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Abstract. Recent experiments have demonstrated an open system realization
of the Dicke quantum phase transition in the motional degrees of freedom of
an optically driven Bose–Einstein condensate in a cavity. Relevant collective
excitations of this light–matter system are polaritonic in nature, allowing access
to the quantum critical behavior of the Dicke model through light leaking out of
the cavity. This opens the path to using photodetection-based quantum optical
techniques to study the dynamics and excitations of this elementary quantum
critical system. We first discuss the photon flux observed at the cavity face and
find that it displays a different scaling law near criticality than that obtained
from the mean-field theory for the equivalent closed system. Next, we study
the second-order correlation measurements of photons leaking out of the cavity.
Finally, we discuss a modulation technique that directly captures the softening
of polaritonic excitations. Our analysis takes into account the effect of the finite
size of the system, which may result in an effective symmetry-breaking term.
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1. Introduction

In the study of strongly correlated systems and collective phenomena, light has traditionally
assumed the role of a spectroscopic probe. Recent progress in the control of light–matter
interactions through cavity quantum electrodynamics (QED) has brought forth new systems
where light and matter play equally important roles in emergent phenomena. Such hybrid
light–matter systems are characterized by the existence of well-defined quasi-particles,
polaritons, which are partly light- and partly matter-like. A crucial feature of these systems is
that they are inherently out of equilibrium due to unavoidable photon leakage, giving rise to open
system analogues of certain well-studied quantum many-body Hamiltonians. Such systems may,
for instance, be formed by scaling up standard single-cavity QED systems to lattices of cavities.
Recent theoretical work on cavity QED lattices has addressed the realization of superfluid–Mott
insulator transition of polaritons [1–4], fractional quantum Hall states [5], the Tonks–Girardeau
gas in one-dimensional (1D) geometries [6, 7] and effective spin models [3, 8].

A different approach is to couple non-trivial states of matter to cavities, where the
formation of polaritonic collective excitations may result in new emergent phenomena. One
particular approach is to couple a Bose–Einstein condensate (BEC) to a single mode of a high-
finesse optical cavity. This results in tunable, long-range forces between atoms of the BEC
that is mediated by the cavity field. A phase transition from a uniform BEC to a self-organized,
density-modulated phase has been predicted [9] to be a function of the power of the laser driving
the atoms transversely to the cavity axis and has recently been experimentally observed [10].
A similar self-organization transition has also been theoretically predicted [11, 12] and observed
for a thermal cloud of atoms [13].

Here, we study the excitations of the zero-temperature BEC self-organization transition,
which, in the experimentally realized parameter regime [10], was shown to be a faithful open-
system realization of the single-mode Dicke quantum phase transition where spins correspond
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to the collective motional degrees of freedom of atoms. The transition is driven by the softening
of a polaritonic excitation as the critical point is approached. This provides access to the
internal excitation dynamics close to the criticality through photons that leak out of the cavity
mirrors. Thus well-established quantum optical measurement schemes appear to be specially
suited for monitoring the intra-cavity excitation dynamics as well as the phase diagram. We
discuss first the critical behavior of photon flux measured at the cavity mirror. We then study
the signature of excitations in the second-order correlation functions of leaking photons, a
measurement that can readily be carried out using standard quantum optical schemes such as
the Hanbury–Brown–Twiss setup [14]. Finally, we consider a modulation technique that directly
captures the softening of the relevant polaritonic mode through the photodetection of leaking
photons. Our discussion will take into account the role of the finite size of the system that is
relevant for a realistic experimental setting, which was found to result in an effective symmetry-
breaking term [15].

This paper is organized as follows. In section 2, we summarize the system and the
governing Hamiltonian together with mapping to the Dicke model. We then investigate
the collective light–matter excitations in section 3. Finally, we discuss three different
photodetection-based measurement schemes in section 4.

2. Model of the system

We consider a BEC of length D consisting of atoms with an internal optical transition ωa.
This atomic condensate is coupled to a single mode of frequency ωc and decay rate κ of a
high-finesse cavity of length L , and is driven by a laser with frequency ωp from a direction
perpendicular to the cavity axis [10]. In the dispersive regime of driving, relevant to recent
experiments (|1a| = |ωp − ωa| � γa, where γa is the atomic linewidth), the minimal model that
captures the essential features of the system is (for details see appendix A):

Ĥ = −h̄1câ
†â +

∫
dx 9̂†(x)

[
−h̄2

2m

d2

dx2
+ V (x) + h̄U0|ϕc(x)|2â†â + h̄ηϕc(x)(â† + â)

]
9̂(x),

(1)

where U0 = g2
0/1a and η = �pg0/1a. 1c is the pump–cavity detuning, �p is the pump Rabi

frequency, g0 is the atom–cavity coupling strength and ϕc(x) is the cavity mode function. We
will neglect the contact interactions between atoms of the condensate, which is not essential
for the physics discussed here. It is also possible to map the Hamiltonian in equation (1)
to a Bose–Hubbard model in the limit of strong particle–particle interactions to discuss
incompressible Mott-insulator phases [16].

As a function of the tunable pump power η, this model displays a phase transition from
a homogenous condensate to a density-modulated phase [9]. Below a threshold power ηc, the
intra-cavity (mean) field is vanishingly small and the cloud is in the ground state of only the
external trapping potential (we assume T = 0). As the critical point is crossed, the atoms self-
organize into a crystalline order. This in turn results in a non-zero cavity mean field through
the Bragg scattering of the pump photons from the density-modulated atomic cloud into the
cavity. In the organized phase, the system chooses spontaneously between two energetically
identical density-modulated configurations that are shifted by half a pump wavelength. This
self-organization phase transition was observed experimentally for thermal atomic gas [13] and
for a cloud of atomic BECs [10].
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For the experimental conditions of [10], the self-organization transition can also be seen
as the Dicke model phase transition from a normal to a superradiant phase [10, 17]. We will
confine ourselves to this regime but take steps to accurately model the experimental conditions.
We assume a BEC considerably smaller than the cavity size, imposed by the external trapping
potential V (x), and expand the field operator

9̂(x) =

∑
n

ĉnφn(x). (2)

Here, φn(x) is the atomic single-particle basis satisfying
[

−h̄2

2m
d2

dx2 + V (x)
]
φn(x) = ωnφn(x).

We will assume V (x) to impose Neumann boundary conditions at x = (L − D)/2 ± d and
x = (L + D)/2 ± d, allowing for an asymmetric placement of the trap by a length d with respect
to the cavity walls (we will assume that d/D � 1). Then, φ0(x) = 1/

√
D is the uniform mode

of the condensate with zero momentum. In the expansion (2), we keep only one additional
mode having a relatively large overlap with cavity mode ϕc(x), say φn(x), which becomes the
dominant contribution in the Hamiltonian of equation (1) when the cavity mean field is non-
zero. The corresponding wave vector is kn ≈ G. Here it is assumed that these two modes satisfy
the relation ĉ†

0ĉ0 + ĉ†
n ĉn = N . Introducing the Schwinger representation for ‘spins’ Ĵ − = ĉ†

0ĉn,
Ĵ + = Ĵ †

− and Ĵ z = (ĉ†
n ĉn − ĉ†

0ĉ0)/2, the final Hamiltonian can be written as

Ĥ D/h̄ = ωâ†â + ω0 Ĵ z +
λ

√
N

(â† + â)( Ĵ + + Ĵ −) +
λ′

√
N

(â† + â)

(
N

2
− Ĵ z

)
, (3)

where ω=−1C + (NU0/D)
∫

dx |ϕc(x)|2, ω0 =ωR = h̄G2/2m, λ=(
√

N/D)η
∫

dxϕc(x)φn(x)

and λ′
= (

√
N/D)η

∫
dxϕc(x)φ0(x). We observe that a non-zero λ′ acts as a symmetry-breaking

bias field where its sign determines which of the two configurations of the condensate is
preferred in the superradiant phase. Note that φ0(x) is uniform, so the integral defining λ′

vanishes if the condensate is placed symmetrically with respect to the cavity mode function
ϕc(x). This was pointed out in recent experiments studying the process of symmetry breaking in
real time through an interferometric heterodyne detection scheme [15]. Since we are interested
in the critical behavior, an additional dispersive shift term [10], which is negligible near the
critical point, is dropped in equation (3).

For λ′
= 0, equation (3) is the well-known single-mode Dicke Hamiltonian. In the

thermodynamic limit of N � 1, the Dicke Hamiltonian (3) exhibits a quantum phase transition
at a critical coupling strength λc = (1/2)

√
ωω0 from a normal phase with 〈a〉 = 〈J−〉 = 0 to a

superradiant phase [18–25] with 〈a〉 6= 0, 〈J−〉 6= 0, breaking the parity symmetry of the Dicke
Hamiltonian (3) under (â → −â, Ĵ − → − Ĵ −).

Finally, cavity losses at a rate κ can be included through a Lindblad master equation
approach [26]. This leads to an open-system analogue of the Dicke superradiance transition,
which most significantly results in a shift of the critical point to λc = (1/2)

√
(ω0/ω)(κ2 + ω2).

A second important consequence is that the excitation spectrum and the dynamics become
dissipative. The details of the mean-field analysis of the open-system Dicke model with and
without the symmetry-breaking field λ′ is given in appendix B by introducing mean fields α =

〈â〉, β = 〈 Ĵ −〉 and w = 〈 Ĵ z〉. We note that mean-field approximation neglects the entanglement
between the atomic and photonic subsystems which can have a significant impact on the
transient dynamics toward the steady state [27].
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Figure 1. The real and imaginary parts of the eigenfrequencies of polaritonic
excitations. The figures on the right column show the indicated magnified views
of real and imaginary parts around λ = λc. The parameters are ω/ω0 = 300,
κ/ω0 = 200, and for these choices of parameters λc/ω0 ≈ 10.41.

3. Polaritonic excitations

In this section, we investigate the collective light–matter excitations of the system that play a
crucial role in the underlying phase transition. A detailed discussion of the excitation spectrum
employing the Holstein–Primakoff transformation is given in appendix C, following closely
the methods of [26]. Here we present the results for the dispersive cavity regime of the self-
organization problem [10, 17] for which ω2

0 � ω2 + κ2. In this regime, the real and imaginary
parts of the lowest excitation eigenvalues are shown in figure 1 with λ′

= 0. The real parts of
the remaining two eigenvalues are very large compared to those shown in the figure due to the
dispersive nature of the cavity, and are not displayed. By employing perturbation theory in the
small parameter ε = ω2

0/(ω
2 + κ2), the real and imaginary parts of the polaritonic eigenvalue up

to O(ε2) are calculated as

ωex = ω0

√
1 −

λ2

λ2
c

(
1 +

1

2

ω2
0

ω2 + κ2

λ2

λ2
c

)
− i

κω2
0

ω2 + κ2

λ2

λ2
c

. (4)
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We observe that the energy gap monotonically decreases and the lowest energy mode ‘softens’
as we approach the critical point from below. Note that this is the atomic excitation at λ = 0
which gradually acquires a photonic component as we approach the critical point; therefore we
refer to this collective excitation as polaritonic following the terminology used in [9]. This is
also the reason why the imaginary part of this excitation increases, as in figure 1, as the critical
point is approached. We note, however, that there is a very narrow range around λc in figure 1
where the excitation energy Re(ωex) is zero and the damping Im(ωex) decreases toward the
critical point. In this regime of critical slowing down, fluctuations are overdamped. This regime
is characterized by two values λ1 < λc and λ2 > λc below and above the threshold, respectively.
For the dispersive cavity case, these two values can be approximated by

λ1 ' λc

[
1 −

κ2ω2
0

(ω2 + κ2)2

]
, λ2 ' λc

[
1 +

1

2

κ2ω2
0

(ω2 + κ2)2

]
. (5)

The behavior of ωex in this range is drastically different from equation (4) and is given to order
(1 − λ2/λ2

c) by

ωex ≈ −i
(ω2 + κ2)

2κ

(
1 −

λ2

λ2
c

)
(6)

below the threshold.
The existence of this collective soft mode is significant for two reasons. Firstly, near the

critical point this mode provides a fluctuation channel that drives the non-equilibrium phase
transition. Secondly, due to the increasing light-like content of this channel, we obtain a first-
hand look at the fluctuations around the critical point by monitoring photons that leak out of the
cavity as pointed out in [26].

4. Photodetection measurements of cavity photons

The photon flux that leaks out of the cavity below the threshold is very low. Therefore,
photodetection measurements appear to be most useful in characterizing critical fluctuations.
We consider below two measurement schemes, direct photon counting and second-order photon
correlations, which can be implemented with standard available photon counters. In section 4.3,
we discuss a modulation scheme that provides direct access to the softening behavior of the
polaritonic mode.

To this end, we make use of the standard input–output formalism [26, 28], introducing the
photonic input and output operators âin, âout that couple to the intra-cavity fluctuation operators
ĉ and d̂ in the following manner:

˙̂c = −(i ω + κ)ĉ − i g2(d̂ + d̂†) +
√

2κ âin, (7a)

˙̂d = −i ω′

0d̂ − 2i g1(d̂ + d̂†) − i g2(ĉ + ĉ†), (7b)

with âin being the operator for the quantum noise incident on the semi-transparent cavity
wall satisfying the commutations relation [âin(t), â†

in(t
′)] = δ(t − t ′). For vacuum input, the

relation 〈â†
in(t)âin(t ′)〉 = 〈âin(t)âin(t ′)〉 = 0 holds. The cavity output can then be expressed as

âout(t) =
√

2κ[ĉ(t) + αss] − âin(t).

New Journal of Physics 14 (2012) 085011 (http://www.njp.org/)
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4.1. Photon counting

The photon flux measured outside the cavity can be expressed as Iss = 〈â†
out(t)âout(t)〉 =

2κ〈ĉ†(t)ĉ(t)〉. For the linearized equations of motion, the photon flux was numerically found
to diverge at the critical point [17, 26] but the precise form of scaling law was not elaborated
on. We find that the intra-cavity photon number is given by (see appendix D)

〈ĉ†(t)ĉ(t)〉ss =
λ2

2ωω0

[
1 − (λ/λc)

2
] , (8)

displaying non-equilibrium mean-field critical scaling with an exponent γneq = 1. We note that
this scaling is drastically different from that of the equilibrium, ground-state expectation value
of the intra-cavity photon number:

〈ĉ†(t)ĉ(t)〉gs ≈
λ2

ω2
√

1 − (λ/λc)
2

(9)

obtained through perturbation theory in ε = ω0/ω. The latter displays an exponent γeq = 1/2
as expected from standard equilibrium mean-field theory. The reason behind this is depletion
of the ground state (for T = 0) through coupling to the photonic environment. This possibility
was hinted at in [17], but the authors only calculated the rate of depletion in the short-time
limit, i.e. in the transient regime. We find here that the depletion settles at a steady state, giving
rise to an entirely different scaling law for incoherent fluctuations of intra-cavity photons as
the critical point is approached. Note that the two expressions do not even agree for κ → 0
that enters the non-equilibrium expression in the form of λc. However, it should be pointed
out that the limit κ → 0 is a singular limit and has to be considered with care. The steady-
state regime where this expression holds is shifted to t → ∞ as κ → 0. This time scale can be
calculated from the imaginary part of the polaritonic excitation branch and is found to scale as
|Im(ωex)|

−1
≈ ω3/(4ω0λ

2κ) according to equation (4). For κ = 0, a steady state will never be
reached unless the system starts out in the ground state. What remains to be seen is whether open
quantum systems may be forming an entirely new universality class. We note that the scaling
behavior found in equation (8) is similar to the sub-threshold scaling of photon number in the
laser [29] and the degenerate parametric oscillator [30] and reflects the fact that the damping
rate of a mode of the system tends to zero at threshold, with the steady-state photon number
inversely proportional to this damping rate. In contrast to these examples however, a well-
defined equilibrium limit is accessible here when κ → 0.

4.2. Second-order correlations of photons

The second-order correlation function of leaking photons g(2)(t, τ ) is given by

g(2)(t, τ ) =
〈â†

out(t)â
†
out(t + τ)âout(t + τ)âout(t)〉

〈â†
out(t)âout(t)〉2

. (10)

By using the input–output relations and the vacuum nature of the input noise, in the steady
state the expression in equation (10) can be simplified to (for details see appendix E)

g(2)(t, τ ) = 1 + |g(1)(t, τ )|2 +
|〈ĉ(t + τ)ĉ(t)〉 + α2

ss|
2
− 2|αss|

4

(〈ĉ†(t)ĉ(t)〉 + |αss|
2)2

, (11)
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Figure 2. (a) False color plot of the dependence of the steady-state second-
order correlation function g(2)

ss (τ ) on λ/ω0. We observe that the period of the
oscillations increases with increasing λ. Note that g(2)

ss (τ = 0, λ) = 3. (b) The
logarithm of the Fourier transform of g(2)

ss (color code) is plotted as a function
of the scaled frequency ν/ω0 and the scaled coupling parameter λ/ω0. The two
peaks, other than the one at ν = 0, appear at ν = ±2ω0

√
1 − (λ2/λ2

c). In both
figures λ′

= 0. The system parameters are the same as in figure 1. (c) The long-
time behavior of g(2)

ss (τ ) displaying an exponential decay of the envelope of its
oscillations.

where g(1)(t, τ ) = [〈ĉ†(t + τ)ĉ(t)〉 + |αss|
2]/[〈ĉ†(t)ĉ(t)〉 + |αss|

2] is the first-order correlation
function. This steady-state form can be calculated by solving equations (7a) and (7b) together
with their adjoints in Fourier space. Some of the results for λ′

= 0 are shown in figure 2 for
different λ < λc values. It can be seen that g(2)

ss (τ ) displays underdamped oscillations with the
oscillation period progressively increasing as the critical point is approached. A Fourier analysis
of the oscillations in g(2)

ss (τ ) as a function of λ (figure 2(b)) reveals that the position of the peaks
νpeak follows very closely the excitation frequency of the softening polaritonic mode given by
equation (4). Indeed it can be shown that νpeak(λ) ≈ 2Re[ωex(λ)]. The width of the peaks, not
resolvable for the parameters chosen here, is proportional to Im[ωex(λ)]. Furthermore, one can
show that g(2)

ss (0) = 3 by using the relation in equation (11) (for details see appendix E).
Next we calculate g(2)

ss (τ ) for non-zero values of λ′. Here, the second-order correlation
function displays a beating pattern in time, as seen in figure 3. This is the consequence of a
non-vanishing mean field αss extending all the way below the threshold, providing a non-zero
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ss (τ ) for λ′
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case λ′

= 0 (i.e. αss = 0) by dashed red lines. From top to bottom, λ/ω0 = 2,
6, 8, 9, 10. The asymmetry in adjacent peaks is due to the presence of non-zero
mean-field αss. The system parameters are the same as in figure 1.

dc component αss in equation (11). Thus such a distinct beating pattern is a signature of the
interference of a non-zero coherent cavity field and incoherent photons.

4.3. Modulation spectroscopy

In this subsection, we analyze a modulation technique that provides an alternative access
window into critical fluctuations. This technique relies on parametric resonances of the
cavity–BEC system and is similar to modulation techniques applied to the analysis of ultracold
atomic gases [31–34].

While various parameters of the system may be modulated, we choose one that appears
to be experimentally most straightforward: modulation of the transverse pump power. We
assume a periodic modulation of the pump Rabi frequency, η(t) = η[1 + εcos(νt)], where ν

is the modulation frequency and ε � 1, resulting in the modulation of the coupling parameter
λ(t) = λ[1 + εcos(νt)] in the Dicke model, equation (3). Here we analyze the case λ′

= 0. The
analysis below can be straightforwardly extended to non-zero λ′.

We assume that κ � ω0, so that the cavity field dynamics adiabatically follows the atomic
dynamics and the photon field α can be eliminated adiabatically. This results in the following
equation for the atomic variable β:

β̇ = −i ω0β + 4i λ2(t)
ω

ω2 + κ2

(
1

4
− |β|

2

)1/2

(β + β∗), (12)

where we used the stable solution for w which is negative. Writing β = βss + δβ(t),
assuming small fluctuations around the steady state, we obtain the following equation for

New Journal of Physics 14 (2012) 085011 (http://www.njp.org/)

http://www.njp.org/


10

0
0.5

1
1.5

2

0.2

0.4

0.6

0.8

1
0

2

4

6

8
x 10

−5

ν/ω
0

λ/λ
c

m
ax

(|
α|

2 )/
N

0
0.5

1
1.5

2

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

ν/ω
0

λ/λ
c

m
ax

[R
e(

β)
]/N

0 1000 2000 3000 4000 5000 6000 7000

−0.1

−0.05

0

0.05

0.1

0.15

ω
0
t

R
e(

β)
/N

(a) (b)

(c)

Figure 4. (a) The scaled maximum number of photons |α|
2/N and (b) the scaled

maximum value for Re(β)/N , as functions of the coupling strength λ/λc and
the scaled modulation frequency ν/ω0. The peaks occur at ν = 2Re(ωex), where
ωex is given by equation (4). In both figures the red curves show the instability
condition equation (14). (c) The oscillations of Re(β)/N in time are shown for
λ = 0.8λc where the modulation frequency is chosen to be equal to resonance
frequency given by ν = 1.2ω0. For all the figures here, ε = 1/50 and system
parameters are the same as in figure 1.

u(t) ≡ δβ(t) + δβ∗(t):

∂2

∂ t̃2
u +

[
A − 2ε̃ cos

(
ν

ω0
t̃

)]
u = 0. (13)

This is the well-known Mathieu equation with A = 1 − (λ/λc)
2, ε̃ = (λ/λc)

2ε and t̃ =

ω0t . According to the Floquet theorem, the solutions to this equation have the form
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u(t̃) = exp(µt̃)φ(t̃), where φ(t̃) is a periodic function with period 2π ω0/ν [35]. One can
readily see that the solutions u(t̃) are unstable if Re(µ) > 0. We performed a perturbative
stability analysis to determine the stability boundary for the solutions [35]. We find that the
instability appears when the condition

ν = 2ω0

√
1 −

(
λ

λc

)2

(14)

is fulfilled. This leading order expression is precisely twice the excitation frequency of
equation (4). Finally, we check our result by solving the system of coupled nonlinear
equations (B.1a) and (B.1b) in real time. In figure 4, we plot for each modulation frequency ν

the maximum number of photons after the oscillation has stabilized, starting with very small
initial (α, β). Thus when the frequency of modulation is chosen correctly, there will be a
substantial photon flux at the cavity face, even below threshold. We should also note that there
is a broadening in resonance modulation frequencies as the critical point is approached (see
figure 4), and this is consistent with the behavior of the imaginary part of the eigenmode in
figure 1.

5. Conclusion

In this work, we have discussed the excitations of an optically driven atomic condensate coupled
to a single mode of a high-finesse cavity that displays a self-organization transition as a function
of the driving strength. Taking into account the finite size of the system, we showed that the
coupled BEC–cavity system can be mapped into an open-system realization of the Dicke model
with a symmetry-breaking field.

The zero-field phase transition is driven by the softening of polaritonic excitations, which
provides access to the internal dynamics of the coupled system close to the criticality. We discuss
a number of photodetection-based techniques for the photons that leak out of the cavity mirrors
and relate it to intra-cavity critical dynamics.

We find that the intra-cavity photon number, which can be measured by a photodetector
outside the cavity, displays a different scaling law for the open system than the closed system
with perfectly reflecting mirrors. In the latter case, the dynamics conserves total excitation
number and the photon number is calculated in the ground state.

We next discuss the second-order correlation function for photons g(2)
ss (τ ) in the steady

state, via coincidence measurement of photons leaking out of the cavity walls. We show that
g(2)

ss (τ ) displays damped oscillations with a period that increases progressively as the critical
point is approached, signalling the critical slowing down of the coupled intra-cavity dynamics.
We relate the spectral content of the time series of g(2)

ss (τ ) to the complex frequency of the
softening polaritonic mode. We also show that trap misalignment can lead to a background
coherent cavity field and that its signature is a characteristic beating pattern in g(2)

ss (τ ).
Finally, we discuss a modulation scheme that directly captures the softening of the

polaritonic mode. This is done by introducing a parametric instability in the system through
the periodic modulation of the drive Rabi frequency in time. We show that modulation at twice
the polaritonic mode frequency results in a measurable photon flux outside the cavity below the
threshold.
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Appendix A

Here we discuss some details of the derivation of the Hamiltonian in equation (1). We assume
that the pump–cavity detuning |1c| = |ωp − ωc| ∼ κ so that the cavity can be quasi-resonantly
excited by the scattered pump photons from atoms. We assume a high-finesse cavity where
the pump photons are dominantly scattered into a single mode; coupling to multiple modes is
possible in the bad cavity limit or for resonators with degenerate modes [37]. Simultaneously,
the laser is red-detuned far from an internal atomic transition at ωa, so that |1a| = |ωp − ωa| �

γa, where γa is the atomic linewidth. This ensures that the atoms are predominantly in their
ground states during the excitation process, suppressing spontaneous emission and giving
rise to an optical potential for the motional degrees of freedom of atoms |Ê+(x)|2/1a. Here
Ê+(x) = g0ϕc(x)â + �pϕp(x) is the positive rotating component of the electric field felt by
an atom of the cloud at position x, due to the interference of the cavity field (the photon
creation operator â, atom–field coupling g0 and mode function ϕc(x)) and a coherent laser field
(with the Rabi frequency �p and standing wave pattern ϕp(x)). The Hamiltonian under these
approximations is given by

Ĥ = −h̄1câ
†â +

∫
dx 9̂†(x)

[
−h̄2

2m
∇

2 + h̄
|Ê+(x)|2

1a
+ V (x)

]
9̂(x). (A.1)

We consider a situation where the BEC is trapped by an additional external trapping potential
V (x) and this is deep in the radial direction confining the cloud along the cavity axis (x). With
the additional assumption that the driving laser beam is broad, the problem can be reduced to
an effective 1D problem with ϕp(x) ≈ const (the constant to be absorbed into �p) and ϕc(x) ≈

ϕc(x) [38]. We will assume that the cavity mode function is given by ϕc(x) =
1

√
L

sin(Gx),

where G = 2π/λcav ≈ 2π/λp with λcav and λp being the cavity mode and pump wavelengths,
respectively. The final Hamiltonian is then given by

Ĥ = −h̄1câ
†â +

∫
dx 9̂†(x)

[
−h̄2

2m

d2

dx2
+ V (x) + h̄U0|ϕc(x)|2â†â + h̄ηϕc(x)(â† + â)

]
9̂(x),

(A.2)

where U0 = g2
0/1a and η = �pg0/1a. We have subtracted the energy provided by the constant

potential h̄�2
p/1a.
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Figure B.1. (a) The real part of α for λ′
= 0. Below threshold the stable

solution is α = 0 and above threshold there are two stable solutions with a
phase difference π . (b) The steady-state atomic density profiles as functions of
scaled position x/λp (where λp is the pump wavelength) for λ′ < 0 and λ′ > 0
with λ = 9ω0 and λ′/λ ≈ ±120. (c) Dependence of α on the coupling parameter
for the trap displaced to the right, which corresponds to sgn(λ) = sgn(λ′). (d)
The same as (c) except that the displacement of the trap is to the left so that
sgn(λ) = −sgn(λ′). In (a), (c) and (d), blue (red) lines represent stable (unstable)
solutions. The system parameters are the same as in figure 1.

Appendix B

In this section, we present the steady-state analysis of the semi-classical equations of motion for
the non-equilibrium Dicke model by taking into account the effects of the symmetry-breaking
field term λ′. The discussion in this appendix follows closely that of [26]. We will, however, be
interested in the far-detuned regime ω � ω0 relevant to experiments reported in [10].

For the mean-field expressions α = 〈â〉, β = 〈 Ĵ −〉 and w = 〈 Ĵ z〉, the Heisenberg equations
of motion for the system Hamiltonian (3) can be written as

α̇ = −(κ + i ω)α − i
λ

√
N

(β + β∗) − i
λ′

√
N

(
N

2
− w

)
, (B.1a)

β̇ = −i ω0β + 2i
λ

√
N

(α + α∗)w + i
λ′

√
N

β(α + α∗), (B.1b)

ẇ = i
λ

√
N

(α + α∗)(β − β∗), (B.1c)
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These equations have to be solved with the constraint that the pseudo-angular momentum
|β|

2 + w2
= N 2/4 is conserved. Analytical solutions can be found for this set of nonlinear

equations in the steady state when λ′
= 0 [26]. In that case, the steady-state solution displays

a bifurcation point at λ = λc. While αss = βss = 0 is the trivial solution for all values of λ, it is
only stable for λ < λc. For λ > λc, this solution becomes unstable and two new sets of stable
solutions appear, given by [26]

αss = ±
√

N
λ

ω − iκ

√
1 −

λ4
c

λ4
, (B.2a)

βss = ∓
N

2

√
1 −

λ4
c

λ4
, (B.2b)

The behavior of these solutions for αss is shown in figure B.1(a). For λ′
6= 0, the bifurcation

point (and the threshold) disappears and the stable solution becomes non-zero for all λ > 0
values (figures B.1(c) and (d)). We do not plot β; it displays a similar behavior to α, with its
sign opposite to that of α. We note that the spatial structure of the self-organized state, as shown
in figure B.1(b), depends on the sign of λ′.

Appendix C

In this appendix, we discuss the use of the Holstein–Primakoff representation for studying the
collective excitations of the system. The Holstein–Primakoff transformation can be applied
by expressing the atomic spin operators in terms of bosonic mode operators b̂ and b̂† such

as Ĵ + = b̂†
√

N − b̂†b̂, Ĵ − = Ĵ †
+ and Ĵ z = b̂†b̂ − N/2 [25, 26]. Substituting these expressions

into the Dicke Hamiltonian (3) and expanding in the limit N � 1, we obtain the Hamiltonian
governing the fluctuations around the steady-state semiclassical solutions αss and βss:

Ĥ HP/h̄ = ωĉ†ĉ + ω′

0d̂†d̂ + g1(d̂
† + d̂)2 + g2(ĉ

† + ĉ)(d̂† + d̂), (C.1a)

where ĉ and d̂ are the photonic and atomic fluctuation operators, respectively, â = αss + ĉ and
b̂ = βss/

√
N + d̂ , and

ω′

0 = ω0 − 2λ
β̃ss√

1 − β̃2
ss

Re(α̃ss), (C.2a)

g1 = −λ
β̃ss(2 − β̃2

ss)

2(1 − β̃2
ss)

3/2
Re(α̃ss), (C.2b)

g2 = λ
1 − 2β̃2

ss√
1 − β̃2

ss

− λ′β̃ss. (C.2c)

Here we have introduced the scaled variables α̃ss = αss/
√

N , β̃ss = βss/N . One should note
that the steady-state values αss and βss are λ′-dependent. The above quadratic Hamiltonian leads
to linear equations of motion ḣ = Mh for fluctuations h = (ĉ, ĉ†, d̂, d̂†). This was discussed for
the resonant case ω = ω0 and λ′

= 0 in [26].
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Appendix D

The expression in equation (8) for the number of photons and g(2)
ss (0) below threshold are

calculated by using the quantum regression theorem to write the equations of motion for two-
operator product averages. The system of linear equations becomes

d

dt
〈ĉĉ〉 = −(2i ω + 2κ)〈ĉĉ〉 − 2i λ(〈ĉd̂〉 + 〈ĉd̂†

〉),

d

dt
〈ĉ†ĉ〉 = −2κ〈ĉ†ĉ〉 − i λ(〈ĉ†d̂†

〉 + 〈ĉ†d̂〉 − 〈ĉd̂†
〉 − 〈ĉd̂〉),

d

dt
〈d̂†d̂†

〉 = 2i ω0〈d̂
†d̂†

〉 + 2i λ(〈ĉ†d̂†
〉 + 〈ĉd̂†

〉),

d

dt
〈d̂†d̂〉 = i λ(〈ĉ†d̂〉 + 〈ĉd̂〉 − 〈ĉd̂†

〉 − 〈ĉ†d̂†
〉),

d

dt
〈ĉd̂〉 = −(i ω0 + i ω + κ)〈ĉd̂〉 − i λ(〈ĉĉ〉 + 〈d̂d̂〉 + 〈ĉ†ĉ〉 + 〈d̂†d̂〉 + 1),

d

dt
〈ĉ†d̂〉 = (−i ω0 + i ω − κ)〈ĉ†d̂〉 + i λ(−〈ĉ†ĉ†

〉 + 〈d̂d̂〉 − 〈ĉ†ĉ〉 + 〈d̂†d̂〉),

(D.1)

where we use the relations 〈âin(t)d̂(t)〉 = 〈d̂(t)âin(t)〉 = 〈âin(t)d̂†(t)〉 = 〈d̂†(t)âin(t)〉 = 0,
which are valid for the zero-temperature photonic bath outside the cavity. For the steady
state, we set all the time derivatives to zero and solve the linear system. One outcome of this
calculation is the photon number expression 〈ĉ†(t)ĉ(t)〉ss given in equation (8). We also use
the solutions obtained here for the calculation of equation (11) for τ = 0, as is expounded in
appendix E.

Appendix E

This appendix details the derivation of the expression equation (11) from the general
expression equation (10). Using the input–output relation âout(t) =

√
2κ[ĉ(t) + αss] − âin(t) in

equation (10), all the correlators that have the âin operator to the right in the averages vanish
due to the fact that we consider a zero-temperature bath. The same conclusion is true for all the
correlators that have â†

in to the left. In addition to this, using the relation [Ô(t), âin(t ′)] = 0 for
t < t ′ and Ô(t) being any system operator [28], one can write

g(2)(t, τ ) =
〈[ĉ†(t) + α∗

ss][ĉ
†(t + τ) + α∗

ss][ĉ(t + τ) + αss][ĉ(t) + αss]〉

〈[ĉ†(t) + α∗
ss][ĉ(t) + αss]〉2

. (E.1)

Since the Holstein–Primakoff Hamiltonian is quadratic and the dynamics is described by linear
quantum Langevin equations (7a) and (7b), the three operator products can be decoupled as

〈Ô1Ô2Ô3〉 = 〈Ô1〉〈Ô2Ô3〉 + 〈Ô2〉〈Ô1Ô3〉 + 〈Ô3〉〈Ô1Ô2〉 − 2〈Ô1〉〈Ô2〉〈Ô3〉. (E.2)

Here, the operators can be at different times in general. Single fluctuation operator averages 〈Ô i〉

vanish by the way we define fluctuation operators, all three operator averages vanish. Once all
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three operator averages are shown to be zero, four operator averages decouple as

〈Ô1Ô2Ô3Ô4〉 = 〈Ô1Ô2〉〈Ô3Ô4〉 + 〈Ô1Ô3〉〈Ô2Ô4〉 + 〈Ô1Ô4〉〈Ô2Ô3〉. (E.3)

Using equation (E.2) and setting 〈Ô i〉 = 0, the non-zero terms of g(2)(t, τ ) in equation (E.1) are

g(2)(t, τ ) =
|αss|

4 + 〈ĉ†(t)ĉ†(t + τ)ĉ(t + τ)ĉ(t)〉

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

+
|αss|

2[〈ĉ†(t)ĉ(t)〉 + 〈ĉ†(t + τ)ĉ(t + τ)〉 + 〈ĉ†(t)ĉ(t + τ)〉 + 〈ĉ†(t + τ)ĉ(t)〉]

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

+
α2

ss〈ĉ
†(t)ĉ†(t + τ)〉 + α∗2

ss 〈ĉ(t + τ)ĉ(t)〉

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

. (E.4)

Using equation (E.3), the numerator of the first term on the right-hand side of equation (E.4)
decouples as

〈ĉ†(t)ĉ†(t + τ)ĉ(t + τ)ĉ(t)〉 = |〈ĉ(t + τ)ĉ(t)〉|2 + |〈ĉ†(t + τ)ĉ(t)〉|2 + 〈ĉ†(t)ĉ(t)〉2, (E.5)

where we use the fact that in the steady-state 〈ĉ†(t + τ)ĉ(t + τ)〉 = 〈ĉ†(t)ĉ(t)〉. Also, the last term
on the right-hand side of equation (E.4) can be written as

α2
ss〈ĉ

†(t)ĉ†(t + τ)〉 + α∗2
ss 〈ĉ(t + τ)ĉ(t)〉

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

=
|〈ĉ(t + τ)ĉ(t)〉 + α2

ss|
2

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

−
|αss|

4 + |〈ĉ(t + τ)ĉ(t)〉|2

[〈ĉ†(t)ĉ(t)〉 + |αss|
2]2

.

(E.6)

If we now use equations (E.5) and (E.6) together with the expression for the first-order
correlation function g(1)(t, τ ) = [〈ĉ†(t + τ)ĉ(t)〉 + |αss|

2]/[〈ĉ†(t)ĉ(t)〉 + |αss|
2], equation (E.1)

reduces to the expression in equation (11).
We note that the validity of the decoupling rules of equations (E.2) and (E.3) can be easily

verified by calculating multi-operator product averages in Fourier space, as in [26]. For instance,
equation (11) can be obtained by writing the intra-cavity photon operator ĉ in terms of the input
noise operator âin in Fourier space and using the commutation relations for âin and â†

in. The form
of equation (11) has the virtue of explicitly singling out the contribution of anomalous averages
to g(2)(t, τ ).

If we take delay time τ = 0, below threshold, the second-order correlation function in
equation (11) takes the form

g(2)
ss (0) = 2 +

|〈ĉ(t)ĉ(t)〉ss|
2

〈ĉ†(t)ĉ(t)〉2
ss

. (E.7)

The solution of the system of equations (D.1) in the steady state yields

〈ĉ(t)ĉ(t)〉ss =
λ2

2ωω0

(
ω2 + κ2

) [
1 − (λ/λc)

2
] [(

ω2
− κ2

)
+ 2i ωκ

]
. (E.8)

Comparing this result with the expression in equation (8) for steady-state photon number
below threshold, we find the relationship 〈ĉ†

(t)ĉ(t)〉ss = |〈ĉ(t)ĉ(t)〉ss|. This, together with
equation (E.7), yields our final result g(2)

ss (0) = 3.
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