials, 

attaining superior strength. Composite panels of reinforced or pre-stressed concrete and 

structural steel are employed in bridge construction, with more cost-effective alternatives for 

secondary components including plasterboard, glass-reinforced cement, lightweight concrete, 

foams and clay products (Allen, 1969). Recently, the use of hybrid polymer-steel-concrete 

(Pantelides et al., 2008) or FRP composites (Morcous et al., 2010) in bridge decks has been 

investigated, while FRP sandwich panels have also been employed for building floor 

rehabilitation of existing structures in Portugal (Correia & Garrido, 2018). 

The complete list of materials used in sandwich construction is prohibitively long and outside 

of the present thesis scope. Shifting the focus to offshore applications, the environmental 

conditions and the predominant presence of water limit material selection to metallic materials, 

principally mild, high-strength and anti-corrosive structural steel. A widely accepted industrial 

practice is the use of mild steel, with an externally applied layer of specialised corrosion-

protective paint-spray over the environmentally exposed surfaces. In this context, a brief 

overview of core configurations for all-steel sandwich composites employed in offshore and 

naval applications will be given in the following section, alongside a qualitative comparative 

evaluation of the most attractive candidate core topologies for employment within the 

INFLOAT project framework.  

 

 Metal sandwich composite core configurations 

The use of structural steel in offshore and naval applications dictates the employment of 

sandwich composites with discrete core topologies, potentially combined with a lightweight 

foam material filling. The range of viable configurations has been substantially expanded in 

the past two decades, following rapid advancements in welding technology leading to the 
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development of novel laser welding techniques (TWI - The Welding Institute, 2019a).  Laser 

welding is currently employed for systematic all-steel sandwich composite fabrication at a 

mass-production level in various shipyards worldwide.  

Several core configurations have been investigated within the framework of this application 

class, with the vast majority of research being oriented towards one-way spanning sandwich 

composites. These comprise core topologies characterised by substantial orthotropy in respect 

of their mechanical properties, thereby achieving superior stiffness and strength characteristics 

in a single principal planar direction. Such topologies include corrugated plates, I-, Z-, C- and 

V-shaped stiffeners, and elongated tubular cells, welded on the panel faceplates, as illustrated 

in Figure 2.1 (a)-(c). 

For the INFLOAT project, a primary requirement has been the development of a sandwich 

panel system that achieves a two-way spanning capability. Within this framework, the most 

promising core topologies have been identified to be the cellular, corrugated prismatic and 

lattice truss. The mechanical properties and weight characteristics, alongside efficient 

fabrication approaches for these have been extensively investigated by Wadley (2003; 2005), 

and a brief overview of their main aspects is given hereafter. 

Cellular topologies comprise a periodic arrangement of cells oriented transverse to the 

faceplates. Several alternative individual cell geometric configurations exist, such as the 

hexagonal, rectangular and triangular illustrated in Figure 2.2. The response of this topological 

class is generally orthotropic along the principal planar directions, with the potential of 

achieving planar isotropy via appropriate design and symmetry (Gibson & Ashby, 1999). The 

core density and orientation transverse to the faceplates allows for enhanced shear performance 

characteristics and buckling/indentation resistance under imposed localised loading to be 

achieved by this topological class. The manufacturing of cellular cores can be implemented in 

an automated manner, due to the relatively low geometrical complexity and their periodicity 

(Wadley, 2003), while welded connections can only be achieved with laser welding from the 

external faceplate surface. 

Corrugated prismatic topologies comprise a sequence of prisms with longitudinal axes oriented 

along a single planar direction. The response of this topological class is typically characterised 

by substantial orthotropy, with triangular and rhombic prism topologies achieving enhanced 

load transferring transverse to the prism longitudinal axis, in comparison to corrugated, due to 
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their geometry allowing for a certain extent of truss action. Stacked configurations, 

encompassing two prism layers with mutually orthogonal longitudinal axes, as illustrated in 

Figure 2.2, exhibit a more isotropic response; however, the associated manufacturing process 

is more cumbersome and results in configurations of increased weight. The core orientation 

relative to the plates indicates an inferior shear, buckling and indentation resistance, in 

comparison to cellular topologies. The fabrication of the core requires bending of steel plates 

with a high degree of precision to attain the desired geometrical configuration, albeit the long 

and continuous contact surfaces between the core and the plates allow for a continuous and 

simple welding pattern to be established. 

Lattice truss topologies comprise a densely arranged mesh of thin, slender bars in various 

spatial orientations. The density of the bar mesh allows for a virtually isotropic response to be 

afforded without increasing the global composite weight substantially, due to the voids 

generated between the bars. Nonetheless, the bar slenderness renders these susceptible to 

buckling under compressive localised loading, potentially resulting in extensive indentation 

failure, while the level of topological complexity renders the fabrication and welding of this 

class cumbersome. Variations of lattice truss core topologies are illustrated in Figure 2.2. 

A comparative evaluation of various core topologies has been conducted in the INFLOAT 

project, in line with the set of requirements and limitations established in conjunction with 

AMEC Foster Wheeler and POSCO. In the selection process, consideration has been given to 

the stiffness and strength characteristics, two-way spanning efficiency, susceptibility to failure 

modes of interest for offshore topside decks and potential of mass-production. As a result, 

rectangular and hexagonal honeycomb core topologies were identified as the most viable 

alternatives, and hence consideration is henceforth given only to these. 

A broad spectrum of publications and handbooks on analytical methods, experimental results 

and FE modelling for honeycomb sandwich composites can be identified in literature. The 

following section provides a concise review of the principal existing modelling and analysis 

methods for the mechanical property evaluation, response investigation and failure mode 

characterisation of honeycomb core composites, with particular emphasis on metal composites 

with rectangular and hexagonal core topologies. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.1: (a) One-way spanning sandwich composite core configurations, (b) conventional 

and I-core sandwich composites for ship decks (Taczała & Banasiak, 2004), (c) all-steel 

laser-welded unidirectional web (I-core) sandwich panel - courtesy of Meyer Werft (TWI - 

The Welding Institute, 2019b), (d) all-steel laser-welded corrugated (V-core) sandwich panel 

(Nilsson, 2017) 

I-Core V-Core

C-Core Z-Core
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Cellular Corrugated Lattice-Truss 

Figure 2.2: All-metal sandwich core topologies (Wadley, 2003; 2005) 

Modelling of all-steel honeycomb core sandwich composites 

The theoretical principles underlying the analysis and design of structural sandwich panels, 

beams and struts can be found in the books of Allen (1969) and Plantema (1966), where 

analytical expressions and derivations of the governing differential equations for small 

deformation and second order sandwich theory are comprehensively presented. Contemporary 

guides include the books of Zenkert (1995; 1997), where the mathematical formulations 

derived by Allen and Plantema are further enhanced and guidance is provided on practical 

matters, including sandwich composites experimental testing, manufacturing methods 

and connection schemes. 

The fundamental aspects of periodic and cellular solid mechanics are presented in the book of 

Gibson and Ashby (1999), where a rigorous experimentally-validated analytical framework for 

the analysis of honeycomb topologies is established, spanning between the microscale and the 

macroscale levels. Beyond the expressions derived by Gibson and Ashby, a variety of 
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analytical estimates have been established over the years for the elastic and elastoplastic moduli 

of rectangular and hexagonal honeycomb topological configurations (Grediac, 1993; Masters 

& Evans, 1996; Berggren et al., 2001; Berggren et al., 2003). 

Owing to the undue complexity of the differential equations governing the response of 

sandwich composites, early design and analysis approaches were founded upon the simplified 

assumption of their treatment as beams. Such analytical expressions are widely applicable for 

the response evaluation of one-way composites in the linear elastic range, as well as their 

capacity estimation for design purposes, while providing crude conservative estimates for two-

way spanning composites. Based upon this simplification, a variety of failure mode maps, as 

well as stiffness and capacity estimates, have been established for honeycomb core sandwich 

composites (Holt & Webber, 1982; Petras & Sutcliffe, 1999; Gibson & Ashby, 1999), while 

analytical approaches were later extended to provide more accurate capacity estimates for 

honeycomb core sandwich plates (Galletti et al., 2008).

Shifting the focus to all-metal sandwich composites, experimentally-validated estimates for the 

ultimate capacity of metallic and aluminium hexagonal and rectangular honeycomb 

configurations were established for a variety of failure modes, including flexural and axial 

yielding, local core crushing and global buckling (Kee Paik et al., 1999; Crupi et al., 2012). 

The response of such composites to extreme loading has also received significant attention, 

due to their enhanced energy dissipation capability and their limited deflection, owing to the 

absorption of the impulse energy via core plastic deformation. The latter attribute makes them 

attractive for employment in displacement-critical blast mitigation applications, where the 

desired deformation of the protective barrier has to be limited (Dharmasena et al., 2008). A 

wide spectrum of modelling strategies has thus been established in the literature, for the 

investigation of the impact energy dissipation via core crushing. The methods range from 

simplified modelling approaches (Andrews & Moussa, 2009) to experimentally validated 

detailed FE modelling (Karagiozova et al., 2009; Nurick et al., 2009), or even modelling of the 

fluid-structure interaction between the faceplate and the explosion wave-front (Zhu et al., 2008; 

2009). Some experimental investigations on the ultimate capacity of metallic honeycomb 

sandwich composites, subjected to static and blast/impact loading, are illustrated in Figure 2.3. 
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(a) 

(d) 

(e) 

(b) 

(c) 

Figure 2.3: Experimental investigation of small-scale, metallic, honeycomb core sandwich 

composite ultimate capacity to static (a, d, e) and impact loading (b, c): (a) hexagonal-

aluminium faceplates and core (Crupi et al., 2012), (b) hexagonal-steel faceplates and 

aluminium core (Nurick et al., 2009), (c) rectangular-stainless steel alloy faceplates and core 

(Dharmasena et al., 2008), (d)-(e) hexagonal-aluminium faceplates and core (Kee Paik et al., 

1999)    
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The vast majority of available publications on failure mode characterisation and capacity 

assessment focus on small-scale composites, typically employed as vessels in lightweight 

systems in automotive, naval and aerospace applications. On the other hand, the investigation 

on the blast performance of metal honeycomb core structures is principally focused on 

composites employed as passive protective barriers, which are thus not designed to resist 

primary loading. Consideration is mainly given to core configurations associated 

with substantially inferior stiffness and strength characteristics in comparison to the 

faceplates, which enable an enhanced energy dissipation capability to be achieved. Despite 

providing an insight into the response of metal honeycomb core sandwich composites, the 

results of these investigations are not directly applicable to the context, scale and 

loading magnitude considered within the INFLOAT project investigation framework. 

The response of metal honeycomb core sandwich composites in ultimate conditions is 

governed by local instabilities, due to their progressive manifestation in different regions and 

their interaction with global failure modes involving material yielding and the spread of 

plasticity. The resulting stress and deformation states are highly complex, particularly in cases 

of non-uniform loading, nonetheless their accurate capturing is essential for the composite 

design. A widely popular class of approaches for local buckling assessment of metallic 

honeycomb core structures is based upon the use of local-scale mechanical or detailed FE 

models, encompassing individual cells or cell groups with an appropriately introduced set of 

boundary conditions. These enable reliable estimates of the elastic and elastoplastic buckling 

capacity to be obtained locally and have been widely investigated. 

Several analytical approaches for the buckling assessment of the core cell walls have been 

established and successfully validated against experimental results or verified against detailed 

FE models, for both rectangular and hexagonal topologies. Reliable estimates have been 

provided for the ultimate capacity in compressive buckling for rectangular (Zok et al., 2005; 

Liang & Chen, 2006) and hexagonal (Zhang & Ashby, 1992; Kaman et al., 2010; Jeyakrishnan 

et al., 2012) honeycomb topologies, while a limited number of investigations on the shear 

buckling capacity of rectangular topologies in the elastoplastic regime also exist (Cote et al., 

2006). More sophisticated approaches encompass the development of mechanical models for 

elastoplastic buckling assessment under superimposed compressive and shear loading (López 

Jiménez & Triantafyllidis, 2013). 
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(a) 

  

(b) (c) 

  

(d) 

Figure 2.4: Local buckling assessment of metal honeycomb core structures via FE modelling 

of individual cells and cell groups (a-c) and experimental testing (d): (a) (Liang & Chen, 

2006), (b) (López Jiménez & Triantafyllidis, 2013), (c) (Zok et al., 2005), (d) (Cote et al., 

2004) 
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The accuracy of these estimates is highly sensitive to the established set of boundary 

conditions, which need to account for the extent of rotational and translational stiffness 

provided to the core cell walls by the faceplates and vice-versa. A thorough numerical and 

experimental investigation on the effect of the honeycomb core and faceplates relative density 

and degree of bonding, as well as of the cell aspect ratio, on the buckling capacity of all-steel 

rectangular honeycombs has been conducted by Cote et al. (2004). Examples of numerical and 

experimental investigations for local buckling assessment of metal honeycomb core structures 

are illustrated in Figure 2.4. 

Recently, Santos et al. (2018) established an accurate analytical approach for the local buckling 

assessment of metal sandwich composites, which has been numerically verified and provides 

a systematic framework for the capacity assessment of individual plated components of the 

core cell walls or faceplates to intercellular, shear and compressive instability phenomena. The 

method is underpinned by the employment of a rotational spring analogy (Izzuddin, 2006; 

2007), which enables the establishment of reliable estimates for the rotational restraints 

provided to each individual plated component of the cell walls or faceplates by the surrounding 

components, using realistic assumed buckling modes. 

It is emphasised that this class of methods is particularly valuable within the scope of the 

INFLOAT project, in view of the necessity of establishing accurate analytical design 

expressions for the buckling capacity of faceplates and steel honeycomb cores, where several 

localised equipment loads are applied. Nonetheless, within the scope of the present thesis the 

focus remains on the establishment of an integrated modelling approach, enabling the capturing 

of the various instability forms and their effect on the global sandwich composite failure modes, 

rather than examining these phenomena locally. This is particularly important on two fronts: 

(i) to remove uncertainty associated with the boundary conditions employed for local models; 

and (ii) to assess the influence of local buckling on the overall system at various stages of the 

elasto-plastic response. 

Existing publications on large-scale, all-steel, laser-welded sandwich composites, 

dimensionally equivalent to the envisioned components for application in offshore topside 

decks, are limited to one-way spanning configurations, employed mainly in naval applications, 

as discussed in Section 2.2.3. Consideration has been given to unidirectional web core (I-core) 

composites, several response aspects of which have been thoroughly investigated, in view of 

their systematic incorporation in industrial applications. A number of design-oriented 
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analytical approaches have been established for the analysis and design of such configurations 

in a variety of failure modes, while experimental and detailed numerical investigations have 

been conducted. Consideration has been given to the bending response of sandwich beams 

(Romanoff & Varsta, 2006; Romanoff et al., 2007a), the bending response of sandwich plates 

and the extent of achieved composite action with underlying beam components (Romanoff & 

Varsta, 2007; Romanoff, 2011), the buckling and wrinkling of the faceplates in the elastoplastic 

regime (Kolsters & Zenkert, 2006a; 2006b; 2010) and the composite response subject to 

localised patch loading, considering the sensitivity of the response to the patch size, the plate 

aspect ratio and the rotational stiffness provided by the laser welds at the T-joint intersection 

(Romanoff et al., 2007b). Moreover, a thorough investigation of the laser welding defects and 

corrosion effects on the composite response has been conducted and a 24% buckling capacity 

reduction has been estimated for the plated components (Jelovica et al., 2012; Jelovica et al., 

2014). A complete experimental and numerical investigation of the I-core, alongside other 

one-way spanning, large-scale, all-steel sandwich composite configurations can be found in the 

S.A.N.D. Core practice guide for marine applications (2013).  

The aforementioned investigations are evidently not directly applicable to two-way spanning 

composites with honeycomb core configurations; nonetheless due to the load types and 

magnitude, as well as the application context equivalence, they can provide guidance on the 

aspects requiring particular attention and consideration. This is important for steering the 

process of establishing a systematic methodology for offshore topside decks, within the context 

of the INFLOAT project.  

Notwithstanding the significant research outlined above, the extensive nonlinear response 

investigation of large-scale metal sandwich composites with honeycomb core topologies at the 

component level has received much less attention. This is partially attributed to the lack of 

precedent of their application in the context considered herein, and largely to the associated 

modelling complexity and high computational demand posed by such intricate structures. A 

common approach to circumvent the aforementioned modelling challenges is based upon the 

employment of a simplified FE modelling approach, encompassing the use of conventional 

shell FEs with equivalent homogeneous cross-sectional properties (Berggren et al., 2003). 

More efficient simplified FE modelling approaches based on the employment of sandwich shell 

FEs may also be used (Robbins Jr & Reddy, 1993; Carrera, 1998; Liang & Izzuddin, 2016), 

allowing for the definition of distinct properties for the faceplates and core, with the latter being 
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modelled as an equivalent homogeneous layer, as illustrated in Figure 2.5. Despite their 

efficiency for linear elastic analysis, as well as the sandwich shell FE capability of accurately 

approximating the capacity of failure modes involving plate yielding, simplified modelling 

approaches evidently fail to capture local instabilities.  

Within the aforementioned backdrop, a HF nonlinear FE modelling strategy is proposed in this 

thesis, as elaborated in Chapter 3, utilising previous developments undertaken at Imperial 

College which are reviewed in the following sub-section.  

 

 
Figure 2.5: Simplified modelling of sandwich composites using three-layer shell finite 

elements with equivalent intermediate layer homogenisation (Liang & Izzuddin, 2016) 

 

 HF nonlinear analysis using partitioned modelling 

The proposed HF modelling strategy encompasses the following key features: (i) accurate 

geometric modelling process for the core and plates, accounting for manufacturing and 

connection characteristics between individual cells, alongside initial imperfections; (ii) 

discretisation of the panel domain utilising advanced geometrically nonlinear shell elements, 

allowing for the effects of local buckling on the global panel response to be accurately captured; 

(iii) employment of sophisticated nonlinear constitutive models capable of accurately capturing 

yielding, strain-hardening and strain-rate effects; and (iv) utilisation of powerful domain 
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domain partitioning in High Performance Computing (HPC) systems that achieves 

considerable computational efficiency and overcomes memory bottlenecks. 

The modelling strategy is underpinned by the employment of recently developed Reissner-

Mindlin shell elements (Izzuddin & Liang, 2017), which enable the accurate capturing of 

geometric and material nonlinearity effects in the range of large displacements. The robustness 

and accuracy of the elements are attributed to the incorporation of two principal aspects in their 

local formulation: (i) an effective co-rotational framework for the shell element local 

coordinate system definition (Izzuddin & Liang, 2016); and (ii) a hierarchic optimisation 

approach for the relief of inaccuracies arising from locking phenomena (Izzuddin & Liang, 

2017). The element local coordinate system definition within a co-rotational framework 

enables the exclusion of rigid body rotations from the element response, thus enabling simple 

local kinematic constitutive expressions to be obtained. On the other hand, the hierarchic 

optimisation approach enables the overcoming of inaccuracies associated with overly-stiff 

response of curved shell elements, commonly referred to as locking phenomena, when 

applied to relatively thin shells. 

Extensive nonlinear analysis of large-scale sandwich composites imposes a prohibitive 

demand on computing wall-clock time and memory resources, potentially leading to 

memory bottlenecks. In view of these shortcomings, the proposed strategy is further 

enhanced by utilising recently developed domain partitioning capabilities based on a 

novel dual super-element concept (Jokhio & Izzuddin, 2015). Partitioned modelling 

allows for a substantial reduction in the computing wall-clock time and memory demands to 

be achieved in comparison to the monolithic approach, without compromising the 

convergence rate and accuracy of the latter, via scalable parallel processing in HPC systems 

with distributed memory.

As detailed in the next chapter, the overall strategy provides a powerful capability that 

enables the HF nonlinear analysis of large-scale, all-steel sandwich panels to be undertaken 

efficiently and within reasonable time. 

2.3 Coupling methods in computational mechanics 

The novel coupling element formulation presented in Chapters 4 and 5 achieves translational 

and rotational constraint enforcement between surfaces or arbitrary relative spatial orientation 
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with non-conforming meshes along a 1-D interface. This requires the establishment of 

appropriate and systematic methodologies to facilitate the constraint enforcement in a discrete 

sense along the interface. The focus is thus shifted to the review of existing coupling methods 

in this section, in the scope of identifying the most efficient approach for incorporation in the 

coupling formulation.  

Coupling methods facilitate the enforcement of kinematic constraints between independent 

computationally heterogeneous deformable bodies over a shared subdomain, henceforth 

referred to as coupling interface. Within the context of FE procedures, coupling methods have 

received significant attention over the past three decades, owing to their formulation providing 

a systematic framework for: (i) coupling of independently discretised domains, potentially 

comprising different FE types; (ii) domain decomposition approaches for process 

parallelisation, encompassing subdomains with generally non-conforming meshes; and (iii) the 

treatment of contact problems (Puso, 2004).  

From a mathematical viewpoint, the introduction of kinematic constraints in the system global 

equilibrium can be treated as an optimisation problem, encompassing the extrema identification 

of the system total potential energy function subject to the given set of constraints. In the 

broader sense, these constraints are expressed in the form of inequalities, which physically 

correspond to the class of contact problems between deformable bodies, whereas in coupling 

problems the set of constraints is expressed in a strict equality form. Accordingly, coupling 

problems can be viewed as a particular case of contact problems, where permanent contact is 

enforced between the deformable bodies over a fixed interface, and the two classes of problems 

are hence treated equivalently. 

In general contact problems, the shared interface between the two bodies is continuously 

changing to conform with the relative body deformations, inducing sliding and separation 

between these. The constraints are enforced by virtue of stress fields, acting normal and 

tangential to the interface in regions where contact occurs, and can be expressed in two distinct 

manners: (i) in a purely geometric sense, as a non-penetration condition, in which case the 

contact pressure over the interface is obtained solely from the constraint equations in 

accordance with lege tertius of Newtonian mechanics; and (ii) by virtue of a material 

constitutive model over the contact interface, in which case the contact pressure is implicitly 

or explicitly obtained from the interface deformations (Wriggers, 2006). Consideration will 

henceforth be given to the first of the above approaches, in which case the contact conditions 
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along the normal (N) or one of the tangent to the interface directions (T ) can be mathematically 

formulated as follows: 

/

/

/ /
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p g





=

    (2.1) 

where /N Tp  is the contact stress over the interface, and /N Tg  is the gap function along the 

respective direction. Eq. (2.1) states that when the two bodies are not in contact, i.e. / 0N Tg   , 

no stresses develop over the contact interface, i.e. / 0N Tp = , while in the case of contact 

between the two bodies, i.e. / 0N Tg = , a set of equal and opposite compressive stress fields 

develop over the contact interface as reactions, i.e. / 0N Tp  . The above set of conditions is 

formally referred to as Hertz-Signorini-Moreau (HSM) in the field of computational contact 

mechanics, which is the equivalent of the Karush-Kuhn-Tucker (KKT) conditions in the field 

of mathematical optimisation (Wriggers, 2006).  

Taking the above into consideration, coupling methods are a particular case of contact 

problems, where the HSM conditions are expressed in a strict equality form: 
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Accordingly, sliding or separation are not allowed, and the contact interface remains thus 

unchanged throughout the range of exhibited relative body deformations. This is also 

commonly referred to as ‘stick’ condition in the field of contact mechanics (Wriggers, 2006). 

In constrained equilibrium problems where FE procedures are employed, the treatment of 

kinematic constraints in a discrete sense is necessitated. The establishment of a systematic 

procedure for discrete constraint enforcement is founded upon of two principal classes of 

methods: (i) a consistent mathematical optimisation formulation for the kinematic constraint 

treatment over the interface, in the context of the global equilibrium problem; and (ii) a robust 

interface discretisation approach, ensuring accuracy and convergence of the solution procedure 

in a global sense. As is evident from the preceding discussion, coupling and contact problems 
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can be treated using identical procedures for the discrete constraint enforcement, owing to their 

mathematical equivalence. 

Consideration is given hereafter to the two distinct classes of methods discussed above, where 

a comprehensive review of the existing variants for each respective class is provided. 

Following the presentation of each class of methods, a comparative evaluation of their 

respective variants is conducted, to identify the most efficient for employment within the novel 

1-D coupling element formulation. It should be noted that the vast majority of existing 

publications investigate different approaches from the viewpoint of contact problems, with 

their specialisation to coupling problems, nonetheless, being a straightforward and well-

established process.  

 

 Mathematical treatment of contact and coupling constraints  

The fulfilment of discrete system equilibrium conditions subject to an imposed set of kinematic 

constraints introduced over the interface, encompasses the establishment of an additional set 

of nodal forces and stiffness coefficients for the FEs located in the interface domain, and their 

subsequent assembly to the global system force vector and tangent stiffness matrix. These are 

derived from the potential energy function expressing the contribution of the imposed 

constraint over the interface to the system total potential energy, by employing 1st and 2nd order 

variational principles, respectively. The contact or coupling interface energy contribution for a 

given set of constraints can be expressed in a discrete-strong or continuous-weak form, where 

in the former case the constraint is introduced at specified distinct locations (most commonly 

nodes), while in the latter it is continuously interpolated over the interface domain (Wriggers, 

2006).  

The above procedure is the discrete equivalent of the total potential energy minimisation 

subject to the specified constraints, thus rendering the problem one of mathematical 

optimisation, as discussed. The vast majority of existing methods for formal treatment of 

contact and coupling constraints are thus based upon mathematical optimisation techniques for 

the extrema identification of functions subject to a set of inequality or equality constraints. A 

detailed description of constrained optimisation methods from a mathematical viewpoint can 
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be found in the books of Fletcher (2000) and Bertsekas (1982), while an overview of these in 

the context of their application to contact and coupling problems is given hereafter. 

The most commonly employed optimisation techniques include the: (i) Lagrangian Multiplier 

(LM), (ii) penalty, (iii) augmented LM, (iv) perturbed LM and (v) Nitsche formulations 

(Wriggers, 2006), which are discussed in the subsequent sub-sections. For generality and 

simplicity, the constraints are introduced in all equations henceforth as a vector function 
(1) (2)( , )g u u , which is expressed in terms of the independent body displacement fields (1)u  and 

(2)u . This encompasses all possible types of constraints along the tangential and normal to the 

interface directions. The LM or contact/coupling stress vectors are also expressed in a 

consistent vector format. The expressions therefore apply for the cases where the associated 

set of constraints described by g  are enforced individually, partially or in their entirety.  

It should be noted that due to the employment of well-established mathematical optimisation 

formulations within the present context, the portion of the existing literature focusing 

exclusively on investigating their performance in contact problems is small, and mostly out-

dated, with the first publications dating back to 1985. Subsequent to the establishment of 

satisfactory accuracy and convergence characteristics from the employment of optimisation 

techniques in contact and coupling problems, the focus of research efforts has been shifted to 

the investigation of different interface discretisation techniques, which is still ongoing. 

 

2.3.1.1 Lagrangian Multiplier formulation 

The LM formulation is based upon the introduction of a set of additional LM Degrees of 

Freedom (DOFs) at distinct locations over the interface cΓ , and their subsequent interpolation 

to obtain a continuous independent field λ , which facilitates the enforcement of the set of 

constraints g . The LM field λ  physically and dimensionally corresponds to a stress field along 

cΓ , representing the pressure due to contact or coupling of the heterogeneous deformable 

bodies. Accordingly, the contribution of cΓ  to the total potential energy of the system can be 

expressed in the form of the following two-field Lagrangian functional: 

(1) (2) (1) (2)
c( , , ) ( , ) dΓ

c

 = λ u u λ g u u    (2.3) 
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The term two-field is employed herein with reference to the two distinct λ  and (1) (2)( , )=u u u  

fields incorporated in the formulation. Three-field approaches also exist, where the stress or 

strain field of the independent deformable bodies over cΓ  is also incorporated in the energy 

functional (Laursen & Heinstein, 2003), as will be also discussed in the context of the interface 

discretisation methods in Sub-section 2.3.2. 

The LM formulation has been employed for the contact or coupling treatment in conjunction 

with various approaches for the interface discretisation, and it forms the basis for the mortar 

method (Puso, 2004; Fischer & Wriggers, 2005; Tur et al., 2009), which is of principal interest 

in the context of the present research work. Its employment in coupling problems enables exact 

constraint enforcement at the locations where LM are introduced, and in a weak sense over the 

remaining part of cΓ  where these are interpolated, thus allowing for a substantial level of 

accuracy to be achieved in the case of non-conforming FE meshes, in a global sense.  

The accuracy of the formulation comes at an increased computational demand, resulting from 

the introduction of additional LM parameters (pseudo DOFs) to the system. Therefore, the LM 

formulation employment in large-scale systems potentially leads to shortcomings in relation to 

the computing wall-clock time and memory resources demands. Several algorithmic treatments 

to circumvent these shortcomings have been established, with the most popular being the dual 

LM approach (Wohlmuth, 2000), which will be discussed in detail in Sub-section 2.3.2. 

Moreover, the LM method suffers from the well-known shortcoming of zero diagonal terms in 

the tangent stiffness matrix, which leads to intricacies depending on the adopted solution 

procedure, as will be discussed more extensively in Chapter 4.  

 

2.3.1.2 Penalty formulation 

As opposed to the LM formulation, the penalty method does not introduce additional unknowns 

to the system, but rather enforces the set of constraints g  in an approximate sense over cΓ , by 

virtue of introducing a second order regularisation term of the following form to the system 

total potential energy: 

(1) (2) 2 (1) (2)
c

1( , ) ( , ) dΓ
2

c





 = u u g u u    (2.4) 
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where the constant 0   is referred to as penalty parameter. The method owes its name to the 

penalisation of the constraint enforcement accuracy by the introduced parameter  . The 

accuracy of the formulation increases with increasing values of  , with convergence to the LM 

formulation being achieved when  → , which nonetheless further leads to ill-conditioning 

(Luenberger & Ye, 2008). 

A comparative evaluation of the LM and penalty formulation efficiency and accuracy for 2-D 

frictionless contact problems is presented in a series of numerical studies conducted by Fischer 

and Wriggers (2005), where the mortar method is employed for the contact interface 

discretisation. The obtained results highlight the capability of the penalty formulation to 

achieve comparable accuracy to the LM formulation in the stress distribution and global 

deformation, when a sufficiently, but not excessively, large value is adopted for the penalty 

parameter. A comparative evaluation of the penalty formulation with the augmented and 

perturbed LM formulations, conducted by Wriggers et al. (1985), indicates a comparable 

efficiency of the methods for an appropriately calibrated value of the penalty parameter, in the 

range of both small and large deformations.  

Despite the non-introduction of additional unknowns to the system, the penalty method suffers 

from well-known shortcomings, the principal being the requirement for calibration of   for an 

optimal balance between accuracy and stability to be established for a given system. While 

small values of   lead to poor accuracy and very large values lead to ill-conditioning, an 

appropriate selection of the penalty parameter value to be at least three orders of magnitude 

greater than the characteristic stiffness of the bodies in contact in the respective constraint 

directions, allows for satisfactory accuracy and stability to be achieved (Wriggers, 2006). The 

main forms of inaccuracies of the penalty method are observed in the displacement field in the 

case of surface or body loading, with the application of displacement to the system, on the other 

hand, leading to substantial perturbations in the stress field (Wriggers, 2006).  

It should be noted that different penalty parameters can be employed for the enforcement of 

the distinct constraints included in g , for example along the normal and tangential directions 

of cΓ , however an identical   has been used in Eq. (2.4), and is also used in the expressions 

presented in the forthcoming sub-sections, on account of simplicity.  
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2.3.1.3 Augmented LM formulation 

The augmented LM formulation encompasses the combined benefits of the classical LM and 

penalty approaches. The use of an independent LM field enables exact constraint enforcement 

at the LM locations and enhanced accuracy to be achieved, while the introduction of a penalty 

regularisation term enables the overcoming of potential ill-conditioning shortcomings, even 

with a moderate value. This expression for the total potential energy contribution of cΓ  to the 

global system is obtained by linear superposition of the expressions in Eqs. (2.3) and (2.4): 

(1) (2) (1) (2) 2 (1) (2)
c c

1( , , ) ( , ) dΓ ( , ) dΓ
2

c c



 

 =  + λ u u λ g u u g u u   (2.5) 

One of the first applications of the method has been presented by Simo et al. (1985) in the 

context of frictionless contact problems, with a primal mortar approach based on the interface 

discretisation into segments, where the attainment of a high level of accuracy in the range of 

large deformations is shown. Landers and Taylor (1986) also highlighted the superiority of the 

augmented LM in comparison to the classical LM, penalty and perturbed LM formulations, in 

relation to the control it offers over the accuracy and convergence rate for static and dynamic 

problems, through appropriate selection of the penalty parameter. Zavarise and Wriggers 

(1999) established a novel augmented approach, based on the update of the LM at every 

iterative step using a data set of converged states from all the previous iterative steps. This 

method has been shown to achieve superlinear convergence and virtually absolute invariance 

to the adopted penalty parameter value.  

The method has been extended over the years to deal with contact problems encompassing a 

nonlinear constitutive (Wriggers & Zavarise, 1993) or Coulomb friction (Laursen & Simo, 

1993a) law for the establishment of contact stresses over the interface domain. More recently, 

Cavalieri and Cardona (2013) illustrated the broad variety of benefits associated with the 

employment of the augmented LM formulation in conjunction with the mortar method in 3-D 

frictionless contact problems. The attainment of fast convergence with a monolithic Newton 

scheme and the accuracy insensitivity to the selection of the penalty parameter were 

demonstrated for the case of regions with non-conforming meshes, alongside the passing of the 

contact patch test. The application of the augmented LM to a class of problems extending 

beyond the pure geometric constraint treatment highlights its capability of preserving the 

accuracy and convergence characteristics in a broad range of cases and applications, which is 
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important in the context of the developed 1-D coupling formulation presented in Chapters 4 

and 5. 

 

2.3.1.4 Perturbed LM formulation 

The perturbed LM formulation is also a combination of the classical LM and penalty methods. 

A second order regularisation term is introduced in the energy functional, which, contrary to 

the augmented formulation, depends on both the penalty parameter   and the LM field λ : 

(1) (2) (1) (2) 2
c c

1( , , ) ( , ) dΓ dΓ
2

c c


 

 =  − λ u u λ g u u λ   (2.6) 

The regularisation term of the perturbed formulation can be viewed as the complementary 

energy contribution of the LM field λ , while, evidently, for  →  the perturbed LM 

degenerates into the classical LM formulation (Wriggers, 2006). The perturbed formulation 

has been shown to achieve convergence only in the cases of frictionless or ‘stick’ conditions in 

contact problems, due to the inability of explicitly stating incremental constitutive 

relationships, such as Coulomb’s frictional law, in a complementary form (Wriggers, 2006). 

Due to this shortcoming, the perturbed formulation has received limited attention in 

comparison with the rest of considered formulations, albeit its suitability for contact problems 

with stick conditions makes it eligible for employment in rigid translational coupling problems.  

Some early applications of the method in contact problems can be traced back to the work of 

Simo et al. (1985), where satisfactory accuracy was demonstrated, while a comparative 

evaluation with the classical LM, penalty and augmented LM formulations was conducted by 

Landers and Taylor (1986), as discussed in the preceding sub-section.  

 

2.3.1.5 Nitsche formulation 

A purely displacement-based alternative to the employment of LM formulations is based on a 

variational approach for the treatment of Dirichlet boundary conditions established by Nitsche 

(1971). Contrary to the LM-based formulations, which introduce additional DOFs to the global 
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system to facilitate constraint enforcement, the Nitsche method is based on the incorporation 

of the actual body stress fields in the energy functional: 

( ) ( )( )(1) (2) (1) (1) (2) (2) (1) (2) 2 (1) (2)
c c

1 1( , ) ( , ) dΓ ( , ) dΓ
2 2

c c



 

 = − +  + u u p u p u g u u g u u   (2.7) 

In the above expression, ( )(1) (1)p u  and ( )(2) (2)p u  are the stress fields of two independent 

deformable heterogeneous bodies (1)Γ  and (2)Γ  over the shared interface Γc . The independent 

body stress fields ( )(1) (1)p u  and ( )(2) (2)p u  are related to the independent displacement 

fields ( 

(1)u , (2)u ) over Γc , by virtue of the respective material constitutive equations and the 

compatibility expressions founded upon Cauchy’s theorem, and hence the functional in Eq. 

(2.7) is purely displacement-dependent. The Nitsche method enforces the constraints in an 

exact fashion, thus rendering the contribution of the penalty term inactive, with the latter being 

only employed to avoid ill-conditioning in the global equilibrium equation system, similar to 

the case of the augmented LM formulation discussed earlier. 

An adaptation of the Nitsche method for domain decomposition with non-conforming FE 

meshes, using a mortar interface discretisation approach, has been presented by Becker et al. 

(2003). Wriggers and Zavarise (2008) employed different variants of the weak form Nitsche 

method for constraint enforcement in 2-D frictionless contact problems, based on the average 

or single stress fields of the bodies in contact, in conjunction with a segment discretisation 

approach for the interface. In the context of linear analysis, the Nitsche method has been shown 

to achieve superior accuracy and performance to the standard penalty formulation. On the other 

hand, the recovering of the independent body stress fields in the case of a geometrically or 

materially nonlinear response is rendered a cumbersome undertaking, thereby imposing 

limitations to the systematic employment of the Nitsche method in large-displacement 

problems.  
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2.3.1.6 Comparative evaluation of optimisation techniques for contact and coupling 

constraint enforcement  

The classical LM formulation introduces an independent LM field over Γc , which enables 

exact constraint enforcement at the locations where the individual LM entities are introduced. 

Despite the method being substantially accurate, it suffers from potential ill-conditioning in 

cases where at least one of the coupled bodies is unrestrained against rigid body motion, when 

solvers that eliminate individual parameters using their corresponding equations, i.e. without 

performing row-switching, are employed, such as the frontal solver (Irons, 1970). This will be 

discussed in more detail in Chapter 4. Moreover, the introduction of additional DOFs increases 

the size of the global equilibrium problem at the system level, thereby potentially imposing an 

increased demand in respect of computing wall-clock time and memory resources for large-

scale systems, in comparison with non-LM based formulations.  

The penalty method enforces the constraints in an approximate sense over Γc , by means of a 

second-order penalty regularisation term, without introducing additional DOFs to the system. 

Therefore, contrary to LM-based formulations, it does not increase the computing resources 

demand, which comes at an inferior accuracy trade-off. The achieved level of accuracy is 

dictated by the selected value of the penalty parameter  , with larger values generally leading 

to superior performance, but ill-conditioning of the global equilibrium equation system 

occurring for very large values. An appropriate calibration of   is thereby required for a given 

system, if an approximation of enhanced accuracy is to be obtained.  

The augmented LM formulation combines the benefits of both the classical LM and penalty 

formulations, enabling the exact constraint enforcement and the overcoming of ill-conditioning 

shortcomings with the employment of a moderate   value, with the method being relatively 

insensitive to the selection of the latter. Despite the method allowing for the accuracy and 

convergence levels to be adjusted by the user, it introduces additional LM DOFs to the system.  

The perturbed LM formulation is also a combination of the classical LM and penalty methods, 

with its principal difference from the augmented variant being the dependence of the 

regularisation term from the LMs to a second order. The regularisation term represents the 

complementary energy contribution of the LM field, and hence the application of the method 
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is limited to frictionless contact and coupling, where this can be explicitly stated. For  →  

the perturbed LM degenerates to the classical LM formulation. 

The Nitsche method enforces the constraints over Γc  using the actual respective stress fields 

of the bodies, instead of additional LM DOFs, thereby constituting a purely displacement-based 

one-field formulation. Similar to the various LM-based variants, it enforces the constraints 

exactly, without however introducing additional unknowns, while the introduction of a penalty 

regularisation term allows for any potential ill-conditioning shortcoming to be effectively 

overcome. In the range of linear elasticity, the Nitsche formulation achieves superior 

performance characteristics in comparison to the penalty method; however in the presence of 

material or geometric nonlinearity the recovery of the independent stress fields becomes 

cumbersome, thus adversely affecting its performance and limiting its range of application.  

Taking the above into consideration, the augmented LM formulation has been adopted in this 

work for the establishment and development of the coupling element formulation presented in 

Chapters 4 and 5, due to its capability of enforcing the constraints effectively and the control 

it offers over accuracy and convergence. The shortcoming related to the increased computing 

demand is minor, since coupling is typically performed over a relatively small portion of the 

problem domain.  

 

 Contact/coupling interface discretisation 

A comprehensive review of the methods employed for the contact or coupling interface 

discretisation is given herein. Consideration is given to methods formulated within the 

framework of the Lagrangian and penalty approaches for the constraint enforcement, in 

accordance to what has been discussed in Sub-section 2.3.1 

The general setting of the discrete contact/coupling problem, encompasses two independent 

deformable heterogeneous bodies (1)Γ  and (2)Γ  discretised with FEs, sharing an interface cΓ . 

The constraint enforcement is achieved by virtue of an independent LM field introduced over 

cΓ , which renders this a constrained equilibrium problem where both the displacement and 

LM fields need to be determined. Such discrete problems, where two independent fields are 

sought, are classified as mixed FE problems (Brezzi & Fortin, 1991).  
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This type of constrained equilibrium problem is referred to as a saddle point problem in a 

formal mathematical sense (Wriggers, 2006), and it requires the fulfilment of a set of stability 

conditions, alongside the passing of the contact patch test (Taylor & Papadopoulos, 1991), by 

the employed discretisation scheme, for solution uniqueness to be guaranteed (Bathe, 2001). 

The former encompasses the ellipticity condition, which is generally straightforward to satisfy, 

as well as the inf-sup condition, also commonly referred to as Ladyzhenskaya–Babuška–Brezzi 

(LBB) condition (Brezzi & Fortin, 1991). All contact/coupling interface discretisation methods 

described herein are formulated using interpolation functions for the displacement and LM 

fields which allow the LBB condition to be fulfilled, thus ensuring stability and uniqueness of 

the constrained equilibrium problem solution. The detailed review of the LBB conditions in 

mixed FE methods for contact problems from a mathematical viewpoint lies outside of the 

scope of the present thesis, however the interested reader is referred to Kikuchi and Oden 

(1988), Brezzi and Bathe (1990) and Bathe (2001).  

The following classes of methods are discussed hereafter: (i) node-to-node, (ii) node-to-

segment, (iii) node-to-surface, and (iv) segment-to-segment/mortar. 

 

2.3.2.1 Node-to-node methods 

Amongst the first and most simplistic approaches for the treatment of mixed FE problems 

where contact/coupling constraints are introduced is the node-to-node class of methods, 

encompassing the constraint enforcement on a purely nodal basis.  

Early applications of the method were presented by Francavilla and Zienkiewicz (1975) for 

frictionless contact problems. Later on, the method was expanded to gap coupling elements by 

Stadter and Weiss (1979), where a stress invariance principle is enforced over the interface 

domain to achieve coupling, while a more extensive investigation of the formulation, the 

integration aspects and the various limitations of such elements can be found in Kikuchi and 

Oden (1988). 

Evidently, the node-to-node class of methods is only applicable to contact/coupling problems 

where conforming FE meshes are employed for the discretisation of (1)Γ  and (2)Γ  over the 

interface cΓ . In the case of contact problems, in particular, its applicability is limited to cases 
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of geometrically linear contact associated with small deformations, such that the contact 

domain is invariant to the body deformations and no relative nodal slip occurs (Wriggers, 

2006). In the context of this research, consideration is given to methods applicable to non-

conforming meshes, which are discussed hereafter. The node-to-node class of approaches is 

only mentioned here on account of completeness, and is thus not elaborated further. 

 

2.3.2.2 Node-to-segment methods 

The necessity of overcoming the shortcomings of the node-to-node approach, namely the 

requirement for nodal alignment, proportionality of element dimensions and FE discretisation 

pattern conformity in regions of contact, shifted subsequent research efforts towards the 

establishment of systematic discretisation approaches for non-conforming FE meshes. One of 

the most widely employed class of methods is the node-to-segment (NTS) approach, which has 

been extensively documented in the existing literature and incorporated in many commercial 

FE codes.  

The NTS approach encompasses the constraint enforcement in a strong sense over the interface, 

between nodes on one region, commonly referred to as nodal collocation points, and a set of 

discretised segments on the other. The commonly adopted approach embodies: (i) the region 

classification as master and slave; (ii) the master and slave region discretisation into master 

and slave segments over the interface; (iii) the identification of a unique master segment 

associated with each slave node; and (iv) the constraint enforcement over the established set of 

coupling elements, where each comprises 1 slave node and 2 master nodes, corresponding to 

the master segment edge nodes (Zavarise & De Lorenzis, 2009b). The concept underlying the 

NTS interface discretisation approach is schematically illustrated in Figure 2.6. 

The NTS approach field of application extends to large deformation contact problems, while 

its implementation in commercial FE codes effectively facilitates the constraint treatment when 

an automated meshing procedure for independent regions is adopted, potentially resulting into 

non-conforming meshes. The algorithmic process underpinning the NTS approach can be 

effectively applied for the constraint treatment in a pure geometric sense, i.e. non-penetration 

enforcement at nodal collocation points, or in conjunction with a nonlinear material constitutive 

or friction law (Zavarise & De Lorenzis, 2009b). 
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Figure 2.6: Node-to-segment (NTS) interface discretisation approach (Zavarise & De 

Lorenzis, 2009b) 

A considerable amount of early applications of the NTS approach can be identified in the 

contact literature, focusing primarily on the establishment of a systematic approach for the 

coupling element identification and the constraint enforcement on a nodal basis. A primal 

implementation of the method in 2-D impact-contact problems was presented by Hughes at al. 

(1976). Simo et al. (1985) established a systematic methodology for the treatment of contact 

constraints, encompassing the use of the NTS approach for the interface segmentation and a 

perturbed LM formulation for the constraint enforcement, which achieves superior accuracy to 

other traditional penalty approaches. Hallquist et al. (1985) presented a similar methodology 

for the systematic identification of the unique sets of master segments-slave nodes over the 

interface, which has been implemented in the FE software DYNA2D. Bathe and Chaudhary 

(1985) extended the approach to 2-D frictional and large-deformation contact problems, using 

a LM formulation for the constraint enforcement over the interface, with Wriggers et al. (1990) 

applying it later on in the context of large-deformation dynamic impact-contact problems, 

encompassing a friction nonlinear interface constitutive law. Papadopoulos and Taylor (1992) 

established a geometrically consistent and directionally unbiased methodology for the 

systematic identification of contact segments using the NTS approach, in cases of arbitrary 

motion of the contacting bodies. The approach was employed in conjunction with a mixed 

penalty formulation, incorporating both the displacement and pressure fields of the contacting 

bodies, and was shown to be efficient for the treatment of general 2-D frictionless contact 

problems.  

Despite the NTS approach providing a straightforward and systematic algorithmic process for 

the contact/coupling segment identification and the constraint enforcement in a discrete sense, 

it suffers from a variety of well-documented shortcomings. Primarily, the method is by 

definition sensitive to the domain classification as master and slave. This is attributed to the 
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constraint enforcement in a strong sense at the nodal locations of the slave domain, which are 

evidently different in the case of interchanged slave-master domains. The constraint 

enforcement on a slave-node basis results into the non-minimisation of gaps, as well as 

penetration occurrences, due to the master nodes penetration in the slave domain not being 

explicitly checked, as illustrated in Figure 2.7 (a). A widely-employed remedy for the 

alleviation of such inaccuracies is the two-pass NTS method, encompassing the gap evaluation 

based on a double identification of the set of contact elements, through an interchange of the 

slave and master domains (Taylor & Papadopoulos, 1991). Despite circumventing the 

penetration shortcomings, the double-pass NTS approach leads to potential over-constraining, 

thus impacting the accuracy and stability of the global constrained equilibrium problem 

solution (Puso, 2004). 

 

(a) 

 

  

  

(b) 

Figure 2.7: (a) Nodal penetration due to local nodal constraint enforcement, (b) slave node 

projection inexistence and multiplicity (Zavarise & De Lorenzis, 2009b) 
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Besides the result sensitivity to the surface classification, instabilities and convergence issues 

arise in cases where a slave node is projected either on multiple or to none of the master 

segments. These issues have been recently revisited and addressed by Zavarise and De Lorenzis 

(2009b), by means of a systematic approach for the treatment of slave node projection 

multiplicity or inexistence cases, as illustrated in Figure 2.7 (b). 

The shortcomings of the NTS approach extend beyond discretisation inaccuracies that can be 

addressed with the workarounds discussed above, including the inability of the one-pass NTS 

approach of passing the standard contact patch test. The patch configuration of the latter was 

originally proposed by Taylor and Papadopoulos (1991) and is illustrated in Figure 2.8 (a), 

while several other authors have employed alternative configurations based on the original 

proposal in later years, as illustrated in Figure 2.8 (b). The issue arises when a LM formulation 

is employed for the constraint enforcement, with the accuracy further deteriorating with a 

penalty formulation. Several authors have re-visited the issue to address the aforementioned 

inaccuracies, due to the popularity of the approach and its consistent implementation in 

commercial FE codes. A number of workarounds have been proposed for the passing of the 

standard contact patch test by several authors, including Crisfield (2000), El-Abbasi and Bathe 

(2001), and more recently Zavarise and De Lorenzis (2009a). 

 

 

(a) (b) 

Figure 2.8: (a) Standard contact patch test original configuration (Taylor & Papadopoulos, 

1991), (b) alternative contact patch test configuration (Fischer & Wriggers, 2005) 
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2.3.2.3 Node-to-surface methods 

The extension of the NTS approach to 3-D contact problems is facilitated in the most general 

case via coupling of the slave nodes with the surface of the master domain FEs over the 

interface. This discretisation approach is referred to as node-to-surface and was first developed 

by Parisch (1989). A consistent tangent stiffness matrix for 3-D nonlinear frictionless contact 

problems with large deformations was established by the author, facilitating contact between 

solid and shell domains via a contact element with 3 or 4 nodes, consistent with the employment 

of LM and penalty formulations for the constraint enforcement. The method was later extended 

to incorporate a Coulomb frictional constitutive law over the surface by Perić and Owen (1992), 

using a penalty formulation for the constraint treatment and an approximation of the 

aforementioned consistent tangent stiffness matrix formulation. Both the frictionless and 

frictional cases discussed above achieve quadratic convergence when a Newton-Raphson 

scheme is employed for the incremental nonlinear solution procedure.  

A robust and stable approach for the consistent treatment of 3-D nonlinear frictionless and 

frictional contact problems, with general applicability to a wide range of 2-D and 3-D 

deformable or rigid domains discretised with any FE type, has been presented by Laursen and 

Simo (1993b). The method owes its generality to the adoption first of a consistent continuum-

based formulation for the derivation of the contact kinematics and underlying equations, and 

its subsequent expression in a discrete mixed FE form.  

Parisch and Lübbing (1997) expanded their initial approach at a later point by developing a 

contact element for the treatment of 3-D frictionless and Coulomb frictional nonlinear contact 

problems in the most general context. The coupling element enables coupling of virtually any 

surface discretised with FEs, using a penalty formulation for the constraint treatment, and 

achieves quadratic convergence characteristics and enhanced numerical stability.  

Notwithstanding the significant enhancements of the method discussed above, the 3-D node-

to-surface approach inherits the shortcomings of the corresponding 2-D method and is thus 

rendered susceptible to the inaccuracies discussed in the preceding sub-section. 
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2.3.2.4 Interface discretisation into contact/coupling segments: mortar methods 

A widely employed class of 2-D contact/coupling interface discretisation methods is the 

segment discretisation approach, encompassing the identification of a unique set of segment 

couples on the coupled discretised domains, interacting over their shared interface. Different 

to the NTS methods, where the non-penetration constraint is enforced on a nodal basis, in the 

current approach this is achieved in a continuous weak sense within each distinct segment 

couple, over the part of the domain shared by both segments. The formulation of the method 

provides a systematic framework for the treatment of mixed FE coupling/contact problems, 

including cases of independently discretised bodies with non-conforming meshes.  

The first formal presentation of the method for frictionless small-deformation 2-D contact 

problems can be found in Simo et al. (1985), where a perturbed LM formulation is employed 

for the constraint enforcement over the interface segments, using piece-wise constant and linear 

interpolations for the displacement and LM fields, respectively. Alternative approaches based 

on the augmented LM and penalty formulations were also explored by the same authors 

(Wriggers & Simo, 1985), as well as by Landers and Taylor (1986), while the extension of the 

concept to frictional problems was later facilitated by Simo and Laursen (1992). The 

fundamental concept of the interface discretisation into contact/coupling segments is 

schematically illustrated in Figure 2.9 (a). 

The segment discretisation approach progressively gained significant attention, due to the 

systematic employment of automatic meshing tools in commercial FE codes and the 

development of domain decomposition approaches to exploit modern parallel computing 

architectures (Wriggers, 2006). This led to the development of a new class of approaches, 

referred to as mortar methods, the mathematical formulation of which presents a natural fit for 

mixed FE coupling/contact and domain decomposition problems with non-conforming meshes.  

Mortar methods are applicable to both contact and coupling problems with non-conforming FE 

meshes and are underpinned by the employment of a LM-based formulation for the constraint 

enforcement, in accordance with Eqs. (2.3), (2.5) or (2.6). The latter encompasses the definition 

of LMs at discrete locations and the use of interpolation functions to obtain a continuous field 

over the interface. The mortar method has been shown to achieve optimal convergence 

(Laursen et al., 2012) as well as pass the contact patch tests by design for planar surfaces (Puso 

& Laursen, 2004a). A number of different variants of the method have been established over 
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the years, corresponding to different combinations of two principal aspects: (i) the selection of 

the reference surface, (ii) the selection of interpolation spaces for the displacement and LM 

fields.  

Two distinct cases can be identified in relation to the selection of the reference surface: (i) an 

independent intermediate surface between the two bodies is established, referred to as the 

mortar surface, and the interpolated LM field is defined on it; and (ii) the part of the surface of 

either of the two bodies over the contact/coupling interface is selected as the mortar surface, 

and the interpolated LM field is defined on the surface of the other body, referred to as the non-

mortar surface. 

The discretisation of the displacement fields (1)u  and (2)u of the two bodies, alongside the 

specification of the respective interpolation space within the constraint function (1) (2)( , )g u u , 

are a priori limited to the nodal locations and the respective shape functions employed for the 

distinct field interpolations over the discretised domains. On the other hand, the discrete 

locations of LMs, also commonly referred to as collocation points, as well as the interpolation 

space of the LM field, can be defined independently, subject to the fulfilment of the LBB inf-

sup conditions for global stability discussed earlier (Wriggers, 2006). It has been shown that 

appropriate selection of the LM interpolation functions leads to fulfilment of the LBB 

conditions, and hence to a stable discretisation approach from a mathematical viewpoint 

(Wohlmuth, 2000). A common approach for cases where the reference surface is defined on 

one of the two bodies is based upon the definition of collocation points at nodal locations on 

the non-mortar surface, alongside the use of linear, quadratic or higher order conventional or 

dual shape functions for the LM field interpolation. This has been generally shown to lead to 

stable interpolation schemes (Wohlmuth, 2000; Flemisch & Wohlmuth, 2007).  

From a mathematical viewpoint, the formulation of mortar methods can be traced back to 

Bernardi et al. (1990). The formal establishment of the method a few years later in the context 

of domain decomposition can be found in the work of Bernardi et al. (1993), where a piece-

wise linear LM formulation based on the non-mortar surface displacement field shape functions 

is employed. The implementation of the mortar method in 3-D FE procedures was facilitated 

by Belgacem and Maday (1997), while its extension to contact problems using LM 

formulations for the constraint enforcement over the interface was elaborated by Belgacem et 

al. (1998) and Belgacem (1999).  
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(a) 

 
(b) 

 
(c) 

  Figure 2.9: (a) Segment discretisation of 2-D contact/coupling interface (Simo et al., 1985), 

(b) non-overlapping of discrete geometric surface descriptions for non-conforming meshes, 

(c) smooth intermediate mortar surface (Puso, 2004) 

McDevitt and Laursen (2000) established a mortar approach for mesh tying in 2-D frictional 

contact problems based on the employment of an intermediate kinematically independent 

mortar reference surface. On the basis of this approach, Laursen and Heinstein (2003) 

established an analogous method for coupling of non-conforming meshes, to alleviate 

inaccuracies arising from the non-overlapping of these in the undeformed configuration, as 

illustrated in Figure 2.9 (b). The method guarantees passing of the patch test, which had not 

been previously explicitly established. The employed approach is similar to the three-field 

formulation originally introduced by Dohrmann, et al. (2000), encompassing the introduction 
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of the independent body strain fields, i.e. displacement field gradients, in the constraint 

equations along the interface. Accordingly, the method is based on the introduction of an 

additional LM field along the coupling interface, to facilitate the consistent treatment of 

coupling constraints associated with the independent stress fields induced by the non-

conforming surfaces. 

A few years later, Rebel et al. (2002) formulated a novel approach along the same lines, 

encompassing an adaptive contact frame with independent kinematic DOFs. The frame acts as 

a third medium, facilitating contact force transferring between the non-conforming meshes in 

an indirect fashion, where constraint enforcement between the frame and each of the two 

surfaces is achieved using LMs, without violation of the global system equilibrium. Principal 

merits of the method include the passing of the contact patch test by design, due to the contact 

frame being associated with an independent set of kinematic DOFs, as well as the localisation 

of the integration to each side of the frame, which enables its establishment using only nodal 

data from the independent bodies. The method is thus invariant to the employed FE software 

and straightforward upgrade of existing FE codes can be easily facilitated. A similar 

formulation based on the frame concept has been recently proposed by Song et al. (2015), 

implemented in the form of a gap element and underpinned by the employment of a localised 

LM formulation for constraint enforcement.  

Notwithstanding their numerical robustness, accuracy and the consistent treatment of coupling 

or contact between non-conforming meshes allowing the patch test passing, the methods 

discussed above impose an additional increase in the global system kinematic or additional 

DOFs, due to the introduction of respective independent fields over the intermediate surface. 

Despite this being seemingly unimportant for small 2-D contact problems, the efficiency of 

such methods is compromised in 3-D large-scale contact/coupling applications. The focus will 

henceforth be shifted to two-field methods, typically encompassing the original surface 

classification as mortar and non-mortar, as discussed earlier. 

The basic formulation of the mortar method for 2-D frictionless contact and coupling problems, 

encompassing the use of the standard LM and penalty formulations for constraint enforcement, 

discussed in Sub-sections 2.3.1.1 and 2.3.1.2, respectively, has been presented by Fischer and 

Wriggers (2005) and Wriggers (2006). The method is summarised in a stepwise fashion 

hereafter: (i) classification of the original surfaces as mortar and non-mortar; (ii) establishment 

of distinct couples of interactive segments on the two coupled surfaces, over the 
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coupling/contact interface; (iii) establishment of an independent LM field on each segment of 

the non-mortar surface, using the nodal locations as colocation points and employing the non-

mortar surface displacement field interpolation functions, or a dual approach (Wohlmuth, 

2000) for LBB inf-sup condition fulfilment; (iv) numerical integration of the coupling/contact 

terms using Gaussian quadrature, based on the definition of Gauss Point (GPs) on the non-

mortar surface and the employment of an algorithmic treatment for their projection 

identification on the mortar surface. The concept is schematically illustrated in Figure 2.10. 

The extension of the approach to 2-D Coulomb-frictional large-deformation contact problems 

was presented by Tur et al. (2009).  

 
(a) 

 
(b) 

Figure 2.10: (a) Segment discretisation of 2-D mortar and non-mortar surface, (b) algorithmic 

treatment of Gaussian quadrature via projection (Fischer & Wriggers, 2005) 

The formulation of the above method naturally leads to its implementation via a 

coupling/contact element, where each element corresponds to an interacting segment couple, 

identified by virtue of the GP projections from the non-mortar to the mortar segments. Dias et 
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al. (2015) presented an enhancement of the basic mortar formulation discussed above, using a 

hierarchic approach for the definition of the displacement and LM field interpolation spaces. 

A higher-order contact mortar element is thus obtained, encompassing an identical approach 

for the definition of the LMs at the non-mortar segments nodes and hierarchic shape function 

for the LM field interpolation. 

Wohlmuth (2000) mathematically formulated the concept of a dual basis for the LM field on a 

segment-to-segment basis, using one of the two original surfaces as the mortar surface. The 

condition of duality for the displacement and LM field interpolation spaces over an interface 

segment cΓ  can be stated as follows: 

c cdΓ dΓ
c c

j k jk jN N  N  

 

=     (2.8) 

where jN  are the displacement field interpolation functions for node j on the non-mortar side, 

kN  are the dual basis functions for the LM field interpolation along cΓ  and jk  is the 

Kronecker delta. The dual approach allows for the diagonalisation of the tangent stiffness 

matrix terms associated with the additional LM DOFs, thus enabling the direct evaluation of 

these from the displacement field, by virtue of inversion of a diagonal matrix within an iterative 

step of the incremental solution procedure. Owing to the computational benefits discussed 

above and its non-impingement on the optimality of the mortar method, the dual LM approach 

received attention by several authors and shaped a substantial part of the available literature on 

mortar methods. The dual basis for the LM shape functions, obtained for a piece-wise linear 

original interpolation, is illustrated in Figure 2.11.  

Contrary to the standard LM approach, the use of dual LM spaces in problems involving 

substantially curved interfaces results in deteriorated accuracy and robustness, particularly 

when the individual surface mesh density varies considerably. These inaccuracies have been 

addressed for linear elements by Flemisch et al. (2005), as well as for quadratic elements by 

Popp et al. (2012), with extensions to contact problems in the latter case. Moreover, Popp et 

al. (2013) implemented a series of enhancements based on biorthogonalisation of the LM 

spaces and the employment of a Petrov-Galerkin LM approach, to remedy algorithmic 

shortcomings of the original dual LM method related to its robustness and consistency in 3-D 

contact problems. Extensions of the dual LM method to iso-geometric analysis have been 

recently presented by Seitz et al. (2016), however this lies outside of the scope of this work.  
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(a) 

 

(b) 

Figure 2.11: LM shape function definition along 2-D interface segments: (a) Standard piece-

wise linear, (b) dual piece-wise linear (Puso, 2004) 

The expansion of the mortar approach to 3-D mesh tying, i.e. coupling, problems of non-

conforming curved surfaces discretised with linear hexahedral elements, was undertaken by 

Puso and Laursen (2003), encompassing a systematic algorithmic treatment of the coupling 

term integration using a projection scheme between non-overlapping surfaces. A comparison 

was conducted between the original mortar approach introduced by Bernardi et al. (1993), 

comprising a piece-wise linear LM interpolation, the dual LM formulation introduced by 

Wohlmuth (2000), as well as a piece-wise constant discontinuous LM field approach, and the 

attainment of a respective optimal convergence rate was demonstrated in all cases. The 

approach was later enhanced to achieve invariance to rigid body rotations for large-deformation 

3-D mixed FE problems (Puso, 2004), which was proven to be achieved only when the 

constraints are enforced on both the displacement and discrete geometry fields. This is 

particularly important for the development of the coupling element proposed in this work, as 

discussed in Chapters 4 and 5. Enhancements were also presented to alleviate stiffening effects 

arising from the mesh non-conformity, based on the establishment of an intermediate mortar 

surface with distinct DOFs, corresponding to the Hermite smoothening of either of the original 

surfaces, and the treatment of both original surfaces as non-mortar, as shown in Figure 2.9 (c) 

(Puso, 2004).  
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The method was also extended to large-displacement 3-D contact problems involving linear 

elements by Puso and Laursen (2004a; 2004b), later incorporating quadratic elements (Puso et 

al., 2008), and the superiority of the approach in comparison with 3-D NTS methods was 

established in both cases. An adaptation of the method using a mixed-penalty duality approach 

for 3-D contact problems, established on the basis of the augmented LM formulation, was 

presented by Cavalieri and Cardona (2013), where the method efficiency in respect of passing 

the contact patch test and its robustness for large displacement contact was demonstrated.  

A coupling element formulation for non-conforming surfaces was developed by Minga et al. 

(2018), based on the 3-D mortar approach for mesh tying originally presented by Puso (2004). 

The developed formulation utilises a hierarchic augmented LM approach for constraint 

enforcement between linear and quadratic solid FEs, alongside a systematic algorithmic 

treatment for the GP projections over the coupling interface, and its effectiveness was 

demonstrated in the context of mesoscale partitioned modelling of masonry structures.  

Very recently, Farah et al. (2018) established a systematic approach for fictional contact 

problems with non-smooth interfaces, sharing a number of fundamental principles with the 

developed coupling element formulation presented in Chapters 4 and 5 of this thesis. The 

established approach facilitates contact constraint enforcement at the point, edge and surface 

levels, as well as the transition between these cases, and employs mortar method principles for 

the interface discretisation, with consideration being given to the surface discretisation with 

linear FEs. The method further employs a dual LM formulation with a penalty regularisation 

term, for cases of non-parallel edge-to-edge contact. 

One of the governing factors for the accuracy and robustness of all mortar variants discussed 

so far is the adopted scheme for the coupling term integration. In the vast majority of the 

existing literature, integration is undertaken using Gaussian quadrature, with the GPs being 

commonly defined over the non-mortar and projected to the mortar surface. Two principal 

algorithmic treatments for the GP projections in 2-D and 3-D coupling and contact problems 

exist, commonly referred to as segment-based and element-based integration schemes. 

Examples of segment- and element-based integration schemes can be found in Puso and 

Laursen (2004a) and Fischer and Wriggers (2005), respectively. A comprehensive study of the 

principal aspects of these integration schemes, alongside a comparative evaluation of their 

performance, was conducted by Farah et al. (2015), where qualitative guidance on the selection 

of the appropriate integration order is also provided for 2-D and 3-D problems. As expected, 
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the segment-based integration scheme was identified as substantially more efficient in 

comparison to the element-based approach, from a computing demand viewpoint. Nonetheless, 

contrary to the element-based approach, it fails to achieve exact or accurate integration in cases 

of quadratic interpolations and frictional problems. This issue is of primary importance in the 

context of the coupling formulation developed in this work, as discussed in Section 4.7, where 

consideration is given to both integration schemes, and their performance is compared.  

Despite the development of the mortar method being underpinned by a LM formulation for the 

constraint treatment, alternative approaches based on the Nitsche method, discussed earlier in 

Sub-section 2.3.1.5, have also been proposed. A domain decomposition approach based on the 

Nitsche method, with extensions to coupling of non-conforming meshes, has been 

mathematically formulated by Becker et al. (2003), while Wriggers and Zavarise (2008) 

implemented a 2-D frictionless contact formulation within the framework of linear elasticity. 

As discussed, the employment of the Nitsche method enables the establishment of a purely 

displacement-based formulation, which does not require the introduction of an independent 

LM field to facilitate coupling or contact between non-conforming meshes, thus substantially 

reducing the global number of unknowns for large-scale applications. Nonetheless, its 

extension to nonlinear problems is rendered cumbersome, due to the requirement of 

establishing the traction field of the independent bodies over the interface using complex 

constitutive expressions.  

Recent developments in the field of computational mechanics led to the establishment of 

methods extending beyond traditional FE approaches, such as iso-geometric analysis. The wide 

application spectrum of mortar methods in the framework of contact and coupling problems, 

motivated its incorporation in iso-geometric analysis by several authors; however, this is 

outside of the scope of the present thesis. The interested reader is referred to Kim and Youn 

(2012), Florez and Wheeler (2016) and Seitz et al. (2016).  

 

2.3.2.5 Comparative evaluation of interface discretisation methods 

As previously stated, one of the main objectives of this work is the development of a novel 

approach for surface-to-surface coupling along a line, which has not been previously addressed 

by researchers. A summary of the main features for the interface discretisation methods 
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presented in the preceding sub-sections is given herein from the perspective of their suitability 

as a basis for the developed coupling approach.  

Node-to-Node approaches are only applicable to coupling of conforming meshes, with nodal 

alignment being a prerequisite, and are thus not considered.  

NTS approaches enforce the constraints between distinct nodal locations (collocation points) 

on the master surface and a set of 2-D segments or 3-D surfaces on the slave surface in a strong 

sense. This class of methods is sensitive to the surface master/slave classification and is 

associated with non-minimal gaps and potentially substantial penetration of the two surfaces. 

Two variants of the methods exist, namely the single and double pass, where the former does 

not pass the contact patch test and the latter potentially leads to over-constraining. 

Segment-to-segment and mortar methods enforce the constraints between a set of interacting 

couples of 2-D segments or 3-D surfaces in a continuous sense. This class of methods achieves 

optimal convergence with LM or penalty formulations and passes the contact patch test by 

design for planar surfaces.  The establishment of the collocation points to coincide with nodal 

locations guarantees fulfilment of the LBB inf-sup conditions and leads to a stable 

discretisation scheme, for both conventional and dual LM shape functions. The performance 

of mortar methods is governed by the adopted algorithmic treatment for the GP projections 

from the non-mortar to the mortar surface, when Gaussian quadrature is employed, with a 

segment-based approach failing to achieve exact integration for quadratic elements, even with 

the employment of a large number of GPs, in contrast to the element-based approach. The two 

distinct variants of mortar methods, identified on the basis of the reference surface selection, 

are discussed separately hereafter.  

The first variant, encompassing the establishment of an intermediate fictitious mortar surface, 

passes the patch test by design and provides a stable discretisation scheme with optimal 

convergence characteristics. However, the additional unknowns introduced to the global 

system, associated with the additional independent LM or displacement fields of the 

intermediate mortar surface, adversely affect the computational efficiency of the method for 

large-scale applications.  

The second variant, encompassing the selection of one of the two surfaces as mortar and the 

establishment of an independent LM field on the non-mortar surface, has been proven to 

achieve enhanced accuracy, stability and optimal convergence in a wide range of 2-D and 3-D 
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applications, including large-deformation contact and coupling problems. The employment of 

dual spaces for the LM field interpolation leads to increased computational efficiency, however 

it suffers from deteriorated performance for curved surfaces, thus requiring the incorporation 

of complex algorithmic treatments to remedy these. The employment of a Nitsche approach 

allows for the elimination of the additional DOFs associated with the LMs, however it inherits 

the entanglements of the Nitsche formulation discussed in Sub-section 2.3.1.5 in large-

deformation nonlinear problems,  in relation to the establishment of the independent body stress 

fields over the interface.  

Taking the above into consideration, the coupling element formulation is developed as an 

enhancement of the 3-D mortar approach, which facilitates continuous constraint enforcement 

over the 1-D interface. NTS approaches are not applicable in this context, due to the 1-D 

interface traversing the discretised domains in an arbitrary orientation in the general problem 

setting, and thus not passing through the nodes of all actively coupled FEs.  

The introduction of an intermediate fictitious mortar surface and its discretisation into segments 

is an attractive option, enabling the substantial geometric complexity associated with the 

interface projection on the surfaces and the respective intersection identification to be 

overcome. Nonetheless, it does not guarantee stability of the discretisation scheme, while 

further complicating the algorithmic treatment of the numerical integration scheme, comprising 

the identification of GP projections on both surfaces. Therefore, an adaptation of the second 

mortar variant has been adopted, encompassing the definition of the interface independent of 

the surfaces and the establishment of the slave segments based on the intersections of its 

projection on the slave surface with the respective FE mesh.  

As discussed in Sub-section 2.3.1.6, an augmented LM formulation is deemed more efficient 

in comparison with other alternatives, and is thus adopted in view of its enhanced accuracy and 

the overcoming of potential floating-domain ill-conditioning with the use of a moderate penalty 

parameter. The employment of a LM/penalty-based formulation enables the optimal 

convergence of the mortar method to be preserved, while the interpolation of both the 

displacement and LM fields using the same distinct collocation points enables for a stable 

discretisation to be achieved and coupling patch tests to be passed, as will be discussed in detail 

in Chapters 4 and 5. The displacement and LM field interpolation is performed within an iso-

parametric framework, using conventional polynomial shape functions, while a hierarchic 

approach is also allowed for. Taking due account of the coupling element formulation 
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development for curved shell surfaces, the adoption of a dual LM basis has not been considered, 

in view of the requirement for special algorithmic treatment implementation to remedy 

inaccuracies of the dual approach related to curved surfaces.  

The interface discretisation procedure, underpinned by the fundamental principles of the mortar 

approach, is outlined hereafter: (i) surface classification as slave (non-mortar)/master (mortar); 

(ii) establishment of interface projection on the slave and master surfaces; (iii) progressive 

interface segmentation on each surface, based on its intersection with the edges or passing 

through the nodes of the respective FE mesh; (iv) interface discretisation into coupling 

elements, encompassing a set of interacting slave and master segments, based on the active 

projection of the GPs defined on the slave segments to the mortar segments; (v) constraint 

enforcement at the element level using an augmented LM formulation, with the LMs defined 

at collocation points, corresponding to the edge points of the slave segments. For the coupling 

term integration, an element-based integration approach has been adopted. Finally, the element 

enables the employment of both piece-wise linear and quadratic shape functions for the LM 

field interpolation.  

 

2.4 Concluding remarks 

A comprehensive literature review has been presented in this chapter, which serves the dual 

purpose of providing: (i) an insight into the existing applications, as well as the modelling and 

analysis methods, of metal honeycomb core sandwich composites; and (ii) a broad review on 

existing coupling methods in computational mechanics. 

In the first part of the literature review, an overview of the existing analytical, experimental 

and numerical investigations on metal honeycomb sandwich composites has been provided. 

The limited consideration given to the modelling of large-scale composites with honeycomb 

configurations has been highlighted, and the necessity of establishing an efficient HF nonlinear 

analysis approach for this class of composites has been argued for. Finally, a brief overview of 

the principal aspects underpinning the HF nonlinear FE modelling approach has been given, 

with further elaboration provided in Chapter 3. 

In the second part of the literature review, an extensive review of coupling methods facilitating 

discrete kinematic constraint enforcement between non-conforming FE meshes has been 
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provided, aimed at establishing a suitable foundation for a novel treatment of surface-to-surface 

coupling along a line in the present work. Consideration has been given to two classes of 

methods: (i) mathematical optimisation formulations for the constraint treatment in the context 

of the mixed FE global equilibrium problem; and (ii) interface discretisation schemes for the 

constraint enforcement facilitation in a discrete sense. As discussed in Sub-sections 2.3.1.6 and 

2.3.2.5, an augmented LM approach and a suitably enhanced variant of the 3-D mortar method 

will be developed for this purpose, as elaborated in Chapters 4 and 5.  
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Chapter 3 

High-Fidelity Nonlinear Analysis of Composite and 
Sandwich Structures 

3.1 Introduction 

All-metal composite structural systems are widely employed in modern infrastructure, due to 

their intrinsically high specific strength and stiffness providing enhanced performance 

and robustness characteristics with minimal structural weight. A broad application spectrum 

can be identified for this structural class, with some of the most prominent structural 

applications encompassing: (i) composite floor systems, comprising corrugated or planar 

steel plates overlying a grillage system of beams, plate girders and floor braces; (ii) 

bridge decks comprising plate girders; (iii) sandwich composites employed in large-scale, 

weight-critical, structural and naval applications; (iv) composite shell structures employed as 

roof systems or in silo and storage facilities; and (v) composite and sandwich blast walls.  

All-metal composite structures comprise independent deformable plated components coupled 

along weld lines, and hence their response is characterised by the manifestation and interaction 

of various local buckling phenomena in several locations over the structural domain. The 

interaction of these forms of local instability, along with the spread of plasticity in the large 

displacement range, result in a variety of complex phenomena which govern the global 

structural response and dictate the encountered failure modes. An accurate response prediction 

is typically required for the development of novel systems and for advanced applications, such 

as in the case of extreme accidental blast loading where the system energy dissipation must be 

quantified. 
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In this chapter, an accurate and robust high-fidelity (HF) nonlinear Finite Element (FE) 

modelling strategy for all-metal composite systems is presented. The proposed modelling 

approach utilises recently developed Reissner-Mindlin quadratic curved shell elements 

(Izzuddin & Liang, 2016; 2017), with two principal aspects underpinning their local 

formulation: (i) a co-rotational framework for the local element coordinate system definition, 

enabling the exclusion of rigid body rotations from the local element response and the 

establishment of simple kinematic constitutive relationships (Izzuddin & Liang, 2016); and (ii) 

a hierarchic optimisation approach for the relief of inaccuracies arising from shear, membrane 

and distortion locking phenomena, typically encountered in shell elements due to small shell 

thickness, curved shapes and the employment of isoparametric mapping for distorted element 

shapes, respectively (Izzuddin & Liang, 2017).  

With the aim of its application to large-scale systems, the modelling strategy also utilises 

domain partitioning capabilities based on a novel dual super-element concept (Jokhio & 

Izzuddin, 2015), allowing for scalable parallel processing in High Performance Computing 

(HPC) systems with distributed memory. Partitioned modelling renders extensive nonlinear 

analyses of large-scale systems a realistic prospect, by allowing a substantial reduction in the 

computing wall-clock time and avoiding memory bottlenecks encountered with conventional 

modelling procedures. 

As discussed earlier in Chapter 1, the proposed HF modelling strategy is applied within the 

framework of the INFLOAT project for the detailed response investigation of novel, large-

scale, all-metal, honeycomb core sandwich composites and offshore platform topside deck 

systems. The modelling strategy and the partitioned modelling approach are therefore 

presented in this chapter with reference to individual sandwich composites, notwithstanding 

their more general applicability to the modelling of any all-metal, large-scale, composite 

structural system.  

The chapter proceeds with reviewing the previously developed quadratic shell element local 

formulation and the associated Reissner-Mindlin kinematic constitutive expressions. The 

hierarchic optimisation approach (Izzuddin & Liang, 2017) embedded in the local element 

formulation is subsequently outlined, followed by a brief exposition of the utilised bi-sector 

and zero-macrospin local co-rotational frameworks (Izzuddin & Liang, 2016). The application 

of the HF modelling strategy to sandwich composites is demonstrated, and the focus is 

thereafter shifted to the description of the utilised dual super-element domain partitioning 
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approach (Jokhio & Izzuddin, 2015) and the concept of scalable parallel processing in HPC 

systems with distributed memory. The chapter concludes with a discussion on intricacies 

arising in the application of partitioned modelling with the adopted shell FEs, in respect of the 

treatment of the drilling rotational Degrees of Freedom (DOFs). 

 

3.2 Local formulation of co-rotational Reissner-Mindlin shell elements  

Consideration is henceforth given to the adopted quadratic shell elements developed by 

Izzuddin & Liang (2017), specifically the 9-noded quadrilateral and 6-noded triangular 

elements which employ 5 nodal DOFs in the local Cartesian coordinate system ( )x,y,z , of 

which 3 are translational and 2 rotational.  

For the local element shape and displacement fields interpolation, quadratic Lagrangian shape 

functions are employed in an isoparametric formulation framework, expressed in terms of the 

natural coordinates (ξ, η): 

( )
1

      
m

i i
i

x y z N ( , ) 


=

= =x x    (3.1) 

( ) ( )x
1 1

         
m m

i i y i i
i i

u v w N ( , ) , N ( , )     


= =

= = = = d d r r   (3.2) 

where m is the number of element nodes, ( )    i i i ix y z=
Tx  are the local nodal coordinates, and 

( )    i i i iu v w 
=d  and ( )x   i i iy 



=r  are the translations and rotations of node (i), respectively, 

in the local Cartesian coordinate system.  

The Reissner-Mindlin theory underlies the element local kinematics, where the employment of 

a co-rotational approach enables the use of a simplified strain-displacement relationship 

through the exclusion of rigid-body modes from the local element deformation modes, as will 

be discussed in more detail in Section 3.4. The conforming element membrane strains mε , 

bending strains bε , and transverse shear element strains sε  can therefore be expressed in terms 

of the local element displacement fields ( )u,v,w  using the following equations: 
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where the terms 0z
x




 and 0z

y



 denote the shell element curvature along its local planar axes. 

  

3.3 Assumed strain formulation via hierarchic optimisation  

The conforming kinematic assumptions presented in the preceding section introduce polluting 

higher-order nonlinear terms in the strain distributions (Izzuddin & Liang, 2017). These 

inaccuracies deteriorate the element performance, leading potentially to shear, membrane and 

distortion locking, which are the principal locking phenomena encountered in curved shell 

elements, arising from small shell thickness, curved shapes and the employment of 

isoparametric mapping for distorted element shapes, respectively.  

In the adopted formulation, locking phenomena are relieved by correcting each of the 

conforming membrane, shear and bending strains with corrective hierarchic components hΨ  , 
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towards an objective set of strains oΨ  afforded by the original DOFs, using appropriate 

parameters (Izzuddin & Liang, 2017): 

h o h h h o o o, ,+ → =  = ε ε ε ε Ψ α ε Ψ α    (3.6) 

The hierarchic and objective parameters, hα  and oα , are determined by minimising the square 

of the error between the corrected and objective strains over the element domain, which leads 

to the following linear system of equations: 

T T T

T T T d  d
e e

hh h h o he e

oo h o o o
 

     −  −  
  =      
 −            

 
  
 

αΨ Ψ Ψ Ψ Ψ
εαΨ Ψ Ψ Ψ Ψ

  (3.7) 

Considering the establishment of local kinematic and constitutive relationships for the shell 

elements in an isoparametric formulation framework, the integration of the above system of 

equations is most efficiently performed using Gaussian quadrature. The obtained strain 

parameters hα  and oα  can therefore be expressed in terms of the conforming strains at the 

Gauss Points (GPs), in the following form: 

1 1

2 2
o o o GP h h h GP

m m

,

   
   
   

=  =  =  =    
   
      

ε ε
ε ε

α Γ Γ ε α Γ Γ ε

ε ε

  (3.8) 

where iε  is the conforming strain obtained at GP (i) and m is the order of the employed 

Gaussian quadrature integration scheme. It is emphasised that the establishment of the strain 

parameters hα  and oα  independently from the element displacement field leads to an approach 

of enhanced computational efficiency, particularly in cases of complex nonlinear constitutive 

expressions at the element level (Izzuddin & Liang, 2017). 

The enhanced strains can be expressed in terms of either the corrective or objective forms, as 

shown in Eqs. (3.9) and (3.10), respectively, with the error between the two reducing with the 

employment of higher order hierarchic corrective strains, or mesh refinement (Izzuddin & 

Liang, 2017): 

( )GP GP h,GP GP h,GP h h,GP h GP= + = +   + ε ε ε ε Ψ α I Ψ Γ ε   (3.9) 
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GP o,GP o,GP o o,GP o GPˆ = =    ε ε Ψ α Ψ Γ ε    (3.10) 

This optimisation approach was originally developed for 9-noded shell elements (Izzuddin & 

Liang, 2017), leading to two alternative variants HnO9 and HnC9, where n indicates the order 

of employed hierarchic modes and O|C referring to the employment of Objective or Corrected 

strains to substitute the conforming field. It should be noted that the same approach is also 

directly applicable to 6-noded elements, leading to a respective family of elements with 

alternative branches HnO6 and HnC6 (Izzuddin & Liang, 2017). 

For the individual membrane, bending and transverse shear strain components in Eqs. (3.3), 

(3.4) and (3.5), the hierarchic optimisation approach is employed separately to eliminate the 

associated locking phenomena. The distinct sets of objective strains are a priori defined in a 

polynomial form expressed in real Cartesian coordinates, thus allowing for the element 

sensitivity to geometric irregularities and distortion to be effectively overcome.   

A total of 39 objective strain components are defined: (i) 15 membrane m
oΨ , (ii) 15 bending 

b
oΨ , and (iii) 9 transverse shear s

oΨ . These correspond to the respective lower order modes 

afforded by the element local planar and transverse translational DOFs ( )    u v w 
=d , as well 

as by the rotational DOFs ( )x   y 


=r , encompassing the associated rigid body modes 

(Izzuddin & Liang, 2017). The respective objective strain components are given by the 

following expressions: 
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where: 

2 2 2 2 2 2

2 2 2 2 2 2

0 0 0 0 0 0 0
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m
o

x y x xy y x y xy x y
x y x xy y x y xy x y

 
=  
 

Φ   (3.14) 

2 2 2 2 2 2ys ,z
o x y x xy y x y x x y =  Φ   (3.15) 

Among the hierarchically optimised family of 9- and 6-noded shell elements, the H3O9 and 

H3O6 variants, employing 3rd order hierarchic corrective strain components, have been shown 

to achieve optimal performance in addressing all three forms of locking (Izzuddin & Liang, 

2017), and are therefore employed herein. 

 

3.4 Local co-rotational framework 

The co-rotational approach encompasses the definition of a local coordinate system which 

follows the element in its deformed configuration. This enables the exclusion of rigid body 

rotations from the element response, thus enabling the use of simplified kinematic constitutive 

relationships at the local element level, such as those given in Eqs. (3.3) - (3.5). 

The definition of an effective co-rotational framework is subject to the fulfilment of the 

following set of requirements: (i) simplified definition, (ii) nodal invariance, (iii) element spin 

reduction, and (iv) uniqueness in the local system definition, resulting in a symmetric tangent 

stiffness matrix (Izzuddin & Liang, 2016). For the optimised H3O9 and H3O6 shell elements 

employed herein, these requirements are achieved with the utilisation of bi-sector and zero-

macrospin definitions of the local co-rotational system (Izzuddin & Liang, 2016), respectively, 

which are outlined hereafter.   

 

 Bisector and zero-macrospin co-rotational frameworks 

The bisector approach for quadrilateral shell elements encompasses a simple definition of the 

local x- and y-axes as the bisectors of the element diagonals linking the corner nodes, as 

illustrated in Figure 3.1. The relative orientation of the local co-rotational system in the element 
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deformed configuration with reference to the global system is uniquely defined by the unit 

orthogonal vector basis ( )x y z, ,c c c , where the unique triad is obtained as (Izzuddin, 2005; 

Izzuddin & Liang, 2016): 

13 24 13 24

13 24 13 24
x y z x y, ,

− +
= = = 

− +

c c c c
c c c c c

c c c c
  (3.16) 

In Eq. (3.16)  the unit vectors ijc  are obtained by the following expression: 

ij o
ij ij ij j i

ij

,= = + −
v

c v v u u
v

   (3.17) 

where o
ijv  and ijv  are the vectors linking nodes (i) and (j) in the initial undeformed and the 

current deformed configurations, respectively, and ( )    i i i iU V W=
Tu  is the global translation 

vector of node (i). 

 

Figure 3.1: Bisector local co-rotational system and global nodal displacement parameters for 

quadrilateral shell finite elements (Izzuddin & Liang, 2016) 

1u
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The zero-macrospin approach employed for triangular shell elements encompasses the optimal 

definition of the local x- and y-axes, such that the relative spin at the material point level in the 

current deformed configuration is zero in an aggregate sense, at the macro-element level, with 

reference to the corresponding rotated undeformed configuration. The orthogonal unit vectors 

defining the local co-rotational system relative orientation with reference to the global system  

in the element initial undeformed configuration, o
xc  and o

yc , are defined such that o
xc  is aligned 

with edge 1-2, as illustrated in Figure 3.2: 

1 12 2 23 1 12 2 23
o o o o o o
x x x y y ya a , a a= + = +c v v c v v   (3.18) 

where: 

( ) ( )

12 23
1 2 1 22 2T T12

12 12 23 23 12 23

1 10
1 1

o T o

x x y yo
o o o o o o

a , a , a , a


= = = − =

−  − 

c c
v v c c v c c

 (3.19) 

In the above expression, unit vectors o
ijc  are obtained as follows: 

o
ijo

ij o
ij

=
v

c
v

   (3.20) 

where o
ijv  are the vectors linking nodes (i) and (j) in the initial undeformed configuration. 

In the current deformed configuration, the unit orthogonal vector basis ( )x y z, ,c c c , is uniquely 

obtained as:  

12 23

12 23

n
x y

x y z x zn
x y

, ,
 + 

= =  =
 +

c c v v
c c c c c

v vc c
   (3.21) 

where: 

1 12 2 23 1 12 2 23
n

x x x y y z y y ya a , , a a   = + =  = +c v v c c c c v v   (3.22) 

and 1xa , 2xa , 1ya  and 2ya  are given by Eq. (3.19). This is illustrated in Figure 3.2. 
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Figure 3.2: Zero-macrospin local co-rotational system and global nodal displacement 

parameters for triangular shell finite elements (Izzuddin & Liang, 2016) 

 

Besides fulfilling the uniqueness and simplified definition requirements, both bisector and 

zero-macrospin frameworks outlined above are associated with reduced element spin, which is 

zero at the macro-element level in the latter case. Moreover, the definitions ensure nodal 

invariance, thus allowing for identical local and global element force vectors and tangent 

stiffness matrices to be obtained regardless of the adopted nodal ordering (Izzuddin & Liang, 

2016). It must be emphasized that the above co-rotational framework definitions are 

independent of the element type and can thus be extended from 4-noded to 9-noded 

quadrilateral, as well as from 3-noded to 6-noded triangular, elements. Hence, they have been 

effectively applied to the formulation of the optimised H3O9 and H3O6 variants employed 

herein for the local coordinate system definition.  

 

1u
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 Co-rotational transformations 

The co-rotational approach enables the element local internal force vector and tangent stiffness 

matrix to be obtained from local deformations, excluding the effect of rigid body rotations. 

Geometric nonlinearity is therefore incorporated in the global element response by means of 

relevant discrete transformations between the global and local coordinate systems. For the 

translational and rotational DOFs, these transformations are expressed in the following form 

(Izzuddin & Liang, 2016): 

( )0
o

i i io= + −d Tu T T v   (3.23) 

i i= −r Tn    (3.24) 

where in  is the normal vector, o
iov  is the position vector of node (i) about the local coordinate 

system origin (o) in the initial undeformed configuration, while 0T  and T , T  are the 

orientation matrices of the co-rotational system in the initial undeformed and current deformed 

element configurations. The expressions for the orientation matrices are given hereafter: 

T

0
o o o
x y z =  T c c c   (3.25) 

T

x y z =  T c c c    (3.26) 

T

x y =  T c c    (3.27) 

Two additional transformations from the local co-rotational to the global coordinate system are 

required for the element resistance forces and tangent stiffness matrix, which are obtained 

considering the first- and second-order derivatives of the above geometric relationships linking 

the local to global DOF parameters (Izzuddin & Liang, 2016). 

It is worth noting that the orientation of the nodal normal in  at node (i) is determined by three 

global rotational DOFs, but obviously the ‘drilling’ rotation will have no influence on the 

orientation of in . This means that the element exhibits a singular behaviour in relation to the 

drilling DOF, which must either be excluded or restrained when discretising a smooth shell 

surface. In the modelling of complex shell structures, including parts with smooth surfaces and 
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other parts intersecting at an angle, the most effective approach encompasses the utilisation of 

three global rotational DOFs per node, alongside the restraining of the drilling DOF while 

accounting for the changing orientation of the drilling normal vector in large displacement 

analysis. This has implications on the application of the high-fidelity modelling strategy for 

all-metal sandwich composites, where careful consideration should be given to the treatment 

of drilling rotational DOFs, particularly along a partition boundary with domain 

decomposition. This will be thoroughly discussed at a later point in Section 3.7. 

3.5 High-fidelity modelling of large-scale metal sandwich composites 

As discussed earlier in Chapter 2, the detailed nonlinear analysis of large-scale metal sandwich 

panels with honeycomb core topologies has received very little attention in the existing 

literature, largely due to the associated modelling complexity and high computational demand 

posed by such intricate structures. 

In sandwich panels with honeycomb core configurations, as illustrated in Figure 3.3, the cell 

geometry and transverse orientation with respect to the panel faceplates result in the formation 

of discrete laterally unrestrained plated components of substantial slenderness, both at the cell 

walls and the faceplates. These are prone to elastoplastic compressive and shear buckling, 

which, alongside potential stress concentrations arising from the discrete nature of the core, 

lead to highly complex stress and deformation states throughout the panel domain. The 

establishment of reliable estimates for the critical buckling load of individual plated 

components, as well as the resulting reduction in the panel global capacity, is therefore 

rendered highly cumbersome for large-scale systems subject to complex loading conditions. 

The sensitivity of the aforementioned estimates to geometric constraints imposed by the cell 

wall interactions and the welded connections, as well as to the magnitude and sense of 

imperfections, further complicate the local buckling and response attributes assessment of the 

sandwich panel.  

Taking the above into consideration, it is evident that an accurate global nonlinear response 

evaluation calls for an increased level of modelling sophistication. The application of the HF 

nonlinear FE modelling strategy discussed hitherto to sandwich composites encompasses the 

following principal features: (i) an accurate geometric modelling process for the core and 
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plates, accounting for manufacturing and connection characteristics between individual cells, 

alongside initial imperfections; (ii) an extensive discretisation of the panel domain with 

geometrically nonlinear shell elements, allowing for the effects of local buckling on the global 

panel response to be accurately captured; (iii) the employment of detailed nonlinear material 

constitutive models capable of accurately capturing local yielding and the spread of plasticity 

over the domain, including hardening and strain-rate effects; and (iv) the utilisation of powerful 

domain partitioning in HPC systems that achieves considerable computational efficiency and 

overcomes memory bottlenecks.  

With respect to the first two features, for the domain discretisation of sandwich panels with 

rectangular and hexagonal honeycomb core topologies the previously reviewed 9-noded 

quadrilateral and 6-noded triangular shell finite elements have been employed  (Izzuddin & 

Liang, 2017). 9-noded elements are utilised for the core cell wall discretisation in both 

configurations, while for the faceplates 9-noded and 6-noded elements are employed for the 

rectangular and hexagonal configurations, respectively. The detailed FE models are generated 

using a versatile mesh generation computing tool, developed to allow for the plates and core 

cells modelling to any desired level of discretisation detail, as illustrated in Figure 3.3 (a), (b). 

The mesh generator further enables the introduction of sympathetic imperfections in the 

system, by means of nodal dislocations, as illustrated in Figure 3.3 (c), which is imperative in 

the modelling of sandwich and composite systems due to their response imperfection 

sensitivity. The adopted strategy has been implemented in ADAPTIC (Izzuddin, 1991), a 

sophisticated general finite element code for the adaptive nonlinear analysis of structures under 

extreme static and dynamic loading.  

The HF modelling strategy discussed above and illustrated in Figure 3.3 allows for an accurate 

nonlinear response evaluation of sandwich composites in the large displacement range, taking 

due account of geometric and material nonlinearity. The efficiency and accuracy of the HF 

modelling strategy will be illustrated in the context of application studies in Chapter 7, where 

consideration is given to large-scale, all-metal, honeycomb core sandwich composites 

employed as deck components in the envisioned novel topside deck systems discussed in 

Chapter 1. The HF modelling strategy is further validated against physical tests on the novel 

sandwich composites in Chapter 7, which enables its reliability for realistic 3-D modelling of 

composite structural systems to be established. As discussed earlier, notwithstanding the 

modelling strategy application to sandwich composites, this can be effectively employed for 
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the modelling and extensive nonlinear assessment of any large-scale all-metal composite 

system. Partitioned modelling and its application to sandwich composites are discussed in the 

forthcoming Sections 3.6 and 3.7.  

 

(a) 

 

 

 

(b) (c) 

Figure 3.3: (a) High-fidelity finite element discretisation of sandwich panels with rectangular 

and hexagonal honeycomb core topologies, (b) discretisation strategy for rectangular and 

hexagonal honeycomb cells, (c) sympathetic sinusoidal imperfection modelling idealisation 

for rectangular honeycomb core sandwich panels 

x

y

x

y

x

y

x

y x
y

x
y

x
y



Chapter 3: High-Fidelity Nonlinear Analysis of Composite and Sandwich Structures 
 

71 
 

3.6 Partitioned modelling for high performance computing 

In nonlinear static or dynamic analysis problems where finite element procedures are 

employed, the computational demand is inextricably related to the numerical solution of the 

algebraic system of equations of discrete equilibrium for a given set of essential and natural 

boundary conditions. The size of this system of equations is determined by the number of 

discrete nodal kinematic parameters employed for the domain discretisation, thus increasing 

substantially in the case of large-scale, geometrically complex and/or particularly dense FE 

meshes.  

A detailed nonlinear response evaluation of large-scale metal sandwich panels subject to 

extreme static or dynamic loading, using the high-fidelity modelling strategy presented in 

Section 3.5, necessitates the employment of a dense mesh of shell FEs, typically associated 

with several hundreds of thousands of DOFs. The employment of a substantially dense mesh 

is essential for accurate modelling of the effects of the various progressively manifested forms 

of local geometric instability, alongside the spread of plasticity, on the global panel response. 

Consequently, extensive nonlinear numerical simulations are rendered prohibitively expensive, 

or even impossible, in relation to computing wall-clock time and memory resources.  

These shortcomings are effectively overcome in this work by utilising a recently developed 

partitioned modelling approach based on the dual super-element concept (Jokhio & Izzuddin, 

2015), facilitating scalable parallel processing in High-Performance Computing (HPC) systems 

with distributed memory. 

The partitioned modelling methodology involves the domain decomposition of an initial parent 

structure into place-holder super-elements along the partition boundary, each representing a 

child partition. Place-holder super elements are treated as conventional finite elements in the 

parent process, and these communicate with dual super-elements that wrap the child partition 

which is analysed in a separate process (Jokhio & Izzuddin, 2015). At every iterative step of 

the solution procedure, the displacements at the partition boundary nodes are communicated 

from the place-holder to the dual super-elements. Subsequently, the condensed resistance 

forces vector and tangent stiffness matrix for each dual super-element are obtained via 

backward substitution and forward elimination processes at the level of the child partition, after 

which they are communicated back to the placeholder super-element in the parent process 

(Jokhio & Izzuddin, 2015). This two-way communication between pairs of place-holder and 
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dual super-elements allows for the discrete conditions of compatibility and equilibrium to be 

enforced within the individual partitions, including the parent partition, as well as along the 

partition boundary, while eliminating the requirement for communication between child 

partitions.  

In applying the partitioned modelling approach to HPC parallel processing systems, individual 

child and parent processes are allocated to independent Central Processing Units (CPUs) or 

cores, distributed over single or multiple computing nodes. The reduced number of solver 

operations within separate child processes, alongside the effective parallelisation of the 

solution procedure, leads to a remarkable speed-up and reduction in the computing memory 

demand in comparison with the respective monolithic models (Jokhio & Izzuddin, 2015). 

Moreover, this capability overcomes the memory bottlenecks typically encountered in 

conventional monolithic models of large-scale structural systems, while achieving identical 

results and convergence rate (Jokhio & Izzuddin, 2015).  

 

3.7 Partitioned modelling of large-scale metal sandwich composites 

An advanced high-fidelity mesh generation tool has been developed to facilitate the application 

of domain partitioning to the modelling of large-scale, metal sandwich composites using 

ADAPTIC (Izzuddin, 1991), in which the previously outlined partitioning approach has been 

implemented. This tool enables the effective domain decomposition of sandwich panel FE 

models into child partitions, each of which is in turn discretised with the adopted 9-noded and 

6-noded shell finite elements, as previously described. A schematic representation of the 

concept is illustrated in Figure 3.4 for a sandwich panel partitioned model with 4 child 

partitions, where the partition boundary comprises only the nodes along the individual child 

partition domain perimeters.  

As discussed in Section 3.5, the adopted shell elements utilise 6 DOFs, with 3 rotational DOFs, 

per node, though the local element response is formulated with 5 local DOFs, with 2 rotational 

DOFs for each node. This is typical of shell elements utilising the basic nodal parameters and 

makes these elements insensitive to ‘drilling’ nodal rotations, thus exhibiting a singular 

response under such rotations. Such singularity occurs for smooth surfaces but does not arise 
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for nodes along edges where elements intersect at an angle, such as for a folded plate or at the 

intersection of the honeycomb core with the faceplates for an all-metal sandwich panel.  

Accordingly, the most general approach would be to utilise 3 rotational DOFs per node, and to 

constrain the drilling DOF at nodes where there are no intersections at an angle between 

adjacent shell elements (i.e. locations where the discretised domain is a smooth surface with 

no intersections). This is indeed the approach considered in ADAPTIC (Izzuddin, 1991) for 

the utilised 6- and 9-noded shell elements, where drilling DOF constraints are automatically 

introduced at non-intersecting nodal locations. The latter are achieved by means of a special 

constraint element that allows for the variation of the drilling orientation vector with large 

displacements. 

In the context of dual super-element partitioned modelling, the automatic introduction of the 

drilling constraint element is restricted to the internal nodes of the partition domain. As 

discussed in Section 3.6, the two-way communication between dual and placeholder super-

elements eliminates the need for inter-partition communication, while allowing for the former 

to be processed in parallel as independent substructures on separate CPUs or cores. Without 

more advanced communication between child processes, the establishment of whether the 

nodes on a partition boundary belong to a smooth part of the domain or to an intersection 

between two or more surfaces is impossible, and thus the automated drilling DOF constraint 

element introduction process is substantially encumbered.  

Addressing the singularities associated with the drilling DOF on a partitioned boundary 

requires the introduction of additional constraint elements at the parent partition level, at nodal 

locations with no element intersections. This is shown in Figure 3.5 for the sandwich panel 

partitioned model illustrated in Figure 3.4, where additional constraint elements are introduced 

at all nodes on the partition boundary, except for those at faceplate-core intersection locations. 

This approach has been incorporated in the developed high-fidelity mesh generation computing 

tool for all-metal sandwich panel composites, enabling the automatic introduction of additional 

drilling DOF constraint elements at the partition boundary nodes, where this is required, and 

thus the effective partitioned modelling of such panels. 

The effectiveness and computational benefits of the dual-super element domain partitioning 

methodology will be demonstrated in Chapter 7, in the context of application studies on large-

scale, all-metal sandwich composites employed as deck components.  
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Figure 3.4: Domain decomposition of rectangular honeycomb core sandwich panels using 

dual super-element child partitions 

 

Domain Decomposition – Partitioned Model

Level (0): Partition Boundary and Placeholder Super-Elements – [Parent Partition Process]

Monolithic Finite Element Model

Level (1): Dual Super-Elements – [Child Partition Processes]
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Figure 3.5: Drilling rotational constraint elements along smooth part of partition boundary 

 

3.8 Concluding remarks 

A HF nonlinear FE modelling strategy is presented in this chapter, which provides an accurate 

and systematic approach for realistic modelling of large-scale composite structural systems and 

sandwich composites. The proposed strategy is underpinned by the employment of co-

rotational Reissner-Mindlin quadratic curved shell elements, attaining optimal performance 

through a hierarchic optimisation approach that enables membrane, bending and shear locking 

phenomena to be addressed (Izzuddin & Liang, 2016; 2017). The advanced features of the 

utilised shell elements enable the accurate nonlinear response evaluation in the range of large 

displacements, taking due account of geometric and material nonlinearity effects. This is 

imperative in the modelling of large-scale metal composite structures, particularly of sandwich 

composites with discrete core topologies, due to the global system response and failure modes 

being sensitive to the progressive manifestation and interaction of various local instability 

forms over their domain. The HF modelling approach is further enhanced with the utilisation 

of recently developed domain partitioning capabilities, based upon a novel dual super-element 

concept introduced by Jokhio and Izzuddin (2015). This allows for scalable parallel processing 

of individual partitions in HPC systems with distributed memory, without compromising the 

accuracy and convergence characteristics of the monolithic approach, thus enabling a 

Partition boundary nodes - smooth surface 
Partition boundary nodes - intersecting surfaces

Child partition domain nodes

Drilling rotational constraint elements
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substantial reduction of computing wall-clock time to be achieved and potential memory 

bottlenecks to be effectively overcome. The significance of the proposed HF partitioned 

modelling methodology is highlighted in cases where computing resource limitations render 

nonlinear analyses prohibitively demanding or impossible. This applies in particular to the 

accurate nonlinear assessment of large-scale, metal composite structures subject to extreme 

static or dynamic loading, where the computational demands of the conventional HF modelling 

approach can be prohibitive. 
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Chapter 4 

Surface Coupling along a 1-D Interface with 

Non-Conforming Meshes 

 

 

 

 

4.1 Introduction 

In the modelling of intricate composite structural systems comprising independent deformable 

components in contact, the efficiency and flexibility of the employed finite element (FE) 

discretisation procedure is significantly impacted by the requirement of achieving mesh 

conformity. The parameters of the employed FE mesh for the discretisation of different 

domains or plated components are mainly dictated by the requirement of accurately capturing 

geometric instabilities and material nonlinearity at a local level. However, the geometric 

complexity of the system, alongside the variability of natural and essential boundary conditions 

over the domain, often impose severe constraints on the meshing of the respective surfaces to 

achieve coupling. These include the requirement for nodal alignment, compliance of element 

shapes, edge orientations and mesh density, proportionality of element sizes and the use of 

complex transitional meshes.  

When a high-fidelity (HF) nonlinear analysis of such systems is called for, the adopted 

computational modelling approach would significantly benefit from the employment of 

coupling methods for non-conforming meshes. These would enable the fulfilment of 

translational and rotational compatibility conditions and the accurate transferring of internal 

forces along the coupling interface for independently discretised domains, thereby leading to 

significant merits on the modelling front. The requirement of coupling independently 
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discretised deformable substructures in connection regions is rendered a cumbersome 

undertaking in such systems, due to the coupling constraint being enforced along a line of 

arbitrary orientation, rather than a surface. This corresponds typically to welded connections 

and intersections between nonparallel components, where the thickness of the coupling 

interface is sufficiently small compared to its length, thereby rendering the constraint 

enforcement between the two meshes a 1-D coupling problem. It is emphasised that the term 

non-conforming is employed herein to refer to non-matching coupled meshes with lack of 

nodal alignment along the coupling interface, as discussed in Chapter 1. 

In this context, a novel coupling element has been developed and successfully implemented in 

ADAPTIC (Izzuddin, 1991) v2.16.5, facilitating discrete translational and rotational coupling 

of independently discretised surfaces of shell FEs along a 1-D coupling interface, for any 

spatial orientation of the line and the surfaces. The developed formulation is particularly 

applicable in the modelling of shell substructures coupled along a weld line, as well as in the 

case of partitioned models with a different level of discretisation detail in each child partition. 

The employment of the developed coupling element leads to a variety of merits on the 

modelling front: (i) discretisation flexibility in relation to the employed FE types and mesh 

parameters; (ii) overcoming of modelling shortcomings associated with the requirement of 

achieving mesh conformity; (iii) accuracy enhancement arising from the employment of 

component- or domain-specific optimal discretisation strategies at a local level; and (iv) 

substantial reduction of the associated demand in computing wall-clock time and resources.  

The developed HF nonlinear FE modelling strategy for geometrically complex composite 

structural systems, presented in Chapter 3, utilises hierarchically optimised co-rotational 

Reissner-Mindlin curved shell FEs (Izzuddin & Liang, 2016; 2017). The coupling element 

formulation presented herein, as well as in Chapter 5, has been developed in compliance with 

the HF modelling strategy, aiming towards the establishment of a unified discretisation 

framework of enhanced computational efficiency, applicable to large-scale, geometrically 

complex, composite structural systems and beyond. Notwithstanding, its establishment within 

a general setting enables the straightforward upgrade of existing FE programs to incorporate 

coupling of different FE types.  

Within the INFLOAT project scope, the incorporation of the developed coupling element in 

the HF modelling of large-scale sandwich composites and deck systems leads to substantial 

benefits on the modelling front, owing to the complete discretisation flexibility it provides. 
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These are highlighted in a variety of cases, encompassing: (i) modelling of laser-welded 

connections between sandwich composite core strips and faceplates, in cases where a selective 

discretisation is required for the capturing of local buckling effects; (ii) modelling of 

fillet- welded connections between sandwich composites and supporting plate girders of 

arbitrary relative spatial orientation; (iii) modelling of fillet-welded connections between 

sandwich composite faceplates and localised equipment patch plates in different locations and 

orientations over the panel domain; (iv) edgewise coupling of adjacent panels with different 

discretisation levels within a deck system or different regions within a panel, without the use 

of transitional meshes; and (vii) coupling of child partitions with non-conforming meshes 

along the partitioned boundary, when the domain partitioning approach discussed in Chapter 

3 is employed. 

This chapter proceeds with introducing the mathematical treatment of coupling constraints 

using Lagrangian Multipliers (LMs) on the basis of a simplified mechanical model, as well as 

the general setting of the surface-to-surface coupling problem. Subsequently, a systematic 

strategy for the mathematical treatment of surface coupling along a 1-D interface in a discrete 

form, using coupling elements, is presented, including: (i) the interface segmentation based on 

the surface mesh parameters, (ii) the identification of the set of coupling elements associated 

with each interface segment, and (iii) the discrete constraint enforcement along the interface. 

Lastly, the general coupling element formulation is presented, along with two alternative 

integration schemes for the coupling element internal force vector and consistent tangent 

stiffness matrix based on Gaussian quadrature, followed by a discussion on their relative 

accuracy and computational efficiency. 

 

4.2 Treatment of coupling constraints using Lagrangian Multipliers 

The LM method is widely employed in mathematical optimisation for the extrema 

identification of a function subject to a set of constraints. As discussed in Section 2.3, the 

employment of LMs has become a prominent approach for the treatment of static and dynamic 

coupling problems in computational mechanics, where a system of physically or 

computationally heterogeneous components coupled over a shared interface is being looked at. 

This is due to the establishment of the respective static and dynamic equilibrium states 
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involving the minimisation of the system total potential energy function subject to a set of 

kinematic constraints defined over the coupling interface.  

Shifting the focus to the 1-D coupling problem at hand, a qualitatively equivalent benchmark 

problem is considered herein. This involves a simplified mechanical model of 2 single degree 

of freedom (SDOF) elastic springs (1)  and (2) ,  with stiffness parameters 1k  and 2k , coupled 

along a shared interface c , as illustrated in Figure 4.1. By virtue of comparison of the obtained 

mathematical expressions for the simplified mechanical model and the actual system of 

coupled surfaces along a 1-D interface, the mathematical equivalence of the two systems can 

be established and an enhanced clarity of the concepts discussed in the following sections and 

in Chapter 5 can be achieved.  

 

Free body diagram 

 

Figure 4.1: Simplified mechanical model of elastic springs 1-D coupling 

The total potential energy of the simplified model consists of two parts: (i) the elastic strain 

energy stored in the springs (1)  and (2) ; and (ii) the work done by the externally applied load 

P, which in this case is assumed to act on spring (2) , without loss of generality. This is given 

by the following expression, where energy storage in and energy dissipation from the system 

are taken as positive and negative, respectively: 

( ) 2 2
1 2 1 1 2 2 2

1 1,
2 2

u u k u k u Pu = + −    (4.1) 

1k 2kP

2u1u
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First order differentiation of the total potential energy function in Eq. (4.1) with respect to the 

kinematic DOFs 1u  and 2u  yields the system forces associated with each DOF, while its 

minimisation leads to an equilibrium state for the system under the externally applied loading. 

Considering a system of two completely uncoupled, independent elastic springs, the 

minimisation of the energy function of Eq. (4.1) leads to an equilibrium state 

( )1 2 20,  u u P k= = , where (1)  stays intact and only (2) is displaced in the direction of the 

externally applied load P.  

Considering a coupled springs system, where translational compatibility is desired to be 

achieved, the 1-D constraint can be expressed in the form of the following multivariate 

function: 

( )1 2 1 2, 0g u u u u= − =    (4.2) 

The establishment of the system equilibrium is therefore transformed into a mathematical 

optimisation problem, where the total potential energy objective function is minimised subject 

to the constraint function of Eq. (4.2): 

( )

( ) 

2 2
1 2 1 1 2 2 2

1 2 1 2

1 1minimise ,
2 2

subject to , 0

u u k u k u Pu

g u u u u

 
 = + − 
 

= − =

 

The employment of a LM formulation for the constraint enforcement on the coupled system 

encompasses the introduction of an additional term in Eq. (4.1), representing the LM 

contribution to the system energy, and the subsequent minimisation of the obtained Lagrangian 

function (Wriggers, 2006): 

( ) ( )2 2
1 2 1 1 2 2 2 1 2

1 1,
2 2

u u k u k u Pu u u = + − + −   (4.3) 

The new term comprises an additional DOF λ, with physical and dimensional correspondence 

to a fictitious force, multiplied by the kinematic constraint function ( )1 2,g u u . Despite the 

approach introducing an extra unknown to the system, it provides an elegant and systematic 

methodology for solving the constrained equilibrium problem, without necessitating the 

implementation of complex transformations or parametrisation of the constraint functions.  
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As discussed in Section 2.3, the augmented LM formulation introduces an additional term to 

the Lagrangian function, referred to as penalty term, which is related to the constraint function 

to a 2nd order. The penalty term introduced herein physically corresponds to a fictitious elastic 

spring of stiffness ε introduced between (1)  and (2) , with deformation equal to their relative 

deformation, which is given by the constraint function. This leads to the following final form: 

( ) ( ) ( )
22 2

1 2 1 1 2 2 2 1 2 1 2
1 1 1,
2 2 2

u u k u k u Pu u u u u  = + − + − + −   (4.4) 

First order differentiation of Eq. (4.4) with respect to the kinematic DOFs ( 1u , 2u ) and the 

Lagrangian Multiplier λ, treated as an additional DOF, yields the system forces associated with 

each DOF. Equating the obtained expressions to zero for extrema identification leads to the 

following system of equilibrium equations, describing the minimum energy state of the coupled 

system subject to the kinematic constraint in Eq, (4.2): 

( )

( )

1
1 1 1 2

2 2 1 2
2

1 2

0
0

0 0 0

u k u u u
k u P u u

u
u u

 

 



 
 
  −      
         

= − + − + − − =         
         −       

 
 

              (4.5) 

As shown in Eq. (4.5), the force vector of the system consists of three component vectors, 

corresponding to the spring, the LM and the penalty terms, respectively. Subsequent 

differentiation of the obtained force vector with respect to the kinematic and additional DOFs, 

allows for the determination of a consistent tangent stiffness matrix, with respective 

contributions from each of these components. Evidently, the LM term contribution extends to 

both the kinematic and additional DOFs, while the penalty term vanishes upon differentiation 

with respect to the additional DOFs.  

Due to the system equilibrium being formulated in a discrete form, the contribution of the 

introduced LM and penalty coupling terms can be effectively accounted for by means of the 

corresponding force vector and tangent stiffness matrix component assembly to the global 

system of equations. Despite the coupling terms not being associated with material and 

mechanical properties, the incorporation of their contribution in a discrete manner via assembly 

naturally leads to the concept of a coupling element. In the simplified mechanical model at 
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hand, the coupling element comprises a set of DOFs associated with the coupling interface c  , 

including both the kinematic DOFs ( )1 2,u u  and the additional DOF λ, corresponding to the 

unknown value of the introduced LM.  

The systematic mathematical treatment of kinematic constraints in discrete systems by 

employment of coupling elements is achieved on the basis of the following procedure: (i) 

establishment of the coupling term contributions to the total potential energy function of the 

system, accounting for both the LM and penalty term contributions; (ii) differentiation of these 

energy terms with respect to the set of kinematic and additional DOFs once, or equivalently 

application of 1st order variational principles, to obtain the coupling element internal force 

vector; (iii) differentiation of the energy terms twice with respect to the same parameters, or 

equivalently application of 2nd order variational principles, to obtain the consistent tangent 

stiffness matrix of the coupling element; (iv) assembly of the coupling element force vector 

and tangent stiffness matrix to the global force vector and tangent stiffness matrix of the 

system; and (v) solution of the system of equations to obtain the values of the unknown LMs 

and kinematic DOFs, which lead to an equilibrium state compatible with the imposed 

constraints. 

For the simplified mechanical model of the two springs, the coupling element contribution to 

the system total potential energy is given by the following expression: 

( ) ( ) ( )
2

1 2 1 2 1 2
1,
2

u u u u u u  = − + −    (4.6) 

which in turn allows for the following expressions for the coupling force vector ef  and tangent 

stiffness matrix ek  to be obtained, by virtue of 1st and 2nd order differentiation, respectively: 

( )

( )

1
1 2 1

e 1 2 2
2

1 2 0 a

u u u f
u u f

u
u u f

 

 



 
 
  −    
       

= = − + − − =       
       −     

 
 

f   (4.7)           
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2 2 2
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k   (4.8) 

The discrete equilibrium at the coupling element level can thus be stated as: 

1 11 12 1 1

e e 2 21 22 2 2

1 2a

f k k k u
f k k k u
f k k k





   

     
    

=  =     
         

f k u    (4.9) 

It can easily be inferred from Eq. (4.7) that the LM term introduces a couple of opposing forces 

1f  and 2f  with values equal to the unknown LM λ in the direction of the kinematic DOFs, to 

enforce the kinematic constraint on the springs system. This confirms the physical and 

dimensional correspondence of LMs to forces in the case of translational coupling, as discussed 

earlier. The penalty term contribution to the system is also a couple of opposing forces on the 

two springs, albeit these vanish with the kinematic constraint fulfilment, and thus have no effect 

whatsoever on the obtained solution. 

In the case of translational coupling, the stiffness contribution of the LM term is limited to the 

additional DOF, thereby leading to a sparse matrix form, as indicated by Eq. (4.8).  The penalty 

term prominent contribution is the introduction of non-zero terms along the main diagonal of 

the tangent stiffness matrix. This is particularly crucial in large-scale multi-DOF systems where 

solvers that eliminate individual parameter using their corresponding equations, i.e. without 

performing row-switching, are employed, such as the frontal solver (Irons, 1970). Such solvers 

require non-zero pivots along the diagonals, and hence if one of the springs in this case, or one 

of the coupled substructures in large-scale systems, is unrestrained or associated with zero 

stiffness, then a penalty parameter would be the only way to eliminate the kinematic DOFs, 

after which the LM parameters can be eliminated. The penalty parameter therefore ensures that 

ill-conditioning of large-scale coupled nonlinear equilibrium equation systems, as well as 

potential convergence bottlenecks in the numerical solution of such systems, are avoided. This 

will also be discussed at a later point, in Section 4.6.  
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From Eqs. (4.7) and (4.8) it is evident that the extended system of equilibrium equations for 

the springs system, associated with both the kinematic and additional DOFs, is mixed-

dimensional, i.e. comprising both force and displacement terms. In particular, its solution leads 

to a LM in the displacement vector representing the set of coupling forces, while the force 

vector term af , associated with the additional DOF in Eq. (4.7), is dimensionally 

correspondent to a displacement. This term is responsible for introducing the kinematic 

constraint function of Eq. (4.2) to the system of equations, which is equal to zero when the 

constraint is enforced, thus guiding the solution towards a kinematically compatible 

equilibrium state.  

 

4.3 Problem description and basic notation 

The general setting of the coupling problem at hand considers two independent deformable 

surfaces, discretised with non-conforming shell FE meshes along a 1-D interface. For the 

coupling constraint enforcement in a discrete sense along the interface, an adaptation of the 

standard two-field mortar method (Fischer & Wriggers, 2005a; Puso, 2004) is employed herein, 

as discussed in Sub-section 2.3.2.5, leading to the development of a novel 1-D coupling 

element formulation.  

The mortar method involves the surface domain classification as mortar and non-mortar, also 

commonly referred to as master and slave, respectively, which will be the adopted terminology 

henceforth. The surface classification into master and slave controls the interface discretisation 

into coupling elements and the efficiency of the adopted integration scheme at the coupling 

element level, as will be thoroughly explained in the current section, as well as in Sub-sections 

4.5.2 and 4.7.3 at a later point of the present chapter. 

An embedded assumption in the developed coupling element formulation, which primarily 

deals with thin plates and shells, is the constraint enforcement at the shell surface mid-plane, 

thus ignoring cross-sectional deformation and eccentricity over the shell thickness. For 

moderately thick shells, the inaccuracies associated with the mid-plane approximation can be 

partially alleviated by defining the coupling interface at a distance from the shell surfaces, to 

account for their respective half-thicknesses, however this is not considered in the present 

work.  
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In the general problem setting, the coupled surfaces can be planar or curved and parallel or 

intersecting, the coupling interface can be straight or curved, while the shell element domain 

geometry can be regular or irregular. A systematic algorithmic treatment for surface coupling 

along a line, applicable to curved surfaces discretised with irregular elements and curved 

interface geometries, for any relative spatial orientation of these, is presented and discussed in 

detail in Section 4.5. 

To introduce the 1-D surface coupling problem and the adopted notation for the development 

of the coupling element formulation in a simple manner, the example system illustrated in 

Figure 4.2 is considered herein, comprising two parallel planar surfaces ( ) 3i  , (i=1,2), 

discretised with regular 9-noded quadrilateral shell elements and coupled along a straight 1-D 

interface c . Surfaces (1)  and (2)  are classified as slave and master, respectively, without 

loss of generality, and the discussion following this point will be based on this assumption. To 

avoid overuse of the term element, referring to both the coupling elements and the shell 

elements on the two surfaces, the latter will be referred to as FEs henceforth. 

The projection of c  on ( )i , henceforth denoted ( )i
c , traverses the respective discretised 

domains in an arbitrary orientation, intersecting the edges of a distinct set of FEs on each 

surface, as illustrated in Figure 4.2. This is the set of shell elements where the coupling 

constraint is enforced, henceforth referred to as active FEs of ( )i  and denoted as ( )i
j . The 

sub-domain of ( )i  including these will henceforth be referred to as its active domain and 

denoted as ( )i , with ( ) ( )
1

eini i
jj=

 =  , where ein  is  the number of active FEs on ( )i . 

The discretisation of c  into coupling elements is achieved by means of a progressive 

segmentation scheme. The progressive segmentation of c  can be performed on the basis of 

either the slave surface or both the master and slave surfaces, henceforth referred to as slave-

only and slave-master segmentation, respectively. The slave-only segmentation approach is 

adopted in the developed formulation, which is based on the intersection identification of the 

projection of c  on (1) , (1)
c ,  with the edges of the active slave FEs (1)

j ,  j=1,2,…, 1en , 

where in the example system 1 4en =  . The set of identified slave interface segments, henceforth 

denoted as (1)
cj , correspond to a set of segments on c , henceforth denoted as cj . Each 

segment is subsequently projected on (2)  as (2)
cj , and its intersections with a number of 
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active master FEs (2)
k , k=1,2,…, 2en , in the active subdomain (2)  are identified, where in 

the example system 2 4en = .  

The adoption of this segmentation strategy provides a systematic approach for the identification 

of all interacting couples of active master and slave FEs along c . Furthermore, it enables each 

segment cj , and accordingly (1)
cj , to be associated with a unique active slave FE (1)

j  on 

(1)  and a number of active master FEs (2)
k  on (2) , which varies in general amongst 

different segments. The coupling formulation can therefore be implemented in the form of a 

coupling element, comprising an active slave FE (1)
j , an associated active master FE (2)

k , 

and the corresponding slave segment (1)
cj  of c . The procedure is schematically illustrated in 

Figure 4.3 (a).  

The specified set of kinematic constraints are enforced at the coupling element level by virtue 

of a LM field λ . This is defined on the slave segment (1)
cj  in a continuous sense, via 

interpolation of the LM parameters defined at predetermined discrete locations on the segment, 

henceforth referred to as Collocation Points (CPs).  The concept is schematically illustrated in 

Figure 4.4. It should be noted that the definition of the LM field on cj  in Figure 4.4 is due to 

this being identical to (1)
cj  in the case of the example system, where parallel surfaces are 

considered and c  is defined in a continuous sense on the surface domains. In the general case, 

the LM field should always be defined on (1)
cj . Moreover, the notation adopted in the figure 

has been simplified on account of generality, in compliance with what is later discussed in Sub-

section 4.6.2.  

In the formulation developed and presented herein, consideration is given to two or three CPs 

per coupling interface segment, defined at the segment end-points and, optionally, at their mid-

point, leading to a linear or quadratic LM field interpolation, respectively. The limitation of the 

CP number is intended to avoid potential singularities in the nonlinear solution procedure of 

the coupled problem, arising from overly constrained coupling elements. The sharing of the 

CPs between adjacent segments leads to a piece-wise linear or quadratic continuous LM field 

along c , as graphically illustrated in Figure 4.3 (b), where ,  ,  x y z  are the interface local 

Cartesian coordinate axes.  
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The CPs and the associated LM vectors along a given segment are shared between the set of 

coupling elements associated with it. Hence, the constraint enforcement in a continuous sense 

along this segment achieves coupling of the unique slave and all master FEs associated with 

the respective set of coupling elements. The subsequent assembly of all coupling element 

contributions achieves surface coupling along the entirety of c .  

 

 

Figure 4.2: 1-D coupling of surfaces discretised with non-conforming shell finite element 

meshes and identification of active shell element subset on each surface 
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(a) 

 

(b) 

Figure 4.3: (a) Coupling interface segmentation and active shell element couple identification 

procedure, (b) 1-D coupling interface with piecewise linear (dashed line) and piecewise 

quadratic (continuous line) distribution of the Lagrangian Multiplier field 
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Figure 4.4: 1-D coupling element comprising two shell finite elements and a coupling 

interface segment 

The coupling element formulation developed in the context of the present research work deals 

with the cases of translational and rotational surface coupling. As will be thoroughly discussed 

in Chapter 5, both these kinematic constraints are expressed in terms of the translational 

displacement field of the coupled surfaces in the global Cartesian coordinate system. This is 

due to the rotational constraint being associated with the coupling of the surface slopes along 

the interface, which can be related to the surface global translations, rather than the rotations 

of the surface normals. Accordingly, all expressions presented hereafter, related to the 

displacement fields of the two surfaces and the shell FEs employed for their discretisation, will 

be limited to the translational components.  

In the case of continuous 1-D coupling between two deformable shell surfaces, the imposed 

constraint can be expressed as a function of the surface global displacement vector fields 
(1) (2)( , )u u  along c , similar to Eq. (4.2) for the simplified mechanical springs model. Each 
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component of the constraint vector function (1) (2)( , )g u u  corresponds to an imposed kinematic 

constraint and requires the introduction of an additional set of LM DOFs at the CPs for its 

effective enforcement. In the context of the developed translational and rotational coupling 

formulations, consideration is given to a maximum of four LM field components, achieving 

coupling of the three global translational displacement components, as well as the relative 

surface slope orientation transverse to the coupling interface.  

Before proceeding to the description of the systematic methodology for interface segmentation, 

coupling element identification and constraint enforcement in the general setting of the 1-D 

surface coupling problem, it is useful to define the coupling element kinematic and additional 

DOFs, as well as some useful expressions for the local geometry and LM field interpolation.  

 

4.4 Coupling element kinematic and additional DOFs 

The constraint enforcement at the coupling element level requires the establishment of the 

constraint vector function (1) (2)( , )g u u  along the associated segment projections on the slave 

and master shell FE domains. The displacement fields of (1)  and (2)  along the respective 

interface projections, (1) (2)( , )u u , are obtained by means of interpolation of the respective shell 

FE nodal kinematic DOFs. Therefore, the inclusion of both slave and master shell FE nodal 

DOFs in the coupling element formulation is necessitated. These will be henceforth referred to 

as the set of primary or kinematic DOFs of a coupling element, and denoted as (1)
eu  and (2)

eu .  

As discussed in the preceding section, the introduction of CPs along the interface segments 

shifts the focus from the continuous to the discrete, with a continuous LM field λ  being 

obtained via interpolation of the LM vectors evaluated at their discrete predetermined locations. 

Therefore, for the continuous constraint enforcement along the interface segment of a given 

coupling element, the LM vectors at two or three discrete CP locations are only required. These 

will henceforth be referred to as the additional DOFs of a coupling element and denoted as eλ  . 

As discussed earlier, the number of additional DOFs is dictated by the number of imposed 

constraints along the interface.  
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In the following two sections, the distinct isoparametric frameworks employed for the 

interpolation of the geometry and displacement field at the active shell FE domains, as well as 

of the geometry and LM field along the coupling segments, are presented. Special 

consideration is given to the translational and rotational coupling element formulations 

presented in Chapter 5, which achieve coupling of the global translational displacement field 

and the shell element slopes. A LM field ( )
T

X Y Z R   =λ  with four components is 

required to achieve coupling in this case, encompassing three LM force fields ( )
T

X Y Z    

along the (X,Y,Z) global Cartesian coordinate axes and single moment field R . The 

expressions presented in the following sections are derived along the lines of these 

considerations.  

 

 Shell element geometry and kinematics 

For any point along ( )i
c , located in the domain of an active shell FE on ( )i , the local and 

global coordinates, ( )
T( ) ( ) ( ) ( )i i i ix y z=x  and ( )

T( ) ( ) ( ) ( )i i i iX Y Z=X , in the undeformed 

and the current deformed configurations, as well as the global translational displacement field 

( )
T( ) ( ) ( ) ( )i i i iU V W=u , can be obtained by interpolation of the respective nodal quantities 

using polynomial shape functions. This leads to an isoparametric representation of the local 

and global geometry, as well as of the global displacement field, over the shell element domain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( , ) ( , )
im

i i i i i i i i i i
k k e

k

N   

=

= = = x x x N x       (4.10)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( , ) ( , )
im

i i i i i i i i i i
k k e

k

N   

=

= = = X X X N X       (4.11)

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1

( , )= ( , )
i

i
m

i i i i i i i i i i i
k k e

k

N   

=

= − = = u X X u u N u   (4.12) 

In the above expressions, 6 or 9im =  is the number of element nodes in the case of  triangular 

and quadrilateral quadratic shell elements considered herein; ( )( ) ( ),i i   are the natural 
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coordinates of the shell FE in the active domain ( )i ; ( )
T( ) ( ) ( ) ( )i i i i

k k k kx y z=x  and 

( )
T( ) ( ) ( ) ( )i i i i

k k k kX Y Z=X  are the local and global coordinate vectors of node k, 

respectively; ( )
T( ) ( ) ( ) ( )i i i i

k k k kU V W=u  is the global translation vector of node k;   

( )
T( ) ( ) ( ) ( )

1 2 i

i i i i
e m=x x x x  and ( )

T( ) ( ) ( ) ( )
1 2 i

i i i i
e m=X X X X are the shell element local 

and global nodal coordinates, respectively; ( )
T( ) ( ) ( ) ( )

1 2 i

i i i i
e m=u u u u are the shell element 

global nodal translations; and ( )iN  is a matrix containing the shell element shape functions, 

defined as follows for the interpolation of 3-D position vectors: 

( ) ( ) ( )
1 2

( ) ( ) ( ) ( )
1 2

( ) ( ) ( )
1 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

i

i

i i i
m

i i i i
m

i i i
m

N N N

N N N

N N N

 
 

=  
 
  

N   (4.13) 

The assumption of the shell elements becoming virtually flat with mesh refinement is adopted 

herein, which allows for the local shell element geometry to be approximated as planar. This 

is attributed to the definition of the local element coordinate system, where, as the mesh is 

refined, the local z-abscissae become negligible compared to the x- and y- abscissae. The 

isoparametric representation of the local geometry using only the set of planar coordinates, 

henceforth denoted as ( ) ( ) ( )( , )i i ix y=x , can be stated as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( , ) ( , )
im

i i i i i i i i i i
k k e

k

N   

=

= = = x x x N x   (4.14) 

where the matrix of shape functions ( )iN  employed for the interpolation of local planar 

quantities is given by the following expression: 

( ) ( ) ( )
( ) 1 2

( ) ( ) ( )
1 2

0 0 0
0 0 0

i i i
i mi

i i i
mi

N N N
N N N

 
=  
 

N   (4.15) 

The flat shell limit assumption with mesh refinement is particularly useful for the establishment 

of the rotational coupling element formulation discussed in detail in Chapter 5. 
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 Coupling interface segment geometry and LM field  

Based on the flat shell limit, or negligible shell out-of-flatness, assumption with mesh 

refinement, the interface segment out-of-straightness can also be considered negligible in the 

limit, thus enabling the approximation of the local geometry using a single local coordinate x  

along the segment longitudinal axis. An isoparametric representation is employed, allowing 

for the local and global coordinates, x  and T( )X Y Z=X , as well as the LM field  λ , to 

be obtained by interpolation of the respective quantities at the discrete CPs: 

1

( ) Φ ( )
m

k k e

k

x x x


 

=

= = =  φ x     (4.16) 

1

( ) Φ ( )
m

k k e

k



 

=

= =  = X X X Φ X     (4.17) 

k

1

( ) Φ ( )
m

k e

k



 

=

= =  = λ λ λ Φ λ       (4.18) 

In the above expressions, 2 or 3m =  is the number of CPs defined along the segment, for a 

linear or quadratic LM field, respectively;   is the natural coordinate along the segment; kx , 

( )
T

k k k kX Y Z=X  are the local and global coordinate vectors of CP k,, respectively; 

( )
T

k Xk Yk Zk Rk   =λ  is the LM field vector of CP k; ( )
T

1 2e mx x x


= x ,  

( )
T

1 2e m
=X X X X  and ( )

T

1 2e m
=λ λ λ λ  are the coupling segment local and 

global coordinates and LMs at the discrete CPs, respectively; and the matrices of LM shape 

functions φ  and Φ  are given by the following expressions: 

1Φ ... Φm
 =  φ      (4.19) 

1

1

1

1

Φ 0 0 0 ... Φ 0 0 0
0 Φ 0 0 ... 0 Φ 0 0
0 0 Φ 0 ... 0 0 Φ 0
0 0 0 Φ ... 0 0 0 Φ

m

m

m

m









 
 
 =
 
 
 

Φ     (4.20) 
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1

1

1

Φ 0 0 ... Φ 0 0
0 Φ 0 ... 0 Φ 0
0 0 Φ ... 0 0 Φ

m

m

m







 
 

=
 
  

Φ (4.21) 

where Eqs. (4.20) and (4.21) are employed for the LM field and global geometry interpolations, 

respectively. As will be discussed in Chapter 5, the translational and rotational coupling 

formulations have been developed independently, allowing for coupling of surface translations 

and rotations or translations only, where in the latter case ( )
T

X Y Z  =λ and the matrix

of shape functions in Eq. (4.21) is employed for the LM field interpolation in Eq. (4.18). 

The isoparametric mapping process for the shell element surfaces and the coupling interface 

segment is imperative for achieving an effective numerical integration of the coupling element 

force vector and tangent stiffness matrix, as discussed in detail in Sub-section 4.7.2.  

4.5 Systematic methodology for progressive segmentation of coupling 

interface and active element identification 

In the general setting of 1-D surface coupling with non-conforming FE meshes, involving 

planar, curved or folded surfaces discretised with irregular shell FEs and coupled along a 

straight or curved interface, the establishment of a systematic methodology for the coupling 

interface progressive segmentation requires a rigorous algorithmic process. This is attributed 

to the requirement of establishing distinct coordinate mapping parametric frameworks for the 

surface and interface domain geometric descriptions, as well as to the intrinsic complexity of 

the embedded geometric and intersection point search processes.  

A systematic methodology for the coupling interface discretisation into coupling elements 

encompasses: (i) the mathematical description of the coupled surfaces and the coupling 

interface geometry in a discrete sense; (ii) the active shell FE identification on each coupled 

surface based on the geometric progression of the interface projection in the respective domain, 

including the entry and exit points and the adjacent element identification for each active 

element; and (iii) the identification of distinct couples of master and slave shell FEs on the two 

surfaces interacting along each interface segment, and the establishment of a set of discrete 

coupling elements along the 1-D interface.  
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An advanced computational tool has been developed and implemented for this purpose, which 

provides an efficient strategy for the systematic treatment of the aforementioned processes. The 

progressive segmentation algorithm presented herein is applicable to planar, curved and folded 

surfaces, discretised with geometrically regular or irregular, isoparametric, 9-noded 

quadrilateral or 6-noded triangular, shell FEs and coupled along a straight or curved 1-D 

interface. The employment of the developed geometric algorithm in conjunction with the 

translational and rotational coupling element formulations presented in Chapter 5, allows for a 

systematic and consistent methodology to be established for discrete 1-D constraint 

enforcement between any two independently discretised deformable shell surfaces. The 

consideration of a broad and generic application framework in the development of the present 

methodology, as well as the coupling formulations presented in the next chapter, enables the 

straightforward upgrade of existing FE programs to incorporate coupling elements for any type 

of 2-D and 3-D FEs.  

The current section is divided into three sub-sections, which shed light on the mathematical 

and computational treatment of the three main geometric processes previously outlined. The 

notation introduced in Section 4.3 is adopted throughout. 

 

 Discrete geometric description of coupled surfaces and coupling interface  

The parametric framework for the discrete geometric description of the coupled deformable 

2-D surfaces ( )i  and the 1-D coupling interface c  is described herein. The framework is 

applicable to parallel and intersecting planar, curved and folded surfaces, as well as to straight 

and curved line interfaces. The interface is defined in an arbitrary orientation in the case of 

parallel surfaces, while being limited to the line of intersection in the case of intersecting non-

parallel surfaces.  

The discrete geometric description of the coupled surface is achieved in an approximate sense, 

by virtue of the shell FE mesh employed for their discretisation. The required data includes: (i) 

a grid of nodes with known coordinates in the global Cartesian coordinate system; and (ii) a 

set of FEs with well-defined connectivity, where each FE domain geometry is approximated 

via interpolation of the respective nodal coordinates.  
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The arrays of structural nodal coordinates and FE connectivity for the mesh of  surface ( )i , 

henceforth denoted as ( )iD  and ( )iE , respectively, are expressed in the following formats: 

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2

( ) ( ) ( )

( )
1

( )
2( )

( )

i i i

i i i

i i iDi n n nDi Di Di

i
D D D

i
D D Di

i
n D D D

D X Y Z

D X Y Z

D X Y Z

 
 
 

=  
 
 
  

D    (4.22) 

( ) ( ) ( ) ( )
1 11 12 1

( ) ( ) ( ) ( )
2 21 22 2( )

( ) ( ) ( ) ( )
1 2

i

i

Ei Ei Ei Ei i

i i i i
m

i i i i
mi

i i i i
n n n n m

E D D D

E D D D

E D D D

 
 
 

=  
 
 
 

E    (4.23) 

In the above expressions, ( )i
jD  ,(j=1,2,…, Din ), are the nodal IDs and ( )i

kE , (k=1,2,…, Ein ), are 

the FE IDs on the mesh of ( )i , with Din  and Ein  being the total number of nodes and FEs on 

the respective surface. Array ( )iD  includes the global Cartesian coordinates ( )( ) ( ) ( ), ,i i iDj Dj Dj
X Y Z  

of each node j on ( )i , while array ( )iE  includes the FE connectivity, where ( )
1

i
kD , ( )

2
i

kD ,…, 

( )
i

i
kmD  are the nodes of element k, with 6 or 9im =  for 6-noded triangular and 9-noded 

quadrilateral shell elements, respectively. A counter-clockwise sense is adopted for the nodal 

ordering in each FE, with the vertex nodes first, followed by the intermediate edge nodes, as 

well as the central node in the case of 9-noded shell FEs. 

For the coupling interface line geometric description in 3-D space, a piece-wise linear 

approximation can be employed, considering a sufficiently large number of linear sectors for 

an accurate approximation in the case of curved geometry. A sequence of interpolation points 

P  is defined along the interface, henceforth referred to as control points. These need not be 

defined on ( )i , and are expressed in the global Cartesian coordinate system as follows: 

0 0 0

1 1 1

0

1

P n n nP P P

P P P

P P P

n P P P

P X Y Z

P X Y Z

P X Y Z

 
 
 

=  
 
 
 

P    (4.24) 
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where ( ), ,
l l lP P PX Y Z  are the global coordinates of control point lP , (l=0,1,…, Pn ), 1Pn +  being 

the total number of control points along c . It should be clarified that the control points are 

generally different from the CPs. 

A set of linear sectors is defined in between each couple of adjacent control points, and a linear 

interpolation of their coordinates is employed for the interface geometry approximation along 

a given sector. It should be noted that the term linear sector is employed herein for the purpose 

of distinction with the linear segments of the coupling interface, where the constraint is 

enforced.  

It is also essential to define the constant orientation vector of each linear sector, which will 

subsequently be employed to guide the active shell FE identification process discussed in the 

following sub-section. These are given by the following expression: 

1 0

2 1

1

2

1P n nP P

P P

P P

n P P −

−  
   −  = =   
  

−     

X Xt
X Xt

t

t X X

    (4.25) 

The use of linear sectors provides a systematic and simplistic methodology of enhanced 

flexibility for the geometric description of c . The curved line geometry can be crudely 

approximated using a small number of appropriately defined control points outside of ( )i , 

while the interface projections ( )i
c  on ( )i  can still be accurately determined by employing a 

systematic projection algorithm developed for this purpose. This is particularly useful in the 

case of curved or folded surfaces, where the definition of c  on either of ( )i  is rendered 

cumbersome, necessitating the employment of a considerably large number of control points, 

with the additional constraint of defining these on ( )i .  

 

 Progressive segmentation of coupling interface and active shell FE identification 

The present section describes the strategy employed for the active shell FE identification on
( )i , based on the previously outlined discrete geometric description approach. This is based 
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on primarily establishing ( )i
c , and subsequently identifying the subset of ( )i

kE  whose domain 

( )i
k  or boundary is traversed by ( )i

c , henceforth denoted as ( )ie , with ( )i
ke  being the individual 

active shell FEs, (k=1,2,…, ein ). 

As discussed earlier, a piece-wise linear approximation is employed for the geometric 

description of c , using a set of control points which define a sequence of linear sectors with 

distinct orientation vectors, as given in Eqs. (4.24) and (4.25). The approximation of c  with 

control points defined outside ( )i  requires the employment of a projection algorithm for the 

establishment of its respective projection ( )i
c  in a continuous sense. The process outlined 

herein is based on the simultaneous progression along c  and ( )i
c , and the identification of 

the points of c  projecting on ( )i
c  along the edges of active elements. In practice, it is only 

required to identify: (i) the start and end points 0P  and 
PnP  of c  and their corresponding 

projections on ( )i
c , henceforth denoted ( )

0
iQ  and ( )

P

i
nQ , respectively; and (ii) the sequence of 

points ( )iR  along c , corresponding to entry or exit points ( )iS  of individual active elements 

( )i
ke  on ( )i

c .  

In the context of the developed active element identification strategy, four algorithmic 

processes are systematically employed, including: (i) a projection algorithm, which allows for 

the projection of a point with given global Cartesian coordinates on a curved shell FE surface 

described in a parametric form to be determined; (ii) a conditional projection algorithm, which 

allows for the point along a line in 3-D space and its corresponding projection on a curved shell 

FE surface described in a parametric form to be determined, subject to the condition that the 

latter lies on a given boundary of the surface domain; (iii) an adjacent element identification 

algorithm, which allows for the next active element in the direction of progression of ( )i
c  to 

be identified amongst a shortlist of candidate elements sharing a given node or edge; and (iv) 

an exit point identification algorithm, which allows for the intersection point of ( )i
c  in the 

direction of its progression with the boundary of a given active shell FE domain to be identified.  

The active element identification strategy is outlined in a step-wise fashion hereafter, while the 

individual algorithmic processes discussed above, referred to as AP1-AP4, respectively, are 

subsequently presented in Sub-sections 4.5.2.1 - 4.5.2.4. 
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___________________________________________________________________________ 

Step 1: Identification of coupling interface projection ( )i
c  entry element on the mesh of ( )i

The establishment of the coupling interface projection ( )i
c  progression over the domain of the 

respective coupled surface ( )i  primarily requires the identification of the entry shell element 

on the respective mesh, ( )
1

ie . The entry element can either be known a priori, in which case 

this step is skipped, or the employment of the search process described hereafter is necessitated 

for its identification.  

The search process aims at establishing a unique element ( )
1

ie  which fulfils two distinct criteria: 

(i) the starting point 0P  of c  has an active projection ( )
0

iQ  on its domain or boundary; and (ii) 

the orientation vector of c in the first linear sector traverses its domain. Criterion (i) can be 

fulfilled by multiple elements on ( )i , which is the case when ( )
0

iQ  lies on an edge or a node 

shared by multiple elements. Criterion (ii) is therefore employed to ensure that the search 

process is narrowed down to a unique element.  

Step 1.1: the distance of point 0P  from the centroid of all elements of surface ( )i  within a 

specified radius is evaluated and sorted in ascending order. The radius can be typically related 

to the maximum characteristic element size in the mesh.  

Step 1.2: Starting from the element with the smallest distance, AP1 is employed to establish 

whether 0P has an active projection on its domain. Three cases can be distinguished:  

i. ( )
0

iQ  lies well within the domain of a unique element ( )
1

ie . 

ii. ( )
0

iQ  coincides with a vertex node shared by multiple shell elements. 

iii. ( )
0

iQ coincides with a perimetric non-vertex node or lies along one of the edge 

boundaries of ( )
1

ie  in between vertex nodes, and is thus shared by a maximum of two 

adjacent elements. 
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Conversely to case (i), where the entry element ( )
1

ie  is well established and the search process 

is terminated, in cases (ii) and (iii) the orientation vector 1t  of the first linear sector is employed 

to guide the unique entry element identification process, using AP3. 

Step 2: Identification of exit point from active element 

At the system level, the process starts with the starting point 0P of c and its projection ( )
0

iQ

on the domain ( )
1

i  of the first active element ( )
1

ie on ( )i , which defines the starting point of 

( )i
c . Orientation vector 1t is employed as the trial vector for the respective exit point search 

process, leading to two trial points ( )
1

iR and ( )
1

iS on c and ( )i
c , respectively. If the

determined trial point ( )
1

iR  is located in a different linear sector, then the projection ( )
1

iQ  of 

control point 1P on the domain of ( )
1

ie  is established and a new search process is subsequently 

initiated from ( )
1

iQ  using orientation vector 2t . The procedure is repeated at the active element 

level, until a set of points ( )
1

iR and ( )
1

iS conforming with the selection of the linear sector and 

its respective orientation vector is successfully identified. 

For an active element ( )i
ke , (k=1,2,…, ein ), with entry point ( )

1
i

kS −  on ( )i
c , corresponding to 

the projection of a point ( )
1

i
kR −  along c , AP4 is employed for the exit point ( )i

kS and its

corresponding point ( )i
kR  identification on ( )i

c  and c , respectively, as well as for the exit 

edge/vertex identification. AP4 further enables the monitoring of transitions between different 

linear sectors of c , which is particularly important in cases where the entry and exit points 

are associated with different linear sectors. 

The process is repeated for all active elements along ( )i
c , until the end points 

PnP and ( )
P

i
nQ

on c  and ( )i
c  are reached, which allows for a distinct set of entry and exit points to be 

identified for each active element on the respective surface, as shown in Eq. (4.27). 

Step 3: Identification of adjacent active element 



Chapter 4: Surface Coupling along a 1-D Interface with Non-Conforming Meshes  
 

102 
 

Following the identification of the exit point edge/vertex on ( )i
ke , the adjacent active element 

( )
1

i
ke +  identification requires the distinguishing of two cases: 

i. The exit point coincides with a vertex node, which is shared by multiple elements in 

the most general context. These can be up to four for 9-noded quadrilateral and any 

number for 6-noded triangular shell elements. In this case, the element connectivity 

array ( )iE  given by Eq. (4.23) is scanned, in order for the elements sharing this vertex 

node to be identified. Subsequently, AP3 is employed for the identification of the 

unique element whose domain is traversed by ( )i
c , using the orientation vector of the 

corresponding linear sector, as established in Step 2. It should be noted that the search 

process can be narrowed down to the elements within a specified radius from ( )i
ke , in 

order for the process to be accelerated in large-scale meshes. 

ii. The exit point lies on an edge of ( )i
ke , in between vertex nodes, potentially coinciding 

with a perimetric non-vertex node. In this case, the element connectivity array ( )iE  

given by Eq. (4.23) is scanned, in order for the unique element sharing all three nodes 

or the non-vertex intermediate node of the respective edge to be identified.  

 

Step 4: Repetition of steps 2, 3 for k=2,3,…, ein  

Having identified ( )
1

i
ke + , the exit point ( )i

kS  of ( )i
ke  becomes the new entry point, and steps 2 

and 3 are repeated until one of the following process termination criteria is met: 

i. If the end point ( )
P

i
nQ  of ( )i

c  lies on surface ( )i , the process is terminated when this 

is reached. This can be either on the surface boundary, in which case it coincides with 

the exit point of the last active element ( )
ei

i
ne , or inside the surface domain, in which 

case it can be either on the boundary or within the domain of ( )
ei

i
ne . 

ii. If the end point ( )
P

i
nQ  of ( )i

c  is outside the domain of surface ( )i , the process is 

terminated when its boundary is reached by ( )i
c . 
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Step 5: Repetition of steps 1-4 for both coupled surfaces. 

The employment of the strategy outlined above for each individual coupled surface, yields as 

an output the subset of ein active shell elements ( )ie on each surface, alongside the sets of 

entry/exit points ( )iR and ( )iS on c and ( )i
c , respectively: 

( )
1

( )
2( )

( )
ei

i

i
i

i
n

e
e

e

 
 
 =
 
 
  

e (4.26) 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 0 0

( ) ( )
1 1( ) ( )

( ) ( )

,   

i i i i i i

i i i i i i

i i i i i iei ein n n n n nei ei ei ei ei ei

i i i
R R R S S S

i i
R R R S S Si i

i i
n nR R R S S S

R P X Y Z S Q X Y Z

R X Y Z S X Y Z

R X Y Z S X Y Z

  
 
 

= = 
 
 
  

R S

 
 
 
 
 
 
  

(4.27) 

Arrays ( )ie , ( )iR and ( )iS effectively allow for the segmentation of c and ( )i
c , which is 

essential for their discretisation with coupling elements. 

Step 6: Repetition of steps 1-5 for all coupling interfaces, if multiple interface specifications 

are defined within the context of the coupling problem  

4.5.2.1 Algorithmic Process 1 (AP1) - Projection algorithm 

The projection algorithm described herein enables the determination of the natural coordinates 

of a given point projection on a curved shell surface, when the point coordinates in the global 

Cartesian coordinate system are initially known. This is achieved by means of satisfying two 

orthogonality conditions, between the vector r, connecting the point and its projection, and 

two tangent to the surface vectors a  and a , along the planar axes ξ and η, evaluated at the
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projection location. This can be mathematically formulated in the system of equations given 

below: 

0
0





   
=   

   

r a
r a

(4.28) 

In the context of the 1-D surface coupling problem under consideration, r is defined as the unit 

vector connecting a given point P, with a fixed  natural coordinate   along a coupling interface 

segment or sector, to its trial projection Q on a given shell element surface, with natural 

coordinates ( , ) =ξ  in the respective natural coordinate system. Vector r can therefore be 

expressed as: 

( )
ˆ ˆ,  ( , )
ˆ e e  = = − =  − 
rr r Χ Χ Φ X N X
r

(4.29) 

The unit tangent vectors a and a in the direction of the orthogonal natural coordinate system 

axes of the curved shell surface at Q are given by the following expressions: 

,

ˆ
ˆ,  

ˆ e


  





= = = 



a Xa a N X
a

(4.30) 
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ˆ
ˆ,  

ˆ e


  





= = = 



a Xa a N X
a

(4.31) 

It should be noted that the superscript (i), i=1,2, referring to the coupled surfaces ( )i , is 

omitted in the derivations presented in the current section, on account of simplicity and 

generality. 

The projection point Q is determined in an iterative fashion using a Newton-Raphson 

procedure, within an acceptable tolerance 1 0  . The system of orthogonality conditions is 

formulated as a vector function G  as follows: 

1
1 1 2 1

2

0
,    and 

0
G

G G
G





 
     

= =        
      

r a
G

r a
(4.32) 
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The Newton-Raphson procedure leads to the following system of equations, upon Taylor 

expansion of G  to a 1st order and rearrangement: 

         ( )      

   ( )  

     

1 1 1
max

11

1 1

0, 0,1,...,k k k k k k k k
G G

k k k
G

k k k

k k+ + +

−
+

+ +

= +  − = +   = =

  = − 

 = + 

G G J ξ ξ G J ξ

ξ J G

ξ ξ ξ

(4.33) 

where      ( ),k k k
 =ξ and  k

GJ  correspond to the natural coordinate vector and the Jacobian 

matrix of vector function G  at iterative step k, with the latter being given by the following 

expression: 
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a a r a a a r aGJ
a a r a a a r aξ

(4.34) 

where { }k
a  and { }k

a  are the unit tangent vectors along ξ and η , as defined in Eqs. (4.30) and 

(4.31), and  k
a ,  k

a ,  k
a  and  k

a  are their derivatives, at iterative step k, which are 

given by the following expressions: 
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where the evaluation of the unit vector { }k
a and { }k

a  derivatives is based on the following 

expressions, which are presented here in their most general form for a unit vector a 1: 

( )
3

T

ˆ ˆ
ˆˆ

i

  

−    
=  = 

  

Ι a aa a a a
aa

   (4.41) 

( )
3

T

ˆ ˆ
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i

  

−    
=  = 

  

Ι a aa a a a
aa

   (4.42) 

The Newton-Raphson iterative procedure proceeds until the vector function G  converges 

within the desired tolerance 1 , which is set to 1e-8, while the maximum number of iterations 

maxk  is introduced to enhance the computational efficiency of the method in cases of diverging 

solutions.  

A stepwise description of the iterative procedure is given below, while the concept is 

schematically illustrated in Figure 4.5. 

__________________________________________________________________________ 

Step 1: Initialisation of natural coordinates vector of trial projection point {0}ξ : 

                                                 
1 The derivative of a normalised unit vector a  with respect to the non-normalised vector â  is evaluated as follows  

( )

3T T T

T T 2 2

T T
3 3 3T

3
2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
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 {0} =ξ 0   

Step 2: Evaluation of global coordinates vector, tangent vectors and tangent vector derivatives 

at initial trial projection point {0}ξ : 

          0 0 0 0 0{0} {0},  ,  ,  ,  ,  ,     X a a a a a a   

Step 3: Evaluation of {0}r ,  0G  and  0
GJ  for Newton-Raphson procedure at initial trial 

projection point {0}ξ . 

Step 4: While    
1 1 2 1 max( ) and ( ) and ( )k kG G k k     iterate through steps 4.1, 4.2 and 4.3, 

k=0,1,…,kmax: 

 ------------------------------------------------------------------------------------------------------ 

Step 4.1:  Evaluation of updated vector of natural coordinates at trial projection point 
{ 1}k+ξ : 

 ( )  
1

{ 1}  k kk
G

−
+  = − ξ J G  

{ 1} { } { 1}  k k k+ + = + ξ ξ ξ   

Step 4.2: Evaluation of updated global coordinates vector { 1}k+X , tangent vectors 
{ 1}k



+a ,  1k


+a  and tangent vector derivatives  1k


+a ,  1k


+a ,  1k


+a , 

 1k


+a  at trial projection point { 1}k+ξ  

 

Step 4.3: Evaluation of updated position vector  1k+r , vector function  1k+G  and 

Jacobian  1k
G

+J  at trial projection point { 1}k+ξ  

 ---------------------------------------------------------------------------------------------------- 

Step 5: Check projection point ξ  admissibility, in respect of it lying within the shell element 

boundaries within an acceptable tolerance 2 , which has been specified as 10-8: 
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• For 9-noded curved shell elements: 

2

2

  1.0+

  1.0+

 

 

 

 
 

• For 6-noded curved shell elements: 

2 2

2 2

2 2

  0 1.0+
  0 1.0+
  0 1.0+

  

  

   

 −  

 −  

 −  + 

  

__________________________________________________________________________ 

In the case of planar surfaces, the employment of the projection algorithm allows for a unique 

projection point to be identified on the surface, for any point in 3-D space. Conversely, in the 

case of curved surfaces with sufficiently large curvature or a closed domain, such as in the case 

of cylindrical vessels, a point is potentially associated with projections on multiple element 

domains where the orthogonality conditions stated in Eq. (4.32) are fulfilled. It is therefore 

essential to define the starting point 0P  of the coupling interface c  on, or at a sufficiently 

small distance from, the surface in this case, in order to ensure the uniqueness of the first active 

element ( )
1

ie  and the initiation of the segmentation process at the appropriate location on each 

surface mesh.   

 

Figure 4.5: Algorithmic Process 1 (AP1) – projection algorithm 
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4.5.2.2 Algorithmic Process 2 (AP2) - Conditional projection algorithm 

The projection algorithm outlined herein is an expansion of AP1, where the point P has a 

variable natural coordinate   along a coupling interface segment or sector, however it is 

known that its projection Q lies along a given boundary of a shell element domain.  

Similar to AP1, the identification of P and Q is achieved by means of satisfying two 

orthogonality conditions between the unit vector r  connecting these, as given by Eq. (4.29), 

and two tangent to the curved surface vectors a  and a  evaluated at Q, as given by Eqs. (4.30) 

and (4.31). However, the system of equations is now subject to a given linear constraint 

( , )g   , and is thus mathematically formulated as follows: 

0
0

( , ) 0g





 

   
   

 =   
   
   

r a
r a    (4.43) 

The conditional projection algorithmic process enables the determination of the natural 

coordinate   of point P along a given linear segment or sector of the coupling interface with 

orientation vector t , as well as the set of natural coordinates ( , )   of its projection Q on the 

shell element surface. The introduction of the constraint function ( , )g    enforces the triplet 

of coordinate parameters ( ), ,  =ξ  yielded as the solution of the above system to map into 

a set of points P and Q, where the latter lies on a specified shell element edge determined by 

the constraint function. The linear constraint function ( , )g    introduces the equation of an 

element edge in Eq. (4.43) , and it can therefore be expressed in the following general form, 

for both 9-noded quadrilateral and 6-noded triangular shell elements: 

* *( , ) ( )g g c   = = −    (4.44) 

where the following cases can be distinguished: 

• Vertical edges: * = , 1c =   for 9-noded and 0c =  for 6-noded elements 

• Horizontal edges: * = , 1c =   for 9-noded and 0c =  for 6-noded elements 

• Diagonal edges: *  = +  and 1c =  (for 6-noded elements only) 
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It should be noted that, similar to the preceding sub-section, the superscript (i=1,2) referring to 
( )i  is omitted in the derivations presented herein, on account of simplicity and generality.  

The projection is determined in an iterative fashion within an acceptable tolerance 1 0   using 

a Newton-Raphson procedure, where the system of orthogonality conditions is formulated as 

a vector function G  as follows: 

1

2 1 1 2 1 3 1

3

0
0 ,   ,  ,  
0( , )

G
G G G G
G g



   

 

    
    

= =          
     

    

r a
G r a   (4.45) 

The Newton-Raphson procedure leads to the system of equations described by Eq. (4.33), 

where in this case        ( ), ,k k k k
  =ξ  is the natural coordinate parameter vector, and the 

Jacobian matrix  k
GJ  of vector function G  at iterative step k is given by the following 

expression: 
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3 3 3
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G G G
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     −  +  −  +  
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ξ ξ
ξ ξ

ξ ξ

a a r a a a r a t a
GJ a a r a a a r a t a
ξ

 

  (4.46) 

where { }k
a , { }k

a  and  k
a ,  k

a ,  k
a ,  k

a  are the unit tangent vectors and their 

derivatives along the ξ and η axes at iterative step k, as given by Eqs. (4.35)-(4.40), t  is the 

orientation vector of the current linear sector or segment of c  and ,g  , ,g   are the derivatives 

of the constraint function with respect to ξ and η, respectively, which are given below for the 

3 cases distinguished in Eq. (4.44): 

• Vertical edges: *
, 1 = , *

, 0 =   

• Horizontal edges: *
, 0 =  , *

, 1 =   

• Diagonal edge: *
, 1 = , *

, 1 =   
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Similar to AP1, the Newton-Raphson iterative procedure is terminated upon convergence of 

the vector function G  within the desired tolerance 1 , which is set to 1e-8, while a maximum 

number of iterations maxk  is also introduced to avoid impacting the procedure computational 

efficiency in cases of diverging solutions.  

A stepwise description of the iterative procedure is given below, while the concept is 

schematically illustrated in Figure 4.6. 

__________________________________________________________________________ 

Step 1: Initialisation of natural coordinate parameter vector {0}ξ  of trial point {0}P  along the 

coupling interface sector and its respective projection {0}Q  along the given edge: 

 
{0} =ξ 0  

Step 2: Evaluation of global coordinate vectors of {0}P  and {0}Q , and tangent vectors and 

respective derivatives at {0}Q , at {0}ξ : 

 
         0 0 0 0 0{0} {0} {0}, ,  ,  ,  ,  ,  ,     X X a a a a a a  

Step 3: Evaluation of {0}r ,  0G and  0
GJ  for Newton-Raphson procedure at {0}ξ  

 

Step 4: While      
1 1 2 1 3 1 max( ) and ( ) and ( ) and ( )k k kG G G k k       iterate through steps 

4.1, 4.2 and 4.3, k=0,1,…,kmax 

 ------------------------------------------------------------------------------------------------------ 

Step 4.1:  Evaluation of updated vector of natural coordinates at trial projection point 
{ 1}k+ξ : 

 ( )  
1

{ 1}  k kk
G

−
+  = − ξ J G  

{ 1} { } { 1}  k k k+ + = + ξ ξ ξ   
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Step 4.2: Evaluation of updated global coordinates vectors { 1}k+X , { 1}k+X  tangent 

vectors { 1}k


+a ,  1k


+a  and tangent vector derivatives  1k


+a ,  1k


+a ,  1k


+a

,  1k


+a  at trial projection point { 1}k+ξ  

 

Step 4.3: Evaluation of updated position vector  1k+r , vector function  1k+G  and  

Jacobian  1k
G

+J  at trial projection point { 1}k+ξ  

 ---------------------------------------------------------------------------------------------------- 

Step 5: Check obtained solution point ξ  admissibility, in respect of it lying within the shell 

element boundaries and the interface sector or segment within an acceptable tolerance 2 , 

which has been specified as 10-8: 

 

• For 9-noded curved shell elements: 

2

2

  1.0+

  1.0+

 

 

 

 
 

• For 6-noded curved shell elements: 

2 2

2 2

2 2

  0 1.0+
  0 1.0+
  0 1.0+

  

  

   

 −  

 −  

 −  + 

  

• For the coupling interface sector or segment: 

  2  1.0+     

__________________________________________________________________________ 
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Figure 4.6: Algorithmic Process 2 (AP2) – conditional projection algorithm ( 1 =  ) 

 

4.5.2.3 Algorithmic Process 3 (AP3) – Adjacent active element identification 

The present section outlines the procedure employed for the classification of a shell element 

on the mesh of a surface as active in the following cases: (i) the starting point 0P   along the 

coupling interface c  is projected on the mesh of ( )i  on edges or nodes shared by multiple 

elements, and the unique entry element ( )
1

ie  needs to be identified; (ii) the exit point of the 

coupling interface projection ( )i
c  from the domain ( )i

k  of an active shell element ( )i
ke  

coincides with a vertex node along its boundary, and the unique adjacent active element ( )
1

i
ke +  

traversed by ( )i
c  needs to be identified. The process is schematically illustrated in Figure 4.7. 

In the succeeding mathematical formulation P denotes a point along a coupling interface 

segment or sector and Q denotes its projection on the domain of a candidate active shell element 

(e). The superscript (i=1,2), referring to the coupled surfaces, is omitted in the expressions 

presented henceforth, on account of simplicity and generality. The algorithmic process is 

outlined in a stepwise fashion hereafter: 
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__________________________________________________________________________ 

Step 1: Mapping of coupling interface sector/segment orientation vector t  to the local 

coordinate system of trial active element (e) 

The orientation vector t , corresponding to the coupling interface linear sector or segment 

where P lies, is expressed in the local Cartesian coordinate system of a candidate shell element 

(e) using the following transformation: 

( ) ( )e e= t Τ t    (4.47) 

where the rotational transformation matrix of element (e) is defined as: 

T( )
( ) ( )

i
e x y z e

 =  Τ c c c    (4.48) 

The triad of unit orientation vectors of the local coordinate system axes is defined using a co-

rotational approach, as earlier discussed in Chapter 3, for both 9-noded and 6-noded elements: 

13 24 13 24

13 24 13 24

12 1312

12 12 13

, ,     (9-noded)

, ,      (6-noded)

,

x y z x y

x z y x z

jk
jk jk k j

jk

− +
= = = 

− + 


 

= = =  
 





= = − 


c c c c
c c c c c

c c c c

v vv
c c c c c

v v v

v
c v X X

v

  (4.49) 

The assumption of negligible shell element out-of-flatness with mesh refinement, mentioned 

earlier in Sub-section 4.4.1, is embedded in all derivations presented henceforth. This allows 

for the out-of-plane abscissa z to be neglected, due to the planar abscissae (x,y) being 

sufficiently larger in comparison, and hence the coordinate transformation of Eq. (4.47) 

effectively maps t  as a local planar vector. The corresponding local planar vector of t  

expressed in the local coordinate system of element (e) is henceforth denoted as ( )et .  

Step 2: Evaluation of element boundary tangent vectors at Q 
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Two local element planar tangent vectors 1a  and 2a  are introduced at point Q, representing the 

tangent vectors of the closed element boundary curve oriented in the directions associated with 

clockwise and counter-clockwise circulation, respectively. Counter-clock-wise circulation 

defines the orientation of the positive local z semi-axis, in compliance with the nodal ordering 

specified in Sub-section 4.5.1. Vectors 1a  and 2a  are obtained by mapping two vectors 1α  and 

2α  defined in the element natural coordinate system to the element local Cartesian coordinate 

system. Two cases can be distinguished:  

i. If Q lies in between the vertex nodes of an edge, 1α  and 2α  are defined as the vectors 

connecting the mid-node of the edge with its vertex-nodes, and ( 1a , 2a ) are both 

tangent to the edge. 

ii. If Q coincides with an element vertex node, 1α  and 2α  are defined as the vectors 

connecting the vertex node and the mid-nodes of the two edges sharing it, and ( 1a , 2a  ) 

are tangent to the these edges.  

For the mapping of  1α  and 2α  into 1a  and 2a , the local element Jacobian for mapping between 

natural and planar local coordinates can be employed, on the basis of the negligible shell out-

of-flatness assumption mentioned earlier: 

( ) ,    =1,2j e j j= a j α    (4.50) 

where the local Jacobian is given by the following expression, as will be discussed in Sub-

section 4.7.2: 

( ) , ,e e e 
 =   j N x N x    (4.51) 

Step 3: Check if orientation vector t  lies within the tangent vectors at Q. 

Vectors 1n  and 2n , corresponding to the cross products of ( )et  with 1a  and 2a , are initially 

obtained: 

( ) ,    =1,2j j e j= n a t    (4.52) 
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The introduction of 1a  and 2a  effectively allows for two orientation boundaries for ( )et  to be 

established in the element local coordinate system x-y plane. Therefore, the classification of an 

element as active relies on assessing whether ( )et  lies in between 1a  and 2a , and is oriented 

towards the element domain. This is assessed based on the sign of the dot product of 1n  and 

2n . The following cases are distinguished: 

i. If  1 2 0 n n  the element is potentially active. In this case vectors 1n  and 2n  point in 

opposite directions, thereby indicating that ( )et  lies in between 1a  and 2a . The normal 

vector +n  corresponding to a counter-clockwise circulation of the shell element 

boundary, which coincides with the positive z- semi-axis orientation vector zc  when 

the assumption of negligible shell element out-of-flatness with mesh refinement is 

adopted, is employed for the element classification as active/inactive:  

• If 1 0+ n n  and 2 0+ n n , the element is active 

• If 1 0+ n n  and 2 0+ n n , the element is inactive 

ii. If  1 2 0 n n  the element is inactive. In this case vectors 1n  and 2n  point in the same 

direction, thereby indicating that ( )et  lies on the same side of 1a  and 2a . 

iii. If  1 2 0 =n n  either of or both 1n  and 2n  are 0, which indicates that ( )et  is parallel to 

either of or both 1a  and 2a . In this case a third vector 3a  must be defined to guide the 

assessment process. The distinction of two further cases can be made: 

• If j =n 0  and k n 0 , where  j, k = 1,2 and j≠k, then point Q is a vertex node 

of the shell element and ( )et  is parallel to ja . In this case, tangent vector 3a  is 

defined by mapping the direction of jα  at the edge mid-node. 

• If j k= =n n 0 , where j, k =1,2 and j≠k, then point Q lies on a shell element 

edge, in between its vertex nodes, and ( )et  is parallel to the tangent at point Q. 

In this case, tangent vector 3a  is defined at the node of the edge with the 

smallest distance to Q in the counter-clockwise direction, by mapping the 
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direction of jα  or kα , depending on which defines the orientation of ( )et  in the 

local system.  

The cross product 3 3 ( )e= n a t  is subsequently determined and used to guide the 

assessment of the element as active/inactive, alongside the normal vector +n . The 

following cases are distinguished: 

• If 3 =n 0  then the element edge is straight, and the coupling interface projection 

traverses it. In this case the element is classified as neutrally active.  

• If 3 n 0  then if 3 0+ n n  the element is active, while if 3 0+ n n  the 

element is inactive  

__________________________________________________________________________ 

 

 

Figure 4.7: Algorithmic Process 3 (AP3) – adjacent active element identification 
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4.5.2.4 Algorithmic Process 4 (AP4) – Active element exit point identification 

The present section outlines the process for the identification of the coupling interface 

projection ( )i
c  exit point from the domain ( )i

k  of an active shell element ( )i
ke . The exit point 

lies on the element boundary, with the exception of the last active element ( )
ei

i
ne , where the 

specified end point 
PnP  of the coupling interface can be potentially projected inside its domain. 

The process outlined herein is based on the simultaneous progression along c  and ( )i
c , and 

the identification of the points of c  projecting on shell element edges on ( )i . As earlier 

discussed, a piece-wise linear approximation is employed for the geometric description of c , 

using a set of control points defining a sequence of linear sectors with distinct orientation 

vectors, as show in Eqs. (4.24) and (4.25). One or more control points are potentially projected 

inside the domain of specific active elements on ( )i , which in turn requires the consideration 

of different linear sector orientation vectors for the entry and exit point identification in the 

same active element. The simultaneous progression along c  and ( )i
c  enables the monitoring 

of the transitions between the various sectors, thus allowing for the projection point search 

process to be readjusted using a different orientation vector when required.  

On account of simplicity, the set of entry and exit points on an active element will be denoted 

as ( 1R , 1S ) and ( 2R , 2S ) , respectively, and the trial orientation vector as t for the algorithmic 

process description following this point. The step-wise process outlined hereafter is employed 

to establish the exit point 2S  on ( )i
c from the domain of an active element (e) and its 

corresponding point 2R on c , for a given set of starting points ( 1R , 1S ) and a given trial 

orientation vector t , corresponding to a linear sector defined by control points 1P and 2P . The 

concept is schematically illustrated in Figure 4.8 

Step 1: Mapping of coupling interface sector orientation vector t  to the planar local coordinate 

system of active element (e) as ( )et
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The orientation vector t  is expressed in the planar local Cartesian coordinate system of an 

active element (e) as ( )et , using the coordinate transformation of Eq. (4.47) and the assumption 

of negligible shell surface out-of-flatness with mesh refinement, as earlier discussed in Sub-

section 4.5.2.3.  

Step 2: Establishment of relative nodal orientation vectors a  in the local coordinate system of 

active element (e). 

The vectors ja , (j=1,2,…,m), linking the starting point 1S  with the perimetric boundary nodes 

of element (e), where m=6 or 8 for 6-noded triangular and 9-noded quadrilateral curved shell 

elements, respectively, are given by the following expressions: 

1j j S= −a x x    (4.53) 

Step 3: Establishment of vectors ja  and ( )et  relative orientation in the local coordinate system 

of active element (e). 

The normal vectors jn  to the local shell element coordinate plane, defined as the cross products 

of ja  with ( )et , are evaluated: 

( )j j e= n a t     (4.54) 

The dot products of jn  with the unit vector +n  corresponding to a counter-clockwise 

circulation of the shell element boundary, which coincides with the positive z- semi-axis 

orientation vector zc  when the assumption of negligible shell element out-of-flatness with 

mesh refinement is adopted, are subsequently evaluated as follows: 

j jn += n n    (4.55) 

The sign of jn  indicates whether jn  is oriented in the direction of the positive or negative z- 

semi-axis, which in turn provides an indication of whether ja  is on the right or left side of ( )et  , 

respectively. 

Step 4: Identification of trial exit point 2S  
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The trial exit point 2S  is identified on the basis of one of the following distinct cases, where 

circular indexing has been adopted with *
1 1j jn n+ += , *

1 1j jn n− −=  for j m , *
1 1jn n+ =  for j m=

and *
1j mn n− =  for 1j = , where 1,2,...,j m= : 

i. If *
1 0j jn n +  , the exit point lies on the shell element boundary, in between nodes j and 

j+1, and the exit point coordinates are determined by employment of AP2. 

ii. If * *
1 1 0j jn n− +   and 0jn = , the exit point coincides with node j. A distinction should be 

made in this case for j being a vertex or non-vertex node, since this guides the search 

process for adjacent active elements on the surface mesh using AP3, as discussed 

earlier. 

iii. If *
1 0j jn n− = =  and *

1 0jn +  , which is the case if node j-1 is the entry point of the 

coupling interface projection to the shell element domain, then two further cases are 

identified: 

• If  *
1 0jn +  , the shell element geometry is irregular, and thus node j is the exit 

point from the element domain.  

• If  *
1 0jn + = , the shell element geometry is regular, and thus the coupling 

interface traverses the respective straight edge and exits the shell element 

domain through node j+1.  

Step 5: The vector linking the current trial exit point 2S  with control point 1P  at the start of the 

linear sector is defined in the global Cartesian coordinate system as follows: 

2 1S P= −r X X    (4.56) 

Vector r  is subsequently projected on the linear sector and its coordinate is normalised with 

the current interface linear sector length: 

L



=

r t
   (4.57) 

where the sector length ( )2 1

2

P PL = −X X . 
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The following cases are identified: 

i. If 1 =  then 2S  is the exit point from the element domain and 2R  can be obtained by 

linear interpolation in the current sector, if AP2 was not previously employed. 

ii. If 1   then 2S  corresponds to a point 2R  outside the current interface linear sector 

boundaries. Therefore, two more cases can be distinguished: 

• If the current interface sector is the last one, the process ends with the projection 

of the interface end point 
PnP  on the shell element domain as 

PnQ .  

• Otherwise, the process is repeated from Step 1, starting from the projection 2Q  

of control point 2P  on the element domain and using the orientation vector of 

the succeeding sector.  

__________________________________________________________________________ 

 

 

Figure 4.8: Algorithmic Process 4 (AP4) – active element exit point identification 
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 Coupling element identification 

Having previously identified the subset of active shell elements ( )ie  and the distinct sets of 

associated entry and exit points ( )iR  along c  and ( )iS  along ( )i
c , as shown in Eq. (4.27),  the 

coupled surfaces ( )i  are classified as slave and master. Without loss of generality, (1)  and 
(2)  are classified as slave and master, respectively, for the discussion following this point.  

The interface segmentation is performed based on the set of points ( )iS  on ( )i
c , corresponding 

to either the slave or both the slave and master surfaces, with each distinct couple being used 

as CPs at the ends of subsequent coupling segments. This leads to two distinct approaches, 

namely slave-only and slave-master interface segmentation, which have been considered in the 

development of the current methodology. 

The slave-only segmentation approach has been adopted for the development of the 

translational and rotational coupling element formulation and has been incorporated in the 

default coupling element modus operandi. This is due to the slave-master segmentation 

generally resulting in a greater number of CPs along ( )i
c , which potentially results in 

singularities in the coupled system tangent stiffness matrix, thus leading to convergence issues 

in the nonlinear solution procedure. The singularities arise in rare cases where the number of 

LMs at the CPs, introducing coupling constraints to the system, is greater than the number of 

unrestrained kinematic DOFs of the shell surfaces along c . This phenomenon is referred to 

as over-constraining. 

The interface progressive segmentation process, as well as the coupling element discretisation 

into coupling elements, are outlined in a step-wise fashion hereafter: 

Step 1: Establishment of coupling segments (1)
cj  and CPs along the coupling interface segment 

projection (1)
c  

The adoption of the slave-only segmentation approach allows for a sequence of segments (1)
cj  , 

j=1,2,…, 1en  to be defined on (1)
c , with corresponding segments cj  on c , based on the set 

of points (1)S  and (1)R , respectively, corresponding to the slave surface. The CPs at the ends 
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of each (1)
cj  are defined in the locations of the corresponding points (1)S , while for a quadratic 

LM field interpolation a third CP is introduced at the mid-point of (1)
cj . 

Step 2: Identification of slave and master active shell elements (1)
je  and (2)

ke  associated with 

each coupling interface segment (1)
cj  

Each slave segment (1)
cj  is associated with a unique active shell FE (1)

je  on the slave surface 

(1)  and one or more (2)
ke  on the master surface (2) , where k=1,2,…, 2en . The set of active 

FEs on (2)  associated with cj  corresponds to those traversed by the projection (2)
cj  of cj  

on (2)  .  

As discussed earlier, the projection of a segment on a surface in the present context only 

requires the projection of characteristic points, in this case points (1)R . As will be thoroughly 

discussed in Section 4.7, a Gaussian quadrature integration scheme has been adopted at the 

coupling element level, with the Gauss Points (GPs) being defined along the coupling segments 
(1)

cj . The efficiency of the above strategy can therefore be significantly enhanced, by 

establishing the set of master active FEs (2)
ke  associated with a given segment cj  based on 

the former having at least one active GP projection on their surface. This allows only for the 

master FEs required for the numerical integration of the coupling constraint along (1)
c  to be 

considered, thus excluding cases where a master FE (2)
ke  is intersected by a segment (2)

cj , but 

is inactive during the integration process.  

Step 3: Establishment of coupling elements jC  associated with each coupling interface 

segment (1)
cj  

The identification of the unique active slave FE (1)
je  and the set of active master FEs (2)

ke  

associated with (1)
cj  defines the set of interacting FEs on (1)  and (2)  along its length, where 

the constraint is enforced. Each distinct couple of (1)
je  and (2)

ke  defines a new coupling element 

associated with (1)
cj , henceforth denoted as jkC , comprising the shell FE surfaces (1)

j  of 

(1)
je  and (2)

k  of (2)
ke  and the associated kinematic nodal DOFs, alongside the slave segment 
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(1)
cj  and the associated additional DOFs. The set of coupling elements defined along (1)

c  are 

henceforth denoted as C , with the respective set associated with a specific (1)
cj  denoted as 

jC . C  and jC  are effectively the coupling element connectivity matrices, encompassing the 

slave and master shell FEs associated with each coupling element.  

As discussed earlier, the continuous LM field, obtained via interpolation of the LM vectors at 

the CPs defined along (1)
cj , is responsible for enforcing the constraint on all associated jkC , 

which share the same slave shell FE and CPs. All jkC  associated with (1)
cj  therefore share the 

kinematic nodal DOFs of (1)
je , as well as the additional DOFs defined at the respective CPs. 

 

4.6 Coupling element formulation 

As discussed previously, the classification of the coupled surfaces ( )i  into master and slave 

guides the progressive segmentation of c , which is performed based on its projection (1)
c  

on the slave surface. The constraint is subsequently enforced along individual coupling 

segments (1)
cj , where a set of LMs is introduced at the respective CPs.   

The discrete coupling constraint enforcement in a continuous sense along (1)
c , by virtue of a 

LM field, requires the mathematical derivation of the force vector and consistent tangent 

stiffness matrix expressions for coupling elements C , and their subsequent assembly in the 

corresponding global quantities of the coupled system. Similar to the discussion in Section 4.2 

for the simplified mechanical springs model, the expressions of the coupling element force 

vector and tangent stiffness matrix for a given constraint (1) (2)( , )g u u  are obtained by 

establishing the expression of its contribution to the system total potential energy, and 

subsequently employing variational principles. The evaluation and assembly of the distinct 

coupling element jkC  contributions to the system global force vector and tangent system 

matrix, allows for an extended nonlinear system of coupled static or dynamic equilibrium 

equations to be obtained, where the primary and secondary unknowns are the kinematic and 

additional DOFs, respectively (Wriggers, 2006).  
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The solution of the extended equation system yields a set of nodal displacement values for the 

active shell elements (1)e  and (2)e  on (1)  and (2) , which satisfies equilibrium for a given set 

of essential and natural boundary conditions, while also fulfilling the desired set of kinematic 

constraint in a weak sense along (1)
c . This is achieved by means of the LM vector components 

obtained at the CPs via the solution of the extended equation system, in its part associated with 

the additional DOFs, and their subsequent interpolation between consecutive distinct segments 
(1)

cj  in a piece-wise fashion. 

 

 Coupling interface contribution to total potential energy 

The contribution of (1)
c  to the total potential energy of the coupled system is introduced by 

means of a two-field Lagrangian functional, in accordance with the Augmented LM 

formulation presented in Sub-section 2.3.1.3: 

(1) (1)

(1) (2) (1) 2 (1) (2) (1)1( , ) dΓ  + ( , ) dΓ  , 0
2

c c

c c 

 

 =   λ g u u g u u   (4.58) 

where λ  is the LM vector field defined along (1)
c , (1) (2)( , )g u u  is the imposed kinematic 

constraint vector function expressed in terms of the displacement fields ( (1) (2),u u ) of the slave 

and master active shell elements (1)e  and (2)e , and  +  is a non-negative penalty parameter. 

It should be noted that since g is a vector function, the following holds: 

22 (1) (2) (1) (2) (1) (2) (1) (2)( , ) = ( , ) ( , ) = ( , ) g u u g u u g u u g u u  

The first term of Eq. (4.58) represents the work done by the LM field over the kinematic 

constraint, which highlights the physical and dimensional correspondence of the former to a 

fictitious field of internal forces or moments. The second term is a penalty regularisation 

introduced to avoid zero diagonal terms in the part of the stiffness matrix associated with the 

nodal DOFs, which can be undesirable depending on the adopted procedure for solving the 

system of simultaneous equations, as discussed in Section 4.2. This is particularly important in 

cases where one of the coupled surfaces is unrestrained against rigid body motion and solvers 

that do not perform row-switching operations are employed for the solution of the system of 
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equations. In such cases, the elimination of the associated nodal DOFs using the corresponding 

equilibrium equations would not be possible without the use of a penalty stiffness parameter, 

which introduces non-zero pivots in the associated part of the tangent stiffness matrix. 

As discussed earlier and confirmed here by virtue of dimensional correspondence, the LM 

vector field λ  comprises an identical amount of components to the kinematic constraint 

function (1) (2)( , )g u u , with each component of λ  being responsible for enforcing the constraint 

expressed by the corresponding term of (1) (2)( , )g u u .  

The discretisation of c  into a set of distinct coupling elements jkC , in accordance with the 

systematic methodology outlined in Section 4.5, allows for Eq. (4.58) to be written in the 

following discrete form : 

(1) (1)

(1) (2) (1) 2 (1) (2) (1)

1 Γ Γ

1( , ) dΓ  + ( , ) dΓ  , 0
2

C

cj cj

n

c c

j

 

=

 
  =  
  
 

  λ g u u g u u   (4.59) 

where (1)
cj  is the domain of the slave coupling segment associated with jkC  and Cn  is the 

total number of coupling elements along c . 

 

 Coupling element formulation notation 

The focus is henceforth shifted from the coupled system to the individual coupling element. A 

simpler notation is adopted for simplicity of the presented formulation and the derived 

expressions. Subscripts j, k referring to individual coupling elements jkC  are omitted, along 

with the superscripts referring to projections of the coupling segments cj  on the coupled 

surfaces (1) (2),    .  

c , previously referring to the entirety of the coupling interface, will henceforth be used 

instead of (1)
cj  for reference to the individual coupling element interface segment, 

corresponding to the projection of the associated segment cj  on the associated active slave 

shell element domain (1)
j .  Accordingly, (1)

c c    and (2)
c  denote the projection of c  onto 
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the slave and master active shell element domains, henceforth denoted as (1)  and (2)  instead 

of (1)
j  and (2)

k .  

The new notation effectively corresponds to the simplest setting of the discrete 1-D surface 

coupling problem, comprising a single coupling element, where the slave and master surfaces
(1)  and (2)  are discretised with a single shell element each, and are coupled along a 1-D 

interface c  defined onto or parallel to (1) . In this system, the active slave and master 

domains (1)  and (2)  effectively degenerate into the respective shell element domains, while 

c  comprises a single coupling segment, coinciding with its projection (1)
c  on (1) . The 

single coupling element defined therefore comprises (1)  and (2)  as its active slave and master 

shell FE domains, alongside c  as its coupling segment.  

Henceforth, all references to the surface coupling problem are made with reference to the 

individual coupling elements employed for the interface discretisation, and the notation 

discussed here is adopted. 

 

 Coupling element contribution to total potential energy 

The expression of a single coupling element contribution to the total potential energy of the 

system can be obtained from Eq. (4.59), where the adoption of the notation outlined in the 

preceding sub-section allows for the corresponding expression to be written as follows: 

(1) (2) 2 (1) (2)

Γ Γ

1( , ) dΓ  + ( , ) dΓ , 0
2

c c

e c c   =  + =   λ g u u g u u   (4.60) 

At the coupling element level, the constraint function (1) (2)( , )g u u  along c  can be expressed 

in terms of the coupling element kinematic DOFs ( )i
eu , corresponding to the global nodal 

DOFs of ( )i : 

(1) (2) (1) (2)( , ) ( , ) = ( )e e e=g u u g u u g u    (4.61) 

where ( )
T(1) (2)

e e e=u u u .  
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The LM field λ  along c  can be expressed in terms of the additional DOFs eλ  as discussed 

in Sub-section 4.4.2: 

e=λ Φ λ    (4.62) 

where Φ  is the matrix of LM shape functions, comprising a number of rows equal to the 

number of LM vector components at the CPs.  

Using Eqs. (4.61) and (4.62), Eq. (4.60) can be expressed in terms of ( )
T(1) (2)

e e e=u u u  and 

eλ  in the following form: 

T 2

Γ Γ

1( , ) ( ) ( )  dΓ  + ( ) dΓ , 0
2

c c

e e e e e e c e c   =  + =    u λ u g u Φ λ g u   (4.63) 

The coupling element force vector and tangent stiffness matrix are obtained from the above 

expression of the coupling element total potential energy contribution using variational 

principles, as elaborated in Sub-sections 4.6.4 and 4.6.5. The concept is qualitatively identical 

to the simple case of the coupled springs system presented in Section 4.2. 

 

 Coupling element force vector 

The coupling element force vector ef  is obtained in an explicit manner by considering the 1st 

order variation of the total potential energy function e  with respect to the kinematic and 

additional DOFs ( )
T(1) (2)

e e e=u u u  and eλ . 

The 1st order variation of e  with respect to the kinematic DOFs ( )
T(1) (2)

e e e=u u u , which 

expresses the virtual work performed by the LM field λ  over an admissible infinitesimal 

deformation mode δ eu , yields: 

T T
T T

Γ Γ

( ) ( )
δ δ δ  dΓ ( ) dΓ  e

c c

e e e
e e e e c e c

e e e


 

    =  =    + 
   
 

 
u g u g u

u u Φ λ g u
u u u

  (4.64) 



Chapter 4: Surface Coupling along a 1-D Interface with Non-Conforming Meshes  
 

129 
 

The variation of  e   with respect to the additional DOFs eλ  yields the discrete form of the 

constraint enforcement equation, for an admissible LM field along the coupling segment 

obtained by a corresponding variation δ eλ  at the CPs: 

T T T

Γ

δ δ δ ( ) dΓ 0e

c

e
e e e e c

e


 =  =  +

 
λ λ λ Φ g u

λ
  (4.65) 

where the optional penalty regularisation term vanishes, since it is only dependent on

( )
T(1) (2)

e e e=u u u . 

The coupling element force vector can be expressed in the following general form: 

, ,
e e

g g ae a
e e

 



  
= = +

 
f f ff f

u λ
  (4.66) 

where the expressions of the internal force vector components gf  and af  associated with 

( )
T(1) (2)

e e e=u u u  and eλ , respectively, and their corresponding optional penalty 

regularisation terms ,g f  and ,a f  can be explicitly obtained from Eqs. (4.64) and (4.65), as 

given hereafter: 

Γ

( )
dΓ

c

e
g e c

e


=  


g u

f Φ λ
u

   (4.67) 

,

Γ

( )
( ) dΓ

c

e
g e c

e
 


= 


g u

f g u
u

   (4.68) 

T

Γ

( ) dΓ
c

a e c= f Φ g u    (4.69) 

,a  =f 0    (4.70) 
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 Coupling element tangent stiffness matrix 

The coupling element tangent stiffness matrix ek  is also obtained explicitly by considering the 

2nd order variation of the total potential energy function e  for admissible infinitesimal 

deformation modes δ eu  and variations δ eλ  of the LM field along cΓ . The four 2nd order energy 

variations are given below: 

2
,2 T

T

2 T 2 T T
T

T T T

Γ Γ

δ δ δ

( ) ( ) ( ) ( )
δ dΓ ( ) dΓ δ

e e

c c

e
e e e

e e

e e e e
e e c e c e

ee e e e e



 
 =   =

 

 
    =    +  +  

     
 

 

u u u u
u u

g u g u g u g u
u Φ λ g u u

uu u u u u

  (4.71)  

2 T
,2 T T

T

Γ

( )
δ δ δ δ  dΓ δe e

c

e e
e e e e c e

ee e

 
    =   =   

  
 


u λ g u

u λ u Φ λ
uu λ

  (4.72) 

2
,2 T T T

T T

Γ

( )
δ δ δ δ dΓ δe e

c

e e
e e e e c e

e e e

 
    =   =   

   
 


λ u g u

λ u λ Φ u
λ u u

  (4.73) 

2
,2 T

Tδ δ δ 0e e e
e e e

e e

 
 =   =

 

λ λ λ λ
λ λ

   (4.74) 

The above procedure is equivalent to the differentiation once of the coupling element force 

vector ef  with respect to ( )
T(1) (2)

e e e=u u u  and eλ . Considering the prior distinction of the 

force vector components, the tangent stiffness matrix can be accordingly distinguished into 4 

principal component matrices, where the contribution of the penalty regularisation terms is 

considered separately for clarity: (i) ggk , which is associated with the interaction of

( )
T(1) (2)

e e e=u u u ; (ii) gak  and agk , which are associated with the interaction of 

( )
T(1) (2)

e e e=u u u  and eλ ; and (iii) aak , which is associated with the interaction of eλ . This 

leads to the following general form for the tangent stiffness matrix ek : 
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2 2

T T
, ,

T T2 2
, ,

T T

e e

gg ga gg gae e e e e e
e

ag aa ag aae ee e

e e e e

 

 

    
 
          = = = +                
 
     

k k k ku u u λ f f
k

k k k ku λ
λ u λ λ

(4.75) 

where the component submatrices are given by the following expressions: 

2 T

T

Γ

( )
dΓ

c

e
gg e c

e e


=  

 
g u

k Φ λ
u u

(4.76) 

2 T T

, T T

Γ

( ) ( ) ( )
( ) dΓ

c

e e e
gg e c

ee e e
 

   
=  +  

   


g u g u g u
k g u

uu u u
(4.77) 

T
T

Γ

( )
dΓ

c

e
ga ag c

e


= = 


g u

k k Φ
u

(4.78) 

T
, ,ga ag = =k k 0 (4.79) 

aa =k 0 (4.80) 

,aa  =k 0 (4.81) 

4.7 Numerical integration scheme 

Gaussian quadrature integration scheme 

The integrals in the expressions of the force vector and tangent stiffness matrix derived in 

Section 4.6 are numerically evaluated employing Gaussian quadrature. The Gaussian 

quadrature rule allows for the approximation of the exact value of a function integral, by means 

of a weighted sum of the function values at specified GP abscissae. The number of employed 

GPs defines the order of the Gaussian quadrature rule, with an increased order leading to 

enhanced approximation accuracy. For a univariate integrand function ( )f x  defined in the

interval [-1,1], the mth-order Gaussian quadrature rule is expressed in the following form: 
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( ) ( )
1

11

d
m

p p

p

f x x w f x
=−

 (4.82) 

where [-1,1]px   is the abscissa of GP p and pw is the corresponding weighting factor, with 

1

2
m

p

p

w
=

= for integration in 1 dimension. 

The GP abscissae and associated weights for the mth-order Gaussian quadrature rule have been 

optimally established to minimise the integration error. The abscissae px correspond to the m 

roots of the orthogonal to the integrand function mth-order Legendre polynomials ( )mP x , while 

the corresponding weights are given by the following expression (Abramowitz & Stegun, 

1964): 

( ) ( )
22 '

2

1
p

p m p

w
x P x

=
−

(4.83) 

where ( )'
m pP x  denotes the value of the mth-order Legendre polynomial derivative at root px .  

It should be noted that the employment of the mth-order Gaussian quadrature rule allows for 

the exact integration of polynomial functions of order up to 2m-1. This is an important accuracy 

consideration for the developed coupling element formulation, where the integrand functions 

are conditionally polynomial. 

Coordinate mapping 

As earlier discussed in Section 4.6, the integrand functions of the coupling element force vector 

and tangent stiffness matrix components are related to the kinematic constraint function 
(1) (2)( , )g u u and the LM vector field λ defined along the associated segment c . The 

employment of the discrete isoparametric frameworks discussed in Sub-sections 4.4.1 and 

4.4.2 enables these to be expressed in the respective natural coordinate systems, using 

polynomial shape functions, which involves a mapping process from the respective natural 

coordinate system to the local or global Cartesian coordinate system.  
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The integration at the coupling element level is performed along the interface segment, in its 

natural coordinate system, and hence due account of the geometric change effect in real 

coordinates with respect to natural coordinates must be taken. This is achieved by means of 

the Jacobian associated with the respective mapping.  

Beyond defining the Jacobian of the mapping at the interface segment level, which is essential 

for the integration procedures presented in the forthcoming sub-section, it is also useful to 

define the Jacobian of the shell FE geometry and displacement field mapping at this point, 

which is employed in the coupling formulations presented in Chapter 5.  

Ιn the case of curved shell FEs, both local and global Jacobians are (3x2) matrices expressing 

the rate of change of ( ) ( ) ( ) ( )( , , )i i i ix y z=x  and ( ) ( ) ( ) ( )( , , )i i i iX Y Z=X  with respect to ( ) ( )( , )i i   , 

as given by the following expressions: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, ,( ) ( )
1 1

( , ) ( , )( , )

( , ) ( , )i i

i i i i i i
i i i

i i

m mi i i i i i
i i i i i ik k

k k e ei i
k k

N N
 

   
 

 

   

 
= =

  
= = 

  

  
 = =        

 

x xj

x x N x N x
  (4.84) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, ,( ) ( )
1 1

( , ) ( , )( , )

( , ) ( , )i i

i i i i i i
i i i

i i

m mi i i i i i
i i i i i ik k

k k e ei i
k k

N N
 

   
 

 

   

 
= =

  
= = 

  

  
 = =        

 

X XJ

X X N X N X
  (4.85) 

where ( )
,
i
N  and ( )

,
i
N  are the derivatives of matrix ( )iN  in Eq. (4.13) with respect to ( )i  and 

( )i  . 

The adoption of the negligible shell element out-of-flatness with mesh refinement assumption, 

earlier discussed in Sub-sections 4.4.1 and 4.4.2, allows for the local shell element geometry 

to be approximated as planar. The local Jacobian expressing the rate of change of the planar 

local coordinates ( ) ( ) ( )( , )i i ix y=x  accordingly reduces to a 22 matrix, which is given by the 

following expression: 

( ) ( ) ( ) ( ) ( )
, ,

i i i i i
e e 

 =   j N x N x    (4.86) 



Chapter 4: Surface Coupling along a 1-D Interface with Non-Conforming Meshes  
 

134 
 

where ( ), i
N  and ( ), i

N  are the derivatives of matrix ( )iN  in Eq. (4.15) with respect to ( )i  and 

( )i . 

Based on the same assumption, the interface segment out-of-straightness can also be 

considered negligible in the limit with sufficient mesh refinement. The respective local 

Jacobian j  is therefore a scalar quantity and the global Jacobian a 31 vector, expressing the 

rate of change of x  and ( , , )X Y Z=X  with respect to the interface natural coordinate  . These 

are given by the following set of equations: 

,
1

Φ ( )( )( )
m

k
k e

k

dd xj x
d d








 
=

= = =  φ x    (4.87) 

,
1

Φ ( )( )( )
m

k
k e

k

dd
d d








 
=

= = = 
XJ X Φ X    (4.88) 

where 
,φ  and 

,Φ  are the derivatives of matrices φ  and Φ  in Eqs. (4.19) and (4.21) with 

respect to  .  The mapping between the natural coordinate system and the local Cartesian 

coordinate system of the shell element and the coupling interface segment domains is illustrated 

in Figure 4.9. 
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Local Cartesian Coordinate System Natural Coordinate System 

  

 

 

 

 

  
 

 

 

Figure 4.9: Coordinate mapping between the natural and Cartesian coordinate systems of the 

shell element domains and the 1-D coupling interface segments 
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 Gaussian integration at the coupling element level 

The integrand functions of the coupling element force vector and tangent stiffness matrix are 

expressed in terms of the three distinct sets of natural coordinates: (i) the slave element domain 
(1)  natural coordinates ( )(1) (1),  ; (ii) the master element domain (2)  natural coordinates 

( )(2) (2),  ; and (iii) the coupling element interface segment c  natural coordinate  . The 

integration is performed along c , with the corresponding integrals expressed in the following 

general form: 

( )(1) (1) (2) (2), , , , d
c

cf     



    (4.89)  

where [-1,1]  , while  ( ) ( ), [-1,1]i i    for 9-noded quadrilateral shell elements and

 ( ) ( ) ( ) ( ), [0,1]  |  0 1i i i i     +   for 6-noded triangular shell elements.  

The GPs are defined along c , and hence the respective natural coordinate axis is defined such 

that its origin 0 =  is located at the segment mid-point, with the segment end points abscissae 

being accordingly 1 =  . This allows for the individual GP abscissae p  to be defined in the 

interval [-1,1], for consistency with what has previously been discussed in Sub-section 4.7.1.  

The GPs are projected on (1)  and (2)  using the projection algorithm presented in 

Sub-section 4.5.2.1, which enables the direct evaluation of the projection coordinates 

( )( ) ( ),i i
p p   in the respective natural coordinate system, when the global Cartesian coordinates 

( )p pX  of the individual GPs are known. The establishment of an implicit relationship 

between   and ( )( ) ( ),i i   by virtue of the employed projection algorithm, enables for Eq. 

(4.89) to be expressed purely as a function of  . Accordingly, the incorporation of geometric 

change effects due to coordinate mapping in the respective integral is limited to the integration 

domain c , where the scalar local Jacobian j  can be used under the assumption of negligible 

shell element out-of-flatness and interface segment out-of-straightness. On the other hand, the 

effect of geometric change associated with (1)  and (2)  is readily accounted for in the 

projection algorithm.   
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Taking due account of the aforementioned considerations, Eq. (4.89) can be rewritten as: 

( )
1 1

(1) (1) (2) (2)

1 1

( )  ( ) d ( ),  ( ),  ( ),  ( ),    ( ) df j f j             

− −

=    (4.90) 

The integral is numerically evaluated using Gaussian quadrature: 

( )
1

(1) (1) (2) (2)

11

( )  ( ) d ( ),  ( ), ( ),  ( ),   ( ) 
m

p p p p p p p

p

f j w f j            

=−

    (4.91) 

where ( )(1) (1)( ),  ( )p p     and ( )(2) (2)( ),  ( )p p     are the natural coordinates of the 

projections of GP p, with natural coordinate p  along the interface, on the slave and master 

shell FE domains, respectively. 

Two distinct integration schemes have been considered in the coupling element formulation, 

namely segment-specific and element-specific, which are discussed separately in the following 

sub-sections. 

 

4.7.3.1 Segment-specific integration scheme 

The segment-specific integration scheme is based on the establishment of a unique set of GPs 

with fixed locations along the coupling segment length, which is employed for the integration 

of all associated coupling elements.  

As discussed in Sub-section 4.5.2, the employment of the slave-only progressive segmentation 

scheme leads to the association of a single active slave shell element with multiple active 

master ones along the same segment. Accordingly, the specification of a unique set of GPs 

along the segment results into this being projected in its entirety on the slave shell FE surface, 

but only partially on each of the associated master shell FEs. At the coupling element level, 

only the subset of GPs with active projections on both its slave and master shell FE surfaces is 

employed for the numerical integration of the corresponding force vector and tangent stiffness 

matrix, which will henceforth be referred to as active GPs.  
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This leads to reduced integration order at the coupling element level, in comparison with the 

specified along the segment, which, in turn, results in an inferior overall accuracy of the 

coupling formulation. The inactive GPs of a given coupling element can either have active 

projections on adjacent master shell elements or be projected outside of the master surface 

domain. In the former case the contribution of an inactive GP is accounted for in the integration 

of the coupling element associated with the adjacent master FE, while in the latter case it is 

neglected. If a GP is projected on a shared edge between two master elements, its weighting 

factor is shared in the integration of the respective coupling elements. 

The concept is schematically illustrated in Figure 4.10 for a coupled system encompassing two 

coupling elements, with a specified Gaussian quadrature rule of order 5 along the interface 

segment. As is evident in this example system, the unique set of GPs employed for the 

integration of both coupling elements, with fixed locations along the segment, are partially 

projected on the master surface shell FEs. 1 GP is projected outside the master surface, and 

hence a total of 4 GPs are employed for both coupling elements for a specified quadrature order 

of 5 along the segment.  

Due to the specification of the same integration segment for multiple coupling elements, the 

part of the integrand functions associated with the master FE surface are potentially defined as 

piece-wise polynomial along the segment. Gaussian quadrature is incapable of accurately 

integrating piece-wise polynomial functions, irrespective of the employed integration order, 

and hence the segment-specific integration scheme potentially does not achieve exact 

integration along the segment, even with a large number of GPs.  

These inaccuracies can be partially alleviated via the specification of a large quadrature order 

and the classification of the surface associated with the finer mesh as slave. This leads to 

smaller individual interface segment length, which allows for an overall greater number of GPs 

to be defined along the interface, as well as to an increased likelihood of active GP projection 

on master shell element domains of greater size. In the limit, with mesh refinement, the 

proposed treatment of GP contributions allows for adequate overall accuracy to be achieved 

along the interface, with a variable order of integration between different coupling elements, 

as will be discussed in more detail in Sub-section 5.5.5.2 of the coupling element patch tests.   
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4.7.3.2 Element-specific integration scheme 

The element-specific integration scheme is based on the establishment of multiple distinct, 

non-overlapping sets of GPs with the specified quadrature order along the segment, and the 

employment of each set for the integration of a unique associated coupling element.  

The set of GPs for each coupling element is defined on the sub-segment that fully projects on 

both associated slave and master shell FE surfaces, which thus renders all GPs active. This 

allows for integration with the specified quadrature order to be achieved for all coupling 

elements along the interface, hence leading to a superior overall accuracy of the coupling 

formulation in comparison with the segment-specific scheme, even with a much lower overall 

number of GPs along the coupling interface. Moreover, the specification of integration domains 

with full projections on both shell element surfaces allows for the effective overcoming of 

inaccuracies arising from the integrand functions being piece-wise polynomial, and exact 

integration can therefore be achieved with a small number of GPs. 

The concept is schematically illustrated in Figure 4.11 for the same coupled system shown in 

Figure 4.10. Contrary to the segment-based integration, a distinct set of 5 GPs is defined for 

each coupling element in this case, with the locations of the GPs changing to conform with the 

boundaries of the two subsegments shared by the slave and the distinct master shell elements. 

Each set of GPs is thus projected entirely on each shell FE surface, and hence a total of 10 GPs 

along the segment are employed for the integration of both coupling elements, for a specified 

quadrature order of 5. 

Taking due account of the aforementioned considerations, the element-specific integration is 

selected as the integration scheme for the developed coupling element in its default modus 

operandi. A comparison of the accuracy and convergence rate achieved by the two schemes 

will be presented in Sub-section 5.5.5.2 of the coupling element patch tests.   
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Figure 4.10: Segment-specific integration scheme and mapping of GPs on the slave and 

master shell element natural coordinate systems (Gaussian quadrature order 5) 
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Figure 4.11: Element-specific integration scheme and mapping of GPs on the slave and 

master shell element natural coordinate systems (Gaussian quadrature order 5) 
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4.8 Concluding remarks 

An original and systematic methodology for surface coupling along a line is presented in this 

chapter, encompassing the employment of a novel 1-D coupling element formulation. The 

formulation is underpinned by the fundamental principles of the mortar method (Fischer & 

Wriggers, 2005b; Puso, 2004), employing an Augmented LM approach for the constraint 

enforcement along the 1-D interface. The developed 1-D coupling element facilitates discrete 

constraint enforcement along a straight or curved 1-D interface between planar, curved and 

folded surfaces of arbitrary relative spatial orientation, discretised with quadratic Reissner-

Mindlin curved shell FEs. Therefore, it provides a systematic framework for geometric 

modelling of weld lines, the coupling of regions with different levels of discretisation detail or 

element types within a system, as well as for domain partitioning problems involving 

computationally heterogeneous partitions. Notwithstanding its development in compliance 

with the HF modelling strategy presented in Chapter 3, the formulation establishment within 

the most general setting enables the straightforward upgrade of existing FE programs to 

incorporate coupling elements applicable to any type of 2-D and 3-D FEs.  
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1-D Translational and Rotational Coupling Element 

 

 

 

 

5.1 Introduction 

In Chapter 4, a systematic methodology for the enforcement of surface coupling along a 1-D 

interface has been presented, which is based on the discretisation of the coupling interface into 

coupling elements. This allows for the enforcement of a set of distinct kinematic constraints 
(1) (2)( , )g u u  along the interface using a multi-dimensional continuous Lagrangian Multiplier 

(LM) field λ , introduced in a piece-wise manner along successive coupling element segments.  

In this context, a 1-D coupling element formulation has been developed using energy 

variational principles, encompassing the establishment of the coupling element internal force 

vector and tangent stiffness matrix associated with the given set of constraints (1) (2)( , )g u u . 

This allows for the individual coupling element contributions to be accounted for by means of 

their assembly to the coupled system global force vector and tangent stiffness matrix, thereby 

enabling the constraint enforcement to be effectively achieved in a discrete manner. The 

general form of the coupling element formulation has been presented earlier in Section 4.6.  

This chapter focuses on the establishment of the coupling element force vector and tangent 

stiffness matrix for a set of rigid translational and rotational constraints along the 1-D coupling 

interface. The notation discussed previously in Section 4.6 is adopted throughout, the focus 

being on the individual coupling element formulation, encompassing the combination of 

translational and rotational coupling formulations. The chapter proceeds with presenting the 

translational and rotational coupling element formulations independently, where the derived 
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expressions for the coupling element internal force vector and consistent tangent stiffness 

matrix are presented for each case. Subsequently, the results associated with a series of patch 

tests, conducted to verify the element capability of effectively enforcing the coupling 

constraints and assess its accuracy and performance, are presented. The chapter concludes with 

a series of parametric studies for the developed coupling element, where its performance 

sensitivity to the various parameters embedded in the translational and rotational coupling 

formulations is thoroughly investigated.  

 

5.2 1-D translational coupling element formulation  

The present section presents the derivation of the mathematical formulation governing the 

response of the 1-D coupling element for 3-D rigid translational coupling constraint 

enforcement between two deformable surfaces ( )i  (i=1,2) with non-conforming shell Finite 

Element (FE) meshes. Without loss of generality, surfaces (1)  and (2)  are classified as slave 

and master, respectively. 

The translational constraint is introduced in the global Cartesian coordinate system to alleviate 

complex nonlinear co-rotational transformations dependent on the relative surface orientation 

(Izzuddin & Liang, 2016). The constraint function for rigid translational surface coupling can 

be expressed in the following form: 

(1) (2)

(1) (2) (1) (2) (1) (2)

(1) (2)

0
( , )   = 0  

0

U U
V V
W W

 −  
   

= − =  −   
   −   

g u u u u 0   (5.1) 

where ( )
T( ) ( ) ( ) ( )i i i iU V W=u , (i=1,2), are the independent shell surface displacement fields 

along the coupling interface in the global Cartesian (X,Y,Z) coordinate system.  

The distinct isoparametric frameworks discussed in Sub-sections 4.4.1 and 4.4.2 are employed 

herein with a 3-D LM field ( )
T

X Y Z  =λ .  

This section proceeds with presenting the translational coupling element formulation in two 

sub-sections, where: (i) the element contribution to the total potential energy of the system is 
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established and the expressions for the coupling element internal force vector components are 

derived employing 1st order variational principles; and (ii) the expressions for the coupling 

element consistent tangent stiffness matrix components are derived from the established 

energy expression employing 2nd order variational principles. 

 

 Element contribution to total potential energy and internal force vector  

For translational coupling of the active shell element domains ( )i  associated with the coupling 

element in the global Cartesian coordinate system, the constraint function in Eq. (5.1) can be 

expressed in terms of the coupling element kinematic Degrees of Freedom (DOFs) ( )i
eu  along 

c : 

(1) (2) (1) (1) (2) (2) (1) (1) (2) (2)( ) ( , ) ( ) ( )e e e e e e e= = = − =  − g g u g u u u u u u N u N u   (5.2) 

The expression of the total potential energy contribution of the coupling element to the system 

in Eq. (4.60) can therefore be rewritten in a discrete form, in terms of its kinematic and 

additional DOFs ( )i
eu  and eλ , respectively: 

( )
T(1) (1) (2) (2)

Γ

2(1) (1) (2) (2)

Γ

dΓ

1 dΓ , 0
2

c

c

e e e e c

e e c



 

 =  + =  −    +

+  −  





N u N u Φ λ

N u N u
  (5.3) 

Having established the total potential energy function e  of an individual coupling element 

in terms of ( )i
eu  and eλ , the force vector ef  is obtained as its 1st order variation with respect 

to these parameters. The virtual work performed by the LM field over an admissible 

infinitesimal deformation mode δ eu  along cΓ  is given as the 1st order variation of e  with 

respect to ( )
T(1) (2)

e e e=u u u , which yields: 
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( )

( )
( )

T(1) (1) (2) (2)
T

Γ

T(1) (1) (2) (2)
T (1) (1) (2) (2)

Γ

δ δ dΓ

         δ dΓ  

e

c

c

e e
e e e c

e

e e
e e e c

e



   − 
  =    +
 
 

   − 
 +    − 
 
 





u
N u N u

u Φ λ
u

N u N u
u N u N u

u

  (5.4) 

while the variation with respect to eλ , for an admissible field δ eλ  of LM along the coupling 

segment, leads to the discrete form of the constraint enforcement equation, with the optional 

penalty term vanishing: 

( )T T (1) (1) (2) (2)

Γ

δ δ dΓe

c

e e e e c

 
  =   − 
 
 


λ λ Φ N u N u   (5.5) 

Eqs. (5.4) and (5.5) allow for the expressions of the internal force vector components gf  and 

af  associated with the kinematic and additional DOFs eu  and eλ , respectively, to be explicitly 

obtained. These are given by the following expressions, where the contribution of the optional 

penalty terms is considered separately as ,g f  and ,a f  for clarity: 

( )(1) (1) (2) (2)

Γ

dΓ
c

e e
g e c

e



  − 
=  


N u N u

f Φ λ
u

   (5.6)

( )
( )

(1) (1) (2) (2)
(1) (1) (2) (2)

,

Γ

dΓ
c

e e
g e e c

e
 



  − 
=  − 


N u N u

f N u N u
u

  (5.7) 

( )T (1) (1) (2) (2)

Γ

dΓ
c

a e e c=   − f Φ N u N u    (5.8) 

,a  =f 0    (5.9) 

In the above expressions, gf  and ,g f  can be further distinguished into two components 

associated with (1)
eu  and (2)

eu , expressing the individual force contributions to the slave and 

master shell element domains (1)  and (2) , respectively. The coupling element force vector 

can therefore be expressed in the following general form: 
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(1) (2) (1) (2)
, , ,, ,

e e
g g a ae a ag g g g

e e
   


   

= = + = +
 

f f f ff f ff f f f
u λ

 (5.10) 

The individual force contributions of the coupling element to the surfaces, alongside the 

respective penalty, terms are given by the following expressions: 

( )(1) (1) (2) (2)
( )

( )
Γ

dΓ
c

e ei
g e ci

e



  − 
=  


N u N u

f Φ λ
u

  

( )
1 ( ) T

Γ

1 dΓ
c

i i
g e c

−
 = −  f N Φ λ   (5.11) 

( )
( )

(1) (1) (2) (2)
( ) (1) (1) (2) (2)

, ( )
Γ

 dΓ
c

e ei
g e e ci

e
 



  − 
=  − 


N u N u

f N u N u
u

 

( ) ( )
1( ) ( ) T (1) (1) (2) (2)

,

Γ

1  dΓ
c

ii i
g e e c 

−
 = −   − f N N u N u  (5.12) 

In the derivation of Eqs. (5.6)-(5.12), the following relationships for the derivatives of the 

kinematic and additional DOFs have been employed:  

( )

( )

( )

( )

( ) ( ) ( )( )
( ) ( ) ( )

3( ) T ( ) T ( ) T

( ) ( )( )

T T

( ) T ( ) T

3T T

i

i i ii
e i i ie

m ij ijj j j
e e e

i ii
e

e e

e
j j

e e

e
m

e e


 
  

= =  =  =
  

 
= =

 

 
= =

 

 
= =  =

 

N u uu N N I N
u u u

N uu 0
λ λ

Φ λλ 0
u u

Φ λλ Φ I Φ
λ λ

  

where ij  is the Kronecker delta:  

ij

0,
1,

i j
i j




= 
=
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 Element tangent stiffness matrix 

The derivation of the expression for the coupling element tangent stiffness matrix ek  is based 

on the 2nd order variation of the total potential energy function e , or equivalently the 

differentiation once of the internal force vector with respect to the element kinematic and 

additional DOFs eu  and eλ . 

For consistency with the prior distinction of the force vector components, four principal 

component sub-matrices can be distinguished, with the associated penalty terms being 

considered separately: (i) ggk , which is associated with the interaction of eu ; (ii) gak  and agk  , 

which are associated with the interaction of eu and eλ ; and (iii) aak , which is associated with 

the interaction of eλ . By considering the stiffness contributions to (1)  and (2)  separately, 

ggk  can be further distinguished into four sub-matrices, while gak  and agk  into two, in 

accordance with Eq. (5.10). This allows ek  to be expressed in the following general form: 

2 2

T T
, ,

T T 2 2
, ,

T T

e e

gg ga gg ga e e e ee e
e

ag aa ag aa e e e e

e e e e

 

 

    
 
           = + = =                
 
     

k k k k u u u λf f
k

k k k k u λ
λ u λ λ

  (5.13) 

where:  

(11) (12) (11) (12)
, , ,

,(21) (22) (21) (22)T T
, ,

g ggg gg gg gg
gg gg

gg gg gg gge e

  



 

    
= = = =   
       

f fk k k k
k k

k k k ku u
  (5.14a) 

(1) (1)
g , ,T T

g , ,(2) (2)T T
,

gga ga
g g ag

ga gae e

 

    



    
= = = = = =   

       

f fk k
k k k k

k kλ λ
  (5.14b) 

  

The final expressions for the various component sub-matrices are obtained by virtue of 

differentiation of the expressions in Eqs. (5.8), (5.9), (5.11) and (5.12): 
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c
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Γ
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c

ii i i
ga ag c
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λ λ
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, ,

i i
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aa
e


= =


f
k 0

λ
    (5.19) 

,
, T

a
aa

e






= =


f
k 0

λ
   (5.20) 

 

 Basic comparative evaluation of coupling element 

A qualitative comparison of the derived expressions for the coupling element force vector and 

tangent stiffness matrix for a rigid translational constraint, presented in the preceding sections, 

against the results obtained for the simplified mechanical springs model earlier discussed in 

Section 4.2, is presented herein. Particular focus is given to the comparison of Eqs. (4.7) and 



Chapter 5: 1-D Translational and Rotational Coupling Element 
 

150 
 

(4.8) for the force vector and tangent stiffness matrix of the simplified model against the two 

sets of expressions in Eqs. (5.8), (5.9), (5.11), (5.12) and (5.15)-(5.20), for the corresponding 

entities of the coupling element, which reveals the equivalence of the two systems in a 

qualitative sense. 

In the case of the simplified mechanical model, each spring component is associated with a 

single kinematic DOF, leading to a discrete system with two DOFs ( 1 2,u u ) in total, where the 

obtained expressions for the force vector and stiffness matrix contributions are readily 

associated with these. On the other hand, in the case of the coupling element the kinematic and 

additional DOFs eu  and eλ  are 3-D vectors defined at the nodal and Collocation Point (CP) 

locations, along the global Cartesian coordinate axes (X,Y,Z). Hence, the force and stiffness 

contributions obtained in a continuous sense along the coupling interface segment must be 

transferred to these discrete locations along the (X,Y,Z) directions, using appropriate 

transformations. This is due to the coupling interface segment traversing the domain of the 

shell elements in an arbitrary orientation in the general setting of the coupling problem, 

resulting into a lack of spatial correspondence between its points and the discrete locations 

where the kinematic and additional DOFs are defined. 

The process is identical to the transformation of a distributed load applied over a finite element 

domain to equivalent nodal loads. The transpose matrix of the 2-D shell element shape 

functions ( ) TiN  allows for the transformation of a quantity defined along the interface 

projection on either shell element domain to equivalent discrete nodal quantities for the 

respective element domain ( )i . Similarly, the transpose of the interface segment 1-D shape 

functions matrix TΦ  allows for the transformation of any quantity defined continuously along 

the interface segment into a set of equivalent discrete quantities at the CPs. A combination of 

the above transformations is embedded in the final expressions for the force vector and tangent 

stiffness matrix quantities. 

Furthermore, the mathematical expression of the penalty term in the coupling element energy 

function highlights its physical correspondence to a set of distributed fictitious springs along 

the 1-D interface, with constant stiffness 0   in the three global (X,Y,Z) directions. The 

system of distributed springs is only activated by the translational interaction of the deformable 

surfaces along the interface, while being completely uncoupled from the LM field, which is 

qualitatively identical to the simplified mechanical model of coupled springs.  
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Ultimately, in both systems the constraint enforcement equation, obtained as part of the force 

vector component af  associated with the additional DOFs, remains independent of the 

introduced penalty term, as shown in Eqs. (4.7) and (4.8). The penalty term only contributes to 

the terms of the force vector and the tangent stiffness matrix associated with the kinematic 

DOFs. The inclusion of the penalty term in the formulation therefore does not affect the 

constraint enforcement, but rather introduces non-zero entities in the terms of the force vector 

and tangent stiffness matrix associated with the kinematic DOFs, in both cases. As discussed 

in Chapter 4, the introduction of non-zero pivots in the tangent stiffness matrix diagonal is 

necessitated to avoid ill-conditioning and convergence bottlenecks when solvers which do not 

perform row switching operations for individual parameter elimination, such as the frontal 

solver (Irons, 1970), are employed.  

 

5.3 1-D rotational coupling element formulation 

Beyond achieving coupling of all displacement components of ( )i  along the 1-D coupling 

interface c , the coupling element formulation presented in Section 5.2 can be enhanced to 

couple the rotations of the two surfaces transverse to c .  

At any two points along the linear coupling interface, located at an infinitesimal distance apart, 

the coupled surfaces ( )i  exhibit identical displacements. Hence, for any relative displacement 

increment between these points, the rotations exhibited by ( )i  in the interface direction are 

readily coupled, and only the rotations of the two surfaces ( )i  transverse to the coupling 

interface c  may be considered for coupling.  

Taking the above into consideration, the only mode that remains unconstrained when the 

translational coupling formulation is employed is the relative torsional rotation exhibited by 
( )i  along the longitudinal axis of c  . The 1-D translational coupling element exhibits a 

singular behaviour in cases where such modes are unrestrained in the system, thereby 

necessitating the enhancement of the respective formulation to achieve torsional rotational 

coupling of ( )i  along c .  
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As discussed in Chapter 3, the adopted hierarchically optimised, co-rotational Reissner-

Mindlin shell elements utilise six DOFs in the global system, with three translational and three 

rotational DOFs per node. The local element response, however, is formulated with five nodal 

local DOFs, including two rotational DOFs for each node corresponding to the two smallest 

components of the normal to the surface nodal vector. Accordingly, these shell elements 

become insensitive to ‘drilling’ nodal rotations.  

Two distinct approaches can be adopted to achieve rotational coupling of surfaces modelled 

with Reissner-Mindlin shell elements: (i) coupling of the transverse rotations of the two surface 

normals, which is more realistic for coupling rotations along a fold; and (ii) coupling of the 

transverse slopes of the two surfaces, which is more realistic for almost coplanar surfaces 

coupled along a ‘weld’ line. From a kinematic perspective, the constraints of the two 

approaches differ by the magnitude of transverse shear deformation in the two coupled 

surfaces, and hence the two approaches become identical for thin plates/shells. Even for 

moderately thick plates/shells within the scope of the Reissner-Mindlin assumption, the 

discrepancy between the two constraints is typically small, due to the transverse shear 

deformation being often small in comparison with the absolute rotations of the normals. 

Furthermore, noting the important computational benefit of the second approach in which the 

slopes of the two surfaces are fully determined by translational DOFs, thus allowing 

rotational DOFs to be excluded from the coupling element formulation, coupling of 

transverse slopes is adopted in this work. 

The constraint is mathematically formulated by considering the field of tangent unit vectors of 
( )i , with orientation transverse to ( )i

c , and constraining the angle between them at any point 

along c to its value in the initial undeformed configuration. The angle between the unit 

tangent vector fields along ( )i
c  can be effectively constrained by constraining their dot 

product, which represents the cosine of the angle. The resulting scalar rotational constraint 

function is thus expressed in the following form:

(1) (2) (1) (2) (1) (2)
0 0( , )Rg =  − u u b b b b (5.21) 

where ( )
0

ib  and ( )ib  are the global tangent vector fields in the direction transverse to ( )i
c , in 

the initial undeformed and the current deformed configurations, respectively, with ( )ib
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depending on the respective surface ( )i  displacement field ( )
T( ) ( ) ( ) ( )i i i iU V W=u  along 

( )i
c . The concept is schematically illustrated in Figure 5.1.  

Even though the above constraint achieves the desired rotational coupling in a simple and 

elegant manner, its employment in the case of co-planar surfaces leads to ill-conditioning and 

potential singularities in the obtained tangent stiffness matrix. This is due to the use of the dot 

product which achieves upper/lower limits of ±1 for coplanar vectors, with its 1st order 

variation thus being zero when the constraint is satisfied.  

The arising singularity in this case can be circumvented by introducing a modification in the 

constraint, such that (2)b  in Eq. (5.21) is defined as either the tangent vector field of (2)  

transverse to (2)
c  or as the normal vector to the surface, depending on whether the angle 0   

between (1)b  and (2)b  is 0
3,

4 4
 


 

  
 

 or 0
30, ,

4 4
 

 
   

   
   

, respectively. It is worth 

noting that the normal vector in the latter case is normal to the surface defined by (2)  in both 

the initial and deformed configurations, hence it remains only a function of the translational 

DOFs. The selection of 4  for the intervals allows for ill-conditioning of the tangent stiffness 

matrix to be avoided in cases of small but non-zero relative orientation angles. 

The kinematic DOFs of the individual rotational coupling elements remain the nodal 

translations ( )i
eu  of the active shell element surfaces ( )i  on ( )i , as in the case of the 

translational coupling element. Owing to the scalar nature of the constraint function in Eq. 

(5.21), the introduction of a single additional DOF per CP is required for the rotational 

constraint enforcement, leading to a 1-D rotational LM field R  along ( )i
c . 

This section proceeds with presenting the rotational coupling element formulation in two sub-

sections, where: (i) the element contribution to the total potential energy of the system is 

established and the expressions for the coupling element internal force vector components are 

derived employing 1st order variational principles; and (ii) the expressions for the coupling 

element consistent tangent stiffness matrix components are derived from the established 

energy expression employing 2nd order variational principles . 
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Figure 5.1: Rotational coupling based on the angle between the surface tangent vectors 

transverse to the coupling interface 

 

 Element contribution to total potential energy and internal force vector  

For rotational coupling of the active shell element domains ( )i  associated with the coupling 

element in the global Cartesian coordinate system, the constraint function in Eq. (5.21) can be 

expressed in terms of the coupling element kinematic DOFs ( )i
eu  along c : 

(1) (2) (1) (1) (2) (2) (1) (2) (1) (2) (1) (2)
0 0 0 0( ) ( , ) ( ) ( )R e R e e e eg g= =  −  =  − u u u b u b u b b b b b b  (5.22) 

The expression of the coupling element contribution to the total potential energy in Eq. (4.60) 

can therefore be rewritten in a discrete form, in terms of its kinematic and additional DOFs 
( )i

eu  and Reλ , respectively: 

c 0X
(2)b

(1)b
(1) (2)1 1−   b b

(2)

(2)
0X (2)

c

(1)

(1)
c

(1)
0X

(2)b

(1)b

(1)
0X

(1)
(1)

c

(2)
0X

(2)

(1)
c

c 0X

(2)b
(1)b

(1) (2)1 1−   b b



Chapter 5: 1-D Translational and Rotational Coupling Element 
 

155 
 

( )

( )

(1) (1) (2) (2) (1) (2)
0 0

Γ

2(1) (1) (2) (2) (1) (2)
0 0

Γ

( ) ( )  dΓ

1           + ( ) ( ) dΓ , 0
2

c

c

Re R R e e Re c

R e e c R



 

 =  + =  −   +

 −  





b u b u b b φ λ

b u b u b b
  (5.23) 

The unit tangent vector field of ( )i  in the direction transverse to the longitudinal axis of ( )i
c

is obtained using the equations given hereafter: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 , 0 , 0( ) ( )i i i i i i i i i i i i

e e e ea a   = =  =  + b b u J u α N X N X   (5.24) 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0( ) ( )i i i i i i= =  = b b 0 J 0 α J α    (5.25)  

where ( )ib  and ( )
0

ib  denote the tangent vector fields, while ( )iJ  and ( )
0

iJ  denote the Jacobian 

matrix of the mapping between natural and global Cartesian coordinates, in the current 

deformed and the initial undeformed configurations, respectively.  

The tangent vector fields are obtained by means of mapping a direction vector field 

( )
T( ) ( ) ( )

0 0 0
i i ia a =α , expressed in the natural coordinate system, to global Cartesian 

coordinates, as illustrated in Figure 5.2. The latter defines the tangent direction transverse to 
( )i

c  in the initial undeformed configuration and is assumed to remain constant for a given 

coupling element, which is realistic for small strain problems. The element deformation is thus 

accounted for solely through the Jacobian in the deformed configuration, which is given by Eq. 

(4.85) and can be rewritten in the following form: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , 0 , 0( )i i i i i i i i i i i i

e e e e e e e   
  =   =  +  +   

J u N X N X N X u N X u   (5.26) 

The vector field ( )
0

iα  can be obtained by means of an inverse Jacobian transformation of the 

respective vector ( )
0

ia  from the planar local to the natural element coordinate system: 

( ) ( ) 1 ( )
0 0 0

i i i−= α j a    (5.27) 

For the above inverse transformation process to be feasible, ( )
0

ia  needs to be a two-component 

vector, for dimensional correspondence with ( )
0

iα , and accordingly ( )
0

ij  must be a square 22 

matrix. This is achieved by means of initially establishing ( )
0

ia  in the local element coordinate 
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system, and subsequently employing its respective projection on the co-rotational coordinate 

system plane, ( )
0

ia , based on the assumption that the shell element out-of-flatness is negligible 

with sufficient mesh refinement, as discussed previously in Section 4.4.  

The Jacobian ( )
0

ij  of the mapping to the planar local element coordinate system in the initial 

undeformed configuration has been defined earlier in Eq. 4.86, and can be expressed in the 

following form: 

( ) ( ) ( ) ( ) ( )
0 , 0 , 0

i i i i i
e e 

 =   j N x N x    (5.28) 

where ( )
0

i
ex  is the local planar nodal coordinate vector on ( )i  and ( )

,
i
N , ( )

,
i
N  are the derivatives 

of matrix ( )iN  in Eq. (4.15) with respect to ( )i  and ( )i . 

At any given point along ( )i
c , the transverse to its longitudinal axis unit tangent vector ( )

0
ia  

can be obtained by normalising the cross product of the normal vector ( )
0

in  at that point and 

the orientation vector ( )it  of c , with all aforementioned entities being expressed in the 

respective local coordinate system: 

( )
( ) ( ) ( ) ( )0

0 0 0( )
0

ˆ
ˆ,  

ˆ

i
i i i i

i
= = 

a
a a n t

a
   (5.29) 

The orientation vector ( )it  is generally expressed in the global coordinate system as t , and 

therefore a coordinate transformation is required: 

( ) ( )
0

i i= t Τ t    (5.30) 

where ( )
0

iΤ  is the rotational transformation matrix of ( )i , which is given by Eq. (4.48) and 

repeated here for ease of reference: 

T( ) ( ) ( ) ( )
0 0 0 0

i i i i
x y z =  Τ c c c    (5.31) 

In the above expression the triad of unit orientation vectors of the local coordinate system axes 

are defined in Eq. (4.49) and are also repeated here for ease of reference: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )130 240 130 240
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0 0 0 0 0( ) ( ) ( )
120 120 130
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i i i i
i i i i i

x y z x yi i i i

i i i
i i i i i

x z y x zi i i

− +
= = = 

− +


= = = 



c c c c
c c c c c

c c c c

v v v
c c c c c

v v v

c
( )

0( ) ( ) ( ) ( )
0 0 0 0( )

0

,
i

jki i i i
jk jk k ji

jk













= = −


v
v X X

v

  (5.32) 

The normal vector ( )
0

in  at any given point along ( )i
c  is established as the cross product of the 

tangent vectors ( )
0

i
a  and ( )

0
i

a  along the shell element local planar axes: 

( ) ( ) ( )
0 0 0

i i i
 = n a a    (5.33) 

( )
( ) ( ) ( )0

0 , 0( )

i
i i i

ei 



= = 


x
a N x    (5.34) 

( )
( ) ( ) ( )0

0 , 0( )

i
i i i

ei 



= = 


x
a N x    (5.35) 

The procedure discussed above is summarised in Figure 5.2. Evidently, the evaluation of the 

local Jacobian matrix ( )
0

ij  is only required once for the inverse vector transformation set out 

in Eq. (5.27). On the other hand, the global Jacobian J  is evaluated at every iterative step of 

the nonlinear solution procedure 15for an updated vector of global nodal translations ( )i
eu . J  

is therefore the prominent source of geometric nonlinearity in the constraint enforcement 

equation, and hence in the coupling element formulation. 

Due to the assumption of negligible shell element out-of-flatness for a sufficiently dense mesh, 

alongside the incorporation of a co-rotational local coordinate axes definition, the planar 

components of ( )
0

ia  are dominant in comparison to the out-of-plane one. Hence, in the limit, 

with mesh refinement, ( )
0

ia  is also approximately a unit vector. The inverse transformation of 

( )
0

ia  to ( )
0

iα , which subsequently remains constant, allows for ( )ib  and ( )
0

ib  to be readily 

obtained as approximately unit vectors, by employment of the direct transformations outlined 

in Eqs. (5.24) and (5.25), respectively. This is one of the main simplifying assumptions 
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embedded in the rotational coupling formulation, which makes ( )ib  linearly dependent on the 

translational DOFs, thus simplifying the application of the variational approach. 

 

 

Figure 5.2: Vector mapping processes for the establishment of coupled shell element global 

tangent vector fields ( )
0

ib  and ( )ib  in the initial undeformed and the current deformed 

configurations  

Similar to the process employed for the translational coupling element, the force vector ef  of 

the rotational coupling element is obtained as the 1st order variation of Re  with respect to  

( )i
eu  and Reλ . The 1st order variation of Re  with respect to ( )

T(1) (2)
e e e=u u u , representing 

the virtual work performed by the LM field over an admissible infinitesimal deformation mode 

δ eu  along cΓ , yields:  
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u φ λ
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b b b b
u b b b b
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 (5.36) 

The discrete form of the constraint enforcement equation is obtained as the 1st order variation 

of Re  with respect to Reλ , for an admissible infinitesimal variation of the LM field δ Reλ  along 

cΓ : 

( )T T (1) (2) (1) (2)
Re 0 0

Γ

δ δ dΓRe

c

Re c

 
  =  − 
 
 


λ λ φ b b b b   (5.37) 

where the penalty term vanishes. The expressions of the internal force vector components 

associated with ( )i
eu  and Reλ  are explicitly obtained from equations (5.36) and (5.37) as given 

hereafter: 

( )(1) (2) (1) (2)
0 0

Γ

dΓ
c

g Re c
e

  − 
=  


b b b b

f φ λ
u

   (5.38) 

( )
( )

(1) (2) (1) (2)
0 0 (1) (2) (1) (2)

, 0 0

Γ

dΓ
c

g R c
e

 
  − 

=  − 


b b b b
f b b b b

u
  (5.39) 

( )T (1) (2) (1) (2)
0 0

Γ

dΓ
c

a c=  − f φ b b b b    (5.40) 

,a  =f 0    (5.41) 

Similar to the translational coupling element formulation, the contribution of the LM and the 

penalty terms are considered separately in the above expressions for clarity. It is convenient to 

further distinguish the contributions associated with (1)  and (2)  in the above expressions for 

gf  and ,g f , by virtue of ( )
T(1) (2)

e e e=u u u , which allows ef  to be stated in the general form 

given in Eq. (5.10). The respective components (1)
gf , (2)

gf , (1)
,g f  and (2)

,g f , corresponding to 

the equivalent nodal forces on (1)  and (2) , are given by the following expressions: 



Chapter 5: 1-D Translational and Rotational Coupling Element 
 

160 
 

( )(1) (2) (1) (2)
0 0(1)

(1)
Γ

dΓ
c

g Re c
e

  − 
=   =


b b b b

f φ λ
u

  

T(1)
(1) (2)

(1)
Γ

dΓ
c

g Re c
e


 =   


bf b φ λ
u

  (5.42) 

( )(1) (2) (1) (2)
0 0(2)

(2)
Γ

dΓ
c

g Re c
e

  − 
=   =


b b b b

f φ λ
u

  

T(2)
(2) (1)

(2)
Γ

dΓ
c

g Re c
e


 =   


bf b φ λ
u

  (5.43)   

( )
( )

(1) (2) (1) (2)
0 0(1) (1) (2) (1) (2)

, 0 0(1)
Γ

 dΓ
c

g R c
e

 
  − 

=  − 


b b b b
f b b b b

u
  

( )
T(1)

(1) (2) (1) (2) (1) (2)
, 0 0(1)

Γ

 dΓ
c

g R c
e

 


 =   − 

bf b b b b b
u

 (5.44) 

( )
( )

(1) (2) (1) (2)
0 0(2) (1) (2) (1) (2)

, 0 0(2)
Γ

 dΓ
c

g R c
e

 
  − 

=  −  =


b b b b
f b b b b

u
 

( )
T(2)

(2) (1) (1) (2) (1) (2)
, 0 0(2)

Γ

 dΓ
c

g R c
e

 


 =   − 

bf b b b b b
u

  (5.45) 

In the derivation of the above expressions, the following chain rule for the differentiation of 

the dot product of (1)b  and (2)b  in the current deformed configuration is employed: 

T T(1) (2) (1) (2)
(2) (1)

( ) ( ) ( )

( )
j j j

e e e

   
=  + 

  

b b b bb b
u u u

 

with the derivative of the dot product in the initial undeformed configuration being a zero 

vector: 

(1) (2)
0 0

( )

( )
j

e

 
=



b b
0

u
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The derivatives of (1)b  and (2)b  with respect to ( )
T(1) (2)

e e e=u u u  in the deformed 

configuration are given by the following expression: 

( )
( ) ( )( )

( ) ( ) ( ) ( )0
, 0 , 0 ij( ) T ( ) T

( )i ii
i i i i

j j
e e

a a    
 

= = +
 

J αb N N
u u

  (5.46) 

with (i,j=1,2; i≠j), and where δij is the Kronecker delta. The above expression is obtained by 

differentiation of Eq. (5.24), using Eq. (5.26): 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0
, 0 , 0 , 0 , 0 ij( ) T ( ) T ( ) T

( ) ( ) ( )
=

i i i i i i
i i i i i i i ik e k e

j j j
e e e

a a a a        
   +  +

= +  +
  

J α X u X u
N N N N

u u u
  

 

 Element tangent stiffness matrix 

The derivation of the expression for the tangent stiffness matrix ek  is based on the 2nd order 

variation of the total potential energy function Re , or equivalently on the 1st order 

differentiation of the internal force vector with respect to the kinematic and additional DOFs 

eu  and eλ . 

Similar to Eq. (5.13) of the translational coupling element formulation, the tangent stiffness 

matrix is distinguished into four principal component sub-matrices ggk , gak , agk  and aak , 

where the LM and penalty terms contributions are considered separately for clarity and 

consistency. By considering the contributions to (1)  and (2)  separately, ggk  can be further 

distinguished into four sub-matrices, while gak  and agk  into two, in accordance with Eqs. 

(5.14a) and (5.14b). The expressions for the various tangent stiffness matrix components can 

be explicitly obtained via 1st order differentiation of the coupling element internal force vector 

expressions in Eqs. (5.42)-(5.45) with respect to ( )i
eu  and Reλ : 
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5.4 Superposition of translational and rotational coupling formulations 

The translational and rotational coupling element formulations, presented in Sections 5.2 and 

5.3, individually achieve rigid coupling of the translational displacement field and the torsional 

rotations of ( )i  along c , respectively.  

In both developed formulations, the constraint functions (1) (2)( , )g u u  and (1) (2)( , )Rg u u  are 

expressed in a discrete form in terms of the kinematic translational DOFs ( )
T(1) (2)

e e e=u u u  

along the global Cartesian coordinate axes (X,Y,Z). Accordingly, the coupling element force 

vector and tangent stiffness matrix are expressed in terms of ( )
T(1) (2)

e e e=u u u  , and thus 

geometric nonlinearity is accounted for without necessitating the employment of complex co-

rotational transformations for individual shell FEs.  

Owing to the translational and rotational coupling element formulations being unrelated, their 

effects can be combined additively for the enforcement of multiple kinematic constraints along 

the interface. This is achieved by virtue of superposition of the derived expressions for the 

internal force vectors and consistent tangent stiffness matrices of the translational and 

rotational coupling elements, and allows for the establishment of a general formulation capable 

of achieving both forms of coupling. 

The coupling element implementation in ADAPTIC (Izzuddin, 1991) v2.16.5 allows for basic 

translational coupling to be achieved when the element is introduced in a mesh, while the 

rotational coupling is switched on or off at the user’s discretion. The developed coupling 

element can therefore be effectively employed for the modelling of a variety of coupling 

conditions in geometrically complex systems. This includes weld lines of various types, where 

the adopted welding process determines the capacity of the weld to accommodate relative 

rotations between the connected components. It should further be noted that the abridging of 

the element to achieve rigid coupling along only one or two of the three global translational 

axes is rendered a straightforward process by eliminating the desired coupling terms.  

As is evident from Section 5.2, the coupling element tangent stiffness matrix is constant for a 

fully rigid translational constraint, which allows for its assembly once in the beginning of the 

analysis for each coupling element. The force vector can therefore be obtained as its product 

with the updated set of eu  and eλ , at every iterative step of the nonlinear solution procedure. 
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On the other hand, the force vector and tangent stiffness matrix components of the rotational 

coupling element are related to eu and Reλ to a second- and first-order, respectively, which

requires their evaluation at every iterative step of the nonlinear solution procedure. The 

associated computing wall-clock time and resources demands are therefore greater in 

comparison to the translational coupling element, which justifies the implementation in 

ADAPTIC (Izzuddin, 1991) to allow for rotational coupling to be switched off in cases where 

it is not required.  

5.5 Patch tests 

A series of patch tests has been conducted to verify the capability of the developed coupling 

element to enforce discrete kinematic constraints along a 1-D interface for surfaces with non-

conforming shell FE meshes and to assess its performance under a variety of conditions. The 

results are presented and discussed in detail hereafter.  

Preliminaries 

Patch tests are generally employed for the performance assessment of FEs. Any sub-model 

comprising two or more FEs can qualify as a patch, if its configuration can be considered to 

represent a finite part of a mesh in the limit of a mesh refinement process. Therefore, the patch 

must comprise two or more elements arranged in the most general geometric configuration 

allowed by their formulation, with at least one internal node being shared by the entirety of 

elements (Zienkiewicz et al., 1977). 

The test process involves subjecting the patch to a prescribed mode associated with an a priori 

known exact solution over its boundary and assessing the element capability to capture the 

solution exactly, in a discrete sense. The prescribed mode can generally be a displacement or 

force field introduced along the patch boundary, while there are also mixed type patch tests 

(Zienkiewicz et al., 1977).  

The passing of the patch test by an element ensures that it can accurately capture the prescribed 

mode within a small finite patch of a mesh, and hence more complex modes can also be 
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captured over the mesh with sufficient refinement. Convergence to the exact solution is 

therefore ensured at a global level, however a monotonic convergence trend, which typically 

stems from the stiffer response with coarser mesh characteristic of FE solutions (Bathe, 1996), 

is not guaranteed. 

The selection of an appropriate type of patch test for a given element type primarily requires 

the identification of the function that the element has been developed to perform. In the broader 

field of computational mechanics, constant strain patch tests are typically undertaken to verify 

the capability of a given element type with prescribed material and mechanical properties to 

model constant strain conditions. The passing of the patch test ensures that complex 

deformation states can be accurately modelled over the mesh with sufficient refinement, even 

if the element violates the continuity requirements under general strain conditions (Zienkiewicz 

et al., 1977). 

 

 Coupling element patch tests 

For the 1-D rigid coupling problem at hand, the set of imposed kinematic constraints enforces 

the fulfilment of surface deformation compatibility along the 1-D interface length. As 

discussed earlier, this is achieved in a discrete sense along the interface, over the segments of 

individual coupling elements, by means of a continuous piece-wise linear or quadratic LM field 

representing the required forces or moments. The element formulation therefore seeks to 

maintain the relative surface deformations, and correspondingly the interface deformations, as 

zero, rather than achieve their convergence to a constant value, and is thereby effectively 

rendered deformation-independent. Since the LM field is being approximated, rather than the 

displacement/strain fields, the purpose of the patch test would be to ensure that the element can 

represent constant LM fields for different 1-D element patches, while satisfying interface 

compatibility conditions. 

Taking due account of the aforementioned considerations, two types of coupling element patch 

tests have been established: (i) rigid body mode patch tests, which aim at verifying the coupling 

element capability to generate a zero LM field along the interface under rigid body translations 

or rotations; and (ii) constant force/moment patch tests, which aim at verifying the coupling 
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element capability to generate a constant LM field along the interface under a constant force 

or moment field, equal to the prescribed value applied at the patch boundary.  

Generalising the discussion of the preceding section, the passing of a constant LM patch test 

by the coupling element is indicative of its capability to model constant internal force and 

moment states within a small patch of a mesh. Consequently, convergence of the discrete 

coupling problem to the exact solution is guaranteed at the global level, in the limit, with mesh 

refinement, even if the element is unable to accurately model general force or moment LM 

states. 

5.5.2.1 Coupling element patch configuration 

For an admissible coupling element patch configuration to be established, the following set of 

requirements should be fulfilled: (i) the patch must comprise two or more coupling elements; 

(ii) the patch must comprise at least one internal CP shared by the entirety of coupling elements;

and (iii) the patch must encompass the most general geometric configuration allowed by the 

element formulation, representing part of a mesh in the limit of refinement. In the case of the 

developed coupling element, the interface segment is generally piece-wise linear, and hence 

the fulfilment of admissibility criterion (iii) would require the consideration of the most general 

coupled surface configuration.  

The established patch comprises two planar surfaces, coupled along an interface with two 

segments and three distinct coupling elements associated with these, as illustrated in Figure 

5.3. Each surface has a thickness t=1 mm and is discretised with two 9-noded quadrilateral 

shell elements, while 6-noded triangular or mixed element types can also be employed for the 

discretisation, without loss of generality. Each coupling element encompasses two or three 

CPs, resulting into a linear or quadratic field of LMs along its length, respectively, where in 

both cases one CP is shared by the two interface segments. Both regular and irregular element 

geometries have been considered for one of the two surfaces. 

For ease of reference to the distinct coupled surfaces and their respective shell elements, the 

bottom surface will henceforth be referred to as Surface 1 and the top as Surface 2, while their 

elements are numbered as 1A, 1B and 2A, 2B, from left to right along the global X-axis. The 

two surfaces are intersecting at a 90° angle and are appropriately arranged to avoid nodal 
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overlapping along all edges. This enables the most general configuration of interface segments 

and associated coupling elements to be obtained along the surface intersection for the given 

patch geometry. Linear elastic material parameters are considered, with Young’s modulus 

E=105 N/mm2 and Poisson ratio ν=0, for the effects of anticlastic curvature to be eliminated in 

cases where the applied force field induces out-of-plane surface deformation. Furthermore, the 

translational and rotational penalty parameters ε and R  for the coupling elements are both 

specified as 0.1, leading to ratios of ε/Ε and R /(Εt2) both equal to 10-6. 

5.5.2.2 Coupling element patch base-case and variants 

The coupling element performance is assessed by subjecting it to the set of rigid body and 

constant force patch tests discussed earlier. The assessment is performed on the basis of the 

obtained error magnitude in the LM field, in relation to the a priori known exact solution 

associated with the respective rigid body or constant force mode. The element development 

and implementation in ADAPTIC (Izzuddin, 1991) allows for the values of the LMs at the CPs 

of each interface segment to be recovered at every iterative step of the nonlinear solution 

procedure. Subsequently, depending on the number of CPs defined per segment, a piecewise 

quadratic or linear interpolation of these values is employed to determine the LM field, as well 

as the corresponding error distribution along the coupling interface length, and identify the 

maximum error magnitude.  

A series of parametric studies is also conducted to assess the sensitivity of the obtained patch 

test results to a variety of parameters embedded in the developed coupling element formulation, 

including: (i) the classification of Surfaces 1 and 2 as slave and master, (ii) the adopted 

integration scheme at the element level, including element-specific integration (E) and 

segment-specific (S) integration, (iii) the values of the translational and rotational coupling 

penalty parameters,   and R , and (iv) the element geometry, including regular (R) and 

irregular (I) elements. 

The specification of a distinct set of values for the above parameters leads to variant patch 

configurations, which are assigned acronym keys in accordance with the following structure: 

(i) the first character is a letter denoting the element geometry (R/I); (ii) the second character

is a single digit number (1/2) denoting the slave surface; (iii) the third character is a letter 
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denoting the adopted integration strategy (E/S); and (iv) the fourth character is a number 

denoting the number of CPs per segment (2/3). This leads to acronym keys such as R1E3 for a 

patch with regular elements, Surface 1 as the slave surface, element-specific integration and 

3 CPs per segment, or I2S2 for a patch with irregular elements, Surface 2 as the slave surface, 

segment-specific integration and 2 CPs per segment.  

Patch variants R1E2 and R1E3 are set as base-cases for the patch tests, encompassing regular 

element geometry and the default progressive segmentation and integration schemes specified 

in the developed coupling element formulation. Surface 1 is selected as the slave surface for 

the base cases without loss of generality, leading to the interface segmentation into two 

coupling segments, henceforth denoted as CS1 and CS2, with lengths of 30 mm and 20 mm, 

respectively, as illustrated in Figure 5.3 (b). Along CS1 and CS2, CPs (1)-(5) are defined, with 

(4) and (5) only being used for a quadratic LM field interpolation at the element level in variant 

R1E3. Along the interface, three coupling elements are accordingly defined: (1A-2A) and (1A-

2B) associated with CS1, and (1B-2B) associated with CS2. The employment of the element-

specific integration scheme leads to the identification of three complementary non-overlapping 

integration segments along the interface, henceforth denoted as IS1, IS2 and IS3, with end-

points [1]-[4]. For each coupling element, these correspond to the portion of the CS which is 

entirely projected on both the respective slave and master shell elements, thus allowing all GPs 

to be actively projected and the integration to be performed with the specified quadrature order 

on both surfaces.   

For each base-case patch test, the error for different values of the Gaussian quadrature order is 

evaluated to verify the monotonic convergence of the obtained LM field approximation to the 

exact solution with an increasing number of GPs. This procedure is carried out for CS with two 

and three CPs, in order for the accuracy of both the piece-wise linear and quadratic LM field 

approximations to be assessed. The obtained results are employed as performance indices for 

the coupling element in its default modus operandi, while also being used in the context of the 

subsequent parametric studies for the element performance sensitivity analysis to a variety of 

parameters. The results of the base-case patch tests, followed by those of the parametric studies, 

are presented and discussed in detail hereafter. 
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(a) 

(b) 

Figure 5.3: (a) Coupling element patch geometric configuration, material properties and 

coupling parameters, (b) coupling interface and integration segments 
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Rigid body mode patch tests 

The rigid body mode patch tests aim at verifying the coupling element capability to generate a 

zero LM field along the interface CSs, when the patch is subjected to rigid body translations 

along or rigid body rotations about the global axes (X,Y,Z).  

In the rigid body translation patch tests, Surface 2 is completely unrestrained, while Surface 1 

is restrained at its four corners against all rotations. The rigid body translation in the direction 

of a given global axis is achieved by means of applying appropriate unit displacements and 

introducing translational restraints in the direction of the remaining axes, at the four corner 

nodes of Surface 1.  

In the rigid body rotation patch tests, Surface 2 is completely unrestrained, while Surface 1 is 

restrained at its four corners against planar translations in the direction of the rigid body rotation 

global axis. The rigid body rotation about the X, Y planar axes is achieved by means of 

introducing translational restraints in the direction of the remaining axes along an edge of 

Surface 1 and applying appropriate unit displacements along the Z-axis at one corner node of 

the opposite edge. On the other hand, for a rigid body rotation about the Z planar axis, only 

one corner node of Surface 1 needs to be restrained against all translations, and a unit 

displacement to be applied along the global X or Y axes at the other corner node of the same 

edge, transverse to the edge.   

In all cases, the recovered values of LMs at the CPs of the coupling segments are zero, leading 

to a zero LM field along the interface length, and thereby confirming the passing of the rigid 

body patch tests by the coupling element. The deformed configuration of the patch in each case 

is given in Figure 5.4. It should be noted that a zero value of the penalty parameters leads to a 

singular tangent stiffness matrix in this case when a frontal solver is employed, due to the patch 

exhibiting rigid body motion and Surface 2 being unrestrained. This highlights the necessity of 

the introduced penalty parameters in the augmented Lagrangian formulation for both 

translational and rotational coupling, as discussed earlier in Section 4.6. 
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 5.4: Rigid body mode coupling element patch tests: (a) translation in X, (b) translation 

in Y, (c) translation in Z, (d) rotation about X, (e) rotation about Y, (f) rotation about Z 
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Constant force/moment patch tests 

Constant force and moment patch tests aim at verifying the coupling element capability to 

generate a uniform LM field along the interface, with a constant value equal to the uniform 

force or moment loading applied at the patch boundary.  

Four types of patch tests are considered herein, with three being associated with forces along 

the global X, Y and Z axes and one with moments about the global X axis, which coincides 

with the coupling interface longitudinal direction. All nodes of Surface 1 are fully restrained 

and the applied loading at the patch boundary is appropriately selected in each case to generate 

a uniform unit force or moment field over the domain of Surface 2. The coupling elements 

must be capable of transferring the induced uniform force or moment field between the coupled 

plates, by virtue of a uniform unit field of LM components in the direction of the load 

application only.  

The LM field is obtained by means of interpolation of the LM vectors recovered at the CPs, 

each of which must comprise a single non-zero LM component and three zero ones. The non-

zero LM component is activated to enforce the translational or rotational constraint in the 

direction dictated by the applied loading, and it should have a unit value at every CP for a 

uniform unit LM field to be obtained via interpolation along the interface. 

Taking into consideration the patch geometric configuration and the arrangement of Surface 2, 

where the load is being applied, the following load cases are considered for the patch tests: (i) 

uniform planar shear applied to Surface 2, induced by means of a tangent force field applied 

over its top and side edges along the global X and Z axes, respectively; (ii) uniform membrane 

forces over the domain of Surface 2, induced by means of a force field applied over its top edge 

along the global Z axis; (iii) uniform transverse shear of Surface 2, induced by means of two 

superimposed fields of transverse forces along the global Y axis and counter-balancing 

moments along the global X axis, applied over its top edge; and (iv) uniform bending moment 

over the domain of Surface 2, induced by means of a moment field applied over its top edge 

about the global X axis.  

For load cases (i)-(iii) described above, the coupling elements defined along the coupling 

interface must generate a uniform unit force LM component field along the global X, Z, Y 

axes, respectively, as well as a uniform moment LM field about the X axis for case (iv). For 



Chapter 5: 1-D Translational and Rotational Coupling Element 

173 

both base-case patch variants R1E2 and R1E3, the values of the LM vector components in the 

respective directions are recovered at the CPs of the coupling segments. Subsequently, a piece-

wise linear or quadratic interpolation is employed for the establishment of the LM field and the 

corresponding error distribution against the normalised longitudinal coordinate of the coupling 

interface, / [0,1]x L =  , with L=50mm being the length of the coupling interface.  

The obtained error distribution along the interface is identical for all four patch tests, 

demonstrating the ability of the coupling element to generate an identical LM field for the 

enforcement of the translational and rotational constraints along the global coordinate axes. 

The error distribution for base-case patch variants R1E2 and R1E3 is graphically illustrated in 

Figures 5.5 and 5.6, respectively.  

As can be observed from the graphs of Figures 5.5 and 5.6, the error distribution along the 

coupling interface for variant R1E2 is identical for a quadrature order greater than two, and is 

associated with a maximum error magnitude of 0.0007%. On the other hand, for variant R1E3, 

the maximum error magnitude of 0.0009% for a quadrature order of two drops to 0.0008% for 

a quadrature order greater than three. Evidently, the error distribution becomes insensitive to 

the employed Gaussian quadrature order for both variants, when the latter becomes greater than 

two and three, respectively. This is attributed to the employment of an element-specific 

integration scheme at the coupling element level. 

As discussed earlier in Sub-section 4.7.3.2, the element-specific integration scheme enables 

the identification of a suitable integration sub-segment at the coupling element level, such that 

all GP projections on the associated slave and master shell elements are rendered active. The 

sub-segment is established by means of identifying the portion of the coupling element 

interface segment which is projected on the surface of both slave and master shell elements. 

More importantly, the establishment of the integration sub-segment in such a manner results in 

the respective integrand functions for all force vector and tangent stiffness matrix components 

being polynomial over the integration domain. Therefore, the piece-wise polynomial integrand 

forms encountered with segment specific integration can be effectively overcome at the 

element level, which allows for exact integration to be achieved with a small number of GPs.  
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Figure 5.5: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for base-case patch variant R1E2 

Figure 5.6: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for base-case patch variant R1E3  
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In the base-case patch variant configurations R1E2 and R1E3, characterised by regular shell 

FE and interface geometry, the integrand functions for the force vector and the tangent stiffness 

matrix are cubic or quartic polynomials with respect to the interface natural coordinate system, 

for two or three CPs per coupling segment, respectively. Accordingly, exact integration can be 

achieved with the employment of a Gaussian quadrature with order two and three, respectively, 

as confirmed by the patch test results. 

Taking due account of the aforementioned considerations, the coupling element must be 

capable of generating a uniform unit field along the interface, in the direction of the activated 

LM component for each patch test, with exactly zero error when the element-specific 

integration scheme is employed. Despite the obtained error magnitude being sufficiently small 

for both variants to be considered negligible, it is not exactly zero. The element performance 

in approximating the a priori known exact solutions associated with the specified patch tests 

is therefore considered conditionally admissible. 

The admissibility of the element performance is subject to the identification of the error source 

in one or more of the embedded numerical processes, rather than in the element formulation 

itself. This can be established by testing whether the error in the LM field converges to zero by 

enhancing the accuracy of these numerical processes, which verifies that the formulation 

allows for the exact solution to be obtained and the minor observed error in the patch test results 

is purely associated with these processes. 

The error can be traced back to the employment of the projection algorithm discussed earlier 

in Sub-section 4.5.2.1 for the identification of the integration sub-segment end points, as well 

as of the GP projections on the slave and master shell surfaces, as discussed earlier in Sub-

section 4.7.3. The specified tolerance in the projection algorithm results in a small numerical 

error in the evaluation of the integration sub-segment end points, which subsequently pollutes 

the abscissae of the GPs defined along its length. The projection of the already polluted GP 

abscissae from the segment to the slave and master shell element surfaces, using the same 

projection algorithm, results in further error accumulation in these projections. The integration 

error in the obtained active LM vectors at the CPs can be reduced by specifying a less generous 

tolerance in the projection algorithm, with the associated convergence measures being the 

orthogonality conditions at the projection point and the element boundary coordinates 

embedded in the final projection point admissibility criteria. This is illustrated in Figure 5.7. 
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Figure 5.7: Maximum Lagrangian Multiplier field error variation with specified projection 

algorithm tolerance for base-case patch variants R1E2 and R1E3 
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(a) (b) 

(c) (d) 

Figure 5.8: Constant force/moment coupling element patch tests: (a) planar shear force field, 

(b) planar membrane force field, (c) out-of-plane bending moment field, (d) out-of-plane

shear force and moment fields 

Coupling element performance sensitivity analysis 

As discussed previously, a series of parametric studies is conducted to assess the coupling 

element performance sensitivity to the following parameters: (i) the surface classification, (ii) 

the adopted integration scheme, (iii) the penalty parameters   and R , and (iv) the shell FE 

geometric irregularities. The results are presented in separate sub-sections hereafter. 
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5.5.5.1 Influence of master-slave surface classification 

The influence of the surface classification as master and slave on the base-case patch test results 

is investigated here. The developed coupling element must be capable of passing the rigid body 

and constant force patch tests irrespective of the slave surface selection, achieving a monotonic 

convergence to the exact solution for an increasing quadrature order, even with a different level 

of achieved accuracy.  

As discussed previously, for the base-case patch variants R1E2 and R1E3 Surface 1 has been 

selected as the slave surface, with the progressive segmentation algorithm resulting in two 

coupling segments CS1 and CS2, as illustrated in Figure 5.3(b). Herein, two new patch variants 

R2E2 and R2E3 are considered, with Surface 2 being the slave surface, which leads to the CS 

lengths being effectively interchanged. Three new coupling elements can therefore be defined: 

(2A-1A) associated with the new CS1, and (2B-1A), (2B-1B) associated with the new CS2. 

The obtained results for variants R2E2 and R2E3 are compared against those of R1E2 and 

R1E3 for all patch tests, to investigate the sensitivity of the coupling element performance to 

the selection of the slave surface.  

For all six rigid body mode patch tests, R2E2 and R2E3 are associated with zero values for all 

LM components at the coupling segment CPs, similar to R1E2 and R1E3, thereby confirming 

the insensitivity of the respective results to the selection of the slave surface and the interface 

segmentation.  

For the constant force/moment patch tests, the values of the LM components associated with 

the kinematic constraint activated by each load-case are recovered at the new CPs, and the error 

distribution is evaluated along the new CSs. The obtained error distributions for variants R2E2 

and R2E3 are identical for all types of patch tests, similar to the base-case, as graphically 

illustrated in Figures 5.9 and 5.10 for a variable Gaussian quadrature order.  

As is evident from the graphs of Figures 5.9 and 5.10, the employment of the element-specific 

integration scheme allows for the exact integration of the coupling element force vector and 

tangent stiffness matrix for variants R2E2 and R2E3, similar to the base-case. This is achieved 

with quadrature orders of two and three, respectively, beyond which the obtained error 

distribution becomes insensitive to the employed integration order. The comparison of the error 

distributions between the new and the base-case patch variants, obtained using a sufficient 
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Gaussian quadrature order to achieve exact integration, is illustrated in Figures 5.11 and 5.12. 

The comparison indicates minor discrepancies in the respective error distributions, as expected 

by the employment of different coupling segments for the LM field interpolation. The obtained 

distributions are symmetrical about the interface axis of symmetry, due to the obtained values 

at the CPs of the CSs being identical and interchanged in each case.  

Conclusively, the element performance in its default modus operandi remains insensitive to 

the surface classification, allowing for an identical level of accuracy to be achieved with the 

employment of a small, but sufficient for exact integration, quadrature order. Evidently, a 

reduction in the projection algorithm tolerance results in a reduction in the maximum error 

magnitude in this case as well. 

Figure 5.9: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R2E2 
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Figure 5.10: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R2E3 

 

 

Figure 5.11: Lagrangian Multiplier field error distribution comparison for patch variants 
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Figure 5.12: Lagrangian Multiplier field error distribution comparison for patch variants 

R1E3-R2E3 

5.5.5.2 Influence of adopted integration scheme 

The influence of the adopted integration scheme at the element level on the base-case patch 

test results is investigated here. The developed coupling element must be capable of passing 

the rigid body and constant force patch tests irrespective of the integration scheme, with a 

monotonic convergence to the exact solution for an increasing quadrature order, even with a 

different level of achieved accuracy.  
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at the coupling element level, such that all GPs defined along these have active projections on 
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On the other hand, segment-specific integration is based on the definition of GPs along the CS 

associated with a given element, and the employment of the subset of these with active 

projections on both master and slave surfaces. Hence, it results into a variable and potentially 

reduced order of integration per coupling element, which however can achieve a sufficient 

overall level of accuracy with mesh refinement or/and a high quadrature order. As opposed to 

element-specific integration, the segment-specific scheme does not guarantee exact integration 

of the integrand functions, due to these being either polynomial or piece-wise polynomial, 

depending on the selection of the slave surface for slave-only interface segmentation.  

In view of the above, patch variants R1S2 and R1S3 are considered herein to primarily verify 

the passing of the patch test and also establish the coupling element performance sensitivity in 

the respective cases. The coupling elements defined in this case are identical to R1E2 and 

R1E3, while the ISs coincide with the CSs illustrated in Figure 5.3(b). The obtained error 

distributions along the interface for patch variants R1S2 and R1S3 are illustrated in Figures 

5.13 and 5.14, respectively, for a variable quadrature order.  

Figure 5.13: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R1S2 
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Figure 5.14: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R1S3 

The case of 2 GPs has not been considered, since it results into two of the three coupling 

elements being integrated with 1 GP, which does not allow for its direct comparison with the 

base-case patch variants with a quadrature order of two. It is evident from the graphs that the 

adoption of the segment-specific integration scheme at the element level leads to a significantly 

inferior approximation accuracy and convergence rate in comparison to element-specific 

integration, even for a high quadrature order. This is attributed in this case to the integrand 

functions of the force vector and the tangent stiffness matrix components associated with the 

master shell element 2A of coupling element (1A-2A) being piece-wise polynomial along 

CS1. Furthermore, the maximum error is significantly smaller for a given quadrature order in 

variant R1S2, as opposed to R1S3, dropping to 0.075% and 1.35% with 20 GPs, respectively.  

The results of variants R1S2 and R1S3 are compared hereafter against those of variants R2S2 

and R2S3, for the effect of the surface classification as slave and master on the segment-

specific integration accuracy and convergence to be established. The obtained error 

distributions along the interface with variable quadrature order in the range of 3-20 GPs are 

illustrated in Figures 5.15 and 5.16 for variants R2S2 and R2S3, respectively. A comparison 

of the error distribution for variants R1S2 with R1E2, as well as for R1S3 with R1E3, are given 

in Figures 5.17 and 5.18, respectively. 
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The graphs of Figures 5.15 and 5.16 indicate an identical performance of patch variants R2S2 

and R2S3 with R2E2 and R2E3, the latter of which have been proven to achieve the same level 

of accuracy and convergence rate with the base-case patch variants, as discussed in the 

preceding sub-section. The maximum observed error magnitude is 0.0007% and 0.0008% for 

piece-wise linear and quadratic LM fields, respectively, in both cases, which indicates the 

capability of R2S2 and R2S3 to achieve exact integration. This is due to the CSs when Surface 

2 is selected as slave being coincident with the ISs with element-specific integration, as 

opposed to the case where Surface 1 is slave, where the integrand functions are defined as 

piece-wise polynomials along the CSs and thus cannot be integrated exactly .  

Evidently, the coupling element performance is sensitive to the selection of the slave surface 

when segment-specific integration is employed, which can be partially alleviated by selecting 

the surface with the finer mesh of shell elements as slave. However, this integration scheme 

is unreliable in cases where the surface mesh densities are not considerably different. 

The convergence rate with increasing Gaussian quadrature order, for the variants with two 

and three CPs, is illustrated in Figures 5.19 and 5.20. 

Figure 5.15: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R2S2  
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Figure 5.16: Lagrangian Multiplier field error distribution with variable Gaussian quadrature 

order for patch variant R2S3 

 

 

Figure 5.17: Lagrangian Multiplier field error distribution comparison for patch variants 

R1E2-R1S2 
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Figure 5.18: Lagrangian Multiplier field error distribution comparison for patch variants 

R1E3-R1S3 

 

 

Figure 5.19: Convergence rate with increasing Gaussian quadrature order for patch variants 

R1E2/R2E2/R2S2 - R1S2 
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Figure 5.20: Convergence rate with increasing Gaussian quadrature order for patch variants 

R1E3/R2E3/R2S3 - R1S3  
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of the tangent stiffness matrix, resulting from it containing terms which are several orders of 

magnitude apart.  

As discussed earlier, the penalty terms only contribute to the part of the coupling element 

tangent stiffness matrix associated with the kinematic DOFs of the coupled surfaces. The latter 

is subsequently assembled to the shell surface tangent stiffness matrix, for the constraint 

enforcement in a discrete sense along the interface, at the global system level. The terms of the 

shell surface tangent stiffness matrix are proportional to the Young’s modulus E and depend 

on the surface thickness t. These parameters, therefore, provide an indication of the respective 

stiffness term order of magnitude. On the other hand, the order of magnitude of the coupling 

element tangent stiffness matrix terms associated with the kinematic DOFs of the coupled 

surfaces is governed by the selected values of the adopted penalty parameters   and R , and 

hence these are indicative of the condition number of the tangent stiffness matrix in a 

qualitative sense. For sufficiently large values of   and R  the coupling element stiffness terms 

dominate over those of the shell surfaces, thus leading to ill-conditioning of the system tangent 

stiffness matrix, as well as to substantially inferior convergence characteristics. This is 

graphically illustrated in Figure 5.22.  

Figure 5.21: Maximum Lagrangian Multiplier field error variation with normalised 

translational and rotational coupling penalty parameters 
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Figure 5.22: Convergence norm variation with normalised translational and rotational 

coupling penalty parameters 
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Figure 5.23: Coupling element patch geometric configuration with irregular element 

geometry  

All rigid body mode patch tests are passed by the coupling element patch variants I1E2 and 

I1E3, while a variation of the obtained results is observed for the various types of constant 

force/moment patch tests. The planar shear and traction patch tests are both passed, with the 

element achieving an identical performance to that of the base-case-patch variants R1E2 and 

R1E3, illustrated in Figures 5.5 and 5.6, respectively. On the other hand, a performance 

deterioration is observed in the out-of-plane moment and shear-moment patch tests, with a 

considerable error introduced in the LM field approximation along the coupling interface.  

The reason underlying the introduction of a greater error in patch tests associated with surface 

out-of-plane deformation, as opposed to those where the patch is subjected to planar loading, 

is the activation of the rotational coupling LM components in the former case. This is attributed 

to the adopted approach for rotational coupling, which does not achieve the same accuracy 

when discrepancies arise in the vector field variations with the introduction of geometric 

irregularities in the element geometry. 

The ratio of the nodal dislocation to the characteristic shell element size can be employed for 

the quantification of the geometric irregularity magnitude, which can also be referred to as 

element distortion. Evidently, the error in the LM field increases for an increasing element 

distortion. Nevertheless, the element distortion reduces with mesh refinement, and hence, in 

the limit, the obtained error along the interface must converge to zero, due to the coupled 

shell element geometry becoming progressively more regular.  
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To establish the passing of the out-of-plane loading patch tests by the coupling element for 

irregular shell element geometry, the monotonic convergence of the LM field to the exact 

solution with mesh refinement should be verified. The patch mesh is only refined vertically, 

such that the number of coupled shell elements along the interface is maintained, and both these 

elements remain irregular with refinement, for the comparison of the obtained results to be 

feasible. The maximum error magnitude obtained along the interface for the LM field is plotted 

against the order of the mesh refinement processes in the graph of Figure 5.24, for both patch 

variants I1E2 and I1E3, and for an element distortion index of 5%. The refined patch mesh 

configuration in each case is illustrated in Figure 5.25. 

The results in Figure 5.24 show a clear monotonic convergence to the exact solution with 

mesh refinement. This indicates that the patch test is not strictly passed with irregular 

elements, however mesh refinement leads effectively to regularisation and to the passing of 

the patch test. 

Figure 5.24: Convergence rate with increasing order of vertical mesh refinement for patch 

variants I1E2 and I1E3 
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(a) 

 

(b) 

 

(c) 

Figure 5.25: Coupling element patch geometric configuration for irregular element geometry 

and different vertical mesh refinement order: (a) 2, (b) 3, (c) 4 
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5.6 Concluding remarks 

Within the scope of the established systematic methodology for surface coupling along a line, 

presented in Chapter 4, translational and rotational coupling element formulations are 

proposed in this chapter, applicable to surfaces discretised with quadratic Reissner-Mindlin 

curved shell elements. Both formulations are developed using energy variational principles, 

enabling the determination of the coupling element internal force vector and tangent stiffness 

matrix associated with the individual sets of constraints along the interface. Translational 

coupling constraints enforce surface displacement compatibility along the interface in all three 

global directions, whereas rotational coupling is achieved by constraining the relative 

transverse slopes of the coupled surfaces. Accordingly, both coupling element formulations 

are expressed purely in terms of the global translational DOFs of the two surfaces and 

rotational DOFs are excluded. A set of rigid body and constant force/moment patch tests are 

conducted to verify the element ability of representing constant LM fields for different 1-D 

element patches, while satisfying interface compatibility conditions. The element passes all 

specified rigid body mode patch tests exactly and the constant force/moment patch tests with 

a maximum error in the LM field of less than 0.001% in its default modus operandi, where an 

element-based Gaussian quadrature integration scheme is adopted. A series of sensitivity 

analyses are further conducted to investigate the element performance sensitivity to a variety 

of parameters and algorithmic processes underpinning its formulation, and the main 

conclusions drawn are summarised hereafter: (i) the element performance is insensitive to the 

surface classification as master/slave; (ii) the element-based integration variant achieves exact 

integration, as opposed to the segment-based variant where the integrand functions 

are potentially piece-wise polynomial and thus cannot be integrated exactly, even with a 

large number of GPs; (iii) the element performance is generally insensitive to the selection 

of the penalty parameters, with excessively large values, nonetheless, leading to ill-

conditioning of the tangent stiffness matrix and convergence failure; and (iv) the 

element performance deteriorates in the case of rotational coupling of geometrically 

irregular shell FEs, however monotonic convergence to the exact solution is still achieved 

with mesh refinement, and hence the element passes the respective patch tests for irregular 

shell FE geometries.  
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Chapter 6 

1-D Coupling Element Verification Studies

6.1 Introduction 

The established high-fidelity (HF) nonlinear Finite Element (FE) modelling strategy presented 

in Chapter 3 is employed here in the context of a series of verification studies for the developed 

1-D translational and rotational coupling element, the formulation of which was presented in

Chapters 4 and 5. The selected studies aim to verify the ability of the coupling element to 

enforce effectively rigid kinematic constraints along a 1-D interface, between parallel or 

intersecting shell surfaces of arbitrary relative spatial orientation modelled with non-

conforming meshes, taking due account of geometric and material nonlinearity. It is 

emphasised that, as discussed in Chapter 1, the term non-conforming is employed here to refer 

to non-matching coupled meshes with lack of nodal alignment along the coupling interface.  

The passing of the set of patch tests, as elaborated in Section 5.5, confirms the ability of the 

coupling element to represent constant Lagrangian Multiplier (LM) force and moment fields 

along a 1-D interface, which is an essential requirement for convergence with mesh refinement. 

Herein, consideration is given to more complex plated and shell structural forms, with both 

developable and non-developable surfaces, coupled along a straight or curved interface, and 

discretised with regular or irregular shell elements. Particular focus is given to edgewise 

connected or intersecting planar, cylindrical and spherical shell surfaces, with the cases of 

folded plates, as well as mixed coupling of different surface types, being considered in the 

context of the larger-scale application study 5, presented in the next chapter.  
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Six verification studies are presented in this chapter, with the structural forms being 

investigated encompassing: (i) a rectangular planar plate, (ii) an L-frame, (iii) an annular plate, 

(iv) a cylindrical shell, (v) a hemispherical shell with a tip cut-off and (vi) and an imperfect

I-beam. In each study, the deformed configuration, nonlinear equilibrium path and contour

plots of the principal local shell FE generalised stress entities, obtained for the Coupled Mesh 

(CM) configuration from incremental nonlinear analyses, are compared against those of a

monolithic model, henceforth referred to as the Base Mesh (BM). The latter corresponds to a 

standard mesh with the minimum employed level of discretisation detail determined by the 

denser of the coupled non-conforming meshes.  

All verification studies are conducted using ADAPTIC (Izzuddin, 1991) v2.16.5, where the 

developed coupling element has been implemented. For the active coupling element 

identification along the 1-D interface in each case, the progressive segmentation algorithm 

presented in Section 4.5 with a slave-only approach is employed, considering the surface 

associated with the finest mesh as slave. At the coupling element level, a quadratic LM field 

interpolation using 3 Collocation Points (CPs) is adopted for all studies, with 4 LM entities 

introduced at each CP for the constraint enforcement, in accordance with the discussion in 

Section 4.4. The penalty parameters for both translational and rotational coupling are 

specified as 0.1, while the element-specific integration scheme presented in Sub-section

4.7.3.2 is employed, with a Gaussian quadrature order of 3.   

6.2 Rectangular plate subjected to uniform stress states 

A 200×100 mm2 rectangular plate with a 1 mm thickness is considered in this study. A tri-

linear elastoplastic material constitutive model is adopted, where the Young’s modulus, 

Poisson’s ratio and yield strength are specified as E = 210000 N/mm2, v = 0.0 and fy = 355 

N/mm2, respectively, and where strain-hardening is ignored.   

The plate is represented with a coupled model CM-1, which comprises two 100×100 mm2 

plates coupled along a straight 1-D interface introduced at mid-length. The coarse and dense 

meshes comprise 4 and 64 9-noded shell FEs with regular edges, respectively. Similarly, a base 

model BM-1 is also employed which consists of a uniform mesh of 128 FEs, with an element 
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size equal to that of the finer mesh in CM-1. Configurations BM-1 and CM-1 are illustrated in 

Figure 6.1. 

The plate is subjected to several displacement boundary conditions aimed at achieving uniform 

internal forces, as follows: (i) membrane forces along the global X-axis, (ii) planar shear forces 

along the planar global X- and Y-axes, (iii) bending moment about the global Y-axis, (iv) 

transverse shear forces along the global Z-axis, and (v) twisting moments about the global X- 

and Y-axes. The loading and boundary condition specifications for each of the aforementioned 

cases will be discussed in the following Sub-sections 6.2.1-6.2.5. It should be noted that the 

selection of a zero value for the Poisson’s ratio v enables the elimination of anticlastic effects 

in the curvature-inducing load cases (iii) – (v) outlined above.  

 

 
Figure 6.1: Geometric configuration, material properties and FE meshes for plate models 

CM-1 and BM-1 
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 Uniform membrane force field 

A uniform field of membrane forces is induced over the plate domain by applying a uniform 

unit displacement field dnom = 1 mm at its right end in the global X direction and restraining all 

nodes along the left edge against translations in the X-direction. Minimum restraints along the 

Y-axis are further introduced at two nodes along the left and right edges for rigid body motion 

to be avoided. Configurations CM-1 and BM-1 are illustrated in Figure 6.2. The maximum 

value of the applied displacement field is specified as 3mm, which exceeds the yield 

displacement of 0.338 mm with a corresponding maximum membrane force value of 355 

N/mm.  

 

 
Figure 6.2: Geometric configuration, applied loading and boundary conditions for plate 

models CM-1 and BM-1 
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The plate deformed configuration, along with contour plots of the shell FE membrane force Nx 

generalised stress entity along the global X-axis, are provided in Figures 6.3 and 6.4, 

respectively. Identical nonlinear equilibrium paths for the translational Degree of Freedom 

(DOF) along the X-axis at the right plate edge nodes are obtained for the CM-1 and BM-1 

models, as illustrated in Figure 6.5, where the load factor in the vertical graph axis is obtained 

by normalising the load with a nominal value of 355 N/mm.  

As evident from the contour plots, the coupling element allows for a uniform membrane force 

field to be transferred exactly between the adjoining elements of the two coupled meshes in 

CM-1. This is achieved by means of a uniform LM force field along the interface in the X-

direction, introduced to enforce the corresponding translational kinematic constraint.  

The results of this study demonstrate the ability of the coupling element to transfer uniform 

force fields associated with translational constraints exactly, as will be also demonstrated in 

the following sub-section for a uniform planar shear loading. 

 
(a) 

 
(b) 

Figure 6.3: Deformed configuration at maximum displacement for plate models CM-1 (a) and 

BM-1 (b)  
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(a) 

 
(b) 

 

 

 

 

 

 

Figure 6.4: Contour plots of local shell FE membrane force Nx at first yield for plate models 

CM-1 (a) and BM-1 (b)  

 

Figure 6.5: Nonlinear equilibrium path of translational DOF along the X-axis at right plate 

edge for plate models CM-1 and BM-1 
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 Uniform planar shear force field 

A uniform field of shear forces is induced over the plate domain by applying a uniform unit 

displacement field at its right end, alongside a linearly varying displacement field along its top 

and bottom edges, with values between 0 and 1 at their left and right ends, respectively, along 

the global Y-axis. All nodes along the left plate edge are restrained against translations in both 

the X- and Y-directions, while translational restraints in the X-direction are further introduced 

along the remaining three plate edges. Configurations CM-1 and BM-1 are illustrated in Figure 

6.6. The maximum value of the applied displacement field is specified as 3mm, which exceeds 

the yield displacement of 0.390 mm with a corresponding maximum membrane force value of 

205 N/mm.  

 

 
Figure 6.6: Geometric configuration, applied loading and boundary conditions for plate 

models CM-1 and BM-1 
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The deformed configuration and contour plots of the shell FE planar shear force Nxy generalised 

stress entity are provided in Figures 6.7 and 6.8, respectively. Identical nonlinear equilibrium 

paths for the displacement along the Y-axis at the right plate edge nodes are obtained for the 

CM-1 and BM-1 models, as illustrated in Figure 6.9, where the load factor in the vertical graph 

axis is obtained by normalising the load with a nominal value of 205 N/mm.  

As is evident from the contour plots of Figure 6.8, the coupling element allows for a uniform 

planar shear force field to be transferred exactly between the adjoining elements of the two 

coupled meshes in CM-1. Similar to the case of membrane loading discussed in the preceding 

sub-section, this is achieved by means of a uniform LM force field along the interface in the 

Y-direction, introduced to enforce the corresponding translational kinematic constraint. The 

results of this study demonstrate the ability of the coupling element to transfer uniform force 

fields associated with translational constraints exactly. 

 

 
(a)  

 
(b) 

Figure 6.7: Deformed configuration at maximum displacement for plate models CM-1 (a) and 

BM-1 (b)  
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(a) 

 
(b) 

 

 

 

 

 

 

Figure 6.8: Contour plot of local shell FE planar shear force Nxy at maximum displacement 

for plate models CM-1 (a) and BM-1 (b) 

 
Figure 6.9: Nonlinear equilibrium path of translational DOF along the Y-axis at right plate 

edge for plate models CM-1 and BM-1 
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 Uniform transverse bending moment field 

A uniform transverse bending moment field is induced over the plate domain by applying a 

uniform unit rotational field along its right edge, alongside a linearly varying rotational field 

along its top and bottom edges with values between 0 and 1 at their left and right ends, 

respectively, about the global Y-axis. All nodes along the left plate edge are restrained against 

out-of-plane translations in the Z-direction and rotations about the Y-direction, while minimum 

translational restraints in the X- and Y-directions are further introduced on two of these nodes 

for rigid body motion to be avoided. Configurations CM-1 and BM-1 are illustrated in Figure 

6.10. The maximum value of the applied rotational field is specified as θmax = 6 rad, which 

exceeds the yield rotation θyield = 0.68 rad. 

The plate deformed configuration at the initiation of yielding, as well as at maximum rotation, 

are illustrated in Figure 6.11. The contour plots of the shell FE bending moment Mx about the 

global Y-axis, as well as of the transverse shear force Qxz about the global Z-axis, at the 

corresponding response states are provided in Figures 6.12 and 6.13, respectively. The 

nonlinear equilibrium paths for the rotation about the Y-axis at the right plate edge nodes for 

CM-1 and BM-1 models are illustrated in Figure 6.14. The load factor in the vertical graph axis 

is obtained by normalising the applied bending moment with a nominal value of 59.17 

Nmm/mm, corresponding to the yield bending moment.  

The contour plots of Figures 6.12 (a) and 6.13 (a) demonstrate the principal mechanism of 

rotational constraint enforcement along the 1-D interface by the coupling element, which was 

discussed in detail in Section 5.3. This is based on coupling the orthogonal to the interface and 

tangent to the adjoining shell FE surface vector fields, which are expressed in terms of the 

respective global translational nodal DOFs in the deformed configuration. Thereupon, the 

introduced LM moment field required to achieve rotational coupling along the interface is 

transformed into a couple of equivalent nodal forces within each of the adjoining shell FE 

domains, along the global (X, Y, Z) Cartesian coordinate axes. This induces a set of transverse 

shear forces Qxz in the adjoining elements, thus causing discontinuities in the respective 

distribution, as well as in the distribution of Mx, despite the plate being subjected to a constant 

curvature mode associated with zero shear throughout the domain.  

A smoother distribution is obtained away from the adjoining shell FEs, which becomes 

virtually identical for both CM-1 and BM-1 at a sufficient distance, thus allowing for the correct 
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reaction forces and moments to be obtained at the supports and for equilibrium to be satisfied 

in a global sense. In moderate/large-scale structures discretised with relatively fine FE 

meshes, the effect of the discontinuities discussed above at the coupling interface vicinity 

becomes negligible, thereby allowing for an accurate response evaluation and internal force 

distribution approximation to be obtained at the global level. Moreover, the observed 

deviation of the nonlinear response in the range of very large displacements can be 

attributed to the approximation embedded in the coupling constraint enforcement, as well as 

to the employment of a coarser mesh in CM-1 leading to a stiffer response.  

Figure 6.10: Geometric configuration, applied loading and boundary conditions for plate 

models CM-1 and BM-1 

Coupled Mesh CM-1 – 68 shell FEs

x

y

X

Y Z

x

y

Base Mesh BM-1 – 128 shell FEs

X

Y Z



Chapter 6: 1-D Coupling Element Verification Studies 
 

205 
 

 
(a) 

 

 
(b) 

Figure 6.11: Deformed configuration at first yield and maximum rotation for plate models 

CM-1 (a) and BM-1 (b) 
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(a) 

(b) 

Figure 6.12: Contour plots of local shell FE bending moment Mx at first yield and maximum 

rotation for plate models CM-1 (a) and BM-1 (b) 
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(a) 

 

 
(b) 

 

Figure 6.13: Contour plots of local shell FE transverse shear force Qxz at first yield for plate 

models CM-1 (a) and BM-1 (b) 

 
Figure 6.14: Nonlinear equilibrium path of rotational DOF about the Y-axis at right plate 

edge for plate models CM-1 and BM-1 
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 Uniform transverse shear force field 

A uniform transverse shear force field is induced over the plate domain by applying a uniform 

unit displacement field along its right edge along the global Z-axis. All nodes along the left 

plate edge are restrained against out-of-plane translations in the Z-direction and rotations about 

the Y-axis, while minimum translational restraints in the X- and Y-directions are further 

introduced on two of these nodes to avoid rigid body motion. Configurations CM-1 and BM-1 

are illustrated in Figure 6.15. Naturally, the applied displacement field induces transverse 

bending about the global Y-axis, beyond shear, associated with a linear moment variation along 

the global X-axis. The maximum value of the applied displacement field is specified as 

dmax = 200 mm, which exceeds the yield displacement dyield = 45 mm. At first yield, the 

transverse shear force is constant over the plate domain and equal to 0.296 N/mm, while the 

corresponding yield bending moment is 59.17 Nmm/mm, similar to the preceding study.  

The plate deformed configuration at the initiation of yielding, as well as at the maximum 

transverse displacement, are illustrated in Figure 6.16, while the contour plots of the shell FE 

transverse shear force Qxz, bending moment Mx and membrane force Nx generalised stress 

entities at the corresponding response states are illustrated in Figures 6.17, 6.18 and 6.19, 

respectively. The nonlinear equilibrium paths for the translational DOF along the Z-axis at the 

right plate edge nodes for the CM-1 and BM-1 models are illustrated in Figure 6.20, where the 

load factor in the vertical graph axis is obtained by normalising the applied load with a nominal 

value of 0.296 N/mm.  

Similar to the preceding study, subjecting the plate to a curvature inducing displacement field 

requires the enforcement of a rotational kinematic constraint along the interface, which is 

achieved by means of a couple of equivalent nodal forces introduced at the adjoining shell FEs. 

This is evident in the contour plots of all three Qxz,, Mx and Nx  entities of CM-1, shown in 

Figures 6.17 (a), 6.18 (a) and 6.19 (a), respectively, where discontinuities are observed at the 

interface vicinity. 

In the range of moderate-large displacements, where the plate becomes progressively 

perpendicular to its undeformed configuration and the lever arm of the applied loading with 

respect to its restrained left edge reduces significantly, a transition between the principal load-

transferring mechanism is exhibited. The bending and transverse shear principal load-

transferring mechanisms in the range of small displacements progressively give place to a pure 
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membrane action mechanism, with virtually zero Qxz and Mx over the plate domain. These only 

increase locally in the vicinity of the fully-formed plastic hinge adjacent to the left edge. The 

above transition becomes evident by virtue of comparison of the contour plots at the first yield 

and maximum displacement states.  

The progressive load-transferring mechanism transition discussed above, alongside the 

associated reduction in the plate curvature in the range of large displacements, results in a 

transition in the kinematic constraint that the coupling element is called to enforce, which shifts 

from a rotational to a translational one. This study therefore further highlights the ability of the 

developed coupling element to achieve both forms of coupling in cases where either of the two 

constraints is eliminated, by means of the distinct allocated LM components for each constraint 

type, as earlier discussed in Section 4.4.  

 

 

Figure 6.15: Geometric configuration, applied loading and boundary conditions for plate 

models CM-1 and BM-1 
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(a) 

  
(b) 

Figure 6.16: Deformed configuration at first yield and maximum displacement for plate 

models CM-1 (a) and BM-1 (b) 
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(a) 

 
 

 
(b) 

Figure 6.17: Contour plots of local shell FE shear force Qxz at first yield and maximum 

displacement for plate models CM-1 (a) and BM-1 (b) 
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(a) 

 
 

 
(b) 

Figure 6.18: Contour plots of local shell FE bending moment Mx at first yield and maximum 

displacement for plate models CM-1 (a) and BM-1 (b) 
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(a) 

 
 

 
(b) 

Figure 6.19: Contour plots of local shell FE membrane force Nx at first yield and maximum 

displacement for plate models CM-1 (a) and BM-1 (b) 
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Figure 6.20: Nonlinear equilibrium path of translational DOF along the Z-axis at right plate 

edge for plate models CM-1 and BM-1 

Uniform twisting moment field 

A uniform twisting moment field is induced over the plate domain by applying uniform 

rotational fields with opposite values along its two sets of opposing edges: (i) rotational fields 

θx with values 0.5 rad/mm and -0.5 rad/mm about the Y-axis at its top and bottom edges, 

respectively and (ii) rotational fields θy with values 1 rad/mm and -1 rad/mm about the X-axis 

at its left and right edges, respectively. A single translational restraint is introduced in the Z-

direction at the plate centre, alongside minimum planar restraints at the left and right edges for 

rigid body motion to be avoided. This allows for a linear variation of θx and θy to be obtained 

over the plate domain, along the Y- and X-axes, respectively, which induces a constant 

twisting curvature κxy, and hence a constant twisting moment, in the range of small rotations. 

Configurations CM-1 and BM-1 are illustrated in Figure 6.21. Material yielding is observed in 

the range of very small rotations, of the order of 0.02 and 0.04 rad for θx and θy, respectively. 

Hence, a maximum specified magnitude for the applied rotational fields of 0.05 and 0.1 rad, is 

adequate to investigate the coupling element ability to approximate the monolithic mesh 

response, taking due account of material nonlinearity. 
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The plate deformed configuration at a state in the small rotation range with θx = 0.5 mrad and 

θy = 1 mrad, where the response is perfectly elastic, is illustrated in Figure 6.22, while the 

contour plots of the local shell FE twisting moment Mxy, at the corresponding state are 

illustrated in Figure 6.23. The nonlinear equilibrium paths for rotations θx and θy at the bottom 

right corner plate node for CM-1 and BM-1 models are illustrated in Figures 6.24 and 6.25, 

where the load factor in the vertical graph axis is obtained by normalising the applied twisting 

moment with a value of 8 Nmm/mm obtained at first yield. 

 

 
 

Figure 6.21: Geometric configuration, applied loading and boundary conditions for plate 

models CM-1 and BM-1 
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The applied perimetric rotational field does not induce bending curvature along the coupling 

interface in the range of small rotations, and hence the activated LM components are associated 

with translational constraints only. This allows for the coupling element to achieve an exact 

distribution of the internal forces over the plate domain in CM-1, including the adjoining shell 

FEs. The application of rotations at nodes along the coupling interface induces minor curvature 

at the shell FEs located at the two interface ends, and thus minor discontinuities are observed 

in the contour plots, due to the approximation embedded in the rotational coupling formulation. 

The adopted ratio for the applied rotational fields along the horizontal and vertical plate edges 

does not enable these to remain straight in the range of large rotations, particularly in the 

presence of material plasticity. Therefore, the comparison of the coupled and monolithic 

meshes is limited to the considered range of rotations, where the ability of the coupling element 

to transfer a uniform twisting moment field between the coupled meshes is verified.  

 
(a) 

 
(b) 

Figure 6.22: Deformed configuration at a small twisting rotation state for plate models CM-1 

(a) and BM-1 (b) 
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(b) 

 

Figure 6.23: Contour plots of local shell FE twisting moment Mxy at a small twisting rotation 

state for plate models CM-1 (a) and BM-1 (b) 

 



Chapter 6: 1-D Coupling Element Verification Studies 
 

218 
 

 

Figure 6.24: Nonlinear equilibrium path of rotational DOF θx about the Y-axis at bottom right 

plate corner for plate models CM-1 and BM-1  

 

 

Figure 6.25: Nonlinear equilibrium path of rotational DOF θy about the X- axis at bottom 

right plate corner for plate models CM-1 and BM-1 
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6.3 L-frame subjected to end forces 

An L-frame consisting of two 100×10 mm2 plates of 1 mm thickness is considered in this study, 

as illustrated in Figure 6.26. For distinction purposes, the two plates of the L-frame oriented 

with their large dimension along the Y- and X-axes will henceforth be referred to as plate 1 

and plate 2, respectively. The L-frame is fully restrained against rotations and translations at 

the free end of plate 1 and is subjected to three distinct load cases, with the load applied in the 

form of a uniformly distributed force field introduced at the free end of plate 2. The load cases 

under consideration include a uniform force field along: (i) the global X-axis, (ii) the global Y-

axis, and (iii) the global Z-axis. A tri-linear elastoplastic material constitutive model is adopted 

with Young’s modulus E = 210000 N/mm2, Poisson’s ratio v = 0.3, yield stress fy = 355 N/mm2 

and a negligible strain-hardening parameter. 

The coupled mesh configuration CM-2 comprises two independently discretised meshes for 

the plates, coupled along a straight 1-D interface oriented in the Y-direction and introduced at 

the frame corner, where these intersect. A coarse mesh comprising 8 9-noded shell FEs with 

regular edges is employed for the domain discretisation of plate 2, while a fine mesh of 128 

elements is employed for plate 1. The base mesh configuration BM-2 consists of two matching 

meshes for plates 1 and 2, encompassing 320 and 16 shell FEs, respectively. Configurations 

CM-2 and BM-2 are illustrated in Figure 6.26. The adoption of a superior level of discretisation 

detail for the plate 1 is justified on the basis of it exhibiting more substantial stress variation 

under the load cases examined herein, in comparison to plate 2.  

The focus of the present study remains the verification of the coupling element ability to 

achieve translational and rotational coupling between initially co-planar intersecting plated 

components under complex stress states, taking due account of geometric and material 

nonlinearity. Further consideration is given here to its capability of providing an accurate 

approximation of the internal force distribution at critical response states, thus enabling the 

capturing of the various transitions between load-transferring mechanisms in the range of 

large displacements.  
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Figure 6.26: Geometric configuration, applied loading, boundary conditions and material 

properties for L-frame models CM-2 and BM-2 
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 Planar end loading in X-direction 

In the present study, a uniformly distributed force field with nominal magnitude 10 N/mm is 

applied incrementally at the free end of plate 2 along the global X-axis. Beyond the fixed 

support at the free end of plate 1, translational restraints along the global Z-axis are further 

introduced over the frame domain to prevent out-of-plane buckling. The L-frame deformed 

configuration corresponding to a maximum free end displacement of 80 mm for plate 2 at node 

P, which has been annotated in Figure 6.26, is illustrated in Figure 6.27 for both CM-2 and 

BM-2 configurations.  

The frame response in the small displacement range is characterised by transverse bending of 

plate 1, with the corresponding effect being negligible for plate 2. Taking due account of the 

adopted material parameters, increasing loading leads to the formation of the first plastic hinge 

at the restrained bottom edge of plate 1, due to yielding of the respective section under 

substantial bending stresses and spread of the induced plasticity in the edge vicinity. Following 

the formation of the first plastic hinge, stiffness degradation leads to increased deformations 

along the global X-axis, thereby inducing substantial bending stresses over plate 2, and, 

ultimately, leading to the formation of a second plastic hinge at the frame corner. In the range 

of large displacements, the load application axis tends to align with both plastic hinges of the 

frame, which behaves as a mechanism and becomes virtually horizontal. Accordingly, 

substantial membrane action is exhibited, leading to stiffness hardening. The phenomena 

described above are observed both in the contour plots of the membrane force Nx generalised 

stress entity illustrated in Figure 6.28 and the nonlinear equilibrium paths provided in Figure 

6.29, corresponding to the translational DOF along the X-axis of node P.  

The nonlinear equilibrium paths are virtually identical throughout the full response range, with 

minor deviations observed only in the range of very large displacements. Furthermore, as 

observed in the contour plots, the coupling element employment allows for an accurate 

approximation of the internal force distribution to be obtained at the critical response states, 

i.e. at the formation of the two plastic hinges, thus enabling the accurate capturing of the spread 

of plasticity both away from the coupling interface and in its vicinity. Accordingly, the 

evolution of the deformed configuration can be accurately captured when the coupling element 

is employed, as highlighted by comparison of the contour plots of Figure 6.28 (a), (b) and (d), 

(e), at plastic hinge formation, as well as of Figure 6.28 (c) and (f), at maximum displacement. 
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(a) 

 

 
(b) 

Figure 6.27: Deformed configuration at maximum displacement for L-frame models CM-2 

(a) and BM-2 (b) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.28: Contour plots of local shell FE membrane force Nx at plastic hinge formation 

and maximum displacement for L-frame models CM-2 (a, b, c) and BM-2 (d, e, f) 
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Figure 6.29: Nonlinear equilibrium path of translational DOF along the X-axis at node P for 

L-frame models CM-2 and BM-2 
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In the present study, a uniformly distributed force field with nominal magnitude 10 N/mm is 
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deformation due to buckling. The nonlinear equilibrium paths for both CM-2 and BM-2 

configurations, corresponding to the translational DOF along the Y-axis of node P, are provided 

in Figure 6.30. The L-frame deformed configuration for a maximum free end displacement of 

100 mm for plate 2 at node P is illustrated in Figure 6.31, for both CM-2 and BM-2 
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extensive yielding of plate 1, followed by a yielding plateau and a branch of substantial stiffness 

hardening in the range of large displacements, due to membrane action. The aforementioned 

response attributes are observed in the contour plots of the local shell FE membrane force Nx 

generalised stress entity illustrated in Figure 6.32, as well as in the nonlinear equilibrium paths 

of Figure 6.30. 

Similar to the load-case discussed in the preceding sub-section, the results are indicative of the 

coupling element ability to accurately capture geometric nonlinearity effects, as well as the 

spread of plasticity, throughout the evolution of the L-frame deformed configuration and at the 

various load-transferring mechanism transitions. 

Figure 6.30: Nonlinear equilibrium path of translational DOF along the X-axis at node P for 

L-frame models CM-2 and BM-2
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(b) 

 
Figure 6.31: Deformed configuration at maximum displacement for L-frame models CM-2 

(a) and BM-2 (b) 
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(a) 

   
(b) 

 
(c) 

              

(d) 

 

Figure 6.32: Contour plots of local shell FE membrane Nx for L-frame models: (a) 

CM-2 - plastic hinge formation, (b) BM-2 - plastic hinge formation, (c) CM-2 - maximum 

displacement, (d) BM-2 - maximum displacement 



Chapter 6: 1-D Coupling Element Verification Studies 

228 

Out-of-plane end loading in Z-direction 

In the present study, a uniformly distributed force field with nominal magnitude 1 N/mm is 

applied incrementally at the free edge of plate 2 along the global Z-axis. The L-frame deformed 

configuration at a maximum free end displacement of 140 mm for plate 2 at node P is illustrated 

in Figure 6.33, for both CM-2 and BM-2 configurations.  

The frame response under transverse out-of-plane loading is principally characterised by 

bending of plate 2, as well as bending and twisting of plate 1, which ultimately leads to the 

yielding of the bottom restrained edge of the latter. The nonlinear response is associated with 

significantly reduced stiffness in the range of small displacements, in comparison with the two 

preceding studies, due to the bending moment acting about the plate section weak bending axis 

in this case. Following the plastic hinge formation, a yielding plateau is observed in the 

nonlinear equilibrium path, with the frame progressively exhibiting stiffness hardening before 

attaining the maximum displacement. 

The aforementioned response attributes can be observed in the contour plots of the local shell 

FE membrane force Nx, twisting moment Mxy and bending moment Mx generalised stress 

entities illustrated in Figure 6.34, as well as in the nonlinear equilibrium paths provided in 

Figure 6.35, corresponding to the translational DOF along the Z-axis of node P.  

Expanding on the conclusions of the two preceding studies, the results presented herein verify 

the coupling element ability to accurately capture complex stress states associated with both 

bending and twisting rotations, as well as the spread of plasticity throughout the evolution of 

the L-frame deformed configuration. 
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(a) 

(b) 

Figure 6.33: Deformed configuration at maximum displacement for L-frame models CM-2 

(a) and BM-2 (b)
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(a) (b) (c) 

(d) (e) (f) 

Figure 6.34: Contour plots of local shell FE generalised stress entities at maximum 

displacement for L-frame models: (a) CM-2 - membrane force Nx, (b) CM-2 - twisting 

moment Mxy, (c) CM-2 - bending moment Mx, (d) BM-2 - membrane force Nx, (e) 

BM-2 - twisting moment Mxy, (f) BM-2 - bending moment Mx 
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Figure 6.35: Nonlinear equilibrium path of translational DOF along the X-axis at node P for 

L-frame models CM-2 and BM-2 

 

6.4 Annular plate subjected to out-of-plane loading  

An isotropic annular plate with a cut-off, fully fixed at one free end and subjected to a uniform 

transverse shear force field with nominal value 1 N/mm at the other, is considered herein, as 

illustrated in Figure 6.36. The plate external and internal radii are specified as R = 200 mm and 

r = 100 mm, respectively, and its thickness as 1 mm. A tri-linear elastoplastic material 

constitutive model is adopted, with Young’s modulus E = 210000 N/mm2, Poisson’s ratio 

v = 0.3, yield stress fy = 355 N/mm2 and a negligible strain-hardening parameter.  

The coupled mesh configuration CM-3 comprises two edgewise adjoined semi-circular annular 

plates with identical geometric specifications, coupled along a straight 1-D interface oriented 

in the global X-direction, which is introduced at an angular polar coordinate θ = π/2 rad, 

opposite to the cut-off at θ = 3π/2 rad. Two non-conforming meshes, comprising 20 and 80 

9-noded shell FEs with irregular edges, are employed for the domain discretisation of the two 

plate halves, while the base mesh configuration BM-3 is discretised with a uniform mesh of 

160 shell FEs, obtained by refinement of the coarser mesh to achieve nodal alignment along 

the interface. Configurations CM-3 and BM-3 are illustrated in Figure 6.36.  
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The main focus of the present study is the verification of the coupling element ability to achieve 

translational and rotational coupling between initially co-planar plated components with 

irregular shell FE geometry under complex stress states, taking due account of geometric and 

material nonlinearity. The annular plate deformed configuration for a free end displacement of 

500 mm at node P, which has been annotated in Figure 6.36, is illustrated in Figure 6.37 for 

both CM-3 and BM-3 configurations. Virtually identical equilibrium paths for the translational 

DOF along the Z-axis at node P are obtained for both BM-3 and CM-3 annular plate models, 

as illustrated in Figure 6.38. Contour plots do not provide an insight in a Cartesian coordinate 

framework, due to the plate geometry being circular, and hence the comparison of CM-3 and 

BM-3 is limited to the deformed configuration and the obtained nonlinear equilibrium paths in 

this study. 

The applied out-of-plane loading principally induces twisting over the plate domain, as well as 

significant bending, thus activating both translational and rotational LM components to achieve 

coupling along the 1-D interface of CM-3. Substantial geometric nonlinearity is embedded in 

the response, even in the range of very small displacements, with the plate exhibiting a stable 

nonlinear equilibrium path. The stiffness is slightly reduced upon initiation of yielding at a load 

factor of 1.00 and the subsequent spread of plasticity over the plate domain, initiating from its 

internal perimeter, while in the range of very large displacements the plate exhibits substantial 

stiffness hardening due to membrane action. 

The coupling element employment allows for the phenomena described above to be accurately 

captured, with minor deviations observed in the response at the maximum transverse 

displacement state. These are attributed to the coupling element moment transferring 

mechanism via equivalent nodal force couples introduced at the adjoining shell FE domains, 

as well as to the employment of a different discretisation level for BM-3 and CM-3. 
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Figure 6.36: Geometric configuration, applied loading, boundary conditions and material 

properties for annular plate models CM-3 and BM-3 
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(a) 

(b) 

Figure 6.37: Deformed configuration at maximum displacement for annular plate models 

CM-3 (a) and BM-3 (b)
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Figure 6.38: Nonlinear equilibrium path of translational DOF along the Z-axis at node P for 

annular plate models CM-3 and BM-3 

6.5 Hinged cylindrical shell subjected to point load 

A cylindrical shell, simply supported along its straight edges and subjected to a concentrated 

point load with unit nominal value applied transverse to its surface at its geometric centre, is 

considered herein, as shown in Figure 6.39. The shell length is specified as L = 508 length units 

(LUs), its half-subtended angle as β = 0.1 rad and its curvature radius as 2540 LUs, while two 

alternative thicknesses t = 12.5 and 6.35 LUs are considered. An isotropic material constitutive 

model is adopted, with Young’s modulus E = 3.105 FUs/(LUs)2 and Poisson’s ratio v = 0.3, 

where FUs denotes the force units.  

The coupled mesh configuration CM-4 comprises three edgewise adjoined cylindrical shells 

with identical curvature radii and half-subtended angles, and lengths of 127, 254 and 127 LUs, 

coupled along two curved 1-D interfaces along the curved shell edges in the global Y-direction, 

introduced at one and three quarters of the total shell length L. Two coarse meshes and a single 

fine mesh, encompassing 25 and 400 singly-curved, 9-noded shell FEs, respectively, are 

employed for the domain discretisation of the two shell quarters and its central part. A uniform 
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mesh with 800 elements is employed for the discretisation of the base mesh configuration 

BM-4, which is obtained by refinement of the two coarser meshes to achieve nodal alignment 

along each interface. Configurations CM-4 and BM-4 are illustrated in Figure 6.39. 

The verification study is based on a numerical example presented by Izzuddin and Liang (2016) 

and aims at comparing the nonlinear response of CM-4, obtained with the employment of the 

developed coupling element, with that of a monolithic model investigated by the authors, which 

has been readily validated against a variety of results in the existing literature. Particular focus 

is given to highlighting the element performance in the case of surfaces discretised with curved 

shell FEs and coupled along a curved 1-D interface under complex stress states, taking due 

account of geometric and material nonlinearity.   

The cylindrical shell deformed configuration corresponding to a maximum transverse 

displacement of 35 LUs at node P, where the central point load is being applied, is illustrated 

in Figure 6.40, for both CM-4 and BM-4 configurations. These correspond to the shell with 

thickness 12.7 LUs and are qualitatively identical for the configuration with a thickness of 6.35 

LUs. Characteristic contour plots of the shell FE bending moment My and membrane force Ny 

generalised stress entities are provided in Figures 6.41, 6.42 and 6.43 for the cylindrical shell 

model with thickness of 12.7 LUs, at three states over the shell deformed configuration 

evolution: (i) a state in the range of small displacements, prior to the limit point, associated 

with a transverse displacement of 1 LU, (ii) at the limit point, associated with a transverse 

displacement of 11 LUs, and (iii) at the maximum displacement state, associated with a 

transverse displacement of 35 LUs. The nonlinear equilibrium paths for the translational DOF 

along the Z-axis at node P for the two thicknesses under consideration are provided in Figures 

6.44 and 6.45, for both CM-4 and BM-4 configurations. 

The nonlinear equilibrium path of the cylindrical shell is initially thoroughly stable, with a limit 

point being subsequently reached for load factors of 2.25 and 0.6, for the models with 

thicknesses 12.7 LUs and 6.35 LUs, respectively. The shell response is thoroughly unstable 

after the limit point, with the sense of the initial shell curvature being fully reversed, and the 

shell subsequently exhibiting a stable branch associated with significant membrane action in 

the range of large displacements. In the case of the thinner shell, the nonlinear equilibrium path 

exhibits a snap-back response following the limit point. The capturing of these intricate 

response attributes requires the specification of a displacement control phase after the first limit 

point is reached.   
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As is evident from Figures 6.44 and 6.45, the employment of the developed coupling element 

allows for a virtually identical response to be obtained for CM-4 and BM-4, with a small 

deviation being observed only at the snap-back point in the case of the thinner shell. As can 

also be inferred from comparison of the contour plots in Figures 6.41, 6.42 and 6.43, the 

obtained force distribution for CM-4 in the various response states considered offers a good 

approximation of the actual distribution of BM-4, with deviations arising in the vicinity of the 

coupling interface due to the approximation embedded in the rotational coupling formulation. 

This study adds further verification to the accuracy of the proposed coupling element in the 

range of large displacements.  

Figure 6.39: Geometric configuration, applied loading, boundary conditions and material 

properties for cylindrical shell models CM-4 and BM-4 
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(b) 

Figure 6.40: Deformed configuration at maximum displacement for cylindrical shell models 

CM-4 (a) and BM-4 (b)  
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(a) 

 

 

(b) 

 

(c) 

 

 

 

 

(d) 

Figure 6.41: Contour plots of local shell FE generalised stress entities for cylindrical shell 

models with thickness t = 12.7 at a small displacement state: (a) CM-4 - bending moment My, 

(b) BM-4 - bending moment My, (c) CM-4 - membrane force Ny, (d) BM-4 - membrane force 

Ny  
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(a) 

 

 

(b) 

 

(c) 

 

 

 

 

(d) 

Figure 6.42: Contour plots of local shell FE generalised stress entities for cylindrical shell 

models with thickness t = 12.7 at limit point state: (a) CM-4 - bending moment My, (b) BM-4 

- bending moment My, (c) CM-4 - membrane force Ny, (d) BM-4 - membrane force Ny  
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(a) 

 

 

(b) 

 

(c) 

 

 

 

 

(d) 

Figure 6.43: Contour plots of local shell FE generalised stress entities for cylindrical shell 

models with thickness t = 12.7 at a maximum displacement: (a) CM-4 - bending moment My, 

(b) BM-4 - bending moment My, (c) CM-4 - membrane force Ny, (d) BM-4 - membrane force 

Ny  
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Figure 6.44: Nonlinear equilibrium path of translational DOF along the Z-axis at node P for 

cylindrical shell models CM-4 and BM-4 (t = 12.7) 

 

 

Figure 6.45: Nonlinear equilibrium path of translational DOF along the Z-axis at node P for 

cylindrical shell models CM-4 and BM-4 (t = 6.35) 
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6.6 Pinched hemispherical shell with cut-off 

A hemispherical shell with a cut-off at its top corresponding to a half-subtended angle 

β = π/9 rad, simply supported along its top curved edge and subjected to an orthogonal set of 

unit point loads acting inwards and outwards to its surface, is considered herein, as illustrated 

in Figure 6.46. The shell radius is specified as R = 10 LUs and its thickness as t = 0.5 LUs, 

while the point loads acting orthogonally to the surface are applied at two nodes P2 and P1 with 

angular polar coordinates θ = 5π/4 rad and θ = 7π/4 rad, respectively, along its bottom edge, 

which have been annotated in Figure 6.46. An isotropic material constitutive model is adopted, 

with Young’s modulus E = 10 FUs/(LUs)2 and Poisson’s ratio v = 0.2. 

The coupled mesh configuration CM-5 comprises two edgewise adjoined half hemispherical 

shells with identical radii, coupled along two curved 1-D interfaces introduced over the shell 

sections with angular polar coordinates θ = 0 and π/2 rad. Two meshes with 64 and 256 9-

noded shell FEs with curved edges are employed for the domain discretisation of the two hemi-

spherical halves, while a uniform mesh encompassing 1024 elements is employed for the BM-5 

configuration. The verification study is an alteration of a numerical example presented by 

Izzuddin and Liang (2016), with particular consideration given herein to highlighting the 

element performance in achieving translational and rotational coupling of non-developable 

surfaces discretised with doubly-curved shell FEs along a curved 1-D interface under complex 

stress states, taking due account of geometric and material nonlinearity.  

The hemispherical shell deformed configuration corresponding to maximum planar 

displacements of 8 and 4 LUs at nodes P2 and P1, respectively, is illustrated in Figure 6.47, 

for both CM-5 and BM-5 configurations. The associated nonlinear equilibrium paths 

of the translational DOFs along both the X- and Y-axes at nodes P1 and P2 are collectively 

shown in Figure 6.48. On the basis of the justification provided in Section 6.4, contour 

plots are not considered herein for comparison of CM-5 and BM-5.  

By comparing the nonlinear equilibrium paths and deflected shapes for BM-5 and CM-5, the 

element ability to achieve a virtually identical response in the range of large displacements for 

curved shell FEs coupled along a curved 1-D interface is highlighted, thus adding further 

verification to the accuracy of the proposed coupling element in the range of large 

displacements. 
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Figure 6.46: Geometric configuration, applied loading, boundary conditions and material 

properties for hemispherical shell models CM-5 and BM-5 
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(a) (d) 

 
(b) (e) 

 
(c) (f) 

Figure 6.47: Deformed configuration at maximum displacement for hemispherical shell 

models CM-5 (a, b, c) and BM-5 (d, e, f) 
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Figure 6.48: Nonlinear equilibrium path of translational DOFs along the X- and Y-axes at

nodes P1 and P2 for hemispherical shell models CM-5 and BM-5 

6.7 Imperfect I-beam subjected to transverse loading 

A 12m long I-beam, simply supported at its two ends and subjected to a centrically applied 

uniformly distributed transverse load with a nominal value of 3 kN/m, is considered herein, as 

illustrated in Figure 6.49. A designated Universal Beam (UB) 356×171×51 cross-section in 

accordance with the provisions of BS EN 1993-1-1:2005 (BSI, 2005) is considered, with height 

h = 355 mm, width b = 171 mm, flange thickness tf  = 11.5 mm and web thickness tw  = 11.5 mm. 

Translational restraints in the global Z-direction are introduced over both the web and flanges 

at the two beam ends, with planar restraints in the global X- and Y-directions being introduced 

at one node on each end to restrain the beam against rigid body motion, while allowing for 

displacements in the X-direction. An isotropic constitutive model is adopted for structural steel, 

with Young’s modulus E = 210000 N/mm2 and Poisson’s ratio v = 0.3, where two cases are 

considered: (i) a perfectly elastic material response, and (ii) an elastoplastic material response

with yield strength fy = 275 N/mm2, corresponding to S275 grade steel with negligible strain-

hardening.  
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Figure 6.49: Geometric configuration, applied loading, boundary conditions and material 

properties for I-beam models CM-6 and BM-6 
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A sinusoidal imperfection is introduced at the top flange, along the global Y-axis, with 

maximum magnitude L/8000 = 1.5 mm at mid-span, where L is the beam length. Owing to this 

imperfection, the beam exhibits lateral torsional buckling (LTB) prior to the attainment of its 

yielding moment, followed by substantial transverse and lateral deformations. Particular focus 

is given to highlighting the coupling element performance in achieving translational and 

rotational coupling of intersecting surfaces along a 1-D interface traversing their domains, 

under complex stress states involving combined bending and twisting rotations.  

The coupled mesh configuration CM-6 comprises three independently discretised planar shell 

surfaces, corresponding to the beam web and flanges, coupled along two straight 1-D interfaces 

introduced at their intersections in the global X-direction. The bottom flange and web are 

discretised with 30 and 75 shell FEs, respectively, while a denser mesh is employed for the top 

flange, encompassing 200 elements. A uniform mesh with 1040 elements is employed for the 

discretisation of the base mesh configuration BM-6, with 400 and 320 elements employed for 

the web and each of the flanges, respectively. Configurations CM-6 and BM-6 are illustrated 

in Figure 6.49. The coupled and base configurations for the two distinct material specifications 

under consideration will henceforth be denoted as CM-6a, CM-6b and BM-6a, BM-6b, with 

(a) referring to perfectly elastic and (b) to perfectly elastoplastic material response.

The nonlinear equilibrium paths of the translational DOFs along both the Y- and Z-axes at

node P are collectively shown in Figure 6.50, for both material specifications under 

consideration, where the vertical axis is normalised with the critical bending moment of 58.32 

kN/m at the onset of LTB, as obtained from the model response. The deformed configurations 

of the beam for a displacement along the Y-axis of 450 mm at node P, as annotated in 

Figure 6.49, are illustrated in Figure 6.51 for the CM-6b and BM-6b models, while 

characteristic contour plots of the shell FE twisting moment Mxy generalised stress entity for 

these configurations at the same deformation state are given in Figure 6.52.  

The nonlinear equilibrium paths of the translational DOFs along the Y- and Z-axes at node P 

are initially stable, with buckling observed at a load factor of around 1.0 for both 

material models under consideration, indicating that the beam is initially exhibiting elastic 

buckling due to being relatively slender. 

Evidently, the employment of the developed coupling element allows for the progressive 

evolution of the beam deformed shape to be accurately captured, leading to a virtually identical 
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nonlinear response for CM-6 and BM-6, with a small deviation observed only in the range of 

very large displacements, of the order of L/30. A virtually identical deformed configuration is 

obtained in both cases, as shown in Figure 6.51, while the contour plots of Figure 6.52 indicate 

an accurate approximation of the internal twisting moment distribution. This study provides 

further verification of the proposed coupling element for the case of shells meeting at an angle, 

allowing for geometric and material nonlinearity to be accurately captured. 

 

Figure 6.50: Nonlinear equilibrium paths of translational DOFs along the Y- and Z-axes at 

node P for I-beam models CM-6 and BM-6 
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(a) 

(b) 

Figure 6.51: Deformed configuration at maximum displacement for I-beam models CM-6b 

(a) and BM-6b (b)
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Figure 6.52: Contour plots of local shell FE twisting moment Mxy at maximum displacement 

for I-beam models CM-6b (a) and BM-6b (b) 
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6.8 Concluding remarks 

A series of numerical studies has been presented in this chapter to verify the ability of the 

developed coupling element to enforce translational and rotational kinematic constraints 

along a 1-D interface, between planar or curved, edgewise-connected or intersecting shell 

surfaces, discretised with regular or irregular Reissner-Mindlin curved shell FEs. It is 

demonstrated that the proposed coupling element can achieve an accurate internal force 

distribution under constant membrane, bending, planar and transverse shear, as well as 

twisting stress states. The obtained distribution is exact in the case of stress states solely 

mobilising translational LMs for the constraint enforcement. On the other hand, the 

approximation embedded in the rotational coupling formulation, discussed in Section 5.3, 

introduces discontinuities in the transverse moment and shear distributions in the 

coupling interface vicinity, which however become smoother away from it. Nevertheless, 

this allows for global equilibrium to be satisfied, irrespectively, while the discontinuities 

reduce with mesh refinement to negligible local effects in the vicinity of coupling. For the 

considered cases of planar and curved shell surfaces with regular and irregular elements, the 

coupling element is capable of reproducing the deformed configuration evolution, 

achieving a virtually identical nonlinear response with the corresponding monolithic 

models, as well as an accurate internal force distribution. Minor deviations arise only in 

the range of very large displacements, which are partially attributed to the approximation 

embedded in rotational coupling, as well as to the employment of a relatively coarse mesh in 

the CM variants in some of the studies presented. 
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Chapter 7 

Application Studies on High-Fidelity Modelling of 

Composite Structural Systems 

 

 

 

 

7.1 Introduction  

The established High-Fidelity (HF) nonlinear Finite Element (FE) modelling strategy and dual 

super-element domain partitioning methodology, presented in Chapter 3, alongside the 

developed 1-D coupling element, presented in Chapters 4 and 5 and verified in Chapter 6, are 

employed herein for a series of application studies on moderate- to large-scale composite 

structural systems. The principal objectives of the numerical studies conducted and presented 

here encompass the showcasing of the following aspects: (i) the effectiveness, accuracy and 

credibility of the established HF nonlinear FE modelling strategy for realistic 3-D nonlinear 

analysis of composite structures; (ii) the substantial benefits associated with the employment 

of dual super-element domain partitioning for HF modelling, in respect of the achieved 

reduction in the computing wall-clock time and the overcoming of memory bottlenecks; (iii) 

the substantial benefits associated with the incorporation of the developed 1-D coupling 

element in the established HF modelling strategy, in respect of modelling flexibility, 

computational efficiency and practicality; and (iv) the accuracy and versatility of a combined 

approach encompassing the conjunct employment of all the above for practical applications to 

real composite structural systems. 

The accuracy and efficiency of the established HF modelling strategy for nonlinear FE analysis 

of composite structures is demonstrated in the context of application study 1, presented in 
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Section 7.2, where consideration is given to large-scale, all-metal sandwich composites. The 

study primarily focuses on the capturing of the various forms of local instabilities manifested 

over the domain and their interactions with the spread of plasticity using the proposed 

modelling strategy, which is critical in such structures due to their response sensitivity to such 

phenomena. 

The computational benefits of partitioned modelling using the dual super-element approach 

(Jokhio & Izzuddin, 2015) for scalable parallel processing in High Performance Computing 

(HPC) systems with distributed memory is showcased in the context of application study 2, 

presented in Section 7.3, with reference to the results of application study 1. The limitations of 

excessive partitioning are discussed, and practical guidance is also provided for the selection 

of the optimal domain partitioning configuration, offering maximum speedup, beyond which 

further partitioning leads to excess in both the nonlinear solution procedure and the 

communication overhead between parallel processors. 

The modelling flexibility and computational efficiency of the 1-D coupling element 

incorporation in the HF modelling strategy, allowing for selective discretisation of independent 

substructures within a mesh, is illustrated in the context of application study 3, presented in 

Section 7.4, with reference to the results of application study 1. The additional benefits of 

enhancing the selective discretisation approach with domain partitioning capabilities are also 

discussed, with reference to the results of application study 2, in view of establishing a unified 

HF modelling framework for composite systems.  

The credibility of the established HF strategy for realistic 3-D modelling of composite 

structural systems is demonstrated in application study 4, presented in Section 7.5, where this 

is validated against experimental results. The results have been obtained from physical testing 

of the novel, all-steel, sandwich panel composites envisioned to be incorporated in offshore 

topside decks in the context of the INFLOAT project.  

Having established the accuracy and credibility of the HF modelling approach, as well as the 

efficiency of the 1-D coupling element incorporation in it, the combined modelling strategy is 

used in application study 5, presented in Section 7.6, for the realistic 3-D modelling of a passive 

explosion-protective barrier installed on an offshore platform topside deck. The performance 

assessment of the barrier is compared for the cases where this is modelled individually, as is 

common in industrial practice, and where a selective discretisation approach using the 1-D 
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coupling element is adopted to incorporate the contribution of surrounding structural elements 

in the system modelling. A discussion is also provided on the potentially unconservative nature 

of commonly adopted design assumptions in engineering practice. 

The chapter proceeds with presenting the five application studies, all of which have been 

conducted using ADAPTIC (Izzuddin, 1991) v2.16.5, where the developed 1-D coupling 

element has also been implemented. 

7.2 Application study 1: High-fidelity nonlinear analysis of large-scale all-

metal sandwich composites 

The HF modelling strategy presented in Chapter 3 is employed herein for the nonlinear 

response investigation and buckling mode characterisation of large-scale, all-metal, sandwich 

panel composites with rectangular and hexagonal honeycomb core topologies. Particular focus 

is given to two-way spanning, large-scale, composite deck system applications, where all-metal 

sandwich panels are employed as deck components subject to extreme static and dynamic 

loading.  

As discussed in Chapter 3, the modelling strategy based on the employment of hierarchically 

optimised, lock-free, co-rotational shell FEs (Izzuddin & Liang, 2016; 2017) allows for the 

effects of geometric and material nonlinearity on the structural response to be accurately 

captured in the range of large displacements. In sandwich composites comprising individual 

plated components in the faceplates and core, arranged in a periodic honeycomb cell 

topological pattern, various forms of local instabilities are manifested at several locations over 

the domain and spread from its centre to the four edges. For large-scale composite deck systems 

in particular, the capturing of all local instabilities is essential for an accurate nonlinear 

response evaluation and failure mode characterisation, as well as for a reliable robustness and 

energy dissipation capability assessment in the case of extreme accidental loading. Therefore, 

the establishment of a HF nonlinear FE modelling approach for this type of structural system, 

enabling the capturing of the various local buckling phenomena, necessitates the employment 

of the proposed modelling strategy with a substantial mesh density. 
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The aim of the present section is to demonstrate the capabilities and efficiency of the proposed 

HF modelling strategy, rather than the detailed investigation of the sandwich component 

response to various load types, hence consideration is given only to extreme static loading. The 

two most commonly encountered static load cases in composite deck systems are therefore 

considered, namely uniformly distributed loading (UDL) and localised patch loading (PL). 

The results obtained from static incremental nonlinear analyses are presented to highlight the 

ability of the proposed strategy to accurately capture the variety of complex buckling 

phenomena, alongside the spread of plasticity, in the large displacement range. The results 

obtained with both a coarse and dense mesh of shell FEs are compared to demonstrate 

the necessity of employing a substantial mesh density for the domain discretisation, so as to 

achieve good accuracy. Furthermore, an imperfection sensitivity analysis is conducted on 

panels with rectangular honeycomb core topology, to highlight the influence of imperfections 

on the global panel response and emphasise the importance of their incorporation in the 

HF modelling strategy for accurate response prediction. 

Problem Description 

For the numerical studies presented herein, consideration is given as base cases to large-scale 

3000×3000 mm2 sandwich panels, as illustrated in Figure 7.1 (a), with 100 mm depth between 

the mid-planes of the top and bottom plates, and 3 mm thickness for the top and bottom plates 

and the core cell walls. Regular cell geometries have been adopted for both topologies under 

consideration, with 90° and 120° cell wall angles for rectangular and hexagonal honeycomb 

core configurations, respectively, as illustrated in Figure 3.3 (b) and Figure 7.1 (b), (c). The 

rectangular cell dimensions along the orthogonal global planar X- and Y- axes are set to 

100×100 mm2, while for the hexagonal cells a core configuration of equivalent density is 

considered, with 60 mm cell wall width and 120×104 mm2 planar cell dimensions.  

A triaxial elastoplastic constitutive model for mild steel is adopted, with yield strength 

fy = 355 N/mm2, Young’s Modulus E = 210000 N/mm2 and Poisson’s ratio v = 0.3. The strain 

hardening parameter is neglected to allow for the influence of local buckling and the spread of 

plasticity on the panel response to be more effectively demonstrated.  
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All panels are modelled as simply supported along all 4 edges, with translational restraints 

introduced at the nodes along the bottom plate perimeter in the global Z direction and minimal 

planar restraint provided along the global X- and Y- axes to prevent rigid body motion, as 

illustrated in Figure 7.1 (a). Moreover, all welded connections at the core cell intersections, as 

well as between the core and the faceplates, are considered to be fully rigid. 

For the two transverse load cases under consideration the load is applied incrementally, with 

nominal values pnom=260 kN/m2 for UDL and Pnom=800 kN for PL, where in the latter case the 

localised load is applied uniformly over a stiff, practically rigid baseplate with 300×300 

mm2 planar dimensions, located at the panel centre, as illustrated in Figure 7.1 (a).  

For the imperfection sensitivity analyses, alternative sympathetic sinusoidal imperfections are 

introduced over the faceplate and core cell walls of rectangular honeycomb panels, considering 

zero displacements and compatible rotations along the boundaries, as illustrated previously in 

Figure 3.3 (c). The values of imperfection amplitude considered correspond to 0.1%, 0.2%, 

0.5%, 1.0% and 2.0% of the minimum plated component dimension forming individual 

rectangular honeycomb cells, leading to 0.1 mm, 0.2 mm, 0.5 mm, 1.0 mm and 2.0 mm 

maximum nodal transverse dislocations, respectively. 

The terminating condition for all analyses is specified as a maximum value of global transverse 

displacement of 300 mm, corresponding to 10% of the global panel dimensions, beyond 

which excessive strains, of the order of the ultimate strain for mild steel, are typically 

observed.  

Shell FE meshes are employed for the discretisation of both the rectangular (R) and hexagonal 

(H) core topology models under consideration, with two different densities for each model: (i) 

43200 and 230400 elements for the R models, and (ii) 59256 and 314496 elements for the H 

models. For each of the R and H models, the coarser and denser configurations will 

henceforth be denoted as Conventional (C) and High-Fidelity (HF), which enables the 

establishment of four distinct model variants with corresponding acronyms (R-C), (R-HF), 

(H-C) and (H-HF).  
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 (a) 

 
(b)  (c) 

Figure 7.1: (a) Geometric configuration, applied loading, boundary conditions and material 

properties for sandwich composite models R-C, R-HF, H-C and H-HF, (b) core topology of 

R-C and R-HF, (c) core topology of H-C and H-HF 
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 Response of large-scale all-metal sandwich composites subject to UDL 

The deformed configurations at maximum displacement for the R-HF and H-HF model variants 

subject to UDL are illustrated in Figure 7.2. The nonlinear equilibrium paths of the translational 

Degrees of Freedom (DOF) along the global Z-axis at the bottom faceplate central node for the 

R-C, R-HF variants are provided in Figure 7.3, and for the H-C and H-HF variants in Figure 

7.4. Three distinct response ranges can be identified in the nonlinear equilibrium paths of 

Figures 7.3 and 7.4, which have been annotated on the respective graphs, as well as on the 

deflected shapes of Figure 7.2 (a) and (b), as RI, RII and RIII. Various forms of local 

instabilities are manifested in these response regions, which are illustrated in the local contour 

plots of the shell element bending moment My generalised stress entity for variants R-HF and 

H-HF in Figures 7.5 and 7.6, respectively. The contour plots have been resolved along the 

global Y-axis, while the direction of the local y-axis for the shell elements on the faceplates 

and the core cell walls have been defined as in Figure 3.3 (b). 

Considering more closely the nonlinear response under UDL in Figures 7.3 and 7.4, the elastic 

flexural response of both rectangular and hexagonal honeycomb configurations in range I is 

followed by yielding of both faceplates at the central region, along with elastoplastic 

intercellular buckling of the top faceplate between the cell walls. These phenomena are 

demonstrated in Figures 7.5 (a) and 7.6 (a) for the R-HF and H-HF model variants, respectively.   

Range II is associated with yield line formation, extending towards the 4 panel corners in the 

direction of maximum shear stresses at 45° epicentral angles, as shown in Figures 7.5 (b) and 

7.6 (b) for model variants R-HF and H-HF, respectively. The yield line propagation induces 

primarily shear yielding and subsequent plastic penetration (transverse shear deformation) 

local buckling in the vicinity of yield lines, on top of the intersected cells. This is further 

accompanied by the formation of lines of buckled cells along the horizontal and vertical planar 

axes in the R-HF variant, as illustrated in Figure 7.5 (c).  

In range III, which is related to large displacements, the sandwich composites exhibit 

membrane action, resulting in the response stiffening observed in the graphs of Figures 7.3 and 

7.4, as well as in the development of a perimetric compressive stress field. The ‘hoop’ action 

induced by the compressive stress field induces buckling of the top faceplate of R-HF on top 

of half-cells in the panel perimeter, as illustrated in Figure 7.2 (a).  
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(a) 

 

(b) 

Figure 7.2: Deformed configuration at maximum displacement for sandwich composite 

models subject to UDL: (a) R-HF, (b) H-HF 
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Figure 7.3: Nonlinear equilibrium path of translational DOF along the Z-axis at bottom 

faceplate centre for sandwich composite models R-C and R-HF subject to UDL 

 

 
Figure 7.4: Nonlinear equilibrium path of translational DOF along the Z-axis at bottom 

faceplate centre for sandwich composite models H-C and H-HF subject to UDL 
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(a) 

 
 

 
(b) 

 

 
(c) 

 

Figure 7.5: Contour plots of local shell FE bending moment My at maximum displacement for 

sandwich composite model R-HF subject to UDL: (a) intercellular buckling at panel centre, 

(b) penetration buckling of top faceplate and shear buckling of core strips at yield line 

vicinity, (c) intercellular buckling at cross-pattern lines 



Chapter 7: Application Studies on High-Fidelity Modelling of Composite Structural Systems 
 

263 
 

 

(a) 

 

 

 

(b) 

 

Figure 7.6: Contour plots of local shell FE bending moment My at maximum displacement for 

sandwich composite model H-HF subject to UDL: (a) intercellular buckling at panel centre, 

(b) penetration buckling of top faceplate and shear buckling of core strips at yield line 

vicinity 
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Response of large-scale all-metal sandwich composites to PL 

The deformed configurations at maximum displacement for the R-HF and H-HF model variants 

subject to PL are illustrated in Figure 7.7. The nonlinear equilibrium paths corresponding to 

the translational DOF along the global Z-axis at the bottom faceplate central node for the R-C 

and R-HF variants are provided in Figure 7.8, and for the H-C and H-HF variants in Figure 7.9. 

Similar to the UDL case, three distinct response ranges can be identified in the nonlinear 

equilibrium paths, which have been annotated on the respective graphs, as well as on the 

deformed configurations, as RI, RII and RIII. Local contour plots of the shell element 

bending moment My generalised stress entity, resolved along the global Y-direction, are 

provided in Figures 7.10 and 7.11 for variants R-HF and H-HF, respectively, demonstrating 

the principal instability phenomena manifested over the panel domains.  

Examining more closely the composite nonlinear response under PL in Figures 7.8 and 7.9, the 

elastic response in range I is characterised by global flexural deformation of the panel and 

localised shear deformation of the core underneath the load patch, where the cells are subjected 

to substantial shear and compression. Ultimately, the regions of the composites underneath the 

patch exhibit shear yielding at the patch perimeter. 

Shear yielding at the patch perimeter is followed by penetration of the top faceplate plate and 

compressive buckling of the underlying cells in range II, along with penetration local buckling 

of the top faceplate between the cell walls in the patch vicinity, as illustrated in Figures 7.10 

(a), (c) and 7.11 (a), (b). Plasticity spreads in a regular pattern via yield line formation and 

expansion to the 4 panel corners for R-HF, as illustrated in Figure 7.10 (b), while a more 

dispersive pattern is observed for H-HF, as shown in Figure 7.11 (a).  

Similar to the UDL case, excessive displacements in range III induce perimetric ‘hoop’ action, 

ultimately leading to buckling of the top faceplate on top of lines of cells in the R-HF model 

variant, with the buckled cell pattern initiating from the panel perimeter and being oriented 

towards the panel centre, as shown in Figure 7.7 (a).  
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(a) 

 

(b) 

Figure 7.7: Deformed configuration at maximum displacement for sandwich composite 

models subject to PL: (a) R-HF, (b) H-HF 
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Figure 7.8: Nonlinear equilibrium path of translational DOF along the Z-axis at bottom 

faceplate centre for sandwich composite models R-C and R-HF subject to PL 

 

 

Figure 7.9: Nonlinear equilibrium path of translational DOF along the Z-axis at bottom 

faceplate centre for sandwich composite models H-C and H-HF subject to PL 
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(a) 

 
 

 
(b) 

 

 
(c) 

 

 

Figure 7.10: Contour plots of local shell FE bending moment My at maximum displacement 

for sandwich composite model R-HF subject to PL: (a) penetration buckling of top faceplate 

and compressive/shear buckling of core strips at patch vicinity, (b) penetration buckling of 

top faceplate and shear buckling of core strips at yield line vicinity, (c) direct compressive 

buckling of core strips underneath the patch 
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(a) 

 

 

 

(b) 

 

Figure 7.11: Contour plots of local shell FE bending moment My at maximum displacement 

for sandwich composite model H-HF subject to PL: (a) penetration buckling of top faceplate 

and compressive/shear buckling of core strips at patch vicinity, (b) direct compressive 

buckling of core strips underneath the patch 

 

 Imperfection sensitivity analysis 

Although seemingly unimportant for large-scale systems, imperfections can significantly alter 

the global nonlinear response of all-metal sandwich composites, due to the latter being 

governed by local instability phenomena in the large-displacement range. An imperfection 

sensitivity analysis is therefore conducted on the R-HF sandwich composite model and the 

results are illustrated in Figures 7.12 and 7.13 for the UDL and PL cases, respectively, 

considering the nonlinear equilibrium path of the bottom faceplate central node. 
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Imperfection sensitivity is more prevalent in the UDL case, which is attributed to the various 

local buckling phenomena being manifested over a greater extent of the panel domain. A 

virtually 25% reduction is observed in the yielding capacity and a 10% change in the ultimate 

capacity over the considered imperfection range. In the PL case the panel response is less 

sensitive to imperfections, due to the local loading application, nonetheless a reduction in the 

ultimate panel yielding capacity is observed.  

 

 Discussion 

The substantial response sensitivity to the employed level of discretisation detail, as illustrated 

in Figures 7.3 and 7.4 for the UDL case, as well as in Figures 7.8 and 7.9 for the PL case, 

highlights the necessity of accurately capturing the influence of local plate buckling, including 

material nonlinearity, which profoundly affect the global panel response. The stiffness and 

strength deviations observed between the R-C and R-HF models, as well as the substantial 

post-yield softening exhibited by the H-HF in comparison with the H-C models, cannot be 

captured without employing a high level of discretisation detail. Furthermore, considering the 

response sensitivity to imperfections, the incorporation of these in the modelling of large-scale 

sandwich composites and deck systems is particularly crucial for the energy dissipation 

capability and robustness assessment, where extreme static and dynamic loading can be 

important design and assessment considerations, as earlier discussed.  

The accuracy of the proposed HF modelling approach, stemming from the employment of 

hierarchically optimised, co-rotational shell elements (Izzuddin & Liang, 2016; 2017), in 

conjunction with the use of a dense FE mesh, enable the accurate capturing of these intricacies 

in the range of large displacements. However, this type of modelling is generally associated 

with high computational and memory demands that can become prohibitive for large-scale 

applications, particularly where multiple interacting panels are considered. The following 

application study demonstrates the benefits of partitioned modelling towards addressing these 

shortcomings of the conventional modelling approach. 
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Figure 7.12: Imperfection sensitivity of sandwich composite model R-HF subject to UDL 

 

 

Figure 7.13: Imperfection sensitivity of sandwich composite model R-HF subject to PL 
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7.3 Application study 2: Computational benefits of dual super-element 

domain partitioning 

Problem description 

The HF nonlinear FE modelling strategy is enhanced here with dual super-element domain 

partitioning capabilities (Jokhio & Izzuddin, 2015) allowing for scalable parallel processing 

using HPC distributed memory systems, as discussed in Sections 3.6 and 3.7. A thorough 

investigation of the dual super-element domain partitioning efficiency is conducted, 

considering configurations with different number of child partitions for the large-scale 

sandwich composite models presented in the preceding application study.  

Two discretisation levels are considered, employing 43200 and 230400 

elements, corresponding respectively to R-C and R-HF models subjected to PL, in order for 

the relative efficiency of domain partitioning for a moderate and high level of discretisation 

detail to be investigated. Taking due account of the geometric symmetry and mesh 

uniformity, configurations with 2 (PM-4), 3 (PM-9), 4 (PM-16), 5 (PM-25), 6 (PM-36), 7 

(PM-49) and 8 (PM-64) child partitions along both the global X- and Y-axes are 

considered, leading to a similar number of DOFs per child partition. All analyses are 

processed using the HPC facility of Imperial College London, where computing nodes with 

identical processing specifications, including 20 Central Processing Units (CPUs) and 

128GB memory, are used in a fully dedicated mode to minimise the inter-processor 

communication overhead.  

Comparative evaluation of domain partitioning configurations 

The comparative efficiency evaluation of the various domain partitioning configurations for 

R-C and R-HF is conducted on the basis of the achieved wall-clock time speedup in relation to

the equivalent monolithic models. Wall-clock time can be employed as the principal efficiency 

quantification index, considering identical memory allocation to individual processes 

associated with the various partitions. For scalable parallel processing in HPC distributed 

memory systems, the wall-clock time encompasses the CPU time related to the determination 

of the nonlinear element response and the numerical solution of the algebraic system of 

nonlinear equations, along with the communication overhead between different processors. 
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The speedup achieved by a partitioned model with p child partitions can be quantified using a 

simple speedup factor pSF , which is defined by the following expression:  

mono
p

p

t
SF

t
=    (7.1) 

where monot  and pt  are the wall-clock times required for the incremental nonlinear analysis by 

the monolithic and partitioned models, respectively.  

The absolute wall-clock times for the adopted set of partitioned models with p = 4, 9, 16, 25, 

36, 49, 64, as well as the relative times with respect to the equivalent monolithic models and 

the achieved speedup factors pSF , are provided in Table 7.1, for both R-C and R-HF. The 

variation of the speedup factor with an increasing number of child partitions for R-C and R-HF 

is graphically illustrated in Figure 7.14, where the maximum speedup and the corresponding 

optimal number of child partitions are clearly annotated for each case.  

Figure 7.14 and Table 7.1 indicate an initially increasing speedup factor with an increasing 

number of child partitions, for both R-C and R-HF models. A maximum speedup value of 3.80 

is achieved by R-C with 25 partitions, with R-HF achieving an equivalent value. R-C exhibits 

a branch of progressively decreasing partitioning efficiency for a further increasing number of 

child partitions, while the speedup associated with R-HF increases further, achieving a 

maximum value of 4.81 with 49 partitions, after which it also exhibits a descending branch.  

Evidently, the employment of a higher level of discretisation detail in R-HF, as compared to 

R-C, leads to a substantially larger value of maximum achieved speedup, allowing for an 

almost 80% reduction of the associated wall-clock time to be achieved, as well as to an overall 

enhanced domain partitioning efficiency, extending to a greater number of child partitions. This 

highlights the particular computational benefits associated with the incorporation of dual super-

element domain partitioning in the established HF modelling strategy, when it comes to the 

modelling of large-scale systems with a substantial mesh density. 

The progressively decreasing speedup rate observed for an increasing number of child 

partitions, ultimately leading to a descending branch for both R-C ad R-HF, is indicative of an 

efficiency deterioration of the domain decomposition approach in the case of excessive 

partitioning. This is due to an increasing communication overhead between parallel processors, 
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which significantly impacts the parallelisation efficiency, ultimately leading to slowdown 

(Jokhio & Izzuddin, 2015). Moreover, physical limitations imposed by the available number 

of CPUs in a single computing node of the HPC system require the distribution of models with 

a very large number of partitions to multiple nodes, which further encumbers the inter-

processor communication. 

Table 7.1: Computing wall-clock time and achieved speedup for different domain partitioning 

configurations of sandwich composite models R-C and R-HF 

 

Model 

Configuration 

Wall-Clock 

Time (min) 

Normalised 

Wall-Clock 

Time (%) 

Percentage 

Reduction (%) 
SF (-) 

(R-C) - 43200 Elements, 156842 Nodes, 784210 DOF 

MM 4472 100.00 0.00 1.00 

PM-4 2166 48.45 51.55 2.06 

PM-9 1556 34.79 65.21 2.87 

PM-16 1233 27.58 72.42 3.63 

PM-25 1177 26.31 73.69 3.80 

PM-36 1225 27.40 71.68 3.65 

PM-49 1351 30.21 69.68 3.31 

PM-64 1445 32.32 67.68 3.09 

 (R-HF) - 230400 Elements, 882122 Nodes, 4410610 DOF 

MM 36454 100.00 0.00 1.00 

PM-4 20252 55.56 44.44 1.80 

PM-9 13113 35.97 64.03 2.78 

PM-16 10659 29.24 70.76 3.42 

PM-25 9182 25.19 74.81 3.97 

PM-36 8210 22.52 77.48 4.44 

PM-49 7579 20.79 79.21 4.81 
PM-64 10269 28.17 71.83 3.55 
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Figure 7.14: Computing wall-clock time speedup for different domain partitioning 

configurations of sandwich composite models R-C and R-HF 

 

 Practical guidance for optimal partitioning 

Taking due account of the aforementioned considerations, a qualitative guide for establishing 

the optimal partitioning configuration is proposed here, based on the Nodal Ratio pNR . This is 

defined by the following expression for a configuration with p child partitions: 
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where ( )p
bN  is the number of nodes along the partition boundary at the parent level, ( )pn  is the 

average total number of nodes of a child partition, ( )p
bn  is the average number of nodes on the 

child partition boundary, and ( )p
in  is the average number of internal nodes in the child partition 

domain. For the partitioned model configurations under consideration, the values of the nodal 
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quantities ( )p
bN , ( )pn , ( )p

bn  and ( )p
in  defined above are presented in Table 7.2, while the 

variation of ( )p
bN  and ( )p

in  with an increasing number of child partitions is graphically 

illustrated in Figure 7.15, for both R-C and R-HF. 

Under idealised process parallelisation conditions, with identical CPU specifications, 

communication overhead and processing time for problems of the same size, optimal efficiency 

for partitioned modelling of all-metal sandwich panels is achieved for 1pNR = . This 

corresponds to the distribution of equivalently sized problems, in respect of the associated 

number of DOFs, over all CPUs. As presented in Table 7.2 and shown in Figure 7.15, the 

previously determined optimal speedup values 3.80 and 4.81 for the two discretisation levels 

R-C and R-HF, achieved with 25 and 49 child partitions, respectively, are both associated with 

a nodal ratio 1pNR = . This graphically corresponds to the intersection of the ( )p
bN  and ( )p

in  

lines for each of R-C and R-HF, which defines the nodal distribution equilibrium point between 

the parent and child partitions.  

 
Figure 7.15: Parent and child partition process nodal quantities for different domain 

partitioning configurations of sandwich composite models R-C and R-HF 

PM-4 PM-9 PM-16 PM-25 PM-36 PM-49 PM-64
Nb (R-C) 4136 5512 6888 8264 9590 10944 10232
Nb (R-HF) 8454 11264 14070 16872 19720 22528 25254
ni (R-C) 55142 24362 15622 8666 5632 5632 3794
ni (R-HF) 218417 96762 61778 34610 23957 23957 15258
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Table 7.2: Parent and child partition process nodal quantities and nodal ratio for different 

domain partitioning configurations of sandwich composite models R-C and R-HF 

 

Model 

Configuration 
n nb ni=n-nb Nb 

Nodal Ratio 

NR=ni/Nb 

 (R-C) - 43200 Elements, 156842 Nodes, 784210 DOF 

PM-4 56282 1140 55142 4136 13.3 

PM-9 25122 760 24362 5512 4.4 

PM-16 16230 608 15622 6888 2.3 

PM-25 9122 456 8666 8264 1.0 
PM-36 6092 460 5632 9590 0.6 

PM-49 6092 460 5632 10944 0.5 

PM-64 4098 304 3794 10232 0.4 

 (R-HF) - 230400 Elements, 882122 Nodes, 4410610 DOF 

PM-4 221237 2820 218417 8454 25.8 

PM-9 98642 1880 96762 11264 8.6 

PM-16 63282 1504 61778 14070 4.4 

PM-25 35738 1128 34610 16872 2.1 

PM-36 24897 940 23957 19720 1.2 

PM-49 24897 940 23957 22528 1.1 
PM-64 16010 752 15258 25254 0.6 

 

For values of the Nodal Ratio greater than 1, graphically corresponding to the region left of the 

respective nodal distribution equilibrium points, the computing demand is dictated by the child 

partitions. On the other hand, for values of the nodal ratio lower than 1, graphically 

corresponding to the region right of the respective nodal distribution equilibrium points, 

computing demand is dictated by the number of nodes on the partition boundary at the parent 

level. In both cases, the allocation of partitions with significantly different number of DOFs to 

CPUs with identical specifications for processing results into the wall-clock time and the 

respective speedup being dictated by the partitions with the greater number of DOFs, which 

effectively compromises the essence of domain partitioning and scalable process 

parallelisation. This outcome can even be better illustrated by considering the extreme case 
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where the number of partitions becomes the same as the number of finite elements employed 

for the domain discretisation, where the partitioned model effectively degenerates into the 

monolithic model, but with a significant communication overhead, thus achieving virtually 

zero speedup.  

The comparison of the nonlinear response of R-HF obtained for a monolithic model and a 

partitioned configuration with 64 child partitions is illustrated in Figure 7.16. Evidently, the 

two configurations exhibit a virtually identical nonlinear equilibrium path, which highlights 

the domain partitioning capability of achieving substantial computational benefits, without 

compromising the accuracy and convergence rate of the monolithic approach, as earlier 

discussed in Section 3.6.   

 
Figure 7.16: Nonlinear equilibrium path of translational DOF along the Z-axis at bottom 

faceplate centre for monolithic and partitioned sandwich composite models R-HF 
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7.4 Application study 3: Computational and modelling benefits of 1-D 

translational and rotational coupling element  

 

 Problem description 

The application study presented herein aims at illustrating the substantial benefits associated 

with the incorporation of the developed 1-D translational and rotational coupling element, 

presented in Chapters 4 and 5, in the established HF nonlinear FE modelling strategy. The 

benefits of the coupling element are emphasised here in respect of: (i) the enhancement of the 

modelling flexibility and the overcoming of mesh conformity requirements in large-scale 

meshes; and (ii) the enhanced computing speed-up and the overcoming of potential memory 

bottlenecks. 

In this context, the R-HF FE model presented in Section 7.2, subjected to the PL load case, is 

employed as the basis for a selectively-discretised configuration, henceforth referred to as 

R-HF-A, where A stands for adaptive with reference to the employed FE discretisation strategy. 

Identical geometric and material specifications as well as loading and boundary conditions to 

the R-HF model are considered, as specified in Section 7.2. A distinction should be made 

between the employment of the term adaptive herein, which refers to the established manually 

implemented selective discretisation strategy, and the adaptive meshing capabilities of 

commercial FE softwares, encompassing the automated establishment of an optimal 

conforming mesh configuration of variable density over the domain.  

R-HF-A encompasses a fine shell element mesh in the core region underneath the patch and 

over the entire top faceplate, coupled to a coarser mesh over the rest of the core domain and 

the entire bottom faceplate. The adopted discretisation strategy has been established to allow 

the various local instabilities governing the panel global nonlinear response, as demonstrated 

in Section 7.2 by virtue of the R-HF response to PL, to be effectively captured by R-HF-A. 

These include: (i) penetration (transverse shear deformation) buckling of the top faceplate in 

the vicinity of the loading patch; (ii) penetration buckling of the top faceplate in the vicinity of 

the yield line and the four corners; (iii) shear buckling of the core strips traversed by the yield 

lines; (iv) direct compressive buckling of the core strips underneath the patch; and (v) 
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compressive buckling of the panel perimetric half cells, due to the substantial membrane action 

exhibited by the panel in large displacements leading to perimetric compressive ‘hoop’ action. 

At the panel domain extending symmetrically over an area of 1000×1000 mm2 on the X-Y 

Cartesian coordinate plane about its geometric centre, a mesh of 8×8 elements is employed for 

the discretisation of each cell wall on the core strips, resulting in a uniform mesh of 12800 FEs. 

The same level of discretisation detail is employed over the entire top faceplate domain, 

resulting in a uniform mesh of 57600 shell elements, conforming only with the central core 

domain mesh. Over the core domain surrounding its central densely discretised region, a mesh 

of 4×4 FEs is employed over the strip cell walls, leading to a mesh of 25600 FEs, while the 

bottom faceplate encompasses a uniform mesh of 6400 FEs, which is accordingly non-

conforming with the core strips mesh over the entire panel domain. The above discretisation 

strategy leads to a final mesh configuration with 102400 elements in total, which is less than 

half of that employed for the R-HF domain discretisation (230400). The individual panel 

compartment mesh configurations discussed above for R-HF-A are illustrated in Figure 7.17, 

at the panel deformed configuration associated with a maximum displacement of 300 mm, in 

accordance with the nonlinear solution procedure outlined in Section 7.2.  

The non-conforming meshes of the various independently discretised regions over the panel 

domain are coupled along 1-D interfaces introduced at their intersections, using the developed 

translational and rotational coupling element. The coupling interfaces are established along the 

intersections of both faceplates with the core strips, as well as along the strip height at the 

adjoining boundary between the core central densely discretised region and its surrounding 

coarser mesh. For the active coupling element identification along each interface, the 

progressive segmentation algorithm presented in Section 4.5 is employed, where a slave-only 

progressive segmentation approach has been adopted herein, using the denser of each two 

coupled regions as the slave surface. At the coupling element level, 3 Collocation Points (CPs) 

with 4 Lagrangian Multiplier (LM) entities each are employed along the associated segment, 

with 3 of the these being allocated for translational and 1 for rotational constraint enforcement, 

in accordance with Section 4.4. The translational and rotational coupling penalty 

parameters are both specified as 0.1, while the element-specific scheme discussed in Sub-

section 4.7.3.2 is employed for integration at the element level, with a specified Gaussian 

quadrature order of 3 providing exact integration.  
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(a) 

 
(b) 

  
(c) 

Figure 7.17: Deformed configuration at maximum displacement for selectively-discretised 

sandwich composite model R-HF-A: (a) top faceplate, (b) core, (c) bottom faceplate 
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 Comparison of adaptive and monolithic HF modelling approaches 

The deformed configurations of R-HF and R-HF-A at maximum displacement are illustrated 

in Figure 7.18, while a comparison of the nonlinear equilibrium paths, corresponding to the 

translational DOFs along the global Z-axis at the bottom faceplate centre, for sandwich 

composite models R-C, R-HF and R-HF-A is provided in Figure 7.19. 

 

(a) 

 

(b)  

Figure 7.18: Deformed configuration at maximum displacement for sandwich composite 

models R-HF and R-HF-A 
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Figure 7.19: Nonlinear equilibrium path of translational DOF along the global Z-axis at 

bottom faceplate centre for sandwich composite models R-C, R-HF and R-HF-A 

As evident from Figure 7.19, R-HF-A allows for an accurate response evaluation in the linear 

elastic range, alongside the capturing of the panel yielding capacity, with minor discrepancies 

observed only in the range of large displacements, leading to a slightly stiffer response. 

Comparing the deflected shapes obtained for the two configurations in Figure 7.18 and 

observing the various panel compartment deformations in Figure 7.17, it can be seen that R-

HF-A captures the principal local instabilities at the faceplates and the core strips manifested: 

(i) at the patch vicinity, (ii) along the yield lines, (iii) at the panel corners, and (iv) underneath 

the loading patch. However, it leads to the buckling of fewer and different perimetric half-cells, 

thus resulting in a marginally different panel deformed configuration at maximum 

displacement and causing minor discrepancies in the obtained response in the range of large 

displacements, where the latter is governed by local instabilities. 

These minor discrepancies can be attributed to the discontinuities induced in the stress 

distribution over the faceplates and core at the interface vicinities, due to the embedded 

approximation in the rotational coupling formulation based on achieving moment transferring 

by means of an equivalent nodal force couple at the adjoining shell element domains. 
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Furthermore, despite the selective discretisation approach comprising a dense mesh where 

required, a substantial portion of the domain is still discretised with an overall coarser mesh 

compared to R-HF, thus potentially contributing to the observed slightly stiffer response. 

Despite the minor discrepancies in the nonlinear response evaluation and the deformed 

configuration of the panel in the range of large displacements, the adopted selective 

discretisation approach enables an accurate capturing of all principal instability phenomena 

that govern the panel response.  

 

 Computational benefits of adaptive HF modelling 

Beyond providing a highly accurate approximation of the R-HF response, R-HF-A additionally 

enables a reduction of more than 50% in the number of employed shell elements, thus leading 

to substantial speedup. A 40% reduction is achieved in the absolute computing wall-clock time 

required for extensive HF nonlinear FE analysis under extreme static loading, from 36454 min 

required for R-HF to 21856 min for R-HF-A. A more extensive investigation of the 

computational benefits associated with the additional incorporation of dual-super-element 

domain partitioning is conducted hereafter, where the relative efficiency of partitioned models 

with different number of child partitions is assessed for R-HF-A, considering the achieved 

speedup relative to equivalent monolithic model. 

Beyond what was discussed in Section 7.3, the wall-clock time associated with each partition 

of R-HF-A further encompasses the CPU time related to the nonlinear coupling element 

response evaluation, which is considerable due to the total number of coupling elements 

employed over the panel domain being of the order of 12520. It is emphasized here that the 

coupling element tangent stiffness matrix assembly at every iterative step of the nonlinear 

solution procedure is only required for its rotational components, whereas the respective 

translational entity needs only be evaluated once before the analysis, as discussed in Sections 

5.2 and 5.3. Furthermore, the LM additional DOF incorporation in the algebraic system of 

nonlinear equations associated with each partition leads to a substantial increase in the problem 

size, and consequently the time required for solving the system of simultaneous equations, 

though there are still clear computational benefits in using the coupling elements for selective 

mesh refinement.  
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Configurations with 2 (PM-4), 3 (PM-9), 4 (PM-16), 5 (PM-25), 6 (PM-36), 7 (PM-49) and 8 

(PM-64) equivalently-sized child partitions along both the global X- and Y- axes are 

considered, in accordance with Section 7.3, for comparison with the obtained results for R-C 

and R-HF. As before, all numerical analyses are conducted on the distributed memory HPC 

system of Imperial College London, making use of the same resources noted in Sub-section 

7.3.1.  

The variation of the speedup factor for the adopted set of partitioned models with p = 4, 9, 16, 

25, 36, 49, 64 is graphically illustrated in Figure 7.20 for the R-C, R-HF and R-HF-A 

configurations, with the maximum value and the corresponding optimal number of child 

partitions being clearly annotated for each case. The absolute wall-clock times for R-HF-A, as 

well as the relative times with respect to the equivalent monolithic model and the achieved 

speedup factors pSF , as given by Eq. (7.1), are provided in Table 7.3.  

 

Figure 7.20: Computing wall-clock time speedup for different domain partitioning 

configurations of sandwich composite models R-C, R-HF and R-HF-A 

 

MM PM-4 PM-9 PM-16 PM-25 PM-36 PM-49 PM-64
R-C 1.00 2.06 2.87 3.63 3.80 3.65 3.31 3.09
R-HF 1.00 1.80 2.78 3.42 3.97 4.44 4.81 3.55
R-HF-A 1.00 1.91 2.74 3.33 3.85 4.21 4.12 3.68
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Table 7.3: Computing wall-clock time and achieved speedup for different domain partitioning 

configurations of sandwich composite model R-HF-A 

 

Model 

Configuration 

Wall-Clock 

Time (min) 

Normalised 

Wall-Clock 

Time (%) 

Percentage 

Reduction (%) 
SF (-) 

R-HF-A - 102400 Elements, 419042 Nodes, 2095210 DOF, 54620 Additional DOFs 

MM 21856 100.00 0.00 1.00 

PM-4 11443 52.36 47.64 1.91 

PM-9 7977 36.50 63.50 2.74 

PM-16 6563 30.03 69.97 3.33 

PM-25 5677 25.97 74.03 3.85 

PM-36 5191 23.75 76.25 4.21 
PM-49 5305 24.27 75.73 4.12 
PM-64 5939 27.17 72.83 3.68 

 

Evidently, a maximum speedup of 4.21 is achieved for the R-HF-A configuration with 36 

partitions, while the configuration with 49 partitions is associated with a speedup factor of 4.12, 

with the shape of the speedup variation curve indicating that the optimal configuration 

encompasses an intermediate number of partitions to these two configurations. Accordingly, 

more than 75% reduction in the computing wall-clock time associated with the respective 

monolithic model can be achieved, which, in turn, corresponds to more than 85% overall 

reduction in comparison to the R-HF monolithic model.  

Similar to R-C and R-HF, an increasing number of child partitions leads to increasing speedup, 

with a gradually decreasing rate, until the maximum value is reached, which is followed by a 

descending branch due to the adverse effect of excessive partitioning and the associated 

increased communication overhead between parallel processors (Jokhio & Izzuddin, 2015). 

The level of discretisation detail of R-HF-A is intermediate in relation to R-C and R-HF, and 

hence the former is associated with an enhanced partitioning efficiency compared to R-C, but 

not as substantial as in the case of R-HF. This is further highlighted by the configuration with 

36 child partitions, leading to maximum speedup in the case of R-HF-A, being between the 

respective configurations of R-C and R-HF, encompassing 25 and 49 partitions, respectively.  
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It should be emphasised that the adopted partitioning scheme for the configurations under 

consideration, encompassing the domain decomposition of the monolithic model into 

equivalently-sized child partitions, is sub-optimal in the case R-HF-A. In the case of R-C and 

R-HF, this scheme leads to child partitions with equivalent number of nodes and DOFs over 

their domain and along their respective partition boundaries, due to the mesh uniformity and 

conformity. Conversely, due to the selective discretisation approach adopted for the 

establishment of the R-HF-A configuration, the same scheme leads to a substantially increased 

number of nodes and DOFs for the child partitions defined at the panel centre, as compared to 

those adjacent to its domain edges. The wall-clock time required for parallel processing is 

therefore dictated by the central child partitions, which are substantially less compared to the 

edge child partitions, thus compromising the overall efficiency of domain partitioning.  

Irrespectively, the configuration leading to maximum speedup is still dictated by the balance 

between the maximum number of DOFs for individual child partition domains and the number 

of DOFs along the partition boundary at the parent level, which in this case also accounts for 

the additional LM DOFs at the child partition level. This is evidently achieved by the 

configuration of 36 partitions for R-HF-A, which allows for substantial speedup to be achieved, 

despite the partitioning scheme being sub-optimal. The partitioned modelling efficiency can be 

further enhanced by adopting an optimal partitioning scheme adjusted to the selective 

discretisation strategy employed for R-HF-A. The latter would encompass the domain 

decomposition into larger partitions towards the panel edges and smaller towards its centre, 

with maximum efficiency being achieved when the number of DOFs and additional DOFs is 

identical for all child partition processes, and equal to the number of DOFs along the partition 

boundary at the parent level. This equivalently corresponds to the distribution of identically-

sized problems to parallel CPUs with identical specifications, as discussed in Section 7.3.  

It should be noted that the employment of domain partitioning requires the consideration of 

different 1-D coupling interfaces within each child partition process, as opposed to the 

monolithic model where these are continuously defined. Accordingly, the interfaces are 

entirely defined within the individual child partition domains, and the respective additional 

DOFs at the CPs located at individual domain edges are not shared between these along the 

partition boundary. This approach can potentially compromise the performance and accuracy 

of the coupled model, due to CP and associated LM entity multiplicity at distinct locations over 

the domain. However, irrespective of the attained accuracy in the response evaluation, this 
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approach allows for the required wall-clock time for the analyses to be determined, when 

individual incremental steps of the nonlinear solution procedure are associated with the same 

number of iterations as in the monolithic model. Therefore, it has been employed herein to 

assess the speedup achieved by the R-HF-A configuration.  

 

7.5 Application study 4: Validation of high-fidelity nonlinear analysis - 

4-point bending of all-steel sandwich composites 

The application study presented here aims at validating the established HF nonlinear FE 

modelling strategy for realistic 3-D nonlinear analysis of composite structural systems against 

the results of physical tests. In this context, the established methodology is employed for the 

numerical modelling of two all-steel, laser-welded, sandwich panel specimens with rectangular 

honeycomb core, which were tested under 4-point bending.   

The 4-point bending tests form part of an extensive experimental programme for the 

investigation of various performance aspects of novel, all-metal, sandwich panel composites, 

which has been undertaken as part of the joint industrial Research and Development (R&D) 

collaboration between Imperial College London, POSCO and AMEC Foster Wheeler. All 

experimental testing has been conducted at the POSCO R&D testing facility. It is emphasised 

that the main purpose of this application study is not conducting an extensive and detailed 

experimental validation, but highlighting the accuracy of the established HF nonlinear FE 

modelling strategy as one of the main contributions of the present research work. 

 

 Sandwich composite specimen manufacturing and specifications 

Both faceplates and the core strips of the sandwich panel composite specimens are fabricated 

from structural steel and have a 3 mm thickness. The specimens have 600×300 mm2 planar 

global dimensions and 100 mm centre-plane distance between the top and bottom faceplates. 

The core comprises 3 longitudinal and 6 transverse mutually orthogonal strips, with 

300×97 mm2 and 600×97 mm2 dimensions, connected orthogonally to the faceplates by means 

of laser welding to form a regular honeycomb topological pattern with 100×100 mm2 planar 
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cell dimensions, measured from the strip centre-planes. The specimen geometric specifications 

are illustrated in Figure 7.21. 

The core strips are manufactured as slotted, with 3 mm wide vertical cut-offs along half their 

height and a ±0.05 mm tolerance to account for minor imperfections associated with the 

employed laser-cutting process. This allows for a straightforward transverse and horizontal 

strip assembly process to be established, without necessitating the implementation of welded 

connections at the intersection locations. The geometric configuration, dimensions and 

detailing of the sandwich panel specimens and the core strips are illustrated in Figure 7.21 (a)-

(c), where δ1 and δ2 denote the aforementioned slot manufacturing tolerances.  

Laser welding enables the connection implementation between the strip edges and faceplates 

from the external surface of the latter, thus resolving one of the principal challenges associated 

with the fabrication of all-metal sandwich panel composites. The laser-welding parameters, 

such as the welding rate, and the welding machine head focal length and inclination, have been 

particularly optimised for the specimen type, material grade and plated component thicknesses, 

while special preparation of the individual plated components has further been undertaken prior 

to the connection implementation. This allows for porosity, insufficient penetration and various 

other forms of undesirable welding imperfections and defects to be alleviated, thus ensuring 

the superiority of the weld material mechanical properties in comparison to the parent material. 

Accordingly, delamination failure does not precede the principal shear failure mode of the 

specimens, but only arises in the late stages of their nonlinear response following the exhibition 

of an extensive yielding plateau, as will be discussed in more detail in due course. The laser 

welding facility employed for the specimen manufacturing is shown in Figure 7.22 (a)-(c), 

while typical forms of welding defects, including porosity and lack of penetration, are 

compared against a laser weld section with no defects in Figure 7.22 (d)-(f).  

The specimens are tested at a Universal Testing Machine (UTM) with 1000 kN test capacity, 

available at the POSCO R&D testing facility. The load, applied via the load cell at a rate of 

0.01 mm/sec, is shared between two cylinders in contact with the top faceplate, on top of the 

central transverse cell strips, as illustrated in Figure 7.23. 5 Linear Variable Differential 

Transformers (LVDTs) have been installed underneath the specimen to measure the 

displacements at 5 points of the bottom faceplate, while 4 strain gauges with diagonal 

orientation have been further installed at the end longitudinal strips, as shown in Figure 7.21

(a), (d).
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(a) 

(b) (c) 

(d) 

Figure 7.21: (a) Geometric configuration, detailing and LVDT locations (in red) for all-steel 

sandwich composite specimens, (b) dimensions and detailing of longitudinal strips, (c) 

dimensions and detailing of transverse strips, (d) strain gauge arrangement 
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(a) 

(b) (c) 

(d) (e) (f) 

Figure 7.22: Laser welding machine employed for specimen fabrication (a-c) and laser 

welding section with porosity defect (d), lack of penetration (e) and no defects (f) 
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Figure 7.23: Experimental setup of the 4-point bending tests for all-steel sandwich panels 

 

 Coupon tests and nonlinear material constitutive model calibration  

The results of a series of tensile coupon tests, conducted on rectangular section specimens of 

the steel grade employed for the sandwich composite specimen fabrication, have been used to 

establish average material parameter values. These have been subsequently employed for the 

calibration of the tri-linear elastoplastic material constitutive model adopted for the HF 

modelling of the two specimens in ADAPTIC (Izzuddin, 1991).  

The coupon specimen configuration following tensile failure, alongside the stress-strain curve 

for 4 specimens A-1, A-2, B-1 and B-2 of the employed steel grade, are illustrated in Figure 

7.24 (a), (b), respectively, with the associated principal material properties summarised in 

Table 7.4. Following a coupon test calibration process, the material parameters for the adopted 

constitutive model are specified as follows: Young’s modulus E = 218 GPa, Poisson’s ratio 

v = 0.3, yield strength (proof stress at a strain level of 0.2%)  fy = 428 MPa, strain hardening 

parameter μ = 0.00655, plastic strain at the onset of hardening εh = 0.015 and plastic strain at 

ultimate strength εm = 0.15. The specification of quadratic hardening allows for an ultimate 

strength of fu = 525 MPa to be achieved at εm for the adopted values of εh and μ, in accordance 

with the following expression: 

1 2
m h

u y
E  

 


−
= +

−
   (7.3) 
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Table 7.4: Characteristic material properties for coupon test specimens A-1, A-2, B-1 and B-2 

of the employed steel grade  

Coupon 
Specimen 

fy,0.2 
(N/mm2) 

fy,0.5 
(N/mm2) 

fy,l 
(N/mm2) 

fy,h 
(N/mm2) 

fu 
(N/mm2) εu E 

(N/mm2) 
A-1 401.3 400.5 398.9 407.4 509.4 13.4 213295 
A-2 404.4 394.4 393.3 407.4 505.7 14.3 221284 
B-1 421.9 420.7 418.9 435.4 525.9 13.9 216206 
B-2 420.8 420.2 417.4 433.8 523.7 13.6 219734 

 

 
(a) 

 
(b) 

Figure 7.24: (a) Experimental stress-strain curve obtained from coupon tests for the steel 

grade employed for specimen fabrication, (b) coupon test specimens 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

St
re

ss
 (M

Pa
)

Strain (%)

A-1 A-2 B-2 B-1



Chapter 7: Application Studies on High-Fidelity Modelling of Composite Structural Systems 

293 

Results 

The HF FE models established for the validation against the experimental results comprise a 

uniform mesh of 28800 shell elements (Izzuddin & Liang, 2016; 2017), corresponding to a 

mesh of 20×20 elements on each individual cell wall. Duplicate nodes are introduced along the 

strip slots, to model the material discontinuity and allow for independent deformation of the 

two slot edges located on either side of the orthogonal strip traversing it. The slots in the HF 

FE model are introduced at the bottom half of the longitudinal strips and the top half of the 

transverse strips, which is the case in the actual specimens, as can be observed in Figure 7.25 

(b) and (c), where the specimen deformed configuration at ultimate conditions is shown.

The introduction of duplicate nodes enables either side of each slot to displace 

independently from the orthogonal strip, while at the same time maintaining deformation 

continuity between the top and bottom strip edges and the faceplates. The potential contact of 

transverse and longitudinal strips in the actual specimen is accounted for by means of joint 

elements. These connect the slot edge nodes with the nodes of the orthogonal strip traversing 

it that are located in between the slot edges, and provide rigid axial contact between these when 

their relative deformation is negative, thus signifying penetration of the two strips.  

The specimen response is characterised by an initial elastic branch, preceding shear yielding of 

the longitudinal strips outside the central cell load span at a maximum transverse displacement 

of roughly 2.5 mm, recorded at the central LVDT. The specimens subsequently exhibit a 

yielding plateau with an apparent effect of hardening, ultimately leading to delamination of the 

longitudinal strip laser welds adjacent to the load cylinders. Local buckling of the longitudinal 

strips adjacent to the load span occurs after delamination, leading to a loss of stiffness and 

strength, at a level of transverse displacement equal to 10 mm. The nonlinear response 

subsequently becomes unstable, with the specimens exhibiting a progressive loss of their load 

bearing capacity, and the tests are terminated at a displacement of 22 mm. The deformed 

configuration of the HF FE model and the specimens at an ultimate state prior to 

delamination, associated with 10 mm maximum transverse displacement, are illustrated in 

Figure 7.25 (a)-(c), while the final specimen deformed configuration at the end of the test is 

illustrated in Figure 7.26. 
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(b) 

 

 

 
(c) 

 

 

Figure 7.25: Deformed configuration at ultimate state prior to laser weld delamination 

(transverse displacement 10 mm): (a) HF FE model, (b) specimen S1, (c) specimen S2 
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(a) 

 
(b) 

Figure 7.26: Deformed configuration of specimens S1 (a) and S2 (b) at failure following laser 

weld delamination (transverse displacement 22 mm) 

 

It is infeasible for the HF FE model to capture delamination of the laser welds, due to the 

exclusion of brittle material fracture. This would require a detailed modelling of the laser welds 

connecting the top faceplate to the longitudinal specimen strips, accounting for potential 

welding defects during the manufacturing process, which is outside of the scope of the present 

research work and thesis. 

Taking the above into consideration, the primary focus for the validation process is shifted to 

the transverse displacement range between 0-10 mm, corresponding to the region of elastic 

deformation, shear yielding of the longitudinal strips and subsequent exhibiting of the yield 

plateau. The nonlinear response of the HF FE models at the centre of the bottom faceplate is 
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compared against that of the two specimens S1 and S2, as recorded by the central LVDT 

illustrated in Figure 7.21 (a), in the graph of Figure 7.27, where equilibrium states marking 

transitions between principal behavioural bounds of the specimen response have been 

annotated. Moreover, contour plots of the shell element planar shear force Nxy generalised stress 

entity are provided in Figure 7.28 for the top faceplate and the core.  

Evidently, a highly accurate nonlinear response prediction of the two specimens is achieved by 

the established HF FE model, which enables the capturing of both the initial elastic stiffness 

and the shear yielding capacity. The adopted FE modelling strategy, encompassing slot-

strip contact modelling, alongside the employed calibrated tri-linear elastoplastic 

material constitutive model, further allow for an accurate capturing of the specimen response 

over the yielding plateau. Accordingly, the applicability of the HF modelling strategy to 

realistic nonlinear 3-D modelling of composite structural systems is highlighted. This is 

particularly important in cases where the significance of the structure, or the embedded risk 

of extensive damage due to accidental loading, require a detailed nonlinear response 

evaluation for the structural integrity and robustness assessment, or for the energy 

dissipation capability quantification under extreme loading. This will be also demonstrated 

in the context of the last application study of the present chapter.  

Figure 7.27: Validation of high-fidelity FE model nonlinear response against experimental 

results for 4-point bending specimens S1 and S2 
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(a) 

 
(b) 

Figure 7.28: Deformed configuration (a) and contour plots of local shell element planar shear 

force Nxy (b) for high-fidelity FE model 
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7.6 Application study 5: Passive explosion-protective barrier on offshore 

platform topside module  

The aim of the present application study is to demonstrate the significant benefits associated 

with the conjunct employment of the HF nonlinear FE modelling strategy and the developed 

coupling element for realistic 3-D modelling and analysis of composite structural systems, on 

both the modelling flexibility and practicality fronts. A passive explosion-protective barrier of 

corrugated type, integrated into the primary structural frame of an offshore platform topside 

module and subjected to blast loading, is considered for this purpose 

As discussed in Chapter 1, offshore platforms installed in shallow-deep water generally 

comprise a jacket or alternative frame supporting structure, underlying or integrated with the 

topside module. The latter is a large-scale deck system where the main equipment required for 

petroleum drilling or natural gas extraction and a variety of other operational processes is 

installed, alongside the staff living quarters. Due to the variety and size of the installed 

equipment on the platform topside, the accidental explosion (blast) hazard is one of the most 

critical design scenarios, which often governs the deck system primary and secondary 

component sizing in the offshore oil and gas engineering practice (British Standards Institution, 

2014).  

 

 Accidental explosion loading and passive explosion-protective barriers on offshore 

platform topside modules 

Blast is associated with the combustion of fluid or gas substances and its sub-sonic propagation 

via heat transfer, referred to as deflagration, or of fluid, gas or solid explosives and its super-

sonic propagation as a shock wave via decomposition of the propagated substance, which is 

referred to as detonation (Williams, 1985). In offshore platform topsides, the risk of liquid or 

gas leakage and combustion leading to deflagration is considerable (British Standards 

Institution, 2014), and thus significant research has been conducted in the respective field, 

particularly after the Piper Alpha oil rig incident in 1988, where a gas pump leakage caused 

the death of 167 people. 
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The main characteristics of blast impulses are summarised in pressure time-history profiles, 

describing the combustion wave-front pressure variation with time. Deflagrations and 

detonations have distinct pressure time-history profiles, with the former being associated with 

smaller peak pressures and larger durations and the latter with a steeper pressure variation of 

substantial peak pressure and reduced duration (Zeldovich et al., 1985).  

Pressure impulses can be associated with both positive and negative values, with the associated 

time-history peak pressure values and duration being of primary significance in the assessment 

and design of engineering structures subject to blast loading. For deflagration combustions, the 

overpressure durations range between the order of milliseconds and seconds, with the peak 

pressure reaching values of up to 8 bar in very congested offshore topside modules (British 

Standards Institution, 2014). A typical deflagration pressure profile is illustrated in Figure 7.29. 

 
Figure 7.29: Typical deflagration pressure time-history in offshore platform topside modules 

(British Standards Institution, 2014) 

 

In the offshore oil and gas industrial engineering practice, a common approach for limiting the 

induced damage in the case of accidental explosions is the installation of passive explosion- or 
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fire-protective barrier structures, with consideration being given herein to the former, which 

will henceforth be referred to as blast walls.  

Blast walls are installed perimetrically in critical topside deck spans where the explosion hazard 

from the installed equipment is severe (Det Norske Veritas, 2010). These serve the purpose of 

dissipating the induced impact loading kinetic energy by means of plastic deformation, thus 

limiting the structural damage to a local scale and preserving the global structural integrity and 

robustness, while being easily replaceable in the case of accidental events. Blast walls can 

either be integrated in the topside structure primary frame by means of their connection to the 

perimetric columns and beams of the latter, in which case they are also potentially traversed by 

a diagonal bracing, or non-integrated, in which case they are connected to the overlying 

primary beam by means of angle cleats.  

Taking due consideration of the above, the detailed nonlinear response evaluation and energy 

dissipation capability quantification of blast walls are of principal importance for the structural 

integrity and robustness assessment of offshore platform topsides at a global structural level. 

Blast wall failure in accidental explosion events must therefore be avoided, due to the resulting 

extensive damage over the topside deck leading to potential global structural failure and the 

loss of human lives. 

 

 Blast wall HF nonlinear FE modelling  

A blast wall of corrugated profile, with geometric specifications provided in Figure 7.30, is 

considered herein, integrated in a part of the topside module primary frame structure between 

two columns C1 and C2 of circular-hollow cross-sectional profiles and an overlying I-beam, 

as illustrated in Figure 7.31. The width and height of the blast wall are 10528 and 5000 mm, 

respectively, while both columns are 6000 mm tall, with cross-sectional radii of 1000 and 

508 mm and thicknesses of 30 and 19 mm for columns C1 and C2, respectively. The overlying 

I-beam is a plate girder with 1000 mm height, 400 mm top and bottom flange widths and 5 mm 

web and flange thicknesses. At its bottom edge, the corrugated profile is welded to a 10528 mm 

long and 170 mm wide faceplate with 6 mm thickness.  
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Figure 7.30: Blast wall corrugated profile geometric specifications and centreline distances 

 

The blast pressure time-history is idealised as a piece-wise linear impulse with peak 

overpressure of 0.75 bar, rise time of 100 msec and total overpressure duration of 200 msec, 

The negative pressure portion of the impulse is neglected, while the total considered duration 

for the blast wall nonlinear response evaluation is 250 msec. The blast load is assumed to be 

acting only on the wall surface as a UDL, which allows for a comparison of the accuracy of 

the adopted FE modelling strategy with that commonly adopted in engineering practice. The 

latter involves the independent modelling of the blast wall and the accounting for its connection 

to the surrounding structural elements by means of appropriate restraints introduced along its 

edges.  

A tri-linear elastoplastic material constitutive model is adopted for mild steel, with Young’s 

modulus E = 210 GPa, Poisson’s ratio v = 0.3 and yield stress fy = 355 MPa and quadratic 

strain-hardening with an onset strain εh = 0.02 and initial tangential strain-hardening parameter 

μ = 0.00835, allowing for an ultimate stress fu = 470 MPa to be achieved at an ultimate strain 

level εu = 0.15. A Cowper-Symonds strain rate sensitivity model with parameters D = 4000 s-1 

and q = 5 is further adopted to capture the effect of increasing material stiffness and strength 

under the imposed impact loading, which provides an overstress estimate o  on the basis of 

the following equation: 

1/ q
p

o y D


 
 

=  
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where p expresses the rate of change of plastic strains in the temporal domain (Cowper & 

Symonds, 1957). The material mass is modelled as uniformly distributed over the volume of 

the shell FEs employed for the system discretisation, while a damping parameter of 5% is 

adopted. It should be noted that the adopted values for all specified material parameters comply 

with the provisions of DNV GL (2013) for structural capacity evaluation using nonlinear FE 

modelling methods.  

The Newmark average acceleration method with parameters β = 0.25 and γ = 0.5 is employed 

for the numerical solution of the nonlinear system of dynamic equilibrium equations in the 

temporal domain, with a time step Δt = 1 msec. This is sufficiently small to ensure adequate 

accuracy in the response evaluation, despite the implicit scheme unconditional stability 

(Newmark, 1959).  

The various plated components of the structural elements incorporated in the HF nonlinear FE 

model herein, i.e. the two cylindrical columns, the blast wall, the faceplate and the beam web 

and flanges, are discretised independently with non-conforming meshes of 9-noded shell FEs, 

in accordance with the modelling strategy presented in Chapter 3. For the blast wall domain 

discretisation, a dense mesh of 28800 shell FEs is employed with characteristic element size of 

50 mm, due to it being the structural component of principal interest. For the two columns, 

meshes encompassing 900 FEs are employed, while 360 elements are employed for the 

discretisation of the faceplate, as well as of the beam flanges and web.  

Rigid translational and rotational coupling of the various meshes is achieved using the 

developed coupling element along six 1-D interfaces [1]-[6], as illustrated in Figure 7.31. 

Interfaces [1]-[4] couple the blast wall with the bottom faceplate, the beam bottom flange, 

column C2 and column C1, respectively, while interfaces [5] and [6] are introduced to couple 

the beam web with columns C2 and C1, respectively. For the active coupling element 

identification along each interface, the progressive segmentation algorithm presented in 

Section 4.5 is employed, with a slave-only progressive segmentation approach, using the 

surface associated with the denser mesh in each case as slave, i.e. the blast wall for interfaces 

[1]-[4], and columns C2 and C1 for interfaces [5] and [6], respectively. At the coupling element 

level, 3 CPs with 4 LM entities each are employed for the constraint enforcement along the 

corresponding coupling segment. The penalty parameters for both translational and rotational 

coupling are specified as 0.1, while the element-specific integration scheme is employed with 

a Gaussian quadrature order of 3.   
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Figure 7.31: HF FE model configuration, global component dimensions and 1-D coupling 

interface definition (slave surface continuous – master surface dotted) for integrated blast 

wall and surrounding structural elements 
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The bottom faceplate is modelled as fully restrained against all translations and rotations, 

similar to the bottom section of column C2 and both the top and bottom sections of column C1, 

to account for continuity of the modelled domain with the surrounding structure. Two distinct 

cases are investigated herein, with the blast wall and column C2 being free to move or 

connected to an overlying deck, where translational restraints in the three global directions are 

introduced in the latter case. The two blast wall integrated model (IM) configurations under 

consideration, encompassing the modelling of the overlying beam top flange and the top 

section of column C2 as free or restrained, will henceforth be referred to as IM-1 and IM-2, for 

the purpose of distinction.  

The obtained response for IM-1 and IM-2 is compared against the conventional modelling 

approach in engineering practice, encompassing the HF nonlinear FE modelling of the blast 

wall only and the accounting for the surrounding structural element contributions via 

approximate boundary conditions. The corresponding blast wall conventional models (CMs) 

for the two cases under consideration will henceforth be assigned the acronyms CM-1 and 

CM-2. In CM-1 the blast wall is fully restrained along its bottom and left edges, with its top 

and right edges restrained only along the global Z-axis, while in CM-2 all edges are modelled 

as fully restrained. 

Results 

The comparison of the maximum transverse displacement time-history over the corrugated 

blast wall profile domain is illustrated in Figure 7.32 for IM-1 and CM-1, and in Figure 7.33 

for IM-2 and CM-2. The strain energy time-history curves for all configurations under 

consideration are collectively illustrated in Figure 7.34. The deformed configurations of IM-1, 

IM-2, CM-1 and CM-2, at the time instance corresponding to a maximum deflection over the 

wall domain along the out-of-plane global Y-axis in each respective case, are illustrated in 

Figures 7.35 - 7.38, whereas contour plots of the local shell FE εy strain and von Mises stress 

entities are shown in Figures 7.39 - 7.42. 

The comparison of the strain energy and displacement time-histories, as well as of the εy strain 

and von Mises stress contour plots, for the IM and CM configurations indicates a substantial 

underestimation of the maximum transverse displacement, and accordingly the level of induced 
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strains due to plastic deformation in the system, when the conventional modelling approach is 

employed. This can be attributed to the CM configurations failing to capture the interaction 

between the blast wall and the surrounding structural elements with the established set of 

boundary conditions. Accordingly, the contributions to the blast wall response of the twisting 

and bending flexibility of columns C1 and C2, as well as of their significant plastic 

deformations due to material yielding and the spread of plasticity are neglected, thus leading 

to substantial inaccuracies in the system ultimate response evaluation.  

As evident from the transverse displacement and strain energy time-histories of IM-1, the blast 

wall in this case undergoes permanent plastic deformations, associated with an extensive 

spread of plasticity following the blast impact, with a maximum displacement 2.5 times 

greater than the predicted by CM-1. Due to the beam top flange and column C2 being 

unrestrained in this case, column C2 undergoes substantial plastic deformations following 

yielding at its base, leading to an increased maximum displacement over the wall domain, 

which in this case behaves as effectively unrestrained at its right end. This is accounted for in 

CM-1 by only restraining the right edge along the Z-axis. The contour plots indicate an 

induced maximum strain of the order of εu = 0.15 in the vicinity of the faceplate at the blast 

wall lower right region, where the corresponding von Mises stresses surpass the ultimate 

strength of 470 MPa for mild steel. Accordingly, there is an increased risk of material fracture 

and subsequent failure of the wall in that region, even with the beneficial contribution of the 

overstress due to strain rate effects allowing for an increased material resistance to be attained.  

In the case of IM-2, the system also exhibits substantial plastic deformations, which are 

however significantly lower compared to IM-1, due to the top beam flange and C2 column 

section being restrained. CM-2 underestimates the level of maximum displacements and strain 

energy dissipation of the system by roughly 5 times, which can be principally attributed to the 

beam web exhibiting substantial deformations, thus leading to increased overall deformations 

over the blast wall domain. The contour plots of IM-2 indicate overall reduced strains in 

comparison to IM-1; however, the blast wall exhibits substantial stresses in its upper left corner, 

which are not captured by CM-2 and can potentially lead to failure for a loading scenario 

associated with a slightly increased blast overpressure.    

Both CM-1 and CM-2 evidently fail to capture the phenomena described above, thus providing: 

(i) unconservative estimates of the blast wall failure hazard and its energy dissipation capability 

at ultimate conditions, when a performance assessment of an existing system is being looked 
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at; and (ii) unconservative estimates of the design actions for the wall and the surrounding 

structural elements, when the design of the system is being looked at.  

The establishment of a conforming shell FE mesh for the discretisation of three different shell 

surface types, namely folded, cylindrical curved and planar, becomes a particularly challenging 

undertaking in this case, without the modelling flexibility offered by the developed coupling 

element. Furthermore, the establishment of a conforming mesh results in a substantially fine 

mesh at a global level, if the same level of discretisation detail for the blast wall is to be 

achieved, accordingly imposing a prohibitive demand in relation to modelling effort, 

computing time and memory resources.  

The developed coupling element allows for these shortcomings to be effectively overcome by 

enabling the independent discretisation and coupling of the various components, thus enabling 

a substantially reduced overall mesh density to be achieved. This application study therefore 

profoundly highlights the practical benefits of the HF modelling strategy employment for a 

realistic response evaluation, energy dissipation quantification and performance assessment of 

composite structural systems where this is critical, which would otherwise be virtually 

infeasible.  

Besides highlighting the substantial versatility of the established combined modelling strategy, 

this application study further serves as a general and extensive verification study for the 

developed 1-D coupling element. Evidently, the latter is capable of effectively enforcing rigid 

translational and rotational coupling between mixed surface types, intersecting along 1-D 

interfaces which traverse the shell FE domains in arbitrary orientations. Furthermore, the 

attainment of numerical convergence in the case of dynamic analysis in large-scale FE meshes 

where the coupling element is employed, alongside the element capability of accurately 

capturing the spread of plasticity in cases of blast loading where the strain rate effect is 

accounted for, are demonstrated. 
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Figure 7.32: Maximum transverse displacement time-history for blast wall models IM-1 and 

CM-1 

 
Figure 7.33: Maximum transverse displacement time-history for blast wall models IM-2 and 

CM-2 
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Figure 7.34: Strain energy time-history for blast wall models IM-1/2 and CM-1/2  
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Figure 7.35: Deformed configuration at maximum displacement for blast wall model IM-1 
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Figure 7.36: Deformed configuration at maximum displacement for blast wall model IM-2 

(scale factor 2.0) 
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Figure 7.37: Deformed configuration at maximum displacement for blast wall model CM-1 
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Figure 7.38: Deformed configuration at maximum displacement for blast wall model CM-2 

(scale factor 2.0) 
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(a)  

 

 

 

 

 

(b) 

Figure 7.39: Contour plots of local shell FE entities at maximum displacement for blast wall 

model IM-1: (a) strain εy, (b) von Mises stress 



Chapter 7: Application Studies on High-Fidelity Modelling of Composite Structural Systems 
 

314 
 

 

 
 

 

 

 

(a)  

 

 

 

 

 

(b) 

Figure 7.40: Contour plots of local shell FE entities at maximum displacement for blast wall 

model IM-2: (a) strain εy, (b) von Mises stress 
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(b) 

Figure 7.41: Contour plots of local shell FE entities at maximum displacement for blast wall 

model CM-1: (a) strain εy, (b) von Mises stress 
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(b) 

Figure 7.42: Contour plots of local shell FE entities at maximum displacement for blast wall 

model CM-2: (a) strain εy, (b) von Mises stress 
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7.7 Concluding remarks 

A series of numerical studies focusing on offshore topside deck applications is presented in 

this chapter, with consideration being specifically given to large-scale metal sandwich 

composites employed as deck components, as well as to composite passive explosion protective 

barriers (blast walls). A summary of the conclusions drawn from the results of the conducted 

application studies is provided hereafter: (i) the proposed HF nonlinear FE modelling strategy 

enables the capturing of the spread of plasticity and the interaction of the various forms of local 

buckling in the range of large displacements, which is essential for large-scale sandwich and 

composite systems due to their substantial response sensitivity to such phenomena; (ii) the 

proposed HF modelling strategy is successfully validated against experimental results, 

obtained from physical testing of novel, metal, sandwich panel components as part of the 

INFLOAT project; (iii) dual super-element domain partitioning allows for a wall-clock time 

reduction of virtually 80% to be achieved for large-scale sandwich composites, in comparison 

with the monolithic HF models, through effective process parallelisation on HPC systems with 

distributed memory; (iv) The optimal number of child partitions for a given system, leading to 

maximum speedup, is achieved for an equivalent distribution of DOFs in all partitions, with 

the efficiency of partitioned modelling being more prevalent in systems associated with a high 

discretisation level; (v) the employment of the developed 1-D coupling element formulation 

for selective domain discretisation in large-scale composite systems enables the response of 

the corresponding HF monolithic model to be effectively approximated, while leading to 

a substantial reduction in the employed number of FEs for domain discretisation; (vi)

the employment of the 1-D coupling element in conjunction with dual super-element 

domain partitioning leads to further computational benefits, even with a sub-optimal 

partitioning configuration; (vii) the employment of the HF modelling strategy and 1-D 

coupling element provide a systematic and reliable methodology for the realistic HF 3-D 

modelling of composite systems, enabling the capturing of effects that significantly alter the 

response and are neglected with the adoption of a simplified modelling approach, 

which is particularly crucial in applications involving substantial hazard. 
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Chapter 8 

Conclusions 

 

 

 

 

8.1 Summary 

The research work presented in this thesis was motivated by a joint project between Imperial 

College London, POSCO and AMEC Foster Wheeler, namely the INFLOAT project, aiming 

towards the establishment of a novel and systematic design methodology for offshore platform 

topside decks. The envisioned undertaking encompasses the incorporation of novel large-scale 

metal sandwich composites as deck components, which enables the overcoming of several 

limitations of the conventional design approach of such systems. Within this scope, this 

research work was originally oriented towards the establishment of a systematic high-fidelity 

(HF) nonlinear Finite Element (FE) modelling strategy, facilitating extensive numerical 

investigation of the novel sandwich composite and composite deck system response attributes, 

which had not been addressed at this scale in previous work. In the process of this development, 

the modelling limitations posed by the requirement of achieving FE mesh conformity in large-

scale composite systems, comprising independent deformable components intersecting along 

a line, motivated the development of a novel approach for surface-to-surface coupling along a 

line, offering complete discretisation flexibility. In view of its broad application spectrum, 

substantial technical content and lack of previous work in this area, the developed coupling 

approach received significant attention throughout this research and became the centrepiece of 

the present thesis.  

A summary of the main contributions of this research and the conclusions drawn from the 

individual chapters is provided hereafter. 
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 HF partitioned modelling of composite and sandwich structures  

The establishment of a sufficient level of confidence in the response predictions for large-scale 

metal honeycomb core sandwich composites is essential for the development of an all-steel 

sandwich panel system, as it represents a novel application for offshore topside decks. The 

extensive nonlinear response of such composites has not been investigated adequately in 

previous work, while the effects of the adopted manufacturing and laser welding processes on 

the composite response must be established and accounted for in the established design 

methodology. In this context, a HF nonlinear FE modelling strategy is proposed in this work, 

which provides an accurate and systematic approach for realistic modelling of large-scale 

composite structural systems.  

The proposed approach is based on the employment of Reissner-Mindlin quadratic curved shell 

elements, the local formulation of which is underpinned by two principal aspects: (i) a co-

rotational framework for the local element coordinate system definition, (Izzuddin & Liang, 

2016); and (ii) a hierarchic optimisation approach that enables the relief of inaccuracies arising 

from shear, membrane and distortion locking phenomena, typically encountered in curved shell 

elements (Izzuddin & Liang, 2017).  

The advanced features of the utilised shell elements allow for a strategy of enhanced accuracy 

and robustness to be established, which enables the accurate nonlinear response evaluation in 

the range of large displacements, taking due account of geometric and material nonlinearity 

effects. This is imperative in the modelling of large-scale metal composite structures, 

particularly of sandwich composites with discrete core topologies, due to the global system 

response and failure modes being sensitive to the progressive manifestation and interaction of 

various local instability forms over their domain. The efficiency of the proposed strategy in the 

modelling of large-scale metal sandwich composites with rectangular and hexagonal 

honeycomb core topologies is demonstrated in an application study presented in Section 7.2. 

The employment of the proposed strategy in conjunction with a high level of discretisation 

detail allows the effective modelling of the spread of plasticity over the domain, as well as of 

intercellular, compressive and shear local buckling over the panel faceplates and core, which 

substantially alter the nonlinear response of such composites. 

The proposed HF modelling strategy has been successfully validated against experimental 

results, obtained from physical testing of the novel sandwich panels undertaken as part of the 
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INFLOAT project, which provides a high level of confidence in its accuracy for application to 

the modelling of all-steel sandwich panels within the project framework and beyond. Part of 

the experimental validation is illustrated in Section 7.5, for a set of 4-point bending tests.  

The approach is further enhanced with the utilisation of recently developed domain partitioning 

capabilities, allowing for the effective overcoming of limitations arising from excessive 

computational demand in large-scale systems by exploiting parallel computing architectures. 

The incorporated partitioned modelling approach is based upon a novel dual super-element 

concept introduced by Jokhio and Izzuddin (2015), allowing for scalable parallel processing of 

individual partitions in High Performance Computing (HPC) systems with distributed memory. 

The adopted methodology enables a substantial reduction of computing wall-clock time and 

the overcoming of potential memory bottlenecks, without compromising the accuracy and 

convergence characteristics of the monolithic approach. 

The studies undertaken in Section 7.3 show that the adopted partitioned modelling approach 

with a single hierarchic partitioning level leads to virtually 80% wall-clock time reduction 

when applied to large-scale sandwich composites, with the use of hierarchic partitioning 

(Jokhio, 2012; Jokhio & Izzuddin, 2015) potentially enhancing the efficiency of the approach 

further. Moreover, this work provides further guidance on the establishment of the optimal 

partitioning configuration which leads to maximum speedup for a given system, beyond which 

the efficiency of the method is compromised by excesses in both the nonlinear solution 

procedure and the communication overhead between parallel processors. 

 

 Surface coupling along a 1-D interface with non-conforming meshes 

A novel 1-D coupling element formulation is presented in this work, facilitating discrete 

constraint enforcement along a line between shell surfaces of arbitrary relative spatial 

orientation, which has not been addressed in computational mechanics research hitherto. The 

developed formulation provides a systematic framework for geometric modelling of weld lines, 

mesh tying of regions with different levels of discretisation detail or element types within a 

system, as well as domain partitioning problems involving computationally heterogeneous 

partitions. 
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The formulation adopts the fundamental principles of the mortar method (Puso, 2004; Fischer 

& Wriggers, 2005), thus inheriting its benefits in respect of the discretisation scheme 

convergence and stability. The principal features of the development are summarised hereafter: 

i. A master (mortar)/slave (non-mortar) surface classification. 

ii. An augmented Lagrangian Multiplier (LM) formulation for the constraint enforcement, 

with the independent LM field introduced along the interface projection on the slave 

surface.  

iii. A systematic algorithmic treatment for the 1-D interface projection discretisation into 

coupling elements, encompassing: (a) establishment of the active sets of coupled FEs 

and interface progressive segmentation on the two surfaces, based on the identification 

of its projection intersections with the FE domain boundaries on the respective meshes; 

(b) identification of a unique set of interacting segments on the two surfaces, on the 

basis of active Gauss Point (GP) projections from the slave to the master surface; and 

(c) establishment of a unique set of coupling elements contributing to the constraint 

enforcement, each comprising a slave and master FE surface and the associated 

interface segment projection on the slave surface. 

iv. An isoparametric framework for the approximation of the discrete geometry, as well as 

of the displacement and LM fields, within each distinct coupling element, with two 

variants allowing for linear and quadratic interpolation along its interface segment. 

v. A systematic Gaussian quadrature integration scheme at the element level, based on 

establishing a set of GPs along the interface segment and determining their projections 

from the slave to the master surface, with two variants facilitating element-based and 

segment-based integration (Farah et al., 2015). 

vi. A consistent formulation for the coupling element force vector and tangent stiffness 

matrix, for any set of kinematic constraints.  

The developed approach has several benefits on the modelling front, including: (i) 

discretisation flexibility in relation to the employed FE types and mesh parameters; (ii) 

overcoming of the modelling shortcomings associated with the requirements of mesh 

conformity; (iii) accuracy enhancement arising from the employment of component- or 
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domain-specific optimal discretisation strategies at a local level; and (iv) substantial reduction 

of the associated computational demands.  

The developed coupling approach provides a unified discretisation strategy of enhanced 

computational efficiency, applicable to large-scale, geometrically complex, composite 

structural systems and beyond. While the developed approach has been applied with recently 

developed shell elements (Izzuddin & Liang, 2016; 2017) utilising ADAPTIC (Izzuddin, 

1991), the underlying formulation has been developed for application to surface-to-surface 

coupling along a line for meshes consisting of any type of 2-D or 3-D finite elements.  

1-D translational and rotational coupling element

Within the scope of the established systematic methodology for surface coupling along a line, 

translational and rotational coupling element formulations are proposed in this work, 

applicable to surfaces discretised with quadratic Reissner-Mindlin curved shell elements. The 

developed formulations enable the fulfilment of translational and rotational compatibility 

conditions and the accurate transferring of internal forces along the coupling interface for 

independently discretised domains. 

Both translational and rotational coupling formulations have been developed using energy 

variational principles, enabling the determination of the coupling element internal force vector 

and tangent stiffness matrix associated with the individual sets of constraints along the 

interface. The translational coupling constraints enforce surface displacement compatibility 

along the interface in all three global coordinate system axes directions, whereas rotational 

coupling is achieved by constraining the relative orientation of the coupled surface slopes 

transverse to the interface along its length. Contrary to the alternative of coupling the 

rotations of the surface normals along the interface, the adopted approach has 

the important computational benefit of enabling the coupling element formulation to 

be expressed purely in terms of the global translational Degrees of Freedom (DOFs) of the 

two surfaces, thus allowing rotational DOFs to be excluded. Notwithstanding the 

approximation embedded in the adopted approach for specific configurations, the 

discrepancies between the two methods become negligible for small-thickness plate/shell 

FE problems.  
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Considering the nature of the developed coupling element formulation, which is based on the 

approximation of the LM field rather than the displacement/strain fields, a set of rigid body 

and constant force/moment patch tests are established. These aim to verify the element ability 

of representing constant LM fields for different 1-D element patches, while satisfying interface 

compatibility conditions. The element has been shown to pass all specified patch tests with a 

maximum error in the LM field of less than 0.001% in its default modus operandi, where an 

element-based Gaussian quadrature integration scheme is adopted.  

A series of sensitivity analyses has been further conducted to investigate the element 

performance sensitivity to a variety of parameters and algorithmic processes underpinning its 

formulation. The main conclusions drawn from these parametric investigations are summarised 

hereafter:  

i. The element performance is insensitive to the surface classification as master/slave. 

ii. The element performance is sensitive to the adopted Gaussian quadrature integration 

variant. The element-based variant achieves exact integration, while the segment-based 

is associated with a considerable error, perticularly for quadratic LM and displacement 

field interpolations along the interface, even with the employment of a large number of 

GPs. This is attributed to the Gaussian quadrature integration scheme being incapable 

of exactly integrating piece-wise polynomial functions, arising in cases where the 

integration is performed over the entire coupling segment in non-matching meshes. 

iii. The element performance is insensitive to the selection of the penalty parameter for a 

wide range of values, with excessively large values, nonetheless, leading to ill-

conditioning of the tangent stiffness matrix and convergence failure. 

iv. The element performance deteriorates in the case of rotational coupling of 

geometrically irregular shell FEs, which is reflected in the results of the constant 

moment patch tests. Nonetheless, monotonic convergence to the exact solution is 

achieved with mesh refinement, and hence the element passes the respective patch tests 

for irregular shell FE geometries. Accordingly, in large scale FE meshes with irregular 

element geometry, a sufficiently high discretisation level enables the accurate 

enforcement of rotational constraints.  
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1-D coupling element verification studies

The ability of the developed coupling element to enforce effectively translational and rotational 

kinematic constraints along a 1-D interface, between independently discretised parallel or 

intersecting shell surfaces of arbitrary relative spatial orientation, is verified through a series of 

numerical studies. Consideration is given to planar, cylindrical and spherical shell surfaces, 

coupled along a straight or curved interface, and discretised with regular and irregular 

hierarchically optimised, co-rotational, Reissner-Mindlin curved shell FEs (Izzuddin & Liang, 

2016; 2017).  

The coupling element performance is assessed via the response comparison of models with 

non-matching meshes, where the 1-D coupling element is employed for the coupling of 

independently discretised regions, and the corresponding monolithic models. For each study, 

the comparative evaluation of the coupled and monolithic models is conducted on the basis of: 

(i) the deformed configuration, (ii) the nonlinear equilibrium path, and (iii) the internal 

distribution of characteristic generalised FE stress entities. The main conclusions drawn from 

the conducted series of verification studies, in respect of the element performance, are 

summarised hereafter: 

i. An accurate internal force distribution is achieved under constant membrane, bending,

planar and transverse shear, as well as twisting stress states.

ii. The obtained distribution is exact in the case of stress states solely mobilising

translational LMs for the constraint enforcement.

iii. The approximation embedded in the rotational coupling formulation, encompassing

coupling of the transverse to the interface surface slopes, introduces discontinuities in

the transverse moment and shear distributions in the coupling interface vicinity. These

are attributed to the associated moment transferring mechanism, achieved via

equivalent nodal force couples at the adjoining shell elements. The discontinuities

reduce away from the interface, always allowing for global equilibrium to be satisfied,

while mesh refinement enables these to be reduced to negligible local effects in the

vicinity of coupling.

iv. Minor deviations between the response of the coupled and monolithic models arise in

the range of very large displacements. These are partially attributed to the
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approximation embedded in the rotational coupling formulation, as well as to the 

employment of a relatively coarse mesh in the coupled model variants in some of the 

studies presented.  

Application studies on high-fidelity modelling of composite structural systems 

A series of numerical studies focusing on offshore topside deck applications is conducted, with 

consideration being specifically given to large-scale metal sandwich composites employed as 

deck components, as well as to composite passive explosion protective barriers (blast walls). 

The main conclusions drawn from the conducted series of application studies are summarised 

hereafter: 

i. The employment of the proposed HF nonlinear FE modelling strategy with a high level 

of discretisation detail provides a highly accurate, robust and systematic approach for 

modelling the spread of plasticity and the interaction of the various local buckling 

phenomena in the range of large displacements. This is illustrated through a series of 

numerical studies on large-scale, metal, honeycomb core, sandwich composites. The 

capturing of such phenomena is essential in large-scale composite systems with 

distinct topological configurations, due to the substantial response sensitivity of such 

systems to local instabilities and imperfections.

ii. The HF modelling strategy provides a reliable and systematic framework for realistic

3-D modelling of composite structural systems. The accuracy of the proposed HF

modelling strategy is established by means of its successful validation against 

experimental results, obtained from physical testing of novel, metal, sandwich panel 

components as part of the INFLOAT project.  

iii. Dual super-element domain partitioning facilitates extensive HF nonlinear analyses of

large-scale composite systems, achieving a substantial reduction in the associated

wall-clock time and memory demands, while overcoming potential memory

bottlenecks. Process parallelisation on HPC systems with distributed memory allows

for a wall-clock time reduction of virtually 80% to be achieved for large-scale

sandwich composites, in comparison with the respective monolithic HF models, when

an optimal partitioning configuration is considered.
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iv. The efficiency of domain partitioning increases with an increasing discretisation level, 

and hence the approach has particular computational benefits when employed in the 

HF modelling of composite systems with a substantial mesh density,  

v. The optimal number of child partitions for a given system, leading to maximum 

speedup, is achieved for an equivalent distribution of DOFs in all partitions, under the 

assumption of idealised process parallelisation conditions. Beyond the optimal number 

of partitions, further domain partitioning leads to performance deterioration, due to 

excess in both the nonlinear solution procedure and the communication overhead 

between parallel processors.  

vi. The developed 1-D coupling element formulation substantially enhances the 

discretisation flexibility in geometrically complex composite systems, comprising 

independent deformable plate components coupled along a line, by enabling selective 

domain discretisation. This is demonstrated for large-scale metal sandwich composites 

subject to localised patch loading, where a dense mesh is only employed in regions of 

the domain associated with substantial stress variations. The selective discretisation 

approach enables the response of the corresponding HF monolithic model to be 

effectively approximated, while further leading to a substantial reduction in the 

employed number of FEs for domain discretisation.  

vii. The employment of the 1-D coupling element in conjunction with dual super-element 

domain partitioning leads to further computational benefits. For selectively-discretised 

large-scale sandwich composites, a sub-optimal partitioning configuration of 

equivalently-sized partitions, which is not associated with an equal distribution of 

DOFs over all partitions, allows for a 75% computing wall-clock time reduction to be 

achieved in comparison with the respective monolithic model. This, in turn, 

corresponds to an overall 85% reduction in relation to the monolithic model with a 

uniform conforming mesh, while further speedup can be achieved with an optimal 

partitioning configuration.   

viii. The developed 1-D coupling element enables the integrated modelling of 

geometrically complex composite systems, incorporating the contribution of a wide 

range of structural components in the response. Due to the modelling complexity and 

limitations associated with the establishment of a monolithic mesh in such cases, 
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industrial practice typically circumvents it by modelling only the structural 

components of interest, and accounting for the contribution of surrounding structural 

elements through appropriately introduced boundary conditions. In applications 

involving substantial hazard, such as the assessment or design of blast walls in ultimate 

conditions, an accurate response evaluation is required, accounting for the contribution 

of the surrounding structural elements. In this context, the employment of the HF 

modelling strategy and 1-D coupling element provides a systematic and reliable 

methodology for the realistic 3-D modelling of composite systems, enabling the 

capturing of effects that significantly alter the response and are neglected with the 

adoption of a simplified modelling approach.  

8.2 Recommendations for future work 

The proposed HF modelling strategy, alongside the developed 1-D coupling element, provide 

a systematic, reliable and versatile framework for realistic 3-D modelling of composite 

structures, whereas the additional incorporation of dual super-element domain partitioning 

renders the extensive nonlinear response evaluation of large-scale systems a realistic prospect. 

Notwithstanding these contributions, there is still scope for further improvement on both the 

coupling element and HF partitioned modelling fronts.  

From the perspective of the developed 1-D coupling element formulation, potential extensions 

and enhancements include: 

i. Extension of the formulation to facilitate discrete contact constraint enforcement. The

adaptation of the 3-D mortar method embedded in the element formulation, presented

in Chapter 4, provides a systematic algorithmic treatment for the 1-D interface

progressive segmentation and discretisation. The developed formulation, underpinned

by the use of an augmented LM approach for the constraint enforcement, can be

extended to incorporate contact kinematic constraints, expressed in the form of

inequalities. Accordingly, the formulation would enable the establishment of a new

contact interface in each iterative step of the nonlinear incremental solution procedure,

conforming with the relative deformations of the two domains in contact. This process

generally enables modelling of effects such as separation or slip between the
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independent regions, which is important in the context of the following 

recommendation, as well as of potential contact interface expansion. Practical 

applications include the modelling of weld lines in problems involving parallel or 

intersecting surfaces with large relative deformations, where contact of the independent 

domains potentially occurs adjacent to the weld lines.  

ii. Investigation of alternative mathematical optimisation formulations for kinematic 

constraint enforcement. The employment of an augmented LM approach for the 

constraint enforcement in the context of the developed coupling element formulation 

achieves enhanced accuracy; nonetheless it introduces additional DOFs to the global 

system, associated with the independent LM field defined along the interface. Despite 

this being unimportant when coupling is over a relatively small part of the domain, in 

some large-scale application where several coupling interfaces are introduced the 

additional DOFs potentially increase the associated computational demand 

considerably. Notwithstanding the effectiveness of domain partitioning, the adoption 

of an approach that enables the condensation of the additional LM DOFs, such as dual 

LM interpolation spaces, or completely eliminates them, such as the Nitsche approach, 

could potentially prove beneficial. These approaches are associated with a variety of 

shortcomings, as discussed in Section 2.3, which require the implementation of 

algorithmic treatments to remedy various inaccuracies or sources of numerical 

instability. Nonetheless, a comparative evaluation of such formulations has not been 

performed in this work and could potentially prove efficient for particular classes of 

problems. In this context, the element implementation in FE programs could allow for 

selection between a range of adopted constraint enforcement formulations.

iii. Incorporation of cross-sectional deformation and eccentricity effects in the coupling 

element formulation.  As discussed in Section 4.3, due to the developed coupling 

element formulations primarily dealing with thin plates and shells, a principal 

embedded assumption is the constraint enforcement at the shell surface mid-plane, thus 

ignoring cross-sectional deformation and eccentricity over the shell thickness. The 

incorporation of these effects in the developed formulation will lead to enhanced 

accuracy in its present form, while, most importantly, enabling its employment for the 

coupling of moderately thick shells, which is not considered in the present work.
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iv. Incorporation of nonlinear interface constitutive model for weld material along the 

coupling interface. The developed coupling formulation utilises a purely geometric 

definition of the coupling constraints as non-penetration conditions, and hence the LM 

field along the interface is obtained on the basis of enforcing compatibility between the 

coupled surfaces. The introduction of a nonlinear constitutive model for the weld 

material along the interface will enable the capturing of weld fracture in the coupled 

system response. Practical applications include problems where potential weld 

delamination must be accounted for, such as in the late response stages of the 4-point 

bending tests conducted in the context of the INFLOAT project and presented in 

Section 7.5. 

v. Expansion of the coupling element formulation to iso-geometric elements. In view of 

recent developments in the field of computational contact mechanics, extending 

beyond conventional FE procedures (De Lorenzis et al., 2012; Florez & Wheeler, 

2016), potential extensions include the formulation incorporation in iso-geometric 

analysis. The benefit of such approaches is the smooth surface description, for example 

using NURBS, which enables inaccuracies or stiffening effects due to the mesh non-

conformity along the interface to be overcome.  

With regards to the HF partitioned discretisation strategy that has been implemented using 

MATLAB, potential extensions and enhancements include: 

i. Utilisation of hierarchic domain partitioning capabilities in the HF modelling approach 

for all-metal sandwich composites. The current work adopts a single level of 

partitioning, even though the previously developed approach (Jokhio, 2012; Jokhio & 

Izzuddin, 2015) allows hierarchic partitioning to any number of levels. 

Notwithstanding the efficiency and substantial wall-clock time speedup achieved with 

single-level partitioning, hierarchic partitioning to further levels could potentially lead 

to enhanced speedup, subject to an appropriate selection of the partitioning scheme.  

ii. Establishment of a systematic domain partitioning framework to incorporate the 

developed coupling element. In Section 7.4, the computational benefits of domain 

partitioning in cases where the coupling element is employed for selective domain 

discretisation are demonstrated considering a sub-optimal partitioning configuration, 

as well as discontinuous LM fields at the partitioned boundary. The enhancement of 
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the HF partitioned modelling strategy to allow for continuity of the LM field at the 

partitioned boundary enables the surplus additional DOFs, associated with collocation 

point multiplicity, to be eliminated. Accordingly, consistency with the monolithic 

approach can be achieved, with the additional benefit of reducing the number of 

additional DOFs. Moreover, the potential extension of the discretisation approach to 

allow for coupling element introduction at the parent level would enable more flexible 

independent discretisation of different child partitions. Finally, the approach would 

greatly benefit from the establishment of a systematic methodology for identifying the 

optimal partitioning configuration in such cases, corresponding to equal DOF 

distribution over the various partition processes, along the lines of the qualitative 

guidance provided in Section 7.3.  
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