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Stelian Coros2 and Marco Hutter1

Abstract
We describe an optimization-based framework to perform complex locomotion skills for robots with legs and wheels. The
generation of complex motions over a long-time horizon often requires offline computation due to current computing
constraints and is mostly accomplished through trajectory optimization (TO). In contrast, model predictive control (MPC)
focuses on the online computation of trajectories, robust even in the presence of uncertainty, albeit mostly over shorter time
horizons and is prone to generating nonoptimal solutions over the horizon of the task’s goals. Our article’s contributions
overcome this trade-off by combining offline motion libraries and online MPC, uniting a complex, long-time horizon plan
with reactive, short-time horizon solutions. We start from offline trajectories that can be, for example, generated by TO or
sampling-based methods. Also, multiple offline trajectories can be composed out of a motion library into a single maneuver.
We then use these offline trajectories as the cost for the online MPC, allowing us to smoothly blend between multiple
composed motions even in the presence of discontinuous transitions. The MPC optimizes from the measured state, resulting
in feedback control, which robustifies the task’s execution by reacting to disturbances and looking ahead at the offline
trajectory. With our contribution, motion designers can choose their favorite method to iterate over behavior designs offline
without tuning robot experiments, enabling them to author new behaviors rapidly. Our experiments demonstrate complex
and dynamic motions on our traditional quadrupedal robot ANYmal and its roller-walking version. Moreover, the article’s
findings contribute to evaluating five planning algorithms.
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1. Introduction

When humans and animals engage in complex locomotion
behaviors, the motions involve a fast interaction between
the feet and the environment’s contact. Additionally, whole-
body coordination operating near physical limits or over
challenging obstacles is demanding, requiring look-ahead
planning to decide the upcoming steps carefully. The
synchronization of fast interactions and look-ahead plan-
ning is a fascinating research direction. Planning such
physically feasible motions for (wheeled-)legged robots, as
shown in Figure 1, is challenging since the whole-body
movement results from contact forces at the feet (or wheels).
Therefore, we need to carefully choose the interaction at
these contact points with the environment to achieve the
desired behavior while respecting physical laws.

1.1 Offline and online optimal-control

Designing high-dimensional trajectories, for example,
whole-body trajectories including ground reaction forces, is

difficult. In most cases, it is not feasible to hand-craft due to
the complexity of the constraints. When analyzing the lit-
erature in Section 2, it appears that optimal-control algo-
rithms can be separated from a practical point of view into
two groups: offline and online algorithms.

The usage of trajectory optimization (TO) (see reviews
by Betts (1998); Rao (2009)) offers the chance to solve the
locomotion problem over the task’s time horizon while
optimizing a higher-dimensional variable space composed
of the whole-body trajectory, gait sequences, and timings.
With a task-specific goal, these variables are found auto-
matically while considering constraints imposed by phys-
ical restrictions. In the last few years, legged locomotion
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research experienced a surge in TO approaches that solve
the locomotion problem over long-time horizons from
scratch (Geilinger et al. 2018, 2020; Herzog et al., 2015;
Jelavic and Hutter 2019; Mastalli et al., 2017; Medeiros
et al., 2020; Melon et al., 2020; Mordatch et al., 2012; Park
et al., 2016; Posa et al., 2014; Todorov 2011; Winkler et al.,
2018; Yeganegi et al., 2019). Most of these approaches
share one aspect in common that their algorithms run offline
and, due to the computational complexity, reliable online
execution on the real robot becomes one of the main
challenges.

Instead, a large amount of pioneering work in model
predictive control (MPC) (see reviews by Morari and Lee
(1999); Mayne et al. (2000); Bertsekas (2005); Diehl et al.

(2009)) focuses on the online execution of whole-body
optimization problems on the real robot in a task-generic
fashion (Caron and Pham, 2017; Bjelonic et al., 2021; Bledt
and Kim 2019; Bledt et al., 2018; Dantec et al., 2020; Dai
et al., 2014; Erez et al., 2013; Farshidian et al., 2017; Grandia
et al., 2019a, 2019b; Herdt et al., 2010; Henze et al., 2014;
Koenemann et al., 2015; Laurenzi et al., 2018; Mason et al.,
2018; Neunert et al., 2018; Paparusso et al., 2020;
Zimmermann et al., 2015). Due to fast update rates, MPC
finds solutions on the fly while correcting the motion under
unforeseen conditions, such as modeling errors and external
disturbances, thus offering feedback control. In contrast to
TO, these motions are generated over relatively short-time
horizons and neglect complex optimization variables and
constraints, such as gait timings and higher-order model
complexities, to speed up the solver time. Therefore, the
optimization may not guarantee an optimal solution for tasks
requiring a longer time horizon and a more accurate physical
representation, for example, parkour over obstacles. The
characteristics of both fields can be summarized as follows:

Offline trajectory optimization. Offline computations of
long-time horizons and task-specific problems are solved
from scratch while considering higher-order model
complexities.

Online model predictive control. Online computations of
short-time horizons and task-generic problems are solved by
a shifted guess from the previously computed optimal so-
lution and explore task simplifications for computational
reasons.

1.2 Contribution

We formalize, evaluate, and analyze a complete planning
and control solution for the relatively underexplored domain
of hybrid wheeled-legged locomotion. Our article’s theo-
retical contribution is a whole-body1 approach to loco-
motion planning that combines offline motion libraries and
online MPC, generating complex and dynamic motions for
(wheeled-)legged robots. The former finds complex mo-
tions enabling whole-body coordination near robot limits
and over challenging obstacles (see Figure 2) with task-
specific time horizons. We then use these offline trajectories
as the online MPC’s cost, which explores reactive optima
over a fixed look-ahead. Moreover, we can store offline
trajectories in a motion library where each motion can be
composed into a single maneuver.

We showcase three state-of-the-art TO algorithms for the
offline computation of complex trajectories, namely an
interactive TO, a terrain-aware TO, and a sampling-based
method, allowingmotion designers to choreograph complex
motions. With this demonstration of different offline motion
planners, we verify that our complex motion composition
can be extended with other algorithms providing whole-
body trajectories.

The main conceptual contribution of this work is the real-
time execution of the offline trajectories on the real robot. To

Figure 1. Our quadrupedal robot ANYmal (Hutter et al., 2017)
with wheels executes complex and agile skills through offline
TO and online MPC. With our novel approach, the robot achieves
dynamic and artistic motions in challenging terrain. First image:
Terrain-aware locomotion over a 0.20 m high step (32% of leg
length). Second image: Ducking motion under a table. Third
image: Dynamic 180°turn in approximately 1 s. The dotted lines
show the TO’s offline trajectories of the whole-body, while the
solid lines show the online solution of the MPC. Avideo available
at https://youtu.be/39rRhTqcQc0 showing the results accompanies
this article.
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this end, our online optimization is based on a whole-body
MPC that closes the offline-to-online gap. Similar to the
TOs, it is based on a single task formulation that simulta-
neously optimizes feet (or wheels) and torso motions. Due
to the real-time joint velocity and ground reaction force
optimization based on a kinodynamic model, the MPC can
follow a high variety of different offline motions, thus is
general with respect to (w.r.t.) the task. Also, we discuss the
importance of incorporating a look-ahead along the offline
trajectories, which enables the anticipation of future events.
Traditional MPC with a short-sighted plan can generate a
sub-optimal solution for tasks over longer time horizons. In
our work, the augmentation of the MPC’s cost with offline
trajectories avoids these problems.

As shown in Figures 1 and 13, the experiments dem-
onstrate complex and dynamic motions on our traditional
four-legged robot ANYmal and its roller-walking version,
further demonstrating the findings’ generalizability and
approach’s applicability to any robot with legs and wheels.

Succinctly, the six main findings (C1) to (C6) of this
article can be summarized as follows:

(C1) Whole-body coordination. The online MPC coordi-
nates offline trajectories of complex, whole-body motions
operating near robot limits while being responsive to the terrain.

(C2) Offline-to-online gap. The online MPC optimizes
from the measured state, resulting in feedback control,
which adds a certain degree of robustness and reliability to
the offline trajectory’s execution by recomputing solutions
on the fly and reacting to unforeseen conditions, such as
modeling errors and external disturbances. Also, the MPC
anticipates future events of the offline trajectory.

(C3) Rapid motion prototyping. Executing offline tra-
jectories on the real robot is a tedious task requiring tuning
robot experiments. Due to the properties (C1) and (C2) of

our online motion planner, motion designers can choose
their favorite motion generator to iterate over behavior
designs offline without tuning robot experiments, enabling
them to author new behaviors rapidly.

(C4) Motion composition. Motion designers can com-
pose multiple offline trajectories into a single maneuver.
Since these (composed) trajectories are fed into the MPC as
a cost (and not as a constraint or initialization method) and
due to the look-ahead of the MPC, our approach makes it
possible to smoothly blend between trajectories even in the
presence of discontinuities, avoiding hand-tuned heuristics
at these transitions.

(C5) Performance and generalization. The robot can
conduct artistic motions, dance, and find optimal solutions
over non-flat terrain. Our framework is not restricted to our
roller-walking robot ANYmal and is generalized to any
robotic creature with legs and wheels.

(C6) Evaluation of offline motion planners. The article’s
findings serve as an evaluation of three offline motion
planners for ANYmal.

2. Related work

In the following, we categorize existing approaches to
legged locomotion planning by offline TO and online MPC
methods and, finally, review techniques that combine both
optimal-control approaches.

2.1 Offline trajectory optimization

Most of the related work in the field of TO for legged
locomotion precomputes complex trajectories over a task-
specific time horizon. Due to offline generation and a focus
on higher-order optimizations, reducing the computation
time becomes a lower priority compared to MPC. As such,
TO algorithms choose from a set of models that captures the
real robot’s dynamics more accurately. For example, the
rigid body dynamics (RBD) model only assumes non-
deformable links and the equations of motion (EOM) can
be rewritten as the Centroidal dynamics (CD) model
without loss of generality (Orin et al., 2013; Kuindersma
et al., 2016). Budhiraja et al. (2019) discuss the dynamic
consensus between centroidal and the RBD models. The
single rigid body dynamics (SRBD), on the other hand,
assumes that the legs are massless and, as can be seen below,
is another commonly used model in TOs (Herzog et al.,
2015).

Winkler et al. (2018) propose a phase-based end-effector
parameterization for simultaneously optimizing gait and
whole-body motion over non-flat terrain. A nonlinear
programming (NLP) algorithm solves the problem, and, as a
model, the authors deploy the SRBD of a legged robot. The
approach is augmented by Medeiros et al. (2020) to in-
corporate wheeled locomotion without stepping. The op-
timization problem, however, becomes prone to local
minima and, as such, depends on a good initialization.
Melon et al. (2020) propose a learning-based scheme to

Figure 2. Our quadrupedal robot ANYmal with wheels
overcomes two steps in a row (upper image) and steps up-and-
down (lower image) through the terrain-aware TO and MPC. The
maximum step height is 0.20 m (32% of leg length) and the robot
locomotes the obstacle course with a maximum speed of 1.5 m/s
while only lifting its legs when needed.
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solve this problem by initializing the NLP based on offline
experiences. In contrast, Mordatch et al. (2012) and Carius
et al. (2019) present a contact invariant TO formulation to
synthesize legged robots’ motions. As shown by Deits and
Tedrake (2014) and Aceituno-Cabezas et al. (2017), mixed-
integer optimization problems can solve the combinatorial
complexity of simultaneous gait and motion planning.

Recently, research in hybrid locomotion showed a rise of
new TO methods. Skaterbots show impressive results based
on the CD model of robots with wheels and legs (Geilinger
et al. 2018, 2020). In contrast to the work of Winkler et al.
(2018) and Medeiros et al. (2020), the authors of Skaterbots
have access to the leg’s kinematics, which becomes even
more critical for wheeled-legged robots since the estimation
of the rolling direction is required. Thus, the work of
Medeiros et al. (2020) requires a heuristic that approximates
the rolling constraint. Awhole-body, kinematic TO (Jelavic
and Hutter 2019) and a sampling-based method (Jelavic
et al., 2021) showcase static motions for legged excavators
in visualization only.

In contrast toMPC, some TOmethods offer the chance to
be immune to local minima when the domain has discon-
tinuous dynamics (Erez et al., 2012). These algorithms,
however, are often too slow to be applied online on the real
robot, though impressive results are being showcased in
visualization and inside simulation environments. On the
real robot, the related work struggles with the execution of
these motions. For example, Winkler et al. (2018) only
manage to run a few simple trajectories on flat terrain. The
authors use a tracking controller that only looks at one set
point at a time to execute the offline trajectories.

2.2 Online model predictive control

The task of MPC is to find the robot’s continuous-time
motion over a fixed time horizon, that is, the torso’s tra-
jectories and feet (or wheels). Moreover, the algorithm must
carefully plan the ground reaction forces to achieve the
desired behavior.

To reduce the model complexity and enable real-time
execution, the research community is experimenting with
simplifying the real robot’s dynamics. For example, by
modeling the robot as a linear inverted pendulum (LIP)
model, the zero-moment point (ZMP) developed by
Vukobratović and Borovac (2004), or the center of pressure
(COP), is used to control only the motion of the center of
mass (COM) position and acts as a substitute for the contact
forces (Bellegarda et al., 2018; Bellicoso et al., 2018;
Bjelonic et al. 2019, 2020; Caron et al., 2017; De Viragh
et al., 2019; Jenelten et al., 2020; Kalakrishnan et al. 2010,
2011; Krause et al., 2012; Mason et al., 2018; Mastalli et al.,
2020; Sardain and Bessonnet 2004; Winkler et al. 2015,
2017; Zucker et al., 2011). Additionally, the locomotion
planning’s high-dimensional problem can be decomposed
into a separate torso and feet (or wheels) planning problems.

Thus, the resulting two lower-dimensional sub-tasks be-
come more tractable (Bellicoso et al., 2018; Bjelonic et al.,
2020; Buchanan et al., 2020; Di Carlo et al., 2018;
Englsberger et al., 2014; Focchi et al. 2017, 2020; Griffin
et al., 2019; Kajita et al., 2001; Jenelten et al., 2020;
Kalakrishnan et al., 2010; Klamt and Behnke 2018;
Laurenzi et al., 2018; Kudruss et al., 2015; Naveau et al.,
2017; Park et al., 2015; Rebula et al., 2007; Tsounis et al.,
2020; Wieber 2006; Wieber et al., 2016; Zucker et al.,
2011).

In our previous work (Bjelonic et al., 2021), we verify
that the full set of possible solutions cannot be discovered
by such a decomposed method. The individual components
do not consider the complete set of physical constraints.
Instead, a single task approach should be deployed that
treats the continuous-time decision problem as a whole
without breaking down the problem into several sub-tasks.
Such holistic solutions automatically discover complex and
dynamic motions that are impossible to find through hand-
tuned heuristics at the cost of higher computation times.
Also, a single set of parameters for all behaviors makes the
algorithm general w.r.t. the task, which is crucial when
executing different offline trajectories. Another finding
shows that the LIP model does not accurately capture the
real model’s accuracy, and higher-dimensional models, for
example, SRBD models, are required for more complex
tasks.

In the last few years, traditional legged locomotion re-
search experienced a large amount of pioneering work in
MPC that now reliably runs single task optimizations based
on an SRBD or CDmodel (Caron and Pham 2017; Dai et al.,
2014; Erez et al., 2013; Farshidian et al., 2017). Bledt and
Kim (2019) implement a regularized predictive controller
for simultaneous footstep and ground reaction force opti-
mization. The authors show their results on the quadrupedal
robot, MIT Cheetah 3 (Bledt et al., 2018). Similarly,
Grandia et al. (2019a, 2019b) and Neunert et al. (2018)
deploy an MPC on the ANYmal robot (Hutter et al., 2017).
In contrast, the former work introduces a kinodynamic
model, which defines the SRBD model along with the
kinematics for each leg.

MPC offers robust and reactive control for even high-
dimensional (wheeled-)legged robots. Running MPC over a
short-time horizon does not result in optimal motions over
the task’s full receding horizon. The effects of using a short-
sighted optimization become evident when considering
tasks that involve crossing challenging obstacles like
stepping stones (Dantec et al., 2020; Grandia et al., 2021;
Magaña et al., 2019; Mastalli et al., 2020) and stairs
(Fankhauser et al., 2018; Jenelten et al., 2020). Here, the
robot makes unnecessary steps over the terrain patches, and
depending on the difficulty of the obstacle, the robot can be
guided into inescapable situations. Moreover, the MPC gets
stuck in local minima when the domain has discontinuous
dynamics (Erez et al., 2012).
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2.3 Combination of trajectory optimization and
model predictive control

Neunert et al. (2016) propose a method that uses a sequential
linear quadratic (SLQ) algorithm in an MPC setting to unify
the optimization of trajectories over multiple seconds and
tracking within only a fewmilliseconds. The results, however,
are only shown on a hexacopter and a ball balancing robot.
Running these algorithms with a planning horizon of multiple
seconds in real-time on a switched system like legged robots,
as demonstrated by Neunert et al. (2018) and Farshidian et al.
(2017), becomes unfeasible and requires a novel control
approach. In contrast, Li et al. (2020) formulate a single
optimization problem posed over a hierarchy of two models
achieving trajectories over a longer time horizon than tradi-
tional MPC with a single model. To achieve this, the authors
fall back to a simplified model at longer time horizons. The
MPC posed over two models face the same challenges as the
traditional MPC approach. It misses the ability to solve task-
specific problems, is prone to local minima and the simplified
model has a limited solution space at the system’s limitations
and over challenging obstacles. Similarly, Zimmermann et al.
(2015) generate motion plans for the immediate future using
higher-fidelity models, while coarser models are used to create
motion plans with longer time horizons. All motions are
shown on a bipedal robot in simulation.

Erez et al. (2012) use offline TO to find the limit-cycle
solution of an infinite-horizon, average-cost optimal-control
task and apply its quadratic approximation as the online
MPC’s terminal cost. Their work, however, is only verified
in a simulation environment. In aeronautical research, Lapp
and Singh (2004) use the two optimal-control paradigms by
feeding the TO’s offline solution as a cost term to the MPC.

The combination of offline TO and online MPC has not
been studied in depth in the field of (wheeled-)legged robotics.
Boston Dynamics’ bipedal robot Atlas demonstrates dynamic
and parkour-like motions over challenging obstacles (Boston
Dynamics 2019). The video’s description and a presentation
by Kuindersma (2020) reveal that the company is working on
a similar approach, as introduced in our article. A TO
transforms high-level descriptions of each motion into
dynamically-feasible reference motions tracked using an
MPC.Due toAtlas’s missing publications, there is no in-depth
knowledge about Boston Dynamics’ locomotion framework.

3. Complex motion composition

In the following, we give an overview of our complex
motion composition framework that combines the advan-
tages of offline TO and online MPC. Figure 3 visualizes our
complete locomotion controller that is discussed in more
detail in the following sections.

3.1 Problem formulation and solution

Optimizing and executing a complex motion on the real
robot comes with different and opposing challenges,

making our hierarchical structure’s design crucial. On the
one hand, we aim for a general-purpose solution that can
take any offline trajectory as input for real-time execution.
These offline trajectories can contain different polynomial
representations with a variable number of nodes. Concat-
enating multiple trajectories results in jumps that are dif-
ficult to track and, in some cases, might result in the online
optimization failing. On the other hand, our online opti-
mization needs to be self-contained. The system should act
independently without relying on perfectly modeled offline
trajectories even under unpredicted disturbances.

We, therefore, propose to integrate the offline trajectory
as a cost to our online MPC that contains three essential
characteristics: (1) prediction over a short horizon, (2)
flexible offline trajectories as inputs, and (3) self-contained
online execution. The prediction over a short-time horizon
enables the robot to anticipate the offline trajectory. Even in
more significant tracking discrepancies, the robot can plan
its whole-body trajectory back towards the desired offline
motion. In contrast, as shown in the results, tracking only
one set point at a time does not result in a robust motion
execution. The second characteristic, that is, flexible offline
trajectories as inputs, comes through integrating the offline

Figure 3. Overview of our complex motion composition. The
TOs transform high-level tasks into dynamically feasible
motions stored in a motion library. Based on the operator’s chosen
motions, individual motions from this library are composed into a
single offline trajectory with a total time horizon TTO. This
trajectory is fed into the MPC, optimizing joint velocities and
contact forces over a shorter time horizon TMPC. Finally, the
inverse dynamics transforms the desired online trajectory into
actuator commands.
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trajectory as a cost term. The motion designer does not need
to make sure that the composed motions are continuous or
dynamically feasible. Adding the offline trajectory as a hard
constraint or initializing the optimization might make the
problem unfeasible. The last characteristic ensures that even
in large tracking offsets, the online planner can still find
robust motions. In the next section, we present our approach
in more detail.

3.2 Overview

Our approach to optimizing complex locomotion strategies
for (wheeled-)legged robots consists of a hierarchical
structure, as visualized in Figure 3. First, the Trajectory
Optimizers transform high-level tasks, for example, user-
guided or terrain-aware maneuvers, into dynamically-
feasible trajectories. These trajectories are stored in a
Motion Library that is accessible by an operator at run time.
Moreover, the operator can choose multiple motions. Given
the commanded motion reference(s), the Trajectory Com-
poser concatenates each trajectory into a single Offline
Trajectory fed into our Model Predictive Control algorithm,
which tracks this trajectory and smoothly blends from one
maneuver to the next. Finally, the Inverse Dynamics
computes actuator commands that are sent to the robot, and
a state estimator predicts the robot’s state.

3.3 Timings and problem complexity

It is essential to look more closely at planning horizons,
problem complexities, and update rates of each module in
Figure 3. When it comes to the former two categorizations,
we can see that the planning horizon and problem com-
plexity increase vertically. The inverse dynamics is only
looking at one set point at a time, while the MPC looks-
ahead with a fixed planning horizon of one second. In
contrast, the TO generates complete maneuvers, often in-
corporating a more complex dynamic model with a task-
specific time horizon up to multiple seconds. Due to this
long-time horizon and the complexity of the task, for ex-
ample, dynamic behaviors at the robot’s limits or terrain-
aware maneuvers over obstacles, the motions are computed
offline. The composition of these offline trajectories results
in even longer time horizons. With the decrease of the
problem’s complexity from top to bottom, the MPC and the
inverse dynamics can achieve update rates on the robot of
around 20–50 Hz and 400 Hz, respectively.

In the following sections, we introduce our main theo-
retical contributions, the definition of the offline trajectory
including the three offline motion generators, the online
MPC, and the trajectory composer in more detail.

4. Offline motion generation

In general, the offline TO’s problem is expressed as a
nonlinear optimization problem with objective f(y(t)),

equality constraint c(y(t)), and inequality constraint h(y(t)), that
is

minimize
yð�Þ

f ðyðtÞÞ (1a)

subject to cðyðtÞÞ ¼ 0, hðyðtÞÞ ≥ 0, (1b)

where the optimization variable y(t) includes the robot’s
whole-body trajectory over a task-specific horizon TTO, that
is, the 6D torso motion, the end-effector2 motion, including
individual joint motions, and end-effector contact forces. In
some TO, the optimization problem may include additional
variables like gait sequences and timings, which increases
the problem’s dimensionality and complexity.

4.1 Offline trajectory

In this work, the combination of offline TO and online MPC
comes through the offline trajectory. The offline motion
generation might include additional optimization variables
that are not considered by the online MPC. To this end, we
split the optimization variable y(t) in (1) into

yðtÞ ¼ � xTTO uT
TO /

�T
(2)

where xTO(t) is the desired state vector, uTO(t) is the control
input vector, and the three dots indicate the additional
optimization variables of the offline TO. These two vectors
form the offline trajectory

�
xTTO uTTO

�T
, which is being

tracked by the MPC in Section 5, and are given by

xTOðtÞ ¼
h
θT pT ωT vT qTj

iT
(3a)

uTOðtÞ ¼
h
λTE uT

j

iT
(3b)

where xTOðtÞ 2R
12þnj is the desired state vector and

uTOðtÞ 2R
3neþnj is the desired control input vector at time t,

with nj = 12 is the number of joints and ne = 4 is the number of
legs in the case of a quadrupedal robot. Note that the ad-
ditional four degrees of freedom (DOF) of the wheels are not
explicitly in the desired state or input vector. More precisely,
the MPC in Section 5 models the wheel as a moving point
contact. This convention enables us to model conventional
point-foot and wheels by merely changing the kinematic
constraints (Bjelonic et al., 2021). The elements θ(t), p(t),
ω(t), v(t) and qj(t) of the state vector refer to the orientation of
the torso in Euler angles, the position of the torso in world
frame W, the angular rate of the COM in torso frame B, the
linear velocity of the COM in torso frame B, and the joint
positions, respectively. Moreover, the control inputs are the
end-effector contact forces λE(t) and joint velocities uj(t).
Alternatively, this offline trajectory can include a different set
of variables, for example, replacing joint velocities with joint
torques and reducing dimensionality.We found that this set of
variables enables highly dynamic motions and offers flexi-
bility for the motion designer since some TOs, for example,
in Section 4.4, do not provide joint torques.
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In the following, we present two TOs and a combination
between sampling and optimization-based planning that
solve various tasks while incorporating different model
complexities. The solution of each TO provides the offline
trajectory xTO(t) and uTO(t) over a task-specific horizon TTO.

4.2 Interactive trajectory optimization

One way to generate offline motions is to use the in-
teractive TO, that is, a tool allowing a two-way flow of
information between the motion optimizer and designer.
Motion designers can add and modify high-level motion
goals, such as target COM position and orientation at
specific moments in time. Meanwhile, trajectory opti-
mization finds motion plans that satisfy kinematic and
dynamic constraints. Also, the immediate visual feedback
allows the motion designer to choreograph complex
motions interactively.

The interactive TO is based on the work of Geilinger
et al. (2018) and Geilinger et al. (2020). In the following, we
briefly summarize the optimization problem solved by the
interactive TO.

4.2.1 Problem formulation. The motion generation’s model
is based on the CD model and complemented with geo-
metric constraints to ensure the generated motions’ con-
sistency with the robot’s kinematics. Depending on the type
of end-effector, for example, traditional point feet or ac-
tuated wheels, constraints on the ground reaction forces and
the end-effector’s state trajectories are instantiated. We find
that this approach strikes a favorable balance between
predictive power, simplicity, and computational efficiency
for rapid motion prototyping.

Based on a robot’s morphology and high-level motion
goals, trajectory optimization finds a motion plan

yðtÞ ¼ � xTcd xTtorso xTleg,1 / xTleg,ne qTj
�T

(4)

with

xcdðtÞ ¼
�
θTcd pTcd ωT

cd vTcd
�T

(5a)

xleg,iðtÞ ¼
�
pTEi vTEi λTEi wEi αEi

�T
(5b)

xtorsoðtÞ ¼
�
θT pT ωT vT

�T
(5c)

The centroidal coordinate frame is represented by the
robot’s orientation and COM position in world frame W,
θcd(t) and pcd(t), whereas its angular and linear velocity are
described byωcd(t) and vcd(t). The state of each end-effector
i is captured by xleg,i(t) consisting of the contact position and
its velocity, pEi

ðtÞ and vEiðtÞ in world coordinates, and the
ground reaction forces λEiðtÞ at the contact position. For
end-effectors equipped with wheels, wEiðtÞ and αEiðtÞ de-
note the wheel speed and the wheel’s orientation, both in
world coordinates. The variables describing the state of the
torso Xtorso(t) are introduced in (3).

With the motion plan’s parameters in place, we define the
cost terms and constraints that arise from the dynamics and
kinematics that govern a robot’s motion in Appendix A. At
the core of this interactive TO lies its interactive capabilities
and underlying CD model. The former gives the motion
designer interactive control over the robot’s motion by
formulating a set of objectives at specific times.

4.3 Terrain-aware gait and trajectory
optimization

Our second TO in this work relies on a terrain-aware ap-
proach to optimize gait and motion simultaneously. Motion
designers merely add start and goal poses of the robot’s torso
to the optimization problem, including a terrain represen-
tation as a 2.5D elevation map. Meanwhile, TO finds motion
plans that satisfy kinematic and dynamic constraints over
non-flat terrain.

The terrain-aware gait and TO formulation for (wheeled)
legged robots is presented in the following section and is based
on the work of Winkler et al. (2018). In contrast to Medeiros
et al. (2020), the optimization problem can generate simulta-
neous driving and stepping motions, that is, hybrid locomotion.
Here, we overview the optimization problem generating regular
walking and hybrid locomotion trajectories.

4.3.1 Problem formulation. The motion designer provides
an initial and desired final state of the robot, the total time
horizon TTO, and a gait schedule including an approximate
duration of each leg’s contact and swing timings. With this
information and a given height map hterrain (x, y) of the
terrain, the algorithm finds

yðtÞ ¼ � xTtorso xTleg,1 / xTleg,ne
�T

(6)

with

xtorsoðtÞ ¼
�
θT pT ωT vT

�T
(7a)

xleg,iðtÞ ¼
�
rTEi vTEi λTEi ΔTi,j

�T
(7b)

where most of the variables are introduced in (3), and
Figure 4 visualizes each optimization variable. Due to the
missing kinematics of each leg, that is, no joint information,
the TO finds the end-effector’s position rEiðtÞ of each leg i
w.r.t. the COM and its velocity vEiðtÞ w.r.t. the world frame
W instead, while automatically discovering appropriate
phase durations j of leg i defined by ΔTi,j(t).

Appendix B describes each of the optimization prob-
lem’s constraints. At the core of this terrain-aware TO lies its
rough terrain capability and underlying SRBD model. Here,
the former integrates the information of the height map
hterrain (x, y) and makes sure that the end-effector stays in
contact with the ground while the leg is in stance phase.

4.3.2 Inverse kinematics. The optimized trajectories x∗torsoðtÞ
and x∗leg,iðtÞ in Section 4.3.1 miss the required joint
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information of the offline trajectory introduced in Section 4.1.
To this end, we compute the joint position trajectory q∗j ðtÞ and
joint velocity trajectory u∗j ðtÞ through inverse kinematics.
Moreover, we use an iterative inverse kinematics approach of
Goldenberg et al. (1985) to obtain the joint positions q∗j ðtÞ,
while the joint velocities are calculated through
u∗j ðtÞ ¼ Jþ

E ðq∗j ðtÞÞ _rEðtÞ, where JE ¼ ∂rE=∂qj 2R
3ne×nq is

the end-effector Jacobian w.r.t. the torso frame B and (�)+ is
the Moore–Penrose inverse of a matrix.

4.4 Combined sampling and
optimization-based planning

Optimizing gait timings over challenging terrain is a
complex problem for (wheeled-)legged robots and can be
solved through sampling-based methods. In our work, we
adopt the approach of Jelavic et al. (2021) that is designed
for legged excavators and apply it to our wheeled-legged
robot ANYmal. This offline motion generator combines an
initialization and refinement step. The former is a sampling-
based planner that samples robot poses through a Rapidly-
Exploring Random Tree (RRT) (Karaman and Frazzoli
2011) and the second step refines the motion with a non-
linear optimization, producing kinematically feasible and
statically stable offline trajectories.

5 Online model predictive control

The offline generated trajectory in Section 4.1 is fed into our
online MPC as a cost, allowing us to reactively optimize
along the offline trajectory even in the presence of dis-
continuous transitions and unpredicted disturbances. This
feedback control re-optimizes the offline trajectories from
the measured state. The following sections describe the
underlying optimization, as well as the integration of the
offline trajectories into the online execution.

5.1 Problem formulation

The main advantage of MPC is that it allows the current
input to be optimized while considering future desired
states. Such an optimization is achieved by optimizing over
a finite time-horizon of TMPC, repeatedly, enabling the

anticipation of future events. At each iteration of the MPC,
we solve the optimization problem based on

minimize
uð�Þ

fðxðTMPCÞÞ þ
Z TMPC

0

lðxðtÞ,uðtÞ,tÞdt (8a)

subject to _xðtÞ ¼ f ðxðtÞ,uðtÞ,tÞ (8b)

xð0Þ ¼ x0 (8c)

g1ðxðtÞ,uðtÞ,tÞ ¼ 0 (8d)

g2ðxðtÞ,tÞ ¼ 0 (8e)

hðxðtÞ,uðtÞ,tÞ ≥ 0 (8f)

where x(t) is the state vector and u(t) is the control input
vector at time t, which form the whole-body trajectory, and
each vector is described in (3a) and (3b), respectively.
Figure 5 visualizes the trajectories of both vectors while
overcoming a step. The cost function in (8a) consists of the
time-varying running cost l(�), and the cost f(�) at the ter-
minal state x (TMPC). In addition, solutions need to satisfy the
system dynamics (8b), initial condition (8c), and further
equality (8d), (8e), and inequality constraints (8f). The SLQ
formulation3 of Grandia et al. (2019a, 2019b) and Farshidian
et al. (2017), which is a differential dynamic programming
(DDP) based algorithm (Mayne 1966), calculates the feed-
back policy for continuous-time systems. Moreover, the
algorithm computes via quadratic approximations of the
value function a time-varying, state-affine control policy
through an alternating iteration of simulation (forward pass)
and the optimization (backward pass). We use a Lagrangian
method, a penalty method, and a relaxed barrier function to
handle the state-input equality constraint (8d), the pure state
equality constraint (8e), and the inequality constraint (8f),
respectively. As described by Grandia et al. (2019a, 2019b),
frequency-shaped cost functions robustify the solutions in the
presence of compliant contacts and bandwidth limitations
due to actuator dynamics.

In contrast to Bjelonic et al. (2021), which does not
incorporate any offline trajectories or perception, our arti-
cle’s contribution comes through the MPC’s cost function
that incorporates the TO’s offline trajectories. The set of
constraints that we have chosen makes the MPC a general-
purpose optimization problem that can deal with slight
mistakes from the motion designer while considering the
terrain and offline trajectory in front of the robot. Our article
continues with more details about the implementation of the
cost function and constraints.

5.1.1 Cost function. As discussed in Section 3.1, incor-
porating the offline trajectory given by xTO(t) and uTO(t)
into the MPC as a cost (instead of a hard constraint or
initialization method) offers flexibility for the motion de-
signer since the trajectory does not need to be dynamically
feasible nor continuous. We achieve this by feeding the two
vectors of the TO as a cost term into

Figure 4. Overview of the terrain-aware gait and TO’s variables.
Here, the robot overcomes a step with a height of 0.15 m, and the
visualization shows the optimized trajectories xtorso(t) and
xleg,i(t). Each of the variables is introduced in Section 4.3.1.
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lðx,u,tÞ ¼ 1

2
~xðtÞTQ~xðtÞ þ 1

2
~uðtÞTR~uðtÞ (9)

where Q is a positive semi-definite Hessian of the state
vector error ~xðtÞ ¼ xðtÞ � xTOðtÞ and R is a positive definite
Hessian of the control input vector error
~uðtÞ ¼ uðtÞ � uTOðtÞ. Similarly, the final cost is defined by

fðxðTMPCÞÞ ¼ 1

2
~xðTMPCÞTQfinal~xðTMPCÞ (10)

where Qfinal is the positive semi-definite Hessian of the final
state vector error ~xðTMPCÞ ¼ xðTMPCÞ � xTOðTMPCÞ. For
example, Figure 5 shows the optimized state vector x(t) and
control input vector u(t) while following the offline trajectory
xTO(t) and uTO(t) of the terrain-aware TO in Figure 4.

5.1.2 Equations of motion. The system’s dynamics in (8b)
is based on a kinodynamic model of a (wheeled-)legged
robot. In contrast to the EOM of the terrain-aware TO in
(22), it defines the SRBD model along with the kinematics
for each leg. It is given by

_θ ¼ TðθÞω (11a)

_p ¼ RWBðθÞv (11b)

_ω ¼ I�1
nom

�
�ω × Inomωþ

Xne

i¼1
rEi
�
qj
�
× λEi

�
(11c)

_v ¼ gðθÞ þ 1

m

Xne

i¼1
λEi (11d)

_qj ¼ uj (11e)

where RWB(θ) 2 SO(3) represents the rotation matrix that
projects the components of a vector from the torso frame B
to the world frameW, T(θ) is the transformation matrix from

angular velocities in the torso frame B to the Euler angles
derivatives in the world frame W, Inom is the moment of
inertia of the COM taken at the robot’s nominal configu-
ration qnom, m is the total mass, g(θ) is the gravitational
acceleration in torso frame B. In contrast to the SRBD
constraint of the terrain-aware TO in (22), the end-effector’s
contact position rEiðqjÞ of leg i w.r.t. the COM is retrieved
through forward kinematics from the optimized joint po-
sition vector qj and (11e) needs to be added as an additional
equality constraint of the joint velocity vector _qj.

5.1.3 Legs in contact. TheMPCmodels some of the contact
constraints in a similar fashion as the terrain-aware TO in
(23), (24), and (25). The optimization variables of the MPC,
however, include the kinematic information of each leg,
which gives us

friction cone : λEi 2 Cðn,μCÞ (12a)

legged robots : vEiðx,uÞ ¼ 0 (12b)

wheeled� legged robots : πEi ,’ðvEiðx,uÞÞ ¼ 0 (12c)

vEiðx,uÞ � n ¼ 0 (12d)

where Cðn,μCÞ implements the friction cone as an inequality
constraint without the approximation by a friction pyramid,
and n is the local surface normal in world frame W. The
motion constraint of traditional legged robots in (12b) is
modeled through the end-effectors’ velocities. When in
contact, the velocity vEi in world frameWof leg i is restricted
to stay stationary. As given by (12c) and (12d), wheeled-
legged robots can execute motions along the rolling di-
rection, where πEi,’ð�Þ is the projection of the end-effector
velocity vEi onto the perpendicular direction of the rolling
direction. In contrast to the missing leg kinematic of the
terrain-aware TO in (25), the motion constraint of wheeled
robots in (12c) and (12d), that is, the velocity along the
rolling direction is left unconstrained or more precisely
πEi ,kðvEiðx,uÞÞ 2R, can be easily computed through forward
kinematics. We would like to highlight that this motion
constraint is the only part that differentiates legged and
wheeled-legged locomotion.

The traversal of challenging terrain requires additional
inequality constraints that respect safe terrain regions. To
this end, we segment the height map hterrain (x, y) into
convex terrain regions given by a number nh of half-space
constraints Ai 2R

nh×3 and bi 2R
nh of leg i that ensure the

leg lands within desired target regions. Also, wheeled-
legged robots, as shown in Figure 5, need to respect the
constraint while driving on these safe terrain patches. Each
leg’s convex terrain regions are selected through the state
vector of the offline trajectory xTO. The constraint can be
formulated as

Ai � pEiðxÞ þ bi ≥ 0 (13)

where pEi
ðxÞ 2R

3 is the position of the end-effector in
world frame W. Moreover, the safety constraint in (13) is

Figure 5. The optimized trajectory of the MPC while tracking the
offline trajectory of Figure 4. Here, the robot’s front legs are
stepping up the obstacle, and the visualization shows the
optimized trajectories x(t) and u(t). Each of the variables is
introduced in Section 5.1.

Bjelonic et al. 911



incorporated into the MPC as a control barrier function
introduced by Grandia et al. (2021).

5.1.4 Legs in air. Legs in swing phase are not capable of
generating ground reaction forces and need to follow
collision-free trajectories. This restriction can be incorpo-
rated into the MPC as

λEi ¼ 0 (14a)

di
�
pEi,t

�
> cðtÞ (14b)

where the inequality in (14b) is added to the end-effector’s
cost function in (9) through the relaxed barrier function. The
distance of the end-effector i to the closest obstacle is given
by diðpEi

,tÞ while c(t) is a predefined lower bound on
collision avoidance. In our work, we convert the height map
hterrain (x, y) into a signed distance field (SDF) using the
method of Fankhauser et al. (2018).

5.2 Torque generation

As visualized in Figure 3, we send torque commands to the
embedded control loop of each motor. To this end, the
optimized control input vector u*, including its contact
forces and joint velocities, is translated through forward
simulation into desired accelerations. Then inverse dy-
namics converts the desired accelerations from this rollout
into torques.

6 Trajectory composer

Our final theoretical contribution proposes composing in-
dividual offline trajectories from the motion library into a
single trajectory at run-time to produce longer and more
complex maneuvers, as shown in Figure 12. For this reason,
we leverage the MPC in Section 5. Before the motion is sent
to the robot, we evaluate each transition to ensure the whole
trajectory is feasible. The composed trajectory is then sent to
the robot enacting the transitioning motions in real-time. It
is important to note that no additional reference trajectories
are added to the composition since the MPC can transition
between (discontinuous) motions. If necessary, the motion
composer adds additional time or a repositioning sequence
to decrease the transitioning cost.

6.1 Trajectory composition

As shown in Figure 3, the operator can choose individual
motions from the motion library, and the motion composer
concatenates these motions into a single (composed) offline
trajectory. To this end, an ordered list of motions, that is,

individual offline trajectories ykðtÞ ¼
h
xTTO,k uTTO,k

iT
2

M of trajectory k as defined in (2), is commanded by the
operator, where M represents the motion library of indi-
vidual offline trajectories. The composed offline trajectory
generated by the motion composer is given by

mðtÞ ¼ ðt1ðtÞ,y1ðtÞ,t2ðtÞ,y2ðtÞ,…,tN ðtÞ,yNðtÞÞ (15)

where tk(t) represents online generated transitions between
individual offline trajectories yk(t) and N is the number of
composed trajectories. The final time horizon of m(t) is
calculated through TTO ¼PN

n¼1ðTTD,n þ TTO,nÞ, with the
transitioning duration of tk(t) given by TTD,k.

Transition strategies. In this article, we present three
different strategies for the transitions tk(t) in (15), as given
by:

1. No transition: The transitioning duration TTD,k is set
to zero, which invokes no transition between
consecutive offline trajectories, that is, yk�1(t) →
yk(t).

2. Time transition: We add a transitioning time between
consecutive offline trajectories yk�1(t) → tk(t) →
yk(t) by setting the transition tk(t) to be equal to the
beginning of the upcoming offline trajectory, that is,
tkðtÞ ¼ ykðt ¼

Pk
n¼1TTD,n þ

Pk�1
n¼1TTO,nÞ, where the

transitioning duration TTD,k is set to 1 s in our
work. The second strategy of only adding some
transition time allows the robot to modify it’s starting
state and dampen any residual velocities from the
previous trajectory.

3. Repositioning transition: We add a transitioning
maneuver before scheduling the next trajectory. To
this end, we choose a trotting gait that repositions the
whole-body of the robot to the desired state of the
following trajectory. Similar to the previous strategy,
the transition tk(t) is equal to the beginning of the
upcoming offline trajectory, that is,
tkðtÞ ¼ ykðt ¼

Pk
n¼1TTD,n þ

Pk�1
n¼1TTO,nÞ, where the

transitioning duration TTD,k is set to 1 s in our
work. The second strategy may not lead to optimal
transitions if the following trajectory requires a
substantially different starting state, for example, the
legs’ contact positions are too far apart, as shown in
Figure 6. Hence, the third strategy places a re-
positioning maneuver before scheduling the fol-
lowing trajectory. By utilizing the MPC to transition
using a known periodic gait, there is some guarantee
that the online MPC will solve the following opti-
mization problem with minimal latency in issuing
the command instead of using the offline TO.

Transitioning cost evaluation. The three transitioning
strategies are evaluated based on a transitioning cost, which
is assessed online before the operator’s motion command is
sent to the real robot. To this end, we evaluate the MPC’s
solution of (8) over one iteration for each transition in (15)
considering the previous and following trajectory, that is,
the trajectory between consecutive trajectories yk�1(t) →
tk(t) → yk(t), and between the initial (measured) state x0 of
the robot and the first trajectory x0 → t1(t) → y1(t). The
algorithm chooses the transition strategy that achieves the
lowest cost given the previous and following trajectory.
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6.2 Alignment with initial state

The composed trajectory m(t) in (15) is aligned with the
robot’s initial state x0. Accordingly, the alignment considers
the torso’s position offsets in the plane and it’s heading
orientation given by p0,x, p0,y and θ0,yaw. To align the
motion’s height, we generate the average terrain height
through the robot’s feet positions, that is,
p0,z ¼ ð1=neÞ

Pne
i¼1rEi ,z. Finally, the transformation matrix

T0 aligning the final offline trajectory m(t) with the robot’s
initial state x0 is given by

T0 ¼
cos
�
θ0,yaw

� �sin
�
θ0,yaw

�
0 p0,x

sin
�
θ0,yaw

�
cos
�
θ0,yaw

�
0 p0,y

0 0 1 p0,z
0 0 0 1

3
777775

2
66666664

(16)

7. Experiments

To evaluate our novel locomotion controller, we conducted
a series of quantitative experiments with agile maneuvers at
the robot’s actuation limits. To the best of our knowledge,
the roller-walking robot’s hybrid motions have not been
shown before in literature. All experiments were conducted
with either the interactive, terrain-aware, or sampling-based
TO in Section 4.2, 4.3, and 4.4, while the MPC in Section
5 performed all behaviors with the same parameter set. In
the case of TO, the motion designers only varied task-
specific parameters like goal position(s) and the task’s time
horizon TTO. Table 1 summarizes the four motion plan-
ners and lists their capabilities. The following sections
report on experiments conducted with ANYmal (see also

Figures 1 and 2). A video available at https://youtu.be/
39rRhTqcQc0 showing the results accompanies this
article.

7.1 Experimental setup

Our trajectory composer, online MPC, inverse dynamics,
and state estimator run in concurrent threads on a single PC
(Intel i7-8850H, 2.6 GHz, Hexa-core, 64-bit). All offline
trajectories are computed on a laptop (Intel E3-1505MV6,
3.0 GHz, Quad-core, 64-bit) and stored in a motion library
on the robot. The robot is entirely self-contained in com-
putation and sensing.

The estimation of the robot’s state and the torque
commands are computed together in a 400 Hz loop. The
former requires the fusion of the inertial measurement unit
(IMU) readings and the kinematic measurements from each
actuator to acquire the robot’s state, that is, the pose of the
torso B w.r.t. the world frame W, as described by Bloesch
et al. (2013). To this end, each leg’s contact state is de-
termined by estimating the contact force, which considers
the measurements of the motor drives and the full-rigid
body dynamics.

7.2 Results and discussion

In the following, we verify our six contributions (C1) to
(C6) introduced in Section 1.2 by categorizing each result
and discussion as part of its underlying contribution.

(R1) Whole-body coordination. The algorithms in
Table 1 are mostly based on single optimization problems
(except RRT & TO) optimizing over the whole-body tra-
jectory, including the base pose, end-effector motion,
contact force, and two of the algorithms also optimize the
joint motion, while the terrain-aware TO computes gait
timings. Thanks to this single optimization of the whole-
body, the robot can coordinate complex and artistic motions,
as shown in Figures 1 and 2, operating near robot limits and
cumbersome to hand-craft through heuristics. The motion
over the steps includes front-legs and hind-legs jumps at a
speed of up to 1.5 m/s (see Figure 7). When ducking under a
table, the optimization algorithm can discover specialized
motions for our wheeled-legged robot. Here, the robot
reaches its maximum torque limits of the hip motors. The
turning motion includes a complex coordination of all
joints, as shown in Figure 9. We further discuss the motion
over the step and the turning motion in the following
paragraphs.

The first maneuver in Figure 8 presents the motion of the
base and end-effectors over a 0.2 m step. Here, it can be seen
how theMPC’s solution corrects the offline swing trajectory
over the step preferring collision-free trajectories. The result
shows that the MPC uses continuous optimization to correct
mistakes from the offline trajectory.

The dynamic turning motion in Figure 1 represents a
challenging motion and requires the coordination of all
DOF. In particular, the robot needs to step and turn the torso

Figure 6. Ducking motion based on the interactive TO in Section
4.2. Here, the initial state of the end-effectors at t = 0 s is too far
away from the offline trajectory. Thus, the robot performs a
trotting gait to reposition its legs, that is, first the right-front and
left-hind legs reposition at t = 0.6 s, and then the left-front and
right-hind legs reposition at t = 1 s. The visualization shows the
torso and end-effector trajectory of the offline trajectory and the
MPC’s solution.
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at the same time while respecting all physical constraints. To
this end, the TO discovers a hybrid locomotion strategy
since the roller-walking robot ANYmal does not incorporate
any steering mechanism for its wheels. To achieve the fast
turning motion over almost 180°, the robot coordinates the
legs in contact onto a common wheel axis line, enabling it to
turn through actuating its wheels. Figure 9 shows the
comparison of the offline trajectory and the MPC’s solution
over the task’s time horizon represented by the robot’s
estimated state. The plot represents only a fraction of all
whole-body states tracked through the MPC’s cost function
in Section 5.1.1. With a single parameter setQ,R, andQfinal,
the robot can successfully execute all shown motions and

weigh the high-dimensional tracking task, including posi-
tions, rotations, linear velocities, angular velocities, joint
positions, joint velocities, and forces.

(R2) Offline-to-online gap. One of the main challenges of
running offline trajectories is the online reaction to un-
foreseen conditions. The key to this challenge is our online
MPC that robustifies the maneuver to a certain degree by
recomputing solutions on the fly and adding feedback

Table 1. Capabilities of our presented interactive TO, terrain-aware TO, combined sampling and optimization-based planner, and online
MPC. Table design is adapted from Winkler (2018).

Interactive TO Terrain-aware TO RRT & TO Online MPC

Dynamic model (accuracy)
Number of optimizations

CD model
Single optimization

SRBD model
Single optimization

Kinematic model
Two optimizations

Kinodynamic model
Single optimization

Optimization time >1 s >1 s 1 s 20–50 ms
Time horizon > 1 s >1 s >1 s 1 s
Optimized components
Base motion 6D 6D 6D 6D
End-effector motions 3D 3D 3D 3D
Contact forces 3 3 7 3

Joint motions 3 7 3 3

Step timing/sequence 7 3 3 7

Difficulty of shown task
Line/point contacts 3 3 7 3

Flight phases 3 3 7 3

Non-flat terrain 7 3 3 3

Accurate rolling constraint 3 7 3 3

Adaptation of joint momentum 3 7 7 7

Figure 7. Results of the terrain-aware TO in combination with the
MPC while executing the motion over the step in Figure 1. The
plot shows the euclidean norm of the COM’s linear velocity over
the COM’s forward position in world frameW. TheMPC’s solution
equals the robot’s measured state, that is, the measured velocity
is equal to v (t = 0) due to the MPC’s initialization after every
iteration with the robot’s measured state. The equivalent position
profiles of the COM and end-effectors can be obtained in
Figure 8.

Figure 8. Results of the terrain-aware TO in combination with the
MPC while executing the motion over the step in Figure 1. The
plots show the two optimization problems’ motion, that is, the
torso and the four end-effector trajectories. The dotted lines are the
offline generated trajectories, while the solid lines represent the
MPC’s solution over a one-second horizon at a time when the left-
front end-effector lifts its leg. The equivalent COM’s speed profile
can be obtained in Figure 7.
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control. As shown in Table 1, the MPC recomputes optimal
solutions on a 20–50 Hz loop while looking-ahead the
offline trajectory over a one-second horizon. In the fol-
lowing, we present the results that show how the re-
computation of optimal solutions can benefit the online
execution of offline trajectories.

First, Figure 10 shows six scenarios where the robot
recovers from unforeseen events. In all cases, the online
MPC reacts to these events and successfully executes the
offline trajectory. Such unexpected scenarios can either
occur from mistakes that occur during offline motion

prototyping or an unpredictable disturbance throughout the
online execution. For example, the former is shown in the
top-left and middle-right image, which shows two scenarios
of incorrect modeling of the obstacle and the robot’s col-
lision body, respectively. The latter is exemplified in the top-
right, middle-left, lower-left, and lower-right images that
exemplify the terrain’s misalignment, slippage, and pur-
posely misplaced obstacles. Our approach can react to such
unforeseen disturbances while anticipating future events of
the offline trajectory. With these anticipating skills and the
feedback control, the MPC can rescue the robot from these
unforeseen situations.

Second, the MPC’s look-ahead also improves the
tracking of offline trajectories in the presence of disconti-
nuities, which might occur at the transitions to the offline
trajectories. The MPC can blend between two motions and
converge to the offline trajectory. For example, in Figure 9,
the vertical movement along the z-axis of the COM’s po-
sition and velocity experiences a discontinuity at t = 1 s,
where the robot switches from a repositioning motion, as
described in Section 6, to the offline trajectory. It can be seen
how the red trajectory anticipates along its receding horizon
the upcoming offline trajectory and finds a solution re-
specting the whole-body state.

The last experiment regarding the offline-to-online gap
further discusses the importance of incorporating a planning
horizon into the online optimization problem. In contrast to
a naive trajectory tracking that only looks at one set point at
a time, for example, Kim et al. (2019), our approach can
react to unforeseen conditions while looking ahead at the
offline trajectory. With these anticipating skills, the MPC
adds feedback to the execution of offline trajectories, as
shown in Figure 10. Before presenting quantitative results,
we first discuss our qualitative findings comparing the set-
point-only tracking approach of offline trajectories. When
running on the real robot, a tracking controller optimizing
over set points has two different strategies in terms of the
offline trajectory’s sampling frequency: (1) The offline
trajectory’s sampling frequency equals the tracking con-
troller’s update rate. (2) Sampling frequencies lower than
the update rate require interpolations between the set points.
The former strategy comes with longer optimization times
of the offline TOs since the tracking controller’s update rates
are synchronized with the actuator’s command loop (in our
case, 400 Hz). Thus, this approach constrains the motion
designer in terms of optimization speed and flexibility. The
latter strategy comes with the caveat that the interpolated
motion can not guarantee to be kinematically or dynami-
cally feasible. In addition to the sampling frequency,
Medeiros et al. (2020) experience that a naive trajectory
tracking can not handle large tracking offsets. Therefore, the
offline TO needs to be initialized with the robot’s measured
state, which ties the motion designer down to real experi-
ments next to the robot. In contrast, theMPC is flexible w.r.t.
the offline trajectories’ sampling frequency and starting
state. Figure 11 displays the tracking performance and
disturbance rejection of a naive trajectory tracking

Figure 9. Results of the interactive TO in combination with the
MPC while executing a repositioning motion (0–1 s) and the
turning motion in Figure 1 (1–2.7 s). The plots compare the
optimized whole-body trajectory of both algorithms. Here, the
MPC solution is represented by the robot’s measured state,
which is the equivalent of the initial state vector x (t = 0) and
initial control input vector u (t = 0). This equivalency is due to the
MPC’s fast update rate and the reinitialization of its
optimization problem after every iteration with the robot’s
measured state. At t = 1s, the online motion planner in red
smoothly blends between a discontinuity of the commanded
offline trajectory in blue.
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developed by Bjelonic et al. (2019) compared to our pro-
posed MPC. The MPC can handle the disturbance without
falling, and as can be seen in the figure’s caption, the MPC
offers flexibility for the motion designer.

(R3) Rapid motion prototyping. As discussed in the
paragraph before, the MPC decouples the locomotion
problem into an offline and online computation. With this
decoupling, six motion designers throughout this work
could iterate over behavior designs offline without tuning
robot experiments, which sped up the creation of new
motions rapidly. We developed 30 motions throughout this
work using the terrain-aware TO, 53 maneuvers based on
the interactive TO, and six based on the sampling and
optimization-based planner that run successfully on the real
robot. Motion designers can craft new trajectories in a
matter of minutes. We also experienced 16 maneuvers that
had no success on our ANYmal robot, which is mostly due
to motions at the torque limits, for example, motions over
high steps with a speed over 2 m/s using the terrain-aware
TO and too fast turning motions developed by the inter-
active TO. Twelve of the unsuccessful maneuvers, however,
can be identified in our two steps verification process before
running it on the hardware. The first step checks the offline
trajectory’s feasibility in combination with the MPC using a
visualization without any modeling errors and contact
models. If feasible, the motion designers verify the ma-
neuver in a simulation environment based on the Open
Dynamics Engine (ODE) by Smith et al. (2005). This
verification process helps the motion designer to iterate over
behavior designs offline. None of the successful motions
require retuning any of the MPC’s parameters, which frees
the motion designer from adjusting the real robot’s
performance.

(R4) Motion composition. Multiple offline trajectories
can be composed into a single maneuver resulting in tra-
jectories with longer time horizons. For example, Figure 12
shows the compositions of a ducking motion, a dynamic
90°turn, and another ducking motion. With a total duration
of around 8 s, the motion composition’s benefit is displayed
in this obstacle curse consisting of two tables. By combining
multiple offline trajectories, the robot can find optimal
maneuvers in terms of the robot’s physical constraints over a
longer time horizon.

Transitioning between multiple trajectories requires
appropriate transitions and the ability to blend between
transitions and discontinuities smoothly. As already in-
troduced before, Figure 9 shows a transition at t = 1 s
between a repositioning gait and a dynamic turning
motion. The whole-body trajectory shows that the MPC
can anticipate future events and smoothly blend between
both motions.

The video that accompanies this article shows a com-
posed dancing trajectory with a total time horizon of 11 s.
The motion is composed of eleven individual offline tra-
jectories with a time horizon of 1 s per trajectory. Here, the
motion composer did not add any transitions between the
individual motions.

One of the main challenges that occur during the online
execution of composed offline trajectories is the state es-
timation’s drift that accumulates along the offline trajectory.
On flat terrain, we can execute dancing motions of up to 25 s
without any noticeable drop in performance. The drift,
however, becomes more crucial when executing motions
over obstacles since the lift-off timings need to be syn-
chronized with the terrain. In our case, the robot can suc-
cessfully complete dynamic motions over obstacles with a
time horizon of TTO = 5 s, as shown in Figure 2, and the
maximum distance or time of the offline trajectories de-
pends on the state estimator’s drift. For even longer offline
trajectories, future work can study possible morphing
strategies of the offline trajectories based on updated sensor
data, as described by Kuindersma (2020).

(R5) Performance and generalization. With our novel
framework, the robot can execute motions over challenging
obstacles, unique motions through confined spaces, dy-
namic motions at the robot’s limits, and artistic dance
moves. Each of the offline trajectories out of the motion

Figure 10. Recovery of the online MPC to unforeseen events. In
all situations, the MPC could successfully recover and finish the
executed offline trajectories. Top-left image: The motion designer
did not correctly model the platform’s width, and as such, the
robot’s front-left leg fell from the platform. Top-right image:
While stepping up two steps, the end-effector moved the top
platform since it was not properly secured. Due to this
misalignment of the terrain, the front legs fell from the platform.
Middle-left image: The front part of the torso hit the table while
executing a dynamic 90°turn. Middle-right image: The hind legs’
knee protectors collided with the ground during a ducking
motion since the offline trajectory did not consider the protector’s
collision model. Lower-left image: The robot faced an unmodeled
disturbance (wooden incline) on the ground while executing an
offline trajectory assuming flat terrain. Lower-right image: The
snapshot shows a time instance when the hind legs overcome the
step. Here, the front legs slipped on the platform, and the front
part of the torso collided with the platform.
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library can be composed into a single maneuver. To the best
of our knowledge, this work shows unprecedented motions
on a roller-walking robot, as shown in Figures 1 and 2.

Our approach is not restricted to wheeled-legged robots,
and, thus, in this experiment, we verify the generalizability
of the approach to a traditional legged robot. Figure 13
shows the trajectory of ANYmal without wheels over-
coming a step. The comparison to the wheeled-legged
version in Figure 8 shows how the kinematic constraint
influences the end-effector’s optimal trajectories. The leg-
ged robot requires five steps per leg to overcome the ob-
stacle, while the wheeled-legged robot can use its wheels
and only step once per leg. We want to highlight that also, in
the legged robot’s case, the MPC can recover by optimizing
the motion of the whole-body even in the presence of
slippage, as presented in the figure’s caption.

(R6) Evaluation of offline motion planners. The exper-
iments show the execution of offline trajectories over longer
time horizons generated through the interactive, terrain-
aware TO, and sampling and optimization-based planner.
The online MPC over shorter time horizons closes the
offline-to-online gap. The following section discusses the

performance on our robot ANYmal of each algorithm, while
a summary of the algorithm’s performance is presented in
Table 1 with a quantitative study in (R1) to (R5).

The interactive TO considers the robot’s CD model in
(17) and finds motion plans that satisfy kinematic and
dynamic constraints over flat terrain. With this higher-
dimensional model compared to the SRBD, the offline
trajectories incorporate more dynamic motions by re-
specting the inertia’s change through the joint movement.
For example, the dynamic turning motions in Figures 1 and
9 achieve a turning rate of 4 rad/s, which sets a new record
on our roller-walking robot. The accompanying video’s
evaluation of the motion reveals that the robot coordinates a
complex, whole-body trajectory. As described by Geilinger
et al. (2018), the interactive TO comes with a suite of user-
guided computational tools that support manual, semi-
automatic, and fully automatic optimization of the robot’s
trajectories. We demonstrate the method’s effectiveness by
creating various unique motions for our robot ANYmal, for
example, complex turning motions, unique motions through
confined spaces (see Figure 12), and dance moves. Espe-
cially the generation of the dance motions reveals the fast
and interactive capabilities of the approach. In minutes, the
motion designer can generate dynamic motions, including a
”moonwalk” that is synchronized with the song’s pace. The
optimization problem, however, does not consider non-flat
terrain, and the motion designer needs to provide the gait
sequences and timings.

In contrast, the terrain-aware TO does not provide user-
guided computational tools that support manual or semi-
automatic optimization. The algorithm operates fully auto-
matic by giving a starting and a goal pose, optimizingmotions
over non-flat terrain (see Figures 2, 8, and 13). As shown in
Figure 2, our roller-walking robot ANYmal achieves

Figure 11. Comparison between a naive trajectory tracking
(Bjelonic et al., 2019) over one set point at a time (lower plot)
and the MPC over a receding horizon of 1 s (upper plot) while
commanding a hybrid trotting gait through the terrain-aware TO.
In this scenario, the robot needs to deal with an unmodeled
inclination at x = 1 m, as shown in the lower-left image of
Figure 10. The plots show the offline and measured trajectories,
that is, the torso and two end-effector trajectories. The dotted
lines are the offline generated trajectories, while the solid lines
represent the online solutions. The MPC handles the disturbance
and successfully finishes the motion, while the naive tracking
controller makes the robot fall. Besides, the offline trajectories’
sampling frequency of the naive tracking controller requires
400 Hz, and its starting state has to coincide with the robot’s
starting state. In contrast, the MPC is flexible w.r.t. the offline
trajectories’ sampling frequency and starting state.

Figure 12. Motion composition of three offline trajectories based
on the interactive TO in Section 4.2. The upper visualization
shows the torso and end-effector trajectory of the composed
trajectorym(t). Here, the robot executes two ducking motions with
a duration of 2 s each, connected by a 90°turn with a duration of
1.7 s and two repositioning transitions. (see lower images).
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impressive results over a set of steps with a maximum speed
of 1.5 m/s. Compared to the CD model of the interactive TO,
this is achieved with a low-dimensional SRBD model. Still,
the algorithm optimizes over the gait timings through a phase-
based parametrization, as described in Appendix B and in
more detail by Winkler et al. (2018). The optimization,
however, is still sensitive to the initial gait schedule.

This sensitivity can be solved with our final offline motion
generator. As shown in Figure 14, we verify for the first time
the combination of sampling and optimization-based plan-
ning of Jelavic et al. (2021) on a real machine. With this
combination, gait timings and sequences can be easily ob-
tained through the RRTwithout any human supervision. The
sampling-based TO can only generate statically stable mo-
tions, while the MPC refines these offline trajectories with a
kinodynamic model. Furthermore, the results verify that our
online motion planner is capable of handling offline trajec-
tories that only contain kinematic information.

Our short-term motion planner is the online MPC that
acts as a general-purpose algorithm integrating offline
trajectories from any TO algorithm. Previous publications
(Winkler et al., 2018; Medeiros et al., 2020) introducing the
terrain-aware TO incorporate a naive tracking approach.
With the incorporation of online MPC in our article, we
finally manage to run these offline trajectories reliably on
the robot even in the presence of disturbances and show
agile motions on our robot ANYmal. In our previous work
(Bjelonic et al., 2021), the MPC only considers future states
up to a 1 s time horizon, which leads to unnecessary steps
over obstacles. The video in https://youtu.be/_rPvKlvyw2w
highlights this issue over stairs and steps. Combining offline
and online optimization over the full-time horizon results in
more optimal behavior in terms of speed and efficiency, as
shown in Figure 2. Due to the task-generic properties of the
MPC, any further development on the MPC benefits the
execution of all offline trajectories.

8. Conclusions and future work

We present a method for the whole-body coordination of
robotic platforms with legs and wheels, using TO to gen-
erate offline trajectories for complex motions and online
MPC for continuous optimization along the offline trajec-
tory. Our set of experiments involves complex locomotion
maneuvers over challenging obstacles and at the robot’s
limits. These experiments verify that our method can ex-
ecute dynamic offline trajectories on the real robot even in
the absence of perfect knowledge of the environment and
under unforeseen conditions, such as modeling errors and
external disturbances. Unlike most offline-to-online opti-
mization methods, our approach incorporates an MPC ca-
pable of reacting to these disturbances while anticipating
future events of the offline trajectory. Our experimental

Figure 13. Results of the terrain-aware TO in combination with
the MPC while executing the motion over the step with our
traditional legged robot. The plots show the two optimization
problems’ motion, that is, the torso and the four end-effector
trajectories. The dotted lines are the offline generated
trajectories. In contrast, the solid lines represent the MPC solution
over a one-second horizon at a time when the left-front end-
effector touches down on the step, as shown in the top-left
image. Here, the right-front end-effector slipped and landed too
close to the step. The MPC can deal with these situations by
optimizing the whole-body’s motion, while considering the
future trajectory of the offline TO.

Figure 14. Our quadrupedal robot ANYmal with wheels
overcomes stepping stones (upper images) and steps up-and-down
(lower images) through the sampling and optimization-based
approach. All motions are statically stable, that is, the robot only lifts
one leg at a time.
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results demonstrate that our method can effectively execute
a wide range of maneuvers, including fast motions over
challenging obstacles, unique motions through confined
spaces, dynamic motions at the robot’s limits, and artistic
dance moves. The results also show that our method uses
continuous optimization through MPC to correct mistakes
from the offline trajectory and unpredictable disturbances.
The reliable execution of offline trajectories enables motion
designers to iterate over behavior designs offline without
tuning robot experiments, allowing them to author new
behaviors rapidly. Also, individual offline maneuvers can be
composed into a single long-time horizon maneuver.

At a more general level, our work explores the syn-
chronization of long-time horizon maneuvers with short-
time horizon plans. We have chosen optimization-based
approaches that generate trajectories over both look-ahead
horizons. A promising direction for future experiments is to
analyze how humans and animals incorporate look-ahead
planning stages to decide on the upcoming steps. Maneu-
vers over challenging obstacles and at the physical limits are
especially demanding, requiring look-ahead planning to
decide on the upcoming steps carefully. In this regard, a
hierarchical learning-based approach can be compared with
our proposed method.

As indicated throughout the article, a human operator
chooses maneuvers out of a motion library, suggesting that
the automation of this stage could quickly increase the
robot’s autonomy. A fascinating avenue for future work,
therefore, could be the continuous computation of long-time
horizon plans. Since our method can deal with unpredict-
able disturbances over the horizon of several offline tra-
jectories, the update rate of the TO is not subjected to real-
time constraints. With our framework, we can explore al-
ternative algorithms, including mixed-integer optimiza-
tions, that simultaneously solve the whole-body trajectory,
gait sequences, and timings, even if this complexity in-
creases the solver time.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported in part by the Swiss National Science
Foundation (SNF) through the National Centres of Competence in
Research Robotics (NCCR Robotics) and Digital Fabrication
(NCCR dfab). Besides, it has been conducted as part of ANYmal
Research, a community to advance legged robotics.

ORCID iDs

Marko Bjelonic  https://orcid.org/0000-0002-9123-3920
Oliver Harley  https://orcid.org/0000-0002-0476-1072

Notes

1. In this article, a whole-body approach or whole-body opti-
mization refers to the simultaneous generation of the robot’s
contact forces, generalized coordinates and generalized ve-
locities, including the torso’s pose, linear and angular velocity,
and the joint coordinates and velocities. The offline trajectories
fed into the online MPC and the MPC’s re-optimization con-
sider the robot’s whole-body.

2. We let the end-effector be fixed at a leg’s endpoint, that is, the
point on the wheel or foot in contact with the ground during
stance, and define this point as a leg’s end-effector.

3. The C++ implementation of the MPC’s solver is publicly
available through https://github.com/leggedrobotics/ocs2
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Appendix A

Interactive trajectory optimization

In the following, we describe each of the interactive TO’s
cost functions and constraints and drop the time dependency
of the variables introduced in Section 4.2 to improve the
equation’s readability.

Cost function. At the core of this TO lies its interactive
capabilities. The motion designer can formulate a set of
objectives that give the user interactive control over the
robot’s motion. Moreover, the motion designer can add
goals ygoal, for example, target pose of the robot’s torso or
any other whole-body motion goal, at a specific time tgoal,

which creates an objective ð1=2Þ
���yðt ¼ tgoalÞ � ygoal

���2
2
.

Equations of motion. The global motion is described by
the robot’s state xcd(t) and governed by CD, which impose
the Newton-Euler equations

_ωcd ¼ I�1
�
qj
���ωcd × I

�
qj
�
ωcd þ

Xne

i¼1
rEi × λEi

�
(17a)

_vcd ¼ g þ 1

m

Xne

i¼1
λEi (17b)

with g being the gravitational acceleration, I(qj) being the
moment of inertia of the COM, m being the total mass, and
rEi ¼ RT ðθÞðpEi

� pÞ being the end-effector position rela-
tive to the torso’s COM.

End-effector constraints. The ground reaction forces λEi

must be physically feasible. First, these forces are subject to
the Coulomb friction model given by

λEi,n ≥ 0, jλEi,tj ≤ μλEi,n (18a)

where λEi ,n and λEi ,t2R
2 denote the normal and tangential

component of λEi w.r.t. to the terrain plane, and μ is the
coefficient of friction. Next, end-effectors can only produce
ground reaction forces when they are in contact with the
environment. A footfall pattern defined by the motion de-
signer specifies a binary contact flag c, where c = 1 indicates
a stance phase and c = 0 a swing phase. Accordingly, the
following constraints ensure that forces vanish in swing
phases

ð1� cÞλEi ¼ 0 (19a)

Furthermore, no-slip and rolling constraints ensure that
the end-effector position, orientation, and wheel speed are
consistent with each other�

_pEi þ wEiaðαEiÞ× ρðαEiÞ
�
c ¼ 0 (20a)

Given the wheel’s orientation αEi, a and ρ compute the
wheel axis, and the vector connecting the wheel’s center and
its contact point with the ground.

Centroidal coordinate frame and hardware limits. In
addition to the constraints described above, we instantiate a

set of constraints to ensure the centroidal coordinate frame is
consistent with the robot’s kinematics and a set of auxiliary
end-effector variables. We also allow the motion designer to
specify constraints that enforce physical hardware limits,
such as joint angle limits and boundaries to avoid end-
effector collisions.

Parameterization of optimization variables. With this set
of constraints in place, we discretize the motion plan y(t) in
time using direct transcription and solve the optimization
problem (1) using Newton’s method and a penalty method
approach for the constraints.

Appendix B

Terrain-aware gait and trajectory optimization

In the following, we describe each of the terrain-aware TO’s
constraints and drop the time dependency of the variables
introduced in Section 4.3 to improve the equation’s
readability.

Initial and final state. The initial and final state are fixed
through the equality constraints given by�

pTð0Þ θT ð0Þ �T ¼ � pT0 θT0
�T

(21a)

�
pT ðTTOÞ θT ðTTOÞ

�T ¼
h
pTg θT

g

iT
(21b)

where the initial state
�
pT0 θT0

�T
and goal stateh

pTg θTg
iT

are provided by the motion designer.

Equations of motion. The system’s dynamics is based on
a SRBDmodel of a (wheeled-)legged robot. As described in
Section 1.2, SRBD assumes that the limb joints’momentum
is negligible compared with the lumped COM inertia, and
the inertia of the full-body system stays the same as to some
nominal joint configuration. The EOM of the SRBD is given
by

_θ ¼ TðθÞω (22a)

_p ¼ RWBðθÞv (22b)

_ω ¼ I�1
nom

 
�ω × Inomωþ

Xne

i¼1
rEi × λEi

!
(22c)

_v ¼ gðθÞ þ 1

m

Xne

i¼1
λEi (22d)

where RWB(θ) 2 SO(3) represents the rotation matrix that
projects the components of a vector from the torso frame B
to the world frameW, T(θ) is the transformation matrix from
angular velocities in the torso frame B to the Euler angles
derivatives in the world frame W, Inom is the moment of
inertia of the COM taken at the robot’s nominal configu-
ration qnom, m is the total mass, g(θ) is the gravitational
acceleration in torso frame B.
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Kinematic limits. A feasible workspace constrains the
end-effector’s position, that is, rEiðtÞ 2Riðθ,pÞ, and is ap-
proximated by a cube with a fixed edge length, centered at
the nominal position of each end-effector relative to
the COM.

Legs in contact. During contact phases, the unilateral
constraint and the friction cone are enforced given by

λEi � nðrEiÞ ≥ 0 (23a)

λEi 2Cðn,μCÞ (23b)

where n2 hterrainðrEiÞ is the local surface normal in world
frame W of the height map hterrain (x, y) evaluated at the
contact position rEi. The friction cone constraint (23b)
implements an inequality constraint, which limits the
ground reaction forces to remain inside the Coulomb
friction cone defined by the friction coefficient μC. In the
implementation of this TO, the constraint is approximated
by a friction pyramid.

The motion constraint of traditional legged robots is
modeled through the end-effectors’ velocities, and when in
contact, the velocity vEi in world frameWof leg i is restricted to

vEi ¼ 0 (24)

In contrast, wheeled-legged robots can execute motions
along the rolling direction when in contact. Thus, the motion
constraint in (24) changes to

πEi ,’ðvEiÞ ¼ 0 (25a)

vEi � n ¼ 0 (25b)

where πEi ,’ð�Þ in (25a) is the projection of the end-effector
velocity vEi onto the perpendicular direction of the rolling
direction. With this formulation and the constraint along the
normal direction in (25b), the velocity along the rolling
direction is left unconstrained, that is, πEi,kðvEiÞ 2R. The

projection πEi ,’ð�Þ, however, cannot be easily computed,
due to the missing leg kinematics of the underlying model.
In the terrain-aware TO, the rolling direction is approxi-
mated through the torso’s orientation θ and the height map’s
surface normal n2 hterrainðrEiÞ, that is, πEi,’ð�Þðθ,nÞ. We
would like to highlight that the motion constraint in (24) and
(25) is the only part that differentiates legged and wheeled-
legged locomotion.

Besides, the end-effector is enforced to stay in contact
with the terrain, and this equality constraint is formulated by

rEi,zðtÞ ¼ hterrainðrEiÞ (26)

Legs in air. While leg i is in air, the ground reaction forces
λEi are set to zero, and the end-effector is not allowed to
touch the terrain. The former defines an equality con-
straint, and the latter formulates an inequality constraint,
that is

λEi ¼ 0 (27a)

rEi ,zðtÞ> hterrainðrEiÞ (27b)

Parameterization of optimization variables. A direct
collocation method (Hargraves and Paris 1987) transcribes
the continuous problem in Section 4.3.1 into an NLP
problem optimizing the decision variables in discrete times
sampled along the trajectory. Sequences of third- and
fourth-order polynomials then obtain the continuous mo-
tion, which ensures continuous derivatives at the polyno-
mial junctions. The duration of each predefined phase j, and
with that, the duration of each end-effector’s polynomial, is
changed based on the optimized phase duration ΔTi,j. Since
these durations are continuous, the gait timings can be
optimized without the need for mixed-integer programming.
The optimization problem, however, becomes prone to local
minima and, thus, sensitive to the motion designer’s initial
gait schedule.
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