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ALMOST SURE CONVERGENCE OF A GALERKIN APPROXIMATION
FOR SPDES OF ZAKAI TYPE DRIVEN BY SQUARE INTEGRABLE

MARTINGALES

ANNIKA LANG

Abstract. This work describes a Galerkin type method for stochastic partial differential
equations of Zakai type driven by an infinite dimensional càdlàg square integrable martingale.
Error estimates in the semidiscrete case, where discretization is only done in space, are
derived in Lp and almost sure senses. Simulations confirm the theoretical results.

1. Introduction

The numerical study and simulation of stochastic partial differential equations (SPDEs)
has been an active field of research for the last fifteen years. Within the last years the
extension of PDEs to SPDEs has become more and more important in applications especially
in engineering such as image analysis, surface analysis, filtering [22, 27, 29, 31, 35]. On the
other hand side, in finance, people extend finite dimensional systems of stochastic differential
equations (SDEs) to infinite dimensional ones [15, 4], i.e. to SPDEs. Explicit solutions to
most of the problems do not exist. Therefore it is natural to simulate a discrete version of
these SPDEs.

In this paper we study a Galerkin method for the space approximation of the solution of
an SPDE of the form

(1.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t), X(t0) = X0,

where M is a càdlàg square integrable martingale with values in a separable Hilbert space U .
Probably the most popular examples of such stochastic processes are Wiener and Lévy pro-
cesses. The operators A and B act on a separable Hilbert space H and the operator G is a
mapping from H into the linear operators from U to H.

In general, for a numerical treatment of Hilbert space valued stochastic differential equa-
tions, approximation has to be done in space and time. There are various approaches possible.
So far Galerkin methods are mainly used for PDEs (cf. [36, 17, 34]) but first applications to
SPDEs have been done e.g. in [3, 8, 10, 12, 13, 26]. The approximation of mild solutions with
colored noise has been done e.g. in [2, 19, 27] and references therein. First approaches to
higher order approximation schemes using Taylor expansions were done e.g. in [20] and [21]
with additive space-time white noise and with multiplicative colored noise in [5]. Galerkin
methods lead to pathwise approximations, also called strong approximations.
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2 LANG

A fully discrete approximation will be done in a forthcoming paper [7] because if the
driving noise is not continuous, new problems arise in the proof of almost sure convergence
as presented in [5] due to the time regularity of the solution of the SPDE which means that
X(t)−X(s) converges of order (t− s)1/p in Lp and this order cannot be improved.

The type of equation studied in this paper appears naturally in the study of Zakai’s equation
(cf. [37]). Fully discrete approximations of its solution were already studied in [13], while
higher order schemes are presented in [28] for a semidiscrete time approximation and in [5]
for a semidiscrete space approximation and a fully discrete approximation using a Galerkin
method in space and a Crank–Nicolson approach in time. The SPDE of Zakai type, which has
been introduced by Zakai for a nonlinear filtering problem, is extended to square integrable
martingales and reads then

(1.2) dut(x) = L∗ut(x) dt+G(ut(x)) dMt(x)

on a bounded domain D ⊂ Rd with zero Dirichlet boundary conditions on ∂D and initial
condition u0(x) = v(x). The operator L∗ is a second order elliptic differential operator of the
form

L∗u =
1

2

d∑

i,j=1

∂i∂jaiju−
d∑

i=1

∂ifiu

for u ∈ C2
c (D) and it can be split into the operators A and B in Equation (1.1). This will

be done explicitly in Section 2. Originally the operator G denotes a pointwise multiplication
with a suitable function g ∈ H. This is included in the more general assumptions on G in
Equation (1.1) which will be introduced in detail in the next section.

The main result of this paper is that if Equation (1.1) is approximated by the projected
SPDE on a finite dimensional subspace of H with convergence parameter h and if the corre-
sponding homogeneous deterministic problem converges with order O(hα) to the solution of
the homogeneous problem, then the approximated SPDE converges with order O(hα) in Lp

and almost surely with order O(hα−ε) for any ε > 0 to the mild solution of Equation (1.1).
These results are confirmed by simulations of the heat equation driven by Lévy noise.

This work is organized as follows: In Section 2 the framework and the properties of the
SPDE and its solution are given. Section 3 introduces the space approximation and its Lp and
almost sure convergence. Examples that meet the assumptions are given. Finally, in Section 4,
simulations are provided that give estimates on path and Lp convergence for p = 1, . . . , 5.

2. Framework

Let H denote the Hilbert space L2(D), where D ⊂ Rd is a bounded domain with piecewise
smooth boundary ∂D and let the subspacesHα be the corresponding Sobolev spaces for α ∈ N
and Hα

0 those with elements that satisfy zero Dirichlet boundary conditions respectively. For
α = 0, we set H0 = H for simplicity of the notation. We are interested in developing a
numerical algorithm to estimate the solution of the SPDE

(2.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t)

on the finite time interval [0, T ] with initial condition X(0) = X0 and zero Dirichlet boundary
conditions on ∂D. M is a càdlàg square integrable martingale on a filtered probability space
(Ω,F , (Ft)t≥0,P) satisfying the “usual conditions” with values in a separable Hilbert space
(U, (·, ·)U ). The space of all càdlàg square integrable martingales taking values in U with
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respect to (Ft)t≥0 is denoted by M2(U). We restrict ourselves to the following class of
martingales

C := {M ∈ M2(U) : ∃Q ∈ L+
1 (U) such that ∀t ≥ s ≥ 0, 〈〈M,M〉〉t−〈〈M,M〉〉s ≤ (t− s)Q},

where L+
1 (U) denotes the space of all linear, nuclear, symmetric, positive-definite operators

acting on U . The operator angle bracket process 〈〈M,M〉〉t is defined as

〈〈M,M〉〉t =
∫ t

0
Qs d〈M,M〉s,

where 〈M,M〉t denotes the unique angle bracket process from the Doob–Meyer decomposition.
The process (Qs, s ≥ 0) is called the martingale covariance. Examples of such processes are
square integrable Lévy martingales, i.e. those Lévy martingales with Lévy measure ν that
satisfies ∫

U
‖ϕ‖2U ν(dϕ) < +∞.

Since Q ∈ L+
1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigenvec-

tors of Q. Therefore we have the representation Qen = γnen, where γn ≥ 0 is the eigenvalue
corresponding to en. The square root of Q is defined as

Q1/2x :=
∑

n

(x, en)U γ1/2n en, x ∈ U

and Q−1/2 is the pseudo inverse of Q1/2. Let us denote by (H, (·, ·)H) the Hilbert space
defined by H = Q1/2(U) endowed with the inner product (x, y)H = (Q−1/2x,Q−1/2y)U for
x, y ∈ H. Let LHS(H, H) refer to the space of all Hilbert–Schmidt operators from H to H
and ‖ · ‖LHS(H,H) denote the corresponding norm.

In what follows we assume a Burkholder–Davis–Gundy type inequality as a generalization
of the Itô isometry for square integrable martingales of class C.

Assumptions 2.1. There exists a positive constant C depending on p ≥ 2 and T such that

(2.2) E(‖
∫ t

0
Ψ(s) dM(s)‖pH) ≤ C E

( ∫ t

0
‖Ψ(s)‖pL(U,H) ds

)

for t ∈ [0, T ] and a locally bounded predictable process Ψ : [0, T ] → LHS(U,H) with

E(
∫ T

0
‖Ψ(s)‖pL(U,H) ds) < +∞.

This equation holds e.g. for continuous square integrable martingales because for these
processes it holds that (cf. [18])

E( sup
0≤t≤T

‖
∫ t

0
Ψ(s) dM(s)‖pH) ≤ C E

( ∫ T

0
‖Ψ(s)‖pLHS(H,H) ds

)

and as Q is assumed to be trace class we have with Lemma 2.1 in [11]

‖Ψ(s)‖pLHS(H,H) = ‖Ψ(s)Q1/2‖pLHS(U,H) = ‖Ψ(s)‖pL(U,H)(TrQ)p/2.

Equation (2.2) is also true for Lévy martingales that satisfy
∫

U
‖ϕ‖qU ν(dϕ) < +∞

for q ∈ [2, p], where ν denotes the Lévy measure of M (see Lemma 3.9 in [30]).
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For an introduction to Hilbert space valued stochastic differential equations we refer the
reader to [33, 14, 11].

The operators A and B in Equation (2.1) are derived from L∗ in Equation (1.2). We
assume that the functions aij , for i, j = 1, . . . , d, are twice continuously differentiable on
D with continuous extension to the closure D̄. The operator A is the unique self-adjoint
extension to H1

0 of the differential operator

d∑

i,j=1

∂i(aij ∂ju), u ∈ C2
c (D).

B is a first order differential operator given by

Bu :=
d∑

i=1

∂i(biu), u ∈ C1
c (D),

for f continuously differentiable on D with continuous extension to D̄, with elements bi that
are defined as

bi :=
1

2

d∑

j=1

∂jaij − fi.

With the following assumptions, the right hand side of Equation (2.1) is well defined and its
solution has certain properties to be shown later. From here on, let α ∈ N be fixed.

Assumptions 2.2. The coefficients of A and B and the initial condition X0 satisfy the
following conditions:

(a) For i, j = 1, . . . , d, the elements aij belong to C
α+1
b (D) and fi to Cα

b (D) with continuous
extensions to D̄,

(b) there exists δ > 0 such that for all x ∈ D and ξ ∈ Rd

d∑

i,j=1

aij(x)ξiξj ≥ δ‖ξ‖2Rd ,

(c) X0 is F0–measurable and E(‖X0‖pHα) < +∞,
(d) there exists C > 0 such that for 0 ≤ β ≤ α and φ ∈ Hβ

‖G(φ)‖L(U,Hβ) ≤ C (1 + ‖φ‖Hβ ),

(e) there exists C > 0 such that for 0 ≤ β ≤ α and φ ∈ Hβ

‖G(φ)−G(ψ)‖L(U,Hβ) ≤ C ‖φ− ψ‖Hβ .

Assumption 2.2(b) implies that the operator A is dissipative, see e.g. [24]. Then by the
Lumer–Phillips theorem, e.g. [16], A generates a strongly continuous contraction semigroup
on H which we denote by S = (S(t), t ≥ 0). Furthermore, by Corollary 2 in [23], S is analytic
in the right half-plane. Therefore fractional powers of A are well defined, cf. [16], and we
denote for simplicity A−β = (−A)−β and Aβ = A−1

−β for β > 0.
In this context we shall make use of the following lemma — whose statement is also known

as Kato’s conjecture — and which was proved in [1].

Lemma 2.3. The domain of A1/2 satisfies that its domain D(A1/2) = H1
0 and the norm

‖A1/2 · ‖H is equivalent to ‖ · ‖H1, i.e. there exists C > 0 such that
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‖A1/2 φ‖H ≤ C ‖φ‖H1 and ‖φ‖H1 ≤ C ‖A1/2 φ‖H
for all φ ∈ H1.

Assumptions 2.2 also imply by results in Chapter 9 in [33], that Equation (2.1) has a unique
mild solution in Hα, i.e.

sup
t∈[0,T ]

E(‖X(t)‖2Hα) < +∞

for all T ∈ (0,+∞), and the SPDE can be rewritten for all t > 0 in mild form

(2.3) X(t) = S(t)X0 +

∫ t

0
S(t− s)BX(s) ds+

∫ t

0
S(t− s)G(X(s)) dM(s).

Furthermore, X has a càdlàg modification by Theorem 9.29 in [33]. From this point on, we
denote by X the càdlàg modification of the solution.

To simplify the notation we introduce the following norm for a mapping Φ from [0, T ]×Ω
into H with finite p-th moment for fixed p ≥ 1

‖Φ‖p,H,t :=
(
E
(
‖Φ(t)‖pH

))1/p
.

The next Lemma provides some insight on the space regularity of the mild solution.

Lemma 2.4. Under Assumptions 2.2 the mild solution satisfies sup0≤t≤T ‖X‖p,Hα,t < +∞
for p > 2.

Proof. From here on C denotes varying constants depending on p and T .

‖X‖pp,Hα,t = ‖S(t)X0 +

∫ t

0
S(t− s)BX(s) ds+

∫ t

0
S(t− s)G(X(s)) dM(s)‖pp,Hα,t

≤ C
(
E(‖X0‖pHα) + ‖

∫ t

0
S(t− s)BX(s) ds‖pp,Hα,t

+ ‖Aα/2

∫ t

0
S(t− s)G(X(s)) dM(s)‖pp,H,t

)

≤ C
(
E(‖X0‖pHα) + E((

∫ t

0
‖S(t− s)BX(s)‖Hα ds)p)

+ E(
∫ t

0
‖Aα/2G(X(s))‖pL(U,H) ds)

)

≤ C
(
E(‖X0‖pHα) + E((

∫ t

0
(t− s)−1/2‖X(s)‖Hα ds)p)

+ E(
∫ t

0
(1 + ‖X(s)‖pHα) ds)

)

≤ C
(
1 + E(‖X0‖pHα) + 2

∫ t

0
‖X‖pp,Hα,s ds

)
≤ C (1 + E(‖X0‖pHα)) < +∞,

where we used the boundedness of the contraction semigroup in the first and Equation (2.2) in
the second step, Lemma 2.3, Theorem 6.13 in [32], and the definition of the Bochner integral
in the third one, and Hölder’s and Gronwall’s inequality in the fourth. !
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3. Approximation scheme and order of convergence

In this section we derive a semidiscrete approximation scheme for Equation (2.1) and prove
the properties of this scheme.

To derive a semidiscrete form of Equation (2.1) we project H onto a finite subspace Vh of
H, where suitable spaces are Finite Element spaces. This can for example be done by first
discretizing D by a triangulation defined over a finite number of points. Then let (Sh, h > 0)
denote a family of Finite Element spaces, consisting of piecewise linear, continuous polynomi-
als with respect to the family of triangulations (Th, h > 0) of D such that Sh → H for h → 0
and furthermore Sh ⊂ H1

0 (D) for h > 0. In the general framework let (Vh, h > 0) be a family
of subspaces of H with orthogonal projection Ph and norm derived from H. For h → 0 the
sequence Vh is supposed to be dense in H in the following sense: For all φ ∈ H it holds that

lim
h→0

‖Phφ− φ‖H = 0.

Furthermore, we assume that the speed of convergence is specified by

(3.1) ‖(Ph − 1)φ‖H ≤ Chα‖φ‖Hα

for φ ∈ Hα. The Finite Element spaces (Sh, h > 0) satisfy this inequality for α ≤ 2. Fur-
thermore, Equation (3.1) is satisfied for the space of piecewise polynomials of degree at most
α− 1 on a quasi-uniform triangulation (c.f. Theorem 4.28 in [17] and Satz 6.4 in [9]).

The semidiscrete problem that we are interested in is to find Xh(t) ∈ Vh such that for
t ∈ [0, T ]

dXh(t) = (Ah +Bh)Xh(t) dt+ PhG(Xh(t)) dM(t), Xh(0) = PhX0.

Here Ah := PhAPh, and Bh := PhBPh. The operator Sh(t) refers to the discrete analog of
S(t), formally introduced by Sh(t) = e−tAh . The càdlàg semidiscrete mild solution is given
by

(3.2) Xh(t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)BhXh(s) ds+

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s).

By Assumptions 2.2, Sh is self-adjoint, positive semidefinite on H and positive definite on Vh.
We assume that for α ≥ β ≥ 0 with φ ∈ Hα and t ∈ [0, T ], we have that

(3.3) ‖(S(t)− Sh(t)Ph)φ‖H ≤ C hαt−(α−β)/2‖φ‖Hβ .

This is for example satisfied by the Finite Element spaces (Sh, h > 0) as introduced before for
α = 2 (see Theorem 3.5 in [36]). In the more general setting of piecewise polynomials of degree
at most α− 1, Theorem 5.7 in [17] as well as Proposition 11.2.2 in [34] imply Equation (3.3).
We note that in the proofs of Theorem 3.1 and Theorem 3.2, Equation (3.3) just has to be
satisfied for β = α and β = α − 1. If it only holds for β = α, the theorems stay true when
the mild solution satisfies sup0≤t≤T ‖X‖p,Hα+1,t < +∞.

We shall remark here that we do not approximate the noise. If U = H and Vh contains a
finite subset of the eigenbasis of M , the noise is automatically finite dimensional (see e.g. [25]).
Otherwise this approximation might not be suitable for simulations. In this case it is possible
to truncate the series representation of M . In [6] it is shown for a class of Lévy processes
which properties imply that the overall order of convergence is preserved.

The proposed space discretized equation converges uniformly, almost surely with order
O(hα−ε) and with order O(hα) in Lp to the mild solution of Equation (2.1), which is stated
in the following two theorems.
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Theorem 3.1. Xh converges in Lp to X of order O(hα), i.e. for all p > 0

sup
0≤t≤T

‖Xh −X‖p,H,t = O(hα).

Proof. We assume first that p > 2 and we have similarly to the proof of almost sure conver-
gence for SDEs driven by continuous martingales in [5]

‖X −Xh‖pp,H,t

≤3p−1
(
‖(S − ShPh)X0‖pp,H,t

+ E(‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)BhXh(s) ds‖pH)

+ E(‖
∫ t

0
S(t− s)G(X(s)) dM(s)−

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s)‖pH)

)
,

(3.4)

where we applied Hölder’s inequality. The first term satisfies for α = β by Equation (3.3)

‖(S − ShPh)X0‖pp,H,t ≤ C hpα E(‖X0‖pHα).

The second one is split into

E(‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)BhXh(s) ds‖pH)

≤ 3p−1
(
E(‖

∫ t

0
(S(t− s)− Sh(t− s)Ph)BX(s) ds‖pH)

+ E(‖
∫ t

0
Sh(t− s)PhB(1− Ph)X(s) ds‖pH)

+ E(‖
∫ t

0
Sh(t− s)Bh(X(s)−Xh(s)) ds‖pH).

)

The first of these expressions is estimated by the properties of the Bochner integral, Equa-
tion (3.3) for β = α− 1, Hölder’s inequality, and Fubini’s theorem

E(‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)BX(s) ds‖pH)

≤ Chpα(

∫ t

0
(t− s)−p/2(p−1) ds)p−1 ‖BX‖pp,Hα−1,t ≤ Chpα ‖X‖pp,Hα,t.

We apply the properties of the Bochner integral again, Theorem 6.13 in [32], Lemma 2.3, and
Equation (3.1) to the second expression, which leads similarly to the previous term to

E(‖
∫ t

0
Sh(t− s)PhB(1− Ph)X(s) ds‖pH) ≤ C hpα ‖X‖pp,Hα,t.

Finally, the third term satisfies

E(‖
∫ t

0
Sh(t− s)Bh(X(s)−Xh(s)) ds‖pH) ≤ C E((

∫ t

0
(t− s)−1/2‖X(s)−Xh(s)‖H ds)p)

by the properties of the Bochner integral and Theorem 6.13 in [32]. Hölder’s inequality for
p > 2 leads to

E(‖
∫ t

0
Sh(t− s)Bh(X(s)−Xh(s)) ds‖pH) ≤ C

∫ t

0
‖X −Xh‖pp,H,s ds.



8 LANG

So overall we have for the second term on the right hand side in (3.4)

E(‖
∫ t

0
S(t− s)BX(s) ds−

∫ t

0
Sh(t− s)BhXh(s) ds‖pH)

≤ C(hpα ‖X‖pp,Hα,t +

∫ t

0
‖X −Xh‖pp,H,s ds)

≤ C(hpα sup
0≤s≤T

‖X‖pp,Hα,s +

∫ t

0
‖X −Xh‖pp,H,s ds).

The third expression on the right hand side of Equation (3.4) is split into the two following
terms

E(‖
∫ t

0
S(t− s)G(X(s)) dM(s)−

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s)‖pH)

≤ 2p−1
(
E(‖

∫ t

0
(S(t− s)− Sh(t− s)Ph)G(X(s)) dM(s)‖pH)

+ E(‖
∫ t

0
Sh(t− s)Ph(G(X(s))−G(Xh(s))) dM(s)‖pH)

)
.

The first of these expressions satisfies by Equation (2.2) and the properties of G

E(‖
∫ t

0
(S(t− s)− Sh(t− s)Ph)G(X(s)) dM(s)‖pH) ≤ Chpα(1 + ‖X‖pp,Hα,t)

≤ Chpα(1 + sup
0≤s≤T

‖X‖pp,Hα,s).

Similarly, Equation (2.2) yields for the other term

E(‖
∫ t

0
Sh(t− s)Ph(G(X(s))−G(Xh(s))) dM(s)‖pH)

≤ C

∫ t

0
‖G(X)−G(Xh)‖pp,L(U,H),s ds

and the properties of G imply

‖G(X)−G(Xh)‖p,L(U,H),s ≤ ‖X −Xh‖p,H,s.

So overall we have due to the finiteness of ‖X‖p,Hα,t with Gronwall’s inequality

‖X −Xh‖pp,H,t ≤ C1h
pα + C2

∫ t

0
‖X −Xh‖pp,H,s ds ≤ Chpα

for constants C1, C2, and C depending on the mild solution, T , and p which implies

sup
0≤t≤T

‖X −Xh‖p,H,t ≤ Chα.

Finally, for t ∈ [0, T ] and p ≤ 2 we have for any p̃ > 2 by Hölder’s inequality

‖Xh −X‖p,H,t ≤ ‖Xh −X‖p̃,H,t = O(hα). !

This theorem implies almost immediately almost sure convergence as stated in the next
theorem.
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Theorem 3.2. For every ε > 0 and for h > 0 small enough such that h goes to zero with
order O(n−δ) for n ∈ N and fixed δ > 0,

sup
0≤t≤T

‖X(t)−Xh(t)‖H ≤ hα−ε P–a.s.,

i.e. the approximation Xh introduced in (3.2) converges uniformly, almost surely to X of
order O(hα−ε) for h → 0.

Proof. Let ε > 0, then Chebyshev’s inequality implies with Theorem 3.1 for all t ∈ [0, T ]

P (‖X(t)−Xh(t)‖H ≥ hα−ε) ≤ h−(α−ε)p ‖X −Xh‖pp,H,t ≤ C hpε.

Since h = O(n−δ), the corresponding series is convergent for any p > (εδ)−1 and therefore by
the Borel–Cantelli lemma we get that

‖X(t)−Xh(t)‖H ≤ hα−ε, P–a.s.

for all t. Let K = Q∩ [0, T ], q ∈ K, and Nq a zero set such that for all ω ∈ N c
q , which denotes

the complement of Nq,
‖X(q,ω)−Xh(q,ω)‖H ≤ hα−ε,

then P (
⋃

q∈K Nq) = 0 and

sup
q∈K

‖X(q,ω)−Xh(q,ω)‖H ≤ hα−ε.

We have for t ∈ [0, T ) that there exists a decreasing series (tn, n ∈ K) that converges to t and
for all ω ∈

⋂
q∈K N c

q

‖X(tn,ω)−Xh(tn,ω)‖H ≤ hα−ε

for all n. As t /→ ‖X(t)−Xh(t)‖H is càdlàg, the continuity from the right hand side implies
that

‖X(t,ω)−Xh(t,ω)‖H ≤ hα−ε.

If T is not rational, we set N =
⋃

q∈K Nq ∪NT which satisfies P (N) = 0 and asymptotically
for all ω ∈ N c

sup
0≤t≤T

‖X(t,ω)−Xh(t,ω)‖H ≤ hα−ε,

which proves the theorem. !

4. Simulations

In this section some simulation results are shown. The approximation of the time and the
noise are done in such a way that the the error of the space approximation dominates. We
simulate similarly to [5] the heat equation driven by additive Lévy noise

dX(t) = ∆X(t) dt+ dL(t)

on the space interval [0,π] and the time interval [0, 1] with initial condition X(0) = sin(x).
The covariance kernel CQ of the Lévy process L is given by

CQ(x, y) = exp(−10(x− y)2)

and constructed of independent real-valued Lévy processes (Li, i ∈ N). For every i ∈ N we
construct Li = Wi + Pi, where Wi is a Brownian motion and Pi a compound Poisson process
whose jump intensity is 1638.4 and whose jump sizes are given by the product of a Gamma
distributed random variable with parameters Γ(2, 5) and a uniformly distributed random
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Figure 1. Error estimates of the heat equation with additive Lévy noise.

variable on {−1, 1}. The space discretization is done with a Finite Element method and the
hat functions, i.e. with the spaces (Sh, h > 0) of piecewise linear, continuous polynomials
which were introduced in Section 3. Then Theorem 3.1 implies that all moments converge
of order 2 and by Theorem 3.2 every path converges asymptotically of order 2− ε for ε > 0.
Here additionally we use a Crank–Nicolson method for the time stepping and truncate the
Karhunen–Loève expansion of the Lévy process according to Lemma 3.1 in [5] to be able to
do simulations. We choose the time and noise approximations such that the error of the space
approximations dominates the errors.

For the simulation of the error, the solution on a grid with 27 points in space and 214

points in time was taken as exact solution and compared with the solution on the grids with
2n points for n = 2, . . . , 5. In Figure 1(a) the error of two paths of the solution is plotted.
As reference, the curve with slope N−2 = O(h2) is included. The error of path 2, which is
denoted with diamonds, is scaled by a factor of 3. Otherwise, the errors of the two paths are
almost indistinguishable. Additionally strong errors in Lp for p = 1, . . . , 5 are estimated by a
Monte Carlo method with 1000 paths. The errors are all similar. In Figure 1(b), the scaled
error in L2 and the L5 error are shown. It attracts attention that the error of approximation
with 25 grid points is not as good as the others. This is due to the chosen reference solution
but a simulation on a finer grid would have needed at least 216 time discretization points and
increased the computational costs enormously.
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