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A B S T R A C T

The lattice Boltzmann method (LBM) is a powerful alternative paradigm in
computational fluid dynamics, based on a Boltzmann-type kinetic equation
on a discrete velocity set. While LBM has seen rapid developments in the
past three decades, its success has been mainly limited to a subclass of
incompressible flows, with applications ranging from turbulence to multi-
phase and multi-component flows, and has only partially succeeded in the
compressible high Mach number regime. In particular, conventional lattice
Boltzmann models for the simulation of fluid dynamics are restricted by
an error in the stress tensor that is negligible only for small flow velocity
and at a singular value of the temperature, thus preventing LBM from
going to higher velocities as well as incorporating temperature dynamics.
In this context, the aim of this thesis is to address this issue and develop
extended lattice Boltzmann models that enable high-fidelity simulations
of fundamental and engineering applications in thermal and compressible
regime.
Two extended compressible lattice Boltzmann models on standard lattices
are realized within the two-population framework by introducing appropri-
ate correction terms into the kinetic equations. It is shown that resulting
models restore the full Navier–Stokes–Fourier equations with adjustable
Prandtl number and adiabatic exponent in the hydrodynamic limit. The
operating range of models is then extended to supersonic flows involving
shock waves following two strategies, namely the use of shifted lattices and
upwind discretization of correction terms. The former, results in a wider
operating domain; however, comes at the price of losing the exact on-lattice
propagation. The latter, maintains the accuracy and simplicity of on-lattice
propagation, but is only applicable to moderately supersonic flows.
The model formulation is then extended to fully unstructured body–fitted
meshes for handling complex geometries. To that end, semi-Lagrangian
propagation is performed on a second-order finite element mesh. The model
is studied extensively for different benchmark simulations including sub-
sonic/supersonic flow over NACA0012 airfoil and shock-vortex interaction
in Schardin’s problem.
The applicability of the extended compressible model is studied for the sim-
ulation of moving objects by employing the so-called Arbitrary Lagrangian-
Eulerian (ALE) technique. Important applications such as plunging/pitching
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airfoil with different amplitudes and frequencies are thoroughly investi-
gated.
Finally, the predictive capabilities of the newly developed model are demon-
strated by a thorough investigation of a compressible turbulent flow. Sim-
ulation of decaying of compressible homogeneous isotropic turbulence is
conducted and the results are compared with the direct numerical sim-
ulation (DNS) results. A good agreement in the statistics of mean and
fluctuating variables is observed and it is demonstrated that the present
model provides an accurate representation of compressible flows, even in
the presence of turbulence and shock waves.
To conclude, the promising results of the proposed models on standard lat-
tices with a minimal number of discrete speeds, open interesting prospects
towards the numerical simulation of more complex industrial applications
in compressible regime.
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Z U S A M M E N FA S S U N G

Die Gitter-Boltzmann-Methode (LBM) ist ein leistungsfähiges alternatives
Paradigma in der numerischen Strömungsmechanik, das auf einer kineti-
schen Gleichung vom Boltzmann-Typ auf einem diskreten Geschwindig-
keitssatz basiert. Während LBM in den letzten drei Jahrzehnten eine rasante
Entwicklung erlebt hat, beschränkte sich sein Erfolg hauptsächlich auf eine
Unterklasse inkompressibler Strömungen mit Anwendungen, die von Tur-
bulenzen bis hin zu Mehrphasen- und Mehrkomponentenströmungen rei-
chen, und war nur teilweise erfolgreich bei der kompressiblen hohen Mach
Zahlenregime. Insbesondere konventionelle Gitter-Boltzmann-Modelle zur
Simulation der Strömungsdynamik werden durch einen nur bei kleinen Strö-
mungsgeschwindigkeiten und einem singulären Temperaturwert vernach-
lässigbaren Fehler des Spannungstensors eingeschränkt und verhindern
so, dass LBM auf höhere Geschwindigkeiten sowie Temperaturdynamik
einbeziehen. In diesem Zusammenhang ist es das Ziel dieser Dissertation,
dieses Problem anzugehen und ein erweitertes Gitter-Boltzmann-Modell
zu entwickeln, das High-Fidelity-Simulationen von grundlegenden und
technischen Anwendungen in thermischen und kompressibles Regime.

Zwei erweiterte kompressible Gitter-Boltzmann-Modelle auf Standardgit-
tern werden innerhalb des Zwei-Populations-Frameworks realisiert, indem
entsprechende Korrekturterme in die kinetischen Gleichungen eingeführt
werden. Es wird gezeigt, dass die resultierenden Modelle die vollständi-
gen Navier-Stokes-Fourier-Gleichungen mit einstellbarer Prandtl-Zahl und
adiabatischem Exponenten im hydrodynamischen Limes wiederherstel-
len. Der Arbeitsbereich der Modelle wird dann auf Überschallströmungen
mit Stoßwellen erweitert, wobei zwei Strategien verfolgt werden, nämlich
die Verwendung von verschobenen Gittern und die Diskretisierung von
Korrekturtermen gegen den Wind. Ersteres führt zu einem breiteren Be-
triebsbereich; Dies geht jedoch um den Preis, dass die genaue Ausbreitung
auf dem Gitter verloren geht. Letzteres behält die Genauigkeit und Einfach-
heit der Ausbreitung auf dem Gitter bei, ist jedoch nur auf Strömungen mit
mäßigem Überschall anwendbar.

Die Modellformulierung wird dann auf vollständig unstrukturierte kör-
perangepasste Netze zur Handhabung komplexer Geometrien erweitert. Zu
diesem Zweck wird eine semi-Lagrangesche Ausbreitung auf einem Finite-
Elemente-Netz zweiter Ordnung durchgeführt. Das Modell wird ausführ-
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lich für verschiedene Benchmark-Simulationen untersucht, einschließlich
Unterschall-/Überschallströmung über NACA0012-Profil und Stoß-Wirbel-
Interaktion im Schardin-Problem.

Die Anwendbarkeit des erweiterten kompressiblen Modells wird für die
Simulation bewegter Objekte untersucht, indem die sogenannte Arbitrary
Lagrangeian-Eulerian (ALE)-Technik verwendet wird. Wichtige Anwendun-
gen wie Tauch-/Pitching-Profile mit unterschiedlichen Amplituden und
Frequenzen werden eingehend untersucht.

Schließlich werden die Vorhersagefähigkeiten des neu entwickelten Mo-
dells durch eine gründliche Untersuchung eines kompressiblen turbulenten
Problems demonstriert. Die Simulation des Zerfalls kompressibler homoge-
ner isotroper Turbulenzen wird betrachtet und die Ergebnisse werden mit
den Ergebnissen der direkten numerischen Simulation (DNS) verglichen.
Es wird eine gute Übereinstimmung in der Statistik der mittleren und fluk-
tuierenden Variablen beobachtet und es wird gezeigt, dass das vorliegende
Modell eine genaue Darstellung kompressibler Strömungen liefert, selbst
in Gegenwart von Turbulenzen und Stoßwellen.

Zusammenfassend eröffnen die vielversprechenden Ergebnisse der vor-
geschlagenen Modelle zu Standardgittern interessante Perspektiven für
die numerische Simulation komplexerer industrieller Anwendungen im
kompressiblen Bereich.

viii



A C K N O W L E D G E M E N T S

First and foremost, I would like to thank my PhD supervisor, Prof. Dr. Ilya
Karlin without whom this thesis could never have been accomplished. I
want to thank him for giving me the opportunity to join his group and
for always believing in me. I am hugely grateful for his wise guidance
and insight, his enthusiasm for ideas, and his continuous support and
encouragement throughout the entire thesis.

I am also immensely grateful to Dr. Benedikt Dorschner and Dr. Fabian
Bösch for their help, enthusiasm and invaluable contributions. Fabian’s
help and guidance at the early stage of this work were specially important.

I would also like to thank Prof. Dr. Patrick Jenny and Prof. Dr. Kai Luo
for accepting to be part of my PhD thesis committee and for reading and
reviewing my work.

Special thanks go to a number of friends and colleagues, with whom I
was able to have a great time at the office: Ehsan Reyhanian, Nilesh Sawant,
Nikolaos Kallikounis, Seyed Ali Hosseini and Abhimanyu Bhadauria. Many
thanks to Ali, Nilesh and Nikos for the good times we spent together and
for interesting talks and discussions. Also, I want to thank all my friends
outside ETH that have been around me, and with them I have enjoyed
spending time.

Last but not least, a special thank goes to my family for their never ending
love, unconditional support and patience.

The work presented in this thesis was accomplished in the computa-
tional kinetics group, at the Swiss Federal Institute of Technology (ETH
Zürich), Switzerland, under the financial support of the ETH research Grant
No. ETH–13 17–1 and the European Research Council (ERC) Advanced
Grant No. 834763–PonD. The computational resources at the Swiss National
Super-Computing Center CSCS were provided under Grant No. s897.

Zürich, December 2021

Mohammad Hossein Saadat

ix





C O N T E N T S

1 introduction 1

1.1 Outline of thesis 3

2 lattice kinetic theory 7

2.1 The Boltzmann equation 7

2.1.1 Equilibrium distribution and local Maxwellian 9

2.1.2 H–Theorem 10

2.1.3 BGK approximation of collision term 10

2.1.4 Kinetic simulation approaches 11

2.2 Lattice Boltzmann method 13

2.2.1 Velocity space discretization 13

2.2.2 Space–time discretization 14

2.2.3 Basic features of the standard LBM 15

2.2.4 Lattice Boltzmann models for compressible flows 16

3 extended lattice boltzmann models for compressible

flows 19

3.1 Introduction 19

3.2 Kinetic equations 20

3.2.1 Moment requirements 21

3.2.2 Discrete velocities, factorization and anomaly of the
standard lattices 23

3.3 Extended compressible model I 25

3.3.1 Hydrodynamic limit 28

3.3.2 Equations of gas dynamics 32

3.3.3 Summary of the extended model I 33

3.3.4 Numerical validation 34

3.4 Extended compressible model II 38

3.4.1 Hydrodynamic limit 43

3.4.2 Equations of gas dynamics 47

3.4.3 Summary of the extended model II 48

3.4.4 Numerical validation 49

3.4.5 Application of extended equilibrium to incompress-
ible iso–thermal flows 50

3.5 Conclusion 64

4 extension to supersonic flows 67

4.1 Introduction 67

xi



xii contents

4.2 Concept of the shifted lattices 67

4.2.1 Shock-vortex interaction 70

4.3 Upwind discretization of correction term in model II 72

4.3.1 Shock-vortex interaction with on-lattice model II 74

4.4 Conclusion 74

5 unstructured and moving meshes 77

5.1 Introduction 77

5.2 Semi-Lagrangian propagation 78

5.2.1 Wall boundary conditions 80

5.2.2 Numerical results 82

5.3 Arbitrary Lagrangian Eulerian approach for moving geome-
tries 90

5.3.1 ALE formulation of LBM 93

5.3.2 Geometric conservation law 96

5.3.3 Numerical results 97

5.4 Conclusion 109

6 compressible turbulent simulations 111

6.1 Introduction 111

6.2 Decaying of compressible homogeneous isotropic turbu-
lence 112

6.3 Conclusion 122

7 kinetic theory in a co-moving reference frame : a

promising approach 125

7.1 Introduction 125

7.2 Kinetic theory in a co-moving reference frame 125

7.3 The shock structure problem 128

7.4 Conclusion 131

8 summary and future works 133

8.1 Summary 133

8.2 Future works 135

a appendix 137

a.1 Comparison of extended LBGK to locally corrected LBM [44] 137

a.2 Transfer matrix for equilibrium populations with D2Q9 lat-
tice 143

List of Tables 145

List of Figures 146

bibliography 154



1
I N T R O D U C T I O N

[In science] each paradigm will be shown to satisfy
more or less the criteria that it dictates for itself and to
fall short of a few of those dictated by its opponent!

— Thomas Kuhn

Fluids are everywhere. We are living in a world where applications re-
lated to fluid dynamics play a crucial role in important areas such as health,
energy, transportation, defense, etc. A classical model for description of
fluid dynamics is called the Navier-Stokes (NS) equations, for which no
analytical solutions are present except for very specific simple configura-
tions. Consequently, the study of fluid dynamics was mostly experimental
and theoretical until 1960s, when the rise of powerful computers made it
possible to carry out complex numerical simulations. This marks the begin-
ning of computational fluid dynamics (CFD) as a discipline which aims at
developing numerical algorithms capable of capturing flow physics with
good accuracy and efficiency. Ever since, CFD has been a complementary
tool in understanding the physics of fluid flows as well as in engineering
design [1].

Developing accurate and efficient numerical schemes, however, is not
an easy task due to non-linear nature of NS equations. Such challenges
are prominent in compressible flows with shock waves in the flow field.
Shock waves are sharp discontinuities of the flow properties across a thin
region with the thickness of the order of mean free path. Since in practical
simulations, it is impossible to use a grid size fine enough to resolve the
physical shock structure defined by the molecular viscosity, most numerical
schemes rely on some numerical dissipation to stabilize the simulation and
capture the shock over a few grid points [2, 3].

Another computational complexity emerges when the flow becomes
turbulent. Turbulence is of great importance in many flows of practical
interests and is characterized by the presence of a wide range of length and
time scales in the flow. One approach to turbulence is direct numerical sim-
ulation (DNS), which resolves all time and length scales in turbulent flows.
However, the severe computational cost limits this method to fundamental
applications with simple geometries. On the other hand, the Reynolds–
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2 introduction

Average–Navier–Stokes (RANS) is the approach most commonly used in
the industry, where turbulence models are used to mimic the effect of the
entire turbulence spectrum on the mean flow field. Large eddy simulation
(LES) is an alternative approach to DSN and RANS, which exploits the
universal behaviour of small scales in turbulent flows in order to reduce the
computational requirement of DNS. In LES, a low–dissipative flow solver is
typically used to resolve the large scales in the flow field, while a proper
subgrid model is employed to model the effect of small (subgrid) scales
on large scales. LES is now a promising tool for the simulation of realistic
flows in industrial scale.

Out of this context, the lattice Boltzmann method (LBM) emerged as an al-
ternative to conventional CFD solvers, with its first realization in 1988 [4, 5].
Historically, LBM developed independently from the Boltzmann equation,
through a method called the lattice gas automata (LGA) [6, 7]. LGA was a
particle based flow solver, where particles were allowed to move on discrete
lattices and collide locally. LBM was able to remove the statistical noise of
LGA, by replacing discrete particles with the so-called particle distribution
function. However, it was later shown that LBM can also be viewed as a
discretization of the Boltzmann equation at discrete velocities correspond to
the roots of the Hermite polynomials (Gauss-Hermite quadratures) [8–10].
Since its inception, LBM has been proved to be a viable and efficient tool
for the simulation of complex fluid flows [11–13] and has been applied
to a wide range of fluid dynamics problems including, but not limited to,
turbulence [14–22], multi-phase and multi-component flows [23–27], flows
in porous media [28–30], acoustics [31–33], magnetohydrodynamics [12,
34–36] and relativistic hydrodynamics [37–39]. The attractiveness of the
LBM over conventional CFD methods, lies in the simplicity and locality of
its underlying numerical algorithm, which can be summarized as "stream
populations fi(x, t) along the discrete velocities ci and equilibrate at the
nodes x". The simple streaming and collision algorithm of the standard LBM,
makes it a good candidate for parallel implementation and high perfor-
mance computing, as in each time step only the information of nearest
neighboring nodes is required. Furthermore, the kinetic nature of LBM,
opens the possibility of designing implicit turbulence models in under–
resolved scenarios, thus avoids the need of explicit turbulence models. As
such, LBM is now entering the mainstream engineering practice [40–43].

In spite of all these advantages of the LBM, it is well known that LBM on
standard lattices (D2Q9 in two dimensions and D3Q27 in three dimensions.
Here, the DdQn model refers to d dimension model with n discrete speeds)



1.1 outline of thesis 3

faces stiff challenges in dealing with high-speed flows [44] and its success
has been mainly limited to low-speed incompressible flow applications.
Development of LB models for compressible flows is a somewhat recent
effort. Multiple models have been proposed and employed in the literature
to extend the operating range of LBM to high-speed compressible flows.
Nevertheless, an accurate LB model on standard lattices capable of captur-
ing the complex physics of compressible flows involving shock waves is still
needed. This PhD thesis will address this issue with the aim of developing a
LB framework on standard lattices which enables high-fidelity simulations
of fundamental and engineering applications in thermal and compressible
regime.

1.1 outline of thesis

The present thesis is organized as follows:

• Chapter 2: Mathematical and physical foundations of the kinetic
theory of gases and the Boltzmann equation along with a detailed
derivation of the lattice Boltzmann method are presented. Then, an
overview over the existing compressible lattice Boltzmann models in
the literature is provided.

• Chapter 3: Two extended lattice Boltzmann models for compressible
flows on standard lattices are presented. Both models are based on the
idea of introducing correction terms into the kinetic equations within
the two–population framework. They are different in the implementa-
tion of correction terms as well as construction of the energy equilib-
rium distribution function. It is shown that both models are isotropic,
Galilean invariant and can recover the full Navier–Stokes–Fourier
equations with adjustable Prandtl number and adiabatic exponent in
the hydrodynamic limit. In the last part of the chapter, the benefits of
using the extended model in the incompressible iso-thermal regime is
briefly discussed.

• Chapter 4: Possibilities of extending the operating range of the models
developed in Chapter 3 to supersonic flows involving shock waves,
are investigated following two ideas. The first one is the concept of
the shifted lattices, which relies on formulating the kinetic equations
in a reference frame moving with a constant predefined velocity. The
second one is based on a proper discretization of spatial derivatives in
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the correction term in order to provide enough numerical dissipation
for removing nonphysical oscillations. Sound generation in shock-
vortex interaction is simulated for validation.

• Chapter 5: The model formulation is extended to fully unstructured
body–fitted mesh over complex geometries using the semi–Lagrangian
propagation with a second-order accurate finite-element interpolation
to reconstruct solution at the grid points. This type of propagation not
only removes the restriction related to the regular lattice, but is less
dissipative compared to other off-LB schemes (such as finite-difference
or finite-volume LB schemes). Consistent boundary conditions based
on the Grad’s approximation is then implemented and the model
is tested and validated through simulation of different benchmarks,
including subsonic and supersonic flow over airfoil and shock-vortex
interaction in Schardin’s problem.

In the next step, we extend the applicability of the proposed model
for the simulation of moving objects. This is achieved by employing
the so-called Arbitrary Lagrangian-Eulerian method, which has the
advantage of handling moving and deforming objects with body-fitted
mesh. Interesting applications such as plunging/pitching airfoil with
different amplitudes and frequencies are thoroughly investigated.

• Chapter 6: The accuracy and performance of the extended model in
dealing with compressible turbulent flows is investigated through
simulation of decaying of compressible homogeneous isotropic turbu-
lence. This challenging test-case can be considered as a rigorous test
for the validity of the present model, as it contains both compress-
ibility effects and shocks, as well as turbulent structures in the flow
field. Different scenarios with different turbulent Mach number and
Reynolds number are thoroughly investigated and it is demonstrated
that the model is able to accurately predict the relevant features of
compressible turbulent flows even at high turbulent Mach number,
where eddy-shocklets exist in the flow field and interact with turbu-
lence.

• Chapter 7: Preliminary results of a new representation of the kinetic
theory named particles-on-demand (PonD) method are presented. The
distinctive feature of PonD is that the kinetic equations are formulated
in the local co-moving reference frame in which the local equilibria do
not depend on flow velocity and temperature. This makes the PonD a
suitable candidate for simulation of high-speed nonequilibrium flows,
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since there is no error proportional to fluid velocity in the equilibrium
moments. To demonstrate that, the classical shock structure problem
is considered and it is shown that PonD is able to resolve the structure
of shock wave with reasonable accuracy.





2
L AT T I C E K I N E T I C T H E O RY

The true logic of this world is in the calculus of
probabilities.

— James C. Maxwell

The aim of this chapter is, first, to provide basic mathematical and physi-
cal foundations of the kinetic theory of gases and the Boltzmann equation.
Interested readers are referred to Chapman & Cowling [45], Cercignani,
Illner & Pulvirenti [46], Villani [47], and Grad [48] for a detailed discussion
on the Boltzmann equation. The chapter will then go by introducing the
essential components of the lattice Boltzmann method. Finally, the limita-
tions and challenges of LBM in the compressible regime is discussed and a
review of existing compressible LB models is given.

2.1 the boltzmann equation

Kinetic theory deals with modeling of the systems (e.g., a gas) made up of
large number of particles. Since describing the dynamics of all individual
particles is a formidable task, kinetic theory is based on the concept of a
distribution function, i.e., large particle ensembles in terms of a phase space.
The phase space includes macroscopic variables (the position in physical
space) and also microscopic variables, which describe the “state” of the
particles [47]. That is why kinetic models are sometimes called mesoscopic
models, as they lie between microscopic models and macroscopic or contin-
uum models that describe a material with a finite number of macroscopic
quantities [49]. The whole goal of kinetic theory is, then, to find out the
equations, typically integro-differential equations, that govern the evolution
of the distribution function in time.

Suppose, we have a system of dilute gas with N particles, in thermal
equilibrium. The “state” of the particles can be described by specifying par-
ticles’ position x = (x, y, z) and velocity c = (cx, cy, cz) at any given time t.
The distribution function is denoted by f (x, c, t). Intuitively, f (x, c, t)dxdc
represents the number of particles within the infinitesimal control volume
of size dxdc (i.e., with position within the range x and x+ dx and velocity
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8 lattice kinetic theory

in the range c and c+ dc), at time t. Consequently, the total number of
particles in the system can be computed as,

N =
∫∫

f (x, c, t)dxdc. (2.1)

The distribution function f also allows us to express hydrodynamic quan-
tities as "moments" of the f . For example, the local density ρ, momentum
ρu and energy ρE are zeroth–, first– and second–order moments of the
distribution function, respectively,

ρ(x, t) =
∫

f (x, c, t)dc, (2.2)

ρu(x, t) =
∫
c f (x, c, t)dc, (2.3)

ρE(x, t) =
∫ c2

2
f (x, c, t)dc. (2.4)

With the concept of the distribution function in hand, the task is to find the
time evolution of f , given the proper initial and boundary conditions.

We first consider the case with no interaction between particles, i.e., no
collision. The conservation of particles within the control volume dxdc
requires that,

f (x, c, t)dxdc = f (x+ cδt, c+F δt, t + δt)dxdc, (2.5)

where F is an external force acting on the particles per unit mass. Consider-
ing the limit of infinitesimal time interval, δt→ 0, we can write the Taylor
expansion of both sides,

∂t f (x, c, t) + c · ∇x f (x, c, t) + F · ∇c f (x, c, t) = 0, (2.6)

where ∂t =
∂
∂t

. This equation is sometimes called the linear Vlasov equation
and describes the evolution of f under the action of the external force F .

But the collision-less situation is far from the truth, as there certainly are
collisions and the equilibration itself occurs due to collisions. We, therefore,
re-write (2.6) as,

∂t f (x, c, t) + c · ∇x f (x, c, t) + F · ∇c f (x, c, t) = Ω. (2.7)

where Ω is the collision operator and represents the net number of par-
ticles that leave/come into the control volume dxdc due to the collision.
Boltzmann derived the collision operator under the following assumptions:
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• Collisions are binary and elastic.

• The velocities of two particles that are about to collide are uncorrelated.
This assumption is also known as the molecular chaos assumption.

Without going into details, the collision operator can be written as an
integral over particle velocities,

Ω =
∫∫∫

W
(
c′1, c′2|c1, c2

) [
f (c′1) f (c′2)− f (c1) f (c2)

]
dc2dc′1dc′2, (2.8)

where W
(
c′1, c′2|c1, c2

)
is a probability that a pair of particles with initial

velocity c1 and c2 changes its velocity to c′1 and c′2, due to the scattering
process. Consequently, it depends on the details about intermolecular forces.

Note that, without a loss of generality, we assume no external force (i.e.,
F = 0) in the remaining of this chapter.

2.1.1 Equilibrium distribution and local Maxwellian

If we take the distribution function f (x, c, t) and let it tend to infinity, then
we get the equilibrium distribution f eq(c). As such, we expect the equilib-
rium distribution to be independent of time and position (in case without
external force). Imposing these conditions on the Boltzmann equation (2.7)
implies that,

Ω = 0 −→ f eq(c2) f eq(c1) = f eq(c′2) f eq(c′1). (2.9)

If we take the natural log of both sides,

ln f eq(c1) + ln f eq(c2) = ln f eq(c′1) + ln f eq(c′2). (2.10)

This means that the log of equilibrium distribution is conserved during
the scattering process. Therefore, equilibrium should be some function of
conserved quantities (i.e., momentum and kinetic energy). This condition is
satisfied by a class of functions of the form,

f eq = exp(X + ξ.c+ λc2), (2.11)

where X , λ and ξ are arbitrary constant scalars or vectors. There exist a
physically relevant solution based on the constraints on the conserved mo-
ments, known as the Maxwell-Boltzmann distribution or the local Maxwellian
distribution,

f eq(c) = ρ

(
m

2πkBT

)(D/2)
exp

{
−m(c− u)2

2kBT

}
, (2.12)
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where D is the dimension of the physical space, m is the particles mass, T
is the local temperature and kB is the Boltzmann’s constant.

2.1.2 H–Theorem

Boltzmann introduced a quantity H defined as,

H( f ) =
∫

f ln f dc, (2.13)

and proved the H–Theorem in 1872 which states that H always decreases
with time, i.e.,

dH
dt

=
∫

∂t f [1 + ln f ] ≤ 0. (2.14)

This is one of the outstanding contributions of the Boltzmann to the statisti-
cal mechanics which provides a quantitative measure for the irreversibility
and extends the concept of entropy to nonequilibrium processes, where the
local entropy is defined as,

S(x, t) = −kBH(x, t). (2.15)

Using (2.14) one can also observe that the equilibrium distribution happens
when dH

dt = 0.

2.1.3 BGK approximation of collision term

Given the complexity of the collision operator 2.8 in the Boltzmann equa-
tion, several approximations have been proposed. The most famous one
was proposed by Bhatnagar, Gross and Krook [50] in 1954 based on the
assumption that the main effect of the collision term is to bring the distri-
bution function closer to the equilibrium distribution (2.12) [51]. The BGK
collision term reads,

ΩBGK =
1
τ
( f eq − f ), (2.16)

where τ is called the relaxation rate and can be interpreted as a characteristic
time required for the relaxation towards the local Maxewellian. One can
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also verify that the BGK operator satisfies the H–theorem and also exactly
conserves the mass, momentum and energy,

1
τ

∫
( f eq − f )dc = 0, (2.17)

1
τ

∫
c( f eq − f )dc = 0, (2.18)

1
τ

∫ c2

2
( f eq − f )dc = 0. (2.19)

2.1.4 Kinetic simulation approaches

Kinetic theory based on the Boltzmann equation can perfectly describe
the dynamics of gas flows at all degrees of rarefaction. However, the high
dimensionality of the particle distribution function and complex structure
of the collision operator make use of the Boltzmann equation a non-trivial
task. Different approaches have been proposed to deal with the Boltzmann
equation. Two prominent examples are moment systems [see 52, 53] inspired
by the idea of Grad [48] and the direct simulation Monte Carlo method [54].

2.1.4.1 Grad’s moments method

One approach, first introduced by Grad [48], is based on deriving moment
systems of the Boltzmann equation (2.7),

∂t

(∫
Ψ(c) f (x, c, t)dc

)
+∇ ·

(∫
cΨ(c) f (x, c, t)dc

)
=

(∫
ΩΨ(c)dc

)
,

(2.20)

where Ψ(c) is a vector of polynomial functions of the velocity space variable
c. For example, the original 13–moment equations of Grad, include a
coupled set of first–order partial differential equations for the evolution of
density, momentum, stress tensor and heat flux vector. However, higher-
order moments appear in the resulting system that need closure. The
non–closed moments are computed by expanding the particle distribution
functions in terms of Hermite polynomials. Following Grad’s idea, several
moment systems have been proposed in the literature, two prominent
examples are the regularized 13–moment equations (R13) [52, 55, 56] and
the maximum entropy closure [57]. Nevertheless, moment systems generally
suffer from the limited hyperbolicity and moreover, the implementation
of boundary conditions for higher–order moments (which lack physical
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intuition) is not a straightforward task [58]. For a comprehensive review of
moment methods see Torrilhon [53].

2.1.4.2 Direct simulation Monte Carlo

Another approach for dealing with the Boltzmann equation is the direct
simulation Monte Carlo (DSMC) method proposed by Bird [59], in which
stochastic particles mimic the dynamics of the Boltzmann equation by
undergoing propagation and collision steps. DSMC has been validated
and successfully applied to a wide range of complex rarefied flows and
it has been shown that its solution converges to that of the Boltzmann
equation [60] in the limit of infinite particles. DSMC, however, loses its
effectiveness in the low Mach number regime and also in flows near the
continuum regime, where large number of particles are needed and time
step size is restricted. The computational time of DSMC is, in general,
30− 50 times more than that of solving the moment equations [61]. Recent
studies have partly addressed these issues [see 62–65].

2.1.4.3 Chapman-Enskog method

A famous approach to find a set of balance equations, for the hydrodynamic
variables, resulting from the Boltzmann equation is called the Chapmen-
Enskog method. This method was developed in 1917 by Enskog [66] and
Chapman [67]. In this method, the idea is to expand the distribution function
as a power series of a smallness parameter ε,

f = f (0) + ε f (1) + ε2 f (2) + . . . , (2.21)

and substitute the expansion into the Boltzmann equation to obtain the solu-
tions for different orders of ε. Considering the equations up to ε corresponds
to the linear constitutive relations of the Navier–Stokes–Fourier equations
for the stress tensor and heat flux vector. Using the Chapman-Enskog
method, one can also derive higher-order constitutive relations, where the
stress and heat flux are expressed in terms of higher-order gradients of
the flow velocity and temperature [68]. However, the resulting Burnett and
super-Burnett equations have been shown to be linearly unstable in both
space and time [69].

Given that the Chapman-Enskog method will be thoroughly discussed in
Chapter 3, it is not further detailed here.
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2.2 lattice boltzmann method

In the past decades, as an alternative kinetic approach, the lattice Boltz-
mann (LB) method has received considerable attention for computational
fluid dynamics and is now a versatile tool for simulation of complex fluid
flows. While historically LB developed independently from the Boltzmann
equation, it has been show that, LB models can be viewed as a discretization
of the Boltzmann equation at certain discrete velocities and the hierarchy
of LB models can be considered as a way to approximate the Boltzmann
equation [10] and thus, as an alternative to more standard approaches such
as moment systems or DSMC.

2.2.1 Velocity space discretization

In the LBM, the continuous velocity space is first discretized into a finite
number of velocity sets,

C = {c1, c2, . . . , cQ}, (2.22)

where Q is the total number of discrete velocities. A corresponding distri-
bution function (population) associated with each discrete velocity is then
defined as,

f = { f1, f2, . . . , fQ}. (2.23)

The discretized Boltzmann equation with the BGK collision for each popu-
lation fi can be written as,

∂t fi(x, t) + ci · ∇ fi(x, t) = ΩBGK
i . (2.24)

The simplest choice of discrete velocities in one dimension is C = {−1, 0,+1},
which is known as the standard lattice. In a higher dimension D, the dis-
crete velocity set is constructed via tensor product of D copies of the
one-dimensional velocity set. This will result in a well-known D2Q9 lat-
tice in 2D and D3Q27 in 3D, which are most commonly used in the LB
community for incompressible flow simulations.

Higher-order velocity sets can also be systematically constructed. One
way to do that is through the roots of Hermite polynomials. In this method,
the velocity set is defined as nodes of the high–order Gauss–Hermite
quadrature [9]. Table 2.1 shows the discrete velocities (roots of Hermite
polynomials), weights of the Gauss–Hermite quadrature Wiα and also refer-
ence temperature TL (which will be defined later) of three different lattice
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models in one dimension, namely D1Q3, D1Q4 and D1Q5. The correspond-
ing models in two dimensions are D2Q9, D2Q16 and D2Q25, respectively.

Quadrature ciα Wiα

D1Q3 (TL = 1/3)
0

±1

2/3

1/6

D1Q4 (TL = 1.81649658)
±1

±3.14626437

0.454124145231932

0.045875854768068

D1Q5 (TL = 0.544144111)
0

±1

±2.10749103

0.533337122831274

0.222074600148481

0.011256838435882

Table 2.1: Roots of Hermite polynomials ciα, weights of the Gauss–Hermite
quadrature Wiα and lattice reference temperature TL.

Another systematic approach for the construction of high–order lattices
for the LBM is based on the entropic construction which tries to approximate
the local Maxwellian on integer–valued discrete velocity sets [70].

2.2.2 Space–time discretization

After discretizing the velocity space, we integrate the discrete Boltzmann
equation (2.24) along the the characteristic lines (discrete velocity directions)
over the time step δt,

fi(x+ ciδt, t + δt)− fi (x, t) =
∫ t+δt

t
ΩBGK

i (x(t′), t′)dt′. (2.25)

Integral of the collision term is evaluated using the second–order trape-
zoidal rule,∫ t+δt

t
ΩBGK

i (x(t′), t′)dt′ =
δt
2

(
ΩBGK

i (x, t) + ΩBGK
i (x+ ciδt, t + δt)

)
,

(2.26)
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which results in an implicit scheme. In order to remove the implicitness of
the scheme, the following transformations are applied,

f̄i = fi −
δt
2

ΩBGK
i , (2.27)

f̄ eq
i = f eq

i , (2.28)

ΩBGK
i =

1
τ + δt/2

(
f̄ eq
i − f̄ i

)
, (2.29)

which leads to an explicit scheme, called the lattice Boltzmann BGK (LBGK)
equation,

f̄i(x+ ciδt, t + δt)− f̄i (x, t) = ω
(

f̄ eq
i − f̄i

)
. (2.30)

Here, the left hand side is the shift operator representing propagation
(advection) of populations, and the right hand side is the collision, with the
new relaxation parameter ω defined as,

ω =
δt

τ + δt/2
. (2.31)

The flow variables can be computed as follows,

ρ = ∑
i

f̄i = ∑
i

fi, (2.32)

ρu = ∑
i
ci f̄i = ∑

i
ci fi. (2.33)

Note that, the overbars on the re-defined discrete populations will be
omitted for the rest of the manuscript for the sake of simplicity.

2.2.3 Basic features of the standard LBM

It was shown that the LBM (2.30) can be derived by two consecutive dis-
cretizations of the Boltzmann equation. Here, we review some of the basic
features of the standard LBM:

• The lattice Boltzmann equation (2.30) describes the dynamics of the
populations fi(x, t) due to free streaming along the direction of dis-
crete velocities ci (which form a space-filling lattice) and equilibrate
at the nodes x. This will result in the simple streaming and collision
algorithm of the LBM.
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• The streaming (propagation) is, then, simply the transfer of popula-
tions from node to node without loss of information [40]. This means
that on regular Cartesian meshes, the propagation is exact.

• While propagation is linear, all non-linearity lies on the right hand
side (collision) of (2.30), which is local in space. In other words, in the
LBM, the non-local propagation is linear, and the non-linear collision
is entirely local.

• While LBM has gained significant success in the incompressible
regime, it is commonly known that the finite number of discrete
particle velocities prevents LBM from going to high Mach number
flows. In the next section, some of the models proposed to extend
LBM to high-speed flows is reviewed.

2.2.4 Lattice Boltzmann models for compressible flows

While LBM is now a well–established tool for low–speed incompressible
flow simulations, development of LB models beyond that regime is a
somewhat recent effort. The restrictions of LBM comes from the geometry
of the discrete velocities, where the standard LBM velocities (D2Q9 in two
dimensions and D3Q19 or D3Q27 in three dimensions) yield a persistent
error in the fluid stress tensor, which breaks Galilean invariance and limits
the operation range of LBM to small flow velocities and a singular value of
the temperature, known as the lattice reference temperature. Only under these
conditions, the error in the stress tensor can be ignored. While one can cope
with this error in most incompressible flow applications [71, 72], it prevents
LBM from going to high–speed compressible flows as well as incorporating
temperature dynamics. In other words, the number of discrete velocities of
the standard lattices is too low to reproduce all the moments required for
obtaining the full compressible Navier–Stokes–Fourier (NSF) equations [73].
For this reason, development of LB models capable of simulating thermal
and compressible flows is still an open and active area of research.

Two general approaches have been proposed in the literature to address
this issue. One approach is to include more discrete velocities and use
the hierarchy of admissible high–order (or multi–speed) lattices [9, 70] to
ensure the Galilean invariance and temperature independence of the stress
tensor. Employing higher–order lattices result in adequately representing
all the moments pertinent to the recovery of the full NSF equations. Many
of the high–order models, however, are based on the Eulerian discretization
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of the discrete Boltzmann equation (2.24) using standard schemes such as
finite–difference or finite–volume schemes, see e.g. the models by Alexan-
der, Chen & Sterling [74], Kataoka & Tsutahara [75], Li et al. [76], Watari
[77] and Lin & Luo [78]. Thus, one of the most important advantages of
LBM, the exact space discretization of propagation step on lattice nodes,
is completely lost with those methods. Recently, a high–order on–lattice
entropic LB model has been proposed by Frapolli, Chikatamarla & Kar-
lin [79], which successfully covers a wide range of fluid flows, from low
Mach weakly compressible [80] to transonic and supersonic regimes [81]
with shock waves. However, high-order lattices increase computational
cost significantly, which quickly becomes prohibitive for three-dimensional
simulations. Furthermore, a limited temperature range is another restriction
of high–order lattices [82].

Another approach for extension of LBM beyond its classical operation
domain, maintains the simplicity and efficiency of the standard lattices
and introduces correction terms in order to remove the aforementioned
spurious terms in the stress tensor [83, 84]. Due to intrinsic non–uniqueness
of the correction term, different implementations exist in the literature, all
recover the same equations in the hydrodynamic limit [85–87]. See Hosseini,
Darabiha & Thévenin [88] for a detailed review of different implementa-
tions. Besides correction term, to fully recover the NSF equations, one also
needs to incorporate the energy equation. For doing that different models
have been proposed in the literature which, in general, can be categorized
into two main groups: hybrid and two-population methods.
Hybrid methods [89–92] rely on solving the total energy/entropy equa-
tion using conventional numerical schemes like finite–difference or finite–
volume. Furthermore, multi–relaxation time collision operators, such as the
hybrid regularized recursive model, are required to achieve high subsonic
and supersonic regimes [92]. The majority of hybrid LB schemes also suffer
from lack of energy conservation, as the energy equation is solved in a
non–conservative form [93], and resolving this issue is still an on–going
research [93–95]. In the two–population approach [85, 87, 96, 97], however,
another population is used for the conservation of total energy. The latter,
thus, provides a fully conservative and unified kinetic framework for the
compressible flows. Earlier models [85, 96, 97] within the two–population
framework on standard lattices, however, were limited to low–Mach thermal
applications.

Given the previously mentioned advantages of the two–population ap-
proach, the goal of this project was to extend it to high–speed flows so that
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it can capture the complex physics of compressible flows involving shock
waves. By sticking to standard lattices and keeping the number of discrete
speeds to a minimal, the resulting model substantially increases computa-
tional efficiency and makes high-fidelity simulations of compressible flows
feasible.



3
E X T E N D E D L AT T I C E B O LT Z M A N N M O D E L S F O R
C O M P R E S S I B L E F L O W S

Everything should be made as simple as possible, but
no simpler.

— Albert Einstein

3.1 introduction

The development of accurate and efficient numerical methods for the sim-
ulation of compressible fluid flows remains a highly active research field
in computational fluid dynamics, and is of great importance to many nat-
ural phenomena and engineering applications. Compressibility is usually
measured by the Mach number, Ma = u/cs, defined as the ratio of the
flow velocity to the speed of sound and is mainly characterized by the
importance of density and temperature variations and a dilatational veloc-
ity component. Furthermore, the presence of shock waves in compressible
flows imposes severe challenges for an accurate numerical simulation.

As discussed in the previous chapter, while LBM on standard lattices
recovers the Navier–Stokes equations in the hydrodynamic limit, there exist
Galilean non–invariant error terms in the stress tensor which are negligible
only in the limit of vanishing velocities and at a singular lattice temperature.
This prevents LBM from going to higher velocities as well as incorporating
temperature dynamics.

The extension of LBM beyond its classical operation domain has been
so far addressed with different techniques. Introducing lattices with more
velocities (high–order or multi–speed lattices) [98] is one technique, which
has been shown to be successful in simulating compressible flows to some
extent, but comes at the price of significantly increase of computational cost
and a limited temperature range [98].

Another approach is based on introducing correction terms in the ki-
netic equations, which are designed to eliminate the error terms in the
momentum equations resulting from the constraints of the standard lat-
tices. Starting from the work of Prasianakis & Karlin [83], this approach
has received considerable attention in recent years, as it maintains the
simplicity and efficiency of the standard lattices. Furthermore, simulation

19
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of compressible flows with the LBM also requires the incorporation of
the temperature dynamics in some way. Energy equation can be solved
directly using conventional numerical schemes [89–92]. However, a kinet-
ically consistent approach is to employ additional set of populations for
the conservation of total energy [85, 87, 96, 97]. Earlier models [85, 96, 97]
within the two-population framework on standard lattices were limited to
low-Mach thermal applications.

In this chapter, we follow this strategy and propose two different re-
alizations of the extended LB model that deal with compressible flows
on standard lattices. Both models are based on the two-population frame-
work, where the conservation laws are split between the two sets. A set
of f -populations fi represents mass and momentum while another set of
g-populations gi is earmarked for the energy conservation. The models
are different in the construction of correction terms as well as the energy
equilibrium distribution function, as shall be described below.

3.2 kinetic equations

In the two-population approach, fi are populations responsible for the
mass and momentum conservation and gi are used for the energy conser-
vation. Following Karlin, Sichau & Chikatamarla [97], we consider a single
relaxation time lattice Bhatnagar–Gross–Krook (LBGK) equations for the
f -populations and a quasi-equilibrium LBM equation for the g-populations,
corresponding to discrete velocities ci, where i = 0, . . . , Q− 1,

fi(x+ ciδt, t + δt)− fi(x, t) = ω( f eq
i − fi), (3.1)

gi(x+ ciδt, t + δt)− gi(x, t) = ω1(geq
i − gi) +(ω−ω1)(geq

i − g∗i ). (3.2)

The equilibrium f eq
i , geq

i and the quasi-equilibrium g∗i satisfy the local
conservation laws for the density ρ, momentum ρu and energy ρE,

ρ =
Q−1

∑
i=0

f eq
i =

Q−1

∑
i=0

fi, (3.3)

ρu =
Q−1

∑
i=0

ci f eq
i =

Q−1

∑
i=0

ci fi, (3.4)

ρE =
Q−1

∑
i=0

geq
i =

Q−1

∑
i=0

g∗i =
Q−1

∑
i=0

gi. (3.5)
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We consider a general caloric equation of state of ideal gas. Without loss of
generality, the reference temperature is set at T = 0 and the internal energy
at unit density, U, is written as,

U =
∫ T

0
Cv(T)dT, (3.6)

where T is the temperature and Cv(T) is the mass-based specific heat at
constant volume. The energy at unit density E is,

E = U +
u2

2
. (3.7)

The relaxation parameters ω and ω1 are related to viscosity and thermal
conductivity, as it will be shown below.

3.2.1 Moment requirements

In order for the system (3.1), (3.2) to recover the NSF equations, equilibrium
population f eq

i is required to reproduce the pertinent moments of the
Maxwell-Boltzmann (MB) equilibrium distribution,

f eq = ρ(2πRT)(−D/2)e
−(c−u)2

2RT , (3.8)

computed as,

FMB
lmn = ρ(2πRT)−

3
2

∫
cl

xcm
y cn

z e−
(c−u)2

2RT dc, (3.9)

where l, m and n are integer numbers correspond to linearly independent
moments. In three dimensions (D = 3), these moments can be written
compactly as,

Feq
lmn = Ol

xOm
y On

z ρ, (3.10)

where operators Oα (α = x, y, z) acting on any smooth function A(ρ,u, T)
are defined as [97],

Oα A = RT
∂A
∂uα

+ uα A. (3.11)

In particular, the equilibrium pressure tensor PMB and the third-order
equilibrium tensor QMB computed using (3.10) as,

PMB =
∫
c⊗ c f eqdc = PI + ρu⊗ u, (3.12)

QMB =
∫
c⊗ c⊗ c f eqdc = sym(PI ⊗ u) + ρu⊗ u⊗ u, (3.13)
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are pertinent to the analysis of hydrodynamic limit. Here, P = ρRT is the
pressure, sym(. . . ) denotes symmetrization and I is the unit tensor.

Moving now onto the energy populations. The moments of the Maxwell–
Boltzmann energy distribution function,

GMB
lmn = ρ(2πRT)−

3
2

∫
cl

xcm
y cn

z

(
c2

2
e−

(c−u)2
2RT

)
dc. (3.14)

can similarly be written in a compact form using the operator (3.11) as
follows,

GMB
lmn = ρOl

xOm
y On

z EMB, (3.15)

where the generating function EMB is the energy of the ideal monatomic
gas at unit density (three translational degrees of freedom, Cv = (3/2)R),

EMB =
3
2

RT +
u2

2
. (3.16)

Next, we extend the Maxwell–Boltzmann energy moments (3.15) to a general
caloric ideal gas equation of state (3.7). This amounts to replacing the
generating function (3.16) with the energy (3.7),

Geq
lmn = ρOl

xOm
y On

z E. (3.17)

Among the higher-order moments (3.17), we recognize those pertinent to
the hydrodynamic limit of the energy equation to be analyzed below. These
are the equilibrium energy flux qMB and the flux of the energy flux tensor
RMB,

qMB = (H +
u2

2
)ρu, (3.18)

RMB = (H +
u2

2
)PMB + Pu⊗ u, (3.19)

Here H is the specific enthalpy,

H =
∫ T

0
Cp(T)dT, (3.20)

while Cp is the specific heat at constant pressure, satisfying Mayer’s relation,
Cp − Cv = R.
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Finally, similarly to [97], the quasi-equilibrium populations g∗i are needed
for adjusting the Prandtl number of the model. To that end, the quasi-
equilibrium g∗i differs from geq

i by the non-equilibrium energy flux only,

q∗ = qeq + u(P −PMB + q∗, corr), (3.21)

with P being the pressure tensor,

P =
∫
c⊗ c f dc, (3.22)

and q∗, corr is an additional term required for consistency of the viscous
heat dissipation and will be specified below.

3.2.2 Discrete velocities, factorization and anomaly of the standard lattices

We consider the D3Q27 set of three-dimensional discrete velocities ci, where
D = 3 is the space dimension and Q = 27 is the number of discrete speeds,

ci = (cix, ciy, ciz), ciα ∈ {−1, 0, 1}, i = 0, . . . , 26. (3.23)

Below, we follow Karlin & Asinari [73] and consider a triplet of functions
in two variables ξ and P ,

Ψ0(ξ,P) = 1−P , (3.24)

Ψ1(ξ,P) = 1
2
(ξ + P) , (3.25)

Ψ−1(ξ,P) = 1
2
(−ξ + P) . (3.26)

For vector-parameters (ξx, ξy, ξz) and (Pxx,Pyy,Pzz), we consider a product
associated with the speeds ci (3.23),

Ψi = Ψcix (ξx,Pxx)Ψciy(ξy,Pyy)Ψciz(ξz,Pzz). (3.27)

The moments of the product-form (3.27),

Mlmn =
26

∑
i=0

cl
ixcm

iycn
izΨi, (3.28)

are readily computed thanks to the factorization,

Mlmn =Ml00M0m0M00n, (3.29)
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whereM000 = 1, and

Ml00 =

{
ξx, l odd

Pxx, l even
, (3.30)

M0m0 =

{
ξy, m odd

Pyy, m even
, (3.31)

M00n =

{
ξz, n odd

Pzz, n even
. (3.32)

The equilibrium f eq
i is defined by setting,

ξα = uα, (3.33)

Peq
αα = RT + u2

α. (3.34)

Substituting (3.33) and (3.34) into (3.27), we obtain,

f eq
i = ρΨcix (ux,Peq

xx)Ψciy(uy,Peq
yy )Ψciz(uz,Peq

zz ). (3.35)

The factorization (3.29) implies that equilibrium (3.35) verifies the maxi-
mal number Q = 27 of the moment relations established by the Maxwell–
Boltzmann (MB) distribution,

26

∑
i=0

cl
ixcm

iycn
iz f eq

i = FMB
lmn, l, m, n ∈ {0, 1, 2}. (3.36)

However, the third-order moment tensor at the equilibrium (3.35),

Qeq =
26

∑
i=0
ci ⊗ ci ⊗ ci f eq

i = QMB + Q̃, (3.37)

contains an anisotropic deviation part Q̃ = Qeq −QMB in (3.37), where
only the diagonal elements are non-vanishing,

Q̃αβγ =

{
ρuα(1− 3RT)− ρu3

α, if α = β = γ,

0, otherwise.
(3.38)

The origin of the diagonal anomaly (3.38) is the geometric constraint fea-
tured by the discrete speeds (3.23), c3

iα = ciα, for any i = 0, . . . , 26. Put
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differently, the equilibrium pressure tensor (3.12) and the off-diagonal ele-
ments of the equilibrium third-order moments (3.13) are included in the set
of independent moments (3.36), hence they verify the Maxwell–Boltzmann
moment relations by the product-form. Contrary to that, the diagonal com-
ponents Qeq

ααα are not among the set of moments (3.23), hence the anomaly.
A remedy, commonly employed in the conventional LBM for incompressible
flow simulations, is to minimize the spurious effects of the said anisotropy
by fixing the lattice reference temperature, RTL = 1/3 in order to eliminate
the linear term O(uα) in (3.38).

Thus, the use of the equilibrium (3.35) in the LBGK equation (3.1) imposes
a two-fold restriction: the temperature cannot be chosen differently from TL
while at the same time the flow velocity has to be maintained asymptotically
vanishing. While the equilibrium (3.35) can still be used for the thermal
LBM in the Bussinesq approximation [97], they make (3.35) insufficient for
a compressible flow setting.

The above considerations can be summarized as follows: Because of
the third-order moment anomaly (3.38), the LBGK equation (3.1) with the
product-form equilibrium (3.35) is restricted in several ways, namely:

• The temperature is restricted to a single value, the lattice reference
temperature TL = 1/3.

• The flow velocity has to be asymptotically vanishing.

In the next parts, we propose two different models that address the
restrictions mentioned above and extend the operating range of LBM to
compressible flows.

3.3 extended compressible model i

As we shall see below through the Chapman-Enskog analysis, the anomaly
in the diagonal third-order equilibrium moments (3.38) introduces spurious
error terms into the momentum equations of the form,

Xα = −∂β

[(
1
ω
− 1

2

)
∂γQ̃αβγ

]
δt2. (3.39)

In the extended model I, a non-local correction terms φi is directly intro-
duced into the fi kinetic equations (3.1) as a force term,

fi (x + ciδt, t + δt)− fi(x, t) = ω( f eq
i − fi) + φi, (3.40)
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in order to remove those error terms. This implies the following condition,

Q−1

∑
i=0

ciαφi = Xα, (3.41)

while all other linearly independent moments of φi are vanishing. For
example, in 2D, φi is

φi = −Aix∂x

[(
1
ω
− 1

2

)
∂xQ̃xxx

]
δt2 − Aiy∂y

[(
1
ω
− 1

2

)
∂yQ̃yyy

]
δt2,

(3.42)

where Aix and Aiy are computed using,

Aiα = ciα −
1
2

ciαc2
i , (3.43)

and for D2Q9 lattice model, we have

φ0 = φ5 = φ6 = φ7 = φ8 = 0,

φ1 = −0.5∂x

[(
1
ω −

1
2

)
∂xQ̃xxx

]
δt2,

φ2 = −0.5∂y

[(
1
ω −

1
2

)
∂yQ̃yyy

]
δt2,

φ3 = 0.5∂x

[(
1
ω −

1
2

)
∂xQ̃xxx

]
δt2,

φ4 = 0.5∂y

[(
1
ω −

1
2

)
∂yQ̃yyy

]
δt2.

(3.44)

In three dimensions (D3Q27 lattice),

Aiα =

{
1
2 ciα, for c2

i = 1,

0, otherwise.

Furthermore, the populations geq
i , g∗i are constructed using the following

second–order polynomial form,

Gi = Wi

(
M0 +

Mαciα
T

+
(Mαβ −M0Tδαβ)(ciαciβ − Tδαβ)

2T2

)
+ ψi, (3.45)
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Gi M0 Mα Mαβ

geq
i ρE qMB

α RMB
αβ

g∗i ρE qMB
α + uβ

(
Pαβ − Peq

αβ +
1
ω ∂αQ̃ααα

)
RMB

αβ

Table 3.1: Moments needed for the computation of geq
i and g∗i .

where Wi are temperature-dependent weights,

Wi = Wcix WciyWciz , (3.46)

with

W−1 =
T
2

, (3.47)

W0 = 1− T, (3.48)

W+1 =
T
2

, (3.49)

and

ψi = BiαZα, (3.50)

Zα =
(1− 3T)

2T
(Mαα − TM0) , no summation (3.51)

Biα =


1, for c2

i = 0,

− 1
2 |ciα| , for c2

i = 1

0, otherwise.

Other terms required for the computations are listed in Table 3.1. Note
that, summation convention is used in above equations. One can verify
that the energy equilibrium population geq

i satisfies the pertinent moments
(3.18) and (3.19) required for recovering the correct energy equation in the
hydrodynamic limit.
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3.3.1 Hydrodynamic limit

In order to derive the hydrodynamic equations of model I, we perform the
Chapman–Enskog analysis for the kinetic equations (3.40) and (3.2). We
start by expanding the shifted populations to second order,[

δtDi +
δt2

2
DiDi

]
fi =ω( f eq

i − fi),+φi (3.52)[
δtDi +

δt2

2
DiDi

]
gi =ω1(geq

i − gi)

+ (ω−ω1)(geq
i − g∗i ), (3.53)

where Di is the derivative along the characteristics,

Di = ∂t + ci ·∇. (3.54)

Now, we introduce a multi-scale expansion,

fi = f (0)i + δt f (1)i + δt2 f (2)i + O(δt3), (3.55)

φi = φ
(0)
i + δtφ(1)

i + δt2φ
(2)
i + O(δt3), (3.56)

gi = g(0)i + δtg(1)i + δt2g(2)i + O(δt3), (3.57)

g∗i = g∗(0)i + δtg∗(1)i + δt2g∗(2)i + O(δt3), (3.58)

∂t = ∂
(1)
t + δt∂(2)t + O(δt2), (3.59)

and substitute them into (3.52) and (3.53). Using the notation,

D(1)
i = ∂

(1)
t + ci ·∇, (3.60)

we obtain, from zeroth through second order in the time step δt, for the
f -populations,

f (0)i = f eq
i , (3.61)

φ
(0)
i = 0, (3.62)

D(1)
i f (0)i = −ω f (1)i , (3.63)

φ
(1)
i = 0, (3.64)

∂
(2)
t f (0)i + ci ·∇ f (1)i − ω

2
D(1)

i f (1)i

= −ω f (2)i + φ
(2)
i , (3.65)
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and similarly for the g-populations,

g(0)i = g∗(0)i = geq
i , (3.66)

D(1)
i g(0)i = −ω1g(1)i − (ω−ω1)g∗(1)i , (3.67)

∂
(2)
t g(0)i + ci ·∇g(1)i −

ω1

2
D(1)

i g(1)i −
ω−ω1

2
D(1)

i g∗(1)i

= −ω1g(2)i − (ω−ω1)g∗(2)i . (3.68)

With (3.61) and (3.66), the mass, momentum and energy conservation (3.3),
(3.4) and (3.5) imply the solvability conditions,

26

∑
i=0

f (k)i = 0, k = 1, 2 . . . ; (3.69)

26

∑
i=0
ci f (k)i = 0, k = 1, 2, . . . ; (3.70)

26

∑
i=0

g∗(k)i =
26

∑
i=0

g(k)i = 0, k = 1, 2, . . . . (3.71)

With the f -equilibrium (3.35) and the g-equilibrium (3.45), while taking
into account the solvability conditions (3.69), (3.70) and (3.71), and also
making use of the equilibrium pressure tensor (3.12), and the equilibrium
energy flux (3.18), the first-order kinetic equations (3.63) and (3.67) imply
the following first-order balance equations for the density, momentum and
energy,

∂
(1)
t ρ = −∇ · (ρu), (3.72)

∂
(1)
t (ρu) = −∇ · (PI + ρu⊗ u). (3.73)

∂
(1)
t (ρE) = −∇ · qeq. (3.74)

Using (3.72) and (3.73), The first-order energy equation (3.74) can be written
in terms of the temperature as,

ρCv∂
(1)
t T = −ρCvu ·∇T − P(∇ · u). (3.75)

Thus, to first order, the LBM recovers the compressible Euler equations for
a generic ideal gas.
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Moreover, the first-order constitutive relation for the nonequilibrium
pressure tensor P (1) is found from (3.63) as follows, using (3.12), (3.37),
(3.13) and (3.38),

−ωP (1) = ∂
(1)
t PMB +∇ ·QMB +∇ · Q̃, (3.76)

where

P (1) =
Q−1

∑
i=0

ci ⊗ ci f (1)i . (3.77)

Using (3.72), (3.73) and (3.75), we find in (3.76),

∂
(1)
t PMB +∇ ·QMB = Z, (3.78)

where we have introduced a short-hand notation for the total stress, includ-
ing both the shear and the bulk contributions,

Z =P
(
∇u+∇u† − 2

3
(∇ · u)I

)
+ P

(
2
3
− R

Cv

)
(∇ · u)I , (3.79)

and where (·)† denotes transposition. With (3.78) and (3.79), the nonequi-
librium pressure tensor (3.76) becomes,

P (1) =− 1
ω
Z − 1

ω
∇ · Q̃. (3.80)

A comment is in order. In (3.80), the first term is the conventional con-
tribution from both the shear and the bulk stress. The second term is
anomalous due to the diagonal anisotropy (3.38) and will be canceled out
by the counter-term φ

(2)
i , as we shall see below.

Similarly, the first-order constitutive relation for the nonequilibrium
energy flux q(1) is found from (3.67),

−ω1q
(1) − (ω−ω1)q

∗(1) = ∂
(1)
t qeq +∇ ·Req. (3.81)

Evaluating the right hand side of (3.81) with the help of the first-order
relations (3.72), (3.73) and (3.75), we obtain,

∂
(1)
t qeq +∇ ·Req = PCp∇T + (u ·Z) . (3.82)
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With (3.82), the nonequilibrium energy flux (3.81) becomes,

q(1) = − 1
ω1

PCp∇T − 1
ω1

(u ·Z)− ω−ω1

ω1
q∗(1). (3.83)

The quasi-equilibrium energy flux q∗(1) is evaluated according to (3.45) and
by taking into account the first-order constitutive relation for the pressure
tensor (3.80),

q∗(1) = u ·
(
P (1) +

1
ω
∇ · Q̃

)
= − 1

ω
(u ·Z) . (3.84)

We comment that the first term in the nonequilibrium energy flux (3.83) is a
precursor of the Fourier law of thermal conductivity while the second and
the third terms combine to the viscous heating contribution, as we shall see
it below. The quasi-equilibrium flux (3.84) is required for consistency of the
viscous heating with the prescribed Prandtl number [97].

With the first-order constitutive relations for the nonequilibrium fluxes
(3.80) and (3.83) in place, we proceed to the second-order approximation.
Applying the solvability condition (3.69) and (3.70) to the second-order
f -equation (3.65), we obtain,

∂
(2)
t ρ = 0, (3.85)

∂
(2)
t (ρu) = −∇ ·

[(
1− ω

2

)
P (1)

]
+ ∑

i
ciφ

(2)
i . (3.86)

The second-order momentum equation (3.86) is transformed by virtue of
(3.80) to give,

∂
(2)
t (ρu) = −∇ ·

[
−
(

1
ω
− 1

2

)
Z −

(
1
ω
− 1

2

)
∇ · Q̃

]
+ ∑

i
ciφ

(2)
i . (3.87)

Note that, the anomalous terms

X = −∇ ·
[(

1
ω
− 1

2

)
∇ · Q̃

]
, (3.88)

are canceled out by setting,

∑
i
ciφ

(2)
i = X , (3.89)

and the final result (3.90),

∂
(2)
t (ρu) = −∇ ·

[
−
(

1
ω
− 1

2

)
Z

]
, (3.90)
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is isotropic.
Finally, applying solvability condition (3.71) to the second-order g-equation

(3.68), we find

∂
(2)
t (ρE) = −∇ ·

[(
1− ω1

2

)
q(1) − ω−ω1

2
q∗(1)

]
. (3.91)

Taking into account the first-order energy flux (3.83) and the quasi-equilibrium
energy flux (3.84), we obtain in (3.91),

∂
(2)
t (ρE) = −∇ ·

[
−
(

1
ω1
− 1

2

)
CpP∇T

]
−∇ ·

[
−
(

1
ω
− 1

2

)
(u ·Z)

]
. (3.92)

While the first term leads to the Fourier law, it is important to note that
the second term represents viscous heating consistent with the momentum
equation (3.90). The latter consistency is implied by the construction of
the quasi-equilibrium energy flux (3.84). This concludes the second-order
accurate analysis of the hydrodynamic limit of the LBM system (3.40) and
(3.2), and we proceed with a summary of the gas dynamics equations
thereby recovered.

3.3.2 Equations of gas dynamics

Combining the first- and second-order contributions to the density, the
momentum and the energy equation, (3.72) and (3.85), (3.73) and (3.90), and
(3.74) and (3.92), respectively, and using a notation, ∂t = ∂

(1)
t + δt∂(2)t , we

arrive at the continuity, the flow and the energy equations of gas dynamics
as follows,

∂tρ +∇ · (ρu) = 0, (3.93)

∂t(ρu) +∇ · (ρu⊗ u) +∇ · π = 0, (3.94)

∂t(ρE) +∇ · (ρEu) +∇ · q +∇ · (π · u) = 0. (3.95)

Here, π is the pressure tensor

π = PI − µ

(
S − 2

3
(∇ · u)I

)
− ς(∇ · u)I , (3.96)

with P the pressure of ideal gas,

P = ρRT, (3.97)



3.3 extended compressible model i 33

with the strain rate tensor

S = ∇u+∇u†, (3.98)

and the dynamic viscosity µ and the bulk viscosity ς,

µ =

(
1
ω
− 1

2

)
Pδt, (3.99)

ς =

(
2
3
− R

Cv

)
µ. (3.100)

The heat flux q in the energy equation (3.95) reads

q = −κ∇T, (3.101)

with the thermal conductivity coefficient κ,

κ =

(
1

ω1
− 1

2

)
CpPδt. (3.102)

The Prandtl number due to (3.99) and (3.102) is,

Pr =
Cpµ

κ
=

ω1(2−ω)

ω(2−ω1)
, (3.103)

while the adiabatic exponent,

γ =
Cp

Cv
, (3.104)

is defined by the choice of the caloric equations of state (3.6) and Mayer’s
relation, Cp − Cv = R. The mass, momentum and energy equations, (3.93),
(3.94) and (3.95) are the standard equations of the macroscopic gas dynam-
ics.

3.3.3 Summary of the extended model I

The kinetic equations for the momentum f and energy g populations
are [87]

fi(x+ ciδt, t + δt)− fi(x, t) = ω( f eq
i − fi) + φi,

gi(x+ ciδt, t + δt)− gi(x, t) = ω1(geq
i − gi) + (ω−ω1)(geq

i − g∗i ).
(3.105)
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The equilibrium population f eq
i is computed using (3.35) and the energy

equilibrium and quasi-equilibrium populations are computed with (3.45).
Furthermore, the relaxation parameters ω and ω1 are related to dynamic
viscosity and thermal conductivity as follows,

µ =

(
1
ω
− 1

2

)
Pδt, (3.106)

κ =

(
1

ω1
− 1

2

)
CpPδt. (3.107)

3.3.4 Numerical validation

In this section, we shall asses the accuracy and performance of the proposed
LB model. In all simulations, the gas constant was set to R = 1, the time step
is δt = 1 and the spatial derivatives in the correction term φi are evaluated
using a second-order central difference scheme.

3.3.4.1 Galilean invariance, isotropy and speed of sound

The first numerical experiment tests the Galilean invariance of the model
by measuring the kinematic viscosity ν = µ/ρ and thermal diffusivity
α = κ/Cpρ for the decay of a plane shear wave. For viscosity measurement,
the initial conditions of the flow are

ρ = ρ0, ux = a0 sin(2πy/Ly), uy = Ma
√

γT, (3.108)

where Ma = u0/
√

γT is the advection Mach number, γ = 1.4, a0 = 0.001
is the amplitude and Ly = 200 is number of nodes in the y direction,
ρ0 = 1 and T = 0.1. Periodic boundary conditions are applied in both
x and y directions. The numerical viscosity (νnum) is measured by fitting
an exponential to the time decay of maximum flow velocity ux,max ∼
e−νt(2π/Ly)2

.
In Fig. 3.1, measured viscosity is compared with the imposed viscosity at

different advection Mach numbers. It is evident that the measured viscosity
is in good agreement with the theoretical values, and is independent of
the frame velocity. However, in this special case, the diagonal anomaly
(3.38) is dormant and does not trigger any spurious effects because the
derivatives ∂xQ̃xxx and ∂yQ̃yyy both vanish. Consequently, in order to trigger
the anisotropy of the deviation terms (3.38) and to show the necessity of
using the correction term, the shear wave is rotated by π/4. The temperature
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Figure 3.1: Numerical measurement of the fluid viscosity for axis-aligned shear
wave setup at temperature T = 0.1 for different velocities.

is kept at T = 0.1. The viscosity measurement is shown in Fig. 3.2 for
different advection Mach numbers. It can be observed that the model lacks
Galilean invariance when using the product-form equilibrium (3.35) without
correction φi. However, once the correction term is included, the present
model recovers the imposed viscosity, independent of the frame velocity.

Similarly, for thermal diffusivity α, the initial conditions are

ρ = ρ0 + a0 sin(2πy/Ly), ux = u0, uy = 0.0, T = ρ0T0/ρ, (3.109)

and thermal diffusivity is measured through the time decay of temperature,
where advection Mach number and adiabatic exponent are defined as in
previous case. Simulation results are illustrated in Fig. 3.3 for two different
Prandtl numbers, where excellent agreement between theory and numerical
results can be observed up to Ma = 0.9. This demonstrates the Galilean
invariance for both the momentum and energy equations.

Finally, in order to validate temperature independence of the present
model, the speed of sound cs is measured and compared to the theoret-
ical value cs =

√
γT for different values of γ in Fig. 3.4. A quasi-one-

dimensional setup is separated into two regions with a pressure difference
∆P = 10−4 at uniform temperature. Then, the speed of sound is measured
numerically by tracking the shock front of the propagated sound wave.
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Figure 3.2: Numerical measurement of the fluid viscosity for rotated shear wave
setup at temperature T = 0.1 for different velocities.

The Prandtl number is set to Pr = 0.71. From Fig. 3.4 it is evident that the
present model can correctly predict the speed of sound in a wide range of
temperatures.

3.3.4.2 Shock Tube

The setup for this problem is similar to that of sound speed measurement
and the initial conditions are as follows,

(ρ, ux, uy, T) =

{
(0.5, 0, 0, 0.2), x/Lx ≤ 0.5,

(2.0, 0, 0, 0.025), x/Lx > 0.5.
(3.110)

A 3000× 5 grid was used with µ = 0.025, and γ = 2.0. Simulation results
for the density, temperature and pressure at time t = 1273, in lattice units,
are shown in Fig. 3.5. It can be observed that the present results are in
excellent agreement with the analytical solutions [99], apart from a minor
oscillatory pattern at the shock front, also present in other models [89].

3.3.4.3 Thermal Couette flow

The thermal Couette flow between two parallel plates is considered to test
the viscous heat dissipation. In this problem, the upper lid with higher
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Figure 3.3: Numerical measurement of the fluid thermal diffusivity for axis-
aligned shear wave setup at Prandtl numbers Pr = 0.5, Pr = 1.0.

temperature TH is moving at a constant speed of u0, while the lower wall is
kept at rest with a temperature TC. The analytical solution for the reduced
temperature can be written as,

T − TC
TH − TC

=
y
Ly

+
Pr Ec

2
y
Ly

(1− y
Ly

), (3.111)

where Ec = u2
0/(Cp∆T) is the Eckert number and ∆T = TH − TC. Pe-

riodic boundary conditions are applied in the horizontal direction and
the Tamm-Mott-Smith (TMS) boundary conditions, as described in [97],
are used for the top and bottom walls. The simulations are performed
at Ma = u0/

√
γTC = 0.5 and with the following parameters: Ly = 50,

Re = ρu0Ly/µ = 100, TC = 1/3, γ = 1.4. Figures 3.6 and 3.7 show the
temperature profile of thermal Couette flow, at different Eckert and Prandtl
numbers, respectively, which are in excellent agreement with the analytical
solution.

To show the effect of correction terms, the solutions obtained for Ec = 4.0
and Pr = 0.71 with and without correction terms are compared in Fig.
3.8, which demonstrates that correction terms have significant effect on
the viscous heating in this problem and that the present model with the
correction terms can recover the analytical solution with excellent accuracy.



38 extended lattice boltzmann models for compressible flows

T

c s

10
-3

10
-2

10
-1

10
00

0.2

0.4

0.6

0.8

1

1.2

Theoretical γ = 1.4
Present γ = 1.4
Theoretical γ = 2.0
Present γ = 2.0
Theoretical γ = 3.0
Present γ = 3.0

Figure 3.4: Numerical measurement of the speed of sound at three different
adiabatic exponents γ.

3.4 extended compressible model ii

In the previous model, the anomalous term in the momentum equation
was canceled out at the level of second–order kinetic equations. That, in
turn, results in an expression for the correction term that contains the
second derivative of the deviation Q̃, see Eq. (3.39). Different from the
previous model, the spurious anisotropy effects can also be canceled out
by extending the equilibrium such that the third-order moment anomaly
is compensated in the hydrodynamic limit. Because the anomaly only
concerns the diagonal (unidirectional) elements of the third-order moments,
the cancellation can be achieved by redefining the diagonal elements of the
second-order moments. The advantage of this approach, as demonstrated
below, is that it requires only the computation of first derivative of Q̃, thus
provides a simpler formulation compared to model I. Another advantage,
which will be explored in Chapter 4, is that it can easily be extended to
supersonic flows by proper treatment of spatial derivatives in the correction
term.
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Figure 3.5: Shock tube simulation results after t = 1273 time steps. (a) Density,
(b) temperature and (c) pressure. Line: analytical solution; symbols:
present model.

In model II, the fi kinetic equations are modified using the extended
equilibrium f ex

i ,

fi(x+ ciδt, t + δt)− fi(x, t) = ω( f ex
i − fi). (3.112)

As described below through the Chapman-Enskog expansion, in order to
cancel the errors, the diagonal elements Pex

αα must be extended as

Pex
αα = Peq

αα + δt
(

2−ω

2ρω

)
∂αQ̃ααα, (3.113)
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Figure 3.6: Temperature profile for the thermal Couette flow at various Eck-
ert numbers and fixed Prandtl number Pr = 0.71. Lines: analytical
solution; symbols: present model.

where Q̃ααα is the diagonal element of the anomaly (3.38),

Q̃ααα = ρuα(1− 3RT)− ρu3
α. (3.114)

With (3.113) instead of (3.34), the extended equilibrium f ex
i is defined using

the product-form as before,

f ex
i = ρΨcix (ux,Pex

xx)Ψciy(uy,Pex
yy)Ψciz(uz,Pex

zz ). (3.115)

The pressure tensor of the extended equilibrium is thus

P ex = P eq + δt
(

2−ω

2ω

)
∇ · Q̃. (3.116)

Model II, thus, provides a consistent and simpler formulation for canceling
the anisotrpoy effect of standard lattices.

The construction of g-equilibrium and g-quasi-equilibrium populations
is also improved in model II, by using the product-form formulation of
equilibrium which recovers all Maxwell–Boltzmann moments supported
by the stencil. This is achieved by considering the operator version of
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Figure 3.7: Temperature profile for the thermal Couette flow at various Prandtl
numbers and fixed Eckert number Ec = 4.0 . Lines: analytical solution;
symbols: present model.

the product-form (3.27) and defining parameters ξα and Pαα as operator
symbols,

ξα = Oα, (3.117)

Pαα = O2
α. (3.118)

With the operators (3.117) and (3.118) substituted into the product form
(3.27), the equilibrium populations geq

i are written using the generating
function (3.7),

geq
i = ρΨcix (Ox,O2

x)Ψciy(Oy,O2
y)Ψciz(Oz,O2

z )E. (3.119)

With (3.29), it is straightforward to see that the equilibrium (3.119) verifies
a subset of the equilibrium energy moments (3.17),

26

∑
i=0

cl
ixcm

iycn
izgeq

i = Geq
lmn, l, m, n ∈ {0, 1, 2}. (3.120)

Thus, by construction, the g-equilibrium (3.119) recovers the maximal num-
ber Q = 27 of the energy moments (3.17), including the energy flux (3.18)
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Figure 3.8: Comparison of temperature profile for the thermal Couette flow with
and without correction terms at Ec = 4.0 and Pr = 0.71.

and the flux of the energy flux (3.19), as opposed to equilibrium for model
I.

As before, the quasi-equilibrium g∗i differs from geq
i by the non-equilibrium

energy flux only,

g∗i =

geq
i +

1
2
ci · (q∗ − qeq) , if c2

i = 1,

geq
i , otherwise.

(3.121)

Here q∗ is a specified quasi-equilibrium energy flux. Indeed, (3.121) and
(3.120) imply for l, m, n ∈ {0, 1, 2},

26

∑
i=0

cl
ixcm

iycn
izg∗i =


q∗x, if l = 1, m = 0, n = 0

q∗y , if l = 0, m = 1, n = 0

q∗z , if l = 0, m = 0, n = 1

Geq
lmn, otherwise.

(3.122)
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While the above construction holds for any specified q∗, the quasi-equilibrium
flux required for the consistent realization of the adjustable Prandtl number
by the LBM system (3.112) and (3.2) reads,

q∗ = qeq + u ·
(
P −P eq +

δt
2
∇ · Q̃

)
, (3.123)

where P is the pressure tensor,

P =
26

∑
i=0
ci ⊗ ci fi. (3.124)

With all the elements of the LBM system (3.112) and (3.2) specified, we now
proceed with working out its hydrodynamic limit.

3.4.1 Hydrodynamic limit

Taylor expansion of the shift operator in (3.112) and (3.2) to second order
gives, [

δtDi +
δt2

2
DiDi

]
fi =ω( f ex

i − fi), (3.125)[
δtDi +

δt2

2
DiDi

]
gi =ω1(geq

i − gi)

+ (ω−ω1)(geq
i − g∗i ). (3.126)

Introducing a multi-scale expansion,

fi = f (0)i + δt f (1)i + δt2 f (2)i + O(δt3), (3.127)

f ex
i = f ex(0)

i + δt f ex(1)
i + δt2 f ex(2)

i + O(δt3), (3.128)

gi = g(0)i + δtg(1)i + δt2g(2)i + O(δt3), (3.129)

g∗i = g∗(0)i + δtg∗(1)i + δt2g∗(2)i + O(δt3), (3.130)

∂t = ∂
(1)
t + δt∂(2)t + O(δt2), (3.131)
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substituting into (3.125) and (3.126), we obtain, from zeroth through second
order in the time step δt, for the f -populations,

f (0)i = f ex(0)
i = f eq

i , (3.132)

D(1)
i f (0)i = −ω

(
f (1)i − f ex(1)

i

)
, (3.133)

∂
(2)
t f (0)i + ci ·∇ f (1)i − ω

2
D(1)

i

(
f (1)i − f ex(1)

i

)
= −ω f (2)i + ω f ex(2)

i , (3.134)

and similarly for the g-populations,

g(0)i = g∗(0)i = geq
i , (3.135)

D(1)
i g(0)i = −ω1g(1)i − (ω−ω1)g∗(1)i , (3.136)

∂
(2)
t g(0)i + ci ·∇g(1)i −

ω1

2
D(1)

i g(1)i −
ω−ω1

2
D(1)

i g∗(1)i

= −ω1g(2)i − (ω−ω1)g∗(2)i . (3.137)

With (3.132) and (3.135), the mass, momentum and energy conservation
(3.3), (3.4) and (3.5) imply the solvability conditions,

26

∑
i=0

f ex(k)
i =

26

∑
i=0

f (k)i = 0, k = 1, 2 . . . ; (3.138)

26

∑
i=0
ci f ex(k)

i =
26

∑
i=0
ci f (k)i = 0, k = 1, 2, . . . ; (3.139)

26

∑
i=0

g∗(k)i =
26

∑
i=0

g(k)i = 0, k = 1, 2, . . . . (3.140)

With the f -equilibrium (3.35) and the g-equilibrium (3.119), while taking
into account the solvability conditions (3.138), (3.139) and (3.140), and also
making use of the equilibrium pressure tensor (3.12), and the equilibrium
energy flux (3.18), the first-order kinetic equations (3.133) and (3.136) imply
the following first-order balance equations for the density, momentum and
energy,

∂
(1)
t ρ = −∇ · (ρu), (3.141)

∂
(1)
t (ρu) = −∇ · (PI + ρu⊗ u). (3.142)

∂
(1)
t (ρE) = −∇ · qeq. (3.143)
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The first-order energy equation (3.143) can be recast into the temperature
equation by virtue of (3.141) and (3.142),

ρCv∂
(1)
t T = −ρCvu ·∇T − P(∇ · u). (3.144)

Thus, to first order, the LBM recovers the compressible Euler equations for
a generic ideal gas.

Moreover, the first-order constitutive relation for the nonequilibrium
pressure tensor P (1) is found from (3.133) as follows,

−ωP (1) + ωP ex(1) = ∂
(1)
t PMB +∇ ·QMB +∇ · Q̃, (3.145)

where

P (1) =
Q−1

∑
i=0

ci ⊗ ci f (1)i , (3.146)

P ex(1) =
Q−1

∑
i=0

ci ⊗ ci f ex(1)
i . (3.147)

Using (3.141), (3.142) and (3.144), we find in (3.145),

∂
(1)
t PMB +∇ ·QMB = Z, (3.148)

where we have introduced a short-hand notation for the total stress, includ-
ing both the shear and the bulk contributions,

Z =P
(
∇u+∇u† − 2

3
(∇ · u)I

)
+ P

(
2
3
− R

Cv

)
(∇ · u)I , (3.149)

and where (·)† denotes transposition. With (3.148) and (3.149), the nonequi-
librium pressure tensor (3.145) becomes,

P (1) =− 1
ω
Z − 1

ω
∇ · Q̃+P ex(1). (3.150)

In (3.150), the first term is the conventional contribution from both the shear
and the bulk stress. The second term is anomalous due to the diagonal
anisotropy (3.38) while the third is the counter-term required to annihi-
late the spurious contribution in the next, second-order approximation.
According to (3.116),

P ex(1) =

(
2−ω

2ω

)
∇ · Q̃. (3.151)
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Similarly, the first-order constitutive relation for the nonequilibrium
energy flux q(1) is found from (3.136),

−ω1q
(1) − (ω−ω1)q

∗(1) = ∂
(1)
t qeq +∇ ·Req. (3.152)

Evaluating the right hand side of (3.152) with the help of the first-order
relations (3.141), (3.142) and (3.144), we obtain,

∂
(1)
t qeq +∇ ·Req = PCp∇T + (u ·Z) . (3.153)

With (3.153), the nonequilibrium energy flux (3.152) becomes,

q(1) = − 1
ω1

PCp∇T − 1
ω1

(u ·Z)− ω−ω1

ω1
q∗(1). (3.154)

The quasi-equilibrium energy flux q∗(1) is evaluated according to (3.123) and
by taking into account the first-order constitutive relation for the pressure
tensor (3.150),

q∗(1) = u ·
(
P (1) +

1
2
∇ · Q̃

)
= − 1

ω
(u ·Z) . (3.155)

The first term in the nonequilibrium energy flux (3.154) is a precursor of
the Fourier law of thermal conductivity while the second and the third
terms combine to the viscous heating contribution, as we shall see it below.
The quasi-equilibrium flux (3.155) is required for consistency of the viscous
heating with the prescribed Prandtl number [97].

With the first-order constitutive relations for the nonequilibrium fluxes
(3.150) and (3.154) in place, we proceed to the second-order approximation.
Applying the solvability condition (3.138) and (3.139) to the second-order
f -equation (3.134), we obtain,

∂
(2)
t ρ = 0, (3.156)

∂
(2)
t (ρu) = −∇ ·

[(
1− ω

2

)
P (1) +

ω

2
P ex(1)

]
. (3.157)

The second-order momentum equation (3.157) is transformed by virtue of
(3.150) and (3.151) to give,

∂
(2)
t (ρu) = −∇ ·

[
−
(

1
ω
− 1

2

)
Z

]
. (3.158)

Note that, the anomalous terms cancel out and the result (3.158) is mani-
festly isotropic.
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Finally, applying solvability condition (3.140) to the second-order g-
equation (3.137), we find

∂
(2)
t (ρE) = −∇ ·

[(
1− ω1

2

)
q(1) − ω−ω1

2
q∗(1)

]
. (3.159)

Taking into account the first-order energy flux (3.154) and the quasi-
equilibrium energy flux (3.155), we obtain in (3.159),

∂
(2)
t (ρE) = −∇ ·

[
−
(

1
ω1
− 1

2

)
CpP∇T

]
−∇ ·

[
−
(

1
ω
− 1

2

)
(u ·Z)

]
. (3.160)

While the first term leads to the Fourier law, it is important to note that
the second term represents viscous heating consistent with the momentum
equation (3.158). The latter consistency is implied by the construction of the
quasi-equilibrium energy flux (3.123) and (3.155). This concludes the second-
order accurate analysis of the hydrodynamic limit of the LBM system (3.112)
and (3.2), and we proceed with a summary of the gas dynamics equations
thereby recovered.

3.4.2 Equations of gas dynamics

By combining the first- and second-order contributions to the density, mo-
mentum and the energy equation, (3.141) and (3.156), (3.142) and (3.158),
and (3.143) and (3.160), respectively, we arrive at the continuity, the momen-
tum and the energy equations of gas dynamics as follows,

∂tρ +∇ · (ρu) = 0, (3.161)

∂t(ρu) +∇ · (ρu⊗ u) +∇ · π = 0, (3.162)

∂t(ρE) +∇ · (ρEu) +∇ · q +∇ · (π · u) = 0, (3.163)

where π is the pressure tensor

π = PI − µ

(
S − 2

3
(∇ · u)I

)
− ς(∇ · u)I , (3.164)

with P the pressure of ideal gas,

P = ρRT, (3.165)
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with the strain rate tensor,

S = ∇u+∇u†, (3.166)

and the dynamic viscosity µ and the bulk viscosity ς,

µ =

(
1
ω
− 1

2

)
Pδt, (3.167)

ς =

(
2
3
− R

Cv

)
µ. (3.168)

The heat flux q in the energy equation (3.163) reads,

q = −κ∇T, (3.169)

with the thermal conductivity coefficient κ,

κ =

(
1

ω1
− 1

2

)
CpPδt. (3.170)

The Prandtl number is,

Pr =
Cpµ

κ
=

ω1(2−ω)

ω(2−ω1)
, (3.171)

while the adiabatic exponent,

γ =
Cp

Cv
, (3.172)

is defined by the choice of the caloric equations of state (3.6) and Mayer’s
relation, Cp − Cv = R. The mass, momentum and energy equations, (3.161),
(3.162) and (3.163) are the standard equations of the macroscopic gas dy-
namics. We shall conclude the model development with a summary of the
key elements of the compressible extended LB model II.

3.4.3 Summary of the extended model II

The kinetic equations for the momentum f and energy g populations
are [100]

fi(x+ ciδt, t + δt)− fi(x, t) = ω( f ex
i − fi),

gi(x+ ciδt, t + δt)− gi(x, t) = ω1(geq
i − gi) + (ω−ω1)(geq

i − g∗i ).
(3.173)
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The extended equilibrium population f ex
i is computed using (3.115) and

the energy equilibrium and quasi-equilibrium populations are computed
with (3.119) and (3.121), respectively. The relaxation parameters ω and ω1
are related to dynamic viscosity and thermal conductivity as follows,

µ =

(
1
ω
− 1

2

)
Pδt, (3.174)

κ =

(
1

ω1
− 1

2

)
CpPδt. (3.175)

We shall proceed with the numerical validation of the compressible lattice
Boltzmann model II.

3.4.4 Numerical validation

Similar to previous model, the simulations here are performed with gas
constant R = 1, time step δt = 1 and second-order central difference
evaluation of the spatial derivatives. The results of the Galilean invariance,
speed of sound and thermal Couette flow for this model are identical to
the previous one presented in Sec. (3.3.4), and are not shown here for the
sake of brevity.

3.4.4.1 Sod’s shock tube

Sod’s shock tube benchmark [101] is a classical Riemann problem, which
is often used to test capability of a compressible flow solver in capturing
shock waves, contact discontinuities and expansion fans. The initial flow
field is given by,

(ρ, ux, P) =

{
(1.0, 0, 0.15), x/Lx ≤ 0.5,

(0.125, 0, 0.015), x/Lx > 0.5,
(3.176)

where Lx = 600 is the number of grid points. Simulation results with
the viscosity µ = 0.015 for the density and reduced velocity u∗ = u/

√
Tl ,

where Tl is temperature on the left half of tube, at non-dimensional time
t∗ = t

√
Tl/Lx = 0.2, are shown in Fig. 3.9. It can be seen that, apart from a

small oscillation, the results match the non-viscous exact solution well.
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Figure 3.9: Density (left) and reduced velocity (right) profiles for Sod’s shock
tube simulation at non-dimensional time t∗ = 0.2. Symbols: present
model; line: exact solution.

3.4.5 Application of extended equilibrium to incompressible iso–thermal flows

The extended equilibrium introduced in the previous section can also be
beneficial in incompressible iso-thermal applications by turning-off the sec-
ond population and use a constant temperature instead. This would result
in a fully Galilean invariant kinetic model in the incompressible regime.
The resulting model extends LB models to simulations with higher values
of the flow velocity and can be used at temperatures that are higher than
the lattice reference temperature, which enhances computational efficiency
by decreasing the number of required time steps [102].

Furthermore, the extended equilibrium (3.115) can be extended to cases
with stretched (rectangular) lattices. Rectangular lattices may improve the
computational efficiency of the LBM by using a coarser mesh in the direction
of smaller gradients in the flow. Unlike other approaches of handling non-
uniform grids (e.g. Eulerian [103, 104] and semi-Lagrangian off-lattice LBM
[105–108] or grid refinement techniques [109, 110]), stretched lattices do
not require a substantial change in the standard LBM algorithm. Recent
works on the stretched LBM restore isotropy of the stress tensor by using
multi-relaxation time LBM models [111–113]. However, these approaches
do not address the flow velocity and temperature restrictions.

In this section, we show that the concept of extended equilibrium provides
a unified view on the three aspects of the Galilean invariance problem in
the LBM: the velocity range, the temperature range and grid stretching,



3.4 extended compressible model ii 51

which all stem from the same error, induced by constraints of the discrete
velocity set.

We begin with a brief review of kinetic equations. We consider the LBGK
equation for the populations fi, associated to the discrete velocities vi for
i = 0, . . . , Q− 1,

fi(x+ viδt, t + δt)− fi(x, t) = ω( f ex
i − fi), (3.177)

where,

ρ =
Q−1

∑
i=0

f ex
i =

Q−1

∑
i=0

fi, (3.178)

ρu =
Q−1

∑
i=0

vi f ex
i =

Q−1

∑
i=0

vi fi. (3.179)

The relaxation parameter ω is related to the kinematic viscosity ν,

ν =

(
1
ω
− 1

2

)
RTδt, (3.180)

with T being the temperature and R is the gas constant.
With (3.23), we define the particles’ velocities vi in a stretched cell as,

vi = (λxcix, λyciy, λzciz), (3.181)

where λα is the stretching factor in the direction α. To maintain on-lattice
propagation, the cell size is changed accordingly to δxα = λαδt.

The (normalized, M000 = 1) moments Mlmn are defined using the
convention,

l → x, m→ y, n→ z; l, m, n = 0, 1, 2, . . . , (3.182)

and thus,

ρMlmn =
Q−1

∑
i=0

vl
ixvm

iyvn
iz fi. (3.183)

For convenience, we use a more specific notation for the first-order and the
diagonal second-order moments,

M100 = ux, M010 = uy, M001 = uz, (3.184)

M200 = Pxx, M020 = Pyy, M002 = Pzz. (3.185)
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As before, we essentially follow [73] and consider a class of factorized
populations. To that end, we define a triplet of functions in the three
variables, uα, Pαα and λα,

Ψ0(uα,Pαα, λα) = 1− Pαα

λ2
α

, (3.186)

Ψ1(uα,Pαα, λα) =
1
2

(
uα

λα
+
Pαα

λ2
α

)
, (3.187)

Ψ−1(uα,Pαα, λα) =
1
2

(
− uα

λα
+
Pαα

λ2
α

)
. (3.188)

For the vectors u, P , and λ,

u = (ux, uy, uz), (3.189)

P = (Pxx,Pyy,Pzz), (3.190)

λ = (λx, λy, λz), (3.191)

we consider a product-form, associated with the discrete velocities vi (3.181),

Ψi(u,P ,λ) = ∏
α=x,y,z

Ψciα(uα,Pαα, λα). (3.192)

The normalized moments of the product-form (3.192),

Mlmn =
Q−1

∑
i=0

vl
ixvm

iyvn
izΨi, (3.193)

are readily computed thanks to the factorization,

Mlmn =Ml00M0m0M00n, (3.194)

where

M000 = 1, (3.195)

Ml00 =

{
λl−1

x ux, l odd

λl−2
x Pxx, l even

, (3.196)

M0m0 =

{
λm−1

y uy, m odd

λm−2
y Pyy, m even

, (3.197)

M00n =

{
λn−1

z uz, n odd

λn−2
z Pzz, n even

. (3.198)
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For any stretching (3.191), the six-parametric family of normalized popula-
tions (3.192) is identified by the flow velocity (3.189) and the diagonal of the
pressure tensor at unit density (3.190), and was termed the unidirectional
quasi-equilibrium in Ref. [73]. We make use of the product-form (3.192)
to construct all pertinent populations, the equilibrium and the extended
equilibrium.

The equilibrium f eq
i is defined by setting Pαα (3.185) equal to the equilib-

rium diagonal element of the pressure tensor at unit density,

Peq
αα = RT + u2

α. (3.199)

Thus, we get

f eq
i = ρΨi(u,Peq,λ). (3.200)

With (3.193), we find the pressure tensor and the third-order moment tensor
at the equilibrium (3.200) as follows,

P eq =
Q−1

∑
i=0

vi ⊗ vi f eq
i = PMB, (3.201)

Qeq =
Q−1

∑
i=0

vi ⊗ vi ⊗ vi f eq
i = QMB + Q̃. (3.202)

The isotropic parts, PMB and QMB, are the Maxwell–Boltzmann (MB) pres-
sure tensor and the third-order moment tensor, respectively,

PMB = PI + ρu⊗ u, (3.203)

QMB = sym(PI ⊗ u) + ρu⊗ u⊗ u, (3.204)

where P = ρRT is the pressure, sym(. . . ) denotes symmetrization and I is
the unit tensor. The anisotropy of the equilibrium (3.200) manifests with the
deviation Q̃ = Qeq −QMB in (3.204), where only the diagonal elements are
non-vanishing,

Q̃αβγ =

{
ρuα(λ

2
α − 3RT)− ρu3

α, if α = β = γ,

0, otherwise.
(3.205)

As before, the origin of the diagonal anomaly (3.38) is the geometric constraint,
v3

iα = λ2
αviα, which is imposed by the choice of the discrete speeds (3.23),

and was discussed in the case of the standard (unstretched) lattice with
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λα = 1. A remedy in the latter case is to minimize spurious effects of
anisotropy by fixing the temperature T = TL,

RTL =
1
3

. (3.206)

In other words, the anomalous term cannot be canceled, rather, by choosing
T = TL, its effect can be ignored but only under the assumption of an
asymptotically small flow velocity. Moreover, for a quasi-incompressible
flow (Ma → 0, density variation ∇ρ ∼ Ma2, where Ma is a characteristic
Mach number), it is possible to further reduce the effect of the anomaly by
rescaling the relaxation parameter [44], see a discussion in Appendix A.1.

The extended equilibrium f ex
i is specified by using the product-form,

f ex
i = ρΨi(u,Pex,λ), (3.207)

where the diagonal elements Pex
αα for the extended equilibrium are chosen

as

Pex
αα = Peq

αα + δt
(

2−ω

2ρω

)
∂αQ̃ααα. (3.208)

Note that, spatial derivative is evaluated using a second-order central
difference scheme.

In the next section, we shall assess the accuracy and performance of the
proposed incompressible LB model with extended equilibrium in a variety
of scenarios. First, with measure the numerical viscosity with both regular
and rectangular lattices in the simulation of a decaying shear wave. Second,
we validate the model for the complex case of decaying homogeneous
isotropic turbulence and show the effectiveness of using higher tempera-
tures in saving compute time. Third, we investigate the applicability of the
proposed model with stretched lattices in a periodic double shear layer flow,
in a laminar flow over a flat plate, and finally in the case of the turbulent
channel flow. In the simulations below, the gas constant was set to R = 1,
the time step is δt = 1 and Grad’s approximation, as proposed in [114], was
used for wall boundary conditions.

3.4.5.1 Decaying shear wave

Similar to the compressible case and in order to show the necessity of using
the extended equilibrium, the rotated shear wave is considered to trigger
the anisotropy of the deviation terms (3.205). The anisotropy is further
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Figure 3.10: Numerical measurement of viscosity for rotated setup at temperature
T = 1/3 for different velocities and stretching ratios. The exact
solution corresponds to νnum/ν = 1.

increased by conducting simulations on a stretched grid with λx = 2.
The temperature is at T = 1/3. The viscosity measurement is shown in
Fig. 3.10 for different advection Mach numbers and stretching factors. It
can be observed that the stretching factor λx = 2 results in a significant
hyper-viscosity since the deviation (3.205) in this case amounts to a large
positive number. However, once the extended equilibrium (3.207) is used,
the present model recovers the imposed viscosity, independent of the frame
velocity and stretching factor.

3.4.5.2 Decaying homogeneous isotropic turbulence

In order to validate the model as a reliable method for the simulation of
complex flows and to show the application of using higher temperatures,
decaying homogeneous isotropic turbulence was considered. The initial
condition, in a box of the size L× L× L, was set at unit density and constant
temperature along with a divergence-free velocity field, which follows the
specified energy spectrum,

E(κ) = Aκ4e−2(κ/κ0)
2
, (3.209)
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where κ is the wave number, κ0 is the wave number at which the spec-
trum peaks and A is the parameter that controls the initial kinetic energy
[115]. The initial velocity field is generated using a kinematic simulation as
proposed in [116]. The turbulent Mach number is defined as,

Mat =

√
u · u
cs

, (3.210)

where cs =
√

T is the speed of sound. The Reynolds number is based on
the Taylor microscale,

Λ2 =
u2

rms

(∂xux)2
, (3.211)

and is given by

ReΛ =
ρurmsΛ

µ
, (3.212)

where urms =
√
u · u/3 is the root mean square (rms) of the velocity and

overbar denotes the volume average over the entire computational domain.
Simulations were performed at Mat = 0.1, ReΛ = 72, κ0 = 16π/L, at

two different temperatures, T = 1/3 and T = 0.55, and with L = 256 grid
points. Fig. 3.11 shows a snapshot of the velocity magnitude

√
u · u at time

t∗ = t/τ = 1.0, where τ = LI/urms,0 is the eddy turnover time, which is
defined based on the initial rms of the velocity and the integral length scale
LI =

√
2π/κ0.

To quantitatively assess the accuracy of the model at different tempera-
tures, the time evolution of the turbulent kinetic energy,

K =
3
2

u2
rms, (3.213)

normalized with its initial value (K0), and of the Taylor microscale Reynolds
number are compared in Fig. 3.12 and Fig. 3.13 with results from direct
numerical simulations (DNS) [115]. It is apparent that the two working
temperatures yields almost identical results that agree well with the DNS
simulation. This indicates that the correction terms do not degrade the
accuracy of the model at higher temperatures, even though the magnitude
of error term (3.205) is higher due to amplification of the linear term.

The immediate advantage of using the present model at a temperature
higher than the lattice temperature TL = 1/3 is that it effectively increases
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Figure 3.11: Velocity magnitude in lattice units for the decaying homogeneous
isotropic turbulence at Mat = 0.1, ReΛ = 72 and t∗ = 1.0 with
temperature T = 0.55.
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Figure 3.12: Time evolution of the turbulent kinetic energy for decaying isotropic
turbulence at Mat = 0.1, ReΛ = 72. Lines: present model; symbol:
DNS [115].



58 extended lattice boltzmann models for compressible flows

t
*

R
e Λ

10
-1

10
0

40

60

80

100

120

T = 1/3
T = 0.55
DNS

Figure 3.13: Time evolution of the Taylor microscale Reynolds number for de-
caying isotropic turbulence at Mat = 0.1, ReΛ = 72. Lines: present
model; symbol: DNS [115]

the characteristic velocity (here urms,0) and therefore the time step by a factor
of
√

T/TL. A larger time step is equivalent to fewer number of time steps.
The present model, therefore, speeds up the simulation by a factor of

√
T/TL

compared to the conventional LBM, which can operate only at the lattice
temperature TL. Furthermore, this speedup strategy can be used for both
steady and unsteady flows. This is in contrast to the preconditioned LBM
[117], which works by altering the effective Mach number and therefore
reduces the disparity between the speeds of the acoustic wave propagation
and the waves propagating with the fluid velocity, cf. [117]. This makes
preconditioned LBM restricted to steady state applications. In contrast,
the present model enables us to increase the speed of sound without
changing the Mach number. This increases the effective time step of the
solver. Therefore, the present model increases the computational efficiency
by decreasing the number of required time steps. Note that, the theoretical
temperature range of the model (like any other models based on the D1Q3

lattice) is 0 ≤ T ≤ 1, beyond that the populations become negative and the
model is unstable. Therefore, while small temperature is possible but not
beneficial, large temperature greater than 1 is out of the stability domain.
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3.4.5.3 Periodic double shear layer

The next validation case to test the accuracy of the proposed model with
the stretched lattice is the periodic double shear layer flow with the initial
condition,

ux =

{
u0 tanh(α(y/L− 0.25)), y ≤ L/2,

u0 tanh(α(0.75− y/L)), y > L/2,
(3.214)

uy = δu0 sin(2π(x/L + 0.25)), (3.215)

where L is the domain length in both x and y directions, u0 = 0.1 is
characteristic velocity, δ = 0.05 is a perturbation of the y-velocity and
α = 80 controls the width of the shear layer. The Reynolds number is set
to Re = u0L/ν = 104 and the temperature is T = 1/3. Fig. 3.14 shows

Figure 3.14: Vorticity field for double shear layer flow at t∗ = 1 with regular
lattice (left) and stretched lattice (right). Vorticity magnitude is nor-
malized by its maximum value.

the vorticity field at non-dimensional time t∗ = tu0/L = 1 using the
conventional square lattice λx = λy = 1 and the rectangular lattice with
λx = 2, λy = 1. Both lattice models perform qualitatively same.

To quantify the effect of stretching on the accuracy, the time evolution of

the mean kinetic energy and of the mean enstrophy Ω = ω2/ u2
0

L2 , with ω the
vorticity magnitude, are compared in Fig. 3.15. The results show only minor
discrepancies, which indicates the validity of the model also on stretched
meshes.

3.4.5.4 Laminar boundary layer over a flat plate

The next test case validates our model for wall-bounded flows with rect-
angular lattice. We consider the laminar flow over a flat plate with an
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Figure 3.15: Evolution of kinetic energy (left) and enstrophy (right) for double
shear layer flow at Re = 104.

incoming Mach number Ma∞ = u∞/
√

T∞ = 0.1, temperature T∞ = 1/3
and Reynolds number Re = ρ∞u∞L/µ = 4000, where L is the length of flat
plate. Since the flow gradients in the transverse y-direction are much larger
compared to the gradients in the streamwise x-direction, the mesh can be
stretched in x-direction without significantly affecting the accuracy of the
results. The computational domain was set to [Lx × Ly] = [200× 200] and a
rectangular lattice with λx = 2 was used. The flat plate starts at a distance
of Lx/4 from the inlet and symmetry boundary conditions were imposed at
0 ≤ x ≤ Lx/4. In Fig. 3.16, the horizontal velocity profile at the end of the
plate is compared with the results of a regular lattice and with the Blasius
similarity solution, where η is the dimensionless coordinate [118],

η = y
√

u∞

νx
. (3.216)

It can be seen that results for the regular and the rectangular lattice nearly
coincide and agree well with the Blasius solution. Thus, the model achieves
accurate results with half of grid points compared to the regular lattice.
Furthermore, the distribution of skin friction coefficient over the plate,

c f =
τwall

1
2 ρ∞u2

∞
, (3.217)

with the wall shear stress τwall = µ( ∂u
∂y )y=0, is shown in Fig. 3.17 in com-

parison with the analytical solution c f = 0.664/
√

Rex, where Rex = u∞x/ν
[118]. Also here, the results of the model with the regular and the stretched



3.4 extended compressible model ii 61

u / U∝

η

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

(400×200) (λ
x
=1)

(200×200) (λ
x
=2)

Figure 3.16: Comparison of the velocity profile at x = Lx for flow over a flat plate
at different stretching ratios. Lines: present model; symbols: Blasius
solution.

velocities are almost identical and in good agreement with the analytical
solution.

3.4.5.5 Turbulent channel flow

In the final test case, we assess the accuracy and performance of the incom-
pressible extended LBM for the turbulent flow in a rectangular channel, for
which many numerical [119–121] and experimental [122, 123] results are
available. The channel geometry was chosen as [5.6H × 2H × 2H], where
H is the channel half-width. The friction Reynolds number,

Reτ =
uτ H

ν
, (3.218)

based on the friction velocity uτ =
√

τw/ρ, was set to Reτ = 180. The initial
friction velocity was estimated by

uτ =
u0

1
K lnReτ + 5.5

, (3.219)

where K = 0.41 is the von Kármán constant and u0 = 0.1 is the mean
center-line velocity. Periodic boundary conditions were imposed in the
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Figure 3.17: Comparison of the skin friction coefficient for flow over a flat plate at
different stretching ratio. Lines: present model; symbols: analytical
solution.

streamwise x-direction and the spanwise z-direction. The flow was driven
by a constant body force in the x-direction,

g = Re2
τν2/H3. (3.220)

In order to accelerate the transition to turbulence, a non-uniform divergence-
free forcing field as proposed in [124] was added to the flow for some period
of time, until t∗ = tH/uτ = 5.

Similar to the previous test case, grid stretching in x-direction with
λx = 1.4 was used in order to reduce the number of grid points in that
direction while the temperature was set to T = 0.55, same as in Sec. 3.4.5.2.
A snapshot of the velocity magnitude

√
u · u is shown in Fig. 3.18. Quanti-

tatively, we compare the mean velocity profile with the DNS results of [120]
in Fig. 3.19. In wall units, the mean velocity is given by u+ = ū/uτ and the
spatial coordinate is y+ = yuτ/ν. The statistics are collected after 30 eddy
turnover times, i.e., after t∗ = 30. It is apparent that the viscous sublayer
(y+ < 5), the buffer layer (5 < y+ < 30) and the log-law region (y+ > 30)
are captured well with our model and the mean velocity profile agrees well
with that of the DNS.
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Figure 3.18: Snapshot of the velocity magnitude in lattice units for turbulent
channel flow at Reτ = 180 with λx = 1.4.
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Figure 3.19: Comparison of the mean velocity profile in a turbulent channel flow
at Reτ = 180 with λx = 1.4.

For a more thorough analysis, we compare the root mean square of
the velocity fluctuations with the DNS data in Fig. 3.20. Here, ux,rms =
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√
u′xu′x and uy,rms and uz,rms are defined in a similar way. It can be seen

that the results are in excellent agreement with the DNS results [120].
This demonstrates that the LBGK model, also in the presence of a severe
anisotropy triggered by stretched velocities, can be used for the simulation
of high Reynolds number wall-bounded flows once the corrections are
incorporated with the extended equilibrium.

3.5 conclusion

Two different realizations of extended lattice Boltzmann model for com-
pressible flows have been proposed. Extended model I removes the anoma-
lous term in the momentum equation at the level of second-order kinetic
equations. This results in a force term that contains second derivative of the
deviation.
Contrary to that, in extended model II, the spurious term is canceled out
at the level of first-order kinetic equations by redefining the equilibrium
(extended equilibrium) to correct the nonequilibrium pressure tensor. This
results in a simpler formulation compared to model I, that will be easily
extended to supersonic flows in the next chapter. Another modification in
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model II is the use of the product-form formulation of equilibrium for the
total energy population which recovers all Maxwell–Boltzmann moments
supported by the stencil. It was shown that both models are Galilean in-
variant and isotropic and recover the same equations in the hydrodynamic
limit.
Finally, the benefits of using the extended equilibrium in the incompressible
regime were discussed.





4
E X T E N S I O N T O S U P E R S O N I C F L O W S

4.1 introduction

The compressible lattice Boltzmann models described in the previous chap-
ter can successfully simulate compressible flows in subsonic and transonic
regimes with Mach number range up to ∼ 0.9. However, supersonic flows
involving shock waves are indispensable part of the compressible flows.
In this chapter, we tackle the problem of supersonic flows using two ap-
proaches. First, is the concept of the shifted lattices [125], a general approach
to increase the operating range of any LB model. With the shifted lattice,
the Mach number range can be increased up-to Ma = 2.5. Its drawback
when coupled with standard lattices, however, is loss of the exact space
discretization and the need for interpolation during the propagation step.

The second approach works by using the first–order upwind scheme for
the discretization of correction term as opposed to second–order central
scheme. This approach is only applicable to model II, and thus provides
a way to simulate moderately supersonic regime while maintaining the
simplicity and accuracy of the on-lattice propagation.

4.2 concept of the shifted lattices

It is well known that, at higher flow speeds and at temperatures other
than the lattice temperature TL = 1/3, the magnitude of the deviations
(3.38) and consequently the correction terms become large, which leads
to instability of the model. However, operating range of the compressible
LB model can be extended to supersonic flows by applying the concept of
shifted lattices [125]. With shafted lattices the local equilibria, and hence
the corresponding deviations from the Maxwell-Boltzmann relations, are
written in a reference frame moving with a constant predefined velocity
U . Therefore, deviations in the equilibria (3.38) are minimized whenever
the flow velocity is around U . In other words, the operating range of the
model is shifted to a Mach number range of ∼ 0.9 around the reference
frame velocity U .

67
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Here, we consider the case U = (U, 0) (moving reference frame in x-
direction) and, therefore, the x-component of the discrete velocities becomes,

c′ix = cix + U. (4.1)

The local equilibria in a moving reference frame are computed assuming
that moments are invariant with respect to the reference frame, as was
recently suggested in [126]. Therefore, one can match Q linearly indepen-
dent moments of the equilibrium in the rest and moving reference frames.
For example, in 2D and for the f -populations, the matching conditions
read [126],

Q−1

∑
i=0

f eq
i cm

ixcn
iy =

Q−1

∑
i=0

f ′eq
i c′mix cn

iy, (4.2)

where f ′eq
i is the equilibrium population in the moving reference frame and

m and n are integers corresponding to linearly independent moments. The
matching conditions (4.2) can be written in a matrix form as,

M f eq =M′ f ′eq, (4.3)

where M and M′ are Q × Q matrix and equilibrium population in the
moving reference frame is then computed as, [126]

f ′eq = G f eq =M′−1M f eq, (4.4)

where G is the transfer matrix that maps equilibrium populations from the
rest reference frame to the moving reference frame (see Appendix A.2 for
the explicit form of G). The explicit form of the f -equilibrium in the moving
reference frame can be obtained by setting,

ξ ′α = uα −Uα, (4.5)

P ′eq
αα = RT + (uα −Uα)

2. (4.6)

Substituting (4.5) and (4.6) into (3.27), we obtain,

f ′eq
i = ρΨcix (u

′
x,P ′eq

xx)Ψciy(u
′
y,P ′eq

yy). (4.7)
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The equilibrium and quasi-equilibrium of the g-populations in the mov-
ing reference frame are computed in the same way. The final form in 2D
is

G(0,0) = M0

(
1−U2 − T + 2T2

)
+ Mx2U (1− T)

−Mxx
1
2
(1 + T) + Myy

1
2

(
2U2 − 1− T

)
, (4.8)

G(σ,0) = M0

(
U2

2
− σ

U
2
+

1
2

T − T2
)
−Mx

(
U − σ

2

)
(1− T)

+ Mxx
1
4
(1 + T) + Myy

1
4

(
−2U2 + 2σU + T − 1

)
, (4.9)

G(0,λ) = M0

(
T
2
− T2

)
+ Myλ

(
1
2
− U2

2
− T

2

)
+ MxUT

−Mxx
1
4
(1− T) + Mxyλ (U) + Myy

1
2

(
1
2
−U2 +

T
2

)
, (4.10)

G(σ,λ) = M0

(
−T

4
+

T2

2

)
+ MxT

(
−U

2
+ σ

1
4

)
+ My

(
λ

4

(
U2 + T − σU

))
+ Mxx

1
8
(1− T)

+ Mxy

(
σλ

1
4
− λ

U
2

)
+ Myy

1
2

(
U2

2
− σ

U
2
+

1− T
4

)
, (4.11)

where σ, λ = {+1,−1} and the two indices are identified with the compo-
nents of the discrete velocity vectors G(cix ,ciy)

and, thus, enumerate all nine
populations. The moments required for the computations are provided in
in Table 3.1.

In summary, the kinetic equations of model I, with shifted lattice can be
written as,

f ′i
(
x+ c′iδt, t + δt

)
− f ′i (x, t) = ω( f ′i

eq − f ′i ) + φi, (4.12)

g′i
(
x+ c′iδt, t + δt

)
− gi

′(x, t) = ω(gi
′eq − gi

′) + (ω1 −ω)(g′∗i − gi
′).
(4.13)
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The conservation laws are,

ρ =
Q−1

∑
i=0

f ′ i =
Q−1

∑
i=0

f ′eq
i , (4.14)

ρu =
Q−1

∑
i=0

c′i f ′ i =
Q−1

∑
i=0

c′ i f ′eq
i , (4.15)

ρE =
Q−1

∑
i=0

g′ i =
Q−1

∑
i=0

g′eq
i , (4.16)

and equilibrium and quasi-equilibrium populations for fi gi are computed
using (4.7) and (4.8-4.11), respectively. The formulation of φi correction
terms do not change, with the note that the deviation Q̃xxx should now be
computed in the moving reference frame,

Q̃xxx = ρ (u−U) (1− 3RT)− ρ(u−U)3. (4.17)

4.2.1 Shock-vortex interaction

Sound generation by a vortex passing through a shock wave [127] is studied
to assess the performance and accuracy of the model I with shifted lattices
for supersonic flows involving shock. This problem consists of an isentropic
vortex, with vortex Mach number Mav, initially in the upstream shock
region, which is passed through a stationary shock wave at advection Mach
number Maa = 1.2 with the left state (ρ, T, ux, uy)l = (1, 0.05, Maa

√
γTl , 0)

and Rankine-Hugoniot right state. The initial field with standing shock
(ρ∞, P∞, ux,∞, uy,∞) is perturbed with an isentropic vortex with radius rv
centered at (xv, yv) [127]

ρ = ρ∞

[
1− γ− 1

2
Ma2

ve(1−r2)

]1/(γ−1)
, (4.18)

P = P∞

[
1− γ− 1

2
Ma2

ve(1−r2)

]γ/(γ−1)
, (4.19)

ux = ux,∞ +
√

γTlMav
(y− yv)

rv
e(1−r2)/2, (4.20)

uy = uy,∞ −
√

γTlMav
(x− xv)

rv
e(1−r2)/2, (4.21)

where r =
√
(x− xv)

2 + (y− yv)
2/rv is the reduced radius and the shock

is initially located at xs = 8rv.
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We perform a simulation with Maa = 1.2, Mav = 0.25, where the
Reynolds number is set to Re =

ρl cs,lrv
µ = 800, cs,l is the speed of sound

upstream of the shock, and the Prandtl number is Pr = 0.75. The computa-
tional domain size is Lx× Ly = 1680× 1440, the vortex radius is rv = Lx/28
and the vortex center is at (xv, yv) = (6rv, Ly/2).

Shifted velocity U should be chosen in such a way that the operating
range of the model covers the Mach number range of the problem. For
example, shifted lattice with velocity U = 1 is not a good choice here,
as it corresponds to the shifted Mach number Mashifted = U/

√
γT ≈

2.6. Therefore, a shifted lattice with velocity U = 0.5 (Mashifted ≈ 1.3) is
considered for this problem. However, in this case we do not have a space
filling lattice anymore and interpolation is required during the propagation
step to reconstruct populations at the grid points [126]:

f ′ i(x, t) =
k

∑
s=1

Ls(x− xs) f ′ i(xs, t), (4.22)

where Ls are Lagrange polynomials using the collocation points xs, s =
1, ..., k around point x and k = 3 (third-order accurate).

To quantify the accuracy of the computations, the distribution of ra-
dial sound pressure is plotted in Fig. 4.1 in comparison with the DNS
results [127]. The sound pressure is defined as, ∆P = (P− Ps)/Ps, where Ps
is the pressure behind the shock wave and is measured in the radial direc-
tion with the origin at the vortex center, at an angle θ = −45◦ and at three
different non-dimensional times t∗ = 6, 8, 10, where t∗ = tcs,l/rv. Excellent
agreement is observed between the present model and the DNS [127]. Note
that the sound pressure is typically a small perturbation (around 1%) on top
of the hydrodynamic pressure. This shows that the present model with the
LBGK collision term can accurately capture moderately supersonic shock
waves.

Finally, Fig. 4.2 shows the sound pressure contours of a pair of vortices
interacting with the shock wave at t∗ = 5. The simulation parameters are
the same as a single vortex and in accordance with [127]. The shock wave
deformation caused by the interaction with the pair of vortices is evident
and symmetry of the results further supports the accuracy of the present
computation. Again, good agreement can be seen between the present
model and DNS.
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Figure 4.1: Comparison of radial sound pressure distribution ∆P for Maa = 1.2,
Mav = 0.25 and Re = 800 with the DNS results at three different
times t∗ = 6, 8, 10. Lines: present model I; symbol: DNS [127].

4.3 upwind discretization of correction term in model ii

The spatial discretization of the deviation Q̃ in (3.116) and (3.123) has
important effect on stability of the extended model II, especially in the case
of supersonic flows where discontinuities emerge in the flow field. It has
been shown through linear stability analysis [88] that, while second–order
central difference scheme provides good stability domain in the subsonic
regime, the first-order upwind scheme is necessary for maintaining the
stability in the supersonic regime and capturing shock wave. We should
emphasize that, this is only true for the model II, where the correction
term contains first derivative of deviation. According to linear stability
analysis [88], upwind discretization of corrections in model I, does not
increase its stability domain. We, therefore, employ the first-order upwind
scheme in model II, in order to have a wider stability domain.

For example, the x-derivative of the deviation Q̃xxx at grid point xi,j,k can
be written as,

∂xQ̃xxx,(i,j,k) =
Q̃xxx,(i+1/2,j,k) − Q̃xxx,(i−1/2,j,k)

∆x
, (4.23)
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Figure 4.2: Snapshot of sound pressure ∆p contours for a passing vortex pair
with Maa = 1.2, Mav = 0.25 and Re = 800 at t∗ = 5. Contour levels
are from ∆Pmin = −0.14 to ∆Pmax = 0.12 with an increment of 0.0039.
Top: DNS [127], +© denotes the compression region (∆P > 0) while
-© denotes the rarefaction region (∆P < 0); Bottom: present model I.

where (omitting xxx and j, k indices) Q̃i+1/2 and Q̃i−1/2 are upwind recon-
struction of Q̃ at the interface xi±1/2,j,k,

Q̃i+1/2 =

{
Q̃i, if ux > 0,

Q̃i+1, otherwise,
(4.24)
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Figure 4.3: The sound pressure field ∆P of model II for the shock-vortex interac-
tion with Maa = 1.2, Mav = 0.25 and Re = 800 at t∗ = 6. The contour
levels are from ∆Pmin = −0.48 to ∆Pmax = 0.16 with an increment of
0.003216.

4.3.1 Shock-vortex interaction with on-lattice model II

We repeat the simulation of shock-vortex interaction, with the same setup
presented above, but now with on–lattice model II. Fig. 4.3 shows the sound
pressure contours at time t∗ = 6. The shock wave deformation caused by
the interaction with the vortex is observed. To quantify the accuracy of the
computations, the radial sound pressure distribution is plotted in Fig. 4.4
in comparison with the DNS results [127]. Again, good agreement can be
observed between the on-lattice model II and DNS.

4.4 conclusion

Two strategies for extending the operating range of extended models, in-
troduced in Chapter 3, to supersonic flows with shock waves have been
discussed. First, use of shifted lattices, which shifts the operating range
of any LB model in terms of Mach number, however, comes at the price
of losing the exact on-lattice propagation. Moreover, this strategy is more
effective in flows where the mean flow has a preferential direction, like flow
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Figure 4.4: Comparison of radial sound pressure distribution ∆P for Maa = 1.2,
Mav = 0.25 and Re = 800 with the DNS results at three different
times t∗ = 6, 8, 10. Lines: present model II; symbol: DNS [127].

over airfoil which will be presented in the next chapter.
The second strategy was based on upwind-discretization of correction terms
in model II to enhance the stability of high Mach flows. With this strategy,
the resulting on-lattice model covers a wide range of fluid flows, from low
Mach weakly compressible to transonic and moderately supersonic regimes
with shock waves.





5
U N S T R U C T U R E D A N D M O V I N G M E S H E S

Total science is like a field of force whose boundary
conditions are experience. A conflict with experience at
the periphery occasions readjustments in the interior of
the field.

— Willard Quine

5.1 introduction

In this chapter, we extend the model formulation to unstructured finite ele-
ment meshes using a semi–Lagrangian propagation scheme and introduce
consistent wall boundary conditions for the simulation of complex geome-
tries. Similar to the standard LBM, the semi-Lagrangian scheme follows the
characteristics curve of the LB equation backward in time to find the depar-
ture point of each grid node. However, since the propagation is performed
on an arbitrary non–uniform grid, interpolation is required to reconstruct
the populations at the departure points. Finite element based interpola-
tion schemes are good candidates as they allow to have body–conforming
meshes which give more flexibility in handling complex geometries and are
more efficient in capturing small scale structure of the flow near the wall.
Another advantage of the semi–Lagrangian scheme is that the time step
can be chosen arbitrarily and it remains stable at large Courant–Friedrichs–
Lewy (CFL) numbers. This is at variance to many other off-lattice schemes
(such as finite–difference or finite–volume LB schemes) which operate at
restricted CFL number due to explicit time integration, see e.g., [128]. Note
that, finite–element based semi–Lagrangian scheme has successfully been
applied to incompressible LB models [105, 129]. Here, we apply the semi–
Lagrangian scheme with second–order accurate finite element interpolation
to the extended compressible LB model I [87] to test its capabilities for
simulation of compressible flows on unstructured grid.

Although by using unstructured mesh it is not possible to take advan-
tage of the exact on-lattice propagation, the computational overhead of
performing interpolation in the present model with the D2Q9 lattice and
the BGK collision term, is largely, if not fully, compensated by the reduction
in computational cost related to the smaller lattice and simple collision

77
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term. Moreover, with the finite-element interpolation used in this work the
computations in each element depend only on the values from itself and
its next neighboring elements. This feature greatly simplifies the parallel
implementation of the model, which is necessary for the large scale three
dimensional simulations.

5.2 semi-lagrangian propagation

The semi–Lagrangian propagation is a practical generalization of standard
LB propagation, which removes the restriction related to the regular lattice
by performing interpolation in order to find the solution at the departure
points [105]. Here, we employ the second–order finite element interpolation
scheme to reconstruct solution at the departure points. An example of a
semi–Lagrangian propagation on a second–order finite element mesh with
nine collocation points is presented in Fig. 5.1. It has been shown that

Figure 5.1: Schematic of a second–order finite element mesh, the semi–
Lagrangian propagation along the discrete velocity vi and mapping
from the global coordinate (x, y) to local coordinate (ξ, η).

this type of reconstruction is less dissipative compared to other off–lattice
schemes [105] and also it has been applied successfully to LB for simulation
of incompressible turbulent flows [129].

The semi–Lagrangian propagation at the departure point of characteristic
lines x− ciδt is then written as,

fi (x, t) = fi (x− ciδt, t− δt) =
9

∑
s=1

fi(ξs, t− δt)Ns(ξdp), (5.1)

where Ns(ξdp) denotes the values of the shape functions, written in the
local coordinate system ξ = (ξ, η), (−1 ≤ ξ, η ≤ 1), at the departure point
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(red square in Fig. 5.1), and s = 9 is number of collocation points. Here, the
second–order quadratic shape functions are used as follows [130],

N1 =
1
4

ξη(ξ − 1)(η − 1), N2 =
1
4

ξη(ξ + 1)(η − 1), (5.2)

N3 =
1
4

ξη(ξ + 1)(η + 1), N4 =
1
4

ξη(ξ − 1)(η + 1), (5.3)

N5 =
1
2

η(1− ξ2)(η − 1), N6 =
1
2

ξ(ξ + 1)(1− η2), (5.4)

N7 =
1
2

η(1− ξ2)(η + 1), N8 =
1
2

ξ(ξ − 1)(1− η2), (5.5)

N9 = (1− ξ2)(1− η2). (5.6)

Therefore, semi–Lagrangian propagation on unstructured finite element
mesh requires two steps:
First, computing the local coordinates of the departure point ξdp (see Fig.
5.1) which, for quadrilateral elements, involves solving a non-linear system
of equations resulting from,

xdp =
4

∑
s=1
xsNs(ξdp), (5.7)

where in order to simplify the computation, four vertices are used to define
shape functions,

N1 =
1
4
(1− ξ)(1− η), N2 =

1
4
(1 + ξ)(1− η), (5.8)

N3 =
1
4
(1 + ξ)(1 + η), N4 =

1
4
(1− ξ)(1 + η). (5.9)

Second, the values of the populations at the departure point are computed
by means of the values of the populations at collocation points (red circles)
using (5.1).

After the propagation, the correction terms φi should be evaluated. How-
ever, the computation of correction terms requires the knowledge of spatial
gradients for deviation terms (3.38). This is done using the finite element
formula for the first–order derivative. For a generic variable Q, we can
write,

∂xQ = J−1 ∑
s

Qs∂ξNs, (5.10)
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where Qs are the values of Q at collocation points and J−1 is the inverse of
the Jacobian matrix of transformation computed with,

J−1 =
1

det J

[
∂ηy −∂ξ y

−∂η x ∂ξ x

]
, (5.11)

and

det J = ∂ξ x∂ηy− ∂ξy∂η x, (5.12)

is the determinant of the Jacobian matrix. The metrics of transformation
∂ξ x, ∂η x, ∂ξy, ∂ηy are computed with the following formula,

∂ξx = ∑
s
xs∂ξNs. (5.13)

Note that, the nodes on the element edges are assigned to the element with
the larger area.

Finally, the post-collision populations are computed in the conventional
way as in the standard LB method.

5.2.1 Wall boundary conditions

Semi–Lagrangian propagation on unstructured grid makes it possible to
employ body–fitted mesh and simulate complex geometries. Therefore, an
appropriate wall boundary condition (BC) is required. Here, we follow
the approach proposed by [114, 131] and replace the missing populations
during propagation with the following expression,

f miss
i = f eq

i (ρtgt,utgt, Ttgt) + δt f (1)i (ρtgt,utgt, Ttgt,utgt, Ttgt), (5.14)

gmiss
i = geq

i (ρtgt,utgt, Ttgt) + δtg(1)i (ρtgt,utgt, Ttgt, ,utgt, Ttgt), (5.15)

where f eq
i , geq

i are equilibrium parts computed from (4.7) and (4.8) to (4.11),

f (1)i , g(1)i are non-equilibrium parts and ρtgt, utgt and Ttgt are target values
which need to be specified.

The non-equilibrium parts are obtained based on the Grad’s approx-
imation and using the general formula (3.45) with the non-equilibrium
moments given in Table 5.1 [79, 132],
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Gi M0 Mα Mαβ

f (1)i 0 0 P(1)
αβ

g(1)i 0 q(1)α R(1)
αβ

Table 5.1: Moments needed for the computation of f (1)i and g(1)i .

P(1)
αβ = − 1

ω
ρT
(

Sαβ −
1

Cv
∂γuγδαβ

)
, (5.16)

q(1)α = − 1
ω1

ρCpT∂αT + uβP(1)
αβ , (5.17)

R(1)
αβ = − 1

ω1
ρT
[
Sαβ (E + 2T) + uα∂βE + uβ∂αE

]
, (5.18)

where Sαβ is the strain rate tensor.
For computing target values, if missing populations belong to points on

the wall (black circles in Fig. 5.2), target velocities are zero, utgt = 0 and
target density and temperature (for adiabatic wall) are obtained by setting,

∂ρ

∂n
|wall = 0, (5.19)

∂T
∂n
|wall = 0, (5.20)

where n is the normal direction to the wall boundary ∂Ω. Given the normal
direction n, its end point B and considering the distance from A to B as
||n|| = δt, the values of density and temperature at B can be evaluated
using a finite element interpolation. For example for the density, we can
write,

ρB =
9

∑
s=1

ρsNs, (5.21)

where Ns are shape functions and ρs are the magnitude of density at nine
collocation points (circles in Fig. 5.2). Once ρB is found, the first-order
approximation for the normal derivative is assumed,

∂ρ

∂n
|wall =

ρB − ρA
||n|| = 0. (5.22)

Therefore, the target value can be approximated as,

ρtgt = ρA = ρB. (5.23)
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Figure 5.2: Schematic representation of the wall boundary condition implemen-
tation.

It is important to note that if missing populations belong to points which
do not lie on the wall boundaries (red circles in Fig. 5.2), the local quantities
of the previous time step are used as target values.

The evaluation of spatial gradients in non–equilibrium moments is per-
formed using (5.10). It was demonstrated in [114] that the first–order accu-
rate evaluation of spatial derivatives is sufficient.

5.2.2 Numerical results

In this section, the model presented above is validated numerically through
simulation of four benchmark cases. All simulations are performed with
γ = 1.4, Pr = 0.71, D2Q9 lattice model and adiabatic wall assumption. The
time step used in this study is δt = δxmin/1.5 which corresponds to the
CFL = max |vi |δt

δxmin
= 0.66, where δxmin is the minimum spacing between any

two points of the computational mesh.
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Element size(∆x/Lx) L∞ error Order

0.1 0.033958 −
0.05 0.010144 1.75

0.025 0.002953 1.78

0.0125 0.000841 1.82

Table 5.2: Accuracy test for the propagation of density perturbation.

5.2.2.1 Accuracy test

The smooth density propagation [133] is solved in order to test the accuracy
of the present model on unstructured mesh. The initial condition of the
flow field is given by,

ρ = ρre f + 0.2sin(2πx/Lx)sin(2πy/Ly), (5.24)

u = Ma
√

γTre f , (5.25)

v = 0, (5.26)

T = ρre f Tre f /ρ, (5.27)

with the domain size Lx = Ly = 8000, reference density ρre f = 1, reference
temperature Tre f = 0.2 and Ma = 0.2. We compute the solution after two
periods of propagation in order to evaluate the convergence order of the
scheme using four different uniform grids and based on the L∞ error of
density. As shown in Table 5.2, the accuracy in space is slightly below
second–order. This is consistent with previous results on semi–Lagrangian
LB for incompressible flows as reported in Refs. [105, 129].

5.2.2.2 Sod’s shock tube

The Sod’s shock tube problem [101] is a classical Riemann problem to test
the capability of the model when shock and expansion waves are present
in the flow field. The initial flow field for this problem is given by

(ρ, ux, uy, P) =

{
(1.0, 0, 0, 0.2), x/Lx ≤ 0.5,

(0.125, 0, 0, 0.02), x/Lx > 0.5,
(5.28)

where Lx = 20 is the domain length. A uniform grid with 400× 5 elements
is used with the viscosity µ = 0.0001. Simulation results for the density
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Figure 5.3: Density (left) and velocity (right) distributions for Sod shock tube
problem at non-dimensional time t∗ = 0.2. Symbols: present model;
line: exact solution.

and reduced velocity u∗ = u/
√

Tl (Tl is temperature on the left side of
tube) at non-dimensional time t∗ = t

√
Tl/Lx = 0.2, are shown in Fig. 5.3. It

is observed that, apart from small oscillations, the results are in excellent
agreement with the exact solutions.

5.2.2.3 Subsonic flow over NACA0012 airfoil

This test-case involves a subsonic flow over a NACA0012 airfoil at a Mach
number Ma = u∞/

√
γT∞ = 0.5, incoming temperature T∞ = 0.2, an angle

of attack of α = 0◦, and a Reynolds number of Re = ρ∞u∞c/µ = 5000
based on the chord length of the airfoil c. The simulation is performed on
an unstructured quadrilateral mesh with 43235 elements as shown in Fig.
5.4 (Mesh-1), where a layer of orthogonal grid is used near the airfoil surface
and anisotropic grid is used elsewhere. The minimum size of the elements
near the airfoil surface δ/c ≈ 0.0015. In this case, the flow separation occurs
near the tailing edge, which causes the formation of two small re circulation
bubbles in the wake, as shown by the Mach number contours in Fig. 5.5.
Pressure coefficient cp = (P− P∞)/(0.5ρ∞u2

∞) and skin friction coefficient
c f = τw/(0.5ρ∞u2

∞), where τw is the local wall shear stress, on the airfoil
surface are compared in Fig. 5.6 with the discontinuous Galerkin (DG)
solution of the compressible NS equations [134]. Moreover, the comparison
of the drag coefficient with other numerical results is shown in Table 5.3. It
can be seen that the present results are in good agreement with all reference
data.
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To further validate the solver, the numerical results computed at angle
of attack α = 2◦ are also compared in Fig. 5.7 with the reference solution
reported in [135]. Note that in this case the flow becomes unsteady in the
wake.

Moreover, in order to investigate the effect of grid quality on the solution,
we repeat the simulation with another mesh, but with irregular elements
close to the airfoil surface, with the same element size near the wall (δ/c ≈
0.0015), as shown in Fig. 5.8 (Mesh-2). The results obtained are shown
in Fig. 5.7 in comparison with the results of Mesh-1 and the reference
solution [135]. It is observed that, the results are almost identical. We
can therefore conclude that in this case, the mesh quality does not have
significant effect on the results. However, the effect of grid quality needs
to be further investigated in problems with higher Reynolds number, as
it might be necessary to employ a high quality orthogonal grid near the
surface in order to correctly capture the boundary layer.

Figure 5.4: Second-order finite element mesh (Mesh-1) used for the simulation
of subsonic flow over NACA0012 airfoil. Bottom is the zoom near
leading edge of the airfoil.
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Figure 5.5: Mach contour for subsonic flow over NACA0012 airfoil at Ma = 0.5,
Re = 5000 and α = 0◦. Bottom figure shows streamlines near trailing
edge.
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Method cd

Direct DG [134] 0.05543

Reconstructed DG [136] 0.05534

Spectral difference [137] 0.05476

Present 0.05568

Table 5.3: Drag coefficient for subsonic flow over NACA0012 airfoil at Ma = 0.5,
Re = 5000 and α = 0◦.
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Figure 5.6: Distribution of (a) pressure coefficient and (b) skin friction coefficient,
on the NACA0012 airfoil surface for subsonic flow at Ma = 0.5,
Re = 5000 and α = 0◦. Line: present model; symbols: DG solver [134].

5.2.2.4 Unsteady supersonic flow over NACA0012 airfoil

In order to test the capability of the present model in capturing shock
waves on unstructured mesh, the Mach number of the previous setup was
increased to Ma = 1.5 and the Reynolds number was set to Re = 10000. As
flow is supersonic, shifted lattice with Ux = 0.3 was used and unstructured
mesh with 143123 quadrilateral elements and minimum element size of
δ/c = 0.0015 was employed.

Figure 5.9 shows the temperature and Mach contours. It is observed that
a bow shock is formed in front of the airfoil and oblique shocks appear from
the trailing edge. Moreover, vortex shedding is started downstream, due
to the shear layer developing from the trailing edge boundary layer of the
airfoil. To quantify the results, in Fig. 5.10 the pressure coefficient upstream,
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Figure 5.7: Distribution of (a) pressure coefficient and (b) skin friction coefficient,
on the NACA0012 airfoil surface for subsonic flow at Ma = 0.5,
Re = 5000 and α = 2◦. Lines: present model; symbols: reference
solution [135].

Figure 5.8: Mesh-2 used for the simulation of subsonic flow over NACA0012

airfoil.

downstream and on the airfoil surface is compared to the numerical solution
reported in [138] and also with the solution of the entropic LBM (ELBM)
with D2Q49 lattice model [110]. Good agreement is observed and the
present method captures the pre/post shock values and the shock location
with good accuracy.

5.2.2.5 Shock-vortex interaction in Schardin’s problem

Finally, the so called Schardin’s problem [139, 140] is considered in which a
planar shock wave impinges on a finite wedge is reflected and diffracted.
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Figure 5.9: Temperature (top) and Mach number (bottom) contours for super-
sonic flow over NACA0012 airfoil at Ma = 1.5, Re = 10000.

The impingement creates a complex shock-shock and shock-vortex inter-
action [140]. This test-case shows the ability of the scheme in handling
complex geometries at high-speed flows. Here, a shock Mach number
Mas = 1.34 is considered and the Reynolds number based on wedge length
L is set to Re = 2000. Further details on this setup can be found in [140].
Moreover, shifted lattice with Ux = 0.3 is used.



90 unstructured and moving meshes

x / c

c P

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

Present (D2Q9)
ELBM (D2Q49)
Hafez et al.

Figure 5.10: Pressure coefficient upstream, downstream and on the NACA0012

airfoil surface for supersonic flow at Ma = 1.5, Re = 10000. Line:
present model with D2Q9 lattice; symbols: ELBM solution with
D2Q49 lattice; dashed line: results reported in [138].

Figure 5.11 shows the evolution of flow field by plotting the density
distribution over time. It is observed that the traveling shock wave creates
two vortices at the two corners and then interacts with its mirrored counter-
part, and refracts. Moreover, the time evolution of the position of the triple
points T1 and T2 (shown in Fig. 5.11), where the reflected and the travelling
shocks meet, is compared in Fig. 5.12 with the experimental results [140]
and numerical results of ELBM with D2Q49 lattice model [79]. Once again,
the results obtained are in good agreement with those solutions, which
shows the accuracy of the present model.

5.3 arbitrary lagrangian eulerian approach for moving ge-
ometries

In recent years, there is a growing interest in studying both numerically
[141] and experimentally [142], fluid flows in moving and deforming ge-
ometries pertinent to many physical phenomena and novel engineering
applications. For example, in flapping flights of birds and insects, it is the
motion of aerodynamic surfaces that produces thrust for forward motion
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Figure 5.11: Evolution of the density for the Schardin’s problem at shock Mach
number Mas = 1.34. T1 and T2 are triple points.

and sustainable lift for airborne; or in marine animals such flapping motion
generates propulsive and manoeuvring forces [143]. Understanding the
underlying aerodynamics of these phenomena provides researchers with
valuable insight into the origin of flight and its subsequent evolution in
different species [144]. Moreover, these natural phenomena have been a
rich source of inspiration in design of engineering devices such as robotic
devices, micro-air vehicles or in novel turbines that extract energy form
wind and tidal waves using flapping foil motion. The flapping foil turbine
concept is promising in turbine technologies as it is expected to be more
efficient than vertical- and horizontal-axis turbines [145] (for a review see
Young, Lai & Platzer [143] and Xiao & Zhu [146]). Other applications of
flows with moving geometries appear in fluid-solid interactions (FSI) and
rotor-stator flows to name a few.

Presence of moving/deforming geometries in a flow adds another level of
complexity to the computations, as one requires the numerical scheme not
only to be able to handle moving domains, but also to maintain accuracy
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Figure 5.12: Comparison of the position of triple points T1 and T2 for the
Schardin’s problem. Squares: present model with D2Q9 lattice;
dashed Line: ELBM solution with D2Q49 lattice [79]; circles: ex-
periment [140].

and efficiency [147]. From a physical point of view, moving boundary
problems usually involve vortex dominated unsteady flow with turbulence,
separation and reattachment of the boundary layer. Numerically, capturing
such a complex physics requires the numerical scheme to be accurate with
small numerical dissipation.

For handling moving complex geometries, most of the existing LB re-
alizations employ a fixed background regular Cartesian grid which cuts
the immersed moving object. Imposing no-slip boundary condition on the
moving object is then achieved either through adding a force term into
the equations [148–150] or by replacing missing populations with some
suitable approximation like non-equilibrium extrapolation [151] or Grad’s
approximation [114].

Another approach which has widely been used in the Navier-Stokes
(NS) framework for simulating moving domain problems is based on the
so-called arbitrary Lagrangian-Eulerian (ALE) method [152–157]. In this
method, the governing equations in the physical domain which is moving
in space and time, are mapped into a fixed computational domain and
then the resulting transformed equations are solved numerically [153]. ALE
method thus gives flexibility in handling moving domain problems as
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the physical mesh can move with arbitrary velocity independent of the
fluid velocity [156]. Another advantage of the ALE method is that it can
handle moving/deforming domains with body-fitted mesh which is of
crucial importance for high-Reynolds number flow simulations where small
scale structures need to be resolved accurately. For problems involving
rigid motion of objects and also problems with small deformation, it is
possible to derive an analytical formula for the mapping function between
physical and computational domains and that, in turn, greatly simplifies the
computations. However, in problems with very large deformation, mapping
function can become highly nontrivial and re-meshing might be required,
which is computationally expensive and can easily make the simulation
unfeasible.

While numerous studies have been done on the ALE-NS solvers, lim-
ited number of works can be found in the literature about applying ALE
method in the context of LBM. Noteworthy is the model proposed by
Meldi, Vergnault & Sagaut [158], which is based on the combination of
ALE and over-set grid methods and was used for simulation of low-speed
incompressible flow.

In this section, we apply the ALE method to the compressible LB model
I, as it gives us a unified flow solver which covers subsonic to moderately
supersonic regimes. To the best of our knowledge, LBM has not been in-
vestigated for the simulation of compressible flows with moving bodies.
It should, however, be emphasized that the ALE formulation given be-
low [159] is general and, in principle, can be applied to any lattice kinetic
model, including incompressible [160, 161], thermal [97] or compressible
models [79].

5.3.1 ALE formulation of LBM

Consider the discrete Boltzmann equation in a physical domain (x, t),

∂ fi
∂t

+ ci.∇x fi = Ωi, (5.29)

where fi(x, t) are populations of discrete velocities ci, i = 0, ..., Q− 1, and
Ωi is the collision operator. The goal here is to transform (5.29) from a
physical domain (x, t) to a fixed computational domain (X , t0).
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We assume that there exists a continuous time dependent mapping
between physical and computational domains, denoted by G, such that
x = G (X , t) [153]. The time derivative in (5.29) can then be re-written as,

∂ fi
∂t

=
d fi
dt
− VG.∇X fi =

∂ fi
∂t
|X − VG.∇X fi, (5.30)

where the time derivative ∂ fi
∂t |X is at constant X , spatial derivatives are

taken with respect to X , and VG denotes the mapping velocity as,

VG =
∂G
∂t
|X . (5.31)

Using a simple chain rule, the spatial terms in (5.29) can also be written as,

∇x fi = g−1∇X fi. (5.32)

Here, g−1 is the inverse of the Jacobian matrix of mapping, which for
two-dimensional problems can be computed as,

g−1 =
1

det g

[
yY −yX

−xY xX

]
, (5.33)

where xX , xY, yX and yY are mapping metrics and

det g = xXyY − yXxY, (5.34)

is the determinant of the Jacobian matrix. Substituting (5.30) and (5.32) into
(5.29),

∂ fi
∂t
|X + ci.g−1∇X fi − VG.∇X fi = Ωi, (5.35)

which can be further simplified as,

∂ fi
∂t
|X +

(
g−1,†ci − VG

)
.∇X fi = Ωi, (5.36)

where the superscript † denotes the transpose of a matrix. By defining
transformed discrete velocities ĉi as,

ĉi =
(
g−1,†ci − VG

)
, (5.37)
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the discrete Boltzmann equation in a fixed computational domain can be
written in a simple form as,

∂ fi
∂t
|X + ĉi.∇X fi = Ωi. (5.38)

As it can be seen, the only difference between (5.38) and (5.29) is in discrete
velocities. We can therefore conclude that, the ALE method is applicable to
any lattice kinetic model just by using the transformed discrete velocities as
defined in (5.37).

Now, Eq. (5.38) can be discretized using conventional scheme used in the
standard LB, i.e. through propagation and collision steps,

fi (X , t)− fi (X − ĉiδt, t− δt) = Ωi. (5.39)

It is evident from (5.37) that the discrete velocities ĉi are not necessarily
integer numbers anymore. Thus, unlike standard LB, exact propagation
on space–filling lattice is not possible here and interpolation is required
during the propagation step. We, therefore, use a second–order accurate
finite–element interpolation introduced in the previous section. Thus, the
propagation step can be written as,

fi (X , t) = fi (X − ĉiδt, t− δt) =
9

∑
s=1

Ns(ξdp) fi(ξs, t− δt), (5.40)

where, as before, Ns(ξdp) is the values of the shape functions [130], written
in the local coordinate system ξ = (ξ, η), (−1 ≤ ξ, η ≤ 1), at the departure
point (red square in Fig. 5.1), fi(ξs, t− δt) are the values of populations at
the collocation nodes (red circles in Fig. 5.1), and s = 9 is the number of
collocation points.

Semi-Lagrangian propagation on unstructured moving finite-element
mesh requires two steps:
First, computing the local coordinates of the departure point ξdp (see Fig.
5.1). Here, a bi-linear transformation is used to transform the computational
cells into a reference unit cell. Thus, finding the local coordinates requires
solving a non-linear system of equations resulting from

Xdp =
4

∑
s=1

Ns(ξdp)Xs. (5.41)

Unlike the stationary case where the location of departure point for each
node remains fixed during the simulation, in the non-stationary simulation,
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the departure point is moving, and therefore the non-linear equation (5.41)
should be solved at each time step. Furthermore, in the second step, the
values of the populations at the departure point are computed by means of
the shape functions and the values of the populations at collocation nodes
(red circles), i.e. by using (5.40).

After the propagation step is completed, the post-collision populations
are computed in a standard way.

Final note is about computation of spatial derivatives in the ALE frame-
work. Spatial derivatives should also be transformed from the physical to
the computational domain. This can be done using a chain rule similar to
(5.32). For a generic variable K, we can write,

∂xK = g−1∂XK. (5.42)

Here, g−1 is computed using (5.34), and

∂XK = J−1
9

∑
s=1

Ks∂ξNs, (5.43)

where J−1 is the inverse of the Jacobian matrix of transformation of a
computational cell to a unit cell,

J−1 =
1

det J

[
∂ηY −∂ξY

−∂ηX ∂ξ X

]
, (5.44)

and

det J = (∂ξ X)(∂ηY)− (∂ξY)(∂ηX), (5.45)

is the determinant of the Jacobian. The metrics of transformation ∂ξ X, ∂ηX,
∂ξY, ∂ηY are computed with the following formula,

∂ξX =
9

∑
s=1
Xs∂ξNs. (5.46)

5.3.2 Geometric conservation law

The problem of geometric conservation law (GCL) was first introduced
in Thomas & Lombard [162], where it was shown that the numerical
discretization errors associated with mapping metrics can induce errors
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in the computed flow field which might lead to numerical instabilities
[162]. This problem has been widely studied in the NS solvers and different
strategies have been proposed for satisfying the GCL in that context [153,
163, 164].

In order to mathematically check the GCL, a uniform flow should satisfy
(5.39). As the collision term vanishes with constant uniform flow, we just
need to insert a constant solution fi(X , t) = f 0

i into (5.40),

f 0
i = ∑

s=1
Ns f 0

i . (5.47)

Since the summation of shape functions is, by construction, equal to one
(∑s=1 Ns = 1), the RHS of (5.47) is simplified as,

∑
s=1

Ns f 0
i = f 0

i ∑
s=1

Ns = f 0
i , (5.48)

and, therefore, the present model satisfies the GCL exactly.

5.3.3 Numerical results

In this section, the model presented above is tested numerically in a set
of benchmark problems with a moving boundary. First, the GCL of the
model is validated. After that, we investigate the flapping airfoil under
pure plunging and pitching motions which is relevant in many physical
applications including the flight of small fliers [165] or micro air vehicles.
All simulations are performed with γ = 1.4, Pr = 0.71, the D2Q9 lattice
model and the adiabatic wall assumption.

5.3.3.1 Free-stream preservation

The first test-case is to check the GCL of the model, i.e. to ensure the exact
conservation of the free-stream condition under arbitrary movement of the
mesh. We consider a uniform flow with Ma = u∞/

√
γT = 0.2 and T = 0.2

in a square domain of size L = 8000. The mesh motion is defined through
the following mapping function,

x(t) = X + 500 sin(2πX/L) sin(2πY/L) sin(2πt/t0), (5.49)

y(t) = Y + 500 sin(2πX/L) sin(2πY/L) sin(2πt/t0), (5.50)

with the reference time t0 = 1.5L/u∞. Fig. 5.13 shows the mesh at two
different non-dimensional times t∗ = tu∞/L. We compute the solution until
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Figure 5.13: Motion of the mesh at non-dimensional time t∗ = 0 (top) and t∗ = 1
(bottom).

non-dimensional time t∗ = 1 using three different uniform grids, and the
relative errors ε = ∑ |u− u∞|/ ∑ |u∞| of the velocity u are shown in Table.
5.4. As it can be seen, the errors are found to be very small for different
grids which demonstrate that the GCL is indeed satisfied in the present
model.

Mesh(∆x/L) ε

0.1 1.117× 10−15

0.05 4.028× 10−16

0.025 3.872× 10−16

Table 5.4: Relative error ε of the velocity u for the free-stream preservation
problem.

5.3.3.2 Flow over NACA0012 airfoil in plunging motion

We consider a flow over an airfoil in a plunging motion to test the capability
of the solver in handling complex vortex-dominated flows. It is known
that the flow over plunging airfoil produces thrust over a wide range of
oscillation frequencies [166], the phenomenon known as Knoller–Betz effect
[167]. Another interesting phenomenon observed experimentally [167] is the
formation of asymmetric deflected wake pattern at high Strouhal numbers,
even in symmetrically plunging motions. Apart from the experiments [167–
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169], several numerical studies [141, 166, 170–173] are also available which
give insight into the physics behind the plunging airfoil and the mechanism
of thrust generation.

Here, in order to take into account the effect of compressibility, the
numerical setup is chosen identical to the numerical study by Liang et al.
[170] based on the higher-order accurate spectral difference ALE solution
of the compressible NS equations (SD-NS). A NACA0012 airfoil with chord
length c = 200 is placed in the center of a domain with the size [40c× 40c].
The airfoil is undergoing a sinusoidal plunging motion prescribed as,

x(t) = X, (5.51)

y(t) = Y− h sin (ωt) , (5.52)

where h and ω are plunge motion amplitude and frequency, respectively.
The Strouhal number is defined as,

Sr = hω/u∞, (5.53)

and u∞ is the free-stream velocity.
Two different scenarios are considered here: slow plunging and fast

plunging motions. For both cases, the Reynolds number based on the free-
stream velocity u∞ is set to Re = æ∞u∞c/¯ = 1850, the Mach number is
Ma = u∞/

√
flT∞ = 0.2 and the free-stream temperature is T∞ = 0.3.

• Slow plunging motion

In the slow plunging motion, the plunge amplitude is h = 0.08c and the
Strouhal number is Sr = 0.46. We first compute this case using two different
meshes with minimum cell sizes of δ ≈ 0.7 (Mesh-1) and δ ≈ 0.5 (Mesh-2),
in order to investigate grid independence. Part of the mesh is shown in Fig.
5.14 , where orthogonal grid is used close to the wall to accurately resolve
the boundary layer and anisotropic unstructured gird is used elsewhere.
In order to correctly capture the vortical patterns in the wake area, a high
resolution mesh with cell size of δ ≈ 10 is used in the rectangular domain
around the airfoil. Moreover, to minimize the computational cost, the mesh
outside of the rectangular domain is highly coarse which makes the ratio
between the largest and the smallest cell size to be of approximately ∼ 1000.

The time evolution of the aerodynamic forces predicted by both grids are
compared in Fig. 5.15. The lift coefficient is defined as cL = FL/(0.5ρ∞u2

∞c),
where FL is the total lift force acting on the airfoil and the drag coefficient is
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Figure 5.14: Mesh-2 used for the flow over plunging NACA0012 airfoil. Top:
overall view; Bottom: zoom near leading edge of the airfoil.

given by cD = FD/(0.5ρ∞u2
∞c), where FD denotes the total drag force. As it

can be seen in Fig. 5.15, the lift coefficient varies symmetrically about zero
mean, however, the drag coefficient oscillates around a negative average
value which means that a small thrust is generated in this case. Moreover,
the two grids give almost identical results which shows convergence to
a grid independent solution. To validate the solver, the numerical results
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Figure 5.15: Time evolution of lift (top) and drag (bottom) coefficients for slow
plunging motion of NACA0012 airfoil with h = 0.08c, Sr = 0.46,
Ma = 0.2 and Re = 1850.

of [170] over a few cycles are also shown in Fig. 5.15. It is observed that
results are in good agreement.
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Figure 5.16 shows the vorticity contours obtained by the present model
in comparison with the experimental results reported by Jones, Dohring
& Platzer [167]. Due to a relatively low Strouhal number in this case, the
leading and trailing edges separation leads to in an almost symmetric flow
pattern, which is very similar to what is observed in the experiment.

Figure 5.16: Vorticity computed by the present model (top) and the experimental
results reported by Jones, Dohring & Platzer [167] (bottom), for slow
plunging motion of NACA0012 airfoil with h = 0.08c and Sr = 0.46.
Contour levels are bounded between −6 ≤ Ωc/u∞ ≤ 6.

• Fast plunging motion

Next we consider the fast plunging motion of the NACA0012 airfoil which
corresponds to a motion with h = 0.12c and Sr = 1.5. The computation is
performed using the mesh with the minimum cell size of δ ≈ 0.5.

Fig. 5.17 compares the vorticity contour obtained from the present model
with the experimental results of [167]. It can be seen that in this case,
the spatial symmetry of the wake vortex pattern is lost and a deflected
vortex street is generated. The deflected vortex pattern is travelling upward
because, according to (5.52), the first stroke is directed downward. Fig. 5.17

also shows that the present model is able to capture a dual-mode vortex
street, in close resemblance with the experiment. The formation of dynamic
stall vortex (DSV) [174] near the leading edge of the airfoil is also observed
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in Fig. 5.17. Dynamic stall vortices convect towards the trailing edge of the
airfoil.

Figure 5.17: Vorticity computed by the present model (top) and the experimental
results reported by Jones, Dohring & Platzer [167] (bottom), for fast
plunging motion of NACA0012 airfoil with h = 0.12c and Sr = 1.5.
Contour levels are bounded between −6 ≤ Ωc/u∞ ≤ 6.

In order to validate the results quantitatively, we compare the time history
of the aerodynamic forces computed over several periods by the present
model with that of the SD-NS solver [170]; excellent agreement is observed.
As it is shown in Fig. 5.18, the maximum value of lift is larger than that in
the slow plunging case and it oscillates symmetrically around a small mean
value of about 1.43. The drag coefficient, on the other hand, is asymmetric
and mainly negative which results in a net mean thrust.

5.3.3.3 Flow over NACA0012 airfoil in pitching motion

We now turn our attention to a flow over the pitching airfoil. The exper-
imental works by Koochesfahani [175], Bohl & Koochesfahani [176] and
Mackowski & Williamson [142] are among the most comprehensive studies
of the flow over pitching airfoil in the incompressible regime; the authors
studied the vortical patterns in the wake and measured the thrust coefficient
as a function of the reduced frequency. Experiments show that the thrust
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Figure 5.18: Time evolution of lift (top) and drag (bottom) coefficients for fast
plunging motion of NACA0012 airfoil with h = 0.12c, Sr = 1.5,
Ma = 0.2 and Re = 1850.

coefficient increases monotonically with pitching frequency. However, the
pure pitching motion is not, in general, an effective mechanism for produc-
ing thrust [142]. There are also several numerical studies in the literature
focusing on different aspects of underlying fluid dynamics involved in the
pitching airfoil [141, 170, 177, 178].

We consider the flow past NACA0012 airfoil in the pure pitching mo-
tion along its quarter chord axis (c/4). The motion was prescribed by the
following expression,

x(t) = (X− Xc) cos(θ)− (Y−Yc) sin(θ), (5.54)

y(t) = (X− Xc) sin(θ) + (Y−Yc) cos(θ), (5.55)

where (XC, YC) is the center of rotation, θ = A sin(ωt) is the pitching angle,
A denotes the pitch amplitude and ω is pitching frequency. The reduced
frequency of pitching is defined as

k = ωc/2u∞. (5.56)

In the first set of numerical experiments, the Mach number was consid-
ered to be Ma = 0.08 in order to avoid significant effect of compressibility
and to compare the results with the water tunnel experiment of [142, 176].
The simulation was performed at pitch amplitude of A = 2◦, reduced
frequencies of k = 0 (stationary), k = 6.68 and k = 10 and at Reynolds
number Re = 12000. The high Reynolds number makes this test-case more
challenging, although the flow is still considered to be laminar. The mesh
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used for the computations has minimum cell size of δ ≈ 0.2 in the near-wall
region.

The vortical pattern obtained by the present model is shown in Fig. 5.19

in comparison with the experimental results of Koochesfahani [175], where
a similar pattern can be observed. To quantitatively investigate the velocity
field in the wake area, in Fig.5.20, the mean streamwise velocity profile at a
location of one chord downstream of the airfoil trailing edge is compared
with the experimental result of Bohl & Koochesfahani [176] at the reduced
frequency k = 5.2. The time averaging was performed after discarding an
initial transient of t∗ = 10 and statistics collected until t∗ = 40. It is apparent
that the agreement is reasonable and the present model predicts a wake
with velocity deficit similar to the experiment. However, the magnitude
of the maximum velocity differs slightly from the experiment [176]. This
difference could be due to compressibility or to three-dimensional effects,
or insufficient resolution in the wake area.

Figure 5.19: Vorticity computed by the present model (top) and the experimental
results reported by Koochesfahani [175] (bottom) for pitching motion
of NACA0012 airfoil with A = 2◦ and k = 6.68. Contour levels are
bounded between −11.5 ≤ Ωc/u∞ ≤ 11.5.

The time history of aerodynamic forces are presented in Fig. 5.21 and
Fig. 5.22 for reduced frequencies of k = 6.68 and k = 10, respectively.
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Figure 5.20: Mean streamwise velocity profile at a location one chord down-
stream of the airfoil trailing edge, for pitching motion of NACA0012

airfoil with A = 2◦, k = 5.2 and Re = 12600. Comparison is made
with the experimental results of Bohl & Koochesfahani [176].

In both cases, the lift force acting on the airfoil is only due to pressure
term (cl−p) while the contribution from the viscous force (cl−v) vanishes.
Under this condition, the average lift is zero. However, the drag force has
non-vanishing contributions from both the pressure (cd−p) and the viscous
forces (cd−v). There is an average drag force acting on the airfoil in the case
of k = 6.68 and a small thrust in the case of k = 10.

To compare the results with the experimental measurements, we repeat
the simulations at a slightly higher Reynolds number Re = 16600 to match
the experiment of Mackowski & Williamson [142]. Fig. 5.23 shows the
comparison of the amplitude of lift and thrust forces acting on the airfoil
at different reduced frequencies. It is observed that the simulation results
show good agreement with experiment.

To investigate the effect of compressibility and in accordance with the
numerical simulation of Young & S. Lai [177] based on the finite-difference
discretization of compressible NSF equations, we repeated the simulations
at higher Mach number Ma = 0.2. The time histories of lift and drag
coefficients in this case at reduced frequency of k = 10 are shown in Fig. 5.22;
results for the low Mach number case are also shown for comparison. It can



106 unstructured and moving meshes

t
*

c l

5 6 7
-4

-3

-2

-1

0

1

2

3

4

5

cl

cl - p
cl - v

t
*

c d

5 6 7
-0.1

-0.05

0

0.05

0.1

0.15
cd

cd - p

cd - v

Figure 5.21: Time evolution of lift (top) and drag (bottom) coefficients for pitching
motion of NACA0012 airfoil with A = 2◦, k = 6.68, Ma = 0.08 and
Re = 12000.

be seen that the compressibilty effect significantly changes the distribution
of pressure force while the viscous force remains almost the same.
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Figure 5.22: Time evolution of lift (top) and drag (bottom) coefficients for pitching
motion of NACA0012 airfoil with A = 2◦, k = 10 and Re = 12000.
Lines: Ma = 0.08; lines with symbols: Ma = 0.2.

Finally, Fig. 5.24 shows the mean thrust coefficient of the present model
at different frequencies in comparison with the experimental and numerical
results. For computing the mean thrust coefficient, the result is time aver-
aged after discarding the initial transients. In the low Mach number case,
the thrust coefficient shows monotonic behaviour with frequency. However,
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Figure 5.23: Amplitude of the lift (top) and thrust (bottom) forces acting on the
NACA0012 airfoil under pitching motion with A = 2◦ at different
reduced frequencies and Re = 16600. Comparison is made with the
experimental results of Mackowski and Williamson [142].

the case with Ma = 0.2 shows a significantly different behaviour due to the
effect of compressibilty. We therefore conclude that pure pitching motion is
even less efficient in producing thrust when the flow speed increases and
the compressibilty effects become important.
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Figure 5.24: Comparison of the mean thrust coefficient with experimental and
numerical results.
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5.3.3.4 Transonic flow over NACA0012 airfoil in pitching motion

Finally, we address a challenging problem of a transonic flow over NACA0012

airfoil in pitching motion. Accurate computations of unsteady transonic
flow is relevant in many applications such as wing flutter analysis or
rotor-blade design [179].

We set the free-stream Mach number to Ma = u∞/
√

flT∞ = 0.85, with
T∞ = 0.3, Reynolds number Re = 10000, pitching amplitude A = 2◦

and reduced frequency of k = 3. Due to the high Mach number in this
simulation, we need to employ the shifted lattices. In our application, we use
the lattice with a shift in the free-stream direction asU = (Ux, Uy) = (0.3, 0).

Figure 5.25: Mach number (top) and Vorticity (bottom) computed by the present
model for pitching motion of NACA0012 airfoil with A = 2◦, k =
3.0 and Ma = 0.85. Vorticity contour levels are bounded between
−11 ≤ Ωc/u∞ ≤ 11.

Fig. 5.25 shows the Mach number distribution over the airfoil and vorticity
contours computed by the present model. It is observed that in this case, a
complex flow field is formed with multiple shock waves interacting with
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the boundary and shear layers. Downstream of the leading edge, the flow
accelerates causing a formation of weak oblique shock when it reaches the
boundary layer. Weak shock waves in the form of lambda-shocks appear
further downstream as well. These shock waves interact with the boundary
layer, causing the flow separation, and will also be influenced by the vortex
shedding downstream of the airfoil [180]. The vortex shedding associated
with the shear layer instabilities combines with the vortex shedding due
to the airfoil movement, resulting in a complex vortex pattern in the wake
region.
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Figure 5.26: Time evolution of lift and drag coefficients for pitching motion of
NACA0012 airfoil with A = 2◦, k = 3, Ma = 0.85 and Re = 10000.

Time histories of lift and drag coefficients are presented in Fig. 5.26.
Similar to the previous pitching cases with smaller Mach number, the
average lift force is close to zero. However, there is a mean drag force
of cd ≈ 0.0986 acting on the airfoil, which is significantly larger than its
counterpart in the low Mach number case. This confirms the previous
observation about the effect of compressibilty on increasing the drag force.

5.4 conclusion

We presented an extension of the compressible lattice Boltzmann model on
standard lattices, for the simulation of compressible flows over complex
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geometries on unstructured mesh. The extension was based on the semi-
Lagrangian propagation on unstructured finite element mesh and Grad’s
approximation for replacing missing populations near the wall boundaries.
The model was validated by simulating four benchmark test-cases includ-
ing: Sod’s shock tube, subsonic/supersonic flow over NACA0012 airfoil
and shock-vortex interaction in Schardin’s problem. It was shown that the
results obtained with the present model on standard lattice are in good
agreement with the available numerical and experimental results in the lit-
erature. Moreover, it was demonstrated that the present model with shifted
lattice can successfully capture moderately supersonic shock waves on fully
anisotropic meshes without using any artificial dissipation or limiters.
We then proposed a solution methodology for the simulation of com-
pressible flows on unstructured moving meshes based on the arbitrary
Lagranian-Eulerian (ALE) technique. To that end, the kinetic equations
were mapped from a physical moving domain to a fixed computational
domain. The analysis of the model was conducted through simulation of
compressible flow over NACA0012 airfoil undergoing plunging and pitch-
ing motions at different Mach numbers. It was demonstrated that the model
is able to properly predict the relevant features of the complex flow over
flapping airfoil. In particular, the vortical patterns of the wake, the time
histories of lift and drag coefficients and their mean values agreed well
with the experimental and numerical results in the literature. Both slow
and fast plunging motion of airfoil produce a net mean thrust with very
small average lift. Pitching motion, however, is not as effective as plunge
motion and a thrust is generated at higher frequencies, and only when
the compressibilty effects are small. It was also observed that the impact
of compressibilty is mainly on the distribution of pressure force rather
than the viscous force. Finally, in order to show the model’s performance
in simulating high-speed flows, transonic flow over pitching airfoil was
considered, where complex flow pattern involving multiple shock waves
interacting with the boundary and shear layers were observed in the flow
field.
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C O M P R E S S I B L E T U R B U L E N T S I M U L AT I O N S

6.1 introduction

Compressible turbulence concerns with turbulent flows where density and
temperature fluctuations and also a dilatational velocity component cannot
be ignored. Typical examples of compressible turbulence can be found
in aerodynamic applications. The presence of shock waves in such flows
also imposes severe challenges for an accurate numerical simulation. Shock
waves are sharp discontinuities of the flow properties across a thin region
with the thickness of the order of mean free path. Since in practical simula-
tions, it is impossible to use a grid size fine enough to resolve the physical
shock structure defined by the molecular viscosity, most numerical schemes
rely on some numerical dissipation to stabilize the simulation and capture
the shock over a few grid points [2, 3]. The additional numerical dissipation
of shock capturing schemes, however, is problematic in smooth turbulent
regions of the flow, where a non-dissipative scheme is required to capture
the complex physics accurately. Therefore, in recent years, much effort has
been devoted to developing numerical schemes capable of treating shocks
and turbulence, simultaneously. This has resulted in various improvements
of the Weighted essentially non-oscillatory (WENO) scheme [181–184], ar-
tificial diffusivity approaches [185] and hybrid schemes [186], to name a
few.

A proper numerical methodology to deal with compressible turbulent
flows, thus, requires a low–dissipative scheme for the accurate representa-
tion of turbulent field and, at the same time, enough dissipation to reduce
nonphysical oscillations near shocks. As such, the extended lattice Boltz-
mann model II, introduced in Chapter 3 and extended to supersonic flow
in Chapter 4, is a suitable candidate, as the low-dissipative nature of the
exact on-lattice propagation is coupled with the dissipation of correction
term computed with the first–order upwind scheme.

In this chapter, we investigate the accuracy and performance of that
model for compressible turbulent flows by considering the decaying of a
compressible homogeneous isotropic turbulence in a periodic box at dif-
ferent turbulent Mach numbers and Reynolds numbers. This problem has
been studied extensively [115, 187–193] and is a challenging test-case, as

111
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it contains both compressibility effects and shocks, as well as turbulent
structures in the flow field [189]. It will be demonstrated that computing the
correction terms with the upwind scheme provides enough numerical dissi-
pation to avoid the Gibbs oscillations, and to effectively capture the shock
waves without degrading the accuracy of the scheme and overwhelming
the physical dissipation in smooth regions.

6.2 decaying of compressible homogeneous isotropic turbu-
lence

To demonstrate that the present compressible model is a reliable method
for the simulation of complex flows involving both turbulence and shocks,
decaying compressible homogeneous isotropic turbulence in a periodic box
is considered.

The initial condition in a cubic domain with the side L is set to be unit
density and constant temperature along with a divergence–free velocity
field which follows the specified energy spectrum,

E(κ) = Aκ4exp
(
−2(κ/κ0)

2
)

, (6.1)

where κ is the wave number, κ0 is the wave number at which the spectrum
peaks and the amplitude A controls the initial kinetic energy [115]. The
method of kinematic simulation [194] is used to generate the velocity field.

Control parameters for this problem are the turbulent Mach number,

Mat =

√
〈u · u〉
〈cs〉

, (6.2)

and the Reynolds number based on the Taylor microscale,

Reλ =
〈ρ〉urmsλ

µ0
, (6.3)

where urms =
√
〈u · u〉/3 is the root mean square (rms) of the velocity and

notation 〈. . . 〉 stands for the volume averaging over the entire computational
domain, while λ is the Taylor microscale,

λ =
〈u2

x〉
〈(∂xux)2〉 . (6.4)

The dynamic viscosity is following a power law dependence on temperature,

µ = µ0

(
T
T0

)0.76
, (6.5)
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with T0 being the initial temperature. The Prandtl number for all the
simulations is Pr = 0.7 in accordance with the DNS [115].

6.2.0.1 Low turbulent Mach number

The simulation is first performed at a relatively low turbulent Mach number
Mat = 0.3 with Reλ = 72, κ0 = 8(2π/L) and initial temperature T0 = 0.15.
Fig. 6.1 illustrates the instantaneous iso-surface of the velocity divergence

Figure 6.1: Iso-surface of velocity divergence ∇ · u = 0.005, colored by local
Mach number for compressible decaying turbulence at Mat = 0.3,
Reλ = 72 and t∗ = 0.4.

∇ · u colored with the local Mach number at the non-dimensional time
t∗ = t/τ = 0.4, where τ = LI/urms,0 is the large eddy turnover time defined
based on the initial rms of the velocity and the integral length scale,

LI =
3π
∫ ∞

0 [E(κ)/κ] dκ

4
∫ ∞

0 E(κ)dκ
=

√
2π

κ0
. (6.6)

It is observed that in this case, the flow is in a moderately compressible to a
high-subsonic regime, with the maximum local Mach number Mamax ∼ 0.8.

In order to quantify the validity of the model, a grid convergence study is
performed by using three domain sizes, 643, 1283 and 2563. The decay of the
turbulent Mach number and of the turbulent kinetic energy K = 1/2〈ρu2〉
are shown in Fig. 6.2 and Fig. 6.3, where the convergence to the DNS
results [115] can be observed.
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Figure 6.2: Decay of the turbulent Mach number for compressible decaying
turbulence at Mat = 0.3 and Reλ = 72. Lines: present model; symbol:
DNS [115].

To assess the effect of compressibilty, time evolution of the rms of dilata-
tion,

θrms =
√
〈(∇ · u)2〉, (6.7)

is compared in Fig. 6.4 with the DNS, where dilatation is normalized with
the initial rms of vorticity, ωrms,0 =

√
〈|ω0|2〉, and ω = ∇ × u. Strong

compressibility effects can be seen at the initial stage, where dilatation
rapidly increases from its initial value θrms,0 = 0, followed by a monotonic
decay. Furthermore, the rms of the density ρrms =

√
〈ρ2〉 − 〈ρ〉2 normalized

by Ma2
t,0 is shown in Fig. 6.5. Also here the agreement with the DNS is

quite satisfactory with 2563 grid points.
The enstrophy defined as,

Ω =
1
2
〈ω2〉, (6.8)

is a sensitive variable to analyze the performance of a numerical scheme
for turbulent flows, as it is closely related to small-scale turbulence mo-
tions [195, 196]. The temporal evolution of the enstrophy normalized with
its initial value is compared in Fig. 6.6 with the DNS results of the spectral
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Figure 6.3: Decay of the turbulent kinetic energy for compressible decaying
turbulence at Mat = 0.3 and Reλ = 72. Lines: present model; symbol:
DNS [115].

method reported in Fang et al. [195]. It can be seen that in all cases the
enstrophy increases in the beginning due to vortex stretching, which gener-
ates small-scale turbulence structures. This makes the viscous dissipation
stronger, which leads to a decrease of enstrophy [196]. Furthermore, coarse
simulations result in under-prediction of peak value and also fast decay
rate, due to strong suppression of small-scale fluctuations. Here, contrary
to the previous cases, 2563 grid size is not enough to accurately capture the
statistics. By increasing the resolution to 5123, the peak value and decay
rate of enstrophy can be captured with good accuracy. This further confirms
the accuracy of the present model in capturing the physics of compressible
turbulence.

Moreover, the convergence order of the model is evaluated based on the
L∞ error of enstrophy with respect to the DNS results. As shown in Fig. 6.7,
the overall accuracy in space is slightly below second-order.

6.2.0.2 Effect of deviation discretization on the accuracy

As pointed out earlier, first-order upwind discretization of the deviation
term is necessary for preventing the Gibbs phenomenon and maintaining
the stability of the model in supersonic regime. Here, we investigate the
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effect of the discretization scheme on the accuracy in subsonic turbulent
regime, by comparing the results to the case with second-order central
evaluation of derivatives of deviation term.

It can be seen from Fig. 6.8 that, the time history of enstrophy is almost
insensitive to the evaluation of deviation term. All other turbulence statistics
showed similar behaviour, but are not presented here for the sake of brevity.
This indicates that the use of first-order scheme does not degrade the formal
accuracy of the solver (shown in Fig. 6.7), although it provides sufficient
dissipation for stabilizing the solver and capturing the shock.

6.2.0.3 High turbulent Mach number

We now move on to a higher turbulent Mach number. It is well known
that at sufficient high turbulent Mach numbers, random shock waves com-
monly known as eddy-shocklets appear in the flow [115, 187, 189], due
to compressiblity and turbulent motions. This scenario can, therefore, be
considered as a rigorous test case for the validity of the present model.

We increase the turbulent Mach number to Mat = 0.5 and perform the
simulation with 2563 and 5123 grid points and the same Reynolds number
Reλ = 72. The iso-surface of the velocity divergence colored by local Mach
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number is shown in Fig. 6.9, which confirms the presence of local supersonic
regions during the decay. Moreover, to show that the model can accurately
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Figure 6.9: Iso-surface of velocity divergence ∇ · u = 0.015, colored by local
Mach number for compressible decaying turbulence at Mat = 0.5,
Reλ = 72 and t∗ = 0.4.
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Figure 6.10: Decay of the turbulent kinetic energy for compressible decaying
turbulence at Mat = 0.5 and Reλ = 72. Lines: present model; symbol:
DNS [115].

predict turbulent statistics in the presence of shocks, time evolution of the
turbulent kinetic energy, rms of density and Taylor microscale Reynolds
number are plotted in Figs. 6.10, 6.11 and 6.12, respectively. Here also the
results agree well with the reference DNS results.
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Figure 6.12: Time history of Taylor microscale Reynolds number for compressible
decaying turbulence at Mat = 0.5 and Reλ = 72. Lines: present
model; symbol: DNS [115].

As a final validation case, we investigate the performance of the model
at a relatively high Reynolds number of Reλ = 175, while keeping the
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Figure 6.13: Decay of the turbulent kinetic energy for compressible decaying
turbulence at Mat = 0.488 and Reλ = 175. Line: present model;
symbol: DNS [115].

turbulent Mach number high enough Mat = 0.488. The initial spectrum
peaks at κ0 = 4(2π/L) in this case.
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Figure 6.14: Time history of the dissipation rate for compressible decaying turbu-
lence at Mat = 0.488 and Reλ = 175. Line: present model; symbol:
DNS [115].
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History of turbulent kinetic energy, solenoidal dissipation rate ε = 〈µω2〉
and Taylor miroscale Reynolds number (6.3) are plotted in Figs. 6.13, 6.14

and 6.15, using 7683 grid points. The results agree well with the reference
DNS solution [115].

The energy spectrum at various times is shown in Fig.6.16. It is observed
that initially, large scales contain most of the energy and as time evolves the
energy is transferred to small scales. Moreover, since the Reynolds number
is high enough, the spectrum shows the inertial range with slope of κ−5/3

which further confirms the accuracy of the results and shows the ability
of the model in capturing broadband turbulent motions in the presence of
shocks.

6.3 conclusion

It was demonstrated that the fully on-lattice extended model II with the
single relaxation time LBGK collision term (introduced in Chapter 3) is
able to properly predict the relevant features of the compressible turbulent
flows. In particular, the simulation of compressible decaying turbulence
demonstrated that the model can accurately capture compressibilty effects,
turbulence fluctuations and shocks. It was shown that the model performs
well even at high turbulent Mach number, where eddy-shocklets exist in



6.3 conclusion 123

κ η

E
(κ

) 
κ5

/3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

104

10
5

t
*

= 3

t
*

= 0

t* = 1

Figure 6.16: Energy spectrum at various times (t∗ = 0, 1 and 3) for compressible
decaying turbulence at Mat = 0.488 and Re˘ = 175. Dashed line is
the initial spectrum (t∗ = 0). Here, η is the Kolmogorov length scale.

the flow field and interact with turbulence. The results of the model were
found to be in good agreement with DNS results.
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K I N E T I C T H E O RY I N A C O - M O V I N G R E F E R E N C E
F R A M E : A P R O M I S I N G A P P R O A C H

7.1 introduction

Recently, a new representation of the kinetic theory named particles-on-
demand (PonD) method [126] has been proposed which provides promising
results in improving the inherent limitations of the LB models in terms of
flow speed and temperature range. While the classical LB models work
with populations in a fixed reference frame, in PonD the populations are
formulated in a way to be in the optimal reference frame [126, 197], so that
the equilibrium seen by the populations do not depend on the flow velocity
and temperature [126]. This feature makes PonD a suitable candidate for
the simulation of high-speed nonequilibrium flows which were impossible
before with the LBM, such as the shock structure problem. PonD can also
be considered as an alternative to hybrid solvers [198] for multi-scale flows,
where the flow experiences a broad range of Knudsen numbers, from
rarefied to continuum regimes.

In this chapter, we briefly present a two-population realization of the
PonD with adjustable Prandtl number and adiabatic exponent for the
simulation of classical shock structure problem.

7.2 kinetic theory in a co-moving reference frame

We begin with a brief review. In PonD, the discrete speeds ci are inter-
preted as peculiar velocities relative to a reference frame velocity uref and
temperature Tref. Therefore, the discrete velocities are generally defined as
[126],

vi =

√
Tref
TL
ci + uref, (7.1)

where TL is the constant lattice reference temperature specific for any
set of discrete speeds C = {ci, i = 0, ..., Q− 1} [70] and Q is the number
of discrete speeds. By specifying the frame velocity and temperature in

(7.1), one can set the reference frame λ(x, t) =
{
ure f , Tre f

}
for the discrete
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velocities. For example, The standard lattice Boltzmann with the discrete
velocities ci, is recovered by setting the reference frame at rest, ure f = 0
and choosing the fixed temperature Tre f = TL, i.e. λ(x, t) = {0, TL}.

With the discrete velocities (7.1), the two-population kinetic equations
which enable variable Prantdl number and adiabatic exponent can be
written in the standard propagation-collision form as [79],

fi(x, t) = fi(x− viδt, t− δt) + ω1

(
f eq
i − fi

)
+ (ω1 −ω2) f ?i , (7.2)

gi(x, t) = gi(x− viδt, t− δt) + ω1

(
geq

i − gi

)
+ (ω1 −ω2) g?i , (7.3)

where fi(x, t) and gi(x, t) are populations at a monitoring point x and
time t, f eq

i , geq
i are local equilibria, f ?i , g?i are quasi-equilibrium populations

and ω1, ω2 are relaxation parameters related to the dynamic viscosity and
thermal conductivity,

µ =

(
1

ω1
− 1

2

)
ρTδt, (7.4)

κ =

(
1

ω2
− 1

2

)
CpρTδt. (7.5)

Here, using the units where universal gas constant R = 1, Cp = Cv + R is
the specific heat of ideal gas at constant pressure, Cv is the specific heat at
constant volume, the Prandtl number is Pr = Cpµ/κ and γ = Cp/Cv is the
adiabatic exponent.

The local conservation laws for the density ρ, momentum ρu, and total
energy ρE are

ρ =
Q−1

∑
i=0

fi =
Q−1

∑
i=0

f eq
i , (7.6)

ρu =
Q−1

∑
i=0

vi fi =
Q−1

∑
i=0

vi f eq
i , (7.7)

ρE =
Q−1

∑
i=0

(
v2

i
2

fi + gi

)
=

Q−1

∑
i=0

(
v2

i
2

f eq
i + geq

i

)
, (7.8)
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and the temperature is defined by T = (1/Cv)
(
E− u2/2

)
. Note also that,

the higher-order moments, stress tensor σ and heat flux vector q can be
computed as,

σ =
Q−1

∑
i=0

ei ⊗ ei( fi − f eq
i ), (7.9)

q =
1
2

Q−1

∑
i=0

[
e2

i ( fi − f eq
i ) + (gi − geq

i )
]
ei, (7.10)

where the relative velocity ei is

ei = vi − u. (7.11)

The distinctive feature of the PonD is that the kinetic equations (7.2) and
(7.3) are formulated in the reference frame moving with the local fluid
velocity u(x, t) and temperature T(x, t), i.e. λ(x, t) = {u, T}. In this co-
moving reference frame, the equilibrium populations are functions of the
local density ρ(x, t) and temperature T(x, t) only,

f eq
i = ρWi, (7.12)

geq
i = ρWi(Cv −

D
2
)T, (7.13)

where D is dimension and the weights Wi are known for different speed
sets C and listed in Table 2.1. The equilibrium (7.13) make PonD with the
simple Bhatnagar-Gross-Krook (BGK) collision term, stable and accurate for
the computation of high-speed flows [126], as there is no error proportional
to fluid velocity in the equilibrium moments.

The quasi-equilibrium populations in the co-moving reference frame can
also be written as [79],

f ?i = Wi

Q :
(

θ3/2ei ⊗ ei ⊗ ei − Tθ1/2sym(ei ⊗ I)
)

6T3 , (7.14)

g?i = Wi
θ1/2ς · ei

T
, (7.15)

where sym(. . . ) denotes symmetrization, ”:” indicates full contraction, θ =
T/TL is the reduced temperature, Q is the noneqilibrium third-order flux
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tensor, and ς is the energy flux associated with the internal degrees of
freedom,

Q =
Q−1

∑
i=0

ei ⊗ ei ⊗ ei

(
fi − f eq

i

)
, (7.16)

ς =
Q−1

∑
i=0

ei

(
gi − geq

i

)
. (7.17)

The crucial part of the PonD algorithm is the propagation step. In order
for the equilibrium populations to be exact (see (7.12) and (7.13)), propaga-
tion should be performed in the local co-moving reference frame λ = {u, T},
which is undetermined before the propagation. Nevertheless, it is possible
to find that during the propagation step and through a predictor-corrector
procedure: the propagation is first performed with an initial predictor refer-
ence frame (usually the velocity and temperature of the previous time step)
leading to find the corrector reference frame, with which the propagation
is executed again. This predictor-corrector process continues until conver-
gence and ensures that the propagation is performed in the local co-moving
reference frame, and that makes the local equilibrium populations exact.
For the detailed description of the propagation step in PonD, see [126, 199,
200].

7.3 the shock structure problem

Shock structure is one of the classical problems in the kinetic theory of gases
[201]. It is known that the conventional continuum models, such as the NSF
equations, fail to ensure a correct description of the shock wave structure
[202], as the thermodynamic variables vary on the scale of a few mean
free paths and nonequilibrium effects are dominant. Important to note that,
shock structure is a one-dimensional steady-state problem without wall
boundaries which eliminates the issues regarding gas-wall interactions.
Therefore, it is particularly interesting to consider the applicability of the
PonD for solving this nonequilibrium problem.

A classical experimental study of shock wave structure accompanied
with DSMC results has been done by Alsmeyer [202]. Particle methods
like molecular dynamics (MD) and DSMC [64] provide the most accurate
results in a wide range of Mach numbers compared to experimental re-
sults. Numerous high-order hydrodynamic models have also been used for
studying shock structure problem [see 56, 203–205]. Moreover, there are
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numerical methods that solve the Boltzmann equation, noteworthy is the
work of Ohwada [206] who calculated the full non-linear collision integral
for the hard sphere molecules. However, so far no LB model has succeeded
in computing the shock structure problem. Therefore, to demonstrate the
advantage of PonD for simulation of high-speed flows, we investigate its
accuracy and performance for computing the structure of a plane shock
wave.

A one-dimensional plane shock wave is considered. The initial condition
is a step at the center of the computational domain, where the flow values
upstream and downstream of the shock wave are related by the Rankine-
Hugoniot conditions [99]. The upstream mean free path for the hard sphere
molecules is defined as,

λ1 =
16

5
√

2πγ

µ1a1

P1
, (7.18)

where γ = 5/3 is the adiabatic exponent for monatomic gases and P1, a1
and µ1 are the pressure, speed of sound, and dynamic viscosity of the gas
upstream of the shock, respectively. The viscosity-temperature relation is

µ = µ1 (T/T1)
s , (7.19)

and the hard sphere molecules correspond to s = 0.5.
The results are produced with a quasi one-dimensional setup and D2Q16,

D2Q25 lattices. The steady-state non-dimensional density, temperature,
normal stress and heat flux, defined as,

ρn =
ρ− ρ1

ρ2 − ρ1
, Tn =

T − T1

T2 − T1
, σ̂xx =

σxx

p1
, q̂x =

qx

p1
√

2T1
,

through the shock wave are compared with the numerical results of solving
the Boltzmann collision integral presented by Ohwada [206]. The subscript
2, denotes the downstream of the shock wave. The origin of the coordinate
system is adjusted to the point with ρn = 0.5 and x is non-dimensionalized
as xn = x/0.5

√
πλ1.

The numerical computation has been carried out for Ma = 1.2, 2 and
the results are shown in Figs. 7.1. For Ma = 1.2, both D2Q16 and D2Q25
lattices give identical results which are in excellent agreement with Ohwada
[206]. This demonstrates that the PonD is able to resolve the structure of
shock wave. At Ma = 2, in spite of some deviations at upstream flow part,
the results of D2Q25 lattice are still in reasonable agreement with the results
of solving the Boltzmann equation. We can, therefore, conclude that PonD
is able to resolve the shock structure with good accuracy.
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Figure 7.1: The density and temperate profiles (left) and the normal stress and
heat flux profiles (right) for the shock structure at Ma = 1.2 (top) and
Ma = 2 (bottom) using PonD method. Comparisons are made with
the results of Ohwada [206].
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7.4 conclusion

The recently introduced Particles on Demand (PonD) method solves the
kinetic equations in a co-moving reference frame which is optimal in terms
of equilibrium accuracy, making it attractive for the simulation of high-
speed nonequilibrium flows. The classical shock structure problem was
computed and the numerical results were compared with the results of
solving the full non-linear Boltzmann collision integral. The results show
that the PonD is able to resolve the shock structure with good accuracy.
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-“Let’s go."
-"We can’t."
-"Why not?"
-"We’re waiting for Godot.”

— Samuel Beckett

8.1 summary

With the standard discrete velocities, it is possible to develop an error–free,
fully Galilean invariant kinetic model in the co-moving reference frame.
However, this requires off-lattice particles’ velocities. Sticking with the fixed,
lattice-conform velocities, one is faced with an inevitable and persistent er-
ror in the stress tensor, which spoils the hydrodynamic equations whenever
the flow velocity is increased or the temperature deviates from the lattice
reference value. The origin of this anomaly is the geometric constraint of
the standard lattices c3

i = ci, which leads to a deviation in the diagonal
components of the third-order equilibrium moment.
In this thesis, we proposed two LB models to address this issue and enlarge
the operating range of the classical LBM to fully compressible flows. Both
models were based on the two-population framework, where conservation
laws are split between two sets of populations: one represents the mass and
momentum, while another one is earmarked for the energy conservation. In
particular, in model I, a non-local correction term was directly introduced
into the kinetic equations in the form of a force term to remove the spurious
terms in the stress tensor. Moreover, the construction of energy equilibrium
population was based on minimally required moments for recovering the
correct energy equation in the hydrodynamic limit. In model II, on the
other hand, we annihilated the anomaly by suggesting an extended equi-
librium. The extended equilibrium was realized through a product-form,
which allows us to compensate the diagonal third-order moment anomaly
in the hydrodynamic limit by adding consistent correction terms to the
diagonal elements of the second-order moment. As a result, the formulation
of correction terms was simpler compared to model I. Furthermore, the
construction of energy equilibrium population was improved by using the
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product-form formulation which recovers all Maxwell-Boltzmann moments
supported by the lattice stencil. Model II, thus, provides a kinetically consis-
tent model with simpler formulation of correction terms compared to model
I. Both models, however, were shown to restore the Galilean invariance
and temperature independence in a sufficiently wide range and recover the
full Navier–Stokes–Fourier equations with variable Prandtl number and
adiabatic exponent in the hydrodynamic limit.
Two different strategies then proposed to increase the operating range of the
models to supersonic flows involving shock waves. The first strategy relied
on the concept of the shifted lattices, a general approach which extends
the operating range of any lattice kinetic model by formulating the kinetic
equations in a reference frame moving with a constant predefined velocity.
While shifted lattice increases the stability domain to Mach number range
up-to Ma ≈ 2.5, its drawback is the necessity of off-lattice propagation. The
second strategy, only applicable to model II, was based on the upwind dis-
cretization of correction term as opposed to central scheme. Consequently,
this approach provides a way to simulate moderately supersonic flows
up-to Ma ≈ 1.5, while maintaining the simplicity and efficiency of the
on-lattice propagation.
The model formulation was extended to compressible flows over com-
plex geometries on unstructured body-fitted meshes. The extension was
based on the semi-Lagrangian propagation on unstructured finite element
mesh and Grad’s approximation for replacing missing populations near
the wall boundaries. It was validated by simulating benchmark cases in-
cluding: subsonic/supersonic flow over airfoil and shock-vortex interaction
in Schardin’s problem. A solution methodology based on the Arbitrary
Lagrangian-Eulerian technique was then proposed for handling moving
objects with unstructured body-fitted mesh and interesting applications
such as plunging/pitching airfoil with different amplitudes and frequencies
were thoroughly investigated.
As a rigorous test for validity of the extended compressible model de-
veloped, its accuracy and performance in dealing with challenging case
of compressible turbulence was investigated. Extended model II with on-
lattice propagation was used for the simulation of decaying of compressible
homogeneous isotropic turbulence. It was demonstrated that the model
can accurately capture compressibilty effects, turbulence fluctuations and
shocks. It was shown that the model performs well even at high turbulent
Mach number, where eddy-shocklets exist in the flow field and interact with
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turbulence. The results of the model were found to be in good agreement
with DNS results.

8.2 future works

In order to further validate the suitability of the extended models proposed
for compressible turbulent applications, more benchmark cases need to
be simulated. The promising results of the proposed models on standard
lattices open interesting prospects towards the numerical simulation of
more complex applications such as compressible jet flow [207], shock tur-
bulence [208, 209] or shock boundary-layer interactions [210, 211]. The
range of applications can also go in the direction of multi-phase flows or
magnetohydrodynamics, where compressibilty effects play an important
role.
Furthermore, with the model formulation on unstructured moving meshes,
one can also tackle interesting applications, such as the dynamic stall prob-
lem in compressible flows [174], flows involving multiple moving/deforming
objects or fluid-solid interaction (FSI) problems. For problems including
deformation or relative motion of multiple objects, a blending function is
needed to construct the mapping function, as it was proposed in Persson,
Bonet & Peraire [153].
The main limitation of the proposed models is the restriction in Mach
number range, where with shifted lattices Mach number is in a range up
to Ma ≈ 2.5 and with on-lattice scheme up to Ma ≈ 1.5. Widening the
Mach number range is, however, a challenging task. One way, nonetheless,
could be to incorporate additional correction terms in order to compensate
the effect of deviations in higher-order equilibrium moments (higher than
three).
Future model development should also be directed towards increasing
the stability domain in terms of Reynolds number. This can be achieved
by augmenting the model with more advanced collision models such as
multiple-relaxation-time (MRT) schemes, since the BGK collision term used
in this work, is well known to suffer from numerical instabilities at high
Reynolds numbers.





A
A P P E N D I X

a.1 comparison of extended lbgk to locally corrected lbm [44]

Below, we compare the locally corrected lattice Boltzmann model (LC
LBM) [44] with both the standard and the present extended LBGK [102].
To that end, it suffices to consider the one-dimensional D1Q3 lattice. In
order to introduce the LC LBM, we begin with the standard LBGK (δt = 1,
R = 1),

fi(x + vi, t + 1)− fi(x, t) = ω( f eq
i − fi). (A.1)

The equilibrium populations in (A.1) are given by (3.199) and (3.35),

f eq
i = ρΨi

(
ux,Peq

xx , 1
)

, Peq
xx = T + u2

x, i ∈ {−1, 0, 1}. (A.2)

Thanks to the diagonal anomaly, the second-order asymptotic analysis
results in the following viscous stress in the one-dimensional version of the
Navier–Stokes equation (3.94),

Πxx = −2
(

1
ω
− 1

2

)
ρT∂xux + Π̃xx. (A.3)

For the LBGK model, the anomalous (second) term in (A.3) reads,

Π̃LBGK
xx = −

(
1
ω
− 1

2

) [(
1− 3T

2T
− 3u2

x
2T

)
2ρT∂xux +

(
ux(1− 3T)− u3

x

)
∂xρ

]
.

(A.4)

Upon realizing that the first term of the anomalous contribution (A.4) is
similar in its structure to the relevant (first) term in the LBGK stress (A.3),
the locally corrected (LC) LBGK groups these two terms together and
replaces the relaxation parameter ω in (A.1) with a new relaxation ωLC,
which depends on the flow velocity. While the original work [44] addressed
the case of the lattice temperature, T = TL = 1/3 (3.206), we first consider
a slightly more general formulation for a flexible temperature parameter.
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Consequently, the locally corrected relaxation parameter ωLC in the LBGK
equation (A.1) is defined as,

1
ωLC

− 1
2
=

(
1
ω
− 1

2

)
X, (A.5)

where the renormalization factor X reads,

X =

(
1 +

1− 3T
2T

− 3u2
x

2T

)−1

. (A.6)

The LBGK model with the locally corrected relaxation parameter ωLC (A.5)
results in the viscous stress of the form (A.3), with the remaining error
term,

Π̃LC
xx = −

(
1
ω
− 1

2

)
X
(

ux(1− 3T)− u3
x

)
∂xρ. (A.7)

For the sake of a discussion, let us introduce the local Mach number,
Max = ux/

√
T. For a quasi-incompressible (slow) flow, the density variation

scales as ∂xρ ∼ Ma2
x. Thus, for T 6= TL, the error (A.7) can be estimated as,

Π̃LC
xx ∼ Ma3

x. This is two orders of magnitude lower than the error of the
original LBGK at T 6= TL, cf. Eq. (A.4), at small Mach number. Moreover, by
setting the temperature T = TL = 1/3, it was first realized in Ref. [44] that
the error (A.7) reduces to,

Π̃LC
xx =

(
1
ω
− 1

2

)(
T3/2

L Ma3
x

1− (3/2)Ma2
x

)
∂xρ. (A.8)

In this case, the scaling at Max → 0 becomes, Π̃LC
xx ∼ Ma5

x. In other words,
the local correction at T = TL provides a gain of two orders of magnitude in
accuracy with respect to the standard LBGK under the quasi-incompressible
flow conditions [44]. This consideration extends straightforwardly to the
D2Q9 and D3Q27 lattices by constructing a multiple relaxation time LBM
that corrects the relaxation of each diagonal component of the pressure
tensor [44].

However, for a generic isothermal flow, the error (A.7) becomes amplified
through the renormalization factor (A.6) as the velocity increases and
eventually diverges when u2

x → (1− T)/3. This error persists also for the
special case T = TL (A.8). On the other hand, the second-order analysis
of Chapman-Enskog reveals that the present LBGK with the extended
equilibrium (3.207) removes the entire anomalous term, Π̃ex

xx = 0. Thus, the
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difference between the extended LBGK and the LC LBM [44] is expected
beyond the asymptotic Max → 0.

In order to demonstrate this point, a spectral analysis was performed for
the two-dimensional D2Q9 lattice (see [88] for details of the spectral analysis
in the LBM context). The normalized spectral dissipation of acoustic modes
=(ωκ)/νκ2

x, is shown in Fig. A.1, for T = TL and the background flow
velocity (ux, uy) = (0.3, 0), for the three models, the standard LBGK, the
present extended LBGK and the LC LBM of Ref. [44]. It can be seen that, the

κ
x

ℑ
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κ)
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 ν
 κ

 x2
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-0.5

0

0  π / 2 π

Figure A.1: Spectral dissipation of acoustic modes for different models. Red sym-
bols: LBGK; black symbols: extended LBM (3.207); blue symbols: LC
LBM [44]; dashed line: Navier–Stokes. The velocity and temperature
are set to ux = 0.3 and T = TL.

extended LBGK recovers the correct dissipation rate in the continuum limit
(vanishing wave number κx), confirming its Galilean invariance. However,
both the standard LBGK and the LC LBM show deviations in the form of
under-dissipation at low wave numbers, while the deviation for the LC
LBM is indeed smaller. This non-vanishing deviation is amplified in cases
with different working temperature and/or non-unit stretching factor for
both the standard LBGK and the LC LBM, which makes their applications
limited to the quasi-incompressible flow regime at the lattice temperature.
Finally, it is interesting to note that, in the case of shock capturing, all the
three models are expected to behave similarly, given that their respective
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Figure A.2: Comparison of density profile for shock tube problem at density
ratio ρl/ρr = 3, after 500 iterations. Solid line: LBGK; dashed line:
extended LBM (3.207); symbols: LC LBM [44].

x

M
a

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure A.3: Mach number profile, Ma = u/
√

TL, for the shock tube problem at
density ratio ρl/ρr = 3, after 500 iterations. Solid line: LBGK; dashed
line: extended LBM (3.207); symbols: LC LBM [44].

dissipation rates at the wave number κx = π are close in value, see Fig. A.1.
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This observation is confirmed by the simulation of a shock tube with the
following initial condition,

(ρ, ux, T) =

{
(ρl , 0, 1/3), x ≤ L/2,

(ρr, 0, 1/3), x > L/2,
(A.9)

with L = 800 grid points and viscosity ν = 0.04. Results are presented in
Figs. A.2 and A.3 for ρl = 1.5, ρr = 0.5, corresponding to the initial density
ratio ρl/ρr = 3. Figs. A.2 and A.3 demonstrate that all models produce
almost indistinguishable results, with a similar oscillation pattern at the
shock front.
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a.2 transfer matrix for equilibrium populations with d2q9

lattice

The transform of the equilibrium populations from rest reference frame to
the moving reference frame with velocity U is done by matching Q linearly
independent moments,

Mmn = M
′
mn, (A.10)

where Mmn and M
′
mn are defined as (see Eq. (4.2) in the main text):

Mmn =
8

∑
i=0

f eq
i cm

ixcn
iy, (A.11)

M
′
mn =

8

∑
i=0

f
′eq
i c

′m
ix cn

iy. (A.12)

By considering the following nine linearly independent moments for the
D2Q9 lattice,

M = (M00, M10, M01, M11, M20, M02, M21, M12, M22)
T , (A.13)

the matching condition (A.10) can be written in a matrix form as

M =M f eq =M′
f
′eq, (A.14)

whereM andM′
are

M =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1



, (A.15)
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M
′
=



1 1 1 1 1 1 1 1 1

U U + 1 U U − 1 U U + 1 U − 1 U − 1 U + 1

0 0 1 0 −1 1 1 −1 −1

0 0 U 0 −U U + 1 U − 1 1−U −U − 1

U2 (U + 1)2 U2 (U − 1)2 U2 (U + 1)2 (U − 1)2 (U − 1)2 (U + 1)2

0 0 1 0 1 1 1 1 1

0 0 U2 0 −U2 (U + 1)2 (U − 1)2 −(U − 1)2 −(U + 1)2

0 0 U 0 U U + 1 U − 1 U − 1 U + 1

0 0 U2 0 U2 (U + 1)2 (U − 1)2 (U − 1)2 (U + 1)2



, (A.16)

and U is the velocity of the moving reference frame. Note that, the enu-
meration of the discrete velocities ci is evident from the second and third
row of these matrices. Then, the equilibrium populations in the moving
reference frame is computed as,

f
′eq = G f eq =M′−1M f eq, (A.17)

where the transfer matrix G can be written in the following explicit form

G =



1−U2 −U2 + 2U 0 −U2 − 2U 0 0 0 0 0
U2
2 − U

2
U2
2 − 3U

2 + 1 0 U2
2 + U

2 0 0 0 0 0

0 0 1−U2 0 0 −U2 + 2U −U2 − 2U 0 0
U2
2 + U

2
U2
2 − U

2 0 U2
2 + 3U

2 + 1 0 0 0 0 0

0 0 0 0 1−U2 0 0 −U2 − 2U −U2 + 2U

0 0 U2
2 − U

2 0 0 U2
2 − 3U

2 + 1 U2
2 + U

2 0 0

0 0 U2
2 + U

2 0 0 U2
2 − U

2
U2
2 + 3U

2 + 1 0 0

0 0 0 0 U2
2 + U

2 0 0 U2
2 + 3U

2 + 1 U2
2 − U

2
0 0 0 0 U2

2 − U
2 0 0 U2

2 + U
2

U2
2 − 3U

2 + 1



.

(A.18)
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