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ABSTRACT

We study the relation between measure theoretic entropy and escape of

mass for the case of a singular diagonal flow on the moduli space of three-

dimensional unimodular lattices.

1. Introduction

Given a sequence of probability measures {μi}∞i=1 on a homogeneous space X ,

it is natural to ask what we can say about weak∗ limits of this sequence? Often

one is interested in measures that are invariant under a transformation T acting

on X , and in this case weak∗ limits are clearly also invariant under T . If X

is non-compact, maybe the next question to ask is whether any weak∗ limit is

a probability measure. If T acts on X = Γ\G by a unipotent element where

G is a Lie group and Γ is a lattice, then it is known that μ is either the zero

measure or a probability measure [12]. This fact relies on the quantitative non-

divergences estimates for unipotents due to works of S. G. Dani [3] (further

refined by G. A. Margulis and D. Kleinbock [9]). On the other hand, if T
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acts on X = SLd(Z)\ SLd(R) by a diagonal element, then μ(X) can be any

value in the interval [0, 1] due to softness of Anosov flows; see, for instance,

[7]. However, as we will see there are constraints on μ(X) if we have additional

information about the entropies hμi(T). This has been observed in [4] for the

action of the geodesic flow on SL2(Z)\ SL2(R); see Theorem 1.2. In this paper

we will generalize this theorem to the space SL3(Z)\ SL3(R) with the action of

a particular diagonal element.

We identify X = SLd(Z)\ SLd(R) with the space of unimodular lattices in R
d;

see §2.1. Using this identification we can define for d = 3 the height function

ht(x) of a lattice x ∈ X as follows.

Definition 1.1: For any 3-lattice x ∈ SL3(Z)\ SL3(R) we define the height ht(x)

to be the inverse of the minimum of the length of the shortest nonzero vector

in x and the smallest covolume of planes w.r.t. x.

Here, the length of a vector is given in terms of the Euclidean norm on R
d.

Also, if d = 2 then we consider the height ht(x) to be the inverse of the length

of the shortest nonzero vector in x. Let

X≤M := {x ∈ X | ht(x) ≤ M} and X≥M := {x ∈ X | ht(x) ≥ M}.
By Mahler’s compactness criterion (see Theorem 2.3) X≤M is compact and any

compact subset of X is contained in some X≤M .

In [4], M. Einsiedler, E. Lindenstrauss, Ph. Michel and A. Venkatesh give the

following theorem:

Theorem 1.2: Let X be the homogeneous space SL(2,Z)\ SL(2,R), let T be

the time-one map for the geodesic flow, and μ be a T invariant probability

measure on X . Then, there exists M0 such that

hμ(T ) ≤ 1 +
log logM

logM
− μ(X≥M )

2

for any M ≥ M0. In particular, for a sequence of T -invariant probability

measures μi with entropies hμi(T ) ≥ c we have that any weak∗ limit μ has

at least μ(X) ≥ 2c− 1 mass left.

Here, μ is a weak∗ limit of the sequence {μi}∞i=1 if for some subsequence ik

and for all f ∈ Cc(X) we have

lim
k→∞

∫
X

fdμik →
∫
X

fdμ.
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The proof of Theorem 1.2 in [4] makes use of the geometry of the upper half

plane H.

From now on we let X = SL3(Z)\ SL3(R) and let

α =

⎛
⎜⎝ e1/2

e1/2

e−1

⎞
⎟⎠ ∈ SL3(R).

We define the transformation T : X → X via T(x) = xα. We now state the

main theorem of this paper.

Theorem 1.3: Let X and T be as defined above. Then there exists a function

ϕ(M) (which is given explicitly), with ϕ(M) →M→∞ 0, and M0 such that for

any T-invariant probability measure μ on X , and any M > M0, one has

hμ(T) ≤ 3− μ(X≥M ) + ϕ(M).

In this context we note that the maximal measure theoretic entropy, the

entropy of T with respect to Haar measure on X , is 3. This follows, e.g., from

[10, Prop. 9.2]. We will see later that ϕ(M) = O( log logM
logM ).

As a consequence of Theorem 1.3 we have:

Corollary 1.4: A sequence of T-invariant probability measures {μi}∞i=1 with

entropy hμi(T) ≥ c satisfies that any weak∗ limit μ has at least μ(X) ≥ c − 2

mass left.

This result is sharp in the following sense. For any c ∈ (2, 3) one can construct

a sequence of probability measures μi with hμi(T) → c as i → ∞ such that any

weak∗ limit μ has precisely c− 2 mass left; see [7].

Another interesting application of our method arises when we do not assume

T-invariance of the measures we consider. In this case, instead of entropy con-

sideration we assume that our measures have high dimension and study the

behaviour of the measure under iterates of T .

Let us consider the following subgroups of G:

(1.1) U+ = {g ∈ G : α−ngαn → 1 as n → −∞},

(1.2) U− = {g ∈ G : α−ngαn → 1 as n → ∞},

(1.3) C = {g ∈ G : gα = αg}.
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For any ε > 0, group H , and g ∈ H we write BH
ε (g) for the ε-ball in H around g;

see also §2.2. Throughout this paper we write A � B if there exists a constant

c > 0 such that A ≤ cB. If the constant c depends on M , then we write

A �M B.

Definition 1.5: For a probability measure ν on X we say that ν has dimension

at least d in the unstable direction if for any δ > 0 there exists κ > 0 such

that for any ε ∈ (0, κ) and for any η ∈ (0, κ) we have

(1.4) ν(xBU+

ε BU−C
η ) �δ εd−δ for any x ∈ X.

Note that the maximum value for d in the definition is 2 since U+ is two

dimensional. The most interesting case of this definition concerns a measure

ν supported on a compact subset, say x0BU+

1 , of an orbit x0U
+ under the

unstable subgroup. In this case, (1.4) is equivalent to ν(x0uB
U+

ε ) � εd−δ for

all u ∈ U+ (which is one of the inequalities of the notion of Ahlfors regularity of

dimension d− δ) and for any δ > 0. See [11, Chaps. 4–6] for more information

on Ahlfors regularity.

Let us consider the following sequence of measures μn defined by

μn =
1

n

n−1∑
i=0

Ti
∗ ν,

where Ti
∗ ν is the push-forward of ν under Ti. We have

Theorem 1.6: For a fixed d, let ν be a probability measure of dimension at

least d in the unstable direction, and let μn be as above. Let μ be a weak∗

limit of the sequence (μn)n≥1. Then μ(X) ≥ 3
2 (d− 4

3 ). In other words, at least
3
2 (d− 4

3 ) of the mass is left.

In particular, if d = 2 then the limit μ is a probability measure. In this case

with a minor additional assumption on ν one in fact obtains the equidistribution

result, that is, the limit measure μ is the Haar measure [15].

Another application of Theorem 1.6 is that it gives the sharp upper bound for

the Hausdorff dimension of singular pairs. The exact calculation of Hausdorff

dimension of singular pairs was achieved in [2]. We say that r ∈ R
2 is singular

if for every δ > 0 there exists N0 > 0 such that for any N > N0 the inequality

‖qr− p‖ <
δ

N1/2
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admits an integer solution for p ∈ Z
2 and for q ∈ Z with 0 < q < N . From our

results we obtain the precise upper bound for the Hausdorff dimension of the set

of singular pairs; namely this dimension is at most 4
3 . This gives an independent

proof for this fact which was proved in [2]. Let x ∈ SL3(Z)\ SL3(R). Then we

say x is divergent if T n(x) diverges in SL3(Z)\ SL3(R). We recall (e.g. from [2])

that r is singular if and only if

xr = SL3(Z)

⎛
⎜⎝ 1

1

r1 r2 1

⎞
⎟⎠

is divergent. An equivalent formulation1 of the above Hausdorff dimension result

(see [2]) is that the set of divergent points in SL3(Z)\ SL3(R) has Hausdorff

dimension 8− 2
3 = 4

3 + 6.

However, we can also strengthen this observation as follows. A weaker re-

quirement on points (giving rise to a larger set) would be divergence on average,

which we define as follows. A point x is divergent on average (under T) if

the sequence of measures

1

N

N−1∑
n=0

δTn(x)

converges to zero in the weak∗ topology, i.e. if the mass of the orbit — but not

necessarily the orbit itself — escapes to infinity.

Corollary 1.7: The Hausdorff dimension of the set of points that are diver-

gent on average is also 4
3 + 6.

We finally note that the nondivergence result [8, Theorem 3.3] is related to

Theorem 1.6. In fact, [8, Theorem 3.3] implies that μ as in Theorem 1.6 is a

probability measure if ν has the additional regularity property; namely if ν is

assumed to be friendly. However, to our knowledge these additional assumptions

make it impossible to derive, e.g., Corollary 1.7.

The next section below has some basic definitions and facts. In §3, we char-

acterize what it means for a trajectory of a lattice to be above height M in

some time interval. Using this we prove Theorem 1.3 in §4–5. Theorem 1.6 and

its corollary are discussed in §6.
1 Roughly speaking, the additional 6 dimensions corresponding to U−C are not as im-

portant as the 2 directions in the unstable horospherical subgroup U+. The latter is

parametrized by the unipotent matrix as in the definition of xr.
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2. Preliminaries

2.1. The space of unimodular lattices. In this section we will give a brief

introduction to the space of unimodular lattices in R
3.

Definition 2.1: Λ ⊂ R
3 is a lattice if it is a discrete subgroup and the quotient

R
3/Λ is compact.

Note that this is equivalent to saying that Λ = 〈v1, v2, v3〉Z where v1, v2, v3

are linearly independent vectors over R.

Definition 2.2: A lattice Λ = 〈v1, v2, v3〉Z is said to be unimodular if it has co-

volume equal to 1, where the covolume is the absolute value of the determinant

of the matrix with row vectors v1, v2, v3.

We identify a point SL3(Z)g ∈ X with the unimodular lattice in R
3 generated

by the row vectors of g ∈ G. We leave it as an exercise for the reader to convince

himself that this correspondence is well defined and a bijection.

We now state Mahler’s compactness criterion which motivates the definition

of the height function in the introduction.

Theorem 2.3 (Mahler’s compactness criterion): A closed subset K ⊂ X is

compact if and only if there exists δ > 0 such that no lattice in K contains a

nonzero vector of length less that δ.

For the proof the reader can refer to [13, Corollary 10.9]. We now deduce

Corollary 1.4 from Theorem 1.3.

Proof. We need to approximate 1X≤M
by functions of compact support. So, let

f ∈ Cc(X) be such that

f(x) =

⎧⎨
⎩1 for x ∈ X≤M

0 for x ∈ X≥(M+1)
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and 0 ≤ f(x) ≤ 1 otherwise. Such f exists by Urysohn’s Lemma. Hence,∫
f dμi ≥

∫
1X≤M

dμi = μi(X≤M ) ≥ c− 2− ϕ(M).

Let μ be a weak∗ limit; then we have

lim
ik→∞

∫
f dμk =

∫
f dμ

and hence we deduce that ∫
f dμ ≥ c− 2− ϕ(M).

Now, by definition of f we get
∫
f dμ ≤ μ(X<(M+1)). Thus,

μ(X<(M+1)) ≥ c− 2− ϕ(M).

This is true for any M ≥ M0, so letting M → ∞ finally we have

μ(X) ≥ c− 2,

which completes the proof.

2.2. Riemannian metric on X. Let G= SL3(R) and Γ = SL3(Z). We fix a

left-invariant Riemannian metric dG (or simply d) on G and for any x1 =Γg1,

x2 = Γg2 ∈ X we define

dX(x1, x2) = inf
γ∈Γ

dG(g1, γg2),

which gives a metric dX on X = Γ\G. For more information about the Rie-

mannian metric, we refer to [14, Chap. 2].

For a given subgroup H of G we let BH
r (g) := {h ∈ H | dG(h, g) < r}. It

makes sense to abbreviate and write BH
r = BH

r (1), where we write 1 for the

identity in G.

Definition 2.4: We say that r > 0 is an injectivity radius of x ∈ X if the map

g �→ xg from BG
r → BX

r (x) is an isometry.

Lemma 2.5: For any x ∈ X there exists r > 0 which is an injectivity radius of

x.

Note that since X≤M is compact, we can choose r > 0 which is an injectivity

radius for every point in X≤M . In this case, r is called an injectivity radius

of X≤M . We refer to Proposition 9.14 in [5] for a proof of these claims.
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2.2.1. Operator norms. We endow R
3 with the standard euclidean metric, writ-

ing |u| for the norm of u ∈ R
3. Rescaling the Riemannian metric if necessary

we may assume that there exists some η0 > 0 such that |u − ug| < |u|dG(1, g)
for any u ∈ R

3 and g ∈ BG
η0
.

2.2.2. Metric on U+. We may identify U+ with R
2 using the parametrization

(t1, t2) ∈ R
2 →

⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠ .

It will be convenient to work with the maximum norm on R
2. We will write

DU+

η =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠ : |t1|, |t2| < η

⎫⎪⎬
⎪⎭

for a ball in U+ of radius η centred at the identity. Rescaling the maximum

norm on R
2 if necessary we will assume that

DU+

ε ⊂ BU+

ε .

2.3. Entropy. Instead of giving here the formal definition of the ergodic theo-

retic entropy hμ(T) we will state only a well-known and important lemma that

will enter our arguments later. We refer to [16, §4] for a complete definition.

Fix η > 0 small enough so that B
SL3(R)
η is an injective image under the

exponential map of a neighborhood of 0 in the Lie algebra. Define a Bowen

N -ball to be the translate xBN for some x ∈ X of

BN =

N⋂
n=−N

α−nBSL3(R)
η αn.

Roughly speaking the Bowen N -ball xBN consists of all y near x which have the

property that the trajectories from time −N to time N of x and y are η-close

to each other.

The following lemma gives an upper bound for entropy in terms of covers of

Bowen balls.

Lemma 2.6: Let μ be a T-invariant probability measure on X . For any N ≥ 1

and ε > 0 let BC(N, ε) be the minimal number of Bowen N -balls needed to
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cover any subset of X of measure bigger that 1− ε. Then

hμ(T) ≤ lim
ε→0

lim inf
N→∞

logBC(N, ε)

2N
.

We omit the proof which is very similar to [4, Lemma 5.2] and goes back to

[1].

3. Sets of labeled marked times

Let N,M > 0 be given. In this section we define for every x ∈ TN (X≤M ) the set

of labeled marked times. Each configuration of such markings will correspond to

a particular element of a partition of X , and we will estimate the cardinality of

this partition (which is desirable due to the link of entropy and the logarithmic

growth of covers as in Lemma 2.6). This marking has the property that it will

tell whether the lattice Tn(x) is above or below height M , without having to

know x. However, we do not want to consider all vectors (or planes) of x that

become short at some point—it is likely that a partitioning of X that uses all

such vectors (or planes) will be too large to be of use.

Rather, whenever there are two linearly independent primitive 1/M -short

vectors, our strategy is to consider a plane in x that contains both vectors. So,

for a given lattice x we would like to associate a set of labeled marked times

in [−N,N ] which tells us when a vector or a plane is getting resp. stops being

1/M -short. Choosing the vectors and planes of x carefully in the following

construction we obtain a family MN of sets of labeled marked times. This will

give rise to a partition of X , which will be helpful in the main estimates given

in §4.

3.1. Short lines and planes. Let u, v ∈ R
3 be linearly independent. We

recall that the covolume of the two-dimensional lattice Zu + Zv in the plane

Ru+ Rv equals |u ∧ v|. Here,

u ∧ v = (u1, u3, u3) ∧ (v1, v2, v3) = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Below, u, v ∈ R
3 will always be such that Zu+Zv = x∩ (Ru+Rv) for a lattice

x. In this case we call Ru + Rv rational w.r.t. x and will call |u ∧ v| the
covolume of the plane Ru+Rv w.r.t. x. We sometimes write a plane P in

x to mean the plane P = Ru+ Rv rational w.r.t. x.
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We also note that the action of T extends to
∧2

R
2 via

(3.1)
T(u ∧ v) =(u1e

1/2, u2e
1/2, u3e

−1) ∧ (v1e
1/2, v2e

1/2, v3e
−1)

=((u2v3 − u3v2)e
−1/2, (u3v1 − u1v3)e

−1/2, (u1v2 − u2v1)e
1).

For a plane P = Ru+Rv as above, we sometimes write T(P ) for T(u∧ v). For

a vector v = (v1, v2, v3) ∈ R
3 we let T(v) := vα = (v1e

1/2, v2e
1/2, v3e

−1).

Let ε > 0 be given. Fix x ∈ X ; a vector v in x is ε-short at time n if

|Tn(v)| ≤ ε. Similarly for plane P ⊂ R
3 we say that it is ε-short at time n

(w.r.t. x) if Tn(P ) is rational w.r.t. Tn(x) and its covolume is ≤ ε.

3.2. (Labeled) Marked times. For a positive number N and a lattice

x ∈ TN (X≤M ) we explain which times will be marked in [−N,N ] and how

they are labeled. The following lemma, which is special to SL3(Z)\ SL3(R), is

crucial.

Lemma 3.1 (Minkowski): Let ε1, ε2 ∈ (0, 1) be given. If there are two linearly

independent ε1-short and ε2-short vectors in a unimodular lattice in x, then

there is a unique rational plane in x with covolume less than 1 which in fact is

ε1ε2-short.

If there are two different rational planes of covolumes ε1 and ε2 in a uni-

modular lattice x, then there is a unique primitive vector of length less than 1

which in fact is ε1ε2-short. In this case, the unique ε1ε2-short vector lies in the

intersection of the two short planes.

The first part of the lemma follows quickly from the assumption that x is

unimodular. The second follows by considering the dual lattice to x. We will

use these facts to mark and label certain times in an efficient manner so as to

keep the total number of configurations as low as possible.

3.2.1. Some observations. Let us explain how we will use Lemma 3.1. Assume

that we have the following situation: There are two linearly independent prim-

itive vectors u, v in a unimodular lattice such that

|u| ≤ 1/M and |T(v)| ≤ 1/M.

Let u = (u1, u2, u3). It is easy to see that

|T(u)| = |(e1/2u1, e
1/2u2, e

−1u3)| ≤ e1/2

M
.
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Assume M ≥ e1/2. From Lemma 3.1 we have that the plane containing both

T(u),T(v) has covolume at most e1/2/M2 ≤ 1/M , and it is unique with this

property.

A similar situation arises when we have two different planes P, P ′ which are

rational for a unimodular lattice such that

|P | ≤ 1/M and |T(P ′)| ≤ 1/M,

where |·|means the covolume. AssumeM ≥ e. One can see that |T(P )| ≤ e/M.

Thus, we conclude from Lemma 3.1 that there is a unique vector of length at

most e/M2 ≤ 1/M contained in both planes T(P ) and T(P ′).

3.2.2. Marked times. Let VN,x = {i ∈ [−N,N ] : Ti(x) �∈ X≤M}. VN,x is a

disjoint union of maximal intervals and let V = [a, b] be one of them:

(a) either a=−N (and so ht(T a(x))≤M) or a>−N and ht(Ta−1(x))<M ,

(b) either b = N or ht(T b+1(x)) < M , and

(c) ht(Tn(x)) ≥ M for all n ∈ V .

We first show how one should inductively pick the marked times for this interval

V :

We will successively choose vectors and planes in x and mark the time in-

stances with particular labels when these vectors and planes get 1/M -short on

V and when they become big again. At time a we know that there is either a

unique plane or a unique vector getting 1/M -short. Here, uniqueness of either

follows from Lemma 3.1. Moreover, we cannot have two 1/M -short vectors

(1/M -short planes) as otherwise there is a 1/M2-short plane (or vector) which

contradicts the assumption that V = [a, b] has a as a left endpoint. If we have

both a unique 1/M -short plane and vector, then we consider whichever stays

1/M -short longer (say with preference to vectors if again this gives no decision).

Assume that we have a unique plane. The case where we start with a unique

vector is similar. Mark a by p1, which is the time when the plane is getting

1/M -short, and also mark by p′1 the last time in [a, b] when the same plane

is still 1/M -short. If p′1 = b we stop marking. If not, then there is again by

Lemma 3.1 a unique 1/M -short plane or vector at p′1 + 1. If it is a 1/M -short

plane, then at time p′1 + 1 we must have a unique 1/M -short vector by the

discussion in §3.2.1. In either case, we have a unique 1/M -short vector at time

p′1 + 1. Let us mark by l1 the instance in [a, p′1 + 1] when this vector is getting

1/M -short. Also, mark by l′1 the last time in [p′1 + 1, b] for which this vector
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is still 1/M -short. If l′1 = b we stop, otherwise at time l′1 + 1 there must be a

unique 1/M -short plane or vector. If it is a short vector, then we know that

there must be a unique plane of covolume at most 1/M by the discussion in

§3.2.1. So, in either case there is a unique 1/M -short plane at time l′1 + 1. So,

there is an instance in [a, l′1 + 1] which we mark by p2 when for the first time

this plane is 1/M -short. Also, mark by p′2, the last instance of time in [l′1+1, b]

for which the plane is 1/M -short. If p′2 = b we stop here, otherwise we repeat

the arguments above and keep marking the time instances in V by li, l
′
i, pj , p

′
j

until we hit time b.

Given a positive number N and a lattice x ∈ TN (X≤M ) we first consider the

disjoint intervals Vi of maximum length with the property as V above. Now

start labeling some elements of the sets Vi as explained earlier starting with V1

and continuing with V2 etc., always increasing the indices of li, l
′
i, pi, p

′
i.

For any lattice x as above we construct in this way a set of labeled marked

times in [−N,N ]. We denote this set by

N (x) = N[−N,N ](x) = (L,L′,P ,P ′).

Here L = L(x),L′ = L′(x),P = P(x),P ′ = P ′(x) are subsets in [−N,N ] that

contain all the labeled marked times li, l
′
i, pj , p

′
j for x, respectively. Finally, we

let

MN = {N (x) : x ∈ TN (X≤M )}
be the family of all sets of labeled marked times on the interval [−N,N ].

3.2.3. The Estimates.

Lemma 3.2 (Noninclusion of marked intervals): Let (L,L′,P ,P ′) ∈ MN be

given. For any q in L or in P , there is no r in L or in P with q ≤ r ≤ r′ ≤ q′.

Proof. We have four cases to consider. Let us start with the case that

r = pi, r
′ = p′i and q = pj , q

′ = p′j (where j > i as it is in our construc-

tion only possible for a later marked interval [q, q′] to contain an earlier one).

However, by construction the plane Pi that is 1/M -short at that time we intro-

duce the marked interval [pi, p
′
i] (which is either the beginning of the interval

V or is the time the earlier short vector stops to be short) is the unique short

plane at that time. Hence, it is impossible to have the stated inclusion as the

plane Pj (responsible for [pj , p
′
j ]) would otherwise also be short at that time.

The case of two lines is completely similar.
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Consider now the case q = pj ∈ P and r = li ∈ L with pj ≤ li ≤ l′i ≤ p′j .
If li = a (and so also li = pj = a) is the left end point of interval V = [a, b]

in the construction, then we would have marked either li, l
′
i or pj , p

′
j but not

both, as we agreed to start by marking the end points of the longer interval (if

there is a choice). Hence, we may assume li > a and that times li, l
′
i have been

introduced after consideration of a plane with marked times pk, p
′
k satisfying

li ≤ p′k + 1 ≤ l′i, in particular j �= k. We now treat two cases depending on

whether pk ≥ li or not. If pk ≥ li then pj ≤ pk ≤ p′k ≤ p′j, which is impossible

by the first case. So, assume pk < li; then we have two different planes that are

1/M -short at time li. This implies that the vector responsible for the interval

[li, l
′
i] is 1/M2-short by Lemma 3.1. However, this shows that the same vector

is also 1/M -short at time li − 1 for M ≥ e, which contradicts the choice of li.

The case of q = li ∈ L and r = pj ∈ P is similar.

We would like to know that the cardinality of MN can be made small (im-

portant in Lemma 2.6) with M large. In other words, for M large we would

like to say that limN→∞ log#MN

2N can be made close to zero. The proof is based

on the geometric facts in Lemma 3.1.

LetN =(L,L′,P ,P ′)∈MN and let L={l1, l2, . . . , lm} and P={p1, p2,. . ., pn}
be as in the construction of marked times. It is clear from the construction that

l′i < l′i+1 for l′i, l
′
i+1 ∈ L′. Thus from Lemma 3.2 we conclude that li ≤ li+1.

Hence we have L = {l1 ≤ l2 ≤ · · · ≤ lm}. Similarly, we must have

P = {p1 ≤ p2 ≤ ... ≤ pn}.
In fact, we have the following.

Lemma 3.3 (Separation of intervals): For any i = 1, 2, . . . ,m − 1 and for any

j = 1, 2, . . . , n− 1 we have

li+1 − li > �logM� and pj+1 − pj > �logM�.
Also,

l′i+1 − l′i > �logM� and p′j+1 − p′j > �logM�.
Proof. For 1/M -short vectors in R

3, considering their forward trajectories un-

der the action of the diagonal flow (et/2, et/2, e−t), we would like to know the

minimum possible amount of time needed for the vector to reach size ≥ 1. Let

v = (v1, v2, v3) be a vector of size ≤ 1/M which is of size ≥ 1 at time t ≥ 0. We
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have

1 ≤ v21e
t + v22e

t + v23e
−2t ≤ (v21 + v22 + v23)e

t ≤ et

M2
.

So, we have

t ≥ logM2.

Hence, it takes more than 2�logM� steps for the vector to reach size ≥ 1.

Similarly, for a vector v = (v1, v2, v3) of size ≥ 1, we calculate a lower bound

for the time t ≥ 0 when its trajectory reaches size ≤ 1/M . We have

1

M2
≥ v21e

t + v22e
t + v23e

−2t ≥ (v21 + v22 + v23)e
−2t ≥ e−2t.

So, we must have t ≥ logM and hence it takes at least t = �logM� steps for

the vector to have size ≤ 1/M .

Now, assume that li+1 − li ≤ �logM�. Let u, v be the vectors in x that are

responsible for li, li+1, respectively. That is, u, v are 1/M -short at times li, li+1,

respectively, but not before. Then the above arguments imply that

|Tli(v)| ≤ 1 and |Tli+1(u)| ≤ 1,

so the plane P containing both u and v is 1/M -short at times li and li+1.

The covolume of Tn(P ) w.r.t. Tn(x) is
√
a1en + a2e−n/2 for some nonnega-

tive a1 and a2. In particular, it is a concave function of n and hence the plane

P is 1/M -short in [li, li+1] (and so li, li+1 are constructed using the same V ).

From our construction we know that l′i < l′i+1. By Lemma 3.1 the same plane P

is 1/M2-short on [li, l
′
i]∩ [li+1, l

′
i+1]. If this intersection is non-empty, then P is

also e/M2-short at time l′i+1. As M ≥ e this shows that it is the unique plane

that is used to mark points, say pk, p
′
k, after marking li, l

′
i. If, on the other hand,

l′i < li+1, then we already know that P is also 1/M -short at time l′i+1 ∈ [li, li+1]

and get the same conclusion as before. Therefore pk ≤ li ≤ l′i ≤ p′k, which is a

contradiction to Lemma 3.2.

The proofs of the remaining three cases are very similar to the arguments

above and are left to the reader.

Let us consider the marked points of L in a subinterval of length �logM�;
then there could be at most 1 of them. Varying x while restricting ourselves to

this interval of length �logM� we see that the number of possibilities to set the

marked points in this interval is no more than �logM� + 1. For M large, say

M ≥ e4, we have

= �logM�+ 1 ≤ �logM�1.25.
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Therefore, there are

≤ �logM�1.25(� 2N
�log M��+1) �M e

2.5N log�log M�
�log M�

possible ways of choosing labeled marked points for L in [−N,N ]. The same is

true for L′,P ,P ′. Thus we have shown the following.

Lemma 3.4 (Estimate of MN): For M ≥ e4 we have

#MN �M e
10N log�logM�

�log M� .

3.3. Configurations. Before we end this section, we need to point out an-

other technical detail. For our purposes, we want to study a partition element

in X≤M corresponding to a particular set of labeled marked times. Since X≤M

is compact, it is sufficient for us to study an η-neighborhood of some x0 in

this partition. These are the close-by lattices which have the same set of la-

beled marked times. We shall see that the fact that N(x) = N(x0), for x in

x0B
G
η , gives rise to restrictions on the position of x with respect to x0 (see

§4.1). However, just knowing that N (x0) = N (x) will not be sufficient for the

later argument. Hence, we need to calculate how many possible ways (in terms

of vectors and planes) we can have the same labeled marked times. For this

purpose, we consider the following configurations.

3.3.1. Vectors. Let l be a marked time in the first component L of the marking

N (x0). Let v0 be the vector in x0 that is responsible for l in the construction

of marked times for x0. Let y = Tl−1(x) be in Tl−1(x0)B
SL3(R)
η with N (x) =

N (x0) and v in x that is responsible for l in the construction of marked times

for x. Let v′ ∈ x0 be such that Tl−1(v′)g = Tl−1(v) for some g ∈ B
SL3(R)
η with

y = Tl−1(x0)g. We want to know how many choices for v′ are realized by the

various choices of x as above.

Lemma 3.5: Let N (x0) be given. Also, let l ∈ L = L(x0) and v0 ∈ x0 be the

vector which is responsible for l. There are two possibilities:

(1) If l is the end point of a maximal interval V in Vx0 , then for any x

with N (x) = N (x0) and Tl−1(x) = Tl−1(x0)g, with g ∈ BG
η , the

vector ±v0α
l−1gα−(l−1) is responsible for l in L(x).

(2) If not, then there are p, p′ in P(x0),P ′(x0), respectively, with p ≤
l− 1 ≤ p′, and a set W ⊂ x0, of size � min{ep′−l, e(l−p)/2}, such that

if x is a lattice such that N (x) = N (x0), and Tl−1(x) = Tl−1(x0)g,



268 M. EINSIEDLER AND S. KADYROV Isr. J. Math.

with g ∈ BG
η , then for some w ∈ W , wαl−1gα−(l−1) is the vector

responsible for l in L(x).
Proof. To simplify the notation below we set w0 = Tl−1(v0) ∈ Tl−1(x0),

w = Tl−1(v) ∈ y, and w′ = Tl−1(v′) = wg ∈ Tl−1(x0).

We have
1

M
≤ |w| ≤ e

M
,

and so

|w′| ≤ |w′ − w|+ |w| ≤ |w|d(g−1, 1) + |w| ≤ e(1 + η)/M.

Also,

|w′| ≥ |w| − |w − w′| ≥ (1− η)/M.

Together

(3.2)
1− η

M
≤ |w′| ≤ e(1 + η)

M
.

Assume first that l = a is the left end point of the interval V = [a, b] in the

construction of marked times. In this case, w′ and w0 lie in the same line in

R
3. Otherwise, if they were linearly independent, then the plane containing

both would be e2(1 + η)/M2-short by Lemma 3.1. For M ≥ 3e2, this is a

contradiction to the assumption that l = a. Since we only consider primitive

vectors we only have the choice of w′ = ±w0.

Now, assume that l is not the left end point of the interval V . Then, there is

a plane P in x0 responsible for p, p′ with p ≤ l − 1 ≤ p′ such that

|Tp−1(P )| ≥ 1/M and |Tp′+1(P )| > 1/M,

|Tk(P )| ≤ 1/M for k ∈ [p, p′].

Let us calculate how many possibilities there are for w′ ∈ Tl−1(x0). By (3.2),

w′ is in the plane Tl−1(P ) of covolume < 1 w.r.t. Tl−1(x0) since Tl−1(x0) is

unimodular. Since

1

M
< |Tp′+1(P )| and

1

M
≤ |Tp−1(P )|,

we get

max

{
e−(p′−l+2)

M
,
e−(l−p)/2

M

}
≤ |Tl−1(P )|



Vol. 190, 2012 ENTROPY AND ESCAPE OF MASS FOR SL3(Z)\ SL3(R) 269

(see §3.1 for the action of T on planes). We note that the ball of radius r contains

at most� max{r2/A, 1} primitive vectors of a lattice in R
2 of covolume A. This

follows, since in the case of r being smaller than the second successive minima

we have at most 2 primitive vectors, and if r is bigger, then area considerations

give � r2/A many lattice points in the r-ball.

We apply this for

A = |Tl−1(P )| ≥ max

{
e−(p′−l+2)

M
,
e−(l−p)/2

M

}
and r =

(1 + η)e

M
,

where

r2

A
=

(1 + η)2e2/M2

max
{

e−(p′−l+2)

M , e−(l−p)/2

M

} � min{e(p′−l), e(l−p)/2},

which proves the lemma.

3.3.2. Planes. Let p be a marked time in the third component P of the mark-

ing N (x0). Let P0 be a plane in T p−1(x0) that is responsible for p in the

construction of marked times for x0. Let y = Tp−1(x) be in Tp−1(x0)B
SL3(R)
η

with N (x) = N (x0) and P in x that is responsible for p in the construction

of marked times for x. Let P ′ be a plane that is rational w.r.t. x0 such that

Tp−1(P ′)g = Tp−1(P ) for some g ∈ B
SL3(R)
η with y = Tp−1(x0)g. We want to

know how many choices for P ′ are realized by the various choices of x as above.

We have two cases.

Lemma 3.6: Let N (x0) be given. Also, let p ∈ P = P(x0) and P0 in x0 be the

plane which is responsible for p. There are two possibilities:

(1) If p is the end point of a maximal interval V in Vx0 , then for any x

with N (x) = N (x0) and Tp−1(x) = Tp−1(x0)g, with g ∈ BG
η , the

plane P0α
p−1gα−(p−1) is responsible for p in P(x).

(2) If not, then there are l, l′ in L(x0),L′(x0), respectively, with l≤p−1≤ l′,
and a set of planes W ⊂ x0, of size � min{e(l′−p)/2, ep−l}, such that

if x is a lattice such that N (x) = N (x0), and Tp−1(x) = Tp−1(x0)g,

with g ∈ BG
η , then for some P ∈ W , Pαp−1gα−(p−1) is the plane

responsible for p in P(x).

We will not prove the lemma, since a similar argument to that giving

Lemma 3.5 gives this lemma.
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4. Main proposition and restrictions

Fix a height M ≥ 1. Let N ≥ 1 and consider N = N (x0) ∈ MN . Let

V = Vx0 ⊂ [−N,N ] be as before so that for any n ∈ [−N,N ], n ∈ Vx0 if and

only if there is a 1/M -short plane or a 1/M -short vector at time n. Define the

set

Z≤M (N ) := {x ∈ TN (X≤M ) | N (x) = N}.
Now, we state the main proposition.

Proposition 4.1: There exists a constant c0 > 0, independent ofM , such that

the set Z(N ) can be covered by �M e6N−|V |c18N/	logM

0 Bowen N -balls.

In the proof of Theorem 1.3 we will consider

lim
N→∞

log#Z(N )

2N
.

Thus, in this limit, the term arising from c
18N/	logM

0 can be made small for M

large since c0 does not depend on M . So, our main consideration is the e6N−|V |

factor. On the other hand, it is easy to see that the set Z(N ) can be covered by

� e6N many Bowen N -balls. But this does not give any meaningful conclusion.

Therefore, e−|V | is the factor appearing in Proposition 4.1 that leads to the

conclusion of Theorem 1.3.

In proving Proposition 4.1, we will make use of the lemmas below which give

the restrictions needed in order to get the drop in the number of Bowen N -balls

to cover the set Z(N ).

4.1. Restrictions of perturbations.

4.1.1. Perturbations of vectors. Let v = (v1, v2, v3) be a vector in R
3.

Lemma 4.2: For a vector v of size ≥1/M , if its trajectory under the action of T

stays 1/M -short in the time interval [1, S], then we must have (v21+v22)/v
2
3<2e−S.

Proof. We will prove a slightly stronger statement. For this let λ1 ≥ 1 and

λ2 ≤ 1, and assume that

λ1(v
2
1 + v22 + v23) ≥

1

M2
≥ λ2(v

2
1e

S + v22e
S + v23e

−2S).

This simplifies to

λ1v
2
3 > (v21 + v22)(λ2e

S − λ1).
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Assuming λ1, λ2 are close to 1, we must have v3 �= 0 and

v21 + v22
v23

≤ λ1

λ2eS − λ1
.

Assuming again that λ1, λ2 are close to 1, the last expression is bounded by

2e−S.

We would like to get restrictions for the vectors which are close to the vector

v and whose trajectories behave as v on the time interval [0, S]. So, let u =

(u1, u2, u3) be a vector in R
3 with u = vg for some g ∈ B

SL3(R)
η such that

|u| ≥ 1/M and that its forward trajectory stays 1/M -short in the time interval

[1, S].

Let us first assume

g =

⎛
⎜⎝ 1

1

−t1 −t2 1

⎞
⎟⎠ ∈ BU+

η

so that

(
u1 u2 u3

)
=
(

v1 v2 v3

)⎛⎜⎝ 1

1

−t1 −t2 1

⎞
⎟⎠ .

From Lemma 4.2 we know that (u2
1 + u2

2)/u
2
3 < 2e−S. So

(v1 − v3t1)
2 + (v2 − v3t2)

2

v23
< 2e−S.

We are interested in possible restrictions on tj ’s since they belong to the unstable

horospherical subgroup of SL3(R) under conjugation by α=diag(e1/2, e1/2, e−1).

Simplifying the left-hand side, we obtain(v1
v3

− t1

)2
+
(v2
v3

− t2

)2
< 2e−S.

We also know
v21
v23

+
v22
v23

< 2e−S.

Together with the triangular inequality, we get

t21 + t22 < (
√
2e−S +

√
2e−S)2 = 8e−S.
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In general, we have

g =

⎛
⎜⎝ 1

1

−t1 −t2 1

⎞
⎟⎠
⎛
⎜⎝ a11 a12 a13

a21 a22 a23

0 0 a33

⎞
⎟⎠ ∈ BSL3(R)

η .

In this case, we still claim that

t21 + t22 < 8e−S.

Let

w =
(

w1 w2 w3

)
=
(

v1 v2 v3

)⎛⎜⎝ 1

1

−t1 −t2 1

⎞
⎟⎠ ,

so that

(4.1) u = vg = w

⎛
⎜⎝ a11 a12 a13

a21 a22 a23

0 0 a33

⎞
⎟⎠ .

We observe

TS(u) = TS(w)

⎛
⎜⎝ a11 a12 a13e

−3S/2

a21 a22 a23e
−3S/2

0 0 a33

⎞
⎟⎠ ,

so that TS(u) ∈ TS(w)B
SL3(R)
η and |TS(u)−TS(w)| < η|TS(u)| by the discus-

sion in §2.2.1. Hence, |TS(u)| < 1/M implies

(4.2) |TS(w)| ≤ |TS(u)|+ |TS(u)− TS(w)| < 1 + η

M
.

On the other hand, since g ∈ B
SL3(R)
η we have

(4.3) |w| ≥ |u| − |u− w| > 1− η

M
.

Combining (4.2) and (4.3) we get

|w|
1− η

>
1

M
>

|TS(w)|
1 + η

.

Now, the proof of Lemma 4.2 for sufficiently small η > 0 implies

w2
1 + w2

2

w2
3

< 2e−S.

Hence, we are in the previous case with u replaced by w. So we have t21 + t22 <

8e−S, which proves the claim. We have shown the following.
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Lemma 4.3: There exists a sufficiently small η>0 such that, for any M,S>0,

the following holds. Let v, u be vectors in R
3 with sizes ≥ 1/M whose trajec-

tories in [1, S] stay 1/M -short. Assume that u = vg with g ∈ B
SL3(R)
η and that

the notation is as in (4.1). Then

t21 + t22 ≤ 8e−S.

Lemma 4.4: Let η > 0 be given. For any S, S′ > 0, let us divide [−2η, 2η]2

into small squares of side length 1
2ηe

−3S′/2. Then there exists a constant c > 0

such that there are � max{1, e3S′−S} small squares that intersect with the ball

t21 + t22 ≤ 8e−S on [−2η, 2η]2.

Proof. Note that t21 + t22 ≤ 8e−S defines a ball with diameter 2
√
8e−S/2.

If 1
2ηe

−3S′/2 ≥ 2
√
8e−S/2, then there are 4 squares that intersect the ball. Oth-

erwise (which makes 3S′ − S bounded below), there can be at most

� (e−S/2)2/(e−3S′/2)2 = e3S
′−S small squares that intersect with the given

ball.

What Lemma 4.3 and Lemma 4.4 say is the following:

Consider a neighborhood O = x0B
U+

η/2B
U−C
η/2 of x0 in X , where as before

U+, U− and C are the unstable, stable and centralizer subgroups of SL3(R)

with respect to α, respectively. If we partition the square with side length 2η in

BU+

η/2 into small squares with side lengths ηe−3S′/2, then we have

� � 2η

ηe−3S′/2 �2 � �e3S′/2�2 many elements in this partition. Now, assume that

there is a vector v ∈ x0 with |v| ≥ 1/M that stays 1/M -short in [1, S] and

consider the set of lattices x = x0g in O with the property that the vector

w = vg in x behaves as v in [0, S]. Then the above two lemmas say that this

set is contained in ≤ c0e
3S′−S many partition elements (small squares). Hence,

in the proof of Proposition 4.1, instead of ≤ c0�e3S′/2�2 many Bowen balls we

will only consider ≤ c0e
3S′−S many of them and this (together with the case

below) will give us the drop in the exponent as appeared in Proposition 4.1.

4.1.2. Perturbations of planes. Assume that for a lattice x ∈ X there is a ra-

tional plane P w.r.t. x with

|P | ≥ 1/M and |Tk(P )| ≤ 1/M for k ∈ [1, S].

Let u, v be generators of P with |P | = |u ∧ v|. So we have

|u ∧ v| ≥ 1/M ≥ |TS(u ∧ v)|.
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Thus, substituting a = u2v3 − u3v2, b = u3v1 − u1v3, c = u1v2 − u2v1 (cf. 3.1)

we obtain

a2 + b2 + c2 ≥ a2e−S + b2e−S + c2e2S ,

which gives

c2

a2 + b2
≤ 1− e−S

e2S − 1
= e−2S 1− e−S

1− e−2S
= e−2S 1

1 + e−S
< e−2S.

Assume x′ = xg for some g ∈ B
SL3(R)
η . For now, let us assume that

g =

⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠ .

Let u′, v′ ∈ x′ be such that(
u′

v′

)
=

(
u′
1 u′

2 u′
3

v′1 v′2 v′3

)
=

(
u1 u2 u3

v1 v2 v3

)⎛⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠

=

(
u1 + t1u3 u2 + t2u3 u3

v1 + t1v3 v2 + t2v3 v3

)
.

We let a′ = u′
2v

′
3 − u′

3v
′
2 = (u2 + t2u3)v3 − u3(v2 + t2v3) and hence a′ = a.

Similarly, b′ = u′
3v

′
1 − u′

1v
′
3 = b and let

c′ =u′
1v

′
2 − u′

2v
′
1

=(u1 + t1u3)(v2 + t2v3)− (u2 + t2u3)(v1 + t1v3)

=c− at1 − bt2.

Now, assume that

|u′ ∧ v′| ≥ 1/M and |Tk(u′ ∧ v′)| ≤ 1/M for k ∈ [1, S]

which, by the above, implies

c′2

a′2 + b′2
=

(c− at1 − bt2)
2

a2 + b2
< e−2S.

For a general g ∈ B
SL3(R)
η we would like to obtain a similar equation. Let us

write g as

(4.4) g =

⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠
⎛
⎜⎝ g11 g12 g13

g21 g22 g23

0 0 g33

⎞
⎟⎠ .
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Then we have

Tl(x′) = Tl(xg) = Tl

⎛
⎜⎝x
⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠
⎞
⎟⎠
⎛
⎜⎝ g11 g12 g13e

− 3
2 l

g21 g22 g23e
− 3

2 l

0 0 g33

⎞
⎟⎠ .

Hence the forward trajectories of x′ and x

⎛
⎜⎝ 1

1

t1 t2 1

⎞
⎟⎠ stay � η close. Thus

we have
(c− at1 − bt2)

2

a2 + b2
� e−2S .

From the triangular inequality we obtain

(at1 + bt2)
2

a2 + b2
� e−2S .

Let C > 0 be the constant that appeared in the last inequality.

Lemma 4.5: Let P, P ′ be two-dimensional lattices in R
3 of covolume ≥ 1/M

whose trajectories in [1, S] stay 1/M -short and assume that P ′ = Pg for some

g ∈ B
SL3(R)
η . Then for some a, b (dependent on P ) we must have in the notation

of (4.4) that

(at1 + bt2)
2

a2 + b2
≤ Ce−2S .

We note that the inequality above describes a neighborhood of the line in R
2

defined by the normal vector (a, b) of width 2
√
Ce−s.

Lemma 4.6: Consider the set defined by (at1 + bt2)
2/(a2 + b2) ≤ Ce−2S

on [−2η, 2η]2 and let us divide [−2η, 2η]2 into small squares of side length
1
2ηe

−3S′/2. Then there are � max{e3S′/2, e3S
′−S} small squares that intersect

with the region (at1 + bt2)
2/(a2 + b2) ≤ Ce−2S .

Proof. The type of estimate depends on whether the side length 1
2ηe

−3S′/2 of

the squares is smaller or bigger than the width 2
√
Ce−S of the neighborhood.

We need to calculate the length and the area of the region R given by

|at1 + bt2| ≤
√
C(a2 + b2)e−S

restricted to [−2η, 2η]2. As mentioned earlier, the inequality above describes a√
Ce−S-neighborhood of the line at1 + bt2 = 0. The length of the segment of

this line in [−2η, 2η]2 is at most 4
√
2η, so that the area of R is ≤ 4

√
2Cηe−S .
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If
√
Ce−S ≤ 1

2ηe
−3S′/2, then there are � η/ηe−3S′/2 = e3S

′/2 many intersec-

tions. Otherwise, there are at most

�
√
Cηe−S

η2e−3S′ � e3S
′−S

small squares that intersect the region R.

4.2. Proof of Main Proposition.

Proof of Proposition 4.1. By taking the images under a positive power of T, it

suffices to consider forward trajectories and the following reformulated problem:

Let V ⊂ [0, N − 1] and x0 ∈ X≤M be such that

n ∈ V if and only if Tn(x0) ∈ X≥M .

Also, let N = N[0,N−1](x0) be the marked times for x0 (defined similarly to

N[−N,N ] as in §3.2.2).
We claim that

Z+
≤M = {x ∈ X≤M : N[0,N−1](x) = N}

can be covered by �M e3N−|V |c9N/	logM

0 forward Bowen N -balls xB+

N defined

by

B+
N =

N−1⋂
n=0

αnBSL3(R)
η α−n.

Since X≤M is compact and since we allow the implicit constant above to depend

on M , it suffices to prove the following:

Let U+, U− and C be the subgroups of G introduced in (1.1), (1.2) and (1.3),

respectively, given x0 ∈ X≤M and a neighborhood

O = x0D
U+

η/2B
U−C
η/2

of x0 where, as before, DU+

η/2 is the η/2-neighborhood of 1 in U+ (identified with

R
2) w.r.t. maximum norm. Then we claim that the set

Z+
O = {x ∈ O : N[0,N−1](x) = N}

can be covered by � e3N−|V |c9N/	logM

0 forward Bowen N -balls.

If we apply Tn to O , we get a neighborhood of Tn(x0) for which the U+-

part is stretched by the factor e3n/2, while the second part is still in BU−C
η/2 .
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By breaking the U+-part into �e3n/2�2 sets of the form u+
i D

U+

η/2 for various

u+
i ∈ U+, we can write Tn(O) as a union of �e3n/2�2 sets of the form

Tn(x0)u
+
i D

U+

η/2α
−nBU−C

η/2 αn.

Hence we obtain similar neighborhoods as before. If we take the pre-image

under Tn of this set, we obtain the set

T−n(Tn(x0)u
+
i )α

nDU+

η/2α
−nBU−C

η/2 .

Notice that T−n(Tn(x0)u
+
i )α

nDU+

η/2α
−nBU−C

η/2 is contained in the forward

Bowen n-ball T−n(Tn(x0)u
+
i )B

+
n . Indeed by assumption on the metrics (see

§2.2.2) we have Dε ⊂ Bε, and so for 0 ≤ k < n we have

α−k(αnDU+

η/2α
−n)αk⊂ αn−kBU+

η/2α
−(n−k)α−kBU−C

η/2 αk⊂ BU+

η/2B
U−C
η/2 ⊂ BSL3(R)

η .

We would like to reduce the number of u+
i ’s so that we do not have to use all

�e3n/2�2 forward Bowen n-balls to cover the set Z+
O .

We can decompose V into maximal intervals V1, V2, . . . , Vm for some m. We

note here that m ≤ |L|+ |P|, so that from Lemma 3.3 we obtain

(4.5) m ≤ 2N

�logM� + 2.

Now, write [0, N−1]\V = W1∪W2∪· · ·∪Wl where Wi’s are maximal intervals.

A bound similar to (4.5) also holds for l.

We will consider intervals Vj and Wi in their respective order in [0, N − 1].

At each stage we will divide any of the sets obtained earlier into �e3|Vj |/2�2- or
�e3|Wi|/2�2- many sets, and in the case of Vj show that we do not have to keep

all of them. We inductively prove the following:

For K ≤ N such that [0,K] = V1 ∪ V2 ∪ · · · ∪ Vn ∪ W1 ∪ W2 ∪ · · · ∪ Wn′ ,

the set Z+
O can be covered by � e3Ke−(|V1|+···+|Vn|)c

4
|V1|+···+|Vn|

�logM� +4n+n′

0 many

pre-images under TK of sets of the form

TK(x0)u
+DU+

η/2α
−KBU−C

η/2 αK

and hence can be covered by � e3Ke−(|V1|+···+|Vn|)c
4

|V1|+···+|Vn|
�log M� +4n+n′

0 many

forward Bowen K-balls. When K = N we obtain the proposition.

For the inductive step, if the next interval is Wn′+1, then after dividing the

set TK(x0)u
+BU+

η/2α
−KBU−C

η/2 αK into �e3|Wn′+1|/2�2 ≤ 4e3|Wn′+1| many sets of
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the form

TK+|Wn′+1|(x0)u
+BU+

η/2α
−K−|Wn′+1|BU−C

η/2 (1)αK+|Wn′+1|,

we just consider all of them, and hence have that Z+
O can be covered by

� e3(K+|Wn′+1|)e−(|V1|+···+|Vn|)c
4

|V1|+···+|Vn|
�logM� +4n+n′+1

0

many forward Bowen K + |Wn′+1|-balls (assuming c0 ≥ 4).

So, assume that the next time interval is Vn+1 = [K +1,K +R]. Pick one of

the sets obtained in an earlier step and denote it by

Y = TK(x0)u
+BU+

η/2α
−KBU−C

η/2 αK .

We are interested in lattices x in Y ∩X≤M such that

N[0,R](x) = N[0,R](T
K(x0)) = {L,L′,P ,P ′}.

We have

L = {l1 < l2 < · · · < lk}, L′ = {l′1 < l′2 < · · · < l′k}
and

P = {p1 < p2 < · · · < pk′}, P ′ = {p′1 < p′2 < · · · < p′k′}
for some k, k′ ≥ 0. For simplicity of notation assume that K + 1 = l1. We note

that

K + 1 = l1 < p1 < l2 < p2 < · · · < min{lk, pk′} < max{lk, pk′}.
This easily follows from the construction of labeled marked times together with

Lemma 3.2. So we can divide the interval Vn+1 into subintervals

[l1, p1], [p1, l2], . . . , [min{lk, pk′},max{lk, pk′}], [max{lk, pk′},K +R].

We consider each of the (overlapping) intervals in their respective order.

Let us define c0 to be the maximum of the implicit constants that appeared

in the conclusions of Lemma 3.5, Lemma 3.6, Lemma 4.4 and Lemma 4.6.

We would like to apply Lemma 4.4 and Lemma 4.6 to obtain a smaller number

of forward Bowen K + |Vn+1|-balls to cover the set T−K(Y ). Assume, for

example, that there is a vector v in a lattice x that is getting 1/M -short and

staying short in some time interval; also assume that there is a vector u in a

lattice xg for some g ∈ B
SL3(R)
η which behaves the same as v. However, we

can apply Lemma 4.4 only if we know that u = vg. Thus, it is necessary to

know how many vectors w′ there are in x for which u = w′g for some g. This
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is handled by Lemma 3.5. A similar situation arises when we want to apply

Lemma 4.6, and in this case we first need to use Lemma 3.6.

Let us start with the interval [l1, p1]. Let us divide the set Y ∩ X≤M into

�e3(p1−l1)/2�2 small sets by partitioning the set DU+

η/2 in the definition of Y as we

did before. Since l1 is the left end point of Vn+1, we see that the assumptions of

Lemma 4.3 are satisfied in the sense that if there is a lattice Tl1−1(x0)g which

has the same set of marked times as Tl1−1(x0) for some g ∈ B
SL3(R)
η , then there

are unique vectors v ∈ Tl1−1(x0) and u = vg ∈ Tl1−1(x0)g which are of size

≥ 1/M and stay 1/M -short in [l1, l
′
1] (cf. Lemma 3.5). Now, from Lemma 4.3

and Lemma 4.4 with S′ = p1 − l1 and S = l′1 − l1 we see that we only need to

consider

(4.6) ≤ c0 max{1, e3(p1−l1)−(l′1−l1)} =: N1

of these �e3(p1−l1)/2�2 sets (see the discussion at the end of §4.1.1). Thus, we

obtain sets of the form

Tp1(x0)u
+DU+

η/2α
−p1BU−C

η/2 αp1 .

Now, let us consider the next interval [p1, l2]. Divide the sets obtained ear-

lier into �e3(l2−p1)/2�2 subsets for which the U+-component is of the from

u+DU+

e−3(l2−p1)/2η/2
. We would like to apply Lemma 4.6. However, Lemma 4.6

concerns itself with the restrictions on g arising from common behaviors of

two planes P, P ′ = Pg and we only know the common behavior of the lat-

tices. Moreover, if P0 (resp. P ) is the plane that is rational w.r.t. Tp1(x0)

(resp. Tp1(x0)g) which is responsible for the marking of [p1, p
′
1], then we do not

necessarily know that P = P0g. On the other hand, we see from Lemma 3.6

that there are ≤ c0 min{e(l′1−p1)/2, ep1−l1} choices of planes P ′ that are ratio-

nal w.r.t. Tp1(x0) for which we could possibly have P = P ′g. For each choice

we can apply Lemma 4.6 with S′ = l2 − p1 and S = p′1 − p1. Thus, for each

choice we need to consider only ≤ c0 max{e3(l2−p1)/2, e3(l2−p1)−(p′
1−p1)} of the

�e3(l2−p1)/2�2 subsets. Thus, in total, we need to consider only

(4.7) ≤ c20 min{e(l′1−p1)/2, ep1−l1}max{e3(l2−p1)/2, e3(l2−p1)−(p′
1−p1)} =: N2

of these subsets.

Taking the images of these sets under Tl2−p1 we obtain sets of the form

Tl2(x0)u
+DU+

η/2α
−l2BU−C

η/2 αl2 .
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Now, let us consider the interval [l2, p2] and let us divide the sets obtained

earlier into �e3(p2−l2)/2�2 subsets of the form

Tp2(x0)u
+DU+

η/2α
−p2BU−C

η/2 αp2 .

From Lemma 3.5 we know that there are ≤ c0 min{ep′
1−l2 , e(l2−p1)/2} many con-

figurations, and for each of them we can apply Lemma 4.4 with S′ = p2− l2 and

S = l′2−l2. So, for each configuration we need only≤ c0 max{1, e3(p2−l2)−(l′2−l2)}
many of the subsets. Thus, we need

(4.8) ≤ c20 min{ep′
1−l2 , e(l2−p1)/2}max{1, e3(p2−l2)−(l′2−l2)} =: N3

many of these subsets. Continuing in this way, at the end of the inductive step

we consider the interval [max{lk, pk′},K + R]. Assume that max{lk, pk′} = lk

so that l′k = K + R and k′ = k − 1 (the other case is similar and left to the

reader). We have the sets of the form

Tlk(x0)u
+DU+

η/2α
−lkBU−C

η/2 αlk

that are obtained in the previous step. Let us divide them into �e3(l′k−lk)/2�2
small sets. By Lemma 3.5 we have ≤ c0 min{ep′

k−1−lk , e(lk−pk−1)/2} configura-

tions and for each we apply Lemma 4.4 with S′ = S = l′k − lk. Hence, we need

to consider only

(4.9) ≤ c20 min{ep′
k−1−lk , e(lk−pk−1)/2}e3(l′k−ll)−(l′k−lk) =: N2k−1

of them. Thus, in the inductive step we divided the sets obtained earlier into

�e3(p1−l1)/2�2�e3(l2−p1)/2�2 · · · �e3(l′k−lk)/2�2

many parts and deduced that we only need to take

(4.10) ≤ N1N2N3 · · ·N2k−1

many of them where each set is of the form

TK+R(x0)u
+DU+

η/2α
−K−RBU−C

η/2 αK+R.

On the other hand, let us multiply the max term of (4.6) with the min term of

(4.7) to get

max{1, e3(p1−l1)−(l′1−l1)}min{e(l′1−p1)/2, ep1−l1}.
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If max{1, e3(p1−l1)−(l′1−l1)} = e3(p1−l1)−(l′1−l1), then clearly the multiplication

above is ≤ e3(p1−l1)−(l′1−l1)e(l
′
1−p1)/2 ≤ e2(p1−l1). Otherwise, it is ≤ ep1−l1 .

Thus, in either case we have

≤ e2(p1−l1).

Similarly, let us multiply the max term of (4.7) with the min term of (4.8):

max{e3(l2−p1)/2, e3(l2−p1)−(p′
1−p1)}min{ep′

1−l2 , e(l2−p1)/2}.
If max{e3(l2−p1)/2, e3(l2−p1)−(p′

1−p1)} = e3(l2−p1)−(p′
1−p1), then the above multi-

plication is ≤ e3(l2−p1)−(p′
1−p1)ep

′
1−l2 = e2(l2−p1). Otherwise, it is

≤ e3(l2−p1)/2e(l2−p1)/2 = e2(l2−p1).

Hence, in either case we have that the product is ≤ e2(l2−p1).

We continue in this way until we have considered all max and min terms.

Thus we obtain that

N1N2N3 · · ·N2k−1 ≤ c4k0 e2(p1−l1)e2(l2−p1) · · · e2(pk−1−lk−1)e2(l
′
k−lk)

= c4k0 e2(p1−l1)+2(l2−p1)+···+2(l′k−lk)

= c4k0 e2|Vn+1|.

We know that k is the number of elements of L restricted to the interval

Vn+1. From Lemma 3.3 we have that

k ≤ |Vn+1|
�logM� + 1.

Therefore, for the inductive step K + |Vn+1|, we get that the set Z+
O(V ) can be

covered by

� e3Ke−(|V1|+···+|Vn|)c
4

|V1|+···+|Vn|
�log M� +4n+n′

0 e2|Vn+1|c
4

|Vn+1|
�log M�+4

0

= e3(K+|Vn+1)|e−(|V1|+···+|Vn+1|)c
4

|V1|+···+|Vn+1|
�logM� +4(n+1)+n′

0

many forward Bowen K + |Vn+1|-balls.
Hence, letting K = N together with (4.5) we see that the set Z+

O(V ) can be

covered by

≤ e3N−|V |c
4|V |

�log M�+
5N

�log M�
0 ≤ e3N−|V |c

9N
�log M�
0

many forward Bowen N-balls.
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5. Proof of Theorem 1.3

Our main tool in proving Theorem 1.3 will be Lemma 2.6.

Proof of Theorem 1.3. Note first that it is sufficient to consider ergodic mea-

sures. For if μ is not ergodic, we can write μ as an integral of its ergodic

components μ =
∫
μtdτ(t) for some probability space (E, τ); see, for exam-

ple, [5, Theorem 6.2]. Therefore, we have μ(X≥M ) =
∫
μt(X≥M )dτ(t), but also

hμ(T) =
∫
hμt(T)dτ(t) (see, for example, [16, Theorem 8.4]), so that the desired

estimate follows from the ergodic case.

Suppose that μ is ergodic. We would like to apply Lemma 2.6. For this we

need to find an upper bound for covering μ-most of the space X by Bowen

N -balls. So, let M ≥ 100 be such that μ(X≤M ) > 0. Thus, ergodicity of μ

implies that μ(
⋃∞

k=0 T
−k X≤M ) = 1. Hence, for every ε > 0 there is a constant

K ≥ 1 such that Y =
⋃K−1

k=0 T−k(X≤M ) satisfies μ(Y ) > 1− ε.

Moreover, the pointwise ergodic theorem implies

1

2N − 1

N−1∑
n=−N+1

1X≥M
(Tn(x)) → μ(X≥M )

as N → ∞ for a.e. x ∈ X . Thus, given ε > 0, there exists N0 such that for

N > N0 the average on the left will be bigger than μ(X≥M )− ε for any x ∈ X1

for some X1 ⊂ X with measure μ(X1) > 1 − ε. Clearly, for any N we have

μ(Z) > 1− 2ε, where

Z = X1 ∩ TN Y.

Now, we would like to find an upper bound for the number of Bowen N -balls

needed to cover the set Z. Here N → ∞, while ε and hence K are fixed. Since

Y =
⋃K−1

k=0 T−k X≤M , we can decompose Z into K sets of the form

Z ′ = X1 ∩TN−k X≤M ;

but since K is fixed, it suffices to find an upper bound for the number of

Bowen N -balls needed to cover one of these. Consider the set Z ′, which we

split into the sets Z(N ) as in Proposition 4.1 (applied to the parameter N − k

instead of N) for the various subsets N ∈ MN−k. By Lemma 3.4 we know

that we need �M e
10N log�log M�

�log M� many of these under the assumption that M ≥
100 > e4. Moreover, by our assumption on X1 we only need to look at sets

Vx ⊂ [−N + k + 1, N − k − 1] with |Vx| ≥ (μ(X≥M ) − 2ε)(2N − 1) (where we

assume that N is sufficiently large). On the other hand, Proposition 4.1 gives
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that each of those sets Z(N ) can be covered by ≤ e6N−|Vx|c18N/	logM

0 Bowen

(N − k)-balls for some constant c0 > 0 that does not depend on M . It is easy

to see from the definition that a Bowen (N − k)-ball can be covered by at most

ck1 many Bowen N -balls. Together, we see that Z can be covered by

�M,K e
10N log�log M�

�log M� c
18N

�logM�
0 e6N−(μ(X≥M )−2ε)(2N−1)

many Bowen N -balls. Applying Lemma 2.6 we arrive at

hμ(T) ≤ lim
ε→0

lim inf
N→∞

logBC(N, ε)

2N

≤ lim
ε→0

(3− (μ(X≥M )− 2ε) +O

(
log logM

logM

)

≤3− μ(X≥M ) +O

(
log logM

logM

)
,

which completes the proof for any sufficiently large M with μ(X≤M ) > 0.

However, we claim that the same conclusion holds for any sufficiently large M

independent of μ (which, e.g., is crucial for proving Corollary 1.4).

If μ(X≤100) > 0, then the claim is true by the above discussion. So assume

that μ(X≤100) = 0 and let

Mμ = inf{M > 100 : μ(X≤M ) > 0}.

Since μ(X≤M ) > 0 for any M > Mμ ≥ 100, we have by the discussion above

(5.1) hμ(T) ≤ 3− μ(X≥M ) + O

(
log logM

logM

)
.

If μ(X≤Mμ) > 0, then (5.1) also holds for M = Mμ by the above. If, on

the other hand, μ(X≤Mμ) = 0, then limn→∞ μ(X≥Mμ+1/n) = μ(X>Mμ) =

μ(X≥Mμ) and (5.1) for M = Mμ follows from (5.1) for M = Mμ + 1/n. Since

μ(X≥Mμ) = 1, this simplifies to

hμ(T) ≤ 2 +O

(
log logM

logM

)
.

Since log logM/logM is a decreasing function forM ≥ 100 and μ(X≥M ) = 1 for

M ≤ Mμ, we obtain that (5.1) also holds trivially for any M ∈ [100,Mμ).
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6. Limits of measures with high dimension

In this section we prove Theorem 1.6 and Corollary 1.7. Our main tool is

a version of Proposition 4.1. Let N,M > 0 be given. For any x we define

Vx ∈ [0, N − 1] to be the set of times n ∈ [0, N − 1] for which Tn(x) ∈ X≥M .

Now, Proposition 4.1 can be rephrased as follows.

Proposition 6.1: For a fixed set N = N[0,N−1](x0) of labeled marked times

in [0, N − 1], we have that the set

Z+(N ) = {x ∈ X≤M : N[0,N−1](x) = N[0,N−1]}

can be covered by �M e3N−|Vx0 |c9N/	logM

0 many sets of the form

T−N(TN (x)u+)DU+

η
2 e

−3N/2B
U−C
η
2

.

Proof. In the proof of Proposition 4.1 we inductively proved that the set

Z+
O = {x ∈ O : N[0,N−1](x) = N[0,N−1]}

can be covered by e3N−|Vx0 |c9N/	logM

0 many pre-images under TN of sets of

the form

TN (x0)u
+DU+

η/2α
−NBU−C

η/2 αN .

So Z+
O can be covered by the sets of the form

T−N (TN (x0)u
+)αNDU+

η/2α
−NBU−C

η/2 .

This completes the proof, since we have αNDU+

η/2α
−N = DU+

η
2 e

−3N/2 and since

X≤M is compact.

In the following, let ν be a probability measure on X which has a dimension

at least d in the unstable direction (see (1.4)). We wish to prove Theorem 1.6.

For any κ > 0 small we are interested in the upper estimate for

ν({x ∈ X<M : |Vx| > κN}).

Proposition 6.1 together with Lemma 3.4 gives the following.

Lemma 6.2: For any N > 0 large, we have

ν({x ∈ X≤M : |Vx| > κN}) �M,δ e
6−2κ−3d+3δ

2 N+
9N log(c0 log M)

log M .
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Proof. From Lemma 3.4, we know that the set X<M can be decomposed into

�M e
5N log�logM�

�log M�

many sets of the form Z+(N ). We are only interested in those sets of marked

timesN[0,N−1](x) for which |Vx| > κN . On the other hand, from Proposition 6.1

we know that such sets can be covered by e(3−κ)Nc
9N/	logM

0 many sets of the

form

T−N(TN (x)u+)DU+

η
2 e

−3N/2B
U−C
η
2

.

However, from the assumption on dimension of the measure ν we have

ν(T−N(TN (x)u+)DU+

η
2 e

−3N/2B
U−C
η
2

) �δ (
η

2
e−3N/2)d−δ

once N is sufficiently large. Thus

ν({x ∈ X≤M : |Vx| > κN}) �M,δ e
5N log�log M�

�log M� e(3−κ)Nc
9N

�logM�
0 (

η

2
e−3N/2)d−δ.

This simplifies to

ν({x ∈ X≤M : |Vx| > κN}) �M,δ e
6−2κ−3d+3δ

2 N+
9N log(c0 log M)

log M .

Proof of Theorem 1.6. Note that for d ≤ 4/3 the conclusion in the theorem is

trivial. Hence we assume that d > 4/3. In order to prove Theorem 1.6 we need

to estimate an upper bound for μN (X≥M ) for M,N large. Let us recall that

μN =
1

N

N−1∑
i=0

Ti
∗ ν.

Hence

μN (X≥M ) =
1

N

N−1∑
n=0

ν(T−n(X≥M ))

=
1

N

N−1∑
n=0

ν(X≤M ∩ T−n(X≥M )) +
1

N

N−1∑
n=0

ν(X>M ∩ T−n(X≥M )).

However, we have ν(X>M ) < ε(M), where ε(M) → 0 as M → ∞. Hence

(6.1) μN (X≥M ) ≤ ε(M) +
1

N

N−1∑
n=0

ν(X≤M ∩ T−n(X≥M )).

Thus, all we need to estimate is 1
N

∑N−1
n=0 ν(X≤M ∩ T−n(X≥M )).
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Now, recalling that Vx = {n ∈ [0, N − 1] : Tn(x) ∈ X≥M} we note that

1

N

N−1∑
n=0

ν(X≤M ∩ T−n(X≥M ))

=
1

N

N−1∑
n=0

∑
W⊂[0,N ]

ν({x ∈ X≤M : Vx = W} ∩ T−n(X≥M )),

where ν({x∈X≤M :Vx=W}∩T−n(X≥M )) is either 0 or ν({x∈X≤M :Vx=W}).
Therefore, we switch the order of summation and get

=
1

N

∑
W⊂[0,N−1]

|W |ν({x ∈ X≤M : Vx = W})

=
1

N

N∑
i=1

iν({x ∈ X≤M : |Vx| = i})

=
1

N

	κN
∑
i=1

iν({x ∈ X≤M : |Vx| = i}) + 1

N

N∑
i=�κN

iν({x ∈ X≤M : |Vx| = i})

≤ 1

N
�κN�ν(X≤M ) +

1

N
Nν({x ∈ X≤M : |Vx| > κN}).

Let K(M, δ) > 0 be the implicit constant that appeared in Lemma 6.2. Then

using Lemma 6.2 we obtain

1

N

N−1∑
n=0

ν(X<M ∩ T−n(X≥M )) ≤ κ+K(M, δ)e
6−2κ−3d+3δ

2 N+
9N log(c0 log M)

log M .

Thus, together with (6.1) we get

(6.2) μN (X≥M ) ≤ ε(M) + κ+K(M, δ)e(
6−2κ−3d+3δ

2 +
9 log(c0 log M)

log M )N .

By assumption we have d > 4
3 . Let κ > (6 − 3d)/2 (which we will later choose

to approach (6 − 3d)/2). Now, we let δ > 0 be small enough so that

6− 2κ− 3d+ 3δ < 0.

Let ε > 0 be given. For M sufficiently large we can make sure that ε(M) < ε/2

and that
6− 2κ− 3d+ 3δ

2
+

9 log(c0 logM)

logM
< 0.

Thus,

K(M, δ)e(
6−2κ−3d+3δ

2 +
9 log(c0 log M)

log M )N → 0
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as N → ∞. So we conclude that for N large enough we get

μN (X≥M ) ≤ κ+ ε,

which gives in the limit that μ(X) > 1−κ. This is true for any κ > (6− 3d)/2.

Thus,

μ(X) ≥ 1− 6− 3d

2
=

3d− 4

2
.

Next, we prove Corollary 1.7. We need the following Corollary 4.12 from [6].

Theorem 6.3: Let F be a Borel subset of Rn with 0 < Hs(F ) ≤ ∞. Then

there is a compact set E ⊂ F such that 0 < Hs(E) < ∞ and a constant b such

that

Hs(E ∩Bδ(r)) ≤ bδs

for all r ∈ R
n and δ > 0.

Proof of Corollary 1.7. As any divergent point is also divergent on average, we

get from [2, Corollary 1.2] that the set of points F0 ⊂ X that are divergent

on average has at least dimension 4
3 + 6. So assume now that the Hausdorff

dimension of F0 is greater than 4
3 + 6. Then, by the behavior of Hausdorff

dimension under countable unions, there is some subset F ⊂ F0 with compact

closure and small diameter for which the Hausdorff dimension is also bigger than
4
3 + 6. Here we may assume that F = F0 ∩ (x0DηB

U−C
η ) and that x0DηB

U−C
η

is the injective image of the corresponding set in SL3(R). It then follows that

F = x0D
′BU−C

η and that D′ has Hausdorff dimension bigger than 4
3 . Thus, for

sufficiently small ε > 0 we have that H 4
3+ε(D′) = ∞. We may identify U+ with

R
2 and apply Theorem 6.3. Therefore, there exists a compact set E ⊂ D′ such

that 0 < H 4
3+ε(E) < ∞ and a constant b such that

H 4
3+ε(E ∩Bδ(r)) ≤ bδ

4
3+ε

for all r ∈ R
2 and δ > 0. We define

ν0 =
1

H 4
3+ε(E)

H 4
3+ε

|E

so that ν0(U
+) = 1. Let τ be the map from U+ to X defined by τ(u) = x0u.

Now, we let ν = τ∗ν0 be the push-forward of the measure ν0 under the map τ .

It follows that for any δ > 0 and for any x ∈ X we have

ν(xBU+

δ BU−C
η ) � δ

4
3+ε.
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Now, if we define μN as before, then Theorem 1.6 implies that the limit measure

μ has at least 3
2 (

4
3 + ε − 4

3 )
3ε
2 > 0 mass left. However, the assumption on F0

and dominated convergence applied to

μN (X≤M ) =

∫
1

N

N−1∑
n=0

χT−nX≤M
dν

implies that μN (X≤M ) → 0 as N → ∞ for any fixed M . This gives a contra-

diction and the corollary.
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