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Reducing Training Time of Deep Learning Based
Digital Backpropagation by Stacking

Bertold Ian Bitachon , Marco Eppenberger , Benedikt Baeuerle , and Juerg Leuthold

Abstract— A method for reducing the training time of a deep
learning based digital backpropagation (DL-DBP) is presented.
The method is based on dividing a link into smaller sections.
A smaller section is then compensated by the DL-DBP algorithm
and the same trained model is then reapplied to the subsequent
sections. We show in a 32 GBd 16QAM 2400 km 5-channel
wavelength division multiplexing transmission link experiment
that the proposed stacked DL-DBPs provides a 0.41 dB gain
with respect to linear compensation scheme. This needs to
be compared with a 0.56 dB gain achieved by a non-stacked
DL-DBPs compensated scheme for the price of a 203% increase
in total training time. Furthermore, it is shown that by only
training the last section of the stacked DL-DBP, one can increase
the compensation performance to 0.48 dB.

Index Terms— Coherent communication, deep learning, digital
backpropagation, digital signal processing, nonlinearity compen-
sation, optical fiber communication.

I. INTRODUCTION

FUTURE long haul and high-capacity coherent fiber optic
link will likely include a nonlinear compensation (NLC)

scheme that ideally has high performance and low complexity.
NLC is needed to counteract the capacity-limiting fiber non-
linearity [1]. A trained neural network (NN) is a promising
candidate for such a scheme. It has been shown that an
NN based NLC outperforms the well-known and well-studied
digital backpropagation (DBP) [2], both in terms of gain and
inference complexity [3]–[8].

In [3], an NN was used as an equalizer while in [4], it was
used to approximate the signal perturbation. Although they
perform well, for practical applications, clear guidelines for
choosing the network architecture are necessary, i.e., number
of hidden layers, number of neurons within the hidden layers,
and the activation function. To address this, reference [8] mim-
icked the DBP by using the coupled fiber Kerr nonlinearity as
the activation function. Yet, the method is rather cumbersome
since a synthetic received signal that requires an application
of the chromatic dispersion filter twice is needed at the input
of the network.
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Interestingly, it has been shown that the DBP and a NN
are mathematically similar [9]. This similarity simplifies the
design process since one could start from a well-known DBP
and proceed with an NN, i.e., a deep learning based digital
backpropagation (DL-DBP). Leveraging this similarity, it has
been shown in laboratory setting that DL-DBP performs better
than DBP [6], [7]. This improvement is partially because
the trained DL-DBP has a low-pass characteristic [7] similar
to that of the filtered version of DBP [10]. However, the
DL-DBP method has also its limitations: The numbers of
hidden layers in DL-DBP linearly scale with the transmitted
distance. Consequently, the required training time also scales
with the transmitted distance.

In this letter, we propose a new method for reducing the
training time of a DL-DBP dividing a link into shorter sections.
A shorter section is then trained and reused for the subsequent
sections. This method is also known as a transfer learning
method, similar to what has been shown in [11]. By stacking
of sections, we show in a proof-of concept experiment a total
training time reduction of about 67% with a SNR gain that
is close to what one would find for a fully trained network.
More precisely, we show in a 32 GBd 16QAM 2400 km
5-channel wavelength division multiplexing (WDM) link that
our proposed method offers a 0.41 dB gain with respect
to linear compensation. This gain is similar to what one
would win by applying a 1 step per span (SpS) DBP on the
full distance–yet at about half the inference complexity [7].
If training of a network is done in two steps, i.e., first fully
training a short first section and then training only the second
section of the DL-DBP intended for the longer distance then
one finds an SNR gain of 0.48 dB. This is beneficial for a
scenario where the model for the first section have already
been obtained, e.g., from an earlier fiber deployment. For a
gain of 0.56 dB, the whole stacked DL-DBP needs to be
trained.

II. STACKING TRAINED DL-DBPS

To demonstrate the nonlinear fiber compensation concept
and how it can be simplified by dividing the link into sections,
we use an exemplary fiber link with L spans and total length of
L tot. The fiber link with its subdivision into sections, spans and
mathematical DBP steps or DL-DBP layers is shown in Fig. 1.
Since, it has been shown that DBP and NN are mathematically
similar [9], the two structures can be organized similarly when
applying either the conventional DBP or the DL-DBP.

The nonlinear compensation relying on conventional DBP
is shown in Fig. 1(a). The whole link with L spans is
subdivided into Ms steps per span with total steps M = Ms L.
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Fig. 1. Block diagram of the structure of (a) a digital backpropagation and (b) a deep learning based digital backpropagation (DL-DBP) for a fiber link with
L spans. D and N are the dispersion operator and the nonlinear Kerr operator for the mth step of the fiber respectively. � and A are the linear operator and
nonlinear operator for the mth hidden layer, respectively. We propose to divide the link into S sections and then train a DL-DBP for the fiber impairment
within the shorter section only. The same trained DL-DBP model is then reapplied to all subsequent sections of the link.

Each step compensates for a distance of � = L tot
/

M . The
DBP alternates in every step between a linear operator apply-
ing dispersion D and a nonlinear Kerr operator N onto the
dual-polarization input signal u (t) = [uX (t) , uY (t)]T. D
is the time-domain FIR implementation of the dispersion
filter [12]. The N− operator—in case of dual polarization—is
defined as

fX (γ, x, y) = x · exp
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(
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fY (γ, y, x) = y · exp
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9
γ

(
|x |2 + |y|2

))
,

where x , y are the signals in the x- and y-polarization, respec-
tively and γ is the nonlinear Kerr coefficient. Here, we use
the simpler Manakov definition of the DBP so that there is a
factor 8/9 in the nonlinear Kerr operator definition [2].

In the NN, see Fig. 1(b), we alternate—within each layer—
between a linear operator � and a nonlinear operator A
that is defined by an activation function g (x). By equating
the linear operator as the convolutional dispersion operator
and the nonlinear operator as the nonlinear Kerr operator,
an M-step DBP can be realized as an M-layered NN, i.e.,
a deep learning based digital backpropagation (DL-DBP).
The DL-DBP then can be trained using a gradient descend
optimization. Here, training means to update the complex
weights within the linear operator and the complex γNN within
g(x). Experimental results show that by using the trained
DL-DBP, not only could one produce an improved gain over
one can obtain with a conventional DBP, but also with less
inference complexity [6], [7].

For longer distances, the number of required layers within
the DL-DBP increases since the spatial resolution of the
DL-DBP should be kept constant. Yet, this comes at the
expense of an increased training time. To reduce training
time, we propose to divide the link into S sections with Lsec
spans per section and then train a DL-DBP for nonlinear fiber
impairment on the smaller section. The same trained DL-DBP
model is then reapplied to all subsequent sections of the link,
see Fig. 1(b). For this work, we limit ourselves to S = 2 with

the same Lsec. Lastly, we compare the performance of the
stacked DL-DBP with that of a sectionally trained stacked
DL-DBP (we only train the last section of the stacked DL-DBP
that has not seen the new link yet) and a fully trained DL-DBP.

III. EXPERIMENTAL SETUP

Fig. 2 (a) shows the experimental setup for this work.
A dual-polarization IQ modulator with a 64 GSa/s arbitrary
waveform generator (AWG) combined with external drivers
is used to generate a 32 GBd 16QAM signal with a square-
root-raised-cosine shape and a roll-off-factor of 0.1. The AWG
produces a single randomly generated waveform of size 218

samples. Then, we use spectrally shaped amplified sponta-
neous emission (ASE) noise to simulate a transmission of 5
WDM channels as proposed in [13]. The inset in Fig. 2 shows
the transmitted WDM spectrum. The channel under test (CUT)
with a bandwidth of around 35.2 GHz is placed within a
68 GHz notch of the spectrally shaped noise. This is the
same as placing 16.4 GHz guard bands on either side of the
CUT. We then use a recirculating loop to simulate 1200 km
and 2400 km transmission distance. The loop consists of
three 100 km fiber spans, four Erbium doped fiber ampli-
fiers (EDFAs), two variable optical attenuators (VOAs) and
a wave shaper. The fiber spools have a dispersion parameter
of 17 ps/(km nm), 0.183 dB/km of attenuation (α) and an
effective area of 83.3 μm2. At the receiver, we demultiplex
the signal using a Gaussian shaped bandpass filter (BPF) with
a 3 dB bandwidth of 0.6 nm. Prior to receiving, we bring our
CUT to the optimal power level of the coherent receiver using
an EDFA and a 0.6 nm BPF. We then receive the signal using
a coherent receiver that consists of a 90 deg hybrid, 4 balanced
photodiodes and 80 GSa/s digital storage oscilloscope (DSO).
The digitized signals are then processed further using offline
digital signal processing (DSP) in MATLAB.

For offline signal processing, we first resample to 2 samples
per symbol and normalized the signal to the CUT power level.
We then apply linear compensation only (chromatic disper-
sion), conventional Manakov DBP, conventional DL-DBP or
the new stacked DL-DBP technique. Afterwards, a matched
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Fig. 2. (a) Experimental setup for the wavelength division multiplexing (WDM) using spectrally shaped amplified spontaneous emission (ASE) source WDM
emulator and received with dual polarization coherent receiver (Rx) and offline DSP. AWG is arbitrary waveform generator and VOA is variable optical
attenuator. Inset shows the spectrum of the transmission of the channel under test and the emulated WDM channels. (b) Average estimated SNR (markers)
and interpolated (solid lines) SNR at transmission distance of 1200 km (L=12) as a function of launched power for linear compensation, DBP, and fully
trained DL-DBPs. L is the total number of spans, M is either the total number of steps for DBP or total number hidden layers for DL-DBP, S is the number
of DL-DBP sections.

filter, a timing recovery, polarization demultiplexing filter,
carrier recovery and additional linear equalizations are applied
to the signal. For the DL-DBPs, the total number of hidden
layers within the stacked and conventional DL-DBP is chosen
such that it is equal to the number of SpS of the DBP.
Unless stated otherwise, we initialize the DL-DBP using the
impulse response of the chromatic dispersion filter, and zero
rotational strength during the training state. We train using the
static hidden layer method [7], complex number compatible
ADAM optimizer and 1.5 million iterations. The framework
for training the DL-DBP is developed in-house in MATLAB.
The training set comprises a set of 10 different measurements,
each consisting of 150’000 symbols. It should be noted that
at the current version, the timing recovery static hidden layer
cannot do minibatch training. Using minibatch could reduce
the total training time for all considered schemes while still
preserving the relative reduction between the schemes. Prior
to training, we shuffle the order of the measurement set.
Following [14], for the conventional DBP, the loss α and the
Kerr-nonlinearity γ are optimized until the SNRs at the end
of receiver DSP chain plateau.

IV. COMPENSATION PERFORMANCE AT 1200 KM

Fig. 2 (b) shows the average estimated SNR and interpolated
SNR at 1200 km at 1200 km (L = 12) for linear compensation
only, DBP and DL-DBPs with S = 1 and Lsec = 12. The
launched power refers to the power at the begin of the link.
The DL-DBP with total hidden layers of 12 (M = 12) provides
a gain of 0.38 dB with respect to linear compensation and
a 0.13 dB gain with respect to DBP with 1 step per span
(M = 12). The gain of DL-DBP with respect to the linear
compensation increases to 0.37 dB when we increase to M =
24 and decreases to 0.17 dB when we reduce to M = 6. The
gains are calculated using the interpolated SNR. Further, the
DL-DBP is the fully trained version, and the training is done at
the launched power of 4 dBm, i.e., the DL-DBP is trained for
a launch power of 4 dBm and then is used for other launched
powers, and the DL-DBPs use 149, 93, and 65 taps per hidden
layer for DL-DBP with M equal to 6, 12, and 24 respectively.
The number of taps is optimized by first using the minimum

TABLE I

COMPARISON OF THE TOTAL TRAINING TIME FOR STACKED DL-DBP,
SECTIONALLY TRAINED DL-DBP AND FULLY TRAINED DL-DBP

number of taps of 55, described in [12] and then increasing
the number of taps until the gain is maximized.

V. COMPENSATION PERFORMANCE AT 2400 KM

For the 2400 km (L = 24) experiment, we stack two
1200 km-trained DL-DBP as introduced in Fig. 2 (b) and use
the stacked DL-DBP (S = 2) to compensate the 2400 km
link. This is done by simply using the trained 1200 km model
two times in succession. Prior to entering the second trained
DL-DBP, we renormalize the signal power. Fig. 3 (a) and (b)
show that a stacked DL-DBP with M = 6 and S = 2 outper-
forms the linear compensation scheme by 0.2 dB, albeit still
below the DBP with a total step of M = 24. Fig. 3(a) and (b)
also show that the stacked DL-DBP with M = 12 and S =
2 and conventional DBP with M = 24 deliver a similar gain in
the order of 0.41 dB with respect to the linear compensation
scheme while both the stacked DL-DBP with M = 24 and
S = 2 and conventional DBP with M = 48 also deliver similar
gains of 0.45 dB with respect to a linear compensation scheme.
This shows that for longer distances, we could have 67%
reduction on the total training time by reusing DL-DBPs that
have been trained for a shorter distance, see Table I. Further,
the stacked method could be extended to more than 2 sections
provided that the shorter section has enough accumulated fiber
nonlinearity.

In a next experiment, we do a sectional training where we
only train the second section. Here we assume that we already
have the model for the first section, and we initialize the new
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Fig. 3. Average estimated SNR (markers) and interpolated (solid lines) SNR at transmission distance of 2400 km (L = 24) as a function of launched power
for: a) and b) linear compensation scheme, DBP, stacked DL-DBP. c) Linear compensation scheme, DBP, stacked DL-DBP, sectionally trained DL-DBP, and
fully trained DL-DBP. L is the number of spans, M is either the number of steps or hidden layers, S is the number of DL-DBP sections.

model with a stacked DL-DBP with M = 12 and S = 2. The
model could be obtained from the earlier fiber deployment
of the shorter section. Training only the later shorter-section
increases the gain with respect to stacked DL-DBP. For this
result, we first initialize the new DL-DBP by using a stacked
DL-DBP with M = 12 and S = 2 and only train the 2nd section
of the link, i.e., from the 13th layer onward. Fig. 3 (c) shows
that the gain of the sectionally trained DL-DBP improves to
0.48 dB with respect to linear compensation.

Further, we fully train the DL-DBP with M = 24 and S = 1.
Following the previous paragraph, we initialize also with a
stacked DL-DBP with M = 12 and S = 2. Fig. 3(c) shows that
the fully trained DL-DBP produces a 0.56 dB gain with respect
to linear compensation while it produces around 0.15 dB gain
with respect to DBP with M = 24. This shows that for the
best performance of the DL-DBP, a fully trained DL-DBP is
needed albeit with 203% (Table I) increase in total training
time with respect to the 2-section stacked DL-DBP. Lastly,
for each scheme, we list in Table I the training time to reach
the performance of Fig. 3 (c) (as needed with our algorithm on
our machine). The initial time refers to the training time of the
DL-DBP for 1200 km. For fully trained DL-DBP one could
remove the initial training time entirely. The total training time
for the sectionally trained and fully trained scheme can be
reduced since the retraining of the two schemes over the longer
distance, i.e., new domain, requires less training data [11].

VI. CONCLUSION

We introduce a method to reduce the training time of a
deep learning based digital backpropagation (DL-DBP) by
stacking two trained DL-DBPs. In a 32 GBd 16QAM 2400 km
5-channel WDM transmission, we show that stacking DL-DBP
sections provides a similar 0.41 dB gain as by applying a
conventional 1 step per span (SpS) DBP algorithm – yet at
about half of the inference complexity and 67% decrease
in training time. Further, we show that by only training the
second section of the stacked DL-DBP (assuming the model
for the first section has already been obtained earlier), the
gain improves to 0.48 dB with respect to linear compensation
scheme. Training the whole stack of the DL-DBP provides a
0.56 dB gain with respect to a linear compensation scheme,
yet at the price of higher training time.

The results indicate that DL-DBP training can be simplified
using sections. While these results have been experimentally
verified in the lab, the results need to be confirmed in a field
experiment where fiber spans are not looped.
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