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Abstract

We need measurements of soil water retention (SWR) and available water

capacity (AWC) to assess and model soil functions, but methods are time-

consuming and expensive. Our aim here was to investigate the modelling of

AWC and SWR with visible–near-infrared spectra (vis–NIR) and the machine-

learning method CUBIST. We used soils from 54 locations across Australian

agricultural regions, from three depths: 0–15 cm, 15–30 cm and 30–60 cm. The

volumetric water content of the samples and their vis–NIR spectra were mea-

sured at seven matric potentials from �1 kPa to �1500 kPa. We modelled the

following: (i) AWC directly with the average spectra of the samples measured

at different water contents, (ii) water contents at field capacity and permanent

wilting point and calculated AWC from those estimates, (iii) AWC with spectra

of air-dried soils, and (iv) parameters of the Kosugi and van Genuchten SWR

models, then reconstructed the SWR curves to calculate AWC. We compared

the estimates with those from a local pedotransfer function (PTF) and an

established Australian PTF. The accuracy of the spectroscopic approaches var-

ied but was generally better than the PTFs. The spectroscopic methods are also

more practical because they do not require additional soil properties for the

modelling. The root-mean squared-error (RMSE) of the spectroscopic methods

ranged from 0.033 cm3 cm�3 to 0.059 cm3 cm�3. The RMSEs of the PTFs

were 0.050 cm3 cm�3 for the local and 0.077 cm3 cm�3 for the general PTF.

Spectroscopy with machine learning provides a rapid and versatile method for

estimating the AWC and SWR characteristics of diverse agricultural soils.

Highlights

• Soil available water capacity can be estimated with vis-NIR specta.

• Parameters of water retention models can be estimated with vis-NIR

spectra.

• vis-NIR spectroscopy performed better than pedotransfer functions.

• The results apply to a diverse range of soils.
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1 | INTRODUCTION

Water sustains life in the soil and supports the functioning
of ecosystems. The estimation of water contents at differ-
ent matric potentials and the available water holding
capacity (AWC) of soils are needed to describe the water
status in a soil–plant system and are important model
inputs for simulating soil–plant processes. Information on
the amount of water available to plants is essential for
understanding plant growth, development, and physiology
(Passioura, 2002). Soil water also affects organic matter
decomposition, soil microbial activity and the physical and
biological conditions of the soil (Manzoni et al., 2012;
Skopp et al., 1990). Soil water is vital for agricultural pro-
ductivity and management, for example, to improve irriga-
tion and fertiliser-use efficiencies.

Soil water retention (SWR) characteristics, which can
be expressed with parametric models (e.g., Kosugi (1994)
and van Genuchten (1980)), are used to understand and
predict water and solute transport in variably saturated
soils and the exchange of gases and vapour between the
soil and the atmosphere (Vereecken et al., 2016). Despite
the importance of SWR and the AWC, however, there are
few new practical and cost-efficient methods for measur-
ing them. Vereecken et al. (2008) reported on a range of
methods for measuring soil water at different scales,
which include ground-based (proximal), wireless sensor
networks, and airborne (remote) sensors.

Pedotransfer functions (PTF) (Bouma, 1989) are often
used to estimate AWC and SWR using more readily avail-
able soil physical and chemical properties (e.g., clay con-
tent, bulk density and organic matter). Over the last three
decades, there has been much research to develop and
improve PTFs using different statistical methods, including
artificial neural network, regression trees, k-nearest neigh-
bours, support vector machine and genetic programming
(Minasny et al., 1999; Pachepsky & Rawls, 2004; Shein &
Arkhangel'skaya, 2006; Van Looy et al., 2017; Wösten
et al., 2001). One advantage of PTFs is that they are easy to
develop and implement if the soil properties needed to
parametrize them are already available. However, to derive
PTFs for site-specific, local application, measurements of
other soil properties are required, increasing the cost of the
survey, or one must rely on general, historical data to
develop them. Estimates made with general PTFs can be
very inaccurate because of the differences in soil types, the
inevitable extrapolations due to inadequate feature space

coverage and the possible mismatch of scale (Pachepsky &
Hill, 2017; Van Looy et al., 2017).

Soil spectroscopy in the visible–near-infrared (vis–NIR;
400–2500 nm) can quantify absorptions that result from
the interaction between chemical bonds and photons,
causing energy-specific vibrations of chemical bonds pre-
sent in water, organic matter and mineral constituents in
soils. A particular chemical bond typically has several fun-
damental vibrations in the mid-infrared, which also occur
in the NIR, but as weaker and broader overtones and com-
bination bands. Most soil properties result from the inher-
ent composition of the soil: namely, its minerals (such as
clay minerals, iron oxides, quartz), its organic matter,
water, and air. Thus, soil spectra can provide an integra-
tive, multivariate measure of soil composition and can be
used to represent the soil's physicochemical and biological
characteristics. Over the last two decades, soil spectros-
copy, combined with multivariate statistics and machine
learning, has provided accurate estimates of various soil
properties, including soil water content (Soriano-Disla
et al., 2014; Stenberg et al., 2010; Viscarra Rossel
et al., 2016).

Research on the relationship between water content
and vis–NIR spectra is abundant (Bowers & Hanks, 1965;
Curcio & Petty, 1951; Lobell & Asner, 2002; Stoner
et al., 1980; Viscarra Rossel & McBratney, 1998). Soil vis–
NIR spectra show absorptions of hydroxyl bonds in water
vibrating at specific wavelengths. Absorptions that have
been used to estimate soil water in the vis–NIR are those
near 450, 600, 1200, 1400, 1900, 2100, and 2400 nm (Ben-
Dor et al., 1999; Bishop, 1994; Knadel et al., 2014; Soltani
et al., 2018; Weidong et al., 2002; Whiting et al., 2004).
However, there are fewer studies on the modelling of
AWC and SWR with vis–NIR spectra, and some perform
the modelling using vis–NIR spectra with only air-dry soils
(Babaeian et al., 2015,b; Blaschek et al., 2019; Knadel
et al., 2014; Pittaki-Chrysodonta et al., 2018; Santra
et al., 2009). There are no studies that provide a compre-
hensive assessment of the potential for soil vis–NIR spec-
troscopy to estimate AWC and SWR over a large extent or
with a diverse set of soils. Thus, our aim here is to
(i) explore the relationship between soil water retention
and vis–NIR spectra and (ii) investigate different
approaches for spectroscopic modelling the AWC and
SWR characteristics of a diverse set of soils from across the
main agricultural regions in Australia using the machine
learning algorithm CUBIST.
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2 | MATERIALS AND METHODS

2.1 | Soil sampling, laboratory analyses
and spectroscopy

We performed experiments to derive SWR curves for a
range of Australian agricultural soils sampled from three
depths: 0–15 cm, 15–30 cm and 30–60 cm. We acquired
the soil samples from the Agricultural Production Sys-
tems Research Unit (APSRU) and the Commonwealth
Scientific and Industrial Research Organisation's (CSIRO)
National Soil Archive. They originate from 54 locations,
which cover a vast geographic extent across the Australian
wheat-sheep belt and represent a diverse set of soil types
(Figure 1).

The archived soil samples were crushed and sieved to
a particle size of ≤2 mm. For our experiments, we packed
the samples into polyvinyl chloride cylinders (40 mm
in diameter and 30 mm height). We measured the bulk
density of the soil samples, and their volumetric water
contents at seven matric potentials: �1 kPa, �5 kPa,
�10 kPa, �29 kPa (field capacity; FC) and � 60 kPa
using suction plates, � 500 kPa and �1500 kPa (perma-
nent wilting point; PWP) in a pressure chamber, and at
air-dry conditions. We used the common definition of FC
at ψ = �29 kPa, although in Australia the common defi-
nition is ψ = �10 kPa. This was done because the
Australian convention is guided toward sandy soils, but
we had a significant range in textures. After the measure-
ments at each matric potential, we recorded the vis–NIR
spectra of the soils from both the top and bottom of the
cylinders to obtain a representative measure (see below).
The packed soils were subsampled and then oven-dried
over-night at 60�C, weighed, ground, and stored at room

temperature until soil analyses. We measured the organic
carbon content of the soil samples using the dry combus-
tion method (Rayment & Higginson, 1992) and their clay,
sand and silt fractions with the hydrometer method
(Gee & Bauder, 1986). We used texture classes commonly
used in Australia, which are clay <2 μm; silt 2–20 μm
and sand 20–2000 μm (Bowman & Hutka, 2002).

We recorded the vis–NIR spectra of the samples with
a Labspec® vis–NIR spectrometer (PANalytical Inc.,
Boulder, CO, USA, formerly Analytical Spectral Devices)
with a spectral range of 350–2500 nm and spectral resolu-
tion of 3 nm at 700 nm and 10 nm at 1400 and 2100 nm.
Measurements were made with a high-intensity contact
probe illuminated by a halogen bulb (2901 ± 10 K). The
contact probe measures a spot of roughly 10 mm diame-
ter and is designed to minimise errors associated with
stray light. We calibrated the sensor with a Spectralon®

(Labsphere, North Sutton, New Hampshire, USA) white
reference panel once every ten measurements to account
for changing laboratory conditions (e.g., humidity, tem-
perature). The sampling spectral resolution of the spec-
trometer was 1 nm so each spectrum was comprised of
2151 wavelengths. Measurements were made following
protocols described in Viscarra Rossel et al. (2016). The
soils were measured in quadruplicate, with two spectra
recorded on the upper surface and two on the lower sur-
face of each core. We averaged these replicates to pro-
duce a single measurement per sample, thus, there were
a total of 1296 spectra (54 locations � 3 depths � 8 water
contents–7 matric potentials and air-dry).

To standardise the spectra for further analyses, we
subtracted the reflectance of the first wavelength (with
the minimum reflectance value) to correct for potential
baseline shifts between the measurements. Because the

FIGURE 1 Locations of the 54 soil

sampling sites in Australian agricultural

regions and the different Australian soil

classification orders (Isbell, 2002) that

they represent
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spectra are highly collinear, we retained only every 10th
wavelength from 350 to 2500 nm, resulting in 216 wave-
lengths for each sample. We used the continuum
removed spectra (Clark & Roush, 1984) to enhance and
compare characteristic absorptions at different matric
potentials. For the spectroscopic modelling (see below),
we used the Savitzky–Golay first derivative spectra with
a cubic polynomial and window size of 13 points
(Savitzky & Golay, 1964).

2.2 | Estimation of available water
capacity

We calculated AWC of the soil samples by
AWC = θFC � θPWP, where θFC and θPWP are the volu-
metric water contents, θ, measured at field capacity
(FC; ψFC = �29 kPa) and permanent wilting point (PWP;
ψPWP = �1500 kPa), respectively. We then modelled the
AWC of the soils with the spectra and the machine learn-
ing method CUBIST (see Section 2.4). We modelled with four

spectroscopic approaches and two PTFs, one derived
locally and a general PTF. These experiments are
described below and summarised in Figure 2.

In the first approach (A: SPC-AVG), we modelled AWC
directly with the average spectra of the measurements
between matric potentials ψ = � 1 kPa and � 1500 kPa. In
the second approach (B: SPC-FC-PWP), we first estimated
water contents at field capacity (ψ = � 29 kPa [cθFC]) and
at permanent wilting point (� 1500 kPa [ dθPWP]), by
modelling their corresponding measured θ with the spec-
tra and then using the estimates we calculated AWC. In
the third approach (C: SPC-DRY), we modelled AWC
using the air-dry spectra. In approach (D: SPC-SWRC), we
fitted the measured data with the Kosugi (Kosugi, 1994)
and van Genuchten SWR models (van Genuchten, 1980)
using nonlinear least-squares optimization (see
Section 2.3). We then modelled the fitted parameters of
each model with the average spectra over all ψ . The esti-
mated parameters from each SWR model were used to
reconstruct the SWR curves and to estimate cθFC and dθPWP

to then calculate AWC. We developed the local PTF, (E:

FIGURE 2 Different approaches to estimate the available water capacity (AWC) of soils: (A: SPC-AVG) direct spectroscopic modelling of

AWC, (B: SPC-FC-PWP) modelling water contents at permanent wilting point (θPWP; ψ = �1500 kPa) and at field capacity (θFC; ψ = �29 kPa),

then using those estimates to calculate AWC, (C: SPC-DRY) spectroscopic modelling using spectra of air-dry soils, (D: SPC-SWRC) spectroscopic

modelling of the parameters of a soil water retention (SWR) model (here, the Kosugi and van Genuchten models) and estimating AWC from the

reconstructed curve, (E: PTF-LOC) estimating AWC with a local pedotransfer (PTF) function developed with this study's data, and (F: PTF-AUS)

prediction of AWC using the PTF developed by Minasny et al. (1999). λ represents the wavelengths in the spectra, BD is bulk density, ϕ is porosity,

dg is the geometric mean of the particle size diameters, σg is the geometric standard deviation of the particle size diameters
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PTF-LOC), with measurements of soil texture, total
organic carbon and bulk density and using CUBIST (see
Section 2.4). The general one, (F: PTF-AUS), was derived
using the function in Minasny et al. (1999) (see Data S1).

2.3 | Soil water retention models, fitting
and optimisation

We characterised the SWR of the samples using the
Kosugi (1994) and van Genuchten (1980) models. We used
the two-parameter variant of the Kosugi model (not the full
three-parameter model, which assumes no air-entry value).

2.3.1 | The Kosugi model

Kosugi (1994) proposed a soil water retention (SWR)
model, assuming the pore radii to be log-normally distrib-
uted. The model describes the effective saturation Se:

Se ¼ 0:5 erfc
ln

ψ c-ψ
ψ c-ψ0

� �
-σ2

� �
ffiffiffi
2

p
σ

2664
3775 ψ <ψ c

Se ¼ 1 ψ ≥ψ c

ð1Þ

where erfc is the complementary error function, ψ c is the
air-entry value or the bubbling pressure, ψ0 the inflection
point, and σ(σ > 0) is a dimensionless parameter related
to the width of the pore radius distribution function g(r)
or the standard deviation of the log-transformed soil pore
radius (r), given by:

g rð Þ¼ θs�θr

2πð Þ1=2σr
exp � lnr=rm½ �2

2σ2

( )
ð2Þ

where rm is the median and geometric mean of g(r), and
θs and θr are saturated and residual water contents,
respectively. Generally, the smaller the σ value is, the
steeper becomes the retention curve at the inflection
point (ψ0).

When assuming no air-entry value, given by ψ c = 0,
the full three-parameter Kosugi model in Equation (1)
simplifies to its two-parameter form.

2.3.2 | The van Genuchten model

We also used the van Genuchten (1980) model in our
experiments because it is one of the most versatile and
commonly used SWR models. The van Genuchten model

was fitted to the volumetric water content measurements
using:

Se ¼ 1þ αψð Þn½ ��m ð3Þ

where Se is the effective saturation or normalised water
content, ψ the matric potential, α is a parameter inversely
related to the air entry value, which is the matric poten-
tial where the largest connected soil pores are filled with
air, n is a dimensionless measure of pore size distribu-
tion, and m is a dimensionless parameter related to n:

m ¼ 1� 1
n

n>1,0<m<1ð Þ: ð4Þ

2.3.3 | Fitting and optimisation

We used the Levenberg–Marquardt non-linear least-
squares (NLS) method (Marquardt, 1963) to fit the
Kosugi and Van Genuchten models to the seven matric
potentials measured at each site and depth (see above).
Saturated and residual water contents θs and θr were used
as two of the four fitting parameters of each model since
most SWR models describe water retention in the range
θr ≤ θ ≤ θs. Parameter estimates are often sensitive to the
chosen starting values because single parameter starting
values can find local minima instead of global optima.
Therefore, to prevent unrealistic parameter optimization,
grids of 1000 candidate starting value combinations were
randomly drawn from a uniform distribution from the
upper and lower bounds of each parameter and site-depth
combination. For both Kosugi and van Genuchten models,
the upper and lower bounds for the starting parameters of
θs were set to be 0.90 and 0.35 cm3 cm�3, and the bounds
for θr were 0.25 and 0.02 cm3 cm�3. The selected θs and θr
parameters were allowed to be within ±10% of the range
of the measured water contents. For the Kosugi model, the
upper and lower bounds of σ were 0.01 and 10 and for ψ0

they were �98 kPa and �0.098 kPa. For the van Gen-
uchten model, the bounds for α were 0.005 and 3 cm�1

and for n 1 and 15. The final, best-fit parameters for each
SWR curve were selected using the Akaike information
criterion (AIC) (Akaike, 1973), implemented in the nls.
multstart R library (Padfield & Matheson, 2020), which we
used. The AIC is defined by: AIC = 2 k + n ln(RSS) �
(n ln[n] + 2 C) where n is the number of data, C is a con-
stant, k is the number of parameters for each SWR curve,
and RSS is the residual sums of squares. We note that the
AIC is generally used to compare different models with
different numbers of parameter. In this case, however, the
number of parameters is constant so that the AIC and the
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residual sum of squares, provide the same assessment. To
evaluate the final best-fit, we then used the RMSE.

2.4 | Modelling with CUBIST

To derive the vis–NIR models and PTF-LOC, we used the
rule-based machine learning algorithm CUBIST

(Quinlan, 1992). CUBIST can model complex non-linear
relationships between collinear predictor variables
(e.g., spectra) and the outcome (e.g., soil water). CUBIST is
a tree-derived data partitioning algorithm that models
groups of data with piecewise multiple linear regressions.
A rule is composed of conditions and linear equations,
expressed as if conditions, then linear formula. CUBIST

simplifies rules by pruning to remove or merge parts of
rules to improve performance further and to prevent
over-fitting. Different trees can be built sequentially, where

the outcome for the next tree is adjusted depending on the
results of the previous tree. These sets of trees, also called
committees, can be aggregated by model averaging to
reduce variance in the prediction. Further, it is possible
to adjust the prediction of new cases with several
nearest neighbouring samples in the training set
(Quinlan, 1992). For a description of CUBIST in spectro-
scopic modelling see Viscarra Rossel and Webster (2012).
To gain insight into the spectroscopic modelling of the
Kosugi SWR parameters, we used the mean of the vari-
able usage statistics for variables in the CUBIST conditions
and linear regressions.

2.4.1 | Model tuning and validation

We tuned the CUBIST models using a full-factorial combi-
nation of 5, 10 and 20 committees, and 2, 5, 7, and

TABLE 1 Summary statistics of soil

properties measured at 54 locations and

3 depths (0–15 cm, 15–30 cm and 30–
60 cm) across Australia

Soil property n Mean SD Minimum Median Maximum

Bulk density [g cm�3] 148 1.21 0.15 0.92 1.18 1.67

Total C [g kg�1] 148 0.73 0.47 0.05 0.65 3.33

Clay [%] 148 37.0 16.0 3.0 37.5 82.0

Silt [%] 148 12.4 6.0 0.4 12.0 33.0

Sand [%] 148 50.4 17.9 9.0 48.5 96.0

θFC[cm
3 cm�3] 162 0.291 0.135 0.062 0.279 0.665

θPWP[cm
3 cm�3] 162 0.147 0.083 0.005 0.151 0.350

AWC [cm3 cm�3] 162 0.145 0.060 0.034 0.136 0.330

Note: θFC at ψ = � 29 kPa and θPWP at ψ = � 1500 kPa denote volumetric water contents at field capacity
(FC) and permanent wilting point (PWP). The available water capacity (AWC) was calculated from θFC and
θPWP. For some of the soil properties, n = 14 data were missing.

FIGURE 3 (a) Volumetric water contents, θ, at the matric potentials ψ of �1 kPa, �5 kPa, �10 kPa, �29 kPa, �60 kPa, �500 kPa,

and �1500 kPa, of the soils representing soil texture classes commonly used in the Australian Soil Classification (ASC) system at the 0–
15 cm, 15–30 cm and 30–60 cm depths. (b) Mean continuum removed reflectance spectra by matric potential. The colours of the legend

represent the mean volumetric water contents θ for soils at different matric potentials ψ
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9 neighbours. We used the CUBIST implementation in the
Cubist R package (Kuhn & Quinlan, 2018). Model tuning
was performed by minimising the RMSE. The validation
of all of the models (including PTF-LOC) involved two
nested resampling procedures. We used three repeats of
nested 10-fold cross-validation with ten bootstraps on
each holdout dataset to separate tuning and final model
assessment (Stone, 1974; Varma & Simon, 2006). The
hold-out data in each cross-validation iteration (10%)
were used as independent subsets to measure model per-
formance after tuning and fitting the models on boot-
straps of the corresponding sets (90%). To prevent overly
optimistic assessment that might result from potential
data leakage (across soil layers), the 10-fold cross-
validation was constrained by the site. This ensured all
depth measurements at a site be included in either the

model fitting or in the assessment, not both. This nested
and grouped cross-validation scheme ensures unbiased
estimates of performance. For clarity, we provide details
and a schematic representation of the nested resampling
validation approach in Data S1, Figure S1.

Validation of approach A: SPC-AVG (Figure 2) also
involved using only the average spectra of measure-
ments at ψ = �10 kPa and ψ = �1500 kPa (i.e., not
only the averaged spectra of soils at all seven matric
potentials). We only show the results from the valida-
tion with the two measurements as they were insignifi-
cantly different from those that used the average of all
seven matric potentials. The reason for validating with
only the average spectra from these two measurements
is that it enables a more practical application of the
SPC-AVG approach. In this case, to estimate AWC one

FIGURE 4 Estimates of volumetric water contents, θ, derived with CUBIST, coloured by Australian Soil Classification (ASC) texture

classes. The cross-validation root-mean-square-error (RMSE) and R2 of the model were 0.064 cm3 cm�3 and 0.89, respectively. Estimates are

plotted by matric potential, ψ . The error bars signify prediction intervals provided as standard errors from cross-validated estimates
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only needs to measure spectra from soils at field
conditions.

The statistics used to assess the performance of the
machine learning vis–NIR models and the PTF were
the RMSE to quantify the inaccuracy of the estimates,
the standard deviation of the error (SDE) to quantify
their imprecision, and the mean error (ME) to quantify
the bias. The RMSE accounts for both the bias and the
imprecision of the analysis so that RMSE2 = ME2 +

SDE2. We also report the coefficient of determination
(R2) from linear regression. We report the mean and
standard deviation of the assessment statistics from the
cross-validations.

3 | RESULTS

3.1 | Measured soil water contents and
spectra

The samples represent a typical range of soil types from
Australian agricultural regions (Figure 1), with widely
varying physical and chemical properties (Table 1). The
measured AWC of the samples ranged from 0.034 to
0.330 cm3 cm�3 (Table 1).

The volumetric water contents at each matric poten-
tial also varied widely, portraying the diverse soil types
and textures (Figure 3a; Table 1). At ψ = � 1 kPa, soil

FIGURE 5 Estimates of available water capacity (AWC) with the different approaches: (a) direct spectroscopic modelling

of AWC, (b) first modelling water contents at permanent wilting point (θPWP; ψ = �1500 kPa) and at field capacity (θFC;

ψ = �29.4 kPa), then calculating AWC (indirectly), (c) spectroscopic modelling of AWC using air-dry spectra, (d) spectroscopic

modelling of the parameters of the Kosugi (K) and van Genuchten (VG) water retention models and estimating AWC from the

reconstructed curve, (e) estimating AWC with a local pedotransfer function (PTF) using data of this study, and (f ) estimating

AWC with an established Australian function—See Figure 2. The error bars show standard deviations of the cross-validated

predictions. Approach (E: PTF-LOC) has fewer data points because of missing input data (see also Table 1), and approach (C: SPC-

DRY) has 31 missing data because dry spectra were not measured
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water contents ranged from 0.238 to 0.865 cm3 cm�3. At
wilting point (ψ = � 1500 kPa), water contents ranged
from 0.005 to 0.350 cm3 cm�3. The continuum removed
spectra show that a reduction in soil water content with
increasing matric potentials causes a proportional
increase in reflectance and narrower absorption features
(Figure 3b). Water affects the spectra most at the water
absorption wavelengths around 1400 nm and 1900 nm in
the NIR region and broadly across the visible range.

3.2 | Prediction of water contents at
different matric potentials and available
water capacity

The spectroscopic predictions of θ at each of the selected
matric potentials (Figure 4), resulted in RMSE values of
between 0.026 and 0.081 cm3 cm�3, and R2 values from
0.50 to 0.80. The spectroscopic predictions of air-dry

water content were relatively accurate but accounted
only for a small proportion of measured variance due to
its small range (0.000–0.133 cm3 cm�3).

Direct spectroscopic modelling of AWC (A: SPC-
AVG) produced the most accurate estimates, with the
smallest RMSE and largest R2 (RMSE = 0.033 cm3 cm�3;
R2 = 0.70; Figure 5; Table 2). First modelling water con-
tents at FC and PWP and then calculating AWC (B: SPC-
FC-PWP) produced the least accurate spectroscopic esti-
mates, with an RMSE of 0.051 cm3 cm�3 and R2 of 0.49.
Individual spectroscopic estimates of PWP and FC were
relatively accurate with R2 values of 0.78 and 0.79,
respectively (Figure 5; Table 2). Estimates of AWC with
the air-dry spectra (C: SPC-DRY) produced an RMSE of
0.045 cm3 cm�3 and R2 of 0.46. Estimates of AWC follow-
ing spectroscopic modelling of the parameters of the
Kosugi SWR model and then reconstructing the water
retention curve to estimate AWC (D: SPC-SWRC-K) had
an RMSE of 0.049 cm3 cm�3 and R2 of 0.49. The RMSE of

TABLE 2 Evaluation of the different approaches used to estimate available water capacity (AWC).

Method Mean RMSE ME SDE R2

A: SPC-AVG 0.145 0.033 ± 0.001 �0.001 ± 0.001 0.033 ± 0.001 0.70 ± 0.02

B: SPC-FC-PWP 0.145 0.051 ± 0.001 0.000 ± 0.004 0.051 ± 0.001 0.49 ± 0.01

θPWP 0.147 0.039 ± 0.003 �0.000 ± 0.001 0.039 ± 0.003 0.78 ± 0.03

θFC 0.291 0.062 ± 0.001 0.000 ± 0.003 0.062 ± 0.001 0.79 ± 0.01

C: SPC-DRY 0.145 0.045 ± 0.003 �0.000 ± 0.002 0.044 ± 0.003 0.46 ± 0.06

D: SPC-SWRC-K 0.145 0.049 ± 0.003 �0.019 ± 0.002 0.045 ± 0.003 0.49 ± 0.04

D: SPC-SWRC-VG 0.145 0.059 ± 0.002 0.038 ± 0.001 0.046 ± 0.002 0.41 ± 0.06

E: PTF-LOC 0.149 0.050 ± 0.003 0.002 ± 0.000 0.050 ± 0.003 0.31 ± 0.04

F: PTF-AUS 0.148 0.077 0.023 0.074 0.00

Note: SPC-AVG: direct spectroscopic modelling of AWC. SPC-FC-PWP: First modelling water contents at permanent wilting point and at field capacity, then

calculating AWC. SPC-DRY: Modelling of AWC with air-dry spectra. SPC-SWRC: Spectroscopic modelling of the parameters of the Kosugi (K) and van
Genuchten (VG) models (see Table 3) and estimating AWC from the reconstructed curves. PTF-LOC: Estimating AWC with a local pedotransfer function. PTF-
AUS: Estimating AWC with a general PTF derived for Australian soils.

TABLE 3 Evaluation of the vis–NIR soil water retention (SWR) models' parameters

SWR model Mean RMSE ME SDE R2

Kosugi

θs [cm
3cm�3] 0.59 0.082 ± 0.001 �0.012 ± 0.001 0.081 ± 0.001 0.73 ± 0.00

θr [cm
3cm�3] 0.13 0.038 ± 0.000 �0.003 ± 0.002 0.038 ± 0.000 0.75 ± 0.01

σ 2.17 0.360 ± 0.004 �0.028 ± 0.006 0.358 ± 0.004 0.39 ± 0.01

ψ0 [kPa] �17.2 12.9 ± 0.2 0.1 ± 0.5 12.9 ± 0.2 0.18 ± 0.02

van Genuchten

θs [cm
3cm�3] 0.57 0.076 ± 0.004 �0.010 ± 0.004 0.075 ± 0.003 0.74 ± 0.02

θr [cm
3cm�3] 0.14 0.043 ± 0.001 �0.001 ± 0.002 0.043 ± 0.001 0.71 ± 0.01

α [cm�1] 0.04 0.022 ± 0.000 �0.001 ± 0.000 0.022 ± 0.000 0.08 ± 0.01

n 1.56 0.17 ± 0.00 0.01 ± 0.00 0.17 ± 0.00 0.24 ± 0.01
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the AWC estimates from the reconstruction of the van
Genuchten model was 0.059 cm3 cm�3 and the R2 was
0.41 (Figure 5; Table 2). The spectroscopic models were
generally more imprecise than biased, although the esti-
mates of AWC from the reconstructed SWR curves were
somewhat more biased (Table 2).

Estimates of AWC with the local PTF (E: PTF-LOC)
had an RMSE of 0.050 cm3 cm�3 and R2 of 0.31, while
those from the general PTF (F: PTF-AUS) were the least
accurate with an RMSE of 0.077 cm3 cm�3 and R2 of
ca. zero as it failed to account for the variation in AWC
across the sites (Figure 5; Table 2).

3.3 | vis–NIR estimates of the soil water
retention model parameters and
reconstruction

For both the Kosugi and van Genuchten models, satu-
rated and residual water contents were well explained by
the CUBIST models (R2 = 0.71–0.75; Table 3). Estimates of
Kosugi σ were relatively unbiased but the model
explained only 39% of its variability. Estimates of the
inflection point ψ0 were more biased and the R2 of the
predictions was 0.18 ± 0.02. The spectroscopic model
explained only 8% of the variability in the van Genuchten
α parameter, and estimates of the pore-size distribution
parameter, n, were poor (R2 = 0.28; Table 3).

The SWR curves for all of the samples, fitted with
both the Kosugi and van Genuchten models, as well as

their vis–NIR reconstructions, were used to estimate
AWC as per approach D: SPC-SWRC are given in the
Data S1 (Figures S2, S3, S4, S5).

Most of the important wavelengths (overall relative
importance greater than 10%) for the spectroscopic esti-
mates of the Kosugi parameters were centred closely
around the peak maxima of the vis–NIR water absorption
wavelengths (1200, 1400, 1900, 2200 nm), as well as in-
between peak edge features (e.g., 750, 760, 2020 nm)
(Figure 6).

4 | DISCUSSION

4.1 | vis–NIR spectroscopy and soil water
retention

Diffuse reflectance spectra in the vis–NIR region responds to
changes in soil water (Baumgardner et al., 1986; Bowers &
Hanks, 1965; Bowers & Smith, 1972; Peterson &
Baumgardner, 1981) and it is possible to model gravimetric
soil water content with vis–NIR spectra (Lobell &
Asner, 2002). The diffuse reflectance of soil around the main
water absorption regions (1440 and 1920 nm) decreases non-
linearly with increasing water content (Figure 5). This is due
to matrix effects that result from the simultaneous presence
and physicochemical interaction of soil organic and mineral
constituents and water (Lobell & Asner, 2002; Weidong
et al., 2002; Whiting et al., 2004). The response may also
involve physical scattering phenomena that are influenced

FIGURE 6 Interpretation of vis–NIR modelled Kosugi parameters θs, θr, σ, and ψ0. Continuum removed reflectance spectra (a),

coloured by volumetric water content θ, are shown with important variables for Kosugi parameters (b). Influential spectral variables were

determined with CUBIST overall importance (percent coverage in split conditions and regressions) higher than 10%
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by particle size distribution, surface geometry, pore spacing,
the form of water (free, in mineral lattices, surface-bound)
and hydrophobicity, due to the presence of organic matter
(Knadel et al., 2014).

More recently, studies have also reported the potential to
model AWC and SWR with spectra (Babaeian, Homaee,
Montzka, et al., 2015; Pittaki-Chrysodonta et al., 2018; Santra
et al., 2009). However, there is little published research on
modelling of AWC and SWR characteristics with machine
learning over a large geographic extent and using a diverse
range of soil types with highly variable chemical composition
and textures. This research uses samples from 10 of the
14 orders in the Australian soil classification system, which
are the most important for agricultural production
(Figure 1). We described experiments that showed that their
water contents, measured at seven different potentials from
ψ = �1 kPa to ψ = �1500 kPa and under air-dried condi-
tions, can be well estimated with vis–NIR spectroscopy and
machine learning. Our experiments also provide a compre-
hensive assessment of different approaches for estimating
AWC. This includes the spectral reconstruction of the SWR
curve and comparisons to estimates based on local and
general PTFs.

4.2 | Spectroscopic estimates of soil
water content

Our estimates of θ were unbiased, but somewhat less accu-
rate when the soils were drier (ψ = �58.8 to �1500 kPa;
Figure 4, Table 2), because of the stronger water absorption
signals of the wetter soils (primarily 1440 nm, 1920 nm),
compared to when they were drier (ψ = � 500 to
�1500 kPa). In these cases, wavelengths related to water
were less prominent, and the estimates relied more on indi-
rect relationships to wavelengths that correspond to their
mineral-organic composition (Stenberg et al., 2010; Viscarra
Rossel et al., 2009).

Direct modelling of AWCwith the spectra (SPC-AVG) pro-
duced the most accurate estimates (RMSE= 0.033 cm3 cm�3).
The reason might be that the models use mainly direct rela-
tionships to the most distinct spectral features of water (see
Figure 3). Estimates of AWC from vis–NIR models of θFC
and θPWP (SPC-FC-PWP) were the least accurate of the
spectroscopic approaches (RMSE = 0.051 cm3 cm�3). The
likely reason is that fitting two models (for FC and PWP)
adds more uncertainty to the final estimates. The error of
the model that used air-dry spectra (SPC-DRY) to estimate
AWC (RMSE = 0.045; R2 = 0.46; measured = 0.034–
0.036 cm3 cm�3) tended to underestimate larger AWCs
(Figure 4). The reason might be that the model built with
air-dry spectra relied more on indirect relationships to the
mineral-organic composition of the soils, which were not

strong enough to model larger AWCs. Nevertheless, the
RMSE of our estimates were similar to other published
studies (e.g., Blaschek et al., 2019), although as mentioned
above, our study is with amore diverse set of soils.

4.3 | Prediction of water contents at
different matric potentials and available
water capacity

Estimates of AWC from vis–NIR models of the Kosugi
model parameters (SPC-SWRC-K) were less accurate
than the SPC-AVG and only slightly less accurate than
the SPC-DRY approach (Figure 4). Estimates of AWC
from the reconstruction of the van Genuchten model
were less accurate than those from the Kosugi model.
This might be because most soils lacked a distinct air-
entry value (see Figure S4) and also because there was no
relationship to soil properties that can be modelled well
with the vis–NIR spectra. The spectroscopic modelling of
n was poorer compared to the spectroscopic modelling of
its Kosugi counterpart σ. The reason for this difference
might be that the Kosugi model incorporates a log-
normal pore size distribution function, which could have
generalised SWR better than using the van Genuchten,
which has the empirical fitting parameter n. Parameter
n was better predicted with air-dry spectra in Santra
et al. (2009), however, the soil samples covered a regional
study area with a defined soil type, and hence results can-
not directly be compared to the variability of our data set.

Compared to the other approaches, the SPC-SWRC
approach is more versatile because it enables the deriva-
tion of the entire SWR curve and rapid predictions of
water content at specific matric potentials. The SPC-
SWRC approach can be more useful in applications that
also require data on water contents at specific matric
potentials, e.g., biogeochemical and hydrological model-
ling, the assessment of soil conditions using proximal
sensing platforms (Viscarra Rossel et al., 2017), continu-
ously integrating water contents in lysimeter and soil col-
umn experiments across depth, digital soil mapping, or to
infer hydraulic conductivity (Assouline & Or, 2013; Szab�o
et al., 2018; Vereecken et al., 2016). The PTF estimates
were the least accurate. Estimates with the PTF-LOC
were imprecise and biased, but better than those of the
PTF-AUS. The reason for the poorer predictability of the
PTF-LOC, compared to the spectroscopic methods, might
be that the information content of the input soil proper-
ties is smaller than that of the spectra. Thus, the predictor
space of the soil properties would limit specific predictive
relationships with soil water, leading to difficulties in
representing local conditions. For similar reasons,
Babaeian, Homaee, Vereecken, et al. (2015) also reported
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better predictions of water contents and SWR with vis–
NIR than with PTFs.

4.4 | Spectral interference systems and
direct spectroscopic modelling

McBratney et al. (2006) proposed the development of
spectral inference systems to infer soil properties that are
difficult to measure, such as SWR and AWC. These sys-
tems use infrared spectra to derive soil properties for
input into PTFs (e.g., Tranter et al., 2008). Depending on
the soil properties to be inferred, the approach will be
more or less useful. For predictions of SWR and AWC, it
is likely that the propagated uncertainties of the esti-
mates from such spectral PTF engines will be larger com-
pared to direct spectroscopic modelling, limiting the
usefulness of the estimates. Modelling the spectra with
CUBIST directly to predict SWR and AWC, like we have
done here, removes the intermediate step and result in
smaller uncertainties and more useful data. CUBIST

models were able to identify and use wavelengths that
are relevant to soil water and SWR across water poten-
tials. They allowed embedding of both causal and indirect
non-linear interactions between the spectra, which repre-
sents the soil's mineral-organic composition, water and
particle size, and soil water and its characteristics, across
a diverse range of soil types.

4.5 | Modelling with CUBIST

The spectroscopic models could predict the saturated θs
(R2 = 0.73 and 0.74; RMSE = 0.082 and 0.076 cm3 cm�3)
and residual θr (R

2 = 0.75 and 0.71; RMSE = 0.038 and
0.043 cm3 cm�3) water content parameters of the Kosugi
and van Genuchten models (Table 3). The θs parameter
represents the effective porosity and is defined by capil-
lary forces, while θr mostly depends on adsorptive pro-
cesses, which are related to texture and the specific
surface area of soil (Tuller & Or, 2005). The estimates
were accurate because the models could use direct rela-
tionships to the water absorption wavelengths (e.g. near
1900 nm; Figure 6), and relationships to particle size dis-
tribution and mineralogy (e.g., those near 2200 nm;
Figure 6), which determine the soil's specific surface area
(Knadel et al., 2014, 2020).

Babaeian, Homaee, Montzka, et al. (2015) used the
vis–NIR spectra from dry soil to model van Genuchten θs
within a region with similar soil types and found poor pre-
dictability (validation R2 = 0.1; RMSE = 0.062 cm3 cm�3),
given a measured range of 0.036–0.061 cm3 cm�3 (stan-
dard deviation = 0.062 cm3 cm�3). Pittaki-Chrysodonta

et al. (2018) reported better predictability of θ between θs
and θr (Ψ = �98 kPa; RMSE = 0.022 cm3 cm�3;
R2 = 0.93), however, the experiment and assessment was
limited to within Ψ = �1 kPa and �98 kPa and to soil
samples from a narrow range of soils from six agricultural
sites.

Estimates of σ were unbiased but imprecise
(R2 = 0.39) because the models could only rely on a few,
indirect relationships to water and clay mineralogy
(Figure 6). The Kosugi σ parameter, which is related to
the width of the log-normal pore radius distribution
(Kosugi, 1994), may be characterised by the fractional
content of the particle size distribution, soil structure and
their interactions. The attribution to the conceptual pore
size distribution made for Kosugi σ shows similar effects
as the empirical shape or slope parameter b of the Camp-
bell model, for which Pittaki-Chrysodonta et al. (2018)
achieved good results (R2 = 0.90 and 0.89) with vis–NIR
and pedotransfer models. Estimates of the ψ0 parameter,
which represents the capillary pressure at the inflection
point, were inaccurate (R2 = 0.18) because the models
could not find strong relationships to information in the
spectra (Figure 6)—spectroscopy is essentially a surface
technique Norouzi et al. (2021). The spectrally
reconstructed SWR curves at the measured matric poten-
tials showed no overall trend in the error distributions
and range between the soil texture classes (Figure 6).

4.6 | Using repacked core samples

Repacked soil core samples do not possess macropores,
which are important because they affect capillary forces,
which can enable the soil to potentially hold more water at
a given suction. Repacking also alters micro- and macro-
aggregates in soil and the pore space between aggregates.
Hence, measurements of SWR using intact soil cores are
different from measurements using repacked cores, particu-
larly at lower matric potentials. Micropore size distributions
and continuity, however, may be less affected by repacking
in many soils because the radii of smaller particles do not
change as much, particularly if the repacking is done to
bulk densities that approximate those at field conditions
(Flint & Flint, 2002).

Our experiments used repacked soil samples, which do
not precisely reproduce field conditions and structure. Mea-
surements of the wet end of the SWR were more affected
than those of the dry end, which were well reconstructed by
the spectroscopic method (Tables 1 and 2). The reason for
using repacked cores was that the experiments involved a
diverse set of soil types from profiles sampled over a large
geographical extent, which extends from southern Queens-
land to New South Wales, South Australia and Western
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Australia (Figure 1). In such cases, the use of repacked cores
for measuring SWR is not uncommon as they provide a sci-
entifically valid and practical procedure, for approximating
hydraulic properties Gupta and Larson (1979). Additionally,
measurements with pressure plates are more practical using
repacked cores because of the difficulties encountered with
using intact cores (Dane & Hopmans, 2002; Gupta &
Larson, 1979).

In our experimental setup with repacked cores, a num-
ber of the high clay content Vertosols samples had exception-
ally high volumetric water contents (>0.65 cm3 cm�3). The
reason is that these soils exhibit shrink-swell behaviour, but
we could not quantify the change in soil volume and the
measured bulk densities were unrepresentative of soil
under field conditions. However, this shortcoming of our
experiment does not affect our research to explore the rela-
tionship between SWR and spectra and investigate differ-
ent approaches for the spectroscopic modelling of AWC
and SWR.

Spectroscopic methods measure only the soil surface,
therefore they cannot “see” pores or structure. If we were
to use a spectroscopic method in the field, one would
measure only the soil surface, be it top or subsoil, as mea-
surements down the profile in an open soil pit, or the sur-
face of sampled soil cores (Viscarra Rossel et al., 2017).

4.7 | Spectroscopic approaches have the
potential for estimating soil water
retention and water-holding capacity

Our findings are significant for two main reasons. The
presented methods can help to meet the enormous
demand for data on soil water at different scales and dif-
ferent applications. With appropriate calibrations, the
spectroscopic-machine learning method can also help to
overcome the substantial cost and complexity of conven-
tional laboratory and field measurements of SWR and
AWC. The methods could also be used directly on soil
under field conditions by proximal sensing; in situ or ex-
situ (Viscarra Rossel et al., 2017).

5 | CONCLUSION

The machine learning models were able to capture the
direct and indirect relationships between the vis–NIR
spectra and θ, AWC and SWR, of a diverse set of
Australian agricultural soils. Direct modelling of AWC
with vis–NIR spectra produced the most accurate esti-
mates with the smallest RMSE. Calculation of AWC from
the estimates of spectroscopic models of FC and PWP
was less accurate because of the errors of the two

separate spectroscopic models. Estimates of AWC with
air-dry spectra tended to slightly underestimate samples
with more AWC. Estimates of AWC using reconstructed
SWR curves from spectroscopic estimates of the parame-
ters of SWR functions were less accurate than the direct
estimates of AWC. However, the approach is more versa-
tile, particularly if one necessitates data on water content
at different matric potentials, or if one needs to describe
the soil SWR characteristic. Estimates from the general
PTFs were the least accurate. The spectroscopic methods
that we present can help with the cost-effective collection
of information on SWR and AWC and future research
might aim to operationalise one of the approaches for
in-field proximal sensing.
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