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Dynamic Programming Through the Lens of
Semismooth Newton-Type Methods

M. Gargiani, A. Zanelli, D. Liao-McPherson, T. H. Summers and J. Lygeros,

Abstract— Policy iteration and value iteration are at the core
of many (approximate) dynamic programming methods. For
Markov Decision Processes with finite state and action spaces,
we show that they are instances of semismooth Newton-type
methods for solving the Bellman equation. In particular, we
prove that policy iteration is equivalent to the exact semismooth
Newton method and enjoys a local quadratic convergence rate.
This finding is corroborated by extensive numerical evidence
in the fields of control and operations research, which confirms
that policy iteration generally requires relatively few iterations
to achieve convergence even in presence of a large number
of admissible policies. We then show that value iteration is
an instance of the fixed-point iteration method and develop a
novel locally accelerated version of value iteration with global
convergence guarantees and negligible extra computational
costs.

I. INTRODUCTION

Approximate dynamic programming (ADP) is a powerful
algorithmic strategy to handle stochastic sequential decision
making problems arising in a wide range of applications,
from control to games and resource allocation, to name a
few. At the core of some of the biggest success stories of
ADP is an approximate version of policy iteration [17]. In
particular, after an extensive offline training phase where an
approximation of the optimal cost is produced, one iteration
of an approximate version of policy iteration is performed
(online learning). Empirical evidence suggests that this final
step greatly enhances performance. In particular, Bertsekas
links these success stories to the equivalence between policy
iteration and Newton’s method [2].

The connection between policy iteration and Newton’s
method dates back to the late 60’s [12]. Puterman and
Brumelle [13] were among the first who exploited this
connection to study the convergence properties of policy
iteration for MDPs with continuous action spaces. More
recently, Santos and Ruts [16] exploited this connection to
analyze the asymptotic convergence of policy iteration for
the discretization of a specific class of Markov Decision
Processes (MDPs) with continuous spaces. Bertsekas in [2]
provides a graphical analysis of the connection between
policy iteration and Newton’s method and mathematically
formalizes these visual insights by proving local quadratic
convergence of policy iteration for MDPs with finite state and
action spaces. These theoretical results are corroborated by
numerous computational examples which demonstrate that
policy iteration achieves convergence in a remarkably small
number of iterations even in presence of rounding errors and
a large number of potential policies. We refer to [2] for an
extensive review of the related works.

In this work, we consider MDPs with finite state and
action spaces and formally show that policy iteration and
value iteration are both instances of semismooth Newton-
type methods. The main differences between our analysis and
that in [2] are that the latter focus only on policy iteration
and does not deploy tools from generalized differentiation,
but instead works in a neighborhood of the solution where the
iterates can be expressed as the Newton iterates for an aux-
iliary continuously differentiable mapping. We then exploit
this connection to develop a novel variant of value iteration
inspired by the fixed-point iteration method. In particular, our
main contributions are: i) we develop a unified theoretical
analysis for the local convergence of semismooth Newton-
type methods based on the so-called kappa condition [4];
ii) we formalize the connection of policy iteration and value
iteration with semismooth Newton-type methods using tools
from generalized differentiation and results from Section II.
After discussing the significant algorithmic and theoretical
implications of this connection, iii) we design a globally
convergent and locally accelerated variant of value iteration
with negligible additional computational cost per iteration
and superior numerical performance.
Notation. In the following, we use ‖ · ‖ : Rd → R to denote
an arbitrary vector norm, ‖ · ‖ : Rd×d → R for its induced
matrix norm, B(c, δ) for the Euclidean ball with center c ∈
Rd and radius δ > 0, ρ for the spectral radius of a matrix,
r′ for the Jacobian operator of a differentiable function r :
Rd → Rd, cl (T ) and int (T ) for the closure and the interior
of a set T ⊆ Rd, respectively.

II. BACKGROUND

We consider infinite horizon discounted cost problems
for MDPs {S,A, P, g, γ} comprising a finite state space
S = {1, . . . , n}, a finite action space A = {1, . . . ,m}, a
transition probability function P : S × A × S → [0, 1] that
defines the probability of ending in state s′ when applying
action a in state s, a stage-cost function g : S × A → R
that associates to each state-action pair a bounded cost,
and a discount factor γ ∈ (0, 1). Throughout the paper,
with a slight abuse of notation we use A(s) to denote
the nonempty subset of actions that are allowed at state s,
pss′(a) = P (s, a, s′) for the probability of transitioning to
state s′ when the system is in state s and action a ∈ A(s) is
selected with

∑
s′∈S pss′(a) = 1 for all s ∈ S and a ∈ A(s).

A deterministic stationary control policy π : S → A is
a function that maps states to actions, with π(s) ∈ A(s).
We use Π to denote the set of all deterministic stationary
control policies, from now on simply policies. At step



t of the decision process under the policy π ∈ Π, the
system is in some state st and the action at = π(st) is
applied. The discounted cost γtg(st, at) is accrued and the
system transitions to a state st+1 according to the probability
distribution P (st, at, ·). This process is repeated leading to
the following cumulative discounted cost

V π(s) = lim
T→∞

E

[
T−1∑
t=0

γtg(st, π(st))
∣∣∣ s0 = s

]
, (1)

where {s0, π(s0), s1, π(s1), . . . , st, π(st), . . . } is the state-
action sequence generated by the MDP under policy π with
initial state s0, and the expected value is taken with respect
to the corresponding probability measure over the space of
sequences. The transition probability distributions induced
by policy π can be compactly represented by the rows of
an n× n row-stochastic matrix [Pπ]ss′ = pss′(π(s)) for all
s, s′ ∈ S and the costs induced by policy π by the vector
gπ =

[
g(1, π(1)) · · · g(n, π(n))

]> ∈ Rn. The optimal
cost is defined as

V ∗(s) := min
π∈Π

V π(s) ∀s ∈ S. (2)

Any policy π∗ ∈ Π that attains the optimal cost is called an
optimal policy. Notice that in (2) we restrict our attention to
stationary deterministic policies as in our setting there exists
a policy in this class that attains V ∗ [1]. The optimal cost
admits a recursive definition known as the Bellman equation

V ∗(s) = min
a∈A(s)

{
g(s, a) + γ

∑
s′∈S

pss′(a)V ∗(s′)

}
∀s ∈ S.

(3)
Equation (1) admits an analogous recursive definition known
as the Bellman equation associated with policy π. In the
considered setting, the cost function associated with policy π
and the optimal cost function can be represented by V π ∈ Rn
and V ∗ ∈ Rn, where the s-th element is given by (1) and (2)
evaluated at s, respectively.

A. Dynamic Programming

Dynamic Programming (DP) comprises methods for solv-
ing stochastic optimal control problems by solving the Bell-
man equation [1]. We are specifically interested in the value
iteration (VI) and policy iteration (PI) algorithms. Starting
from Equation (3), we define a nonsmooth mapping T :
Rn → Rn, known as the Bellman operator, by

(TV )(s) = min
a∈A(s)

{
g(s, a) + γ

∑
s′∈S

pss′(a)V (s′)

}
∀s ∈ S.

An analogous linear operator Tπ : Rn → Rn can be defined
for the Bellman equation associated with policy π as

(TπV )(s) = g(s, π(s)) + γ
∑
s′∈S

pss′(π(s))V (s′) ∀s ∈ S.

Given the cost vector V , any policy π such that ∀s ∈ S

π(s) ∈ arg min
a∈A(s)

{
g(s, a) + γ

∑
s′∈S

pss′(a)V (s′)

}
(4)

is called greedy with respect to the cost V . It can be
shown [1] that the Bellman operator is contractive and,
thanks to the Banach Theorem [15], admits a unique fixed
point V ∗. Moreover, the corresponding Picard-Banach itera-
tion Vk+1 = TVk converges asymptotically to the fixed point
from any initial value V0, i.e., limk→∞ T kV0 = V ∗. This is
at the core of VI, which repeatedly applies the T operator
starting from an arbitrary finite cost. The generated sequence
linearly converges to V ∗ with a γ-contraction rate.

An alternative method to solve Equation (3) is PI. With
PI, we start from an arbitrary initial policy and alternate
policy evaluation and policy improvement until convergence.
The policy evaluation step at iteration k computes the cost
V πk associated with the current policy πk, i.e., V πk =
(I − γPπk)

−1
gπk . This requires the solution of a system

with n linear equations, which is generally computationally
demanding for MDPs with large state spaces. The policy
πk+1 is then updated by extracting a greedy policy associated
with V πk in the policy improvement step (see Equation (4)).
Unlike VI, PI converges in a finite number of iterations
since the policy, and therefore also its cost, are improved
at each iteration and since, by the finiteness of S and A,
there only exists a finite number of policies. It is nonetheless
important to characterize its convergence rate and asymptotic
behavior since, for large state and action spaces, the number
of iterations could be prohibitive (exponential in n and m).
By exploiting the properties of the Bellman operator, we can
show that PI is globally γ-contractive, which is similar to
VI. Extensive empirical evidence, however, suggests that PI
has superior convergence properties and generally requires
considerably fewer iterations than VI. From a computational
viewpoint, the per-iteration costs of PI with direct inversion
amount to O(n3 +m · n2) versus the O(m · n2) of VI.

B. Semismooth Newton-Type Methods

Consider the following nonlinear root finding problem

r(θ) = 0 , (5)

where r : Rd → Rd is a locally Lipschitz-continuous vector-
valued function. A vector θ∗ ∈ Rd that satisfies (5) is
called root or solution of (5). In general, we can not rely
on smooth root finding methods [9] to solve (5) since r
can be nonsmooth, so its Jacobian r′(θ) ∈ Rd×d might
not exist. We therefore need to employ some notions of
generalized differentiability from nonsmooth analysis [3],
such as the B-differential and Clarke’s generalized Jaco-
bian. Since r is a locally Lipschitz-continuous map, the
Rademacher Theorem [14] implies that it is differentiable
almost everywhere and we denote byMr the set of all points
where r is differentiable. Another fundamental implication
of the Rademacher Theorem is the definition of the B-
differential of r at θ ∈ Rd as the set

∂Br(θ)=
{
J ∈ Rd×d

∣∣ ∃ {θk}⊂Mr :{θk}→θ, {r′(θ)}→J
}
.

We denote with ∂r(θ) Clarke’s generalized Jacobian of
r at θ ∈ Rd, which is defined as the convex hull of
∂Br(θ). Consequently, ∂Br(θ) ⊆ ∂r(θ). These sets are



always nonempty when evaluated at points where the func-
tion is Lipschitz continuous [9, Proposition 1.51]. If r is
continuously differentiable at θ, then ∂r(θ) = ∂Br(θ) =
{r′(θ)}. Otherwise, ∂Br(θ) and, consequently, ∂r(θ) are not
necessarily singletons.

The B-differential and Clarke’s generalized Jacobian are
of practical interest only if we can compute at least some
of their elements. Because they lack sharp calculus rules,
this can be done only in few cases, depending on the
structure of r. For instance, consider the class of piecewise
continuously differentiable functions on Rd [10], which is
formally characterized by the following definition.

Definition 2.1 (PC1 Functions): Let f : Rd → Ro be a
continuous vector-valued function and np be some positive
integer. The function f is said to be piecewise continuously
differentiable of order 1 (PC1) if there exist finitely many
continuously differentiable functions {fi}

np
i=1 on Rd, called

selection functions, such that f(θ) ∈ {fi(θ)}
np
i=1 for all θ ∈

Rd. In addition, fi is active at θ̄ ∈ Rn if f(θ̄) = fi(θ̄) and
essentially active if θ̄ ∈ cl(int({θ ∈ Rd : f(θ) = fi(θ)})).

We denote with Ff (θ̄) the collection of essentially active
functions at θ̄. Piecewise affine functions are an example
of PC1 functions with affine selection functions and are
particularly relevant in the context of DP as will be discussed
in Section III.

The following proposition [10, Lemma 2.10] gives a
representation of the B-differential for PC1 functions. This
representation can be used to determine a J ∈ ∂Bf(θ) in
cases where we can compute the Jacobian matrix of at least
one of the essentially active selection functions at θ ∈ Rd.

Proposition 2.2: Let f : Rd → Ro be a PC1 func-
tion. The B-differential of f at θ ∈ Rd is ∂Bf(θ) =
{f ′i(θ) : fi ∈ Ff (θ)} .

Example 2.3: Consider the following piecewise affine
function: f(θ) = 2θ − 5 if θ > 5, f(θ) = θ if θ = 5
and f(θ) = −2θ + 15 if θ < 5. Then ∂Bf(5) = {2,−2}
since int({θ ∈ R : f(θ) = θ}) = ∅ and ∂Bf(θ) = f ′(θ) for
all θ ∈ R \ {5}.

We refer to [10] for more details on the computation
of elements in Clarke’s generalized Jacobian for piecewise
continuous functions and to [9, Ch. 1] for functions with
different structures.

Newton’s method [9] is not directly applicable to solve (5)
when r is nonsmooth. One notable extension of Newton’s
method to nonsmooth equations dates back to [11] and
is known as the semismooth Newton method [9]. Simi-
larly to Newton’s method, instead of solving directly (5),
the semismooth Newton method solves a series of linear
equations that locally approximate (5), but the Jacobian
matrix in the Newtonian iteration system is replaced by an
element from Clarke’s generalized Jacobian. In particular,
the semismooth Newton method generates a sequence of
iterates {θk} where θ0 ∈ Rd is the initial approximation of
the root and, for any k ≥ 0, θk+1 satisfies the linear equation
r(θk) + Jk (θk+1 − θk) = 0 , with Jk ∈ ∂r(θk). When Jk is
nonsingular, the iterate θk+1 can be computed in closed-form

as follows
θk+1 = θk − J−1

k r(θk) . (6)

Under certain assumptions, the semismooth Newton method
enjoys fast local quadratic convergence, but the cost per
iteration with direct inversion is in the order of O(d3). In
addition, as discussed previously, it may be difficult to obtain
an element from Clarke’s generalized Jacobian. These are
some of the main motivations behind the design of different
variants of the semismooth Newton method of the form

r(θk) +Bk(θk+1 − θk) = 0 , (7)

where Bk ∈ Rd×d somehow approximate Jk. These variants,
collectively known as semismooth Newton-type methods [9],
can lead to lower computational costs while maintaining
acceptable convergence rates. Clearly, if Bk ∈ ∂r(θk), then
we recover the semismooth Newton method. One of the most
frequently used semismooth Newton-type methods is the
fixed-point iteration method where Bk=αkI with αk 6=0 [5].

Before proceeding with the formal characterization of the
local convergence of semismooth Newton-type methods, we
have to introduce the notions of strong semismoothness [9,
Subsection 1.4.2] and CD-regularity [9, Remark 1.65].

Definition 2.4 (Strong Semismoothness): A function f :
Rd → Ro is strongly semismooth at θ ∈ Rd if it is locally
Lipschitz-continuous at θ, directionally differentiable at θ in
every direction, and the following estimate holds as ξ ∈ Rd
tends to zero

sup
J∈∂f(θ+ξ)

‖f(θ + ξ)− f(θ)− Jξ‖ = O(‖ξ‖2) .

Definition 2.5 (CD/BD-Regularity): A function f : Rd →
Ro is CD-regular (BD-regular) at θ ∈ Rd if each matrix
J ∈ ∂f(θ) (J ∈ ∂Bf(θ)) is nonsingular.
The function in Example 2.3 is strongly semismooth and
BD-regular everywhere, but not CD-regular at θ = 5.

The following theorem characterizes the local contraction
of a semismooth Newton-type sequence generated by Algo-
rithm 1. Similar a-posteriori results based on perturbation
analysis can be found in [9].

Theorem 2.6: Let r : Rd → Rd be strongly semismooth
at θ∗ ∈ Rd, L > 0 and κ ∈ [0, 1) a constant. Then there
exist an open neighborhood of θ∗ such that, for any θ0 in
the neighborhood and any sequence of nonsingular matrices
{Bk} ⊆ Rd×d such that, for all k, ‖B−1

k ‖ ≤ L and ∃ Jk ∈
∂r(θk) for which the kappa condition

‖B−1
k (Bk − Jk) ‖ ≤ κk ≤ κ (8)

is verified, the sequence {θk} ⊆ Rd generated by Algo-
rithm 1 converges to θ∗ and

‖θk+1 − θ∗‖ ≤ κk ‖θk − θ∗‖+O(‖θk − θ∗‖2) . (9)

Proof: See the extended version [7].
Theorem 2.6 shows that the local convergence rate of semis-
mooth Newton-type methods strongly depends on the choice
of {Bk}. In particular, we obtain quadratic convergence if
κ = 0, superlinear convergence if κk → 0 as k → ∞ and
linear convergence if κk = κ for all k with κ ∈ (0, 1).



The following corollary characterizes the local conver-
gence of the exact semismooth Newton method [9, Theorem
2.42].

Corollary 2.7: Let r be strongly semismooth and CD-
regular at θ∗. Provided that θ0 is close enough to θ∗, the
sequence {θk} generated by the semismooth Newton method
iteration (6) with starting point θ0 converges to θ∗ and

‖θk+1 − θ∗‖ = O(‖θk − θ∗‖2) .

Proof: See the extended version [7].

Algorithm 1 Semismooth Newton-Type Method

1: Initialization: select θ0 ∈ Rd, tol ≥ 0 and set k = 0
2: while ‖r(θk)‖ > tol do
3: select Bk ∈ Rd×d nonsingular and compute

θk+1 = θk −B−1
k r(θk) (10)

4: k ← k + 1
5: end while

III. SEMISMOOTH NEWTON-TYPE
DYNAMIC PROGRAMMING

In this section, we formalize the connection between PI,
VI and semismooth Newton-type methods.

We start by looking at the Bellman equation (3) as a
nonlinear root finding problem, where r(θ) = θ − Tθ and
r : Rn → Rn. We call r the Bellman residual function.

Looking at the set of the admissible policies and based on
the relation between T and Tπ , we can rewrite the Bellman
residual function as follows

r(θ) = θ −min
π∈Π
{Tπθ} = θ −min

π∈Π
{gπ + γPπθ} , (11)

where Tπθ = gπ + γPπθ is an affine function of θ. The
Bellman residual function is piecewise affine since it is
continuous and there exist |Π| affine selection functions
{θ − Tπθ}π∈Π such that r(θ) ∈ {θ − Tπθ}π∈Π for all θ ∈
Rn. Because of its piecewise affine structure, the Bellman
residual function is globally Lipschitz continuous (Propo-
sition 4.2.2 in [6]) and strongly semismooth everywhere
(Proposition 7.4.7 in [5]).

The following lemma characterizes the relation between
greedy policies and active selection functions at θ ∈ Rn.

Lemma 3.1: Let Π̃θ ⊆ Π denote the set of the greedy
policies with respect to the cost-vector θ ∈ Rn. Then r(θ) =
θ − Tπθ for all π ∈ Π̃θ. In other terms, {θ − Tπθ}π∈Π̃θ

is
the collection of the active selection functions of r at θ.

Proof: The proof follows directly from the definition
of greedy policy (4). In particular, a policy π is greedy with
respect to the cost-vector θ ∈ Rn if Tπθ = Tθ.

The next definition introduces the concept of spurious
greedy policy, which will later be used together with Propo-
sition 2.2 to characterize the B-differential of the Bellman
residual function.

Definition 3.2 (Spurious Greedy Policy): Let θ̄ ∈ Rn.
π ∈ Π̃θ̄ is a spurious greedy policy for the cost-vector θ̄
if int({θ ∈ Rn : r(θ) = θ − Tπθ}) = ∅ .

In other terms, a greedy policy π ∈ Π̃θ is spurious if there
exist s ∈ S for which for all ε > 0, π(s) is not greedy with
respect to any θ̃s 6= θs with |θs−θ̃s| ≤ ε. We denote with Π̃S

θ

the subset of Π̃θ comprising the spurious greedy policies.
The next proposition characterizes the B-differential of the

Bellman residual function.
Proposition 3.3: Let r : Rn → Rn be the Bellman

residual function. The B-differential of r at θ ∈ Rn is the
set

∂Br(θ) =
{
I − γPπ | ∀π ∈ Π̃θ \ Π̃S

θ

}
. (12)

In addition, r is globally CD-regular.
Proof: From the definition of essentially active selec-

tion functions and spurious greedy policies, it follows that
Fr(θ) =

{
θ − Tπθ | ∀π ∈ Π̃θ \ Π̃S

θ

}
. From Proposition 2.2

and since (θ − Tπθ)′ = I−γPπ for any π ∈ Π, we conclude
that the B-differential of r is given by the set in (12). Since
Pπ is a row-stochastic matrix, its eigenvalues lie within
the unit circle of the complex plane. Thus I − γPπ with
γ ∈ (0, 1) has no eigenvalue equal to zero. We can therefore
conclude that all the matrices in the B-differential of r are
nonsingular and therefore r is BD-regular. Finally, since
the convex combination of row stochastic matrices is a row
stochastic matrix, we can conclude that r is CD-regular.

A. Policy Iteration

We start by introducing an assumption on the sets of the
spurious greedy policies, which excludes the presence of
selection functions that are active but not essentially active.

Assumption 3.4: We assume that Π̃S
θ = ∅ for all θ ∈ Rn.

The following proposition characterizes the connection
between PI and the semismooth Newton method.

Proposition 3.5: Under Assumption 3.4, PI is an instance
of the semismooth Newton method to solve the Bellman
residual function. Hence, the local contraction is quadratic.

Proof: Let
{
θPI
k

}
denote the iterates of PI. We show by

induction that, through an appropriate choice of Jk, we can
generate iterates

{
θN
k

}
of the semismooth Newton method for

the Bellman residual function such that θPI
k =θN

k for all k. As-
sume that θPI

k = θN
k = θk and let πk+1 ∈ Π̃θk be the greedy

policy selected by PI at the k-th policy improvement step.
Then it follows that θPI

k+1 = (I − γPπk+1)−1gπk+1 . From
Assumption 3.4 and Proposition 3.3, we have that I−γPπk+1

is invertible and belongs to ∂Br(θk). Recall in addition
that, from the definition of greedy policy, Tπk+1θk = Tθk.
Therefore, the (k + 1)-th semismooth Newton iterate with
Jk = I − γPπk+1 is

θN
k+1 = θk − (I − γPπk+1)−1r(θk)

= θk − (I − γPπk+1) (θk − gπk+1 − γPπk+1θk)

= θk − (I − γPπk+1)−1 ((I − γPπk+1)θk − gπk+1)

= (I − γPπk+1)−1gπk+1

= θPI
k+1 .

The quadratic local contraction follows from Corol-
lary 2.7.



The theoretical results of Proposition 3.5 are corroborated by
extensive empirical evidence that suggests that, in practice,
PI leads to faster convergence in terms of number of itera-
tions than VI [1], [8]. Despite its simplicity, the algorithmic
implications of Proposition 3.5 are significant, especially
in light of the results in Theorem 2.6. We can develop
novel DP methods in the spirit of semismooth Newton-type
methods, where the elements in the B-differential are ap-
proximated with non-singular matrices that verify the kappa
condition (8). Assumption 3.4 allows to directly employ
Proposition 2.2 and could be further relaxed by considering
only the iterates θk. In addition, despite its technicality and
limited intuitiveness, empirical evidence seems to suggests
that it is realistic to assume that Π̃S

θk
= ∅ for all θk. A more

detailed discussion on Assumption 3.4 and Proposition 3.5
is available in the extended version [7].

B. Value Iteration

In light of the equivalence between PI and the semismooth
Newton method to solve (11), we investigate the connec-
tion between VI and semismooth Newton-type methods. In
particular, with the following proposition we show that VI
is a semismooth Newton-type method where the elements
in Clarke’s generalized Jacobian are approximated with the
identity matrix.

Proposition 3.6: VI is a semismooth Newton-type method
to solve the Bellman residual function with {Bk} = {I}.

Proof: Let θVI
k+1 and θN-type

k+1 denote the (k+1)-th iterate
of VI and the semismooth Newton-type method with {Bk} =
{I}, respectively. Assume that θVI

k = θN-type
k = θk. Then,

from the definition of VI, it follows that θVI
k+1 = Tθk . From

the definition of semismooth Newton-type iterate in (10) and
with the specific choice of Bk = I , we obtain that θN-type

k+1 =
θk − I−1r(θk) = θk − (θk − Tθk) = Tθk = θVI

k+1 .
The classical DP convergence analysis of VI based on the

properties of the Bellman operator indicates that VI enjoys a
global linear rate of convergence with a γ-contraction rate. In
light of this novel connection between VI and the fixed-point
iteration method, we can adopt the semismooth Newton-type
theory perspective to study the local convergence of VI. In
particular, from the results of Theorem 2.6, we obtain that
VI has a local linear contraction rate given by the discount
factor as ‖I−1 (I − (I − γPπ)) ‖∞ = γ‖Pπ‖∞ = γ < 1
for all π ∈ Π .

C. α-Value Iteration

Proposition 3.6 shows that VI is also an instance of the
fixed-point iteration method with αk = 1 for all k. The
question that naturally arises is what do the iterates of
the fixed-point iteration method correspond to if we allow
αk 6= 1. In this spirit, we propose to use αI with α > 0 to
approximate the elements in Clarke’s generalized Jacobian.

The following lemma characterizes the iterates of this
method, which we call α-Value Iteration (α-VI).

Lemma 3.7: Consider the semismooth Newton-type iter-
ation for the Bellman residual function with Bk = αI and
α > 0. Then θk+1 = α−1

α θk + 1
αTθk .

Proof: See the extended version [7].
Starting from Lemma 3.7, we can define the operator Tα =
α−1
α I + 1

α T , where I is the indentity map and T is the
Bellman operator. Notice that when α = 1 we recover the
Bellman operator and therefore 1-VI is simply VI.

In the following, we are interested in studying the global
and local convergence of α-VI. We start by studying the
contractivity of the Tα operator and its fixed-points.

Proposition 3.8: For any θ, θ̄ ∈ Rn and α > 1+γ
2 ,∥∥Tαθ − Tαθ̄∥∥∞ ≤ β∥∥θ − θ̄∥∥∞ ,

where β = |α−1|
α + γ

α < 1. In addition, the optimal cost θ∗

is the unique fixed-point of Tα.
Proof: We start by showing that, if α > 1+γ

2 , the
operator is β-contractive with respect to the infinity norm.
For any θ, θ̄ ∈ Rn

‖Tαθ−Tαθ̄‖∞= max
s∈S

∣∣∣α− 1

α

(
θs − θ̄s

)
+

1

α

(
T
(
θ − θ̄

))
(s)
∣∣∣

(a)

≤
∣∣∣α− 1

α

∣∣∣max
s∈S

∣∣∣θs−θ̄s∣∣∣+ 1

|α|
max
s∈S

∣∣∣(T (θ − θ̄))(s)∣∣∣
(b)

≤
(∣∣∣α− 1

α

∣∣∣+
γ

|α|

)
max
s∈S

∣∣∣θs − θ̄s∣∣∣
=

(∣∣∣α− 1

α

∣∣∣+
γ

|α|

)∥∥θ − θ̄∥∥∞ ,

where (a) follows from the triangle inequality and (b) from
the fact that the Bellman operator is γ-contractive in the
inifinity norm. In order for Tα to be contractive, we need(∣∣∣α−1

α

∣∣∣+ γ
|α|

)
< 1. For α ≥ 1, since γ ∈ (0, 1), Tα is

contractive with rate (α − 1)/α + γ/α. For α ∈ (0, 1),∣∣∣α−1
α

∣∣∣+ γ
|α| = 1−α

α + γ
α and 1−α

α + γ
α < 1 if and only if α >

1+γ
2 . For α < 0,

∣∣∣α−1
α

∣∣∣+ γ
|α| = α−1

α −
γ
α and the inequality

α−1
α − γ

α < 1 is never satisfied since γ ∈ (0, 1). We can
therefore conclude that if α > 1+γ

2 then Tα is β-contractive
in the infinity norm with β = |α−1|/α+γ/α. To verify that
θ∗ is a fixed-point of Tα, we exploit the definition of Tα and
the fact that θ∗ is the unique fixed-point of T . In particular,
Tαθ

∗ = α−1
α θ∗ + 1

αTθ
∗ = α−1

α θ∗ + 1
αθ
∗ = θ∗ . Uniqueness

follows directly from the Banach Theorem [15].
The main implication of Proposition 3.8 is that, if α >
(1 + γ)/2, then α-VI converges globally to the optimal cost
θ∗ with linear rate β. Results similar to Proposition 3.8
can be derived for the local contraction rate by considering
Theorem 2.6 and evaluating the kappa condition with the
infinity norm. Unfortunately, using this type of analysis it
is not possible to conclude that α-VI improves over VI
in terms of convergence rate. Instead, we introduce the
following proposition, which analyses the asymptotic rate of
convergence of α-VI via local stability analysis of nonlinear
systems. For the sake of simplicity and interpretability,
we consider a simplified setting in which the transition
probability matrix at the solution has only real and positive
eigenvalues. Notice that similar considerations can be made
in a more general setting. This approach provides a tighter
bound on the local rate of convergence, but is only applicable



in a neighborhood of the root where the Bellman residual
function is continuously differentiable.

Proposition 3.9: Assume that r(θ∗) is continuously dif-
ferentiable in a neighborhood of θ∗ and that Pπ

∗
has only

real and positive eigenvalues. Let α ∈ (1/(1 + γ), 1) and
β̃ = 1 − 1−γ

α if α ∈ [1 − γ/2, 1) and β̃ = 1
α − 1 if

α ∈ (1/(1 + γ), 1 − γ/2). α-VI converges linearly to θ∗

with asymptotic contraction rate β̃ < γ.
Proof: We start by linearizing θk+1 = Tαθk at θ∗ via

the first-order Taylor expansion

θ∗+I(θk+1−θ∗)=Tαθ
∗+(Tαθ

∗)′(θk−θ∗)+O
(
‖θk − θ∗‖2

)
.

Since θ∗ = Tαθ
∗ and (Tαθ

∗)′ = (α−1)
α I + γ

αP
π∗ for any

optimal policy π∗, then

θk+1−θ∗=

(
I− 1

α

(
I − γPπ

∗
))

(θk−θ∗)+O
(
‖θk − θ∗‖2

)
.

Therefore the asymptotic convergence rate is determined
by the spectral radius of I − 1

α

(
I − γPπ∗

)
. In particular,

since ρ
(
I − 1

α

(
I − γPπ∗

))
≤ max

{∣∣1− 1−γ
α

∣∣, ∣∣1− 1
α

∣∣},
we study different cases based on the values of α. When
α ≥ 1−γ/2, then max

{∣∣1− 1−γ
α

∣∣, ∣∣1− 1
α

∣∣} = 1− 1−γ
α . In

this case we get a contraction for any α ≥ 1−γ/2 since the
inequality 1− 1−γ

α < 1 is verified for any α > 0. In addition,
if α ∈ [1−γ/2, 1], then we improve over the rate of VI since
1− 1−γ

α ≤ γ. For α < 1−γ/2, max
{∣∣1− 1−γ

α

∣∣, ∣∣1− 1
α

∣∣} =
1
α − 1 and we get a contraction if α ∈ (1/2, 1 − γ/2). In
addition, if α ∈ [1/(1 + γ), 1 − γ/2), then 1

α − 1 ≤ γ and
therefore we improve over the rate of VI.
By combining the results of Propositions 3.8 and 3.9 we
obtain that, by setting max

{
1

1+γ ,
1+γ

2

}
< α < 1, α-VI

converges globally with a linear rate and its asymptotic linear
rate of convergence is strictly better than that of VI. The
numerical experiments in Figure 1 corroborate our theoretical
findings. Since our analysis is not tight, in practice we obtain
convergence for a wider range of α. We refer to the extended
version [7] for additional numerical results.

IV. CONCLUSIONS & FUTURE WORK

We have shown that PI and VI are semismooth Newton-
type methods. In particular, Propositions 3.5 and 3.6 reveal
that PI and VI sit at the two opposite ends of the spectrum of
semismooth Newton-type methods: PI enjoys local quadratic
contraction but its costs per iteration are demanding; instead,
VI is based on a coarse approximation of the elements in
Clarke’s generalized Jacobian which allows to drastically
reduce the costs per iteration at the price of downgrading
the local quadratic convergence to a linear one. In the
spirit of semismooth Newton-type methods, we proposed
an extension of VI with negligible additional computational
costs, global convergence guarantees and asymptotically
faster contraction rate than VI. Finally, another promising
future direction consists in formalizing and exploiting the
connection between inexact semismooth Newton methods
and optimistic policy iteration-type algorithms.

Fig. 1: Empirical global contraction rate of α-VI for different
values of α and comparison of α-VI and PI for a randomly
generated MDP with 500 states, 10 actions and γ = 0.4. The
maximum acceleration is dramatic and is obtained for α ≈
0.6. Code at https://gitlab.ethz.ch/gmatilde/alphaVI.
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