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A B S T R A C T

In preparation for the eventual arrival of quantum computers, there has
been a significant amount of work to construct quantum-safe cryptographic
primitives, as evidenced by the ongoing NIST PQC Standardization. To
ensure post-quantum security, the underlying public-key schemes have to
be built based on quantum-safe computational hardness assumptions. In
this regard, lattice-based primitives appear to be a leading choice. Indeed,
the currently most efficient, in terms of size and speed, quantum-safe
basic primitives (e.g. signatures and encryption schemes) are based on the
hardness of lattice problems with algebraic structure such as Module-SIS
and Module-LWE. As a natural next step, lattice-based cryptography can
be thus applied to build more advanced primitives such as zero-knowledge
arguments.

In this thesis, we present Lantern, a new lattice-based zero-knowledge pro-
tocol with short proofs based on the hardness of Module-SIS and Module-
LWE problems. In particular, our framework is suitable for proving lattice-
related statements, e.g. proving knowledge of a short vector ~s satisfying
A~s “~t mod q. At the core of our constructions lies a more direct and more
efficient way to prove that~s has a small Euclidean norm which, unlike in
prior works, does not require proving explicitly that each coefficient of~s is
small, nor any conversion to the CRT representation. Instead, we use the
observation that the inner product x~r,~sy between any two vectors~r and~s
can be made to appear as a constant coefficient of a product (or sum of
products) between polynomials which are functions of~r and~s. Therefore,
by using a polynomial product proof system and hiding all but the constant
coefficient, we are able to prove knowledge of the inner product of two
vectors (or of a vector with itself) modulo q. Using a cheap “approximate
range proof”, we can then lift the proof to be over Z instead of Zq.

Performance-wise, our framework produces proofs of size 13KB for basic
statements which are 2´ 3X smaller than prior works. Furthermore, the
new proof system can be plugged into constructions of various lattice-
based privacy-oriented primitives in a black-box manner. As examples,
we instantiate a verifiable encryption scheme as well as ring and group
signatures which are significantly more compact than previously the best
solutions.
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Z U S A M M E N FA S S U N G

In Vorbereitung auf die Ankunft von Quantencomputern wurde viel an der
Entwicklung von quantensicheren kryptografischen Primitiven gearbeitet,
wie die laufende NIST PQC-Standardisierung zeigt. Um Post-Quantum-
Sicherheit zu gewährleisten, müssen die zugrundeliegenden Public-Key-
Verfahren auf der Grundlage von quantensicheren Komplexitätsannahmen
aufgebaut werden. In dieser Hinsicht scheinen gitterbasierte Primitive eine
gute Wahl zu sein. Die derzeit effizientesten quantensicheren Grundprimiti-
ve (z. B. Signaturen und Verschlüsselungsverfahren), was die Größe und
Geschwindigkeit betrifft basieren auf der Härte von Gitterproblemen mit
algebraischer Struktur, z. B. Module-SIS und Module-LWE. Als natürlicher
nächster Schritt kann die gitterbasierte Kryptografie daher zur Entwick-
lung fortgeschrittener Primitive wie Zero-Knowledge-Arguments eingesetzt
werden.

In dieser Arbeit stellen wir Lantern vor, ein neues gitterbasiertes Zero-
Knowledge-Argument mit kurzen Beweisen, das auf der Härte von Module-
SIS und Module-LWE basiert. Insbesondere eignet sich unser Framework
für den Beweis von gitterbezogenen Aussagen, z.B. den Beweis der Kennt-
nis eines kurzen Vektors ~s, der A~s “ ~t mod q erfüllt. Der Kern unserer
Konstruktionen ist ein direkterer und effizienterer Weg, um zu beweisen,
dass ~s eine kleine euklidische Norm hat, wofür weder ein Beweis über
die Länge jedes einzelnen Koeffizienten von~s, noch eine Umwandlung in
die CRT-Darstellung wie in früheren Arbeiten erforderlich ist. Stattdessen
verwenden wir die Beobachtung, dass das Skalarprodukt x~r,~sy zwischen
zwei beliebigen Vektoren ~r und ~s als konstanter Koeffizient eines Pro-
dukts (oder einer Summe von Produkten) zwischen Polynomen erscheinen
kann, die Funktionen von~r und~s sind. Indem wir ein Polynom-Produkt-
Beweissystem verwenden und alle Koeffizienten bis auf den konstanten
Koeffizienten verstecken, können wir die Kenntnis des Skalarprodukts
zweier Vektoren (oder eines Vektors mit sich selbst) modulo q beweisen.
Mit Hilfe eines relativ kostengünstigen “Approximate Range-Proofs” kann
man dann den Beweis über Z statt Zq führen.

In Bezug auf die Leistung erreicht unser Framework etwa 2 ´ 3-mal
kleinere Beweisgrößen als frühere Arbeiten für grundlegende Aussagen,
wie z.B. den Nachweis der Kenntnis eines Module-LWE Samples. Darüber
hinaus kann das neue Beweissystem in Konstruktionen verschiedener git-
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terbasierter privatsphärenorientierter Primitive Blackbox-artig integriert
werden. Als Beispiele instanziieren wir ein überprüfbares Verschlüsselungs-
verfahren sowie Ring- und Gruppensignaturen, die wesentlich kompakter
sind als die bisher besten Lösungen.
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N O TAT I O N

frequently used symbols

N set of natural numbers t1, 2, 3, . . .u

Zn ring of integers modulo n

rns t1, 2, . . . , nu

κ security parameter

q proof system modulus

d power-of-two, ring dimension

R ring of integers ZrXs{pXd ` 1q

Rq ring ZqrXs{pXd ` 1q

l number of irreducible factors of Xd ` 1 modulo q

f̃ constant coefficient of a polynomial f P R
σi automorphism over R defined by the map X ÞÑ Xi for i P Zˆ2d

AutpRq the automorphism group tσi : i P Zˆ2du

C challenge space over Rq

ω maximum coefficient in the absolute value of a challenge in C
Ds discrete Gaussian distribution with standard deviation s

m1 length of a “small” committed message s1 P Rm1
q

m2 length of the randomness for a commitment scheme over Rq

` length of a (not necessarily small) committed vector m P R`
q

λ parameter used for soundness amplification

κMSIS dimension of a Module-SIS problem

κMLWE dimension of a Module-LWE problem
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1
I N T R O D U C T I O N

Zero-knowledge proofs form the foundations of many complex privacy-
oriented protocols, such as electronic voting, verifiable computation and
blockchain. In such applications, it is essential to be able to prove in zero-
knowledge, i.e. the proof does not leak any secret information, that one
knows how to open a cryptographic commitment, and to prove that the
committed values have particular properties or satisfy certain relations.

Recently, more and more zero-knowledge proof techniques have been
introduced, each with improvements in proof size, proving time, or verifica-
tion time. These new constructions are based on a variety of cryptographic
assumptions, including the discrete logarithm assumption, pairing-based as-
sumptions, collision-resistant hash functions, and lattice-based assumptions
such as (Module-)SIS and (Module-)LWE. However, only constructions from
hash-functions or lattices stand any chance of being secure against quan-
tum adversaries. The currently most efficient, in terms of size and speed,
quantum-safe basic primitives (e.g. encryption and signature schemes) rely
on the hardness of lattice problems with algebraic structure. This is highly
evidenced by the fact that majority of the NIST Post-Quantum Competi-
tion [NIS] finalists are based on lattices. Lattice-based constructions are
therefore natural candidates for more advanced cryptographic tools like
zero-knowledge proofs 1.

Lattice-based cryptography relies upon the following fundamental hard-
ness assumption, i.e. it is computationally difficult to find a low-norm vector
s which satisfies

As “ t mod q. (1.1)

Hence, a natural approach for building privacy-preserving protocols based
on the hardness of lattice problems would be to require proving knowledge
of a secret vector s which satisfies the above, or a related, equality. Unlike in
the discrete logarithm world, where proving knowledge of a secret s satisfy-
ing gs “ t turns out to have a very simple and efficient solution [Sch89], the

1 Technically speaking, the protocols described in the thesis are called arguments since their
soundness property relies on a computational assumption. However, for simplicity, we use the
terms proof and argument interchangeably.
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introduction 2

additional requirement of showing that }s} is small appears to be a major
complication for practical lattice cryptography.

Currently, the most efficient lattice-based identification scheme over poly-
nomial rings2 was proposed by Lyubashevsky [Lyu09; Lyu12], who pre-
sented a zero-knowledge proof of knowledge of a vector s̄ and a polynomial
c with small coefficients satisfying

As̄ “ ct mod q, (1.2)

where }s̄} is some factor (depending on the dimension of s) larger than }s}.
The protocol enjoys small proof sizes since it achieves negligible soundness
error in one-shot, i.e. no repetition is required.

While such relaxed proof systems are good enough for constructing
efficient basic protocols, such as signature schemes [BG14; Duc+18], the fact
that the norm of the extracted s̄ is much larger than the norm of s, along
with the presence of the extra factor c in front of t, makes these proofs
tricky to use in many other situations. This often results in not giving the
resulting scheme the desired functionality, or the protocols employing these
proofs being simply less efficient than necessary. Indeed, such constructions
are then required to select much larger parameters than needed in order to
accommodate the presence of the multiplicand c and the “slack” between
the length of the known solution s and the solution s̄ that one can prove.

Moreover, there are applications where relaxed proof systems are not
satisfactory, such as proving integer relations and range proofs. In these
protocols one wants to commit to integers, prove that they lie in certain
intervals, and prove additive and multiplicative relations between them. In
particular, one usually commits to the integers in their binary (or some other
small-base) representation, and then proves that the committed message
really is a binary vector [Esg+19c; Lib+18]. Hence, it is essential to prove
that it does not have any coefficients which come from a larger set.

First lattice-based protocols for exactly proving (1.1) used the combinato-
rial algorithm of Stern [Ste93] to prove that the L8 norm of s is bounded by
revealing a random permutation of s. The main problem with these proto-
cols was that their soundness error was 2{3, and so they had to be repeated
around 200 times to achieve an acceptably small (i.e. 2´128) soundness error.
This resulted in proofs for even simple statements being more than 1MB
in size [Lin+13], while more interesting constructions produced outputs of
size tens of Megabytes [Lib+18; Lib+16; Lib+17]. A significant improvement
was shown in [Beu20] by generically combining Stern’s protocol with a

2 Namely, rings of the form R :“ ZrXs{p f pXqq, where f pXq is a monic, irreducible polynomial.



introduction 3

“cut-and-choose” technique to decrease the soundness error of each protocol
run (at the cost of higher running times). This allowed proofs for basic
statements to be around 200KB in size.

Later on, a more algebraic approach for proving (1.1) combined lattice-
based commitments and zero-knowledge proofs of committed values to
prove linear relations between the coefficients of s and also prove a bound
on its L8 norm. The first such protocols [BLS19; Esg+19a; Yan+19] had proof
sizes that were in the order of several hundred kilobytes. These schemes
were later significantly improved in [ALS20; ENS20; LNS21a], where it was
shown how to very efficiently prove polynomial products over a ring and
also linear relations over the CRT slots 3 of committed values. Optimisations
of these techniques decreased the proof size for basic statements to around
30´ 50KB.

The high level idea to prove the L8 norm is as follows. For simplicity,
suppose we want to prove that s has coefficients in the set t´1, 0, 1u. Then,
we create a commitment to a polynomial vector m “ pm1, . . . , m`q whose
CRT slots are the coefficients of s, prove this (linear) relationship and also
prove that

pmi ´ 1q ¨mi ¨ pmi ` 1q “ 0 for i “ 1, 2, . . . , `. (1.3)

By the homomorphic property of the CRT slots, Equation 1.3 is indeed
equivalent to the CRT slots of m being in t´1, 0, 1u. Note that if s P Rm

q
then the vector m consists of ` “ m ¨ d{l polynomials where Rq :“ R{pqq
and l is the number of factors of f pXq modulo q.

There are a few limitations of the aforementioned approach. Firstly, since
the CRT slots of m are small, this implies that the actual coefficients of m
can be large, and thus committing to it requires using a more expensive
commitment scheme, e.g. the BDLOP commitment [Bau+18b], which is
much more expensive than the standard Ajtai commitment [Ajt96] for
long s. There is also an incompatibility between the requirement that the
underlying ring has a lot of CRT slots and negligible soundness error
of the protocol. Namely, if l is small, then we have to commit to more
polynomials because m gets longer. On the other hand, if we choose l to
be large (e.g. l “ d) then a part of the protocol needs to be repeated for
soundness amplification. Another downside is that proving }s}8 ď α in
general requires committing to 2α extra polynomials. Hence, for vectors

3 We recall that for a polynomial s P Rq :“ ZqrXs{p f pXqq, the Chinese Remainder Theorem
(CRT) slots [Esg+19c] of s are coefficients of the vector ps mod pq, f1pXqq, . . . , s mod pq, flpXqqq
where f pXq factors into irreducible polynomials f1pXq, . . . , flpXq modulo q. Note that if f pXq
splits into linear terms modulo q then CRT slots simply become integers in Zq.
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s with somewhat-large coefficients, such as ones that are obtained from
trapdoor sampling (e.g. [ABB10a; DLP14; MP12]), proving the L8 norm
becomes significantly costlier. Finally, proving the L2 norm, rather than the
L8 one, is very often what one would like to do when constructing proofs
for lattice-based primitives. For instance, if one is interested in bounding
the norm of a linear combination of s, e.g. for proving no decryption error
occurred, then having the L2 norm seems more optimal. Indeed, given
}s} ď β over a widely-used ring Rq “ ZqrXs{pXd ` 1q where d is a power-
of-two, we can bound

}aTs}8 ď }a} ¨ }s} “ }a} ¨ β

whereas given the L8 norm bound }s}8 ď α we would only deduce that

}aTs}8 ď }a}1 ¨ }s}8 “ }a}1 ¨ α

which is usually looser than the former inequality since in practice very few
coefficients of s will be close to α. Another application is proving knowledge
of vectors produced by trapdoor sampling because they have a (tightly)
bounded L2 norm but not L8 norm.

Outside lattice-based cryptography, there has been a significant advance-
ment in the construction of practical zero-knowledge proof systems, and
it has progressed to the point where they can be used routinely to prove
relatively large arbitrary arithmetic circuits, thus in particular (1.1). When
restricting to (plausibly) quantum-safe protocols, the PCP-type systems like
Ligero++ [Bha+20] or Aurora [Ben+19] achieve proof sizes that scale poly-
logarithmically with the witness size and only rely on collision-resistant
hash functions. As a drawback, they have a concrete base cost in the order
of 50´ 100 Kilobytes. Hence, using lattice-based zero-knowledge proofs
for statements of the form (1.1) still seems more advantageous in terms of
proof size.

1.1 our contributions

In this work we propose a simple and general framework, called Lantern4,
for proving statements related to lattice-based cryptography, such as (1.1).
Our new protocols do not rely on the CRT slots technique which results in
the following two immediate improvements over the current state-of-the-
art [ALS20; ENS20; LNS21a]. First, since we do not need to commit to long

4 The name stands for: lattice-based non-interactive zero-knowledge proofs.



1.1 our contributions 5

Stern-type proofs 3522 KB

Bootle et al. [BLS19] 384 KB

Beullens [Beu20] 233 KB

Ligero [Ame+17] 157 KB

Aurora [Ben+19; Bos+20] 72 KB

Esgin et al. [ENS20] 47 KB

Lyubashevsky et al. [LNS21a] 33 KB

Lantern 13 KB

Figure 1.1: Proof length comparison for proving knowledge of short s, e satis-
fying As` e “ t mod q, where A P Rnˆm

q , pn, m, d, qq “ p16, 16, 64,«
232q, and }ps, eq} ď

?
2048. The protocols from prior works need to

make the additional restriction that all the coefficients in s, e are from
t´1, 0, 1u. The sizes for the Stern-type proof are taken from [BLS19].
The sizes for Ligero and the scheme from [Beu20] are originally
from [Beu20] and are for the matrix A of height 8.

vectors with large coefficients anymore (e.g. m in the previous example),
we can actually use the Ajtai commitment [Ajt96] which is much cheaper.
Secondly, we circumvent the issue of repeating certain (rather expensive)
parts of the protocol for boosting soundness. Consequently, our proof sizes
become around 2´ 3X smaller than prior works for basic statements (see
Figure 1.1). In particular, for statements of the form (1.1), the total proof size
is « 13KB where approximately 8KB of that consists of just the “minimum”
commitment (i.e. a commitment to just one element in Rq) and its opening
proof. This implies that our construction is quite close to being optimal
for any approach that requires creating a commitment to s using known
lattice-based commitment schemes. Since most of the practical lattice-based
zero-knowledge proofs for proving knowledge of a witness s satisfying
certain relations follow the commit-and-prove approach and first commit
to s, it appears that any significant improvement to our framework (e.g.
another factor of two) would require significant improvements in theory
of lattices, basing security on stronger assumptions, or simply a different
approach.

Our framework is defined in such a way that it can be used out-of-the-box
to construct more advanced privacy-preserving primitives. We demonstrate
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Ciphertext Size Proof Size
Decryption Time

Independent of

Forgery Time

[LN17] 9KB 9KB ˆ

[LNS21a] 4KB 33 - 44KB ˆ

Lantern 1KB 17KB X

Figure 1.2: The table compares our instantiation of a verifiable encryption scheme
from this thesis with [LN17] and [LNS21a]. The latter paper presents
a verifiable decryption scheme, but the proof size for a verifiable
encryption scheme constructed in the same manner would be similar.

the applicability of our protocols with various real-world examples. First,
we build an efficient lattice-based verifiable encryption which is on-par
with the current state-of-the-art [LN17] in terms of the ciphertext + proof
size but overcomes the undesirable problem with the expected decryption
time being dependent on the adversary’s running time (see Figure 1.2).
Furthermore, we show how our framework can be applied to obtain ABB-
like group signatures5 [ABB10b; Lyu+21; PLS18] with signature size 2X
smaller than the currently most efficient construction [Lyu+21] (see Figure
1.3). Last but not least, we propose a new logarithmic-size lattice-based
one-out-of-many proof [GK15] which, using standard techniques, can be
transformed into efficient ring and group signatures. Our construction
produces signature sizes « 35% smaller while having more than one order
of magnitude smaller public keys than the current state-of-the-art lattice-
based ring signatures [ESZ21; LNS21b] for a large number of users (see
Figure 1.4). We highlight that the one-out-of-many proof, combined with
our new proofs of integer relations (see Figure 1.5), can be used to build an
efficient lattice-based confidential payment system as in [ESZ21; Esg+19c;
LNS21b].

We now give a technical overview of the main building blocks for con-
structing our framework. For the sake of concreteness, let us define the

5 The main advantage of ABB-like group signatures is the constant signing and verification time
as well as constant signature size, i.e. they do not depend on the size of the group.
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Public Key Size Signature Size

Opening Time

Independent of

Adversary’s

Forgery Time

[PLS18] 123KB 581KB ˆ

[Lyu+21] 96KB 203KB ˆ

Lantern 48KB 88KB X

Figure 1.3: Comparison of our ABB-like group signature with prior construc-
tions [Lyu+21; PLS18].

ring Rq :“ ZqrXs{pXd ` 1q where d is a power-of-two which is a standard
choice of a ring in practical lattice-based constructions6.

1.1.1 Lattice-Based Hybrid Commitment Scheme

Our starting point is a new lattice-based commitment scheme, called
ABDLOP, which generalises the constructions of Ajtai [Ajt96] and BD-
LOP [Bau+18b]. Concretely, to commit to a message vector s1 P Rm1

q with
small coefficients, as well as a “full-fledged” polynomial vector m P R`

q, we
sample a randomness vector s2 P Rm2

q and compute:
«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

.

We observe that when ` “ 0 (resp. m1 “ 0) then this construction ends
up being the Ajtai (resp. BDLOP) commitment scheme. In particular, the
commitment size does not depend on the length m1 of s1 (but it does on `).
Hence, our strategy is to commit to long vectors with small coefficients in
the “Ajtai” part s1, e.g. vector s in Equation 1.1, and commit to a few garbage
polynomials used for the proofs in the “BDLOP” part m. The opening of
the commitment is a pair ps1, s2q

7.
Using similar techniques as in [ALS20] one can show ABDLOP scheme is

binding with respect to weak openings, i.e. triples ps1, s2, cq which satisfy:

6 Our protocols are the most efficient here because they utilise a specific automorphism in this
ring. However, the high-level ideas can also be made to work for rings which do not have this
algebraic structure. We refer to [LNP22b, Section 7] for more details.

7 Message m does not need to be included in the opening since it can be deterministically
computed from tB and s2.
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sig. sizes for rings of size hardness public

26 212 221 assumption key size

Raptor [LAZ19] 81 5161 – NTRU 0.9

DualRing-LB [Yue+21] 6 106 – MSIS, MLWE r2.8, 3.4s

Falafl [BKP20] 32 35 39 MSIS, MLWE 1.9

MatRiCT [Esg+19c] 31 59 148 MSIS, MLWE r3.4, 22.7s

MatRiCT+ [ESZ21] 11 18 40p?q MSIS, MLWE –

SMILE [LNS21b] 18 19 22 MSIS, MLWE 2

Calamari [BKP20] 8 14 23 CSIDH-512 0.06

Lantern 14 15 16 MSIS, MLWE 0.13

Figure 1.4: Comparison of the different post-quantum ring signature schemes
with approximately 128 bits of security. All the values are given in
KB. The signatures sizes for [ESZ21; LNS21b] only approximately
correspond to the ring sizes (e.g. 18KB signature size is for the ring
of 210 users and not 212). For DualRing-LB and MatRiCT(+) the user
public key size grows in the number of users. Further, we extrapolate
the signature size for MatRiCT+ with 221 users from the smaller
examples and from MatRiCT.

• A1s1 `A2s2 “ tA,

• c P Rq is an invertible polynomial with small coefficients,

• }cs1} and }cs2} are small.

under the hardness of the Module-SIS assumption. On the other hand, the
hiding property of the ABDLOP scheme comes from the fact that if vector

s2 is long enough, then

«

A2

B

ff

s2 is indistinguishable from a random vector

under the Module-LWE assumption.
Proof of knowledge of the ABDLOP commitment opening can be con-

structed using the standard Schnorr-like sigma protocol [Lyu12] adapted
to the lattice setting (see Figure 1.6). Suppose that C is a challenge space
consisting of polynomials with small coefficients such that any difference
of two distinct challenges is invertible in Rq. Hence, if one manages to
extract two valid transcripts with two different challenges c, c1 P C then one
immediately obtains a weak opening of ptA, tBq.
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N 128 512

[LNS20] 25KB 45KB

Lantern 12KB 15KB

N 128 512

[LNS20] 40KB 100KB

Lantern 15KB 21KB

Figure 1.5: Proof size comparison for proving integer addition (on the left) and
multiplication (on the right). Here, N is the bit-length of the integers.
It is worth mentioning that [ESZ21; Esg+19c] also construct efficient
proofs of integer addition, alternatively called balance proofs, which
use similar CRT-packing techniques as [LNS20].

1.1.2 Product Proofs with Automorphisms

One of our main building blocks is a proof of linear and higher-degree
equations in the committed messages s1, m. Namely, we adapt the product
proof from [ALS20] to prove that f ps1, mq “ 0 where f : Rm1``

q Ñ Rq is
a polynomial function. For presentation purposes, let us describe how to
prove that

sT
1 s1 `mTm “ 0.

Generalisation to arbitrary quadratic and higher-degree relations follows
immediately.

First of all, consider the masked opening z1 :“ y1 ` cs1 of s1 defined in
Figure 1.6. Note that

zT
1 z1 “ c2sT

1 s1 ` 2cyT
1 s1 ` yT

1 y1

and hence the coefficient corresponding to the quadratic term c2 is what we
are interested in. We cannot do the same argument with m since no masked
opening of m was sent. However, we observe that the verifier can compute

tB ´ Bz2 “ ´By2 ` cm

which is of the similar form as the masked opening of s1. Then

ptB ´ Bz2q
TptB ´ Bz2q “ c2mTm´ 2cyT

2 BTm` yT
2 BTBy2.

Therefore, we want to prove that the term in front of c2 in the following
expression disappears, i.e

zT
1 z1 ` ptB ´ Bz2q

TptB ´ Bz2q “ cg1 ` g0
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Prover Pps1, s2, m, tA, tBq Verifier VptA, tBq

y1 Ð Dm1d
s1

y2 Ð Dm2d
s2

w :“ A1y1 `A2y2
w -

c� c Ð C
z1 :“ y1 ` cs1

z2 :“ y2 ` cs2
z1, z2 -

}z1}
?
ď B1

}z2}
?
ď B2

w ?
“ A1z1 `A2z2 ´ ctA

Figure 1.6: Proof of knowledge of the ABDLOP commitment opening. Vectors yi
are sampled from a discrete Gaussian with standard deviation si. We
neglect the rejection sampling step for the sake of the overview.

where
g1 :“ 2pyT

1 s1 ´ yT
2 BTmq, g0 :“ yT

1 y1 ` yT
2 BTBy2.

The idea is then to additionally send commitments ti to gi for i “ 1, 2 (we
will put g1, g0 in the “BDLOP” part since their coefficients are large) and
prove that

zT
1 z1 ` ptB ´ Bz2q

TptB ´ Bz2q ´ ct1 ´ t0

is a commitment to zero. Finally, in order to reduce the number of garbage
commitments, we apply the technique by Attema et al. [ALS20] which does
not need to commit to g0. Consequently, proving a quadratic equation costs
an extra commitment to a Rq element.

In our framework, we need to prove quadratic relations which addition-
ally involve automorphisms σ of R8. For instance, we will be interested in
equations such as

σps1q
Ts1 ` σpmqTm “ 0 (1.4)

8 We denote the group AutpRq of automorphisms of R as AutpRq :“ tσi : i P Zˆ2du where
σi : RÑ R is defined by σipXq “ Xi .
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where for x :“ px1, . . . , xnq P Rn
q , we define σpxq :“ pσpx1q, . . . , σpxnqq. If we

were to apply the approach as above, we would obtain

σpzqT1 z1 ` σptB ´ Bz2q
TptB ´ Bz2q “ cg1,0 ` σpcqg1,1 ` g0 (1.5)

where

g1,0 :“ σpyqT1 s1 ´ σpBy2q
Tm, g1,1 :“ yT

1 σpsq ´ pBy2q
Tσpmq

and g0 is defined as

g0 :“ σpy1q
Ty1 ` σpBy2q

TBy2.

This means that now we would need to commit to both g1,0 and g1,1. A
simple optimisation is to choose a challenge space C such that c P C is stable
under automorphism σ, i.e. σpcq “ c. Then, the expression in (1.5) would be
equal to cg1 ` g0 where g1 :“ g1,0 ` g1,1. This way, we only commit to one
extra polynomial g1 as in the case previous case. The limitation is, however,
the additional condition on the challenge space C being stable under σ. We
show that for typical choices of σ used in this thesis, such a challenge space
of an exponential size in the security parameter can still be constructed 9.

1.1.3 Inner Products of the Polynomial Coefficients

We propose new techniques to prove inner products between polynomial
coefficients of the committed vectors. For instance, suppose we want to
prove for some public a1 P Rm1

q and a2 P R`
q that

xa1, s1y ` xa2, my “ 0 pmod qq

where we denote xx, yy to be the Z-inner product of their corresponding
coefficient vectors ~x and ~y. The crucial observation here is that xa1, s1y `

xa2, my P Zq is the constant coefficient of the following polynomial in Rq:

σ´1pa1q
Ts1 ` σ´1pa2q

Tm. (1.6)

In other words, we note that for any two polynomials u, v P Rq, the inner
product xu, vy P Zq is the constant coefficient of the polynomial σ´1puqv P
Rq where automorphism σ´1 maps X ÞÑ X´1. Indeed, if we write u :“
řd´1

i“0 uiXi and v :“
řd´1

i“0 viXi, then the constant coefficient of

σ´1puqv “

˜

d´1
ÿ

i“0

uiX´i

¸˜

d´1
ÿ

i“0

viXi

¸

9 Recall we still want the difference of any two distinct challenges in C to be invertible over Rq.
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is u0v0 ` u1v1 ` . . .` ud´1vd´1 “ xu, vy.
Now, to show that the constant coefficient of (1.6) vanishes, one could

simply send that polynomial in the clear and the verifier would check that
the constant coefficient is indeed zero. However, that would reveal all the
other coefficients of (1.6) – making the scheme not zero-knowledge. Instead,
we apply the following strategy described first by Esgin et al. [ENS20].
Namely, we commit to a random polynomial g Ð tx P Rq : x̃ “ 0u, where
x̃ means the constant coefficient of x. Then, given a challenge υ Ð Zq from
the verifier, we send

h :“ g` υ ¨
´

σ´1pa1q
Ts1 ` σ´1pa2q

Tm
¯

.

Then, the verifier checks whether the constant coefficient of h is zero. Since
we masked all the other coefficients of (1.6) using g, the verifier gets no
sensitive information. Finally, we need to prove that h was well-formed.
However, this is just a linear equation in the committed messages s1, m and
g and can thus be proved as in Section 1.1.2.

One observes that the soundness error of this approach is 1{q1 where q1
is the smallest prime which divides q. Indeed, a cheating prover might have
s1, m such that the constant coefficient of (1.6) is q{q1 and hope that the
challenge υ is divisible by q1. Then, by construction, the constant coefficient
of h would still be zero.

In order to exponentially decrease the soundness error, we repeat this part
of the protocol, i.e. we commit to extra λ polynomials g1, . . . , gλ Ð tx P Rq :
x̃ “ 0u and send corresponding λ polynomials h1, . . . , hλ. Consequently, we
reduce the soundness error to q´λ

1 at the cost of committing to λ garbage
polynomials. In the thesis, we also propose an optimisation which relies
on certain properties of the σ´1 automorphism and reduces the number of
garbage polynomials from λ to λ{2.

We highlight that this strategy can be easily generalised to prove multiple
inner products at no extra cost. In particular, one can efficiently prove
arbitrary Zq-linear equations, i.e. that coefficients of s1 and m satisfy

A1~s1 ` A2~m “ ~u

where~s1 (resp. ~m) is the coefficient vector of s1 (resp. m) and the equation
is over Zq.

The aforementioned approach can also be used to prove inner products
between committed vectors. As an example, suppose we want to prove that

xs1, s1y ` xm, my “ 0 pmod qq.



1.1 our contributions 13

It is equivalent to prove that the constant coefficient of

σ´1ps1q
Ts` σ´1pmqTm

vanishes. Then, we can proceed as before, i.e. commit to g Ð tx P Rq : x̃ “
0u and given a challenge υ Ð Zq, we send

h :“ g` υ ¨
´

σ´1ps1q
Ts` σ´1pmqTm

¯

.

Now, proving that h is well-formed is simply a quadratic equation (with
the σ´1 automorphism) in the committed messages s1, m and g and we
covered exactly those in the previous subsection.

1.1.4 Proving Euclidean and Infinity Norms

The next crucial component of our framework is proving exactly that
some of the committed messages satisfy certain norm bounds. Suppose
we want to prove }s1} ď β. We first recall the “approximate range proof”
strategy [GHL21; LNS21a] which only proves the norm approximately.
Concretely, we first commit to a small 10 masking vector ~y to ensure zero-
knowledge, and then given a random matrix R with coefficients in t´1, 0, 1u,
we output

~z :“ ~y` R~s1 (1.7)

and prove that ~z is well-formed (this is just a Zq-linear relation which can
be proven as described above). It can be shown that if }~z} is small, then
with an overwhelming probability }s1} must also be small. This approach is
only “approximate” since in the end the prover convinces the verifier that
}s1} ď ψ ¨ B for some approximation factor ψ ą 1. Even though this is not
what we originally wanted to prove, it will be an important building block.

For presentation, suppose first we want to prove }s1}
2 “ B2. One observes

that
B2 “ }s1}

2 “ xs1, s1y

which boils down to proving an inner product between the secret coefficients
as described in Section 1.1.3. The only caveat is that we only proved that
}s1}

2 “ B2 pmod qq. This is where we apply the approximate range proof.
Indeed, if p1` ψ2q ¨ B2 ă q then we can deduce that

|B2 ´ }s1}
2| ď B2 ` ψ2 ¨ B2 ă q

10 In our applications, vector ~y will be of dimension 256.
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and thus no modulo overflow occured. Hence, }s1}
2 “ B2 holds over

integers.
We go back to the old case }s1}

2 ď B2. Let ~ϑ P Zd
q be the binary decompo-

sition of B2 ´ }s1}
2. We can then commit to the polynomial ϑ P Rq, where

its coefficient vector is exactly ~ϑ, and prove that

xs1, s1y ` xpowpB2q, θy “ B2 pmod qq

where powpB2q :“
řtlog B2u

i“0 2i ¨ Xi P Rq. This is again an inner product
equation which can be proven using the techniques from Section 1.1.3. Now,
if we can prove that ϑ has binary coefficients, then we can deduce that

|B2 ´ }s1}
2 ´ xpowpB2q, θy| ď B2 ` ψ2 ¨ B2 ` 2B2 “ p3` ψ2q ¨ B2.

Hence, if p3` ψ2q ¨ B2 ă q then we get that }s1}
2 ď B2. What we have left

is to prove that ϑ has binary coefficients. We make use of the following
observation: vector~b “ pb1, . . . , bnq P Zn has binary coefficients if and only
if

x~b,~b´~1y “
n
ÿ

i“1

bipbi ´ 1q “ 0 over Z.

Our strategy is thus to prove that
C

ϑ, ϑ´
d´1
ÿ

i“0

Xi

G

“ 0 mod q (1.8)

and apply an approximate range proof on ϑ to prove that }ϑ} is relatively
small. Then, similarly as before, we deduce that (1.8) holds over integers and
by our observation, coefficients of ϑ are indeed binary. It is easy to see that
this strategy can be used to perform arbitrary L8 proofs, i.e. }s}8 ď α, by
first binary-decomposing the coefficients of s and proving that the resulting
vector is binary.

1.1.5 Shorter Proofs via Bimodal Gaussians and One-time Commitments

In order to ensure zero-knowledge property of our schemes, we apply
the rejection sampling technique [Lyu12]. The idea is to mask the secret
vector, e.g. csi in Figure 1.6, by adding to it a freshly sampled yi from a
discrete Gaussian Dmid

si with standard deviation si and then aborting the
protocol with certain probability pi dependent on zi :“ yi ` csi. Note that



1.1 our contributions 15

choosing small standard deviation si results in zi having small coefficients
which reduces the proof size but also drastically increases the aborting
probability pi. On the other hand, large si implies bigger coefficients of zi
which not only increase the proof size but also forces us to pick less optimal
parameters for the commitment to satisfy the binding property.

If the protocol contains only one rejection sampling then the standard
choice [Lyu12] is to pick si “ 11 ¨ }csi}. Then, the aborting probability pi
becomes « 2{3. However, in our framework, we will have at least three
rejection sampling steps. The first two are for z1, z2 as in Figure 1.6. At least
one more will be needed for the approximate range proof, i.e. (1.7). Hence,
if we were to set the same parameters for all (three) rejection sampling steps
as in [Lyu12] then the total probability of the prover not aborting would be
1{27. Thus, for run-time purposes, it is important to somehow increase the
non-abort probability with no big impact on the standard deviations.

We solve this issue by applying bimodal Gaussian rejection sampling,
first introduced by [Duc+13]. The difference from the standard rejection
sampling procedure is that we additionally sample a sign bi Ð t´1, 1u
and then output zi :“ yi ` bi ¨ csi. Due to the symmetry of the distribution
of zi, [Duc+13] manage to reduce the standard deviation by one order of
magnitude (or for the same standard deviation, significantly reduce the
aborting probability pi). This technique would thus be beneficial for us since
we need to deal with (at least) three rejection sampling steps. We explain
below how to use bimodal Gaussian rejection sampling in our setting.

Let us first consider the approximate range proof. Now, instead of doing
(1.7), we would commit to a sign b Ð t´1, 1u, send ~z defined by

~z “ ~y` b ¨ R~s1

and prove that ~z is well-formed. We show that, assuming that b is a sign,
this equation can be proven directly using our techniques from Section 1.1.3.
However, we still need to prove that b is indeed a sign. This can be then
done by proving that pb` 1qpb´ 1q “ 0 over Rq (Section 1.1.2) and that for
all 1 ď i ď d´ 1, the constant coefficient of X´i ¨ b is zero (Section 1.1.3).

Further, we focus on the rejection sampling for the randomness of the
commitment scheme. Concretely, we compute z2 as in Figure 1.6 (i.e. we
do not sample any additional signs) but we still apply the bimodal Gaus-
sian rejection sampling strategy and reject with certain probability defined
in [Duc+13]. Surprisingly, this (naive) strategy works at the potential cost
of leaking the value of xz2, cs2y P Z. Clearly, leaking some information
about the randomness can be dangerous. For example, if one were to repeat-
edly perform proofs of knowledge for the same commitment which leaks
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Lantern framework

One-time commitments
Chapter 7

Proving exact norm bounds
Chapter 6

Inner product proofs
Chapter 5

Proving quadratic equations
Chapter 5

ABDLOP commitment
Chapter 4

Approximate range proofs
Chapter 6

Figure 1.7: Main components of the Lantern framework.

something about the same randomness each time, eventually the entire
randomness could be recovered by even a passive observer. However, if
one looks closer at how the commitments are usually being used in many
of the privacy-based protocols, one would notice that the scheme is used
to commit to some intermediate value, give a proof-of-knowledge of the
value (i.e. proof of knowledge of the commitment randomness), and then
discards the commitment. Therefore, only one proof of knowledge is per-
formed and randomness is freshly sampled every time a proof is produced.
This is evidenced by the fact that our protocols (where commitment is a
part of the proof) are zero-knowledge under the Extended Module-LWE
problem [AA16] where the inner product of the secret with random vectors
are revealed as hints.

1.2 thesis organisation

The structure of this thesis is summarised in Figure 1.7. We first describe
related works in the area of lattice-based zero-knowledge proofs and con-
structions of privacy-preserving primitives (e.g. ring and group signatures)
in Chapter 2. Next, we cover relevant cryptographic as well as mathematical
background in Chapter 3. Chapter 4 introduces the new ABDLOP com-
mitment which is a generalisation of the Ajtai and BDLOP schemes and
proposes a zero-knowledge opening proof. The focus on Chapter 5 can be
split into two parts. First, we show how to prove linear and higher-degree
equations in the committed messages (also the ones involving automor-
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phisms). Secondly, we show how to use the tools to prove linear relations
and inner products between the coefficients of the committed polynomials.
Chapter 6 describes how to prove both Euclidean and infinity norm bounds
and proposes a general framework, called Lantern, for proving arbitrary
(lattice-related) statements. Further, Chapter 7 presents new techniques to
further reduce the proof size by utilising one-time commitments. Next, we
demonstrate the importance of our results with real-world applications to
privacy-preserving primitives in Chapter 8. The thesis is concluded with
Chapter 9 with some discussions and potential future research directions.



2
R E L AT E D W O R K S

In this chapter we provide a literature review in the area of lattice-based
commitments, zero-knowledge proofs and current state-of-the-art privacy-
preserving constructions. For the sake of presentation, we define R :“
ZrXs{pXd ` 1q, where d is a power-of-two and Rq :“ R{pqq for a prime
q. Also, we denote κMSIS and κMLWE to be the module ranks required for
Module-SIS and Module-LWE security over the ring Rq respectively.

2.1 lattice-based commitment schemes

Commitment schemes are a powerful tool used in various cryptographic
constructions. This primitive allows one to commit to a chosen value with
the possibility to reveal it later. There are two main security properties of
commitment schemes. The first is called hiding meaning that the commit-
ment itself does not reveal any information about the committed value.
Second is binding which says that a party cannot change the value after they
committed to it.

Current state-of-the-art lattice-based commitment schemes can be di-
vided into two types 1: Hashed-Message Commitments (HMC) [Ajt96] and
Unbounded-Message Commitments (UMC) [Bau+18b]. The former one
has the property that the sizes of commitments are almost independent
of the sizes of the committed values. This comes at the cost of the smaller
message space being only polynomials of small norm. On the other hand,
the main characteristic of UMC is the unbounded message space, but the
commitment size is linear in the size of the message.

hashed-message commitment. We describe the standard Module-
SIS commitment scheme [Ajt96; Bau+18a; KTX08] which was first intro-
duced implicitly in the seminal work by Ajtai [Ajt96]. Concretely, let

A1 Ð RκMSISˆm1
q , A2 Ð RκMSISˆpκMSIS`κMLWEq

q

be uniformly random matrices as public parameters, where m1 is the
number of elements that one wishes to commit to. A commitment to a

1 We use the terminology from [ESZ21].

18
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vector s1 involves sampling a random vector s2 with small coefficients and
outputting the commitment vector

t “ A1s1 `A2s2 P RκMSIS
q .

To see that the commitment is hiding, observe that the vector s2 is much
longer than the height of the matrix A2. Hence, under the (knapsack)
Module-LWE assumption, A2s2 is indistinguishable from a random vector
u Ð RκMSIS

q . To prove binding, we note that if one can come up with two
(possibly different) pairs ps1, s2q, ps11, s12q such that

A1s1 `A2s2 “ t “ A1s11 `A2s12

then one obtains a Module-SIS solution
«

s1 ´ s11
s2 ´ s12

ff

for the matrix rA1 A2s. Hence, in order to obtain the binding property
under the Module-SIS assumption, one can only have a message space
consisting of vectors with small polynomial coefficients.

It is easy to see that the commitment is compact, i.e. it does not depend
explicitly on the length of the message vector m1.

unbounded-message commitment. Next, we recall the BDLOP com-
mitment scheme from [Bau+18b] which allows committing to an arbitrary
vector of messages over Rq. Suppose that we want to commit to a message
vector m P R`

q. Then, in the key generation, a uniformly random matrices

A2 Ð RκMSISˆpκMSIS`κMLWE``q
q , B Ð R`ˆpκMSIS`κMLWE``q

q

are generated and output as public parameters 2. To commit to the message
m, we first sample the randomness vector s2. Now, there are two parts of
the commitment scheme: (i) the binding part and (ii) the message encoding
part. Concretely, we compute

tA “ A2s2,

tB “ Bs2 `m

2 In practice, one may choose to generate A2, B in a more structured way as in [Bau+18b] since
it saves some computation. However, for readability, we write the commitment matrices in the
“knapsack” form as above.
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where the top part tA P RκMSIS
q forms the binding part and the bottom part

tB P R`
q encodes a message vector m.

The hiding property of the BDLOP commitment scheme follows from
the fact that if the randomness vector s2 P RκMLWE`κMSIS``

q is long enough,

then

«

A2

B

ff

s2 is computationally indistinguishable from a random vector

u Ð RκMSIS``
q under the Module-LWE assumption. On the other hand, to

prove binding suppose that one can find two pairs ps2, mq, ps12, m1q such
that

A2s2 “ tA “ A2s12 and Bs2 `m “ tB “ Bs12 `m1.

Then, under the Module-SIS assumption for matrix A2, we obtain s2 “ s12.
Furthermore, from the second equation we also get m “ m1.

One observes that the commitment size as well as the length of the
randomness vector s2 are linear in the length of the message vector. Hence,
using this commitment for zero-knowledge proofs is much more expensive
than the Ajtai commitment.

2.2 lattice-based zero-knowledge proofs

Zero-knowledge proofs (ZKP), first introduced by Goldwasser, Micali, and
Rackoff [GMR85], is a fundamental building block of various privacy-
preserving applications, such as ring/group signatures, anonymous cre-
dentials, electronic voting, verifiable computation and cryptocurrencies. In
this thesis, we restrict our attention to the ZKP constructions based on the
hardness of lattice problems.

Lattice-based zero-knowledge proofs is an active area of current research
which can be split into the following two groups. The first one focuses
on proving statements tailored to practical applications [ALS20; BLS19;
ENS20; Esg+19a; Lyu12; Yan+19], such as ring/group signatures [BKP20;
ESZ21; Esg+19c; LNS21b], proving integer relations [LNS20] as well as
blockchain [Esg+21; ESZ21; LNS21b]. The main drawback of using most of
these protocols is the linear proof size in the length of the witness. Conse-
quently, they are not suitable for proving larger statements. The latter group
of works, however, concentrates on building protocols which offer asymp-
totically sub-linear (ideally poly-logarithmic) proof sizes [AL21; ACK21;
Bau+18a; BCS21; Boo+20]. They additionally show how these constructions
can be turned into efficient arguments of circuit satisfiability. Unfortunately,
in terms of concrete sizes, they seem to be behind the schemes in the first
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w ?
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Figure 2.1: Identification scheme by Lyubashevsky [Lyu09; Lyu12] . Here, Rej is
a rejection sampling algorithm to ensure zero-knowledge property of
the protocol.

group with respect to smaller statements, mainly due to parameters which
are neglected when doing an asymptotic analysis.

approximate proofs . The starting point of practical lattice-based zero-
knowledge proofs is an identification scheme by Lyubashevsky [Lyu09;
Lyu12] which is an adaptation of the well-known Schnorr [Sch89] protocol
to the lattice setting. In this scheme, which we sketch out in Figure 2.1, we
want to prove knowledge of a secret vector s P Rm

q of small norm which
satisfies As “ t over Rq.

Let us consider the soundness property of the protocol in Figure 2.1.
Using standard rewinding techniques, we can obtain two accepting tran-
scripts pw, c, zq and pw, c1, z1q with the same first message w and distinct
challenges c, c1 P C. From the verification equations we deduce that

Apz´ z1q “ pc´ c1qt and }z´ z1} ď 2B.

If one were to adapt the strategy from the discrete logarithm setting, then
the next step would be to set

s̄ :“
z´ z1

c´ c1
P Rm

q

and conclude that As̄ “ t. However, this comes with a few major issues.
First, we observe that due to the verification condition }z} ď B, it is essential
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that coefficients of the challenges in C are relatively small. Hence, it is
unclear that for distinct challenges c, c1 P C with small coefficients, the
difference of c´ c1 exists over Rq. Even if it does, we have no guarantee
that s̄ defined above has small norm since the coefficients pc´ c1q´1 can be
actually large.

Benhamouda et al. [Ben+14] showed that the challenge space C :“ tXi :
i P Z2du Ď Rq almost circumvents all the problems discussed above. Namely,
each Xi P C has small coefficients, the difference Xi ´ X j, for distinct
0 ď i ă j ă 2d, is invertible over Rq and 2{pXi ´ X jq P Rq has coefficients
between ´1 and 1. This implies that 2 ¨ s̄ has small norm and Ap2s̄q “ 2t.
The drawback of this approach is the size of the challenge space C, which is
2d, and thus we end up with a large soundness error. Therefore, we would
need to further repeat the protocol for soundness amplification. Moreover,
it was recently showed by Albrecht and Lai [AL21] that any challenge
space that satisfies conditions mentioned above cannot have exponential
size in the security parameter and thus any similar approach would require
repeating the protocol for boosting soundness.

As noticed by Lyubashevsky, convincing the verifier that Az̄ “ c̄t, for z̄ :“
z´ z1 and c̄ :“ c´ c1, is enough for building simple, yet relatively efficient
cryptographic primitives, such as signature schemes [Duc+18], verifiable
encryption [LN17], and group signatures [BCN18]. As a concrete example,
Dilithium signature scheme [Duc+18], which is one of the finalists of the
NIST PQC Competition [NIS], produces signatures by essentially applying
the Fiat-Shamir transformation [FS86] to the identification scheme from
Figure 2.1. Nevertheless, the approach by Lyubashevsky [Lyu09; Lyu12]
still does not prove exactly that As “ t and that s has small norm.

stern proofs . There is a long line of research using Stern’s proto-
col [Ste93] to exactly prove relations as in (1.1), e.g. [KTX08; Lin+13]. But
even for the smallest statements, which for example arise when proving
correctness of a Module-LWE sample, the proofs produced by this approach
have several Megabytes in size and hence are not really practical. The reason
behind this is that a single protocol execution has a very large soundness
error of 2{3, and thus many protocol repetitions (in the order of hundreds)
are required to reach a negligible soundness error.

protocols based on the crt slots . More recent constructions by
Bootle et al. [BLS19] and Yang et al. [Yan+19] allow proving exactly that
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As “ t and that the coefficients of s are in a specified range, e.g. binary3.
The key component of their protocols is the use of so-called CRT (or NTT,
which stands for Number Theoretic Transform) slots. Namely, suppose that
q “ 1 pmod 2dq and thus Xd ` 1 can be factored into linear terms [LS18] as
follows:

Xd ` 1 “
d´1
ź

i“0

pX´ riq pmod qq

where r0, . . . , rd´1 P Zq are distinct. Then, for a polynomial a P Rq, we
define “CRT of a” to be the polynomial â P Rq:

â :“
d´1
ÿ

i“0

âiXi where âi :“ apriq.

Similarly, we define the “inverse CRT of a” to be the polynomial ǎ for which
CRT is equal to a.

One of the most useful properties of the CRT representation is that for
any a, b, c P Rq: ~a ˝~b “ ~c if and only if ǎ ¨ b̌ “ č, where ~a (resp. ~b,~c) is
the coefficient vector of a (resp. b, c) and ˝ is the component-wise product.
Hence, to prove that s “ ps1, . . . , smq has binary coefficients, i.e.~si ˝ p~si´~1q “
~0 for i “ 1, 2, . . . , m, we need to show that

ši ¨ pši ´ 1q “ 0 for i “ 1, 2, . . . , m. (2.1)

Since š :“ pš1, . . . , šmq might actually have large coefficients, we cannot
commit to š using the Ajtai commitment. Hence, [BLS19; Yan+19] commit
to š using the BDLOP construction. Now, we show the intuition to prove
(2.1). For simplicity, let us only consider the case m “ 1. At some point
during the protocol, the prover outputs the masked opening z “ y` µš to
the verifier where µ P Rq is a challenge. Then, the verifier can compute

zpz´ cq “ y2 ` µ ¨ p2š´ 1qy` µ2 ¨ špš´ 1q.

Hence, the idea is to send commitments

t1 “ Compp2š´ 1qyq and t0 “ Compy2q

and given a challenge µ, output z and prove that zpz´ cq ´ µt1 ´ t0 is a
commitment to zero. This implies that špš´ 1q “ 0. Now, if m ą 1 then this

3 Esgin et al. [Esg+19a] also used the technique of CRT slots but directly in the context of
building privacy-oriented primitives.
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technique can be amortised so that one always send only two additional
commitments instead of 2m.

We still need to prove As “ t. This becomes especially tricky since we
committed to š and not s. Here, the key observation is that if µ P Zq and
we send zi “ yi ` µši as defined above, then:

ẑ “ ŷ` µs

where ẑ “ pẑ1, . . . , ẑmq and similarly for ŷ. Thus, the verifier can compute

Aẑ “ Aŷ` µt.

Therefore, the idea is for the prover to send w :“ Aŷ in the clear and at
the end the verifier checks that Aẑ “ w` µt. Since w can be computed
deterministically from the verification, it does not have to be a part of the
non-interactive proof. However, this technique forces the requirement that
µ has to be an integer. Consequently, the size of the challenge space of µ is
at most q.

The one thing left to do is to show that all the commitments generated are
actually valid. The aforementioned protocols use the proof from [Bau+18b]
which requires the challenge space to satisfy that any difference of two
distinct challenges is invertible. Baum et al. [Bau+18b] resolve this issue by
picking a modulus q for which Xd` 1 does not split into many factors. Then,
using the main result of Lyubashevsky and Seiler [LS18], they can choose an
exponentially large challenge space of small polynomials. The invertibility
result from [LS18], however, does not apply in the case q “ 1 pmod 2dq and
hence [BLS19; Yan+19] have to choose a challenge space C :“ tXi : i P Z2du.
Consequently, the proof needs to be repeated 128{ log 2d times to obtain
negligible soundness error which significantly increases the total proof size.

uniformity in the crt slots . Attema et al. [ALS20] generalise the
result by Lyubashevsky and Seiler [LS18] and provide a way to compute
the min-entropy of a challenge c Ð C in a fixed CRT slot. Since an element
in Rq is invertible if and only all its CRT slots are non-zero, it would suffice
to show that the probability that a random c from the challenge set hits
a particular value in a CRT slot is smaller than the targeted soundness
error. Note that if c was picked uniformly at random from Rq then the
probability that cpriq “ a for fixed i P Zd and a P Zq is exactly 1{q. Attema
et al. show that if coefficients of c are chosen from the set t´1, 0, 1u then the
probability becomes close to 1{q. This result was later generalised by Esgin
et al. [ESZ21] to consider challenges with fixed L1 norm, and by Esgin et
al. [Esg+22] to include challenges with larger coefficients than ternary.
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Using the main result of [ALS20] in the setting when q “ 1 pmod 2dq, we
obtain a proof of a BDLOP commitment opening with soundness error 1{q
instead of 1{p2dq as in prior works. Moreover, Attema et al. propose a new
proof of multiplication which has the following two advantages. First, it
involves committing to one less polynomial than the degree of the equation.
In the case of Equation 2.1, we would then commit to only one polynomial
g1, instead of two as in [BLS19]. More importantly, there is no need to
send masked opening zi of ši to the verifier. Since the secret vector s (and
consequently š) can be relatively long, polynomials z1, . . . , zm constitute a
big part of the overall proof size.

efficient linear proofs . Recently, Esgin et al. [ENS20] presented
a new approach, which takes inspiration from the univariate sumcheck
protocol [Ben+19], to prove As “ t without sending any masked openings
zi of ši. Firstly, we can write this equation equivalently as a linear equation
over Zq:

A~s “~t pmod qq where A “
”

A1 A2 ¨ ¨ ¨ Am

ı

P Zndˆmd
q .

The intuition is to let the verifier pick a challenge vector ~φ Ð Znd
q and prove

instead
xA~s´~t,~φy “ 0. (2.2)

By simple transformation, this is equivalent to

x~s, AT~φy ´ x~t,~φy “ 0.

Further, Esgin et al. use the following fact. Namely, the sum of the CRT
slots of a polynomial f P Rq is equal to the (scaled) constant coefficient of
f , or alternatively:

d´1
ÿ

i“0

f priq “
1
d
¨ f̃

where f̃ is the constant coefficient of f . Using this observation, it is enough
to prove that the constant coefficient of the following polynomial:

f :“
1
d

˜

m
ÿ

i“1

ši ¨ ǔi ´ x~t,~φy

¸

is equal to zero where ui is the (public) polynomial defined by its coefficient
vector AT

i
~φ P Zd

q for i “ 1, 2, . . . , d. A naive way to prove this statement
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would be to send f in the clear and let the verifier check manually that
f̃ “ 0. However, this would also reveal other coefficients of f and potentially
reveal some information about~s. Instead, Esgin et al. reveal the constant
coefficient of f while masking all the other coefficients. Concretely, the
prover will commit to a random polynomial g Ð tx P Rq : x̃ “ 0u and send

h :“ g` f “ g`
1
d

˜

m
ÿ

i“1

ši ¨ ǔi ´ x~t,~φy

¸

.

Clearly, if f̃ “ 0 then also h̃ “ 0 and this can be checked manually by
the verifier. On the other hand, other coefficients of h do not reveal any
information about ~s. What is left to prove is the well-formedness of h.
However, since all ši and g are committed, this is just a linear proof in the
committed polynomials and can be done identically as in [Bau+18b].

We highlight that if A~s ‰~t then (2.2) holds with probability 1{q. Since this
value will be much larger than the targeted soundness error, naively one
would need to repeat this part of the protocol 128{ log q times, i.e. commit
to multiple polynomials g1, . . . , g128{ log q. However, using certain properties
of R-automorphisms, Esgin et al. reduce the number of additional garbage
commitments from 128{ log q to 1.

Combining the results from [ALS20], Esgin et al. obtain a very efficient
proof system for proving statements of the form As “ t and that the (in-
finity) norm of s is small. For basic examples, their protocols enjoy 7´ 8X
smaller proof sizes than [BLS19; Yan+19]. More recently, Lyubashevsky et
al. [LNS21a] improved upon [ENS20] by applying a bimodal-like [Duc+13]
rejection sampling strategy which results in the masked openings of the BD-
LOP randomness having smaller coefficients (by 2´ 3 bits per coefficients)
but each protocol execution reveals one bit of (fresh) randomness. Inde-
pendently, Tao et al. [TWZ20] showed how to apply the bimodal technique
to the BDLOP commitment scheme without any leakage. Consequently,
they managed to reduce the standard deviation used for sampling the
commitment randomness at the cost of relying on a Module-SIS problem
with a larger bound. In our setting, however, this approach has very little
improvement over the original opening proof [Bau+18b] with respect to
efficiency.

In terms of concrete performance of the aforementioned works, we refer
to Table 1.1 for more details.

sublinear proofs . The main bottleneck of the constructions described
above is the proof size linear in the length of the committed witness. The
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reason is that when proving knowledge of an opening of a BDLOP com-
mitment, one sends a masked opening of the BDLOP randomness which is
indeed linear in the size of the message. Hence, for solving more sophis-
ticated statements than (1.1), e.g. circuit satisfiability, practically efficient
sublinear-size proof systems are needed. There are several proposals of
asymptotically sublinear lattice-based proof systems in the literature [AL21;
ACK21; Bau+18a; Boo+20], but their concrete proof sizes are not analyzed
in the papers and they are not practically efficient yet.

The first zero-knowledge proof with sublinear communication complexity
for arithmetic circuit satisfiability was proposed by Baum et al. [Bau+18a].
At the core of the protocol lies an amortised proof of knowledge of vectors
s1, . . . , sn P Rm

q of small norm, such that Asi “ ti for i “ 1, 2, . . . , n. The total
proof size is of the order of Opn`mq, hence square-root in the number of
secret coefficients N “ nm. This approach was later generalised by Bootle et
al. [Boo+20] who define so-called “levelled commitments” and give OpN1{dq

size proofs for proving knowledge of a commitment opening with d levels4.
The main drawback of this construction is that the modulus for the proof
system increases exponentially in d and thus considering more than 2´ 3
levels seems impractical.

Bootle et al. [Boo+20] also proposed the first lattice adaptation of the
Bulletproofs [Boo+16; Bün+18] which offers poly-logarithmic proofs. This
approach was later improved independently by Attema et al. [ACK21] and
Albrecht and Lai [AL21] in terms of tighter soundness analysis and also
generalised to a more abstract setting by Bootle et al. [BCS21].

While folding strategy from Bulletproofs is very effective in the discrete
logarithm setting and retains asymptotic efficiency in the lattice scenario,
they do not combine well with the shortness requirement in lattice cryp-
tography. Consequently, this leads to a concrete blow-up of the parameters
as well as the proof size. Informally, it must be possible to invert the fold-
ing in the extraction such that the extracted solution vector is still short.
For general (small) challenges, this will not be the case. Hence, Bootle et
al. [Boo+20] pick monomial challenges Xi so that (a scaled) inverse of a
difference of two distinct challenges is still small [Ben+14]. This results in
a large soundness error, and hence the protocol needs to be repeated for
soundness amplification. Additionally, the length of the extracted solution
vector grows by a factor of Opd3q for every level of folding. Then, the pa-
rameters must be chosen such that the Module-SIS is hard with respect to
the length of the extracted solution vector, resulting in the need for a large

4 The construction by Baum et al. [Bau+18a] can be seen as a 2-level commitment.
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modulus q. Concretely, even for « 10 folding steps, the required modulus
q would need to be in the order of several hundred bits which results
in the proof size being in excess of 100 Megabytes for typical example
applications.

post-quantum security. The broadly used Fiat-Shamir Transforma-
tion [FS86] turns an interactive ZKP into a non-interactive zero-knowledge
proof (NIZK) in the random oracle model. In preparation for the eventual ar-
rival of quantum computers, there has been a significant amount of work in
understanding the quantum security in the quantum random oracle model
(QROM) [Bon+11]. Until recently, many aforementioned protocols either (i)
were not known to be (in)secure when applying Fiat-Shamir transformation
in the QROM or (ii) could be transformed into a QROM secure NIZK using
the Unruh transform [Unr15] which leads to a proof size increase by a
factor of « 50. Significant progress has been made by Katsumata [Kat21]
who proved QROM security of the current state-of-the-art lattice-based
zero-knowledge proofs [ALS20; BLS19; ENS20; LNS21a; Yan+19] at the cost
of increasing the proof size by only a factor of 2.6. Since the protocols in
this thesis have a similar structure as [BLS19; Yan+19], we believe that these
techniques can also be applied in our setting.

2.3 lattice-based privacy-oriented primitives

As evidenced in the literature, any development in building efficient lattice-
based proofs of (1.1) brings new constructions of privacy-preserving ap-
plications from lattices. For instance, Stern proofs [KTX08; Lin+13] were
used as a core component for constructing ring signatures [Lib+16], group
signatures [Lib+16; Lin+17], pseudo-random functions with applications
to e-cash [Lib+17] and proving integer relations [Lib+18]. Since the con-
structions relied on Stern proofs, their outputs were of the order of several
Megabytes.

Once the early works on proving (1.1) based on the CRT technique ap-
peared, significant improvements were made in the area of lattice-based
privacy-oriented primitives. As an example, Yang et al. [Yan+19] showed
that if one modifies the aforementioned constructions to use their new
protocols instead of Stern proofs, one immediately obtains one order of
magnitude improvement. Independently, a line of research started by Esgin
et al. [Esg+19a; Esg+19b; ESZ21; Esg+19c] uses CRT techniques to build
much more practical ring/group signatures and applications to sophisti-
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cated primitives such as confidential transactions. The end result [ESZ21] is
a Monero-like [NM16] lattice-based payment system where the communi-
cation complexity of a transaction is under 30KB.

As expected, the most efficient proof system for (1.1) [ALS20; ENS20;
LNS21a] is also getting used in the context of privacy-oriented primitives,
e.g. proving integer relations [LNS20], ring signatures and payment sys-
tems [LNS21b], group signatures [Lyu+21], blind signatures [LNP22a] and
verifiable random functions [Esg+22]. Since the proof system is relatively
new, more applications could emerge in the foreseeable future.

Due to the enormous amount of progress in the area of lattice-based
privacy-preserving primitives, we restrict our attention to ring and group
signatures.

ring signatures . First introduced by Rivest, Shamir and Tauman-
Kalai [RST01], ring signatures allow for anonymous signature generation in
a sense that the signer’s identity is hidden within a public set of identities,
called a ring.

One important aspect of ring signature schemes is the signature size
and its growth with respect to the number of identities N in the ring.
Lattice-based constructions can thus be split into the following two groups:
(i) “linear-size” ring signatures, namely the signature size scales linearly
in N and (ii) “logarithmic-size” ring signatures where the signature size
is only poly-logarithmic in N (see Figure 1.4 for concrete comparison).
Interestingly, the linear-size constructions, such as Raptor [LAZ19] and
Dual-Ring [Yue+21], offer very small signature sizes in the range of 4´ 6KB
for less than 64 identities. However, their performance does not scale well
for larger rings (more than 100MB for 212 users).

There has been significant of work in building logarithmic-size ring sig-
natures from lattices [BKP20; ESZ21; Esg+19c; LNS21b]. Most constructions
follow the approach by Groth and Kohlweiss [GK15] and propose efficient
one-out-of-many proofs in the lattice setting. Intuitively, in the lattice-based
one-out-of-many proof, the signer wants to produce a zero-knowledge
proof of knowledge of a short vector s such that

As P tt1, . . . , tNu Ď Rn
q . (2.3)

In particular, the signing party does not want to reveal any information for
which index i, As “ ti. The currently most efficient lattice-based ring signa-
ture for large number of users N “ βk has been proposed by Lyubashevsky
et al. [LNS21b]. To prove relations of the form (2.3), the authors show a new
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way to prove knowledge of a short vector~s along with the binary vectors
~v1, . . . ,~vk P t0, 1uβ with exactly one 1, such that

A~s “ Tp~v1 b ¨ ¨ ¨ b~vkq

where b is the standard Kronecker product5. Here, ~v :“ ~v1 b ¨ ¨ ¨ b~vk P ZN
q

is exactly the vector that shows the position of a column of T which is equal
to A~s. Even though the proof size in [LNS21b] is logarithmic in N, both the
prover and verifier time are linear – thus making the protocol impractical
to run for very large rings of identities.

group signatures . First introduced by Chaum and van Heyst [CH91]
and later formalised by Bellare et al. [BMW03], group signature scheme
is another instance of an anonymous signature. In a group signature, the
setup authority uses a master secret key to distribute member secret keys
to the members of the group. The members can then use their secret keys
to sign messages on behalf of the group. An entity known as the opener
(or group manager) also has a special secret key that allows them to obtain
the identity of the signer of any message, e.g. in case of a dispute or a
misbehaviour.

Most of the early work in trying to construct lattice-based group signa-
tures were efficient only in an asymptotic sense with concrete signature
sizes being around 50MB (e.g. [GKV10; Lib+16]). Later on, del Pino et
al. [PLS18] proposed a scheme with the signature size of around 580KB
in which the parameters and computational complexity of signing and
verifying do not depend on the group size.

The advancement of lattice-based zero-knowledge proofs using CRT
slots [BLS19; Esg+19a; Yan+19] led to much more efficient constructions of
group signatures. For example, recent schemes [Beu+21; ESZ21; Esg+19c]
rely on efficient lattice-based OR/one-out-of-many proofs and achieve
signature sizes under 100KB for large groups and even less than 20KB for a
group of 1024 users. However, the signing and verifying time is linear in
the number of users which makes them less attractive to run in practice.
Independently, Lyubashevsky et al. [Lyu+21] proposed a group signature
that builds upon the framework of [PLS18] and uses the efficient proof
system from [ALS20; ENS20] as a building block. Thus, it inherits the
property of [PLS18], i.e. a constant signature size as well as signing and
verifying independent of the group size. The end result of [Lyu+21] is the
group signature of size « 200KB.

5 More precisely, we mean ~v1 b p~v2 b p~v3 ¨ ¨ ¨ b p~vk´1 b~vkqqq.



3
P R E L I M I N A R I E S

In this chapter, we cover relevant cryptographic as well as mathematical
preliminaries that will be frequently used throughout the thesis. We start by
introducing notation. Then, we recall necessary mathematical background
which includes basic facts from linear algebra, lattices, discrete Gaussian
distribution and algebraic number theory. Furthermore, we cover definitions
of various cryptographic primitives (e.g. commitment scheme, commit-and-
prove functionality) and state our security assumptions.

3.1 notation

Let Zn be the set of integers modulo n. Denote κ P N to be a security
parameter. Unless stated otherwise, all algorithms are implicitly given a
security parameter in unary. An algorithm here is defined as an interactive
Turing machine. Algorithms are randomised and PPT means "probabilistic
polynomial time" in the security parameter κ. We describe py1, . . . q Ð
Ap1κ , x1, . . . ; rq as an event when A gets p1κ , x1, . . . q as input, uses fresh
random coins r and outputs py1, . . . q. The joint execution of two algorithms
A and B is an interactive protocol with private inputs x to A and y to B
is written as pa, bq Ð xApxq,Bpyqy where a and b are the private outputs of
A and B respectively. The notation Ap¨q means that A expects a black-box
access to some other algorithm.

We write x Ð S when x P S is sampled uniformly at random from the
finite set S and similarly x Ð D when x is sampled according to the discrete
distribution D. The statistical distance between two probability distributions
X and Y over a countable set D is defined as ∆pX, Yq “

ř

dPD |Xpdq ´Ypdq|.
For integer n P N, we define rns :“ t1, 2, . . . , nu. A function v : N Ñ Rě0

is negligible if for any c P N, limκÑ8 vpκqκc “ 0. For f , g : N Ñ Rě0,
we write f « g if | f pκq ´ gpκq| is a negligible function. We say that an
event, which is dependent on κ, happens with negligible probability if
the probability that the event occurs is negligible in κ. Similarly, an event
happens with overwhelming probability if its complement occurs with
negligible probability. We write negl to denote an unspecified negligible
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function. Similarly, we denote by polypκq an unspecified polynomial in κ.
We denote log and ln to denote logarithms with base 2 and e respectively.

modular reduction. For an odd (resp. even) integer p, we define
r1 “ r mod˘ p to be the unique element r1 in the range ´ p´1

2 ď r1 ď p´1
2

(resp. ´ p
2 ă r1 ď p

2 ) such that r1 “ r mod p. We also denote r1 “ r mod`p
to be the unique element r1 in the range 0 ď r1 ă p such that r1 “ r mod p.
When the exact representation is not important, we simply write r mod p.

matrices and vectors . Regular lower-case letters denote elements
in Z and lower-case letters with arrows (resp. upper-case regular letters)
represent column vectors (resp. matrices) with coefficients in Z. Given
two vectors ~v “ pv1, . . . , vnq, ~w “ pw1, . . . , wnq over Z, we define the inner
product as

x~v, ~wy :“
n
ÿ

i“1

viwi P Z

and the component-wise product as ~v ˝ ~w “ pv1w1, . . . , vnwnq P Zn. For a
rank-n matrix S P Rmˆn, we define the set US :“ t}S~u} : ~u P Rn, }~u}2 “ 1u.
Then, the least (resp. largest) singular value of S is defined as snpSq “ inf US
(resp. s1pSq “ sup US).

For an element w in Zp, we write }w}8 to mean |w mod˘ p|. Define the
L8 and Lα norms for ~w “ pw1, w2, . . . , wnq over Zp as follows:

}~w}8 “ max
jPrns

}wj}8, }~w}α “ α
a

}w1}
α
8 ` . . .` }wn}

α
8.

By default, }~w} :“ }~w}2.

3.2 mathematical background

3.2.1 Lattices

An n-dimensional lattice Λ is a discrete subgroup of Rn. Suppose B “

t~b1, . . . ,~bmu P Rn consists of m linearly independent vectors. Then, the
n-dimensional lattice Λ generated by B is defined as

Λ “ LpBq “
#

m
ÿ

i“1

ci~bi : c1, . . . , cm P Z

+

.
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The determinant of the lattice Λ is defined as detpΛq :“
a

detpBT Bq. The
minimum distance λα

1pΛq of a lattice Λ in the Lα norm is the length of the
shortest non-zero vector in Λ, i.e. min~xPΛzt~0u }~x}α. Similarly, define Λ81 pΛq

for the L8 norm. We denote λ1pΛq :“ λ2
1pΛq, i.e. the shortest non-zero

vector in Λ w.r.t. L2 norm.
We recall the following upper-bound on the shortest non-zero vector in

Λ which follows directly from Minkowski’s Theorem.

Lemma 3.2.1. For any n-dimensional lattice Λ, λ1pΛq ď
?

n detpΛq1{n.

3.2.2 Probability Distributions

discrete gaussian distribution on lattices . We first define a
Gaussian function on Rm centred at ~v P Rm with parameter s as:

ρ~v,sp~xq :“
ˆ

1
?

2πs2

˙m
exp

ˆ

´
}~x´~v}2

2s2

˙

.

When ~v “~0, we just write ρs.
Now, the discrete Gaussian distribution over Zm centred at some ~v P Zm

with standard deviation s is defined as follows:

D~v,sp~xq :“
ρ~v,sp~xq
ρspZmq

.

As before, the subscript ~v is omitted when ~v “ 0.
We recall the following tail bounds from [Ban93; Lyu12].

Lemma 3.2.2. Let m, k ą 1, r ą 0 and ~v P Rm. Then

1. PrzÐDs r|z| ą kss ď 2e
´k2

2 .

2. Pr~zÐDm
s

“

‖~z‖2 ą ks
?

m
‰

ď kme
m
2 p1´k2q.

3. Pr~zÐDm
s
r|x~z,~vy| ą rs ď 2e

´ r2

2}~v}2s2 .

binomial distribution. Next, we recall the binomial distribution.

Definition 3.2.1. The binomial distribution with a positive integer parame-
ter k, written as Bink, is the distribution

řk
i“1pai ´ biq, where ai, bi Ð t0, 1u.

The variance of this distribution is k{2 and it holds that Bink1 ˘ Bink2 “

Bink1`k2 .
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3.2.3 Approximate Shortness Test

A well-known result of Johnson and Lindenstrauss says that any set of n
points in m-dimensional Euclidean space can be embedded into a much
smaller k-dimensional Euclidean space, where k “ Oplog nq and indepen-
dent of m, so that all pairwise distances are preserved within an arbitrarily
small factor. In practical scenarios, such embeddings are simply random
projections. Baum and Lyubashevsky [BL17] applied this result in the con-
text of proving shortness of a committed vector ~w P Zm. Concretely, the
idea is to choose a random rectangular matrix R Ð Binkˆm

1 , where k is only
dependent on the security parameter, and prove that the projection ~v “ R~w
with respect to R has small norm. We consider two particular norms, i.e.
the L2 and L8 norms.

shortness in the L8 norm . Baum and Lyubashevsky [BL17] showed
that if R~w has small coefficients, for a vector ~w over Zq and uniformly
random binary matrix R, then with high probability ~w must have small
coefficients as well. We will generalise their result in two aspects: (i) we
show that it also holds when R~w`~y has small coefficients, where ~y is an
arbitrary vector over Zq, and (ii) when R is sampled from a distribution
centred at 0, i.e. Bin1. The main advantage of the latter generalisation is that
the L2/L8 norm of R~s decreases significantly.

Lemma 3.2.3. Let ~w P Zm
q and ~y P Zk

q . Then

Pr
RÐBinkˆm

1

„

}R~w`~y}8 ă
1
2
}~w}8



ď 2´k.

Proof. Let y P Zq. We first focus on proving

Pr
~rÐBink

1

„

}x~r, ~wy ` yy}8 ă
1
2
}~w}8



ď
1
2

.

Let wi be the coefficient of ~w so that }wi}8 “ }~w}8. Then, one can write
x~r, ~wy ` y “ wiri ` a for some a P Zq. We consider two cases.

case 1 : }a}8 ě 1
2}~w}8. Then, ri would have to be either 1 or ´1 for any

chance of wiri ` a to be less than 1
2}~w}8. This implies that

Pr
~rÐBink

1

„

}x~r, ~wy ` yy}8 ă
1
2
}~w}8

ˇ

ˇ

ˇ
}a}8 ě

1
2
}~w}8



ď Pr
riÐBin1

r|ri| “ 1s “
1
2

.
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case 2 : }a}8 ă 1
2}~w}8. We will prove that

}a` bwi}8 ě
1
2
}wi}8

for any b P t´1, 1u. Therefore, we have

Pr
~rÐBink

1

„

}x~r, ~wy ` yy}8 ă
1
2
}~w}8

ˇ

ˇ

ˇ
}a}8 ă

1
2
}~w}8



ď Pr
riÐBin1

rri “ 0s “
1
2

which will complete the proof of the lemma.
First, we can assume that |wi| ď q{2 and |a| ă |wi|{2. Thus, }a` bwi}8 is

either equal to |a` bwi| or |a` bwi ˘ q|. In the former case, we immediately
have |a` bwi| ě |bwi| ´ |a| ą |wi|{2. For the latter case, we can assume for
the sake of contradiction that u “ a` bwi ˘ q where |u| ă |wi|{2. Therefore,

q “ |˘ q| “ |a` bwi ´ u| ď |a| ` |bwi| ` |u| ă |wi|{2` |wi| ` |wi|{2 ď q.

This result can then be easily generalised to the matrix setting. Hence, the
statement holds.

shortness in the L2 norm . In many lattice-based scenarios, we
are more interested in proving the L2 norm of a vector rather than its
L8. Indeed, even the definition of the shortest vector in a lattice is by
default over the Euclidean norm. Recently, Gentry et al. [GHL21] propose
an analogous result to Lemma 3.2.3 in the L2 norm. First, they provide a
detailed analysis on how to pick parameters α, β such that probabilities

Pr
RÐBin256ˆm

µ

”

}R~w}2 ă }~w}2 ¨ α
ı

and Pr
RÐBin256ˆm

µ

”

}R~w}2 ą }~w}2 ¨ β
ı

are negligible for any ~w P Zm. Their analysis relies on the following two
heuristics which stem from two lemmas proved by Achlioptas [Ach03].
Firstly, it is shown in [Ach03, Lemma 6.1] that all the respective moments of
the distribution }R~w} are largest among ~w of norm

?
m if ~w “ 1m. Further,

[Ach03, Lemma 6.3] says that if we change the distribution of R to be the
normal distribution with the same mean and variance, then the moments
of }R~w} are larger. Consequently, this means the tails of the continuous
distribution are fatter, and thus bounding them will imply bounds on the
discrete distribution. Note that discretization might cause certain errors,
that should become negligible if we look for α, β for which the probabilities
above are negligible, e.g. less than 2´128.
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Now, the distribution }R ¨ 1d}, where entries of R are chosen from the
normal distribution with mean 0 and variance µ{2, simply becomes the
scaled χ2 distribution with 256 degrees of freedom, i.e. µ

2 m ¨ χ2r256s. Hence,
we obtain the following (heuristic) generalisation of [GHL21, Corollary 3.2].

Lemma 3.2.4. Under the heuristic substitution of Binµ with the normal distribu-
tion of variance µ{2, for any ~w P Zm,

1. Pr
RÐBin256ˆm

µ

“

}R~w}2 ă }~w}2 ¨ 13 ¨ µ
‰

Æ Pr
yÐχ2r256s

ry ă 26s ď 2´256

2. Pr
RÐBin256ˆm

µ

“

}R~w}2 ą }~w}2 ¨ 337 ¨ µ
‰

Æ Pr
yÐχ2r256s

ry ą 674s ď 2´128.

Gentry et al. prove shortness of a long vector ~w P Zm
q as follows. They

first commit to the random projection ~v :“ R~w P Z256
q , where R Ð Bin256ˆm

1 ,
and prove that the norm of ~v is small and that ~v is a projection of ~w. Then,
[GHL21, Corollary 3.3] says that if }~v} ă b

?
30, where b ď q{p45mq, then we

must have }~w} ď b (with an overwhelming probability). In our protocols, we
will need a modified version of this result which says that for every vector
~y P Z256

q , if }R~w`~y} is small, then we must have that }~w} is small. Even
though we believe this generalisation is true for the constants described
in [GHL21, Corollary 3.3], its proof does not easily extend to our setting.
Therefore, we provide a modified proof which results in slightly worse
bounds.

Lemma 3.2.5. Fix m, q P N and a bound b ď q{41m, and let ~w P r˘q{2sm with
}~w} ě b, and let ~y be an arbitrary vector in r˘q{2sm. Then

Pr
RÐBin256ˆm

1

„

}R~w`~y mod q} ă
1
2

b
?

26


ă 2´128.

Proof. We first prove an analogous result to [GHL21, Corollary 3.3] with
error 2´256 rather than 2´128.

Claim 3.2.6. Fix m, q P N and a bound b ď q{p41mq, and let ~w P r˘q{2sm

with }~w} ě b. Then

Pr
RÐBin256ˆm

2

r}R~w mod q} ă b
?

26s ă 2´256.

Proof. Similarly as in the proof of Lemma 3.2.3 we have two cases:
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case 1 : }~w}8 ě q{p4mq. Let i be an index of an entry in ~w with mag-
nitude at least q{4m, and consider any row ~r of R. Then, we can write
~rT~w “ riwi ` a for some a P Zq. Note that at most one of the three values
t0,˘1u for ri yields |riwi ` a mod q| ă q{p8mq. Indeed, first suppose that
we have |wi ` a mod q| ă q{p8mq and | ´wi ` a mod q| ă q{p8mq. Then, by
the triangle inequality, we have |2wi mod q| ă q{p4mq which leads to con-
tradiction. Next, assume that for some sign b P t´1, 1u, |bwi ` a mod q| ă
q{p8mq and |a mod q| ă q{p8mq. Then, by the triangle inequality we get
|wi| “ |bwi| ă q{p4mq which is a contradiction.

Since the total probability of any two of t´1, 0, 1u is at least 1{2 (i.e.
Prr0s “ 3{8 and Prr˘1s “ 1{4), we have that the probability of }R~w mod
q}8 ă q{p8mq is at most 2´256. Moreover, since b ď q{p41mqwe get q{p8mq ą
b
?

26 and therefore

Pr
RÐBin256ˆm

2

r}R~w mod q} ă b
?

26s ď Pr
RÐBin256ˆm

2

r}R~w mod q}8 ă q{8ms

ď 2´256.

case 2 : }~w}8 ă q{p4mq. Hence, we must have R~w P r˘q{2s256, so mod-q
reduction has no effect and the statement follows directly from Lemma
3.2.4.

Now, suppose for contradiction that for some ~w,~y,

Pr
RÐBin256ˆm

1

„

}R~w`~y mod q} ă
1
2

b
?

26


ě 2´128

which implies

Pr
R1,R2ÐBin256ˆm

1

„

}R1~w`~y mod q} ă
1
2

b
?

26 ^ }R2~w`~y mod q} ă
1
2

b
?

26


is at most 2´256. By the triangle inequality, we have

Pr
R1,R2ÐBin256ˆm

1

”

}pR1 ´ R2q~w mod q} ă b
?

26
ı

ě 2´256.

Since the distribution of R1 ´ R2 is exactly Bin256ˆm
2 , the above implies that

Pr
RÐBin256ˆm

2

”

}R~w mod q} ă b
?

26
ı

ě 2´256,
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which is a contradiction with the statement of Lemma 3.2.6.

3.2.4 Power-of-Two Cyclotomic Rings

Let d be a power-of-two and K “ QrXs{pXd ` 1q be the 2d-th cyclotomic
field. Denote R “ ZrXs{pXd ` 1q to be the ring of integers of K. Suppose
that p ” 2l` 1 pmod 4lq for some l P N. Then, by [LS18, Corollary 1.2], the
polynomial Xd ` 1 factors as:

Xd ` 1 ”
l´1
ź

i“0

pXd{l ´ riq pmod pq

for distinct ri P Z˚p where Xd{l´ ri are irreducible in the ring ZprXs. In other
words, the ideal ppq in R can be uniquely written as a product of prime
ideals ppq “ p0p1 . . . pl´1 where each pi “ pp, Xd{l ´ riq. Define ζ “ r0. Then,
tr0, . . . , rl´1u “ tζ, ζ3, . . . , ζ2l´1u. Without loss of generality, we set ri “

ζ2i`1 for i “ 0, 1, . . . , l ´ 1. Finally, denote Rp “ Rzppq “ ZprXs{pXd ` 1q.

coefficient vectors and rotation matrices . Lower-case letters
denote elements in R or Rp and bold lower-case (resp. upper-case) letters
represent column vectors (resp. matrices) with coefficients in R or Rp.
Let f “ f0 ` f1X` . . .` fd´1Xd´1 be a polynomial in R. Then, we denote
~f :“ p f0, . . . , fd´1q P Zd to be the coefficient vector of f , i.e. we attach an
arrow to the letter. Similarly, for f “ p f1, . . . , fkq P Rk, we write ~f P Zkd

to mean the concatenation of vectors ~f1, . . . , ~fk. We define the rotation (or
alternatively, skew-circulant) matrix Rotp f q as:

Rotp f q “

»

—

—

—

—

—

–

f0 ´ fd´1 . . . ´ f1

f1 f0 . . . ´ f2
...

... . . .
...

fd´1 fd´2 . . . f0

fi

ffi

ffi

ffi

ffi

ffi

fl

P Zdˆd.

Similarly, for a matrix F “ p fi,jq P Rnˆm, we define

RotpFq “

»

—

—

–

Rotp f1,1q Rotp f1,2q . . . Rotp f1,mq
...

...
...

...

Rotp fn,1q Rotp fn,2q . . . Rotp fn,mq

fi

ffi

ffi

fl

P Zndˆmd.
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One observes that for any f , g, h P R, g f “ h if and only if Rotpgq~f “~h.
By default, for a polynomial, we write its i-th coefficient as its correspond-

ing regular font letter subscript i, e.g. fd{2 P Z is a middle coefficient of
f P R. However, we also define f̃ to be the constant coefficient of f .

Given two vectors f, g over R, we denote xf, gy to be the inner product
between their coefficient vectors over Z, i.e. xf, gy :“ x~f ,~gy P Z.

galois automorphisms . Let AutpRq :“ tσi : i P Zˆ2du be the auto-
morphism group of R where each automorphism σi : R Ñ R is defined
by σipXq “ Xi. Then, G is isomorphic to Zˆ2d – Z2 ˆZd{2. For a vector
x “ px1, . . . , xkq P Rk and any σ P AutpRq, denote σpxq :“ pσpx1q, . . . , σpxkqq

(and similarly σpXq for a matrix X over R).

norms . For f P Rk
p, we define the Lα norm of f as }f}α :“ }~f }α. Finally,

we define a set Sk “ ts P R : }s}8 ď ku for k P N.
In this thesis, we will make use of the following inequalities.

Lemma 3.2.7 ( [Mic07]). Let c, r P Rp. Then

}c ¨ r}8 ď }c}8 ¨ }r}1 and }c ¨ r}8 ď }c} ¨ }r}.

We additionally present an alternative way to bound }cr} which stems
from the analysis in [Duc+13, Section 4] and uses the σ´1 automorphism.

Lemma 3.2.8. Let r P R` and c P R. Then, for any power-of-two k, we have

}cr} ď 2k
b

}σ´1
`

ck
˘

ck}1 ¨ }r}.

Proof. Let C “ Rotpcq P Zdˆd. We simply want to upper-bound the largest
singular norm s1pCq of the matrix C. We will use the following two facts
from linear algebra. Namely, we have that s1pCq “

a

s1pCTCq and for every
power-of-two k,

sk
1pC

TCq “ s1

´

pCTCqk
¯

since CTC is symmetric. Also, note that for any u, v P R, }uv} ď }u}1 ¨ }v},
and thus s1pRotpuqq ď }u}1. Therefore, using the observation that CT “

Rotpσ´1pcqq, we deduce that

s2k
1 pCq “ sk

1

´

CTC
¯

“ s1

´

pCTCqk
¯

“ s1

´

Rotpσ´1pckqckq
¯

ď }σ´1pckqck}1.

Hence, s1pCq ď 2k
b

}σ´1
`

ck
˘

ck}1 and thus the statement holds.
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invertibility of short polynomials . A polynomial c P Rp is
invertible if and only if for all i P Zl , c mod pi ‰ 0. Lyubashevsky and
Seiler [LS18] showed that if c has a small norm then c is invertible over Rp.

Lemma 3.2.9 ( [LS18]). Let p ” 2l ` 1 pmod 4lq be a prime and d ě 4. Then,
any c P Rp which satisfies either 0 ă }c}8 ă 1?

l
p1{l or 0 ă }c} ă p1{l is

invertible in Rp.

In this thesis we will be working with polynomials in Rp which are stable
under the σ´1 automorphism. The following result says that for specific
primes p, if c P Rp satisfies σ´1pcq “ c and c is non-zero then c is invertible
over Rp.

Lemma 3.2.10. Let p ” 5 pmod 8q be a prime. Take any c P Rp such that
σ´1pcq “ c. Then, c is invertible over Rp if and only if c ‰ 0.

Proof. Since p is congruent to 5 modulo 8, we can factor the polynomial
Xd ` 1 modulo p as

Xd ` 1 ” pXd{2 ´ rqpXd{2 ` rq pmod pq

for some r P Zp where polynomials Xd{2˘ r are irreducible modulo p. Since
σ´1pcq “ c, we can write c as

c “ c0 ` c1X` . . .` cd{2´1Xd{2´1 ´ cd{2´1Xd{2`1 ´ . . .´ c1Xd´1.

Now, we observe that

c mod pp, Xd{2 ˘ rq “ c0 `

d{2´1
ÿ

i“1

pci ˘ rcd{2´iqX
i.

Suppose c ‰ 0. Then, one of the coefficients c0, . . . , cd{2´1 P Zp is non-zero,
say ci. Note that if i “ d{4 then ci ˘ rcd{2´i is not zero since r ‰ ˘1. Now,
consider the case i ‰ d{4. We claim that for any sign b P t´1, 1u, either
ci ´ brcd{2´i or cd{2´i ´ brci is not zero. Indeed, assume both of them were
equal to zero, concretely ci “ brcd{2´i and cd{2´i “ brci for b P t´1, 1u. Then
we would obtain

ci “ brcd{2´i “ b2r2ci “ r2ci “ ´ci

which is a contradiction since ci ‰ 0. Hence, we deduce that c mod
pp, Xd{2´ rq and c mod pp, Xd{2` rq are non-zero. Therefore, by the Chinese
Remainder Theorem, we conclude that c has an inverse in Rp.
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working over composite modulus . In our protocols, we will work
over the ring Rq :“ R{pqq where q is a product of odd primes q1 ă . . . ă qn
and each qi ” 2l ` 1 pmod 4lq. Usually, n P t1, 2u. Then, by the Chinese
Remainder Theorem, an element c P Rq is invertible if and only if c mod qi

is invertible over Rqi for all i P rns. Hence, by Lemma 3.2.9, if 0 ă }c} ă q1
1{l

then c is invertible over Rq. Moreover, if each qi ” 5 pmod 8q then we can
apply Lemma 3.2.10 which says that if a non-zero c P Rq satisfies }c}8 ă q1
and σ´1pcq “ c then it is invertible over Rq. Additionally, note that if we fix
any a, u P Rq such that a ‰ 0 then

Pr
cÐRq

rac “ us ď q´d{l
1 .

working over subrings . Our proof system will natively support
equations over the ring R of dimension d. However, when building various
privacy-preserving primitives, it would be more efficient to construct them
over a ring R1 “ ZrXs{pXkd ` 1q of much larger dimension kd than d where
k is also a power-of-two (e.g. to reduce the public key size). Consequently,
we would need to be able to prove equations over the larger ring R1 rather
than R. Here, we show that equations over R1 can be equivalently written
as equations over R.

First, we observe that R is isomorphic to the subring S :“ ZrXks{pXkd `

1q of R1. Let us define the commutative ring Sk “ pSk,`, ‹q where ` is a
component-wise addition and ‹ is defined as:

pa0, . . . , ak´1q ‹ pb0, . . . , bk´1q “ pc0, . . . , ck´1q

where for all 0 ď ` ă k

c` :“
ÿ

0ďi,jăk
i`j”` mod k

aibjXt
i`j

k uk P S.

Thus, p0, . . . , 0q and p1, 0, . . . , 0q are the additive and multiplicative identities
respectively.

Now, we prove the following lemma.

Lemma 3.2.11. Let k ě 1 be a power-of-two. Then, R1 :“ ZrXs{pXkd ` 1q – Sk.

Proof. First of all, we can write any polynomial a P R1 uniquely as a “
řk´1

i“0 aiXi where each ai P S. Let us define the map φ : R1 Ñ Sk as

φpaq :“ pa0, . . . , ak´1q P Sk.
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We claim that φ is a ring isomorphism. Bijection follows immediately since
one can define the inverse map φ´1ppa0, . . . , ak´1qq :“

řk´1
i“0 aiXi P R1. Also,

φp1q “ p1, 0, . . . , 0q.
Now, fix any a “

řk´1
i“0 aiXi and b “

řk´1
i“0 biXi in R1. Clearly, we have

φpaq ` φpbq “ φpa` bq. Then, for multiplication, observe that

ab “

˜

k´1
ÿ

i“0

aiXi

¸

¨

˝

k´1
ÿ

j“0

bjX j

˛

‚“
ÿ

0ďi,jăk
i`jăk

aibjXi`j `
ÿ

0ďi,jăk
i`jěk

aibjXkXi`j´k

“
ÿ

0ďi,jăk

ˆ

aibjX
Y

i`j
k

]

k
˙

X
pi`jq´

Y

i`j
k

]

k

“

k´1
ÿ

`“0

c`X`,

where

c` :“
ÿ

0ďi,jăk
i`j”` mod k

aibjX
Y

i`j
k

]

k
P S.

Hence, by definition of ‹ we have φpaq ‹ φpbq “ φpabq.

Example. Suppose we want to transform the equation ab ” c pmod qq over
R1 into an equivalent system of equations over Rq. First, we know that
ab ” c pmod qq if and only if there exists some d P R1 such that ab “ c` qd.
This equation can then be written equivalently as

φpaq ‹ φpbq “ φpcq ` φpqq ‹ φpdq. (3.1)

Define φpaq “ pa0pXkq, . . . , ak´1pXkqq, where each a` P R and therefore
a`pXkq P S, and similarly for φpbq, φpcq, φpdq. Also, note that φpqq ‹ φpdq “
pqd0pXkq, . . . , qdk´1pXkqq. Then, (3.1) holds if and only if for every ` “
0, . . . , k´ 1 we have:

ÿ

0ďi,jăk
i`j”` mod k

aipXkqbjpXkqX
Y

i`j
k

]

k
“ c`pXkq ` qd`pXkq
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which is then equivalent to

ÿ

0ďi,jăk
i`j”` mod k

aibjX
Y

i`j
k

]

“ c` ` qd`

over R. Hence, we conclude that ab ” c pmod qq if and only if :

@` P Zk,
ÿ

0ďi,jăk
i`j”` mod k

aibjX
Y

i`j
k

]

” c` pmod qq. (3.2)

Remark. In various scenarios, apart from proving equations over R1 (or
R1{pqq), one also needs to prove that certain vectors have small coefficients.
For instance, suppose we want to prove ab “ c over R1{pqq and }b}8 ď 1.
It is easy to see that the map φ preserves the norm, i.e. }φpbq}α “ }b}α for
α P t1, 2, . . . ,8u. Hence, in addition to proving (3.2), we would also need to
prove that for all ` P Zk, }b`}8 ď 1.

We conclude that we can keep the dimension d suitable for our proof
system while having the freedom to pick larger dimension kd when instan-
tiating the primitive.

3.3 cryptographic definitions

3.3.1 Security Assumptions

Security of our constructions relies on the well-known computational lattice
problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15].
Both problems are defined over Rq. Clearly, if we substitute Rq with Zq
then these problems become plain SIS [Ajt96] and LWE [Reg09] problems.

Definition 3.3.1 (MSISn,m,B). Given A Ð Rnˆm
q , the Module-SIS problem

with parameters n, m ą 0 and 0 ă B ă q asks to find z P Rm
q such that

Az “ 0 over Rq and 0 ă }z} ď B. An algorithm A is said to have advantage
ε in solving MSISn,m,B if

Pr
”

0 ă }z} ď B ^ Az “ 0
ˇ

ˇ

ˇ
A Ð Rnˆm

q ; z Ð ApAq
ı

ě ε.

We say that MSISn,m,B is hard if for all PPT adversaries A, the advantage in
solving MSISn,m,B is negligible.
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Definition 3.3.2 (MLWEm,n,χ). The (knapsack) Module-LWE problem with
parameters n, m ą 0 and an error distribution χ over R asks the adversary
A to distinguish between the following two cases: 1) pA, As mod qq for
A Ð Rnˆpn`mq

q , a secret vector s Ð χn`m and 2) pA, bq Ð Rnˆpn`mq
q ˆRn

q .
Then, A is said to have advantage ε in solving MLWEm,n,χ if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
A Ð Rnˆpn`mq

q ; s Ð χn`m; b Ð ApA, As mod qq
ı

(3.3)

´ Pr
”

b “ 1
ˇ

ˇ

ˇ
A Ð Rnˆpn`mq

q ; b Ð Rn
q ; b Ð ApA, bq

ı
ˇ

ˇ

ˇ
ě ε.

We say that MLWEm,n,χ is hard if for all PPT adversaries A, the advantage
in solving MLWEm,n,χ is negligible.

Hardness of MSIS/MLWE problems is often analysed identically as the
plain SIS/LWE since, so far, the best known attacks do not make use
of the algebraic structure of the polynomial ring [Alk+16]. In order to
estimate the practical MSIS hardness, we apply the methodology used in
[Duc+18, Appendix C] and [AHJ21, Section 3.4]. Note that solving MSISn,m,B
is equivalent to finding a non-trivial vector of norm smaller than B in the
following ideal lattice

Λ “ t~z P Zmd : pz P Rq ^Az ” 0 pmod qqu.

In order to find short non-trivial vectors in Λ, we apply the Block-Korkine-
Zolotarev algorithm (BKZ) [CN11; SE94]. As a subroutine, BKZ uses an
algorithm for the shortest vector problem (SVP) in lattices of dimension
b, where b is called the block size. If we apply the best known algorithm
for solving SVP with no memory constraints by Becker et al. [Bec+16], the
time required by BKZ to run on the md-dimensional lattice Λ with block
size b is given by 8md ¨ 20.292b`16.4. The algorithm outputs a vector of norm
δmd detpΛq

1
md where δ is the root Hermite factor and it is given by

δ “

˜

bpπbq1{b

2πe

¸
1

2pb´1q

. (3.4)

For our usual parameter selection, the probability that a random matrix
A P Rnˆm

q is of full rank is overwhelming (see [Esg+19c, Appendix C]
or the “knapsack” MLWE problem below) and thus detpΛq “ qnd. Next,
Micciancio and Regev [MR09] show that

δmd detpΛq
1

md “ δmdq
nd
md ě 22

?
nd log q log δ
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level of bit security 80 128 256

root Hermite factor δ 1.0066 1.0044 1.0025

Figure 3.1: Values of the root Hermite factor for specific levels of bit security
based on Equation 3.4 for full-rank lattices of dimension at least 128.

and the equality holds when md “
a

nd log q{ log δ. Hence, given a bound

B ă q we compute δ from the equation B “ 22
?

nd log q log δ. Next, we
calculate the minimum block size b from Equation 3.4 and thus obtain the
total time for BKZ to solve MSISn,m,B. In order to compare with previous
works, e.g. [ALS20; BLS19; Esg+19c], we set δ “ 1.0044 when aiming for
128-bit security (see Figure 3.1).

Further, we recall that the knapsack MLWE is as hard as the original
version of MLWE [Esg+19c; MM11], up to an additive factor which is the
probability that a uniformly random matrix A Ð Rnˆpn`mq

q is singular.
Indeed, suppose that q is a product of k primes q1 ă ¨ ¨ ¨ ă qk and each
qi ” 2l ` 1 pmod 4lq. Then, Esgin et al. [Esg+19c, Appendix C] show that
the probability that a uniformly random matrix A Ð Rnˆpn`mq

q has full
rank is at least

´

1´ q´pm`1qd{l
1

¯knl
.

In our instantiations, we will pick pk, d, lq “ p2, 64, 2q and q1 ą 215, n ě 18.
Thus, the value above can be lower-bounded by 1 ´ 2´450. Hence, we
conclude that the probability that random A is singular is negligible and
thus knapsack MLWE is practically equivalent to the standard Module-LWE.

We estimate the hardness of Module-LWE against known attacks using
the LWE estimator by Albrecht et al. [APS15]. Namely, we run the estimator
under both “sieving” and “enumeration”, and set the final root Hermite
factor δ as the largest root Hermite factor returned by the program. Similarly
as above, we aim for δ “ 1.0044. We remark that parameter m does not
play a crucial role in estimating hardness of MLWE as long as it is not too
large with respect to n ¨ d. Indeed, in our constructions m « n and thus the
BKW [BKW03] and Arora–Ge [AG11] attacks are not applicable here.

3.3.2 Commitment Schemes

A commitment scheme Com “ pCom.KeyGen,Com.Commit,Com.Openq is a
triple of algorithms described below.
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• Com.KeyGen is a PPT algorithm that on input security parameter 1κ

outputs public parameters pp, which specify the message, randomness
and commitment spaces SM,SR,ST . They also specify an efficiently
sampleable probability distribution D over SR and a set of relaxation
factors SC

1.

• Com.Commit is a deterministic polynomial-time commitment function,
that on input public parameters pp, message m P SM and randomness
r P SR, outputs a commitment t P ST . We write Com.Commitppp, mq
to denote the PPT algorithm which first samples randomness r Ð D
and then outputs Com.Commitppp, m; rq.

• Com.Open is a deterministic polynomial-time algorithm that, on input
the public parameters pp, a tuple pm, r, c; tq P SM ˆ SR ˆ SC ˆ ST
outputs a bit b which indicates “accept” when b “ 1 and “reject”
otherwise.

The latter two algorithms are always given the public parameters, hence
for readability we will omit writing pp as an input to Com.Commit and
Com.Open.

Definition 3.3.3 (Correctness). We say that a commitment scheme Com is
correct if there exists eid P SC such that for all m P SM,

Pr rCom.Openpm, r, eid; tq “ 1 : r Ð D, t “ Com.Commitpm; rqs “ 1.

We now describe two essential properties of commitment schemes, i.e. hid-
ing and binding. In this thesis we are only interested in their computational
variants.

Definition 3.3.4 (Hiding). The commitment scheme is computational hiding
if for all PPT adversaries A

Pr

«

pp Ð Com.KeyGenp1κq; pm0, m1q Ð Apppq; b Ð t0, 1u;

r Ð D; t Ð Com.Commitpmb; rq : Aptq “ b

ff

«
1
2

,

where A outputs m0, m1 P SM.

Definition 3.3.5 (Binding). The commitment scheme is computational bind-
ing if for all PPT adversaries A

Pr

«

pp Ð Com.KeyGenp1κq; pt, y0, y1q Ð Apppq :

m0 ‰ m1 and Com.Openpy0; tq “ Com.Openpy1; tq “ 1

ff

« 0,

1 This is a crucial property of lattice-based commitment schemes and it will become clear when
analysis concrete instantiations in the next chapter.
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where yi “ pmi, ri, ciq for i “ 0, 1. Moreover, Com is strongly computational
binding if we replace m0 ‰ m1 in the definition above with pm0, r0q ‰

pm1, r1q.

3.3.3 Commit-and-Prove Functionality

Let R Ď t0, 1u˚ ˆ t0, 1u˚ be a binary relation. If pu, wq P R, we say that u is
a statement and w is a witness for u. We denote Rpuq “ tw : Rpu, wq “ 1u.
In this thesis we only consider NP relations R for which a witness w can
be verified in time polyp|u|q for all pu, wq P R. We also assume that the
length of all statements in R are polynomial in the security parameters, i.e.
|u| “ polypκq.

A proof system Π “ pP ,Vq for relation R consists of two interactive and
stateful PPT algorithms P and V which are called the prover and verifier.
We write ptr, bq Ð xPpu, wq,Vpuqy for running P and V on inputs u, w and
u respectively and getting communication transcript tr and the verifier’s
decision bit b. We use the convention that b “ 0 means reject and b “ 1
means accept the prover’s claim of knowing w such that pu, wq P R. If tr
contains a K then we say that P aborts. Unless stated otherwise, we will
assume that the first and the last message are sent from a prover. Hence,
the protocol between P and V has an odd number of rounds.

In this thesis, relations we consider have a very specific form. Roughly
speaking, we first commit to a witness w and then prove certain statements
about w. More formally, let Com be a commitment scheme and define a
relation RpComq relative to R2:

RpComq :“

#

ppu, pp, tq, pw, r, cqq :

pu, wq P R^ Com.Openpppw, r, c; tq “ 1

+

.

In the literature, this approach is called commit-and-prove, e.g. [Can+02;
EG14]. Alternatively, one can think of this functionality as a standard proof
system where we additionally require the prover to generate and output a
commitment t to the witness w in the very first round.

Example. Let Ryes :“ t0, 1u˚ˆt0, 1u˚. Then, it is easy to find a witness to any

statement. Hence by definition, RpComqyes becomes simply a relation where
the statement contains a commitment and the witness is the commitment
opening.

2 Note that even if relation R is trivial, i.e. given u, it is easy to find w so that pu, wq P R, it is
not the case for RpComq if Com is binding and hiding.
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Formally, we define the commit-and-prove functionality (in an interactive
form) as follows. Namely, a commit-and-prove system for a relation R is
a triple Π “ pCom,P ,Vq where Com is a commitment scheme and P and
V are interactive and stateful PPT algorithms. Now, we describe security
properties of a commit-and-prove system, i.e. completeness, knowledge
soundness and simulatability.

Definition 3.3.6 (Completeness). Π “ pCom,P ,Vq has statistical complete-
ness with correctness error εpκq if for all adversaries A,

Pr

«

pp Ð Com.KeyGenp1κq; pu, wq Ð Apppq; r Ð D
ptr, bq Ð xPpu, pp, tq, pw, rqq,Vpu, pp, tqy : ppu, pp, tq, pw, r, eidqq P RpComq and b “ 0

ff

is at most εpκq ` neglpκq for all κ P N where t :“ Com.Commitpppw; rq.

Next, we introduce the notion of knowledge soundness.

Definition 3.3.7 (Knowledge Soundness). Π “ pCom,P ,Vq is knowledge
sound with knowledge error ε : N Ñ r0, 1q if there exists an algorithm E ,
called a knowledge extractor, with the following property. Namely, given
a statement-commitment tuple pu, pp, tq and a black-box oracle access to
a probabilistic prover P˚, which convinces the verifier Vpu, pp, tq with
probability ε ą εpκq, the extractor runs in an expected polynomial time and
with probability at least

ε´ εpκq

polypκq

outputs either a triple pw, r, cq which satisfies ppu, pp, tq, pw, r, cqq P RpComq

or two tuples pw, r, cq, pw1, r1, c1q so that pw, rq ‰ pw1, r1q and

Com.Openpppw, r, c; tq “ Com.Openpppw, r1, c1; tq.

We observe that an extractor either extracts a witness or breaks the strong
binding property of Com. In our examples, winning the strong binding
game of a commitment implies solving the MSIS problem. Technically, since
knowledge soundness will rely on the computational assumptions, our
protocols are arguments rather than proofs.

We say the protocol is public coin if the verifier’s challenges are chosen
uniformly at random independently of the prover’s messages.

We introduce a new notion called simulatability. Informally, it means that
there exists an efficient simulator S which can simulate both the commit-
ment generation and the proof at the same time. The difference between
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simulatability and (non-abort special honest-verifier) zero-knowledge is
that randomness r is directly generated from an honest party as it would
be in the real-world applications rather than chosen from an adversary.
This property becomes crucial when using the commitment introduced in
Chapter 4.

Definition 3.3.8 (Simulatability). A public-coin commit-and-prove system
Π “ pCom,P ,Vq is said to be simulatable if there exists a PPT simulator S
such that for all PPT stateful adversaries A,

Pr

«

pp Ð Com.KeyGenp1κq; pu, w, $q Ð Apppq; r Ð D; t “ Com.Commitpppw, rq;

ptr, bq Ð xPpppp, u, tq, pw, rqq,Vppp, u, t; $qy : pu, wq P R and Apt, trq “ 1

ff

« Pr

«

pp Ð Com.KeyGenp1κq; pu, w, $q Ð Apppq; pt, trq Ð Sppp, u, $q :

pu, wq P R and Apt, trq “ 1

ff

,

whenever P does not abort. Here $ is the randomness used by the verifier.

Remark. Let us argue why this notion is useful in practice. First, by definition
of simulatability, if we naturally transform the commit-and-prove system
Π into a standard proof system Π1, where the prover generates and sends
the commitment to the witness w in the first round, the simulatability of
Π implies non-abort special honest-verifier zero-knowledge (SHVZK) of
the proof system Π1. One might wonder why we neglected the issue of
simulating the aborted transcripts. Luckily, this type of zero-knowledge
definition is enough for most of privacy-oriented applications, because
when transforming Π1 into a non-interactive protocol using the Fiat-Shamir
heuristics [FS86], we can repeat certain parts of the protocol until a non-
abort occurs. Since the verifier only sees the non-aborting transcripts, only
these should be simulated.

In an interactive setting, a standard approach to modify the protocol
to be able to simulate aborting transcripts [Bau+18a; BLS19; Dam+21] is
as follows. Namely, we commit to the messages, which would be sent
before the prover potentially aborts, and only reveal them if no abort occurs
(e.g. when rejection sampling goes through). This method was recently
formalised by Damgård et al. [Dam+21] in the context of two-round n-out-
of-n and multi-signatures where it is essential to be able to simulate the
aborted executions.
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3.3.4 Techniques for Proving Knowledge Soundness

Various techniques have been developed to prove knowledge soundness
property, such as forking lemma [BN06; Bün+18; HKL19; PLS19], splitting
lemma [HS03; PS00] or its simplified variant [Dam10]. In this thesis we will
apply the strategy from [ACK21; AFK21] to extract transcripts.

Our knowledge extraction approach can be described by the following col-
lision game [ACK21]. Let k P N and consider a binary matrix H P t0, 1uRˆN

where N ą k. Informally, the R rows correspond to the prover’s randomness
and the N columns correspond to the verifier’s randomness, or alternatively,
the verifier samples a challenge c Ð C uniformly at random where C has
size N. An entry of H equals 1 if and only if the corresponding protocol
transcript is accepting. The knowledge extractor will run the following
collision game.

1. First, sample pr, iq Ð rRs ˆ rNs and check if Hpr, iq “ 1. If not, it
aborts.

2. If Hpr, iq “ 1, then it samples i˚ Ð rNs without replacement until it
obtains distinct i˚1 , . . . , i˚k´1 such that Hpr, i˚l q “ 1 for l “ 1, 2, . . . , k´ 1.

The following lemma states the expected runtime and success probability
of the algorithm above.

Lemma 3.3.1 ( [ACK21]). Let H P t0, 1uRˆN and define ε to be the fraction of
1-entries in H. Then, the expected number of H-entries queried in the collision
game is at most k and the probability of the collision-game is at least ε´ k´1

N .

Proof. We first focus on the expected number of queries of the collision
game. Let X be the number of queries to H. For r P rRs, define εr to be
the fraction of 1-entries in the r-th row. Note that if the entry checked in
the first step is of the form pr, ¨q and equals 1 then the second step can be
modelled by a negative hypergeometric distribution. In this case, Attema et
al. [ACK21] show that the expected number of draws is at most pk´ 1q{εr.
Hence, we can compute ErXs as follows. Let success be the event that the
first entry queried by the algorithm is 1 (i.e. first step passes). Then,

ErXs “
1
|R|

R
ÿ

j“1

ErX|success^ r “ js ¨ εj `ErX| success^ r “ js ¨ p1´ εjq

ď
1
|R|

R
ÿ

j“1

˜

1`
k´ 1

εj

¸

¨ εj ` 1 ¨ p1´ εjq “ k.
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Now, we concentrate on the success probability of the collision game. Let
pr, iq be the randomness and challenge sampled in the first step. We want
to compute the probability Hpr, iq “ 1 and that there are at least k 1-entries
in the r-th row. Let Tj be the fraction of rows which have exactly j 1-entries.
Then,

R
ÿ

j“k

Tj
j

N
“

¨

˝

R
ÿ

j“0

Tj
j

N

˛

‚´

k´1
ÿ

j“0

Tj
j

N
ě ε´ pk´ 1q ¨

řk´1
j“0 Tj

N
ě ε´

k´ 1
N

which concludes the proof.

3.3.5 Rejection Sampling

In lattice-based zero-knowledge proofs, e.g. [ALS20; BLS19], the prover will
want to output a vector z whose distribution should be independent of a
secret randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z “ y` cr
where r is the randomness used to commit to the prover’s secret, c Ð C is a
challenge polynomial, and y is a “masking” vector. In order to remove the
dependency of z on r, one applies the rejection sampling technique [Lyu12].

We first formally define a rejection sampling algorithm as follows.

Definition 3.3.9. A rejection sampling algorithm Rej is an efficient prob-
abilistic algorithm which takes as input a secret ~v P Z`, masking ~z P Z`,
standard deviation s and a repetition rate M. Then, it outputs a bit b. We
say that Rej rejects if b “ 1 and accepts when b “ 0.

Below we recall commonly used rejection sampling algorithms in the
literature.

Lemma 3.3.2 ( [Lyu12]). Let V Ď Z` be a set of polynomials with norm at most
T and ρ : V Ñ r0, 1s be a probability distribution. Fix the standard deviation
s “ γT and

M “ exp

˜
d

2pκ` 1q
logpeq

¨
1
γ
`

1
2γ2

¸

.

Now, sample ~v Ð ρ and ~y Ð D`
s, set~z “ ~y`~v, and run b Ð Rej0p~z,~v, s, Mq as

defined in Fig. 3.2. Then, the probability that b “ 0 is at least p1´ 2´κq{M and
the distribution of p~v,~zq, conditioned on b “ 0, is within statistical distance of 2´κ

of the product distribution ρˆD`
s.
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Rej0p~z,~v, s, Mq
01 u Ð r0, 1q
02 If u ą 1

M ¨ exp
´

´2x~z,~vy`}~v}2

2s2

¯

03 return 1
04 Else
05 return 0

Rej1p~z,~v, s, Mq
01 u Ð r0, 1q
02 If u ą 1

M exp
´

´
}~v}2

2s2

¯

cosh
´

x~z,~vy
s2

¯

03 return 1
04 Else
05 return 0

Figure 3.2: Standard (left) and bimodal (right) rejection sampling algorithms.

In certain scenarios, we will also use the bimodal Gaussian rejection
sampling which was first introduced by Ducas et al. [Duc+13]. The main
difference from the standard rejection sampling is that we additionally
sample a sign β Ð t´1, 1u and mask ~v by setting ~z :“ ~y` β~v. Thanks to
the reflective symmetry of the distribution of ~z, we significantly reduce
the standard deviation (e.g. by a factor of 10 if we aim for M “ 3). The
important part is, however, not to reveal any information about the bit β to
the verifier. To this end, we apply zero-knowledge proofs to commit to β
and prove that β P t´1, 1u.

Lemma 3.3.3 ( [Duc+13]). Let V Ď Z` be a set of polynomials with norm at
most T and ρ : V Ñ r0, 1s be a probability distribution. Fix the standard deviation
s “ γT and

M “ exp
ˆ

1
2γ2

˙

.

Now, sample ~v Ð ρ and ~y Ð D`
s and β Ð t´1, 1u, set ~z “ ~y` β~v, and run

b Ð Rej1p~z,~v, s, Mq as defined in Fig. 3.2. Then, the probability that b “ 0 is at
least 1{M and the distribution of pv, zq, conditioned on b “ 0, is identical to the
the product distribution ρˆD`

s.

3.3.6 Challenge Space

In our applications, the set V Ď R` will consist of vectors of the form cr
where c P Rq is sampled from a challenge space C and r P R`

q comes from
a set of secret (either randomness or message) vectors. In order to set the
standard deviation for rejection sampling, we need to bound the norm of



3.3 cryptographic definitions 53

σ d l ω η |Sσ
ω| |C|

σ1 128 2 1 27 2202 2201

σ´1 128 2 2 59 2148 2147

σ´1 64 2 8 140 2130 2129

Figure 3.3: Example parameters to instantiate the challenge space C for a modu-
lus q such that its smallest prime divisor q1 is greater than 16.

such vectors. We will use the inequality described in Lemma 3.2.8. In order
to apply this result, we set the challenge space C as:

C :“
"

c P Sσ
ω :

b

}σ´1pcqc}1 ď η

*

(3.5)

where
Sσ

ω :“ tc P Sω : σpcq “ cu . (3.6)

and the σ P AutpRq will be specified in our protocols. Also, we denote
C̄ :“ tc ´ c1 : c, c1 P C and c ‰ c1u to be the set of differences of any
two distinct elements in C. In practice, σ P tσ1, σ´1u. We will choose the
constant η such that (experimentally) the probability for c Ð Sσ

ω to satisfy
a

}σ´1pcqc}1 ď η is at least 99%. In our experiments, we observe that the
bounds in Lemma 3.2.8 are about 4´ 6X larger than the actual norms }cr}.

For security of our protocols, we need ω ă 1
2
?

l
q1{l

1 to ensure the in-
vertibility property of the challenge space C, i.e. the difference of any two
distinct elements of C is invertible over Rq by Lemma 3.2.9. However, if
q is a product of primes qi ” 5 pmod 8q and we want the challenges c to
be stable under the σ´1 automorphism, i.e. σ “ σ´1, then we can apply
Lemma 3.2.10 and set ω ă q1{2.

Further, to achieve negligible soundness error under the MSIS assumption,
we will need |C| to be exponentially large. In Table 3.3 we propose example
parameters to instantiate the challenge space C for different automorphisms
σ. Finally, for implementation purposes, in order to sample from C, we
simply generate c Ð Sσ

ω and check whether
a

}σ´1pcqc}1 ď η.

setting the standard deviation. By definition of the challenge
space C and Lemma 3.2.8, if we know that }r} ď α, then we can set the
standard deviation s :“ γηα where γ ą 0 defines the repetition rate M.
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A B D L O P C O M M I T M E N T S C H E M E

In this chapter, we describe a lattice-based hybrid commitment scheme
which combines both constructions by Ajtai [Ajt96] and BDLOP [Bau+18b]
described briefly in Chapter 2. Namely, we propose our general lattice-
based commitment, which we call ABDLOP, in Section 4.1. Further, we
describe an argument of knowledge of the ABDLOP commitment opening
in Section 4.2. Finally, we show in Section 4.3 how to make use of the
compression techniques from Dilithium-G [Duc+17] in order to further
reduce the commitment as well as communication size. We remark that
although none of the techniques in this chapter are explicitly new, we
propose a way to conduct proofs in a generic way, i.e. without differentiating
whether we are working with Ajtai or BDLOP commitments.

In the following, denote κMSIS and κMLWE to be the module ranks required
for MSIS and MLWE security, respectively.

4.1 commitment construction

Suppose we want to commit to a vector ps1, mq P Rm1``
q where s1 has

a small L2 norm, i.e. }s1} ď α, but not necessarily m. The intuition here
is to commit to s1 using the Ajtai commitment and m using the BDLOP
commitment. If we were to construct each commitment separately, we
would end up with two randomness vectors. We describe a way to generate
the two commitments using one randomness vector.

We present our construction of the lattice-based commitment scheme
ABDLOP “ pABDLOP.KeyGen,ABDLOP.Commit,ABDLOP.Openq in Figure
4.1. In the key generation, uniformly random matrices

A1 Ð RκMSISˆm1
q , A2 Ð RκMSISˆm2

q , B Ð R`ˆm2
q

are generated and output as public parameters. To commit to the message
ps1, mq, we first sample s2 Ð χm2 and output the commitment t “ tA ‖ tB
defined as:

«

tA

tB

ff

“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

P RκMSIS``
q .

54
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• ABDLOP.KeyGenp1κq: select parameters q, d, κMSIS, m1, m2,
`, `ext, ν, ω, α, B1, B2. Let χ be the uniform distribution on Sν.
Sample uniformly random matrices A1 Ð RκMSISˆm1

q , A2 Ð

RκMSISˆm2
q , B Ð R`ˆm2

q , Bext Ð R`extˆm2
q .

Define

pp. dim :“ pq, d, κMSIS, m1, m2, `, `extq

pp.norms :“ pν, ω, α, B1, B2q

pp.mat :“ pA1, A2, B, Bextq.

Return pp “ ppp. dim, pp.norms, pp.matq.

The public parameters define the following message, random-
ness, commitment spaces along with randomness distribution
and a set of relaxation factors:

SM “
 

s1 P Rm1
q : }s1} ď α

(

ˆR`
q, SC “ C̄ as in Section 3.3.6,

ST “ RκMSIS``
q , SR “ Rm2

q , D “ χm2 .

• ABDLOP.Commitps1, m; s2q: Given message ps1, mq P SM and
randomness s2 P Rm2

q , return t “ ptA, tBq where

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

P RκMSIS``
q .

• ABDLOP.Openps1, m, s2, c; tq: Given ps1, mq P SM, s2 P Rm2
q ,

relaxation factor c P Rq and a commitment t P RκMSIS``
q , output

1 if all the conditions below hold:

1. ABDLOP.Commitps1, m; s2q “ t

2. c P SC

3. }cs2} ď B2

4. }cs1} ď B1.

Figure 4.1: Description of a general lattice-based commitment scheme ABDLOP.
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Intuitively, the top part tA corresponds to binding the commitment as well
as encoding the message s1 and the bottom part tB encodes the message
m. We remark that when ` “ 0 (resp. m1 “ 0) then ABDLOP becomes the
standard Ajtai (resp. BDLOP) commitment. Informally, we will call s1 (resp.
m) the message in the Ajtai (resp. BDLOP) part.

We explain the role of the matrix Bext. Suppose that a party generates the
ABDLOP commitment ptA, tBq to the messages ps1, mq under randomness
s2. Then, if the party wants to commit to an additional message vector
mext P R`ext

q under the same randomness at some later point in time, they
can simply compute text :“ Bexts2 `m and thus ptA, tB ‖ textq becomes
the commitment to the messages ps1, m ‖ mextq. This property is directly
inherited from the BDLOP commitment scheme and will be frequently used
in our protocols.

We now turn to proving security properties of ABDLOP.

Lemma 4.1.1 (Correctness). If B1 ě α and B2 ě ν
?

m2d then ABDLOP is
correct.

Proof. Let eid “ 1 P SC and take any ps1, mq P SM. Then, clearly }eids1} ď

α ď B1. Also, for s2 Ð χm2 we have:

}eids2} ď ν
a

m2d ď B2.

Hence, ABDLOP.Open ps1, m, s2, eid;ABDLOP.Commitps1, m; s2qq “ 1.

Lemma 4.1.2 (Hiding). Suppose that κMLWE :“ m2 ´ κMSIS ´ ` ě 0. Then,
ABDLOP is computational hiding if MLWEκMLWE,κMSIS``,χ is hard.

Proof. The statement directly follows from the observation that

«

A2

B

ff

s2 is

indistinguishable from a uniformly random vector in RκMSIS``
q under the

MLWEκMLWE,κMSIS``,χ assumption.

Lemma 4.1.3 (Binding). ABDLOP is strongly computational binding under the

MSISκMSIS,m1`m2,BMSIS
assumption where BMSIS “ 4η

b

B2
1 ` B2

2.

Proof. Suppose that for two triples ps2, s1, m, cq, ps12, s11, m1, c1q and a commit-
ment t “ ptA, ‖ tBq we have

BDLOP.Openps1, m, s2, c; tq “ BDLOP.Openps11, m1, s12, c1; tq “ 1.
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This implies that

A1s1 `A2s2 “ tA “ A1s11 `A2s12 ùñ
”

A1 A2

ı

«

s1 ´ s11
s2 ´ s12

ff

“ 0.

By the triangle inequality we have
›

›

›

›

›

cc1
«

s1 ´ s11
s2 ´ s12

ff
›

›

›

›

›

ď

›

›

›

›

›

c1
«

cs1

cs2

ff
›

›

›

›

›

`

›

›

›

›

›

c

«

c1s11
c1s12

ff
›

›

›

›

›

.

Consider the first term on the right-hand side. By definition of the opening
algorithm and of SC “ C̄ we have that c1 “ c10 ´ c11 where c10, c11 P C are
distinct. Next, by Lemma 3.2.8:

›

›

›

›

›

c1
«

cs1

cs2

ff
›

›

›

›

›

ď

›

›

›

›

›

c10

«

cs1

cs2

ff
›

›

›

›

›

`

›

›

›

›

›

c11

«

cs1

cs2

ff
›

›

›

›

›

ď 2η
b

B2
1 ` B2

2.

With the same argument for the second term, we deduce that
›

›

›

›

›

cc1
«

s1 ´ s11
s2 ´ s12

ff
›

›

›

›

›

ď 4η
b

B2
1 ` B2

2.

Hence, we have found a solution to the MSISκMSIS,m1`m2,B problem for the

matrix rA1 A2s where B “ 4η
b

B2
1 ` B2

2. Assuming that this problem is
hard, we get s1 “ s11 and s2 “ s12. Then, by construction we have m “

tB ´ Bs2 “ tB ´ Bs12 “ m1.

4.2 opening proof for the abdlop commitment

The key component of proving various properties on a committed mes-
sage is a proof of knowledge of the commitment opening. Using ter-
minology from Section 3.3.3, we propose a commit-and-prove system
Πopen “ pABDLOP,P ,Vq for the relation Ryes which always outputs 1.
In this case, having a statement for Ryes is irrelevant, and hence we ignore
it.

In the following, we fix the challenge space C to be as in Section 3.3.6
with respect to the identity automorphism σ1.

We present the commit-and-prove Πopen “ pABDLOP,P ,Vq for relation
Ryes in Figure 4.2. Prover P starts by sampling two masking vectors y1 Ð
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `extq pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB

pp.mat “ pA1, A2, B, Bextq

s1 P Rm1
q such that }s1} ď α

s2 P Rm2
q , m P R`

q
«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

y1 Ð Dm1d
s1

y2 Ð Dm2d
s2

w :“ A1y1 `A2y2
w -

c� c Ð C
z1 :“ y1 ` cs1

z2 :“ y2 ` cs2

for i “ 1, 2 :

if Rejpiq pzi, csi, si, Miq “ 1

then pz1, z2q :“ pK,Kq
z1, z2 -

}z1}
?
ď s1

a

2m1d

}z2}
?
ď s2

a

2m2d

w ?
“ A1z1 `A2z2 ´ ctA

Figure 4.2: Commit-and-prove system Πopen for the relation Ryes which always
outputs 1. Here, Rejp1q,Rejp2q are rejection sampling algorithms.
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Dm1d
s1 , y2 Ð Dm2d

s2 from discrete Gaussians and computes

w :“ A1y1 `A2y2.

Then, it sends w to the verifier V . After receiving the challenge c Ð C from
V , the prover computes

z1 :“ y1 ` cs1 and z2 :“ y2 ` cs2

and applies rejection sampling. If it does not abort, P sends z1, z2. Finally,
the verifier checks that coefficients of each zi are small and

w ?
“ A1z1 `A2z2 ´ ctA.

4.2.1 Security Analysis

We summarise security properties of the protocol in Figure 4.2 below.

Theorem 4.2.1. Suppose that m1d ě 5κ and m2d ě 5κ and let Rejp1q “ Rejp2q “
Rej0 as in Figure 3.2. Fix standard deviations s1 “ γ1ηα and s2 “ γ1ην

?
m2d

for γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Then, Πopen for the relation Ryes has statistical completeness with correctness error
1´ 1

M1 M2
.

Proof. We first compute the probability that an honest prover P does not
abort. Note that s1, s2 are chosen such that s1 ě γ1}cs1} and s2 ě γ2}cs2}

for any c P C. Then, by Lemma 3.3.2, Rejpiq does not abort with probability

1´ 2´κ

Mi
.

Hence, the probability that none of the rejection algorithms abort is at least:

p1´ 2´κq2

M1M2
ě
p1´ 2´κ`1q

M1M2
ě

1
M1M2

´ neglpκq.

Finally, we turn to checking the verification equations when interact-
ing with an honest prover. By Lemma 3.2.2 and the assumption that
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min tm1d, m2du ě 5κ, the first two verification inequalities hold with proba-
bility at least 1´ 2κ´1. Then, the last one is true because:

A1z1 `A2z2 ´ ctA “ A1y1 `A2y2 ` cpA1r1 `A2r2q ´ ctA

“ w` ctA ´ ctA

“ w.

Theorem 4.2.2. Let Rejp1q “ Rejp2q “ Rej0 as in Figure 3.2 and suppose
κMLWE :“ m2 ´ κMSIS ´ `. Fix standard deviations s1 “ γ1ηα and s2 “

γ1ην
?

m2d for γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Then, under the MLWEκMLWE,κMSIS`` assumption, Πopen for the relation Ryes is
simulatable.

Proof. We describe an efficient simulator S as follows. First, it samples
z1 Ð Dm1d

s1 and z2 Ð Dm2d
s2 . Finally, S computes w :“ A1z1 `A2z2 ´ ctA

and outputs a simulated transcript pw, c, z1, z2q Then, by Lemma 3.3.2, the
simulated transcript is statistically close to a real non-aborted one.

Finally, we simulate the commitment by sampling ptA, tBq Ð RκMSIS``
q .

Then, it is computationally indistinguishable from the actual commitment
by the MLWEκMLWE,κMSIS`` assumption.

Theorem 4.2.3. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, Πopen

for the relation Ryes is knowledge sound with knowledge error 1{|C|.

Proof. Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą |C|´1. By Lemma 3.3.1, there is
an algorithm E which runs in expected time at most 2T and extracts two
accepting transcripts with the same first message w with probability at
least ε´ 1{|C|:

tri “
´

w, cpiq, zpiq1 , zpiq2

¯

for i “ 0, 1.

Let us define c̄ :“ cp1q ´ cp0q P C̄. Note that by definition of the challenge
space, c̄ is invertible over Rq and }c̄}8 ď 2ω. Next, we set

s̄i :“
zp1qi ´ zp0qi

c̄
for i “ 1, 2 and m̄ :“ tB ´ Bs̄2.
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Then, by construction we get

A1s̄1 `As̄2 “

´

A1zp1q1 `A2zp1q2

¯

´

´

A1zp0q1 `A2zp0q2

¯

c̄
“

c̄tA
c̄
“ tA

and thus ABDLOP.Commitps̄1, m̄; s̄2q “ t. Moreover,

}c̄s̄1} “ }z
p1q
1 ´ zp0q1 } ď 2s1

a

2m1d ď B1

and similarly

}c̄s̄2} “ }z
p1q
2 ´ zp0q2 } ď 2s2

a

2m2d ď B2.

Thus, ABDLOP.Openps̄1, m̄, s̄2, c̄; tq “ 1.

4.3 improved opening proof with commitment compression

In this section, we reduce the commitment and communication size by
applying compression techniques from Dilithium-G [Duc+17].

4.3.1 Low/High Order Bits

In order to reduce the size of the commitment, we need some algorithms
that extract “higher-order” and “lower-order” bits of elements in Zq. The
goal is that when given an arbitrary element r P Zq and another small
element z P Zq, we would like to be able to recover the higher order bits of
r` z without needing to store z. The algorithms are exactly as in [Duc+17],
and we repeat them for completeness in Figure 4.3. They are described
as working on integers modulo q, but one can extend it to (vectors of)
polynomials in Rq by simply being applied individually to each coefficient.

Lemma 4.3.1. Suppose that q and γ are positive integers satisfying q ” 1
pmod γq. Fix m :“ pq´ 1q{γ. Let r and z be vectors of elements in Rq where
}z}8 ď γ{2, and let y, y1 be integral vectors of elements in p´m{2, m{2s. Then
the HighBitsq, MakeGHintq, and UseGHintq algorithms satisfy the following prop-
erties:

1. UseGHintqpMakeGHintqpz, r, γq, r, γq “ HighBitsqpr` z, γq.

2. If UseGHintqpy, r, γq “ UseGHintqpy1, r, γq, then y “ y1.
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Power2Roundqpr, Dq

00 r :“ r mod` q
01 r0 :“ r mod˘ 2D

02 return pr´ r0q{2D

UseGHintqpy, r, γq

03 m :“ pq´ 1q{γ
04 r1 :“ HighBitsqpr, γq

05 return pr1 ` yq mod ˘m

MakeGHintqpz, r, γq

06 m “ pq´ 1q{γ
07 r1 :“ HighBitsqpr, γq

08 v1 :“ HighBitsqpr` z, γq

09 return pv1 ´ r1q mod ˘m

Decomposeqpr, γq

10 r :“ r mod` q
11 r0 :“ r mod˘ γ

12 if r´ r0 “ q´ 1
13 then r1 :“ 0; r0 :“ r0 ´ 1
14 else r1 :“ pr´ r0q{γ

15 return pr1, r0q

HighBitsqpr, γq

16 pr1, r0q :“ Decomposeqpr, γq

17 return r1

LowBitsqpr, γq

18 pr1, r0q :“ Decomposeqpr, γq

19 return r0

Figure 4.3: Supporting algorithms for commitment compression.

4.3.2 ABDLOP Commitment Compression

We apply the aforementioned compression techniques in the opening proof
presented above. First, we reduce the size of the ABDLOP commitment by
not sending the low-order bits of tA. Namely, for a suitable D P N we write

tA “ tA,1 ¨ 2D ` tA,2 where }tA,2}8 ď 2D´1

and only send tA,1. Thus, we reduce the commitment size by DκMSISd bits.
Further, instead of sampling uniformly random matrices A2 and B, we

can choose them in the more structured way as originally in [Bau+18b]
«

A2

B

ff

:“

«

A12 IκMSIS

B1 0`ˆκMSIS

ff

RκMSISˆm2
q . (4.1)

We call this version of the commitment ABDLOPcompress. We show the
commit-and-prove system Πopen´compress “ pABDLOPcompress,P ,Vq for the
relation Ryes in Figure 4.4. We recall that Ryes is a relation which always
outputs 1.

Prover P starts by sampling vectors y1 Ð Dm1d
s1 , y2,1 Ð Dpm2´κMSISqd

s2

and y2,2 Ð DκMSISd
s2 from discrete Gaussians and computing w “ A1y1 `
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `extq pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA,1, tB

pp.mat “ pA1, A2, B, Bextq

s1 P Rm1
q such that }s1} ď α

s2 “ ps2,1, s2,2q P Rm2
q , m P R`

q

A12, B1 are defined as in (4.1)
«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A12
B1

ff

s2,1 `

«

s2,2

m

ff

tA,1 :“ Power2RoundqptA, Dq

tA,2 :“ tA ´ 2DtA,1

y1 Ð Dm1d
s1

y2,1 Ð Dpm2´κMSISqd
s2

y2,2 Ð DκMSISd
s2

w :“ A1y1 `A12y2,1 ` y2,2

pw1, w0q :“ Decomposeqpw, γq

w1 -

c� c Ð C
z1 :“ y1 ` cs1

z2 “

«

z2,1

z2,2

ff

:“

«

y2,1

y2,2

ff

` c

«

s2,1

s2,2

ff

for i “ 1, 2 :

if Reji pzi, csi, siq “ 1

then pz1, z2, hq :“ pK,K,Kq

z2,2 :“ z2,2 ´ ctA,2 ´w0

if }pz2,1, z2,2q} ď B

then pz1, z2, hq :“ pK,K,Kq

h :“ MakeGHintq pz2,2, γw1 ´ z2,2, γq

z1, z2,1, h-

w1
?
“ UseGHintq

´

h, A1z1 `A12z2,1 ´ c ¨ 2DtA,1, γ
¯

}z1}
?
ď s1

a

2m1d

}pz2,1, A1z1 `A12z2,1 ´ c ¨ 2DtA,1 ´ γw1q}
?
ď B

}h}8
?
ď

q´ 1
2γ

Figure 4.4: Commit-and-prove system Πopen´compress for the relation Ryes using
compression techniques from Dilithium-G [Duc+17].
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A12y2,1 ` y2,2. Additionally, P calculates pw1, w0q “ Decomposeqpw, γq and
sends w1 to the verifier where q´ 1 is divisible by γ.

After receiving a challenge polynomial c Ð C from V , the prover com-
putes

z1 “ y1 ` cs1 and z2 “

«

z2,1

z2,2

ff

:“

«

y2,1

y2,2

ff

` c

«

s2,1

s2,2

ff

and applies rejection sampling for z1 and z2. If it accepts, P modifies
z2,2 :“ z2,2 ´ ctA,2 ´w0 and calculates the hint vector

h “ MakeGHintq pz2,2, γw1 ´ z2,2, γq .

Finally, the prover sends pz1, z2,1, hq. In the last stage, verifier V checks
whether vectors z1 and pz2,1, A1z1 `A12z2,1 ´ c ¨ 2DtA,1 ´ γw1q have small
norms and the coefficients of h are between ´ q´1

2γ and q´1
2γ and

w1
?
“ UseHintq

´

h, A1z1 `A12z2,1 ´ c ¨ 2DtA,1, γ
¯

.

As opposed to the standard opening proof, the prover does not send any
masked opening of s2,2. Instead, P sends a vector of hints h which has
much smaller impact on the communication size as opposed to z2,2.

security analysis . We first focus on the completeness of the protocol.

Theorem 4.3.2. Suppose m1d ě 5κ, m2d ě 5κ and γ be an even divisor of q´ 1.
Fix s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0. Then, denote

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

and Rejp1q “ Rejp2q “ Rej0 as in Figure 3.2. Also, set

B :“ s2
a

2m2d` η2D´1
?

nd`
γ
?

nd
2

.

Then, the commit-and-prove system Πopen´compress for the relation Ryes satisfies
statistical completeness with statistical error 1´ 1{ pM1M2q .

Proof. First, if the rejection sampling steps pass, the distributions of z1, z2
are discrete Gaussians centered at 0 with standard deviations s1 and s2
respectively. Since m1d, m2d ě 5κ, we have that

Pr
ziÐD

mi
si

r}zi} ď si
a

2m1ds ě 1´ 2´κ for i “ 1, 2
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by Lemma 3.2.2 for t “
?

2. Now, since we perturb the vector z2,2, the
bound on }z2} increases slightly. Using the inequalities }ctA,2} ď η}tA,2} “

η2D´1
a

κMSISd and }w0} ď γ
a

κMSISd{2, we get
›

›

›

›

›

«

z2,1

z2,2 ´ ctA,2 ´w0

ff
›

›

›

›

›

ď

›

›

›

›

›

«

z2,1

z2,2

ff
›

›

›

›

›

`

›

›

›

›

›

«

0

ctA,2

ff
›

›

›

›

›

`

›

›

›

›

›

«

0

w0

ff
›

›

›

›

›

ď s2
a

2m2d` η2D´1
?

nd`
γ
?

nd
2

“ B.

The verification equation on }h}8 follows by definition of MakeGHint. Fi-
nally, note that

A1z1 `A12z2,1 ` z2,2 “ c2DtA,1 `w´w0

“ c2DtA,1 ` γw1

and thus
A1z1 `A12z2,1 ´ c2DtA,1 “ γw1 ´ z2,2.

Consequently, by Lemma 4.3.1:

UseGHintqph, A1z1 `A12z2,1 ´ c ¨ 2DtA,1, γq

“ UseGHintq
`

MakeGHintq pz2,2, γw1 ´ z2,2, γq , γw1 ´ z2,2, γ
˘

“ HighBitsqpγw1, γq

“ w1.

Next, we focus on the simulatability property.

Theorem 4.3.3. Let Rejp1q “ Rejp2q “ Rej0 as in Figure 3.2 and fix s1 “ γ1ηα
and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0. Denote

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2

and κMLWE :“ m2 ´ κMSIS ´ ` ě 0. Then, under the MLWEκMLWE,κMSIS`` as-
sumption, the commit-and-prove system Πopen´compress for the relation Ryes is
simulatable.

Proof. As in the proof of Theorem 4.3.3, the algorithm S simulates the
commitment by generating ptA, tBq Ð RκMSIS``

q and computing

tA,1 :“ Power2RoundqptA, Dq



4.3 improved opening proof with commitment compression 66

under the MLWEκMLWE,κMSIS`` assumption. Furthermore, S samples z1 Ð

Dm1d
s1 , z2 Ð Dm2d

s2 and computes

w :“ A1z1 `A12z2,1 ` z2,2 ´ ctA.

Then, S calculates pw1, w0q :“ Decomposeqpw, γq. Finally, the hint vector h
can be computed deterministically from all the previous components.

Now, we turn to proving knowledge soundness.

Theorem 4.3.4. Suppose B1 ě 2s1
a

2m1d and B2 ě 2B. Then, the commit-
and-prove system Πopen´compress for the relation Ryes is knowledge sound with
knowledge error 1{|C|.

Proof. Let P˚ be a probabilistic prover which convinces the verifier with
probability ε ą |C|´1. By Lemma 3.3.1, there is an algorithm E which
extracts two accepting transcripts with the same first message w1 and
distinct challenges with probability at least ε´ 1{|C|:

tri “
´

w1, cpiq, zpiq1 , zpiq2,1, hpiq
¯

for i “ 0, 1.

Let us define c̄ :“ cp1q ´ cp0q P C̄. Note that by definition of the challenge
space, c̄ is invertible over Rq. Let us define

upiq :“ γw1 ` cpiq ¨ 2DtA,1 ´A1zpiq1 ´A12zpiq2,1.

Thus, we have
›

›

›

´

zpiq2,1, upiq
¯
›

›

›
ď B for i “ 0, 1. Then, by combining the two

equations on upiq we get

A1

´

zp1q1 ´ zp0q1

¯

`A12
´

zp1q2 ´ zp0q2

¯

`

´

up1q ´ up0q
¯

“ c̄ ¨ 2DtA,1.

Next, we set

s̄1 :“
zp1q1 ´ zp0q1

c̄
, s̄2 “

«

s̄2,1

s̄2,2

ff

:“
1
c̄
¨

«

zp1q2,1 ´ zp0q2,1

up1q ´ up0q

ff

and
m̄ :“ tB ´ Bs̄2.

By construction we obtain }c̄s̄1} ď 2s1
a

2m1d ď B1 and }c̄s̄2} ď 2B ď B2.
Hence,

ABDLOP.Open
´

s̄1, m̄, s̄2, c̄; p2DtA,1, tBq
¯

“ 1.
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This chapter focuses on proving arbitrary linear and higher-degree equa-
tions between committed polynomials by extending the opening proofs
presented in Chapter 4. Namely, we first show how to prove knowledge of
a message vector ps1, mq P Rm1``

q which satisfies

f ps1, mq “ 0

where f is a public pm1` `q-variate polynomial function over Rq. We extend
our argument to the case when one wants to prove multiple such relations
in parallel, i.e. f1ps1, mq “ f2ps1, mq “ . . . “ fNps1, mq “ 0. Furthermore,
we also cover statements where we do not necessarily have f pmq “ 0 but
one of the coefficients of f pmq is equal to zero. Without loss of generality,
we will only consider the constant coefficient.

More precisely, denote Pt
npRqq to be the set of all polynomial functions

f : Rn
q Ñ Rq over Rq of total degree at most t. Then, we are interested in

proving the following statements:

• Single equation. Given a public polynomial function f P Pt
m1``pRqq,

prove knowledge of the message vectors s1 P Rm1
q and m P R`

q, where
}s1} ď α, which satisfy

f ps1, mq “ 0.

• Many equations. Given N public polynomial functions fi P Pt
m1``pRqq,

prove knowledge of the message vectors s1 P Rm1
q and m P R`

q, where
}s1} ď α, which satisfy

fips1, mq “ 0 for i “ 1, 2, . . . , N.

• Function evaluations with vanishing constant coefficients. Given N `M
public polynomial functions f1, . . . , fn, F1, . . . , FM P Pt

m1``pRqq, prove

knowledge of the message vectors s1 P Rm1
q and m P R`

q, where
}s1} ď α, which satisfy the following:

1. fips1, mq “ 0 for i “ 1, 2, . . . , N.

67
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2. Denote xj :“ Fjps1, mq. Then, rx1 “ . . . “ rxM “ 0.

We provide our protocols in a commit-and-prove fashion, i.e. we first
generate an ABDLOP commitment t “ ptA, tBq to ps1, mq and then prove
that the messages satisfy certain relations.

We start by proving linear equations in Section 5.1 by simply extending
the argument by Baum et al. [Bau+18b]. Next, we adapt the product proof
protocol by Attema et al. [ALS20] to prove general quadratic relations in
Section 5.2. In our applications, degree two equations are sufficient, but it
will be clear how to generalise the techniques for proving higher-degree
relations.

5.1 proof of linear relations

For convenience, throughout this section we denote s :“ s1 ‖ m P Rm1``
q .

Moreover, we represent a linear function f P P1
m1``pRqq as

f pxq :“ rT
1 x` r0.

where r1 P Rm1``
q and r0 P Rq.

In this section, the challenge space C is defined as in Section 3.3.6 with
the identity automorphism σ1.

5.1.1 Single Equation

Let f be a pm1 ` `q-variate linear function over Rq. In this subsection, we
will be interested in the following relation:

R :“ tp f , ps1, mqq : f ps1, mq “ 0u

and the corresponding commit-and-prove relation RABDLOP as defined in
Section 3.3.3.

Let us first consider the opening proof in Figure 4.2. We observe that
vector z1 :“ y` cs1 “masks” our first message vector s1. We will informally
call z1 to be a masked opening of s1. Even though this is not the case for m
(i.e. we do not send anything of the form zm “ ym ` cm), we observe that

ctB ´ Bz2 “ ´By2 ` cm
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is a masked opening of m which can be computed by the verifier. Hence, if
we define

y :“

«

y1

´By2

ff

and z :“

«

z1

ctB ´ Bz2

ff

then we have z “ y` cs. Now, we observe that

rT
1 z` cr0 “ rT

1 y` crT
1 s` cr0 “ rT

1 y` cprT
1 s` r0q “ rT

1 y` c f psq “ rT
1 y.

Hence, in the protocol in Figure 4.2, if we additionally let the prover send
v :“ rT

1 y to the verifier V in the first round, then V simply has one more
verification check

rT
1 z` cr0

?
“ v.

As we formally show later, this is sufficient to prove that f psq “ 0.

5.1.2 Multiple Equations

Firstly, we observe that proving N linear equations

fipsq “ 0 for f1, . . . , fN P P1
m1``pRqq

boils down to proving
R1s` r0 “ 0 (5.1)

where R1 P R
Nˆpm1``q
q and r0 P RN

q . Hence, we define the corresponding
relation

Rlin :“ tppR1, r0q, s :“ ps1, mqq : R1s` r0 “ 0u .

We extend the approach from the previous subsection naturally. Namely, if
(5.1) holds then we have:

R1z` cr0 “ R1y` cR1s` cr0 “ R1y` cpR1s` r0q “ R1y.

Thus, the prover in the first round of the protocol in Figure 4.2 additionally
sends v :“ R1y. Then, in the end the verifier V has one more verification

check R1z` cr0
?
“ v.

We provide a commit-and-prove system Πlin :“ pABDLOP,P ,Vq for the
relation Rlin in Figure 5.1.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ 0q pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB, R1, r0

pp.mat “ pA1, A2, B, Bextq

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

R1 P R
Nˆpm1``q
q , r0 P RN

q

y1 Ð Dm1d
s1

y2 Ð Dm2d
s2

w :“ A1y1 `A2y2

v :“ R1

«

y1

´By2

ff

w, v -

c� c Ð C
z1 :“ y1 ` cs1

z2 :“ y2 ` cs2

for i “ 1, 2 :

if Rejpiq pzi, csi, si, Miq “ 1

then pz1, z2q :“ pK,Kq
z1, z2 -

}z1}
?
ď s1

a

2m1d

}z2}
?
ď s2

a

2m2d

w ?
“ A1z1 `A2z2 ´ ctA

v ?
“ R1

«

z1

ctB ´ Bz2

ff

` cr0

Figure 5.1: Commit-and-prove system Πlin for proving R1

«

s1

m

ff

` r0 “ 0.
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5.1.2.1 Security Analysis

We summarise security properties of the protocol in Figure 5.1 below.

Theorem 5.1.1. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system Πlin

for the relation Rlin has statistical completeness with correctness error 1´ 1
M1 M2

.

Proof. Correctness follows directly from Theorem 4.2.1 and the fact that if
R1s` r0 “ 0 then R1z` cr0 “ R1y.

Theorem 5.1.2. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose κMLWE :“ m2 ´ κMSIS ´ ` ě 0. Then, the commit-and-prove system Πlin

for the relation Rlin is simulatable under the MLWEκMLWE,κMSIS``,χ assumption1.

Proof. We prove the statement using a hybrid argument. First, we describe
an efficient simulator S1, which knows s1, m and simulates both the commit-
ment and the transcript as follows. Namely, it generates fresh randomness
s2 Ð χm2 and computes ptA, tBq “ ABDLOP.Commitps1, m; s2q. Next, it
samples z1 Ð Dm1d

s1 and z2 Ð Dm2d
s2 . Finally, S1 computes

w :“ A1z1 `A2z2 ´ ctA

v :“ R1

«

z1

ctB ´ Bz2

ff

` cr0

and outputs a simulated transcript pw, v, c, z1, z2q Then, by Lemma 3.3.2,
the simulated commitment and transcript by S1 are statistically close to the
honestly generated commitment and non-aborted transcript.

Further, we describe an efficient simulator S2, which still knows s1, m
and simulates both the commitment and the transcript as follows. Namely,

1 Recall that χ is defined to be the uniform distribution on Sν as described in Figure 4.1.
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it executes the S1 algorithm but instead of generating ptA, tBq honestly, it
samples u Ð Rn``

q and computes:

«

tA

tB

ff

:“ u`

«

A1s1

m

ff

.

Now, we observe that under the MLWEκMLWE,κMSIS``,χ assumption, the out-
put distribution of S2 is computationally indistinguishable from the output
distribution of S1.

Finally, we define our simulator S , which has no access to private in-
formation anymore, as follows. Concretely, it executes the S2 algorithm
but instead of generating ptA, tBq as S2, it samples u Ð Rn``

q and sets
ptA, tBq :“ u. Then, clearly the output distributions of S and S2 are identi-
cal. Hence, the statement holds by the hybrid argument.

Theorem 5.1.3. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πlin for the relation Rlin is knowledge sound with knowl-
edge error 1{|C|.

Proof. Let P˚ be a probabilistic prover which runs in time a most T and
convinces the verifier with probability ε ą |C|´1. By Lemma 3.3.1, there is
an algorithm E which runs in expected time at most 2T and extracts two
accepting transcripts with the same first message pw, vq with probability at
least ε´ 1{|C|:

tri “
´

w, v, cpiq, zpiq1 , zpiq2

¯

for i “ 0, 1.

Let us define c̄ :“ cp1q ´ cp0q. By definition of the challenge space, c̄ P C̄ is
invertible over Rq. Next, we set

s̄i :“
zp1qi ´ zp0qi

c̄
for i “ 1, 2 and m̄ :“ tB ´ Bs̄2.

Then, by construction

A1s̄1 `As̄2 “

´

A1zp1q1 `A2zp1q2

¯

´

´

A1zp0q1 `A2zp0q2

¯

c̄
“

c̄tA
c̄
“ tA

and therefore ABDLOP.Commitps̄1, m̄, s̄2q “ t. Moreover,

}c̄s̄1} “ }z
p1q
1 ´ zp0q1 } ď 2s1

a

2m1d ď B1
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and similarly

}c̄s̄2} “ }z
p1q
2 ´ zp0q2 } ď 2s2

a

2m2d ď B2.

Thus, ABDLOP.Openps̄1, m̄, s̄2, c̄; tq “ 1.
Finally, from the last verification equation we have

R1

«

zp1q1

cp1qtB ´ Bzp1q2

ff

` cp1qr0 “ R1

«

zp0q1

cp0qtB ´ Bzp0q2

ff

` cr0

which implies

R1

«

c̄s̄1

c̄tB ´ c̄Bs̄2

ff

` c̄r0 “ 0.

Again, since c̄ is invertible over Rq, we obtain

R1

«

s̄1

m̄

ff

` r0 “ 0.

5.1.3 Function Evaluations with Vanishing Constant Coefficients

In addition to proving the linear relation R1s` r0 “ 0, we now also want
to prove that for public u1,1, . . . , uM,1 P Rm1``

q and u1,0, . . . , uM,0 P Rq, the
constant coefficients of

uT
i,1s` ui,0 P Rq for i “ 1, 2, . . . , M

is equal to zero. We define the corresponding relation as follows:

Rlin´eval :“

$

&

%

´

pR1, r0, pui,1, ui,0qiPrMsq, s :“ ps1, mq
¯

:

R1s` r0 “ 0^ x̃i “ 0 where xi :“ uT
i,1s` ui,0 for i P rMs

,

.

-

.

A naive solution to prove that x̃i “ 0 would be for the prover to simply
send xi to the verifier in the clear and then prove uT

i,1s` ui,0 ´ xi “ 0 which
is a linear equation. Then, the verifier can check itself whether the constant
coefficient of xi is indeed zero. However, the protocol is not simulatable
since sending xi in the clear reveals information about other coefficients
apart from the constant one.
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We first provide intuition for proving x̃1 “ . . . “ x̃n “ 0 with soundness
error 1{q1. To begin with, note that this implies that for any υ1, . . . , υM P Zq,
the constant coefficient of

x :“
υ
ÿ

i“1

υi

´

uT
i,1s` ui,0

¯

P Rq

is equal to zero. Now, suppose that for some i, the constant coefficient of
uT

i,1s` ui,0 is not equal to 0. Then, if υ1, . . . , υM are chosen uniformly at
random then with probability at most 1{q1 we have x̃ “ 0. This will be a
key observation for soundness. Thus, υ1, . . . , υM will be random challenges
output by the verifier.

As explained above, we cannot simply reveal all the coefficients of x.
Hence, we first commit to a random polynomial g Ð tx P Rq : x̃ “ 0u
which also has the constant coefficient equal to zero. Then, we mask other
coefficients of x apart from the constant one by outputting:

h :“ g` x “ g`
υ
ÿ

i“1

υi

´

uT
i,1s` ui,0

¯

. (5.2)

By construction, h̃ “ 0 and it can be manually checked by the verifier. Finally,
we need to prove that h was constructed correctly. Note that Equation 5.2 is
a simple linear relation in the committed messages s and g and thus can
be proven identically as in the previous subsection. Indeed, define vectors
v1 :“

řM
i“1 υiui,1 and v0 :“

řM
i“1 υiui,0 ´ h. Then, we want to prove the

following linear relation:
«

R1 0Nˆ1

vT
1 1

ff«

s

g

ff

`

«

r0

v0

ff

“ 0.

The intuition for the soundness can be described as follows. If for some i P
rMs, the constant coefficient of uT

i,1s` ui,0 is not equal to 0 and polynomial
g was committed before challenges υ1, . . . , υM were generated, then with
probability at most 1{q1 we have h̃ “ 0.

boosting soundness . Often the prime q1 is too small to guarantee
negligible soundness error. We exponentially reduce the soundness error to
q´λ

1 by repeating the strategy above λ times in parallel. Concretely, we first
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commit to λ polynomials g :“ pg1, . . . , gλq Ð tx P Rq : x̃ “ 0uλ. Then, given
uniformly random challenges Υ :“ pυi,jqiPrλs,jPrMs Ð ZλˆM

q , we output:
»

—

—

—

—

—

–

h1

h2
...

hλ

fi

ffi

ffi

ffi

ffi

ffi

fl

:“

»

—

—

—

—

—

–

g1

g2
...

gλ

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

υ1,1 ¨ ¨ ¨ υ1,M

υ2,1 ¨ ¨ ¨ υ2,M
...

...
...

υλ,1 ¨ ¨ ¨ υλ,M

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

uT
1,1s` u1,0

uT
2,1s` u2,0

...

uT
M,1s` uM,0

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.3)

Thus, the verifier manually checks whether h̃1 “ . . . “ h̃λ “ 0. Finally,
to prove well-formedness of h1, . . . , hλ we note that (5.3) is again a linear
relation in the committed messages. Concretely, we can define the matrix
V1 and the vector v0 as follows:

V1 :“

»

—

—

—

—

—

–

υ1,1 ¨ ¨ ¨ υ1,M

υ2,1 ¨ ¨ ¨ υ2,M
...

...
...

υλ,1 ¨ ¨ ¨ υλ,M

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

uT
1,1

uT
2,1
...

uT
M,1

fi

ffi

ffi

ffi

ffi

ffi

fl

(5.4)

and

v0 :“

»

—

—

—

—

—

–

υ1,1 ¨ ¨ ¨ υ1,M

υ2,1 ¨ ¨ ¨ υ2,M
...

...
...

υλ,1 ¨ ¨ ¨ υλ,M

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

u1,0

u2,0
...

uM,0

fi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

–

h1

h2
...

hλ

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.5)

Then, proving well-formedness of hi and R1s ` r0 “ 0 is equivalent to
proving:

«

R1 0Nˆλ

V1 Iλ

ff«

s

g

ff

`

«

r0

v0

ff

“ 0. (5.6)

We provide a commit-and-prove system Πlin´eval :“ pABDLOP,P ,Vq for
the relation Rlin´eval in Figure 5.2. Namely, prover P starts by committing
to the vector g, i.e. computing tg :“ Bexts` g2. Then, given a challenge
matrix Υ “ pυi,jq from verifier V , the prover outputs the vector h defined in
Equation 5.3. Finally, P runs the subprotocol Πlin to prove well-formedess
of h as well as R1s` r0 “ 0, or alternatively (5.6). The verifier then checks
whether the constant coefficients of h1, . . . , hλ are indeed zeroes and if Πlin

verifies.
2 As explained in Section 4.1, having the matrix Bext allows appending further commitments to
ptA, tBq.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ λq pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB, R1, r0

pp.mat “ pA1, A2, B, Bextq u1,1, . . . , uM,1, u1,0, . . . , uM,0

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

R1 P R
Nˆpm1``q
q , r0 P RN

q

u1,1, . . . , uM,1 P Rm1``
q , u1,0, . . . , uM,0 P Rq

g Ð tx P Rq : x̃ “ 0uλ

tg :“ Bexts2 ` g
tg -

Υ� Υ :“ pυi,jqiPrλs,jPrMs Ð ZλˆM
q

h :“ g` Υ

»

—

—

—

—

—

–

uT
1,1s` u1,0

uT
2,1s` u2,0

...

uT
M,1s` uM,0

fi

ffi

ffi

ffi

ffi

ffi

fl

h -

run Πlin with the following inputs: accept if (i) Πlin verifies and

pp. dim :“ pq, d, κMSIS, m1, m2, `` λ, 0q (ii) h̃1 “ . . . “ h̃λ “ 0

pp.norms :“ pp.norms

pp.mat :“

˜

A1, A2,

«

B

Bext

ff

,H

¸

ps2, ps1, mqq :“ ps2, ps1, m ‖ gqq

V1 :“ Υ

»

—

—

—

—

—

–

uT
1,1

uT
2,1
...

uT
M,1

fi

ffi

ffi

ffi

ffi

ffi

fl

, v0 :“ Υ

»

—

—

—

—

—

–

u1,0

u2,0
...

uM,0

fi

ffi

ffi

ffi

ffi

ffi

fl

´ h

R1 :“

«

R1 0

U1 Iλ

ff

, r0 :“

«

r0

u0

ff

Figure 5.2: Commit-and-prove system Πlin´eval for proving R1s` r0 “ 0 and
that the constant coefficient of uT

i,1s` ui,0 vanishes for i “ 1, 2, . . . , M.
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5.1.3.1 Security Analysis

We summarise security properties of the protocol in Figure 5.2 below.

Theorem 5.1.4. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Πlin´eval for the relation Rlin´eval has statistical completeness with correctness
error 1´ 1

M1 M2
.

Proof. Take any i P rλs. Then, if the constant coefficients of gi and uT
j,1s` uj,0

for j P rMs are zeroes, then we must have that the constant coefficient of

hi “ gi `

M
ÿ

j“1

υi,j

´

uT
j,1s` uj,0

¯

is also equal to zero. The rest of the correctness argument follows from the
proof of Theorem 5.1.1.

Theorem 5.1.5. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Assume κMLWE :“ m2 ´ κMSIS ´ `´ λ ě 0. Then, the commit-and-prove system
Πlin´eval for relation Rlin´eval is simulatable under the MLWEκMLWE,κMSIS```λ,χ
assumption.

Proof. The proof is almost identical to the one for Theorem 5.1.2 with the
addition that the simulator S samples tg Ð Rλ

q and h Ð tx P Rq : x̃ “ 0uλ.
Indeed, since in an honest execution tg is chosen uniformly at random
from tx P Rq : x̃ “ 0uλ, the distribution of the vector h constructed as in
Equation 5.3 is also uniformly random over tx P Rq : x̃ “ 0uλ.

Theorem 5.1.6. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πlin´eval for the relation Rlin´eval is knowledge sound
with knowledge error |C|´1 ` q´λ

1 .
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Proof. Let P˚ be a probabilistic prover which convinces the verifier with
probability ε ą |C|´1` q´λ

1 and runs in time at most T. Define a determinis-
tic algorithm ApρP, ρE, Υq which given randomness ρ “ pρP, ρEq P RP ˆRE
and challenge Υ P ZλˆM

q does the following. It first runs P˚pρPq on ran-
domness ρP with challenge Υ and stops after the third round. Let tg and h
be the output of P˚ in the first and third round respectively. Then, it runs
the extractor E˚pρEq defined in the proof of Theorem 5.1.3 with randomness
ρE (which runs P˚pρP, Υq in a black-box way).

We say that A succeeds if A outputs ptg, Υ, h, s̄1, m̄, ḡ, s̄2, c̄q such that
ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1 and h̃1 “ . . . “ h̃λ “ 0 and

«

R1 0Nˆλ

V1 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v0

ff

“ 0

where V1, v0 are defined as in (5.4),(5.5) and s̄ “ s̄1 ‖ m̄. It is easy to see
that by Theorem 5.1.3, the probability that A succeeds for random ρ and Υ
is at least ε´ 1{|C|. Moreover, the expected runtime of ApρP, ρE, Υq for any
fixed ρP, Υ and ρE Ð RE is at most 2T.

We introduce the following notation. Let H Ď RP ˆRE ˆZλˆM
q be the

set of triples pρ, Υq such that Apρ, Υq succeeds. Also, define HpρPq to be the

set of all pρE, Υq for which pρP, ρE, Υq P H. For fixed pρ, Υq P H, denote s̄pρ,Υq
1

to be the s̄1 part of the output of Apρ, Υq (and similarly for other variables)
and denote

s̄pρ,Υq :“
´

s̄pρ,Υq
1 , m̄pρ,Υq

¯

.

Finally, we define

H1 :“
!

pρ, Υq P H : Dk P rMs, const. coeff. of uT
k,1s̄pρ,Υq ` uk,0 is non-zero

)

.

Then, we have the following claim.

Claim 5.1.7. If pρP, ρE, Υq P H then

Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rpρP, ρ1E, Υ1q P Hs ą 0.

Moreover, if pρP, ρE, Υq P H1 then

Pr
Υ1ÐZ

λˆM
q

»

–@i P rλs, x̃i “ 0

ˇ

ˇ

ˇ

ˇ

ˇ

xi :“ ḡpρ,Υq
i `

M
ÿ

j“1

υ1i,j

´

uT
j,1s̄pρ,Υq ` uj,0

¯

fi

fl ď q´λ
1 .
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Proof. First, we observe that if pρP, ρE, Υq P H then

Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rpρP, ρ1E, Υ1q P Hs ě Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rρ1E “ ρE ^ Υ1 “ Υs

ą 0.

Now, if the constant coefficient of uT
k,1s̄pρ,Υq ` uk,0 is non-zero for some k

then for fixed i, with probability at most 1{q1 the constant coefficient of

ḡpρ,Υq
i `

M
ÿ

j“1

υ1i,j

´

uT
j,1s̄pρ,Υq ` uj,0

¯

vanishes. The statement follows by parallel repetition.

Now, we can define our extractor E . It does the following.

1. Sample ρ “ pρP, ρEq Ð RP ˆRE and Υ P ZλˆM
q and run Apρ, Υq. If

Apρ, Υq does not succeed, abort.

2. If Apρ, Υq succeeds, run ApρP, ρ1E, Υ1q for the same prover randomness
ρP but fresh ρ1E Ð RE and Υ1 Ð ZλˆM

q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “
ps̄11, m̄1, s̄12, c̄1q such that one of the conditions below holds:

• ps̄1, s̄2q ‰ ps̄11, s̄12q and

ABDLOP.Openps̄1, m̄, s̄2, c̄; tq “ 1 “ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tq.

• ABDLOP.Openps̄1, m̄, s̄2, c̄; tq “ 1 and for all i P rMs, the constant
coefficient of uT

i,1s̄` ui,0 is zero where s̄ :“ ps̄1, m̄q

where t :“ tA ‖ tB. In the first case, we break the binding property of the
ABDLOP commitment scheme. On the other hand, we extract the witness
in the second case. Then, we have the following claims about E .

Claim 5.1.8. The expected number of calls to A is at most 2.

Proof. Let X be the expected number of calling A. Take any i P RP and
denote εi to be the probability that Api, ρE, Υq succeeds for ρE Ð RE and
Υ Ð ZλˆM

q . If in the first step of E algorithm A succeeds and ρP “ i, then
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the expected number of running A in the second step is at most 1{εi. Next,
define E to be the event that A succeeds in the first step. Then,

ErXs “
1
|RP|

ÿ

iPR

ErX|ρP “ is

“
1
|RP|

ÿ

iPRP

ErX|ρP “ i^ Es ¨ εi `ErX|ρP “ i^ Es ¨ p1´ εiq

ď
1
|RP|

ÿ

iPRP

ˆ

1`
1
εi

˙

¨ εi ` 1 ¨ p1´ εiq “ 2.

We conclude from the claim above that the expected runtime of E is at
most 4T.

Claim 5.1.9. Probability that E succeeds is at least ε´ 1{|C| ´ q´λ
1 .

Proof. First, we observe that E terminates (without aborting) with prob-
ability at least ε ´ 1{|C|. Suppose E indeed terminates and let us write
ptg, Υ, h, s̄1, m̄, ḡ, s̄2, c̄q and ptg, Υ1, h1, s̄11, m̄1, ḡ1, s̄12, c̄1q to be the respective
outputs of A in the first and second step of E . We have the following
three disjoint cases:

Case 1. ps̄1, m̄, ḡ, s̄2q ‰ ps̄11, m̄1, ḡ1, s̄12q and h̃j “ h̃1j “ 0 for j P rλs and

«

R1 0Nˆλ

V1 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v0

ff

“ 0 and

«

R1 0Nˆλ

V11 Iλ

ff«

s̄1

ḡ1

ff

`

«

r0

v10

ff

“ 0

and

1 “ ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq

“ ABDLOP.Openps̄11, m̄1 ‖ ḡ1, s̄12, c̄1; tA ‖ tB ‖ tgq.

Case 2. ps̄1, m̄, ḡ, s̄2q “ ps̄11, m̄1, ḡ1, s̄12q and h̃j “ h̃1j “ 0 for j P rλs and

ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1

and
«

R1 0Nˆλ

V1 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v0

ff

“ 0 and

«

R1 0Nˆλ

V11 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v10

ff

“ 0
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and for all i P rMs the constant coefficient of uT
i,1s̄` ui,0 is zero.

Case 3. ps̄1, m̄, ḡ, s̄2q “ ps̄11, m̄1, ḡ1, s̄12q and h̃j “ h̃1j “ 0 for j P rλs and

ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1

and
«

R1 0Nˆλ

V1 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v0

ff

“ 0 and

«

R1 0Nˆλ

V11 Iλ

ff«

s̄

ḡ

ff

`

«

r0

v10

ff

“ 0

and there exists i P rMs so that the constant coefficient of uT
i,1s̄ ` ui,0 is

non-zero. Here, we define V11, v10 are as in (5.4) and (5.5) with respect to the
challenge Υ1.

Define Ei to be the event that E terminates and Case i occurs. Then, we
have

ε´ 1{|C| ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and PrrE succeedss ě PrrE1 _ E2s. Hence, we only need to upper-bound
the probability PrrE3s. Define Fps̄, ḡq to be the event that for all i P rλs, the
constant coefficient of

ḡi `

M
ÿ

j“1

υ1i,j

´

uT
j,1s̄` uj,0

¯

vanishes. We apply Claim 5.1.3.1 as follows:

PrrE3s ď Pr

»

–

pApρ, Υq succeedsq ^ Fps̄, ḡq

^

´

Di P rMs : const. coeff. of uT
i,1s̄` ui,0 is non-zero

¯

fi

fl

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1
Pr

pρ1E ,Υ1qÐHpρPq

”

F
´

s̄pρ,Υq, ḡpρ,Υq
¯ı

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1

PrΥ1ÐZ
λˆM
q

”

F
´

s̄pρ,Υq, ḡpρ,Υq
¯ı

Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rpρ1E, Υ1q P HpρPqs

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

ρPPRP

ÿ

pρE ,ΥqPHpρPq

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|
“ q´λ

1
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which concludes the proof.

Finally, the statement follows by combining the two claims about the
extractor E .

5.1.3.2 Proving Linear Equations over Zq

We apply the commit-and-prove system Πlin´eval to prove linear equations
between the polynomial coefficients of s1 and m. Namely, suppose that we
want to prove for public vectors a1 P Rm1

q , a2 P R`
q and u P Zq that:

xa1, s1y ` xa2, my ” u pmod qq. (5.7)

In order to use the techniques described in this section, we present the
following result.

Lemma 5.1.10. Let x, y P Zkd
q and define the polynomial f “ σ´1pxqTy P Rq.

Then, the constant coefficient of f is equal to xx, yy.

Proof. Denote x “ px1, . . . , xkq and y “ py1, . . . , ykq. We just need to prove
that for every i P rks, the first coefficient of fi :“ σ´1pxiqyi P Rq equals to
xxi, yiy. Indeed, let us explicitly write fi as a product of two polynomials:

´

xi,0 ´ xi,d´1X´ . . .´ xi,1Xd´1
¯´

yi,0 ` yi,1X` . . .` yi,d´1Xd´1
¯

.

Then, it is easy to see that the constant coefficient of σ´1pxiqyi is equal to

xi,0yi,0 ` xi,1yi,1 ` . . .` xi,d´1yi,d´1 “ xxi, yiy.

Using the lemma above, we see that (5.7) holds if and only if the constant
coefficient of

σ´1pa1q
Ts1 ` σ´1pa2q

Tm´ u P Rq

is equal to zero. Hence, we can define the linear function F : Rm1``
q Ñ Rq:

Fpxq :“
”

σ´1pa1q
T σ´1pa2q

T
ı

x´ u

and prove that the constant coefficient of Fps1, mq equals to zero using
Πlin´eval. It is easy to see that this argument extends naturally to the case
when one wants to prove multiple equations of the form (5.7).
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5.2 proofs of quadratic relations

We show how to prove quadratic equations between committed messages
ps1, mq using the ABDLOP commitment. For various applications, we will
also need to prove relations between the images of ps1, mq under an auto-
morphism σ P AutpRq, e.g. σps1q

Ts1 ` σpmqTm “ 0 which is a quadratic
relation involving σ.

More concretely, let σ P AutpRq be a public automorphism over R of
degree k and for presentation purposes define:

xxyσ :“
´

x, σpxq, . . . , σk´1pxq
¯

P Rk
q for x P Rq.

Similarly, for a vector x “ px1, . . . , xnq, define xxyσ “ pxx1yσ, . . . , xxnyσq P

Rkn
q . We will use the following simple properties.

Lemma 5.2.1. For any x, y P Rn
q and any c P Rq such that σpcq “ c:

xx ‖ yyσ “ xxyσ ‖ xyyσ and xx` cyyσ “ xxyσ ` cxyyσ.

Also, denote Jn,k :“ In b
”

1 0 ¨ ¨ ¨ 0
ı

P Rnˆkn
q . Then

x “ Jn,kxxyσ.

Suppose we have message vectors s1 P Rm1
q and m P R`

q such that
}s1} ď α. Then, we consider the following statements:

• Single quadratic equation with automorphisms. For a public kpm1 ` `q-
variate quadratic function f over Rq,

f pxs1 ‖ myσq “ 0.

• Many quadratic equations with automorphisms. For N public kpm1 ` `q-
variate quadratic functions f1, . . . , fN over Rq,

f j pxs1 ‖ myσq “ 0 for j P rNs.

• Many quadratic equations with automorphisms and a proof that polynomial
evaluations have no constant coefficients. For N ` M public kpm1 ` `q-
variate quadratic functions f1, . . . , fN and F1, . . . , FM over Rq, the
following hold:

– f j pxs1 ‖ myσq “ 0 for j P rNs,
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– let xj :“ Fj pxs1 ‖ myσq P Rq for j P rMs. Then x̃1 “ . . . “ x̃M “ 0.

Clearly, the statements presented at the beginning of this chapter are a
special case when σ is the identity automorphism σ1.

Remark. Similarly as for [ALS20], our techniques can be easily generalised
to prove higher degree relations. Concretely, if we want to prove degree
k equations, we end up committing to k ´ 1 additional garbage terms.
Throughout this thesis, however, we will only consider quadratic relations.

5.2.1 Single Quadratic Equation with Automorphisms

Let ptA, tBq be the commitment to the message pair ps1, mq under random-
ness s2, i.e.

«

tA

tB

ff

“

«

A1

0

ff

s1 `

«

A2

B

ff

¨ s2 `

«

0

m

ff

.

Suppose the prover wants to prove knowledge of the message

s “

«

xs1yσ

xmyσ

ff

P Rkpm1``q
q

such that f psq “ 0 where f is a kpm1 ` `q-variate quadratic function over
Rq. Note that each quadratic function f can be written explicitly as:

f psq “ sTR2s` rT
1 s` r0

where r0 P Rq, r1 P R
kpm1``q
q and R2 P R

kpm1``qˆkpm1``q
q . Hence, we define

the corresponding relation:

Rquad :“

#

ppR2, r1, r0q, ps1, mqq :

sTR2s` rT
1 s` r0 “ 0 where s :“ pxs1 ‖ myσq

+

.

In order to prove this relation, let us consider the protocol for proving linear
equations over Rq in Figure 5.1. In the last round, the honest prover sends
the masked openings zi “ csi ` yi of si for i “ 1, 2 where the challenge space
C is defined as in (3.5) with the σ automorphism. Even though this is not
the case for m, we can define the masked opening of m as

zm :“ ctB ´ Bz2 “ cm´ By2.

By construction, zm can be computed by the verifier.
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Define the following vectors y and z:

y :“

«

xy1yσ

´xBy2yσ

ff

P Rkpm1``q
q (5.8)

and

z :“

«

xz1yσ

xzmyσ

ff

“ c

«

xs1yσ

xmyσ

ff

`

«

xy1yσ

´xBy2yσ

ff

“ cs` y. (5.9)

Here we used the fact that for c P C, σpcq “ c. Then, we have

zTR2z` crT
1 z` c2r0 “ c2

´

sTR2s` rT
1 s` r0

¯

` cg1 ` g0 (5.10)

where polynomials g1 and g0 are defined as:

g1 “ sTR2y` yTR2s` rT
1 y, g0 “ yTR2y.

Hence, we want to prove that the quadratic term in the expression zTR2z`
crT

1 z` c2r0 vanishes. This is done by first sending a commitment t to the
polynomial g1, i.e. t “ bT

exts2 ` g1 as well as v :“ g0 ` bT
exty2 in the clear.

Then, given t and the masked opening z2 of s2, the verifier can compute
f “ ct´ bT

extz2 “ cg1 ´ bT
exty2. Finally, it checks whether

zTR2z` crT
1 z` c2r0 ´ f ?

“ v

which is a simple transformation of (5.10) when sTR2s` rT
1 s` r0 “ 0.

We present the commit-and-prove system Πquad “ pABDLOP,P ,Vq for
the relation Rquad in Figure 5.3. Prover P starts by sampling masking
vectors y1 Ð Dm1d

s1 , y2 Ð Dm2d
s and computing w “ A1y1 `A2y2. Then, it

calculates g1 “ sTR2y` yTR2s` rT
1 y, where y is defined in (5.8), and the

commitment t “ bT
exts2 ` g1 to g1. Finally, the prover sets v “ yTR2y `

bT
exty2 and sends w, t, v to the verifier.
Next, given a challenge c Ð C, the prover computes zi “ csi ` yi for

i “ 1, 2 and applies rejection sampling. If it does not abort, the prover
outputs z1, z2.

Eventually, the verifier checks whether z1 and z2 have small norms,
A1z1`A2z2 “ w` ctA and zTR2z` crT

1 z` c2r0´ f “ v where z is defined
in (5.9) and f is defined as f “ ct´ bT

extz2.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ 1q pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB, r0, r1, R2, σ

pp.mat “ pA1, A2, B, bT
extq

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

r0 P Rq, r1 P R
kpm1``q
q , R2 P R

kpm1``qˆkpm1``q
q , σ P AutpRq

s :“

«

xs1yσ

xmyσ

ff

y1 Ð Dm1d
s1

y2 Ð Dm2d
s2

w :“ A1y1 `A2y2

y :“

«

xy1yσ

´xBy2yσ

ff

g1 :“ sTR2y` yTR2s` rT
1 y

t :“ bT
exts2 ` g1

v :“ yTR2y` bT
exty2

w, t, v -

c Ð C
c�

z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :

if Rejpiq pzi, csi, si, Miq “ 1

then pz1, z2q :“ pK,Kq
z1, z2 -

z :“

«

xz1yσ

xctB ´ Bz2yσ

ff

f :“ ct´ bT
extz2

Accept iff

}z1} ď s1
a

2m1d and

}z2} ď s2
a

2m2d and

A1z1 `A2z2 “ w` ctA and

zTR2z` crT
1 z` c2r0 ´ f “ v

Figure 5.3: Commit-and-prove system Πquad for proving sTR2s` rT
1 s` r0 “ 0.

Here, Rejp1q,Rejp2q are rejection sampling algorithms.
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5.2.1.1 Security Analysis

We summarise security properties of the protocol in Figure 5.3 below.

Theorem 5.2.2. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system Πquad

for the relation Rquad has statistical completeness with correctness error 1´ 1
M1 M2

.

Proof. To begin with, we bound the norm of cs1 and cs2. Note that by
Lemma 3.2.8 and the definition of C in (3.5) we have }cs1} ď αη and
}cs2}νη

?
m2d. Then, by Lemma 3.3.2, the probability that the two rejection

sampling algorithms Rej0 do not abort is at least 1{pM1M2q. Furthermore,
by Lemma 3.2.2 for t “

?
2 and our assumption that m1d, m2d ě 5κ, the

probability that }z1} ď s1
a

2m1d and }z2} ď s2
?

2m2d is overwhelming.
The other verification equations hold based on the discussion above.

Theorem 5.2.3. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose that κMLWE :“ m2´ κMSIS´ `´ 1 ě 0. Then, the commit-and-prove sys-
tem Πquad for the relation Rquad is simulatable under the MLWEκMLWE,κMSIS```1,χ
assumption.

Proof. We can simulate the commitment and a non-aborting transcript
between the honest prover and the honest verifier in the following way.

First, we define a hybrid simulator S1 which still knows secret informa-
tion s1, m. Given a challenge c Ð C, it honestly generates the commitment
ptA, tB, tq under randomness s2 Ð χm2 . Further, it samples fresh masked
opening z1 Ð Dm1d

s1 and z2 Ð Dm2d
s2 . Finally, it sets w :“ A1z1 `A2z2 ´ ctA

and v :“ zTR2z` crT
1 z` c2r0 ´ ct` bT

extz2. Then, by Lemma 3.3.2, the dis-
tribution of the commitment and a transcript output by S0 is statistically
close to the one in the actual non-aborting protocol.

Further, we describe an efficient simulator S2, which still knows s1, m
and simulates both the commitment and the transcript as follows. Namely,
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it executes the S1 algorithm but instead of generating ptA, tBq honestly, it
samples u Ð Rn```1

q and computes:
»

—

—

–

tA

tB

t

fi

ffi

ffi

fl

:“ u`

»

—

—

–

A1s1

m

g1

fi

ffi

ffi

fl

. (5.11)

Now, we observe that under the MLWEκMLWE,κMSIS```1,χ assumption, the
output distribution of S2 is computationally indistinguishable from the
output distribution of S1.

Finally, we can simply set S (which does not use any secret information)
to proceed identically as S2 but instead of defining ptA, tB, tq as in (5.11), it
directly samples ptA, tB, tq Ð Rn```1

q . Then, the output distributions of S
and S1 are identical. Hence, the statement holds by the hybrid argument.

Theorem 5.2.4. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πquad for the relation Rquad is knowledge sound with
knowledge error 2|C|´1.

Proof. Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą 2|C|´1. By Lemma 3.3.1, there
is an algorithm E which runs in expected time at most 3T and extracts
from P˚ three accepting transcripts with pairwise distinct challenges with
probability at least ε´ 2{|C|:

trpiq “
´

w, t, v, cpiq, zpiq1 , zpiq2

¯

for i “ 0, 1, 2.

First we focus on trp0q and trp1q. Define

c̄ :“ cp1q ´ cp0q and s̄i “
zp1qi ´ zp0qi

cp1q ´ cp0q
for i “ 1, 2.

By construction, we have c̄ P C̄, }c̄s̄1} ď 2s1
a

2m1d ď B1 and also }c̄s̄2} ď

2s2
?

2m2d ď B2. Moreover, A1s̄1 `A2s̄2 “ tA. Further, we define the ex-
tracted message vector

m̄ :“ tB ´ Bs̄2 and ḡ1 :“ t´ bT
exts̄2.

Then, we have
»

—

—

–

tA

tB

t

fi

ffi

ffi

fl

“

»

—

—

–

A1s̄1

0

0

fi

ffi

ffi

fl

`

»

—

—

–

A2

B

bT
ext

fi

ffi

ffi

fl

¨ s̄2 `

»

—

—

–

0

m̄

ḡ1

fi

ffi

ffi

fl

.
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Hence, we get ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1.
Next, let ȳi :“ zp1qi ´ cp1qs̄i “ zp0qi ´ cp0qs̄i for i “ 1, 2. Moreover, consider

the third transcript trp2q and define yp2qi :“ zp2qi ´ cp2qs̄i for i “ 1, 2. We claim

that pȳ1, ȳ2q “ py
p2q
1 , yp2q2 q unless E breaks the binding property of ABDLOP.

Indeed, note that:

A1

˜

zp2q1 ´ zp1q1

cp2q ´ cp1q

¸

`A2

˜

zp2q2 ´ zp1q2

cp2q ´ cp1q

¸

“ tA.

Hence, unless

zp2q1 ´ zp1q1

cp2q ´ cp1q
“ s̄1 and

zp2q2 ´ zp1q2

cp2q ´ cp1q
“ s̄2,

E finds two different openings to ptA, tBq. Assume this is not the case. Then,
we get

zp2q1 ´ zp1q1 “ pcp2q ´ cp1qqs̄1.

Note that the term on the left-hand side can be expanded as:

zp2q1 ´ zp1q1 “ yp2q1 ´ ȳ1 ` pcp2q ´ cp1qqs̄1.

Thus, we conclude that yp2q1 ´ ȳ1 “ 0. Similarly, we deduce that yp2q2 “ ȳ2.
Finally, let us define the following vectors:

s̄ :“

«

xs̄1yσ

xm̄yσ

ff

and ȳ :“

«

xȳ1yσ

´xBȳ2yσ

ff

.

Then, from the verification equations we have that for i “ 0, 1, 2:

zpiq
T

R2zpiq ` cpiqrT
1 zpiq ` cpiq

2
r0 ´

´

cpiqt´ bT
extz

piq
2

¯

“ v (5.12)

where

zpiq :“

«

xzpiq1 yσ

xcpiqtB ´ Bzpiq2 yσ

ff

“ cpiqs̄` ȳ.

By expanding Equation 5.12, we obtain

cpiq
2 ´

s̄TR2s` rT
1 s̄` r0

¯

` cpiqg11 ` g10 “ 0 for i “ 0, 1, 2
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where

g11 “ s̄TR2ȳ` ȳTR2s̄` rT
1 ȳ´ ḡ1

g10 “ ȳTR2ȳ` bT
extȳ2 ´ v.

Alternatively, we can write these three equations as follows:
»

—

—

–

1 cp0q cp0q
2

1 cp1q cp1q
2

1 cp2q cp2q
2

fi

ffi

ffi

fl

»

—

—

–

g10
g11

s̄TR2s̄` rT
1 s̄` r0

fi

ffi

ffi

fl

“

»

—

—

–

0

0

0

fi

ffi

ffi

fl

.

Since the difference of each two challenges in tcp0q, cp1q, cp2qu is invertible
over Rq, we must have that s̄TR2s̄` rT

1 s̄` r0 “ 0.

5.2.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N
quadratic relations. Clearly, if one were to prove them separately using the
approach from Section 5.2.1, one would end up committing to N garbage
polynomials g. Here, we circumvent this issue by linear-combining the N
equations into one quadratic equation and prove it using the protocol in
Figure 5.3. This results in committing to only one garbage polynomials at
the cost of reducing the soundness error by a negligible additive factor.

More precisely, suppose that we want to prove for N public kpm1 ` `q-
variate quadratic functions f1, . . . , fN , over Rq that

f j psq “ 0 for j P rNs where s :“ xs1 ‖ myσ. (5.13)

As before, we can write each function f j as f jpxq :“ xTRj,2x` rj,1x` rj,0. We
define the corresponding relation Rquad´many as:

$

&

%

´

pRi,2, ri,1, ri,0qiPrNs, ps1, mq
¯

:

sTRi,2s` rT
i,1s` ri,0 “ 0 for i P rns where s :“ pxs1 ‖ myσq

,

.

-

.

We let the verifier begin by sending challenges µ1, . . . , µN Ð Rq. Then,
we define a single quadratic function

f pxq :“
N
ÿ

i“1

µj f jpxq “ xT

˜

N
ÿ

i“1

µjRj,2

¸

x`

˜

N
ÿ

i“1

µjrT
j,1

¸

x`
N
ÿ

i“1

µjr0
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ 1q pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB

pp.mat “ pA1, A2, B, bT
extq pri,0, ri,1, Ri,2qiPrNs, σ

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

pri,0, ri,1, Ri,2qiPrNs, σ P AutpRq

µ1, . . . , µN Ð Rq

µ1, . . . , µN�

run Πquad with the following inputs: accept if Πquad verifies

pp :“ pp

ps2, ps1, mqq :“ ps2, ps1, mqq

R2 :“
N
ÿ

i“1

µiRi,2, r1 :“
N
ÿ

i“1

µiri,1, r0 :“
N
ÿ

i“1

µiri,0

Figure 5.4: Commit-and-prove system Πquad´many for proving sTRi,2s` rT
i,1s`

ri,0 “ 0 for i “ 1, . . . , N where s :“ xs1 ‖ myσ.

and prove that
f psq “ 0 (5.14)

using the protocol from Figure 5.3. Now, we observe that if one of the
conditions in (5.13) does not hold, then Equation 5.14 is satisfied with
probability at most q´d{l

1
3.

We present the commit-and-prove system Πquad´many “ pABDLOP,P ,Vq
for the relation Rquad´many in Figure 5.4. Since correctness and simulatability
will be implicitly included in the more general case in Section 5.2.3, we only
focus on knowledge soundness.

Theorem 5.2.5. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πquad´many for the relation Rquad´many is knowledge

sound with knowledge error 2|C|´1 ` q´d{l
1 .

3 Recall that l is the number of factors that Xd ` 1 splits into modulo q.
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Proof. Let P˚ be a probabilistic prover which convinces the verifier with
probability ε ą 2|C|´1 ` q´d{l

1 and runs in time at most T. We define a
deterministic algorithm Apρ, µµµq which given randomness ρ P R and a
challenge µµµ P RN

q , it does the following. It simply runs the extractor E˚pρq
from the proof of Theorem 5.2.4 with randomness ρ which then calls P˚pµµµq
in a black-box way.

We say that A succeeds if A outputs pµµµ, s̄1, m̄, s̄2, c̄q such that

ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1

and

s̄T

˜

N
ÿ

i“1

µjRj,2

¸

s̄`

˜

N
ÿ

i“1

µjrT
j,1

¸

s̄`
N
ÿ

i“1

µjr0 “ 0

where s̄ :“ xs̄1 ‖ m̄y. Note that E˚ could also extract two different openings
of ptA, tBq. But then, A would break the binding property of ABDLOP. For
presentation, we will assume this never occurs.

From Theorem 5.2.4 we know that the expected runtime of A for any µµµ
and ρ Ð R is at most 3T and the probability that A succeeds for random ρ
and µµµ is at least ε´ 2{|C|.

We introduce the following notation. Let H Ď RˆRN
q be the set of triples

pρ, µµµq such that Apρ, µµµq succeeds. Also, define Hpρq to be the set of all µµµ for
which pρ, µµµq P H. For fixed pρ, µµµq P H, denote s̄pρ,µµµq

1 to be the s̄1 part of the
output of Apρ, µµµq (and similarly for other variables) and denote

s̄pρ,µµµq :“
A

s̄pρ,µµµq
1 ‖ m̄pρ,µµµq

E

σ
.

Finally, we define

H1 :“
!

pρ, µµµq P H : Dj P rNs, s̄pρ,µµµqT Rj,2s̄pρ,µµµq ` rT
j,1s̄pρ,µµµq ` rj,0 ‰ 0

)

.

Then, we have the following claim.

Claim 5.2.6. If pρ, µµµq P H then

Pr
µµµ1ÐRN

q

rpρ, µµµ1q P Hs ą 0.

Moreover, if pρ, µµµq P H1 then

Pr
µµµ1ÐRN

q

«

s̄pρ,µµµqT
˜

N
ÿ

i“1

µ1jRj,2

¸

s̄pρ,µµµq `

˜

N
ÿ

i“1

µ1jr
T
j,1

¸

s̄pρ,µµµq `

N
ÿ

i“1

µ1jr0 “ 0

ff

is at most q´d{l
1 .
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Proof. First, we observe that if pρ, µµµq P H then

Pr
µµµ1ÐRN

q

rpρ, µµµ1q P Hs ě Pr
µµµ1ÐRN

q

rµµµ1 “ µµµs ą 0.

Now, if s̄pρ,µµµqT Rj,2s̄pρ,µµµq` rT
j,1s̄pρ,µµµq` rj,0 ‰ 0 for some j, then with probability

at most q´d{l
1 we have

N
ÿ

i“1

µ1i

´

s̄pρ,µµµqT Ri,2s̄pρ,µµµq ` rT
i,1s̄pρ,µµµq ` ri,0

¯

“ 0.

Hence, the claim follows.

Now, we can define our extractor E .

1. Sample ρ Ð R and µµµ P RN
q and run Apρ, µµµq. If Apρ, µµµq does not

succeed, abort.

2. If Apρ, µµµq succeeds, run Apρ, µµµq with fresh ρ1 Ð R and µµµ1 Ð RN
q until

A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “
ps̄11, m̄1, s̄12, c̄1q such that one of the conditions below holds:

• ps̄1, s̄2q ‰ ps̄11, s̄12q and

1 “ ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq

“ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tA ‖ tBq.

• ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1 and for all i P rNs, s̄TRi,2s̄`
rT

i,1s̄` ri,0 “ 0 where s̄ :“ xs̄1 ‖ m̄y.

In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about E .

Claim 5.2.7. The expected number of calls to A is at most 2.

Proof. Let X be the expected number of calling A and let ε be the probability
that Apρ, µµµq succeeds for random ρ and µµµ. Define E to be the event that A
succeeds in the first step. Then,

ErXs “ ErX|Es ¨ ε`ErX|Es ¨ p1´ εq “

ˆ

1`
1
ε

˙

¨ ε` 1 ¨ p1´ εq “ 2.



5.2 proofs of quadratic relations 94

We conclude from the claim above that the expected runtime of E is at
most 6T.

Claim 5.2.8. Probability that E succeeds is at least ε´ 2{|C| ´ q´d{l
1 .

Proof. First, we observe that E terminates (without aborting) with prob-
ability at least ε ´ 2{|C|. Suppose E indeed terminates and let us write
pµµµ, s̄1, m̄, s̄2, c̄q and pµµµ1, s̄11, m̄1, s̄12, c̄1q to be the respective outputs of A in the
first and second step of E . We have the following three disjoint cases:

Case 1. ps̄1, m̄, s̄2q ‰ ps̄11, m̄1, s̄12q and

N
ÿ

i“1

µi

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0 and
N
ÿ

i“1

µ1i

´

s̄1TRi,2s̄1 ` rT
i,1s̄1 ` ri,0

¯

“ 0

and

1 “ ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq

“ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tA ‖ tBq.

Case 2. ps̄1, m̄, s̄2q “ ps̄11, m̄1, s̄12q and ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “

1 and

N
ÿ

i“1

µi

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0 and
N
ÿ

i“1

µ1i

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0

and for all i P rNs, s̄TRi,2s̄` rT
i,1s̄` ri,0 “ 0.

Case 3. ps̄1, m̄, s̄2q “ ps̄11, m̄1, s̄12q and ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “

1 and

N
ÿ

i“1

µi

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0 and
N
ÿ

i“1

µ1i

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0

and there exists i P rNs, such that s̄TRi,2s̄` rT
i,1s̄` ri,0 ‰ 0.

Define Ei to be the event that E terminates and Case i occurs. Then, we
have

ε´ 2{|C| ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and
PrrE succeedss ě PrrE1 _ E2s.
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Hence, we only need to upper-bound the probability PrrE3s. We apply
Claim 5.2.6 as follows:

PrrE3s ď Pr

»

–

pApρ, µµµq succeedsq ^
´

řN
i“1 µ1i

´

s̄TRi,2s̄` rT
i,1s̄` ri,0

¯

“ 0
¯

^

´

Di P rNs : s̄TRi,2s̄` rT
i,1s̄` ri,0 ‰ 0

¯

fi

fl

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPH1
Pr
µµµ1

«

N
ÿ

i“1

µ1i

´

s̄pρ,µµµqT Ri,2s̄pρ,µµµq ` rT
i,1s̄pρ,µµµq ` ri,0

¯

“ 0

ff

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPH1
q´d{l

1

ď
1

|R| ¨ qNd

ÿ

pρ,µµµqPRˆRN
q

q´d{l
1 ď q´d{l

1 .

The statement thus follows by combining the two previous claims.

5.2.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (5.13))
and additionally prove that for quadratic kpm1 ` `q-variate polynomials
F1, . . . , FM, evaluations Fj pxs1 ‖ myσq have the constant coefficient equal to
zero. Concretely, denote the quadratic function

Fjpxq :“ xTR1j,2x` r1Tj,1x` r1j,0 for j P rMs.

We define the correspond relation

Rquad´eval “

$

’

’

&

’

’

%

´´

pRi,2, ri,1, ri,0qiPrNs, pR
1
j,2, r1j,1, r1j,0qjPrMs

¯

, ps1, mq
¯

:

@i P rNs, sTRi,2s` rT
i,1s` ri,0 “ 0 and @j P rMs, x̃j “ 0

where s :“ pxs1 ‖ myσq and xj :“ sTR1j,2s` r1Tj,1s` r1j,0

,

/

/

.

/

/

-

.

(5.15)
For simplicity we first present an approach with soundness error 1{q1.
We apply the strategy from Section 5.1.3 and first commit to a random
masking polynomial g Ð tx P Rq : rx “ 0u. Then, given random challenges
υ1, . . . , υM Ð Zq, we send

h :“ g`
M
ÿ

j“1

υj

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

(5.16)
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to the verifier where s :“ xs1 ‖ myσ as before. Then, it simply checks
whether the constant coefficient of h is indeed equal to zero. What is left
to prove is that h is well-formed, i.e. (5.16) holds. Clearly, Equation 5.16

is a quadratic relation in the committed messages. Indeed, note that it is
equivalent to:

xs1 ‖ m ‖ gyT
σ R̂N`1,2xs1 ‖ m ‖ gyσ ` r̂T

N`1,1xs1 ‖ m ‖ gyσ ` r̂N`1,0 “ 0

where

R̂N`1,2 :“

»

–

řM
j“1 υjR1j,2 0kpm1``qˆk

0kˆkpm1``q 0kˆk

fi

fl P Rkpm1```1qˆkpm1```1q
q

r̂T
N`1,1 :“

”

řM
j“1 υjr1Tj,1 1 01ˆpk´1q

ı

P Rkpm1```1q
q

r̂N`1,0 :“
M
ÿ

j“1

υjr1j,0 ´ h P Rq.

We provide intuition for the soundness argument. Assume that the verifier
is convinced that h is of the correct form (5.16) and rh “ 0. Also, note that
a cheating prover committed to g before seeing the challenges υ1, . . . , υM.
Hence, if for some j P rMs, the constant coefficient of sTR1j,2s` r1Tj,1s` r1j,0 is
non-zero, then the cheating prover has probability at most 1{q1 of guessing

the constant coefficient of
řM

j“1 υj

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

.
Recall that we also need to prove (5.13), i.e.

xs1 ‖ myT
σ Ri,2xs1 ‖ myσ ` rT

i,1xs1 ‖ myσ ` ri,0 “ 0 (5.17)

for i “ 1, . . . , N. Note that each such quadratic equation can be equivalently
written as:

xs1 ‖ m ‖ gyT
σ R̂i,2xs1 ‖ m ‖ gyσ ` r̂T

i,1xs1 ‖ m ‖ gyσ ` r̂i,0 “ 0 (5.18)

where

R̂i,2 :“

«

Ri,2 0kpm1``qˆk

0kˆkpm1``q 0kˆk

ff

P Rkpm1```1qˆkpm1```1q
q

r̂T
i,1 :“

”

rT
i,1 01ˆk

ı

P Rkpm1```1q
q

r̂i,0 :“ ri,0 P Rq.

Hence, we end up with proving N ` 1 quadratic equations of the form
(5.18) for i “ 1, . . . , N ` 1 and can thus apply the protocol Πquad´many.
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boosting soundness . We exponentially decrease the soundness error
by parallel repetition. Namely, in order to obtain q´λ

1 soundness error, we
commit to λ random masking polynomials g “ pg1, . . . , gλq Ð tx : Rq : rx “
0uλ as follows:

tg :“ Bexts2 ` g.

Then, we send tg to the verifier which in return outputs the challenge matrix
pυi,jqiPrλs,jPrMs Ð ZλˆM

q . Then, we compute the vector h “ ph1, . . . , hλq as
follows:

»

—

—

—

—

—

–

h1

h2
...

hλ

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

g1

g2
...

gλ

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

–

υ1,1 υ1,2 ¨ ¨ ¨ υ1,M
...

... ¨ ¨ ¨
...

υλ,1 υλ,2 ¨ ¨ ¨ υλ,M

fi

ffi

ffi

fl

»

—

—

—

—

—

–

sTR11,2s` r1T1,1s` r11,0

sTR12,2s` r1T2,1s` r12,0
...

sTR1M,2s` r1TM,1s` r1M,0

fi

ffi

ffi

ffi

ffi

ffi

fl

(5.19)
and send it to the verifier. It directly checks if all polynomials h1, . . . , hλ P Rq
have constant coefficients equal to zero.

As before, we still need to prove that vector h was constructed correctly.
We reduce this problem to proving quadratic relations. Let us fix i P rλs.
Then,

hi :“ gi `

M
ÿ

j“1

υi,j

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

is equivalent to

xs1 ‖ m ‖ gyT
σ R̂N`i,2xs1 ‖ m ‖ gyσ ` r̂T

N`i,1xs1 ‖ m ‖ gyσ ` r̂N`i,0 “ 0

where

R̂N`i,2 :“

»

–

řM
j“1 υi,jR1j,2 0kpm1``qˆkλ

0kλˆkpm1``q 0kλˆkλ

fi

fl P Rkpm1```λqˆkpm1```λq
q

r̂T
N`i,1 :“

”

řM
j“1 υi,jr1Tj,1 eT

i

ı

P Rkpm1```λq
q

r̂N`i,0 :“
M
ÿ

j“1

υi,jr1j,0 ´ hi P Rq.

(5.20)

and eT
i “

”

01ˆkpi´1q 1 01ˆkpλ´i`1q´1

ı

P Rkλ
q is the binary vector which

has exactly one 1 in the pkpi´ 1q ` 1q-th position.
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Further, we need to prove (5.13), or alternatively (5.17) for i “ 1, . . . , N.
Similarly as before, Equation 5.17 can be written equivalently as

xs1 ‖ m ‖ gyT
σ R̂i,2xs1 ‖ m ‖ gyσ ` r̂T

i,1xs1 ‖ m ‖ gyσ ` r̂i,0 “ 0 (5.21)

where R̂i,2, r̂T
i,1, r̂i,0 are defined as follows

R̂i,2 :“

«

Ri,2 0kpm1``qˆkλ

0kλˆkpm1``q 0kλˆkλ

ff

P Rkpm1```λqˆkpm1```λq
q

r̂T
i,1 :“

”

rT
i,1 01ˆkλ

ı

P Rkpm1```λq
q

r̂i,0 :“ ri,0 P Rq.

(5.22)

Hence, we reduce the problem to proving N ` λ quadratic equations in
xs1 ‖ m ‖ gyσ and can thus run the commit-and-prove system Πquad´many.

We present the commit-and-prove system Πquad´eval “ pABDLOP,P ,Vq
for the relation Rquad´eval in Figure 5.5.

5.2.3.1 Security Analysis

We summarise security properties of the protocol in Figure 5.5 below.

Theorem 5.2.9. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix standard
deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Πquad´eval for the relation Rquad´eval has statistical completeness with correctness
error 1´ 1

M1 M2
.

Proof. Take any i P rλs. Then, if the constant coefficients of gi and sTR1j,2s`
r1Tj,1s` r1j,0 are all zeroes for j P rMs and each υi,j is an integer, then we must
have that the constant coefficient of hi also zero. The rest of the correctness
argument follows from Theorem 5.2.2.

Theorem 5.2.10. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix stan-
dard deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ λ` 1q pp. dim, pp.norms, pp.mat

pp.norms “ pν, ω, α, B1, B2q tA, tB, σ

pp.mat “

˜

A1, A2, B,

«

Bext

bT
ext

ff¸

pri,0, ri,1, Ri,2qiPrNs

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α pr1i,0, r1i,1, R1i,2qiPrMs

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

pri,0, ri,1, Ri,2qiPrNs, pr
1
i,0, r1i,1, R1i,2qiPrMs

σ P AutpRq

s :“

«

xs1yσ

xmyσ

ff

g :“ pg1, . . . , gλq Ð tx : Rq : x̃ “ 0uλ

tg :“ Bexts2 ` g
tg -

pυi,jq Ð ZλˆM
q

pυi,jqiPrλs,jPrMs�

for i P rλs :

hi :“ gi `

M
ÿ

j“1

υi,j

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

h1, . . . , hλ-

run Πquad´many with the following inputs: accept if:

pp. dim :“ pq, d, κMSIS, m1, m2, `` λ, 1q, pp.norms :“ pp.norms (i) Πquad´many verifies

pp.mat :“

˜

A1, A2,

«

B

Bext

ff

, bT
ext

¸

(ii) h̃1 “ . . . “ h̃λ “ 0

ps2, ps1, mqq :“ ps2, ps1, m ‖ gqq

for i P rNs :

Ri,2 :“

«

Ri,2 0kpm1``qˆkλ

0kλˆkpm1``q 0kλˆkλ

ff

, ri,1 :“

«

ri,1

0kλˆ1

ff

ri,0 :“ ri,0

for i P rλs :

RN`i,2 :“

»

–

řM
j“1 υi,jR1j,2 0kpm1``qˆkλ

0kλˆkpm1``q 0kλˆkλ

fi

fl

rN`i,1 :“

«

řM
j“1 υi,jr1j,1

ei

ff

, rN`i,0 :“
M
ÿ

j“1

υi,jr1j,0 ´ hi

Figure 5.5: Commit-and-prove system Πquad´eval for the relation Rquad´eval.
Here, ei P Rkλ

q is the binary vector which has exactly one 1 in the
pkpi´ 1q ` 1q-th position.
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Suppose κMLWE :“ m2 ´ κMSIS ´ `´ λ´ 1 ě 0. Then, the commit-and-prove sys-
tem Πquad for relation Rquad is simulatable under the MLWEκMLWE,κMSIS```λ`1,χ
assumption.

Proof. The proof is almost identical to the one for Theorem 5.2.3 with the
addition that the simulator S samples tg Ð Rλ

q and h Ð tx P Rq : x̃ “ 0uλ.
Indeed, note that since in an honest execution tg is chosen uniformly at
random from tx P Rq : x̃ “ 0uλ, the distribution of the vector h constructed
as in Equation 5.19 is still uniformly random over tx P Rq : x̃ “ 0uλ.

Theorem 5.2.11. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πquad´eval for the relation Rquad´eval is knowledge

sound with knowledge error 2|C|´1 ` q´d{l
1 ` q´λ

1 .

Proof. Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą 2|C|´1` q´d{l

1 ` q´λ
1 . Define a de-

terministic algorithm ApρP, ρE, Υq which given randomness ρ “ pρP, ρEq P

RP ˆRE and challenge Υ P ZλˆM
q does the following. It first runs P˚pρPq

on randomness ρP with challenge Υ and stops after the third round. Let tg
and h be the output of P˚ in the first and third round respectively. Then,
it runs the extractor E˚pρEq defined in the proof of Theorem 5.2.5 with
randomness ρE (which runs P˚pρP, Υq in a black-box way).

We say that A succeeds if A outputs ptg, Υ, h, s̄1, m̄, ḡ, s̄2, c̄q such that
ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1 and h̃1 “ . . . “ h̃λ “ 0 and
for all i,

hi “ ḡi `

M
ÿ

j“1

υi,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

and
s̄TRj,2s̄` rT

j,1s̄` rj,0 “ 0 for j P rNs

where s̄ “ xs̄1 ‖ m̄yσ. As before, we assume that E˚ does not break the
binding property of ABDLOP since if it did, then so does A (and later on E ).
Clearly, by Theorem 5.2.5, the probability that A succeeds for random ρ and
Υ is at least ε´ 2{|C| ´ q´d{l

1 . Moreover, the expected runtime ApρP, ρE, Υq
for any fixed ρP, Υ and ρE Ð RE is at most 6T.

We introduce the following notation. Let H Ď RP ˆRE ˆZλˆM
q be the

set of triples pρ, Υq such that Apρ, Υq succeeds. Also, define HpρPq to be the

set of all pρE, Υq for which pρP, ρE, Υq P H. For fixed pρ, Υq P H, denote s̄pρ,Υq
1
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to be the s̄1 part of the output of Apρ, Υq (and similarly for other variables)
and denote

s̄pρ,Υq :“
A

s̄pρ,Υq
1 , m̄pρ,Υq

E

σ
.

Finally, we define

H1 :“

#

pρ, Υq P H : Dj P rMs, const. coeff. of

s̄pρ,ΥqT R1j,2s̄pρ,Υq ` r1Tj,1s̄pρ,Υq ` r1j,0 is non-zero

+

.

Then, we have the following claim which follows identically as in Claim
5.1.3.1.

Claim 5.2.12. If pρP, ρE, Υq P H then

Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rpρP, ρ1E, Υ1q P Hs ą 0.

Moreover, if pρP, ρE, Υq P H1 then

Pr
Υ1ÐZ

λˆM
q

»

–@i P rλs, x̃i “ 0

ˇ

ˇ

ˇ

ˇ

ˇ

xi :“ ḡpρ,Υq
i `

M
ÿ

j“1

υ1i,j

´

s̄pρ,ΥqT R1j,2s̄pρ,Υq ` r1Tj,1s̄pρ,Υq ` r1j,0
¯

fi

fl

is at most q´λ
1 .

Now, we define our extractor E .

1. Sample ρ “ pρP, ρEq Ð RP ˆRE and Υ P ZλˆM
q and run Apρ, Υq. If

Apρ, Υq does not succeed, abort.

2. If Apρ, Υq succeeds, run ApρP, ρ1E, Υ1q for the same prover randomness
ρP but fresh ρ1E Ð RE and Υ1 Ð ZλˆM

q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “
ps̄11, m̄1, s̄12, c̄1q such that one of the conditions below holds:

• ps̄1, s̄2q ‰ ps̄11, s̄12q and

1 “ ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq

“ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tA ‖ tBq.

• ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1 and for all j P rNs, s̄TRj,2s̄`
rT

j,1s̄` rj,0 “ 0 and for all i P rMs, the constant coefficient of s̄TR1i,2s̄`
r1Ti,1s̄` r1i,0 is zero where s̄ :“ ps̄1, m̄q.
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In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about E .

Claim 5.2.13. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of E is at most 12T.

Claim 5.2.14. Probability that E succeeds is at least ε´ 2{|C| ´ q´d{l ´ q´λ
1 .

Proof. First, we observe that E terminates (without aborting) with prob-
ability at least ε´ 2{|C| ´ q´d{l

1 . Suppose E indeed terminates and let us
write ptg, Υ, h, s̄1, m̄, ḡ, s̄2, c̄q and ptg, Υ1, h1, s̄11, m̄1, ḡ1, s̄12, c̄1q to be the respec-
tive outputs of A in the first and second step of E . We have the following
three disjoint cases:

Case 1. ps̄1, m̄, ḡ, s̄2q ‰ ps̄11, m̄1, ḡ1, s̄12q and for i P rλs, h̃i “ h̃1i “ 0 and
$

’

&

’

%

hi “ ḡi `
řM

j“1 υi,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

h1i “ ḡ1i `
řM

j“1 υ1i,j

´

s̄1TR1j,2s̄1 ` r1Tj,1s̄1 ` r1j,0
¯

and for all j P rNs,

s̄TRj,2s̄` rT
j,1s̄` rj,0 “ 0 and s̄1TRj,2s̄` rT

j,1s̄1 ` rj,0 “ 0

and

1 “ ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq

“ ABDLOP.Openps̄11, m̄1 ‖ ḡ1, s̄12, c̄1; tA ‖ tB ‖ tgq.

Case 2. ps̄1, m̄, ḡ, s̄2q “ ps̄11, m̄1, ḡ1, s̄12q and for i P rλs, h̃i “ h̃1i “ 0 and
$

’

&

’

%

hi “ ḡi `
řM

j“1 υi,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

h1i “ ḡi `
řM

j“1 υ1i,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

and
ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1

and for all j P rNs, s̄TRj,2s̄` rT
j,1s̄` rj,0 “ 0 and for all j P rMs, the constant

coefficient of s̄TR1j,2s̄` r1Tj,1s̄` r1j,0 is zero.
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Case 3.ps̄1, m̄, ḡ, s̄2q “ ps̄11, m̄1, ḡ1, s̄12q and for i P rλs, h̃i “ h̃1i “ 0 and
$

’

&

’

%

hi “ ḡi `
řM

j“1 υi,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

h1i “ ḡi `
řM

j“1 υ1i,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

and
ABDLOP.Openps̄1, m̄ ‖ ḡ, s̄2, c̄; tA ‖ tB ‖ tgq “ 1

and for all j P rNs, s̄TRj,2s̄` rT
j,1s̄` rj,0 “ 0 and there exists j P rMs such

that the constant coefficient of s̄TR1j,2s̄` r1Tj,1s̄` r1j,0 is non-zero.
Define Ei to be the event that E terminates and Case i occurs. Then, we

have
ε´ 2{|C| ´ q´d{l

1 ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and PrrE succeedss ě PrrE1 _ E2s. Hence, we only need to upper-bound
the probability PrrE3s. Define Fps̄, ḡq to be the event that for all i P rλs, the
constant coefficient of

ḡi `

M
ÿ

j“1

υ1i,j

´

s̄TR1j,2s̄` r1Tj,1s̄` r1j,0
¯

vanishes. Now, by Claim 5.2.12 we obtain:

PrrE3s ď Pr

»

–

pApρ, Υq succeedsq ^ Fps̄, ḡq^
´

Dj P rMs : const. coeff. of s̄TR1j,2s̄` r1Tj,1s̄` r1j,0 is non-zero
¯

fi

fl

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1
Pr

pρ1E ,Υ1qÐHpρPq

”

F
´

s̄pρ,Υq, ḡpρ,Υq
¯ı

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1

PrΥ1ÐZ
λˆM
q

”

F
´

s̄pρ,Υq, ḡpρ,Υq
¯ı

Pr
pρ1E ,Υ1qÐREˆZ

λˆM
q

rpρ1E, Υ1q P HpρPqs

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH1

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

pρ,ΥqPH

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|

ď
1

|RP| ¨ |RE| ¨ qλM

ÿ

ρPPRP

ÿ

pρE ,ΥqPHpρPq

q´λ
1 ¨ qλM ¨ |RE|

|HpρPq|
“ q´λ

1 .
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Finally, the statement follows by combining the two claims about the
extractor E .

5.2.3.2 Reducing the Number of Garbage Commitments

The approach in Section 5.2.3 requires us to commit to λ additional poly-
nomials gi in order to have « q´λ

1 soundness error. Here, we consider a
special case when σ :“ σ´1

4 and show how to reduce this number by a
factor of two for free. In particular, will use the following property of σ´1.

Lemma 5.2.15. Define the σ´1-trace map Tr : Rq ÞÑ Rq as

Trpxq “ 2´1 px` σ´1pxqq .

Then for any a, b P Rq, the polynomial y “ Tr paq ` Xd{2Tr pbq satisfies:

y0 “ a0 and yd{2 “ b0.

Proof. We first observe that for any c P Rq such that σ´1pcq “ c we have
cd{2 “ 0. Indeed, if we compare the d{2-th coefficient of c and σ´1pcq, we
get cd{2 “ ´cd{2 and thus cd{2 “ 0.

Let a1 “ Trpaq and b1 “ Trpbq. Clearly, a1, b1 are stable under the σ´1
automorphism and hence we have a1d{2 “ b1d{2 “ 0. Also, by construction
a10 “ a0 and b10 “ b0. Therefore, y0 “ a10 ´ b1d{2 “ a10 “ a0. Similarly,
yd{2 “ a1d{2 ` b10 “ b0.

For simplicity, suppose that λ is even. The strategy here is to consider
each pair papiq, bpiqq, where i P rλ{2s, defined as

apiq :“
M
ÿ

j“1

υ2i´1,j

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

bpiq :“
M
ÿ

j“1

υ2i,j

´

sTR1j,2s` r1Tj,1s` r1j,0
¯

and apply Lemma 5.2.15 to simultaneously prove that the constant coeffi-
cient of both elements in Rq is equal to zero. Concretely, we prove that the
constant and middle coefficient of each

Tr
´

apiq
¯

` Xd{2Tr
´

bpiq
¯

P Rq

4 Thus its degree k is equal to 2.
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is equal to zero.
Similarly as before, we first generate λ{2 random masking polynomials

g “ pg1, . . . , gλ{2q Ð tx P Rq : x0 “ xd{2 “ 0uλ{2. Then, given a chal-
lenge matrix pυi,jq Ð ZλˆM

q , we construct apiq and bpiq as above and send
h1, . . . , hλ{2 defined as follows:

hi “ gi `Tr
´

apiq
¯

` Xd{2Tr
´

bpiq
¯

for i P rλ{2s. (5.23)

The verifier then checks whether the constant and middle coefficient of each
hi is equal to zero.

Finally, we need to prove that all h1, . . . , hλ{2 are well-formed. First, we

observe that there is an efficiently computable matrix U P R2pm1``qˆ2pm1``q
q

such that for all x P Rm1``
q :

σpxxyσq “ Uxxyσ.

Hence, we have the following lemma.

Lemma 5.2.16. Let R2 P R
2pm1``qˆ2pm1``q
q , r1 P R

2pm1``q
q and r0 P Rq. Then

Tr
´

sTR2s` rT
1 s` r0

¯

“ sTV2s` vT
1 s` v0

where
V2 :“ 2´1

´

R2 `UTσpR2qU
¯

,

v1 :“ 2´1
´

r1 `UTσpr1q
¯

v0 :“ 2´1 pr0 ` σpr0qq .

Proof. The proof follows directly from the fact that σpsq “ Us.

By applying Lemma 5.2.16, we note that Equation 5.23 can be written
equivalently as:

xs1 ‖ m ‖ gyT
σ R̂N`i,2xs1 ‖ m ‖ gyσ ` r̂T

N`i,1xs1 ‖ m ‖ gyσ ` r̂N`i,0 “ 0
(5.24)
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where R̂N`i,2, r̂T
N`i,1, r̂N`i,0 are defined as follows

R̂N`i,2 :“

»

–

řM
j“1 2´1pυ2i´1,j ` Xd{2υ2i,jq

´

R1j,2 `UTσpR1j,2qU
¯

02pm1``qˆλ

0λˆ2pm1``q 0λˆλ

fi

fl

r̂T
N`i,1 :“

”

řM
j“1 2´1pυ2i´1,j ` Xd{2υ2i,jq

´

r1Tj,1 ` σpr1Tj,1qU
¯

eT
i

ı

r̂N`i,0 :“
M
ÿ

j“1

2´1pυ2i´1,j ` Xd{2υ2i,jq
´

r1j,0 ` σpr1j,0q
¯

´ hi.

(5.25)
and eT

i “
”

01ˆ2pi´1q 1 01ˆpλ´2i`1q

ı

P Rλ
q is the binary vector which has

exactly one 1 in the p2pi´ 1q ` 1q-th position. Not to mention the fact that
we also need to prove (5.17) for i “ 1, . . . , N. Identically as before, Equation
5.17 can be written equivalently as

xs1 ‖ m ‖ gyT
σ R̂i,2xs1 ‖ m ‖ gyσ ` r̂T

i,1xs1 ‖ m ‖ gyσ ` r̂i,0 “ 0 (5.26)

where R̂i,2, r̂T
i,1, r̂i,0 are defined as follows

R̂i,2 :“

«

Ri,2 02pm1``qˆλ

0λˆ2pm1``q 0λˆλ

ff

P R2pm1```λ{2qˆ2pm1```λ{2q
q

r̂T
i,1 :“

”

rT
i,1 01ˆλ

ı

P R2pm1```λ{2q
q

r̂i,0 :“ ri,0 P Rq.

(5.27)

Hence, we reduce the problem to proving N ` λ{2 quadratic equations in
xs1 ‖ m ‖ gyσ and can thus run the commit-and-prove system Πquad´many.
We present the commit-and-prove system

Πp´1q
quad´eval “ pABDLOP,P ,Vq

for the relation Rquad´eval in Figure 5.6. Below, we state the security proper-

ties of Πp´1q
quad´eval. We omit the proofs since they are almost identical to the

ones presented in Section 5.2.3.1.

Theorem 5.2.17. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix stan-
dard deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ λ{2` 1q pp. dim, pp.norms

pp.norms “ pν, ω, α, B1, B2q pp.mat

pp.mat “

˜

A1, A2, B,

«

Bext

bT
ext

ff¸

tA, tB, σ :“ σ´1

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α pri,0, ri,1, Ri,2qiPrNs

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

pr1i,0, r1i,1, R1i,2qiPrMs

pri,0, ri,1, Ri,2qiPrNs, pr
1
i,0, r1i,1, R1i,2qiPrMs

σ :“ σ´1 P AutpRq

s :“

«

xs1yσ

xmyσ

ff

g :“ pg1, . . . , gλ{2q Ð tx : Rq : x̃ “ 0uλ{2

tg :“ Bexts2 ` g
tg -

pυi,jq Ð Z
λ{2ˆM
q

pυi,jqiPrλ{2s,jPrMs�

for i P rλ{2s :

hi :“ gi `

M
ÿ

j“1

pυ2i´1,j ` Xd{2υ2i,jqTr
´

sTR1j,2s` r1Tj,1s` r1j,0
¯

h1, . . . , hλ-

run Πquad´many with the following inputs: accept if:

pp. dim :“ pq, d, κMSIS, m1, m2, `` λ, 1q, pp.norms :“ pp.norms (i) Πquad´many verifies

pp.mat :“

˜

A1, A2,

«

B

Bext

ff

, bT
ext

¸

(ii) h̃1 “ . . . “ h̃λ “ 0

ps2, ps1, mqq :“ ps2, ps1, m ‖ gqq

for i P rNs :

Ri,2 :“

«

Ri,2 02pm1``qˆλ

0λˆ2pm1``q 0λˆλ

ff

, ri,1 :“

«

ri,1

0λˆ1

ff

, ri,0 :“ ri,0

for i P rλ{2s :

RN`i,2 :“

»

–

řM
j“1 2´1pυ2i´1,j ` Xd{2υ2i,jq

´

R1j,2 `UTσpR1j,2qU
¯

02pm1``qˆλ

0λˆ2pm1``q 0λˆλ

fi

fl

rN`i,1 :“

»

–

řM
j“1 2´1pυ2i´1,j ` Xd{2υ2i,jq

´

r1j,1 `UTσpr1j,1q
¯

ei

fi

fl

rN`i,0 :“
M
ÿ

j“1

2´1pυ2i´1,j ` Xd{2υ2i,jq
´

r1j,0 ` σpr1j,0q
¯

´ hi

Figure 5.6: Commit-and-prove system Πp´1q
quad´eval for the relation Rquad´eval with

σ :“ σ´1. Here, ei P Rλ
q is the binary vector which has exactly one 1

in the p2pi´ 1q ` 1q-th position.
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Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Πp´1q

quad´eval for the relation Rquad´eval has statistical completeness with correctness
error 1´ 1

M1 M2
.

Theorem 5.2.18. Let Rejp1q “ Rejp2q “ Rej0 as defined in Figure 3.2. Fix stan-
dard deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2.

Suppose κMLWE :“ m2 ´ κMSIS ´ `´ λ{2´ 1 ě 0. Then, Πp´1q
quad´eval for relation

Rquad´eval is simulatable under the MLWEκMLWE,κMSIS```λ{2`1,χ assumption.

Theorem 5.2.19. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Then, the
commit-and-prove system Πp´1q

quad´eval for the relation Rquad´eval is knowledge

sound with knowledge error 2|C|´1 ` q´d{l
1 ` q´λ

1 .

5.2.3.3 Proving Inner Products over Zq

We apply the commit-and-prove system Πp´1q
quad´eval to prove inner products

between the polynomial coefficients of s1 and m. Concretely, let V1, V2 P

Rnˆ2pm1``q
q , v1, v2 P Rn

q and u P Zq be public. Denote σ :“ σ´1 and
s :“ xs1 ‖ myσ as before. Then, we want to prove that

xV1s´ v1, V2s´ v2y ” u pmod qq. (5.28)

Similarly as in Section 5.1.3.2, we apply Lemma 5.1.10 to deduce that (5.28)
holds if and only if the constant coefficient of the polynomial

σ pV1s´ v1q
T
pV2s´ v2q ´ u

is equal to zero. Now, using the fact that σpsq “ Us described in Section
5.2.3.2, we obtain

σ pV1s´ v1q
T
pV2s´ v2q ´ u “ pσpV1qUs´ σpv1qq

T
pσpV2qUs´ σpv2qq ´ u

“ sTR12s` r1T1 s` r10
where

R12 :“ UTσpV1q
TσpV2qU

r1T1 :“ ´σpv2q
TσpV1qU´ σpv1q

TσpV2qU

r10 :“ σpv1q
Tσpv2q ´ u.
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Since this is a quadratic relation on s, we can directly apply Πp´1q
quad´eval to

prove that the constant coefficient of σ pV1s´ v1q
T
pV2s´ v2q´ u is equal to

zero. The approach extends naturally if we want to prove multiple equations
of the form (5.28).



6
T O O L B O X F O R P R O V I N G N O R M B O U N D S

Often lattice relations combine two types of statements. First, we want
to prove that the committed messages are a solution to some public (e.g.
linear or quadratic) equation. This has already been covered in Chapter
5. The second one, however, focuses on proving that the secret messages
have small coefficients. One simple yet important example is a proof of
knowledge of a MSIS solution. Namely, we want to prove knowledge of a
vector s P Rm

q such that:

As “ u and }s} ď B

where A P Rnˆm
q , u P Rn

q and bound B are public.
In this chapter, we concentrate on proving that the norms of committed

messages are below certain public bounds. At the core of our techniques
lie the so-called approximate range proofs (ARP) described in Section 6.1. To
briefly show the intuition, suppose we have a vector s such that

}s} ď B (6.1)

where bound B is public. Approximate range proofs allow us, not to prove
exactly that }s} ď B, but to prove that for some known approximation
constant ψ2 ě 1, }s} ď ψ2 ¨ B. Similarly, we can prove for the infinity norm
that }s}8 ď ψ8 ¨ B where ψ8 ě 1. Intuitively, the primary goal of using
ARP is to prove that certain equations over Rq hold also over R by showing
that no wrap-around modulo q occurs.

We apply approximate range proofs and the techniques presented in
Chapter 5 to prove smallness of a vector in both L8 and L2 norm. Concretely,
in Section 6.2 we propose a novel method to prove that a polynomial vector
consists of binary coefficients. For proving larger ranges, one can simply
binary-decompose the vector and prove that the longer vector is binary.
However, we observe that in applications it is sufficient to only have binary
proofs. Furthermore, Section 6.3 focuses on proving (6.1) exactly, i.e. without
any approximation constants as in the case of ARP.

Finally, we combine the newly introduced methods with techniques for
proving linear and quadratic relations from Chapter 5. The end goal of this
chapter is thus a general toolbox for proving various relations which (i)

110
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hold over Rq (e.g. quadratic relations) or (ii) are related to the smallness of
the secret polynomials (e.g. proving the L2 norm).

6.1 approximate range proofs

In this section we provide techniques for proving that the LP norm of
polynomial vector s, which satisfies }s} ď B, is at most ψ ¨ B where ψ is a
public constant that does not depend on B. We will consider the two cases
P P t2,8u. Since in practice ψ will be much larger than 1, we only prove
shortness of s approximately. In order to apply the results from Section 3.2.3,
we set κ “ 128 and aim for 128-bit security. We assume that d ď 256 which
will always be the case in our instantiations.

Concretely, let ps1, mq P Rm1``
q such that }s1} ď α . We initially want to

prove that s1, m satisfy the following:

}Dss1 `Dmm` u} ď B

where Ds P Rnˆm1
q , Dm P Rnˆ`

q and u P Rn
q are public. We can define the

corresponding relation Rarp as

Rarp :“ tppDs, Dm, u, Bq, ps1, mqq : }Dss1 `Dmm` u} ď Bu . (6.2)

We additionally introduce the relaxed relation RpP,ψq
arp

RpP,ψq
arp :“ tppDs, Dm, u, Bq, ps1, mqq : }Dss1 `Dmm` u}P ď ψ ¨ Bu .

Clearly, for any P ě 2 and ψ ě 1 we have Rarp Ď RpP,ψq
arp .

general strategy. We prove shortness of Dss1 ` Dmm ` u using
the following template. First, we embed its coefficient vector into a 256-
dimensional Euclidean space under a random projection. Concretely, let
s :“ Dss1 `Dmm ` u and ~s P Znd

q be its coefficient vector. We commit

to a random masking vector y3 P R256{d
q

1 and given a random matrix

R Ð Bin256ˆnd
1 as a challenge, we output the polynomial vector z3 P R

256{d
q

such that
~z3 :“ ~y3 ` R~s. (6.3)

1 Note that the subscript 3 comes from the fact that y1, y2 are already defined in Figure 5.3
which we use as a black box.
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If we also apply rejection sampling on ~z3 then revealing it to the verifier
leaks no information about s. Now, the prover simply needs to prove
well-formedness of z3 which is a Zq-linear relation in s1, m and y3.

Finally, the verifier checks whether z3 has small coefficients. Then, by
Lemmas 3.2.3 and 3.2.5, if z3 is indeed small and of the correct form then
s must also be small. Since there is a separation between the L8 and L2
norms, we will consider these cases separately.

6.1.1 Approximate Infinity Norm Proof

We follow the strategy described above. More precisely, we start by com-
mitting to the messages ps1, mq using the ABDLOP commitment defined in
Section 4.1. Namely, we sample the randomness s2 Ð χm2 and compute

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

.

Next, we commit to a random masking vector y3 Ð D256
s3

, i.e.

ty :“ Bys2 ` y3.

Then, given a random matrix R Ð Bin256ˆnd
1 as a challenge from the verifier,

we compute the polynomial vector z3 defined by ~z3 :“ ~y3 ` R~s. If the
rejection sampling algorithm does not abort then we output z3.

Now, we need to prove that z3 was well-formed. Let i P r256s and define
ri P R

pm1``q
q to be the polynomial vector so that its coefficient vector is the

i-th row of R. Also, denote ei P R256{d
q to be the polynomial vector such

that its coefficient vector consists of all zeroes and one 1 in the i-th position.
Then, (6.3) holds if and only if for all i “ 1, . . . , 256 we have

xei, z3y “ xei, y3y ` xri, Dss1 `Dmm` uy

“

C

»

—

—

–

σ´1pDsq
Tri

σ´1pDmq
Tri

ei

fi

ffi

ffi

fl

,

»

—

—

–

s1

m

y3

fi

ffi

ffi

fl

G

` xri, uy
(6.4)
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where we used the property that xri, Dss1y “ xσ´1pDsq
Tri, s1ywhich follows

directly from Lemma 5.1.10. Now, this equation is equivalent to the constant
coefficient of the following polynomial being equal to zero:

”

σ´1priq
TDs σ´1priq

TDm σ´1peiq
T
ı

»

—

—

–

s1

m

y3

fi

ffi

ffi

fl

` xri, uy ´ xei, z3y P Rq.

Proving 256 such statements can be easily done using Πeval from Figure 5.6.
Indeed, if we define σ :“ σ´1 and use Lemma 5.2.1 then we need to prove
for i “ 1, . . . , 256 that the constant coefficient of

r1Ti,1xs1 ‖ m ‖ y3yσ ` r1i,0 P Rq

vanishes where

r1T1 :“
”

σ´1priq
TDs σ´1priq

TDm σ´1peiq
T
ı

Jm1```256{d,2 P R
2pm1```256{dq
q

r10 :“ xri, uy ´ xei, z3y P Rq.

Finally, the verifier accepts if the verification equations in Πeval hold and if
}z3}8 ď

?
2κs3. By Lemma 3.2.2 and the union bound, the probability that

the infinity norm of z3 Ð D256
s3

is greater than
?

2κs3 is at most 256 ¨ 2e´κ .
Now, if z3 is well-formed and }z3}8 ď

?
2κs3 then by Lemma 3.2.3 we

deduce that
}Dss1 `Dmm` u}8 “ }s}8 ď 2

?
2κs3.

As before, we can denote the standard deviation s3 :“ γ3T3 where γ3 ą 0
dictates the repetition rate of the rejection sampling and T3 is an upper-
bound on }R~s}. Note that by Lemma 3.2.4, }R~s} ď

?
337B with an over-

whelming probability, and thus we can set s3 :“ γ3
?

337B. Therefore, we
conclude that

}Dss1 `Dmm` u}8 ď 2γ3
?

2κ ¨ 337 ¨ B.

utilising bimodal gaussians . In order to reduce the value of γ3
and thus the approximation factor on the right-hand side, we apply the
bimodal rejection sampling. Namely, we also commit to a sign β Ð t´1, 1u:

tβ :“ bT
β s2 ` β

and then compute z3 in the following way:

~z3 :“ ~y3 ` β ¨ R~s.
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Then, the equation above holds if and only if for all i “ 1, . . . , 256 we have

xei, z3y “ xei, y3y ` β ¨ xri, Dss1 `Dmm` uy

“

C«

β ¨ σ´1pDsq
Tri

β ¨ σ´1pDmq
Tri

ff

,

«

s1

m

ffG

`

C«

ei

xri, uy

ff

,

«

y3

β

ffG

“

C

»

—

—

–

0m1ˆpm1```256{dq σ´1pDsq
Tri

0`ˆpm1```256{dq σ´1pDmq
Tri

0p256{d`1qˆpm1```256{dq 0p256{d`1qˆ1

fi

ffi

ffi

fl

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

G

`

C

»

—

—

—

—

–

0m1ˆ1

0`ˆ1

ei

xri, uy

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

G

which by Lemmas 5.1.10 and 5.2.1 is equivalent to the constant coefficient
of the following polynomial being equal to zero:

xs1 ‖ m ‖ y3 ‖ βyT
σ R1i,2xs1 ‖ m ‖ y3 ‖ βyσ ` r1Ti,1xs1 ‖ m ‖ y3 ‖ βyσ P Rq

where

R1i,2 :“ JT

«

0pm1```256{dqˆm1
0pm1```256{dqˆ` 0pm1```256{dqˆp256{d`1q

σ´1priq
TDs σ´1priq

TDm 01ˆp256{d`1q

ff

J

r1Ti,1 :“
”

01ˆm1 01ˆ` σ´1peiq
T σ´1pxri, uyq

ı

J

and J :“ Jm1```256{d`1,2 as defined in Lemma 5.2.1. Here, we used the
property of the matrix J that

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

“ Jxs1 ‖ m ‖ y3 ‖ βyσ.

As before, proving such statements can be easily done using Πeval from
Figure 5.6.

We still need to prove that β P t´1, 1u. We apply the following simple
fact.
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Fact 6.1.1. Let b P Rq. Then, b P t´1, 1u if and only if b2 “ 1 and the
constant coefficients of X ¨ b, . . . , Xd´1 ¨ b P Rq are all zeroes.

Hence, we prove that β2 “ 1 which is equivalent to

”

sT
1 mT yT

3 β

ı

«

0pm1```256{dqˆpm1```256{dq 0pm1```256{dqˆ1

01ˆpm1```256{dq 1

ff

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

being equal to 1. As a quadratic relation over xs1 ‖ m ‖ y3 ‖ βyσ, we can
write β2 “ 1 as:

xs1 ‖ m ‖ y3 ‖ βyT
σ R1,2xs1 ‖ m ‖ y3 ‖ βyσ ` r1,0 “ 0

where

R1,2 :“ JT

«

0pm1```256{dqˆpm1```256{dq 0pm1```256{dqˆ1

01ˆpm1```256{dq 1

ff

J

r1,0 :“ ´1.

Next, we need to show that the constant coefficient of Xi ¨ β equals zero for
i P rd´ 1s. Equivalently, the constant coefficient of

Xi ¨ β “
”

01ˆpm1```256{dq Xi
ı

»

—

—

—

—

–

s1

m

y3

β

fi

ffi

ffi

ffi

ffi

fl

“

”

01ˆpm1```256{dq Xi
ı

Jxs1 ‖ m ‖ y3 ‖ βyσ

vanishes. Hence, we reduced the problem of proving shortness of Dss1 `

Dmm` u approximately to proving various quadratic relations.
We present the commit-and-prove system Π8arp “ pABDLOP,P ,Vq for the

relation Rarp in Figure 6.1. In the protocol, we run Πeval defined in Section
5.2.3 for proving quadratic relations.

6.1.1.1 Security Analysis

We provide security properties of the commit-and-prove Π8arp below.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ 256{d` λ{2` 2q pp. dim, pp.norms

pp.norms “ pν, ω, α, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2, B,

»

—

—

—

—

–

By

bT
β

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

tA, tB

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α Ds, Dm, u

«

tA

tB

ff

“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

Ds P Rnˆm1
q , Dm P Rnˆ`

q , u P Rn
q

s :“ Dss1 `Dmm` u, }s} ď B

y3 Ð D256
s3

β Ð t´1, 1u

ty :“ Bys2 ` y3

tβ :“ bT
β s2 ` β

ty, tβ -

R Ð Bin256ˆnd
2

R�

compute z3 P R
256{d
q so that ~z3 :“ ~y3 ` β ¨ R~s

if Rejp3q p~z3, R~s, s3, M3q “ 1

then z3 :“ K z3 -

run Πeval with the following inputs: accept if:

pp. dim :“ pq, d, κMSIS, m1, m2, `` 256{d` 1, λ{2` 1q, pp.norms :“ pp.norms (i) Πeval verifies

pp.mat :“

¨

˚

˚

˝

A1, A2,

»

—

—

–

B

By

bT
β

fi

ffi

ffi

fl

,

«

Bext

bT
ext

ff

˛

‹

‹

‚

(ii) }z3}8 ď
?

2κs3

ps2, ps1, mqq :“ ps2, ps1, m ‖ y3 ‖ βqq

J :“ J``256{d`1,2 defined in Lemma 5.2.1, peiqiPr256s defined as in (6.4)

R1,2 :“ JT

«

0pm1```256{dqˆpm1```256{dq 0pm1```256{dqˆ1

01ˆpm1```256{dq 1

ff

J,

r1,1 :“ 02pm1```256{dqˆ1, r1,0 :“ ´1

for i P r256s :

R1i,2 :“ JT

«

0pm1```256{dqˆm1
0pm1```256{dqˆ` 0pm1```256{dqˆp256{d`1q

σ´1priq
TDs σ´1priq

TDm 01ˆp256{d`1q

ff

J

r1i,1 :“ JT

»

—

—

—

—

–

0m1ˆ1

0`ˆ1

σ´1peiq

σ´1pxri, uyq

fi

ffi

ffi

ffi

ffi

fl

, r1i,0 :“ 0

for i P rd´ 1s :

R1256`i,2 :“ 02pm1```256{d`1qˆ2pm1```256{d`1q, r1256`i,1 :“ JT

«

0pm1```256{dqˆ1

Xi

ff

r1256`i,0 “ ´xei, z3y

Figure 6.1: Commit-and-prove system Π8arp for the relation Rarp.
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Theorem 6.1.2. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations s1 “ γ1ηα, s2 “ γ2ην

?
m2d and s3 “

γ3
?

337B for some γ1, γ2, γ3 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2 and M3 :“ exp

˜

1
2γ2

3

¸

.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Π8arp for the relation Rarp has statistical completeness with correctness error 1´

1
M1 M2 M3

` 2´128.

Proof. First, note that }R~s} ď
?

337B with probability at least 1´ 2´128 by
Lemma 3.2.4. Assuming this inequality holds, the probability that an honest
prover succeeds in all three rejection sampling algorithms is 1{pM1M2M3q

by Lemmas 3.3.2 and 3.3.3. In terms of verification equations, }z3}8 ą?
2κs3 with probability at most 256 ¨ 2e´κ by Lemma 3.2.2. All the other

verification equations hold by the discussion above.

Theorem 6.1.3. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations s1 “ γ1ηα, s2 “ γ2ην

?
m2d and s3 “

γ3
?

337B for some γ1, γ2, γ3 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2 and M3 :“ exp

˜

1
2γ2

3

¸

.

Suppose κMLWE :“ m2 ´ κMSIS ´ ` ´ λ{2´ 256{d ´ 2 ě 0. Then, under the
MLWEκMLWE,κMSIS```λ{2`256{d`2,χ,C,Dd

s2
assumption, Π8arp for relation Rarp is

simulatable.

Proof. The simulator S simply simulates z3 by picking z3 Ð D256
s3

and
following the simulator in Theorem 5.2.18. Thus, the statement holds by
Lemma 3.3.3 and the aforementioned theorem.

As described above, we now show that the commit-and-prove system

Π8arp for the relation Rp8,ψq
arp (and not Rarp) is knowledge sound where ψ is

a public approximation factor.

Theorem 6.1.4. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Let s3 :“
γ3
?

337B and ψ :“ 2γ3
?

337 ¨ 2κ for γ3 ą 0. Then, the commit-and-prove system
Π8arp for the relation Rp8,ψq

arp is knowledge sound with knowledge error

2|C|´1 ` q´d{l
1 ` q´λ

1 ` 2´256.
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Proof. Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą 2|C|´1 ` q´d{l

1 ` q´λ
1 ` 2´256.

Define a deterministic algorithm ApρP, ρE, Rq which given randomness ρ “
pρP, ρEq P RP ˆRE and challenge R P t´1, 0, 1u256ˆnd does the following.
It first runs P˚pρPq on randomness ρP with challenge R and stops after
the third round. Let ty, tβ and z3 be the output of P˚ in the first and third
round respectively. Then, it runs the extractor E˚pρEq defined in the proof of
Theorem 5.2.19 with randomness ρE (which runs P˚pρP, Rq in a black-box
way).

We say that A succeeds if A outputs pty, tβ, R, z3, s̄1, m̄, ȳ3, β̄, s̄2, c̄q such
that

ABDLOP.Openps̄1, m̄ ‖ ȳ3 ‖ β̄, s̄2, c̄; tA ‖ tB ‖ ty ‖ tβq “ 1

and }z3} ď
?

2κs3 and ~z3 “ β̄ ¨ R~s`~y3 where s :“ Ds s̄1 `Dmm̄` u and
β̄ P t´1, 1u. As before, we assume that E˚ does not break the binding
property of ABDLOP since if it did, then so does A (and later on E ). Clearly,
by Theorem 5.2.19, the probability that A succeeds for random ρ and R is at
least ε´ 2{|C| ´ q´d{l

1 ´ q´λ
1 . Moreover, the expected runtime ApρP, ρE, Rq

for any fixed ρP, R and ρE Ð RE is at most 12T.
We introduce the following notation. Let H Ď RP ˆRE ˆ t´1, 0, 1u256ˆnd

be the set of triples pρ, Rq such that Apρ, Rq succeeds. Also, define HpρPq

to be the set of all pρE, Rq for which pρP, ρE, Rq P H. For fixed pρ, Rq P H,
denote s̄pρ,Rq

1 to be the s1 part of the output of Apρ, Rq (and similarly for
other variables) and denote

spρ,Rq :“ Ds s̄pρ,Rq
1 `Dmm̄pρ,Rq ` u.

Finally, we define

H1 :“
!

pρ, Rq P H : }spρ,Rq}8 ą 2
?

2κs3

)

.

Then, we have the following claim.

Claim 6.1.5. If pρP, ρE, Rq P H then

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2

rpρP, ρ1E, R1q P Hs ą 0.

Moreover, if pρP, ρE, Rq P H1 then

Pr
R1ÐBin256ˆnd

2

”
›

›

›
~ypρ,Rq

3 ` R1~spρ,Rq
›

›

›

8
ď
?

2κs3

ı

ď 2´256.
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Proof. The first part of the claim is identical as e.g. Claim 5.1.3.1. The second
one follows directly from definition of H1 and Lemma 3.2.3.

Now, we define our extractor E .

1. Sample ρ “ pρP, ρEq Ð RP ˆRE and R P Bin256ˆnd
2 and run Apρ, Rq.

If Apρ, Rq does not succeed, abort.

2. If Apρ, Rq succeeds, run ApρP, ρ1E, R1q for the same prover randomness
ρP but fresh ρ1E Ð RE and R1 Ð Bin256ˆnd

2 until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “
ps̄11, m̄1, s̄12, c̄1q such that one of the conditions below holds:

• ps̄1, s̄2q ‰ ps̄11, s̄12q and

1 “ ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq

“ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tA ‖ tBq.

• ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1 and

}Ds s̄1 `Dmm̄` u} ď 2
?

2κs3 “ ψB.

In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about E .

Claim 6.1.6. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of E is at most 24T.

Claim 6.1.7. Probability that E succeeds is at least ε´ 2{|C| ´ q´d{l
1 ´ q´λ

1 ´

2´256.

Proof. First, we observe that E terminates (without aborting) with proba-
bility at least ε´ 2{|C| ´ q´d{l

1 ´ q´λ
1 . Suppose E indeed terminates and let

us write pty, tβ, R, z3, s̄1, m̄, ȳ3, s̄2, c̄q and pty, tβ, R1, z13, s̄11, m̄1, ȳ13, s̄12, c̄1q to be
the respective outputs of A in the first and second step of E . We have the
following three disjoint cases:

Case 1. ps̄1, m̄, ȳ3, β̄, s̄2q ‰ ps̄11, m̄1, ȳ13, β̄1, s̄12q, β̄, β̄1 P t´1, 1u and }z3}8 ď?
2κs3, }z13}8 ď

?
2κs3 and

~z3 “ β̄ ¨ R~s`~y3 and ~z13 “ β̄1 ¨ R1~s1 `~y13
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and

1 “ ABDLOP.Openps̄1, m̄ ‖ ȳ3 ‖ β̄, s̄2, c̄; tA ‖ tB ‖ tβq

“ ABDLOP.Openps̄11, m̄1 ‖ ȳ13 ‖ β̄1, s̄12, c̄1; tA ‖ tB ‖ tβq.

where
s :“ }Ds s̄1 `Dmm̄` u}, s :“ }Ds s̄11 `Dmm̄1 ` u}.

Case 2. ps̄1, m̄, ȳ3, β̄, s̄2q “ ps̄11, m̄1, ȳ13, β̄1, s̄12q and β̄ P t´1, 1u and }z3}8 ď?
2κs3, }z13}8 ď

?
2κs3 and

~z3 “ β̄ ¨ R~s`~y3 and ~z13 “ β̄ ¨ R1~s`~y3

and

1 “ ABDLOP.Openps̄1, m̄ ‖ ȳ3 ‖ β̄, s̄2, c̄; tA ‖ tB ‖ tβq.

and }~s} ď 2
?

2κs3 where s :“ }Ds s̄1 `Dmm̄` u}.
Case 3.ps̄1, m̄, ȳ3, β̄, s̄2q “ ps̄11, m̄1, ȳ13, β̄1, s̄12q and β̄ P t´1, 1u and }z3}8 ď?
2κs3, }z13}8 ď

?
2κs3 and

~z3 “ β̄ ¨ R~s`~y3 and ~z13 “ β̄ ¨ R1~s`~y3

and

1 “ ABDLOP.Openps̄1, m̄ ‖ ȳ3 ‖ β̄, s̄2, c̄; tA ‖ tB ‖ tβq.

and }~s} ą 2
?

2κs3 where s :“ }Ds s̄1 `Dmm̄` u}.
Define Ei to be the event that E terminates and Case i occurs. Then, we

have

ε´ 2{|C| ´ q´d{l
1 ´´q´λ

1 ď PrrE terminatess “ PrrE1 _ E2 _ E3s

and
PrrE succeedss ě PrrE1 _ E2s.

Hence, we only need to upper-bound the probability PrrE3s. Clearly, we
have

PrrE3s ď Pr
”

pApρ, Rq succeedsq ^
´

›

›~y3 ` R1~s
›

›

8
ď
?

2κs3

¯

^

´

}s} ą 2
?

2κs3

¯ı

.

Define Dpρ˚, R˚q :“ Pr
pρ,RqÐRPˆREˆBin256ˆnd

2
rpρ, Rq “ pρ˚, R˚qs for fixed

pρ˚, R˚q P RP ˆRE ˆ t´1, 0, 1u256ˆnd.
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Now, by Claim 6.1.5 we obtain:

PrrE3s ď
ÿ

pρ˚,R˚qPH1
Pr

pρ1E ,R1qÐHpρ˚P q

”
›

›

›
~ypρ

˚,R˚q
3 ` R1~spρ

˚,R˚q
›

›

›

8
ď
?

2κs3

ı

¨Dpρ˚, R˚q

ď
ÿ

pρ˚,R˚qPH1

PrR1ÐBin256ˆnd
2

”
›

›

›
~ypρ

˚,R˚q
3 ` R1~spρ

˚,R˚q
›

›

›

8
ď
?

2κs3

ı

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2
rpρ1E, R1q P Hpρ˚Pqs

¨Dpρ˚, R˚q

ď
ÿ

pρ˚,R˚qPH1

2´256

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2
rpρ1E, R1q P Hpρ˚Pqs

¨Dpρ˚, R˚q

ď
ÿ

pρ˚,R˚qPH

2´256

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2
rpρ1E, R1q P Hpρ˚Pqs

¨Dpρ˚, R˚q

ď
ÿ

ρ˚P PRP

ÿ

pρ˚E ,R˚qPHpρ˚P q

2´256

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2
rpρ1E, R1q P Hpρ˚Pqs

¨Dpρ˚, R˚q

ď 2´256 ¨
ÿ

ρ˚P PRP

ř

pρ˚E ,R˚qPHpρ˚P q
Dpρ˚, R˚q

Pr
pρ1E ,R1qÐREˆBin256ˆnd

2
rpρ1E, R1q P Hpρ˚Pqs

ď 2´256.

Finally, the statement follows by combining the two claims about the
extractor E .

6.1.2 Approximate Euclidean Norm Proof

Suppose we want to prove the L2 norm approximately, i.e. }Dss1 `Dmm`

u} ď ψ ¨ B. The approach is almost identical to the one presented in Section
6.1.1 with the only change being that the verifier checks if the L2 norm
of the message z3. Indeed, instead of requiring }z3}8 ď

?
2κs3, we check

whether }z3} ď $s3
?

256 where $ P R` satisfies

$256 ¨ e128p1´$2q “ 2´κ .

For example, when κ “ 128 then we can set $ “ 1.64. Clearly, if z3 Ð D256
s3

then by Lemma 3.2.2, the probability that }z3} ď $s3
?

256 is at least 1´ 2´κ .
Assume that we proved the well-formedness of z3 as before, namely

~z3 “ ~y3 ` β ¨ R~s.
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Now we can apply Lemma 3.2.5. Concretely, with probability at least
1´ 2´128, we conclude that

}~s} “ }β ¨~s} ď
2
?

26
¨ $s3

?
256.

As before, we will set s3 “ γ3
?

337B by Lemma 3.2.4 and thus we proved

the norm of s approximately where ψ :“ 2
b

337¨256
26 ¨ $ ¨ γ3.

One of the main differences from the infinity norm case is that in order to
use Lemma 3.2.5, we need large enough modulus q so that no wrap-around
occurs. Namely, q should satisfy

q ě 41 ¨ nd ¨
2
?

26
¨ $s3

?
256.

We present the commit-and-prove system Π2
arp “ pABDLOP,P ,Vq for the

relation Rarp in Figure 6.2. In the protocol, we run Πeval defined in Section
5.2.3 for proving quadratic relations.

6.1.2.1 Security Analysis

As discussed above, the only difference to Π8arp is that the verifier checks
the shortness of the vector z3 in the L2 rather than the L8 norm. Thus,
the security analysis is almost identical to the results presented in Section
6.1.1.1. Hence, we provide security properties of the commit-and-prove Π2

arp

and omit the proofs.

Theorem 6.1.8. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations s1 “ γ1ηα, s2 “ γ2ην

?
m2d and s3 “

γ3
?

337B for some γ1, γ2, γ3 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2 and M3 :“ exp

˜

1
2γ2

3

¸

.

Suppose that m1d ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Π2

arp for the relation Rarp has statistical completeness with correctness error 1´
1

M1 M2 M3
` 2´128.

Theorem 6.1.9. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations s1 “ γ1ηα, s2 “ γ2ην

?
m2d and s3 “

γ3
?

337B for some γ1, γ2, γ3 ą 0 and define

Mi :“ exp

˜
d

2pκ` 1q
logpeq

¨
1
γi
`

1
2γ2

i

¸

for i “ 1, 2 and M3 :“ exp

˜

1
2γ2

3

¸

.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1, m2, `, `ext :“ 256{d` λ{2` 2q pp. dim, pp.norms

pp.norms “ pν, ω, α, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2, B,

»

—

—

—

—

–

By

bT
β

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

tA, tB

s1 P Rm1
q , s2 P Rm2

q , m P R`
q so that }s1} ď α Ds, Dm, u

«

tA

tB

ff

“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

$ ą 0 which satisfies:

Ds P Rnˆm1
q , Dm P Rnˆ`

q , u P Rn
q $256 ¨ e128p1´$2q “ 2´κ

s :“ Dss1 `Dmm` u, }s} ď B

y3 Ð D256
s3

β Ð t´1, 1u

ty :“ Bys2 ` y3

tβ :“ bT
β s2 ` β

ty, tβ -

R Ð Bin256ˆnd
2

R�

compute z3 P R
256{d
q so that ~z3 :“ ~y3 ` β ¨ R~s

if Rejp3q p~z3, R~s, s3, M3q “ 1

then z3 :“ K z3 -

run Πeval with the following inputs: accept if:

pp. dim :“ pq, d, κMSIS, m1, m2, `` 256{d` 1, λ{2` 1q, pp.norms :“ pp.norms (i) Πeval verifies

pp.mat :“

¨

˚

˚

˝

A1, A2,

»

—

—

–

B

By

bT
β

fi

ffi

ffi

fl

,

«

Bext

bT
ext

ff

˛

‹

‹

‚

(ii) }z3} ď $s3
?

256

ps2, ps1, mqq :“ ps2, ps1, m ‖ y3 ‖ βqq

J :“ J``256{d`1,2 defined in Lemma 5.2.1, peiqiPr256s defined as in (6.4)

R1,2 :“ JT

«

0pm1```256{dqˆpm1```256{dq 0pm1```256{dqˆ1

01ˆpm1```256{dq 1

ff

J,

r1,1 :“ 02pm1```256{dqˆ1, r1,0 :“ ´1

for i P r256s :

R1i,2 :“ JT

«

0pm1```256{dqˆm1
0pm1```256{dqˆ` 0pm1```256{dqˆp256{d`1q

σ´1priq
TDs σ´1priq

TDm 01ˆp256{d`1q

ff

J

r1i,1 :“ JT

»

—

—

—

—

–

0m1ˆ1

0`ˆ1

σ´1peiq

σ´1pxri, uyq

fi

ffi

ffi

ffi

ffi

fl

, r1i,0 :“ 0

for i P rd´ 1s :

R1256`i,2 :“ 02pm1```256{d`1qˆ2pm1```256{d`1q, r1256`i,1 :“ JT

«

0pm1```256{dqˆ1

Xi

ff

r1256`i,0 “ ´xei, z3y

Figure 6.2: Commit-and-prove system Π2
arp for the relation Rarp.
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Suppose κMLWE :“ m2 ´ κMSIS ´ ` ´ λ{2´ 256{d ´ 2 ě 0. Then, under the
MLWEκMLWE,κMSIS```λ{2`256{d`2,χ,C,Dd

s2
assumption, Π2

arp for relation Rarp is
simulatable.

Theorem 6.1.10. Suppose B1 ě 2s1
a

2m1d and B2 ě 2s2
?

2m2d. Let s3 :“

γ3
?

337B and ψ :“ 2
b

337¨256
26 $γ3 for γ3 ą 0. If

q ě 41 ¨ nd ¨
2
?

26
¨ $s3

?
256

then, the commit-and-prove system Π2
arp for the relation Rp2,ψq

arp is knowledge sound

with knowledge error 2|C|´1 ` q´d{l
1 ` q´λ

1 ` 2´128.

The soundness proof is almost identical to the proof of Theorem 6.1.4 with
the only difference being that we apply Lemma 3.2.5 instead of Lemma 3.2.3.
This has two consequences. Namely, (i) we need large enough modulus q to
use Lemma 3.2.5 and (ii) the constant term in the knowledge error becomes
2´128 instead of 2´256.

Remark. As expected, this approximate Euclidean norm proof is tighter
than just proving the L8 norm proof from Section 6.1.1 and deducing the
L2 norm by using trivial inequalities. Indeed, if one were to do the naive
method, one would end up with proving }s}8 ď 2γ3

?
337 ¨ 2κ and thus

}s} ď 2γ3
?

337 ¨ 2κ
?

nd

which is dependent on the dimension of the vector s. As shown in Theorem
6.1.10, we can prove the L2 norm of s approximately, where the approxi-
mation factor ψ is independent of dimension of s. However, this comes at
the cost of an additional condition on the proof system modulus q. Hence,
when it is not important to prove the norm of s tightly, i.e. we are fine with
a relatively large approximation factor, then it is more beneficial to prove
the Euclidean norm through the L8 norm proof from Section 6.1.1.

6.2 proving exact shortness in the infinity norm

In this section, we present a way to prove exactly that coefficients of a secret
vector s lie in a certain (public) range. At the core of our techniques is a
new proof that coefficients of s are binary. Note that if one were interested
in proving larger ranges, e.g. that coefficients of s are in t´1, 0, 1u, then one
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could simply binary-decompose s into a larger vector s1 and prove that s1

has binary coefficients instead.
Concretely, let ps1, mq P Rm1``

q such that }s1} ď α . We initially want to
prove that the coefficients of the following vector are binary

s :“ Dss1 `Dmm` u P Rn
q

where Ds P Rnˆm1
q , Dm P Rnˆ`

q and u P Rn
q are public. In order to prove

such statements, we rely on the following simple observation.

Lemma 6.2.1. Let~s P Zm. Then,~s P t0, 1um if and only if x~s,~s´~1y “ 0.

Proof. Clearly, if ~s P t0, 1um then for each i P rms, sipsi ´~1q “ 0 and thus
x~s,~s´~1y “ 0. On the other hand, note that

@a P Z, apa´ 1q ě 0

and the equality holds if and only if a P t0, 1u. Hence, if ~s R t0, 1um then
x~s,~s´~1y ą 0.

We denote

x :“ p1` X` . . .` Xd´1, . . . , 1` X` . . .` Xd´1q P Rn
q (6.5)

to be the vector such that ~x “ 1nd P Znd. Then, Lemma 6.2.1 says that s has
binary coefficients if and only if xs, s´ xy “ 0 over integers. We observe that
if one were to prove the inner product modulo q then by Lemma 5.1.10, this
corresponds to proving that the constant coefficient of σps´ xqTs, which
can be equivalently written as

”

sT
1 mT σps1q

T σpmqT
ı

»

—

—

—

—

–

0 0 0 0

0 0 0 0

σpDsq
TDs σpDsq

TDm 0 0

σpDmq
TDs σpDmq

TDm 0 0

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

s1

m

σps1q

σpmq

fi

ffi

ffi

ffi

ffi

fl

`

”

σpu´ xqTDs σpu´ xqTDm uTσpDsq uTσpDmq

ı

»

—

—

—

—

–

s1

m

σps1q

σpmq

fi

ffi

ffi

ffi

ffi

fl

` σpu´ xqTu
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vanishes where σ :“ σ´1 as usual. Proving such a statement was already
covered in Section 5.2.3. Finally, in order to prove that xs, s´ xy “ 0 holds
over integers and modulo q, we apply the approximate L2 proof on s. Since
its coefficients are binary, we have }s} ď

?
nd. The proof system in Section

6.1.2 allows us to prove that

}s} ď ψ ¨
?

nd “ 2

c

337 ¨ 256
26

$γ3 ¨
?

nd.

Now, note that for any~a P Rm such that }~a} ď B we have:

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

aipai ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

m
ÿ

i“1

a2
i `

m
ÿ

i“1

|ai| ď

m
ÿ

i“1

a2
i `m

d

řm
i“1 a2

i
m

ď B2 ` B
?

m. (6.6)

Here we used the inequality of arithmetic and geometric means.
Hence, we want to set the modulus q so that the extracted s satisfies

|xs, s´ xy| ă q. Namely, we pick q such that

|xs, s´ xy| ď ψ2nd` ψnd “ ψndpψ` 1q ă q.

If this is the case and xs, s ´ xy “ 0 modulo q then we can deduce that
xs, s´ xy “ 0 over integers. This proves that the coefficients of the extracted
s are binary.

6.3 proving exact shortness in the euclidean norm

This section focuses on proving exactly that a secret vector s satisfies }s} ď B
for some bound B ă ?q, without any approximation factors. For simplicity,
we first consider a simple case – proving that }s} “ B.

Concretely, let ps1, mq P Rm1``
q such that }s1} ď α . We initially want to

prove that
}s} “ B where s :“ Dss1 `Dmm` u P Rn

q

and Ds P Rnˆm1
q , Dm P Rnˆ`

q and u P Rn
q are public.

The main observation in this section is that }s}2 “ xs, sy and thus in order
to prove }s} “ B modulo q, we simply need to prove that the constant
coefficient of the polynomial σpsqTs´ B2 vanishes. We can do that using
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techniques from Section 5.2.3. Indeed, the polynomial can be equivalently
written as

”

sT
1 mT σps1q

T σpmqT
ı

»

—

—

—

—

–

0 0 0 0

0 0 0 0

σpDsq
TDs σpDsq

TDm 0 0

σpDmq
TDs σpDmq

TDm 0 0

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

s1

m

σps1q

σpmq

fi

ffi

ffi

ffi

ffi

fl

`

”

σpuqTDs σpuqTDm uTσpDsq uTσpDmq

ı

»

—

—

—

—

–

s1

m

σps1q

σpmq

fi

ffi

ffi

ffi

ffi

fl

` σpuqTu´ B2.

To prove that xs, sy “ B2 over integers, we show |xs, sy ´ B2| ă q for a large
enough proof system modulus q. Using the approximate range proof from
Section 6.1.2, we can convince the verifier that }s} ď ψ ¨ B. Thus, we pick q
such that

|xs, sy ´ B2| ď ψ2 ¨ B2 ` B2 “ pψ2 ` 1qB2 ă q.

This implies that }s}2 “ B2 over integers.
Next, suppose we want to prove that }s} ď B, i.e. relation Rarp in (6.2).

The idea is to commit to the binary representation of the difference B2´}s}2

and prove that it has binary coefficients. Namely, for 0 ă x ă ?q, define
powpxq as

powpxq :“
tlog xu
ÿ

i“0

2i ¨ Xi P Rq (6.7)

and ϑ P Rq be the binary polynomial such that

xpowpB2q, ϑy “ B2 ´ }s}2. (6.8)

We will commit to ϑ and prove that (i) it contains binary coefficients and
(ii) Equation 6.8 holds over integers. These two statements imply that
0 ď xpowpB2q, ϑy “ B2 ´ }s}2 which is what we want.

The first statement can be proven using the techniques in Section 6.2. For
the latter one, we follow the strategy as before, i.e. we want to prove that
(6.8) holds over Zq and that no wrap-around modulo q occurs. Hence, we
show that the constant coefficient of the polynomial

σ
´

powpB2q
¯

¨ ϑ` σpsqTs´ B2
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is equal to zero. Again, this is a quadratic relation (with an automorphism)
which can be proven as in Section 5.2.3. This proves that (6.8) is true over
Zq. Next, by doing the approximate L2 proof on s, i.e. proving }s} ď ψ ¨ B
and assuming that ϑ has binary coefficients, we want to choose q such that

|xpowpB2q, ϑy ` }s}2 ´ B2| ď pψ2 ` 3q ¨ B2 ă q.

Then, we are sure there is no overflow modulo q and thus (6.8) holds over
integers.

6.4 toolbox for proving lattice relations

We describe a general protocol to prove various quadratic relations by
combining all the techniques introduced in the previous sections. Namely,
we want to prove knowledge of the secret messages ps1, mq P Rm1``

q which
satisfy all the following conditions (below we define σ :“ σ´1):

1. Quadratic relations over Rq with automorphisms. For i P rNs and public

triples pRi,2, ri,1, ri,0q P R
2pm1``qˆ2pm1``q
q ˆR2pm1``q

q ˆRq, we have:

xs1 ‖ myT
σ Ri,2xs1 ‖ myσ ` rT

i,1xs1 ‖ myσ ` ri,0 “ 0. (6.9)

2. Quadratic relations over Zq with automorphisms. For i P rMs and public

triples pR1i,2, r1i,1, r1i,0q P R
2pm1``qˆ2pm1``q
q ˆR2pm1``q

q ˆRq:

const. coeff. of xs1 ‖ myT
σ R1i,2xs1 ‖ myσ ` r1Ti,1xs1 ‖ myσ ` r1i,0 equals 0.

(6.10)

3. Shortness in the infinity norm. For public Ps P Rnbinˆm1
q , Pm P Rnbinˆ`

q
and f P Rnbin

q , the following polynomial vector has binary coefficients

Pss1 ` Pmm` f P t0, 1unbin¨d (6.11)

4. Shortness in the Euclidean norm. For i P rZs, public bound Bi ă
?q and

Epiqs P Rniˆm1
q , Epiqm P Rniˆ`

q and vpiq P Rni
q , we have:

}Epiqs s1 ` Epiqm m` vpiq} ď Bi.

This is equivalent to additionally proving knowledge of the binary
polynomial ϑi P R such that

xpowpB2
i q, ϑiy “ B2

i ´
›

›

›
Epiqs s1 ` Epiqm m` vpiq

›

›

›

2
over Z. (6.12)
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5. Approximate Shortness. For a public bound B1 and Ds P Rn1ˆm1
q , Dm P

Rn1ˆ`
q and u P Rn1

q , we have:

}Dss1 `Dmm` u} ď B1. (6.13)

However, we are fine with convincing the verifier that

}Dss1 `Dmm` u}8 ď ψ ¨ B1 (6.14)

where ψ ą 1 is a public approximation factor.

We define the corresponding relation as

Rtoolbox “

#

pu, ps1, m, ϑ1, . . . , ϑZqq : p@i P rNs, (6.9)q ^ p@i P rMs, (6.10)q

(6.11)^ p@i P rZs, (6.12)q ^ (6.13)

+

(6.15)
where

u :“

¨

˝

pRi,2, ri,1, ri,0qiPrNs, pR1i,2, r1i,1, r1i,0qiPrMs, pPs, Pm, fq,
´

Epiqs , Epiqm , vpiq,Bi

¯

iPrZs
,

`

Ds, Dm, u,B1
˘

˛

‚.

(6.16)
As mentioned in the fifth statement, we are only interested in proving the
norm approximately. Hence, our protocol will be sound with respect to the
following relaxed relation:

Rψ
toolbox “

#

pu, ps1, m, ϑ1, . . . , ϑZqq : p@i P rNs, (6.9)q ^ p@i P rMs, (6.10)q

(6.11)^ p@i P rZs, (6.12)q ^ (6.14)

+

(6.17)
where the statement u is defined identically as above.

In order to prove the aforementioned statements, we commit to the
secrets pps1, ϑ1, . . . , ϑZq, mq using the ABDLOP commitment from Section
4.1. Concretely, we sample randomness s2 Ð χm2 and compute

«

tA

tB

ff

:“

«

A1

0

ff

»

—

—

—

—

—

–

s1

ϑ1
...

ϑZ

fi

ffi

ffi

ffi

ffi

ffi

fl

`

«

A2

B

ff

s2 `

«

0

m

ff

For proving the third and fourth statements, we apply the approximate
range proof strategy for both L2 and L8 norms. This requires us to commit
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to two masking vectors y3 Ð D256
s3

, y4 Ð D256
s4

and two signs β3, β4 Ð

t´1, 1u for bimodal Gaussian rejection sampling. Concretely,

«

ty

tβ

ff

:“

«

By

Bβ

ff

s2 `

»

—

—

—

—

–

y3

y4

β3

β4

fi

ffi

ffi

ffi

ffi

fl

Overall, ptA, tB ‖ ty ‖ tβq is the ABDLOP commitment to ps˚1 , m˚q where

s˚1 :“ s1 ‖ ϑ1 ‖ ¨ ¨ ¨ ‖ ϑZ and m˚ :“ m ‖ y3 ‖ y4 ‖ β3 ‖ β4.

Clearly, if }s1} ď α then }s˚1 } ď
?

α2 ` Zd. Our goal will be to reduce all the
five statements above to proving quadratic relations in ps˚1 , m˚q, or more
concretely, in xs˚1 ‖ m˚yσ. We cover them one by one, but first we start with
introducing notation.

6.4.1 Notation

To begin with, we recall the U matrix defined in Section 5.2.3.2. Namely,
U P R2pm1`Z```512{d`2qˆ2pm1`Z```512{d`2q

q is the public matrix such that

σpxs˚1 ‖ m˚yσq “ Uxs˚1 ‖ m˚yσ.

Now, we will write all the variables in ps˚1 , m˚q as a linear combination of
elements in xs˚1 ‖ m˚yσ. We start with ps1, mq and observe that

«

s1

m

ff

“

«

Im1 0m1ˆZ 0m1ˆ` 0m1ˆp512{d`2q

0`ˆm1 0`ˆZ I` 0`ˆp512{d`2q

ff«

s˚1
m˚

ff

“

«

Im1 0m1ˆZ 0m1ˆ` 0m1ˆp512{d`2q

0`ˆm1 0`ˆZ I` 0`ˆp512{d`2q

ff

Jxs˚1 ‖ m˚yσ

(6.18)

where J :“ Jm1`Z```512{d`2,2 as defined in Lemma 5.2.1. Similarly, we have

xs1 ‖ myσ “

«

I2m1 02m1ˆ2Z 02m1ˆ2` 02m1ˆ2p512{d`2q

02`ˆ2m1 02`ˆ2Z I2` 02`ˆ2p512{d`2q

ff

xs˚1 ‖ m˚yσ.

(6.19)
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For convenience, we define

Ks :“

«

Im1 0m1ˆZ 0m1ˆ` 0m1ˆp512{d`2q

0`ˆm1 0`ˆZ I` 0`ˆp512{d`2q

ff

J

and

Ks,σ :“

«

I2m1 02m1ˆ2Z 02m1ˆ2` 02m1ˆ2p512{d`2q

02`ˆ2m1 02`ˆ2Z I2` 02`ˆ2p512{d`2q

ff

.

Further, for i P rZs we have

ϑi “
”

01ˆpm1`i´1q 1 01ˆpZ´i```512{d`2q

ı

«

s˚1
m˚

ff

.

Hence, denote

kT
ϑi

:“
”

01ˆpm1`i´1q 1 01ˆpZ´i```512{d`2q

ı

J.

Next, note that
«

y3

y4

ff

“

«

0256{dˆpm1`Z`m1q
I256{d 0256{dˆ256{d 0256{dˆ2

0256{dˆpm1`Z`m1q
0256{d I256{dˆ256{d 0256{dˆ2

ff«

s˚1
m˚

ff

.

Thus, we define matrices Ky3 and Ky4 as follows:

«

Ky3

Ky4

ff

:“

«

0256{dˆpm1`Z`m1q
I256{d 0256{dˆ256{d 0256{dˆ2

0256{dˆpm1`Z`m1q
0256{d I256{dˆ256{d 0256{dˆ2

ff

J.

Finally, we focus on β3, β4. Clearly

«

β3

β4

ff

“

«

01ˆpm1`Z`m1`512{dq 1 0

01ˆpm1`Z`m1`512{dq 0 1

ff«

s˚1
m˚

ff

.

Consequently, we define vectors kβ3 , kβ4 as follows:

»

–

kT
β3

kT
β4

fi

fl :“

«

01ˆpm1`Z`m1`512{dq 1 0

01ˆpm1`Z`m1`512{dq 0 1

ff

J.
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In conclusion, we obtain the following equalities:
«

s1

m

ff

“ Ksxs˚1 ‖ m˚yσ

xs1 ‖ myσ “ Ks,σxs˚1 ‖ m˚yσ

@i P rZs, ϑi “ kT
ϑi
xs˚1 ‖ m˚yσ

y3 “ Ky3xs
˚
1 ‖ m˚yσ

y4 “ Ky4xs
˚
1 ‖ m˚yσ

β3 “ kT
β3
xs˚1 ‖ m˚yσ

β4 “ kT
β4
xs˚1 ‖ m˚yσ.

6.4.2 Proving Quadratic Relations

We concentrate on the first two statements. Using the notation above, we
observe that proving Equation 6.9 is equivalent to proving

xs˚1 ‖ m˚yT
σ KT

s,σRi,2Ks,σxs˚1 ‖ m˚yσ ` rT
i,1Ks,σxs˚1 ‖ m˚yσ ` ri,0 “ 0 (6.20)

which is a quadratic equation in xs˚1 ‖ m˚yσ covered in Section 5.2.1.
Similarly, for (6.10) we need to show that the constant coefficient of

xs˚1 ‖ m˚yT
σ KT

s,σR1i,2Ks,σxs˚1 ‖ m˚yσ ` r1Ti,1Ks,σxs˚1 ‖ m˚yσ ` r1i,0 (6.21)

is equal to zero, which we discussed in Section 5.2.3. In conclusion, we can
reduce the first two statements to proving quadratic relations covered by
Πeval from Section 5.2.3.

6.4.3 Proving Exact Shortness

We now focus on the third and fourth statement. We follow the strategy
described in Sections 6.2 and 6.3 and first start by proving that

Pss1 ` Pmm` f

Epiqs s1 ` Epiqm m` vpiq for i “ 1, 2, . . . , Z

ϑϑϑ :“ pϑ1, . . . , ϑZq
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are approximately small in the L2 norm using the techniques from Section
6.1.2. Namely, define nex :“ nbin `

řZ
i“1 ni ` Z and

s3 :“

»

—

—

—

—

—

—

—

–

Pss1 ` Pmm` f

Ep1qs s1 ` Ep1qm m` vp1q
...

EpZqs s1 ` EpZqm m` vpZq

ϑϑϑ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

Ps Pm 0nbinˆZ

Ep1qs Ep1qm 0n1ˆZ
...

...
...

EpZqs EpZqm 0nZˆZ

0Zˆm1 0Zˆ` IZ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

–

s1

m

ϑϑϑ

fi

ffi

ffi

fl

`

»

—

—

—

—

—

–

f

vp1q
...

vpZq

fi

ffi

ffi

ffi

ffi

ffi

fl

(6.22)
where s3 P Rnex

q . Then,

}s3} ď

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i .

Now, given a matrix R Ð Bin256ˆnexd
2 from the verifier as a challenge, we

compute the polynomial vector z3 P R
256{d
q which satisfies

~z3 :“ ~y3 ` β3 ¨ R~s3. (6.23)

After applying the bimodal rejection sampling, we output z3. The verifier
checks whether }z3} ď $s3

?
256 where $ satisfies $256 ¨ e128p1´$2q “ 2´κ .

Then, we need to prove well-formedness of z3. For i P r256s, denote ei P

R256{d
q to be the binary polynomial vector such that ~ei P t0, 1u256 and it has

one 1 exactly in the i-th position. Also, let ri P Rnex
q be the vector so that~ri is

the i-th row of the matrix R. Then, (6.23) holds if and only for all i P r256s:

xz3, eiy “ xy3, eiy ` β3 ¨ xri, s3y.

That is, the constant coefficient of the following polynomial vanishes:

σpeiq
Ty3 ` β3 ¨ σpriq

Ts3 ´ xz3, eiy

which can be written equivalently using the notation from Section 6.4.1 as

xs˚1 ‖ m˚yT
σ R1M`i,2xs

˚
1 ‖ m˚yσ ` r1TM`i,1xs

˚
1 ‖ m˚yσ ` r1M`i,0
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where

R1M`i,2 :“ kβ3 σpriq
T

»

—

—

—

—

—

—

—

–

Ps Pm 0nbinˆZ

Ep1qs Ep1qm 0n1ˆZ
...

...
...

EpZqs EpZqm 0nZˆZ

0Zˆm1 0Zˆ` IZ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

Ks

kT
ϑ1

. . .

kT
ϑZ

fi

ffi

ffi

ffi

ffi

fl

r1TM`i,1 :“ σpeiq
TKy3 ` σpriq

T

»

—

—

—

—

—

–

f

vp1q
...

vpZq

fi

ffi

ffi

ffi

ffi

ffi

fl

kT
β3

r1M`i,0 :“ ´xz3, eiy.

(6.24)

Hence, we prove this relation using the techniques from Section 5.2.3.
Not to mention the fact that we also need to prove that β3 P t´1, 1u.

We do this by proving that β2
3 “ 1 and the constant coefficient of Xiβ3 is

equal to zero for i “ 1, . . . , d´ 1. The former statement can be written as a
quadratic equation:

β2
3 ´ 1 “ xs˚1 ‖ m˚yT

σ RN`1,2xs˚1 ‖ m˚yσ ` rT
N`1,1xs

˚
1 ‖ m˚yσ ` rN`1,0 “ 0

where
RN`1,2 :“ kβ3 kT

β3
, rN`1,1 “ 0, rN`1,0 “ ´1. (6.25)

To prove the latter statement, note that Xi ¨ β3 equals to

xs˚1 ‖ m˚yT
σ R1M`256`i,2xs

˚
1 ‖ m˚yσ ` r1TM`256`i,1xs

˚
1 ‖ m˚yσ ` r1M`256`i,0

for

RM`256`i,2 :“ 0, rM`256`i,1 “ XikT
β3

, rM`256`i,0 “ 0. (6.26)

Now, assuming well-formedness of z3, we can convince the verifier that

}s3} ď Barp :“ ψ ¨

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i

for some public ψ ą 1. In particular, we get that

}Pss1 ` Pmm` f} ď Barp,

@i P rZs,
›

›

›
Epiqs s1 ` Epiqm m` vpiq

›

›

›
ď Barp and}ϑi} ď Barp.
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6.4.3.1 Infinity Norm

Now, we prove that Pss1 ` Pmm` f and ϑ1, . . . , ϑZ have binary coefficients.
To prove the former statement, we show

xPss1 ` Pmm` f, Pss1 ` Pmm` f´ xy “ 0 over Z

where

x :“ p1` X` . . .` Xd´1, . . . , 1` X` . . .` Xd´1q P Rnbin
q .

We first prove this equation modulo q. By Lemma 5.1.10, this boils down to
showing that the constant coefficient of

”

σps1q
T σpmqT

ı

«

σpPsq
TPs σpPsq

TPm

σpPmq
TPs σpPmq

TPm

ff«

s1

m

ff

`

”

σps1q
T σpmqT

ı

«

σpPsq
T

σpPmq
T

ff

pf´ xq ` σpfqT
”

Ps Pm

ı

«

s1

m

ff

` xf, f´ xy

vanishes. Now, we use the property of the U matrix defined in Section 6.4.1,
i.e.

«

σps1q

σpmq

ff

“ σ pKsq σ pxs˚1 ‖ m˚yσq “ σ pKsqUxs˚1 ‖ m˚yσ.

Then, the polynomial above can be written equivalently using the notation
from Section 6.4.1 as

xs˚1 ‖ m˚yT
σ R1M`256`d,2xs

˚
1 ‖ m˚yσ ` r1TM`256`d,1xs

˚
1 ‖ m˚yσ ` r1M`256`d,0

where

R1M`256`d,2 :“ UTσpKsq
T

«

σpPsq
TPs σpPsq

TPm

σpPmq
TPs σpPmq

TPm

ff

Ks

r1TM`256`d,1 :“ pfT ´ xTq
”

σpPsq σpPmq

ı

σpKsqU` σpfqT
”

Ps Pm

ı

Ks

r1M`256`d,0 :“ xf, f´ xy.
(6.27)

Thus, we prove this relation using the techniques from Section 5.2.3. Now,
assuming that

B2
arp ` Barp

a

nbind ă q
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we can deduce similarly as in (6.6) that

|xPss1 ` Pmm` f, Pss1 ` Pmm` f´ xy| ă q.

Therefore, we conclude that the inner product equals zero over integers.
By Lemma 6.2.1, this implies that the vector Pss1 ` Pmm ` f has binary
coefficients.

Next, we focus on ϑ1, . . . , ϑZ. Similarly as before, we want to prove that
xϑi, ϑi ´

řd´1
i“0 Xiy “ 0 over integers. In order to prove it in Zq, we need to

show that the constant coefficient of

σpϑiq

˜

ϑi ´

d´1
ÿ

i“0

Xi

¸

is equal to zero. Using the notation from Section 6.4.1, we can write this
polynomial as

xs˚1 ‖ m˚yT
σ R1M`256`d`i,2xs

˚
1 ‖ m˚yσ ` r1TM`256`d`i,1xs

˚
1 ‖ m˚yσ

where

R1M`256`d`i,2 :“ UTσpkϑiqk
T
ϑi

, r1TM`256`d`i,1 :“ ´

˜

d´1
ÿ

i“0

Xi

¸

¨ σpkϑiq
TU.

(6.28)
Thus, we prove this relation using the techniques from Section 5.2.3. Now,
if

B2
arp ` Barp

?
d ă q

then we conclude that xϑi, ϑi ´
řd´1

i“0 Xiy “ 0 over integers. Hence, ϑi has
binary coefficients.

6.4.3.2 Euclidean Norm

Now, we turn to proving that for every i P rZs,

xpowpB2
i q, ϑiy “ B2

i ´
›

›

›
Epiqs s1 ` Epiqm m` vpiq

›

›

›

2
over Zq.

Note that this implies that the equation holds over integers if the modulus
q is appropriately large. Indeed, we observe

ˇ

ˇ

ˇ

ˇ

xpowpB2
i q, ϑiy `

›

›

›
Epiqs s1 ` Epiqm m` vpiq

›

›

›

2
´ B2

i

ˇ

ˇ

ˇ

ˇ

ď 3B2
i ` B2

arp.



6.4 toolbox for proving lattice relations 137

Hence, if q ą 3B2
i ` B2

arp for all i “ 1, 2, . . . , Z then we are done.
To prove the initial equation over Zq, we apply the strategy from Section

6.3 and write

xpowpB2
i q, ϑiy ` xE

piq
s s1 ` Epiqm m` vpiq, Epiqs s1 ` Epiqm m` vpiqy ´ B2

i “ 0.

This is equivalent to proving that the constant coefficient of the following
polynomial equals to zero

”

σps1q
T σpmqT

ı

«

σpEpiqs q
TEpiqs σpEpiqs q

TEpiqm

σpEpiqm q
TEpiqs σpEpiqm q

TEpiqm

ff«

s1

m

ff

`

”

σps1q
T σpmqT

ı

«

σpEpiqqT

σpEpiqm q
T

ff

vpiq ` σpvpiqqT
”

Epiq Epiqm

ı

«

s1

m

ff

` xvpiq, vpiqy

` σ
´

powpB2
i q
¯

ϑi ´ B2
i .

This polynomial can be alternatively written using the notation from Section
6.4.1 as:

xs˚1 ‖ m˚yT
σ R1M`256`d`Z`i,2xs

˚
1 ‖ m˚yσ ` r1TM`256`d`Z`i,1xs

˚
1 ‖ m˚yσ

` r1M`256`d`Z`i,0 P Rq

where

R1M`256`d`Z`i,2 :“ UTσpKsq
T

«

σpEpiqs q
TEpiqs σpEpiqs q

TEpiqm

σpEpiqm q
TEpiqs σpEpiqm q

TEpiqm

ff

Ks

r1TM`256`d`Z`i,1 :“ vpiq
T ”

σpEpiqs q σpEpiqm q

ı

σpKsqU` σpvpiqqT
”

Epiqs Epiqm

ı

Ks

` σ
´

powpB2
i q
¯

kT
ϑi

r1M`256`d`Z`i,0 :“ xvpiq, vpiqy ´ B2
i .

(6.29)
Therefore, we prove this relation using the techniques from Section 5.2.3.
Now, if (6.12) holds and ϑi has binary coefficients then we conclude that

0 ď xpowpB2
i q, ϑiy “ B2

i ´
›

›

›
Epiqs s1 ` Epiqm m` vpiq

›

›

›

2

and we are done.
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6.4.4 Approximate Shortness

Finally, we deal with the last statement, i.e. proving approximately that

}Dss1 `Dmm` u} ď B1.

The proof follows the first part of Section 6.4.3. Concretely, define

s4 :“ Dss1 `Dmm` u “
”

Ds Dm

ı

«

s1

m

ff

` u P Rn1
q . (6.30)

Now, given a matrix R1 Ð Bin256ˆn1d
2 from the verifier as a challenge, we

compute the polynomial vector z4 P R
256{d
q which satisfies

~z4 :“ ~y4 ` β4 ¨ R1~s4. (6.31)

After applying the bimodal rejection sampling, we output z4. Since we are in-
terested in proving the L8 norm approximately, the verifier checks whether
}z4}8 ď

?
2κs4 as in Section 6.1.1. Then, we need to prove well-formedness

of z4. For i P r256s, denote ei P R
256{d
q to be the binary polynomial vector

such that~ei P t0, 1u256 and it has one 1 exactly in the i-th position identically
as in Section 6.4.3. Also, let r1i P Rn1

q be the vector so that~r1i is the i-th row
of the matrix R1. Then, (6.31) holds if and only for all i P r256s:

xz4, eiy “ xy4, eiy ` β4 ¨ xr1i, s4y.

Alternatively, the constant coefficient of the following polynomial vanishes:

σpeiq
Ty4 ` β4 ¨ σpr1iq

Ts4 ´ xz4, eiy

which can be written equivalently using the notation from Section 6.4.1 as

xs˚1 ‖ m˚yT
σ R1M`256`d`2Z`i,2xs

˚
1 ‖ m˚yσ ` r1TM`256`d`2Z`i,1xs

˚
1 ‖ m˚yσ

` r1M`256`d`2Z`i,0

where
R1M`256`d`2Z`i,2 :“ kβ4 σpr1iq

T
”

Ds Dm

ı

Ks

r1TM`256`d`2Z`i,1 :“ σpeiq
TKy4 ` σpr1iq

TukT
β4

r1M`256`d`2Z`i,0 :“ ´xz4, eiy.

(6.32)
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Finally, we need to prove that β4 P t´1, 1u. As before, we do this by
proving that β2

4 “ 1 and the constant coefficient of Xiβ4 is equal to zero for
i “ 1, . . . , d´ 1. The first statement can be written as a quadratic equation:

β2
4 ´ 1 “ xs˚1 ‖ m˚yT

σ RN`2,2xs˚1 ‖ m˚yσ ` rT
N`2,1xs

˚
1 ‖ m˚yσ ` rN`2,0 “ 0

where
RN`2,2 :“ kβ4 kT

β4
, rN`2,1 “ 0, rN`2,0 “ ´1. (6.33)

To prove the second one, observe that Xi ¨ β4 equals to

xs˚1 ‖ m˚yT
σ R1M`512`d`2Z`i,2xs

˚
1 ‖ m˚yσ

` r1TM`512`d`2Z`i,1xs
˚
1 ‖ m˚yσ

` r1M`512`d`2Z`i,0

where

RM`512`d`2Z`i,2 :“ 0, rM`512`d`2Z`i,1 “ XikT
β4

, rM`512`d`2Z`i,0 “ 0.
(6.34)

Hence, we prove all the necessary relations using the techniques from
Section 5.2.3.

6.4.5 Main Protocol

We summarise the strategies presented in the previous subsections and pro-
pose a commit-and-prove system Πtbox “ pABDLOP,P ,Vq for the relation
Rtoolbox in Figure 6.3. In the protocol, we run Πeval defined in Section 5.2.3
for proving quadratic relations.

We provide security properties of the commit-and-prove Π8tbox below.

Theorem 6.4.1. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rejp4q “ Rej1 as
defined in Figure 3.2. Fix standard deviations

s1 “ γ1η
a

α2 ` Zd, s2 “ γ2ην
a

m2d,

s3 “ γ3
?

337

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i , s4 “ γ4

?
337B1

for some γ1, γ2, γ3, γ4 ą 0 and define

Mi :“

$

’

’

&

’

’

%

exp
ˆ
c

2pκ`1q
logpeq ¨

1
γi
` 1

2γ2
i

˙

for i “ 1, 2

exp
ˆ

1
2γ2

i

˙

for i “ 3, 4.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS, m1 ` Z, m2, `, `ext :“ 512{d` λ{2` 3q pp. dim, pp.norms

pp.norms “ pω,
a

α2 ` Zd, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2, B,

»

—

—

—

—

–

By

Bβ

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

tA, tB

s1 P Rm1
q , s2 P Rm2

q , m P R`
q, }s1} ď α pRi,2, ri,1, ri,0qiPrNs

pRi,2, ri,1, ri,0qiPrNs, pR
1
i,2, r1i,1, r1i,0qiPrMs, pPs, Pm, fq pR1i,2, r1i,1, r1i,0qiPrMs

´

Epiqs , Epiqm , vpiq,Bi

¯

iPrZs
,
`

Ds, Dm, u,B1
˘

pPs, Pm, fq

ϑϑϑ “ pϑ1 . . . , ϑZq P t0, 1uZd
´

Epiqs , Epiqm , vpiq,Bi

¯

iPrZs

«

tA

tB

ff

:“

«

A1

0

ff

»

—

—

—

—

—

–

s1

ϑ1
...

ϑZ

fi

ffi

ffi

ffi

ffi

ffi

fl

`

«

A2

B

ff

s2 `

«

0

m

ff

`

Ds, Dm, u,B1
˘

s3 :“

»

—

—

—

—

—

—

—

–

Pss1 ` Pmm` f

Ep1qs s1 ` Ep1qm m` vp1q
...

EpZqs s1 ` EpZqm m` vpZq

ϑϑϑ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rnex
q , s4 :“ Dss1 `Dmm` u P Rn1

q

py3, y4, β3, β4q Ð D256
s3
ˆD256

s4
ˆ t´1, 1u ˆ t´1, 1u

ty :“ Bys2 `

«

y3

y4

ff

, tβ :“ Bβs2 `

«

β3

β4

ff

ty, tβ -

R Ð Bin256ˆnexd
2

R, R1� R Ð Bin256ˆn1d
2

compute z3, z4 P R
256{d
q s.t.

«

~z3

~z4

ff

:“

«

~y3

~y4

ff

`

«

β3 ¨ R~s3

β4 ¨ R1~s4

ff

if Rejp3q p~z3, R~s3, s3, M3q “ 1 or Rejp4q
`

~z4, R1~s4, s4, M4
˘

“ 1

then pz3, z4q :“ pK,Kq z3, z4 -

run Πeval with the following inputs: accept if:

pp. dim :“ pq, d, κMSIS, m1 ` Z, m2, `` 512{d` 2, λ{2` 1q (i) Πeval verifies

pp.norms :“ pν, ω,
a

α2 ` Zd, B1, B2q, pp.mat :“

¨

˚

˚

˝

A1, A2,

»

—

—

–

B

By

Bβ

fi

ffi

ffi

fl

,

«

Bext

bT
ext

ff

˛

‹

‹

‚

(ii) }z3} ď $s3
?

256

ps2, ps1, mqq :“ ps2, ps1 ‖ ϑϑϑ, m ‖ y3 ‖ y4 ‖ β3 ‖ β4qq (iii) }z4}8 ď
?

2κs4

pRi,2, ri,1, ri,0qiPrN`2s as in (6.20), (6.25), (6.33)

pR1i,2, r1i,1, r1i,0qiPrM`511`2d`2Zs as in (6.21), (6.24), (6.27), (6.28), (6.29), (6.32), (6.34)

Figure 6.3: Commit-and-prove system Πtbox for the relation Rtoolbox in (6.15).
Here, we define nex :“ nbin `

řZ
i“1 ni ` Z and $ which satisfies $256 ¨

e128p1´$2q “ 2´κ .
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Suppose that pm1 ` Zqd ě 5κ and m2d ě 5κ. Then, the commit-and-prove system
Πtbox for the relation Rtoolbox has statistical completeness with correctness error
1´ 1

M1 M2 M3 M4
` 2´127.

Proof. First of all, note that

}R~s3} ď
?

337 ¨

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i and }R1~s4} ď

?
337B1

with probability at least 1´ 2´127 by Lemma 3.2.4 and the union bound.
Assuming these inequalities hold, the probability that an honest prover
succeeds in all four rejection sampling algorithms is 1{pM1M2M3M4q by
Lemmas 3.3.2 and 3.3.3. In terms of verification equations, }z3} ą $s3

?
256

or }z4}8 ą
?

2κs4 with probability at most 256 ¨ 2e´κ ` 2´κ by Lemma 3.2.2.
All the other verification equations hold by the discussion above.

Theorem 6.4.2. Let Rejp1q “ Rejp2q “ Rej0 and Rejp3q “ Rejp4q “ Rej1 as
defined in Figure 3.2. Fix standard deviations

s1 “ γ1η
a

α2 ` Zd, s2 “ γ2ην
a

m2d,

s3 “ γ3
?

337

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i , s4 “ γ4

?
337B1

for some γ1, γ2, γ3, γ4 ą 0 and define

Mi :“

$

’

’

&

’

’

%

exp
ˆ
c

2pκ`1q
logpeq ¨

1
γi
` 1

2γ2
i

˙

for i “ 1, 2

exp
ˆ

1
2γ2

i

˙

for i “ 3, 4.

Suppose κMLWE :“ m2 ´ κMSIS ´ ` ´ λ{2´ 512{d ´ 3 ě 0. Then, under the
MLWEκMLWE,κMSIS```λ{2`512{d`3,χ,C,Dd

s2
assumption, Πtbox for relation Rtbox is

simulatable.

Proof. Identically as in Theorems 6.1.3 and 6.1.9, the simulator S simulates
z3, z4 by picking pz3, z4q Ð D256

s3
ˆD256

s4
and then follows the simulator in

Theorem 5.2.18.

As we already mentioned, we now show that the commit-and-prove
system Πtbox for the relation Rψ

toolbox (and not Rtoolbox) is knowledge sound
where ψ is a public approximation factor.
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Theorem 6.4.3. Suppose B1 ě 2s1
a

2pm1 ` Zqd and B2 ě 2s2
?

2m2d. Let

s3 “ γ3
?

337

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i , s4 “ γ4

?
337B1

ψ :“ 2γ4
?

337 ¨ 2κ, Barp :“ 2

c

256
26

$s3

for γ3, γ4 ą 0. If q satisfies the following conditions

q ě 41 ¨

˜

nbin `

Z
ÿ

i“1

ni ` Z

¸

d ¨ Barp, to use Lemma 3.2.5

q ą B2
arp ` Barp

a

nbind, to prove Ps ` Pm ` f has binary coeff.

q ą B2
arp ` Barp

?
d, to prove ϑ1, . . . , ϑZ have binary coeff.

@i P rZs, q ą 3B2
i ` B2

arp, to prove (6.12)

Then, the commit-and-prove system Πtbox for the relation Rψ
tbox is knowledge

sound with knowledge error

2|C|´1 ` q´d{l
1 ` q´λ

1 ` 2´128 ` 2´256

under the MSISκMSIS,m1`m2,B assumption where B “ 4η
b

B2
1 ` B2

2.

Proof. Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą 2|C|´1 ` q´d{l

1 ` q´λ
1 ` 2´128 `

2´256. Then, similarly as in the proof of Theorems 6.1.4 and 6.1.10, we
can define an extractor E which in expected runtime of at most 24T either
solves the MSIS problem or extracts ps̄˚1 , m̄, s̄2q and c̄ P C̄ such that all the
conditions below hold

1. ABDLOP.Openps̄˚1 , m̄; s̄2, c̄; tA ‖ tBq “ 1.

2. }Ds s̄1 `Dmm̄` u}8 ď 2γ4
?

337 ¨ 2κB1 “ ψ ¨ B1.

3. Let ϑ̄ϑϑ :“ ϑ̄1 ‖ ¨ ¨ ¨ ‖ ϑ̄Z. Then,
›

›

›

›

›

›

›

›

›

›

›

›

›

»

—

—

—

—

—

—

—

–

Ps s̄1 ` Pmm̄` f

Ep1qs s̄1 ` Ep1qm m̄` vp1q
...

EpZqs s̄1 ` EpZqm m̄` vpZq

ϑ̄ϑϑ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

›

›

›

›

›

›

›

›

›

›

›

›

›

ď 2

c

256
26

$s3 “ Barp
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4. xPs s̄1 ` Pmm̄` f, Ps s̄1 ` Pmm̄` f´ xy “ 0.

5.
A

ϑi, ϑi ´
´

řd´1
i“0 Xi

¯E

“ 0

6. xpowpB2
i q, ϑiy ` xE

piq
s s̄1 ` Epiqm m̄` vpiq, Epiqs s̄1 ` Epiqm m̄` vpiqy ´ B2

i “ 0

7. For all i P rNs, s̄TRi,2s̄` rT
i,1s̄` ri,0 “ 0 where s̄ :“ s̄1 ‖ m̄

8. For all i P rMs, the constant coefficient of s̄TR1i,2s̄` r1Ti,1s̄` r1i,0 is zero

with probability at least ε´ 2|C|´1 ´ q´d{l
1 ´ q´λ

1 ´ 2´128 ´ 2´256 where

s̄˚1 :“ s̄1 ‖ ϑ̄1 ‖ ¨ ¨ ¨ ‖ ϑ̄Z, x :“

˜

d´1
ÿ

i“0

Xi, . . . ,
d´1
ÿ

i“0

Xi

¸

P Rnbin
q

Now, by the assumptions on q and the fact that Statement 3 holds, we
deduce that Statements 4, 5, 6 hold over integers. Hence, we conclude that
Ps s̄1 ` Pmm̄` f, ϑ1, . . . , ϑZ have binary coefficients as well as

Bi ´ }E
piq
s s̄1 ` Epiqm m̄` vpiq} ě 0 for i “ 1, 2, . . . , Z.

Thus, we conclude the proof.

6.4.6 Packing Signs

Recall that we commit to each sign β3 and β4 separately. We can reduce the
proof size by committing to both of them in the following way. Namely, we
compute

β :“ β3 ` Xd{2β4 P Rq

and commit to β:
tβ :“ bT

β s` β.

In order to prove certain properties of β3 and β4, we observe that:

β3 “ 2´1 ¨ pβ` σpβqq and β4 “ 2´1 ¨ pXd{2β` σpXd{2βqq.

Then, for example, to prove that β3 is a sign, we show that

β2
3 ´ 1 “

´

2´1 ¨ pβ` σpβqq
¯2
´ 1 “ 4´1 ¨ pβ2 ` 2σpβqβ` σpβq2q ´ 1 “ 0

and the constant coefficient of

Xi ¨ β3 “ Xi ¨ 2´1 ¨ pβ` σpβqq

is equal to zero for i “ 1, 2, . . . , d´ 1. Hence, these quadratic relations (with
automorphisms) can be handled directly by Πeval.
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6.4.7 Simplified Versions of the Framework Protocol

In certain applications, we will not use the commit-and-prove system Πtbox

in its full capacity. For instance, it will not be necessary to do any infinity
norm proofs or to prove shortness approximately. In the former case, this
boils down to simply not adding relations (6.27) as an input to Πeval and
we remove one condition on q in Theorem 6.4.3. For the latter statement,
we can omit the approximate range proof part, i.e. not commit to y4, β4 and
not send z4. Moreover, the relations described in (6.32),(6.33) and (6.34) as
well as the improvement from Section 6.4.6 become irrelevant.

To conclude, it is easy to modify the protocol in Figure 6.3 in order to
prove relations suitable for various applications.

6.5 non-interactive commit-and-prove functionality

The broadly used Fiat-Shamir Transformation [DFM20; FS86] turns a public-
coin interactive argument into a non-interactive argument in the random
oracle model. The approach is to compute the i-th challenge ci as a hash of
the i-th prover message ai as well as some part of the previous communica-
tion transcript (including the statement u itself). Then, if π “ pa1, a2, . . .q is
a proof then the verifier can manually recompute challenges ci from π and
a statement u.

We apply the multi-round Fiat-Shamir transformation for the protocol
in Figure 6.3 to obtain a non-interactive commit-and-prove functional-
ity for Rtoolbox. Let Lantern “ pABDLOP, Lantern.Prove, Lantern.Verifyq be
the non-interactive commit-and-prove system where Lantern.Prove and
Lantern.Verify are defined in Algorithms 1 and 4 respectively. Both algo-
rithms use a subroutine ComputeRelations in Algorithm 3 respectively. In-
formally, ComputeRelations builds new relations analogously as in Figure
5.6.

We apply the standard optimisation where we do not send w and v but
only the challenge c instead. Indeed, the verifier can compute w, v directly
from the verification equations and then check whether

c ?
“ H4pu, pp, tA, tB, ty, tβ, z3, z4, tg, h, w, t, vq.

Security analysis of the non-interactive version of our commit-and-prove
system can be derived similarly as in the interactive case. For example,
since Πquad defined in Figure 5.3 (which is the last black-box protocol called
by Πtbox) is a 3-special-sound Σ-protocol, its non-interactive version via
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Algorithm 1 First Part of Lantern.Prove
Input: u as in (6.16), ppp, tA, tBq, ps1, m, ϑϑϑ “ pϑ1, . . . , ϑZqq , s2
Output: π “

`

ty, tβ, z3, z4, tg, h, t, c, z1, z2
˘

1: py3, y4, β3, β4q Ð D256
s3
ˆD256

s4
ˆ t´1, 1u ˆ t´1, 1u

2: ty “ Bys2 `

«

y3

y4

ff

, tβ “ Bβs2 `

«

β3

β4

ff

3: pR, R1q “ H1pu, pp, tA, tB, ty, tβq

4: define s3, s4 as in (6.22),(6.30)

5: compute z3, z4 P R
256{d
q s.t.

«

~z3

~z4

ff

“

«

~y3

~y4

ff

`

«

β3 ¨ R~s3

β4 ¨ R1~s4

ff

6: for i P t3, 4u do
7: if Rejpiq p~zi, R~si, si, Miq “ 1 then
8: pz3, z4q “ pK,Kq
9: end if

10: end for
11: s˚1 “ s1 ‖ ϑϑϑ P Rm1`Z

q

12: m˚ “ m ‖ y3 ‖ y4 ‖ β3 ‖ β4 ‖P R``512{d`2
q

13: s˚ “ xs˚1 ‖ m˚yσ Ź Compute relations for the following s˚1 and m˚

14: pRi,2, ri,1, ri,0qiPrN`2s as in (6.20), (6.25), (6.33)

15: pR1i,2, r1i,1, r1i,0qiPrM`511`2d`2Zs as in

#

(6.21), (6.24), (6.27), (6.28),

(6.29), (6.32), (6.34)

+

16: run Algorithm 2

Fiat-Shamir transform is also knowledge sound by [AFK21, Theorem 1].
Then, proving knowledge soundness for the next building blocks, such as
Πquad´many, Πquad´eval and eventually Πtbox follows almost identically as
in the interactive setting.

6.5.1 Commitment and Proof Size

We provide a general strategy on instantiating the non-interactive commit-
and-prove functionality Lantern (or its interactive version in Figure 6.3). As
before, we pick the challenge space C as described in Section 3.3.6 with
respect to the automorphism σ´1. Further, we choose λ and l such that
terms q´λ

1 and q´d{l
1 are negligible.
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Algorithm 2 Second Part of Lantern.Prove
1: g “ pg1, . . . , gλ{2q Ð tx : Rq : x̃ “ 0u
2: tg “ Bexts2 ` g
3: Υ “ pυi,jq “ H2pu, pp, tA, tB, ty, tβ, z3, z4, tgq

4: for i P rλ{2s do
5: hi “ gi `

řM
j“1pυ2i´1,j ` Xd{2υ2i,jqTr

´

s˚TR1j,2s˚ ` r1Tj,1s˚ ` r1j,0
¯

6: end for
7: ŝ1 “ s1 ‖ ϑϑϑ P Rm1`Z

q

8: m̂ “ m ‖ y3 ‖ y4 ‖ β3 ‖ β4 ‖ g P R``512{d`2`λ{2
q

9: ŝ “ xŝ ‖ m̂yσ Ź Compute relations for the following ŝ1 and m̂
10:

´

R:i,2, r:i,1, r:i,0
¯

Ð ComputeRelations
´

pRi,2, ri,1, ri,0q, pR1i,2, r1i,1, r1i,0q, Υ, h
¯

11: pµ1, . . . , µNq “ H3pu, pp, tA, tB, ty, tβ, z3, z4, tg, hq

12:
´

R:2, r:1, r:0
¯

“

´

řN
i“1 µiR

:

i,2,
řN

i“1 µir
:

i,1,
řN

i“1 µir
:

i,0

¯

13: y1 Ð Dm1d
s1

14: y2 Ð Dm2d
s2

15: w “ A1y1 `A2y2

16: y “

«

xy1yσ

´xBy2yσ

ff

17: g˚ “ sTR:2y` yTR:2s` r:
T
1 y

18: t “ bT
exts2 ` g˚

19: v “ yTR:2y` bT
exty2

20: c “ H4pu, pp, tA, tB, ty, tβ, z3, z4, tg, h, w, t, vq
21: z1 “ cs1 ` y1
22: z2 “ cs2 ` y2
23: for i P t1, 2u do
24: if Rejpiq pzi, csi, si, Miq “ 1 then
25: pz1, z2q “ pK,Kq
26: end if
27: end for
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Algorithm 3 ComputeRelations

Input: pRi,2, ri,1, ri,0qiPrN`2s, pR
1
i,2, r1i,1, r1i,0qiPrM`511`2d`2Zs, Υ “ pυi,jq

Output: pR:i,2, r:i,1, r:i,0qiPrN`2`λ{2s
1: n̂ “ m1 ` Z` `` 512{d` 2 Ź Length of ŝ1 ‖ m̂
2: M̂ “ M` 511` 2d` 2Z Ź Number of quadratic relations over Zq
3: compute U P R2n̂ˆ2n̂

q such that for all x P Rn̂
q , σpxxyσq “ Uxxyσ

4: for i P rN ` 2s do

5: R:i,2 “

«

Ri,2 02n̂ˆλ

0λˆ2n̂ 0λˆλ

ff

6: r:i,1 :“

«

ri,1

0λˆ1

ff

7: r:i,0 “ ri,0
8: end for
9: for i P rλ{2s do

10: ei “

»

—

—

–

02pi´1qˆ1

1

0pλ´2i`1qˆ1

fi

ffi

ffi

fl

11: R:N`i,2 :“

»

–

řM̂
j“1

pυ2i´1,j`Xd{2υ2i,jq
´

R1j,2`UTσpR1j,2qU
¯

2 02n̂ˆλ

0λˆ2n̂ 0λˆλ

fi

fl

12: r:N`i,1 :“

»

–

řM̂
j“1

pυ2i´1,j`Xd{2υ2i,jq
´

r1j,1`UTσpr1j,1q
¯

2

ei

fi

fl

13: r:N`i,0 :“
řM̂

j“1
pυ2i´1,j`Xd{2υ2i,jq

´

r1j,0`σpr1j,0q
¯

2 ´ hi
14: end for
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Algorithm 4 Lantern.Verify

Input: pp, tA, tB, u as in 6.16, π “
`

ty, tβ, z3, z4, tg, h, t, c, z1, z2
˘

Output: b P t0, 1u
1: if }z3} ą ρs3

?
256_ }z4}8 ą

?
2κs4 _ Di P rλ{2s, h̃i ‰ 0 then

2: return 0
3: end if
4: pR, R1q “ H1pu, pp, tA, tB, ty, tβq

5: pRi,2, ri,1, ri,0qiPrN`2s as in (6.20), (6.25), (6.33)

6: pR1i,2, r1i,1, r1i,0qiPrM`511`2d`2Zs as in

#

(6.21), (6.24), (6.27), (6.28),

(6.29), (6.32), (6.34)

+

7: Υ “ pυi,jq “ H2pu, pp, tA, tB, ty, tβ, z3, z4, tgq

8:
´

R:i,2, r:i,1, r:i,0
¯

Ð ComputeRelations
´

pRi,2, ri,1, ri,0q, pR1i,2, r1i,1, r1i,0q, Υ, h
¯

9: pµ1, . . . , µNq “ H3pu, pp, tA, tB, ty, tβ, z3, z4, tg, hq

10:
´

R:2, r:1, r:0
¯

“

´

řN
i“1 µiR

:

i,2,
řN

i“1 µir
:

i,1,
řN

i“1 µir
:

i,0

¯

11: B: “

»

—

—

—

—

–

B

By

Bβ

Bext

fi

ffi

ffi

ffi

ffi

fl

, t: “

»

—

—

—

—

–

tB

ty

tβ

tg

fi

ffi

ffi

ffi

ffi

fl

12: z “

«

xz1yσ

xct: ´ B:z2yσ

ff

13: f “ ct´ bT
extz2

14: w: “ A1z1 `Az2 ´ ctA, v: “ zTR:z` cr:1
T

z` c2r:0 ´ f
15: if c ‰ H4pu, pp, tA, tB, ty, tβ, z3, z4, tg, h, w:, t, v:q _ }z1} ą s1

?
2m1 _

}z2} ą s2
?

2m2 then
16: return 0
17: else
18: return 1
19: end if
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There are now 4 rejection sampling algorithms: each to mask cs1, cs2, R~s3
and R1~s4 respectively. Denote si “ γiTi where T1, T2, T3, T4 are the upper-
bounds on }cs1}, }cs2}, }R~s3} and }R1~s4} respectively. The non-aborting prob-
ability of the prover is

« exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1
`

d

2pκ` 1q
logpeq

¨
1

γ2
`

1
2γ2

2
`

1
2γ2

3
`

1
2γ2

4

¸´1

.

Then, as in Theorem 6.4.1, we define

s1 “ γ1η
a

α2 ` Zd, s2 “ γ2ην
a

m2d,

s3 “ γ3
?

337

g

f

f

epnbin ` Zqd`
Z
ÿ

i“1

B2
i , s4 “ γ4

?
337B1

Now we set κMSIS and m2 such that the MLWE and MSIS from Theorems
6.4.2 and 6.4.3 are hard against known attacks. Here, we assume that MLWE
is as hard as plain MLWE. We measure the hardness with the root Hermite
factor δ and aim for δ « 1.0044.

As discussed above, messages w and v need not be included in the output
as they are uniquely determined by the remaining components. Moreover,
all the challenges apart from c can be computed as a hash of the previous
components of the proof. On the other hand, sending c requires at most
rlogp2κ` 1qs ¨ d bits.

As “full-sized” elements of Rq, we have tA, tB, ty, tβ, tg, t and hi. There-
fore, we have in total κMSIS ` `` 512{d` λ` 3 full-sized elements of Rq,
which altogether costs at most pκMSIS ` `` 512{d` λ` 3q drlog qs bits. If
we further apply the optimisation described in Section 6.4.6, the total cost
is at most pκMSIS ` `` 512{d` λ` 2q drlog qs bits.

Now, the only remaining part are the vectors z1, z2, z3, z4. We can encode
them using the Huffman coding. Concretely, suppose that z Ð Ds. Then,
we can write

z :“ z1 ¨ 2δ`1 ` z0

where z0 “ z mod ˘2δ`1. Since the expected absolute value of z is s and
assuming that 2δ « s, the value of z0 is close to being uniformly random
between ´2δ and 2δ. Due to the discrete Gaussian tails, the tails of the
distribution of z1 decrease very fast. Hence, the idea is to send z0 in the
clear (which has δ` 1 bits) and then encode z1 using the Huffman coding.
If we assume that s “ 2δ and the tails of z1 are the same as in the normal
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distribution centred at zero 2, then the above compression requires on aver-
age approximately 1.57 bits to represent z1. Thus, the total representation of
z requires on average « 2.57` δ bits. Applying this strategy to z1, z2, z3, z4,
the overall commitment and proof length is around

pn` `` 512{d` λ` 2q drlog qs` rlogp2κ` 1qs ¨ d`m2d ¨ p2.57` rlog s2sq

` pm1 ` Zqd ¨ p2.57` rlog s1sq ` 256 ¨ p2.57` rlog s3sq ` 256 ¨ p2.57` rlog s4sq

bits.
Finally, we can further reduce the commitment and proof size by applying

the compression techniques described in Section 4.3. The only change
from the previous case is the introduction of the variables D (for cutting
low-order bits of the commitment tA) and γ (for cutting low-order bits
of w which allows us not to send some part of the masked opening z2
of the commitment randomness s2). Then, by Theorems 4.3.2 and 4.3.4,
we choose κMSIS, m2 and D, γ so that the MSISκMSIS,m1`m2,B is hard for

B :“ 4η ¨
b

B2
1 ` B2

2 where

B1 “ 2s1
a

2m1d and B2 “ 2s2
a

2m2d` 2Dη
a

κMSISd` γ
a

κMSISd.

As a rule of thumb, we first set D “ γ “ 0 and pick the largest n such that
MSISn,m1`m2,B is hard. Next, we find the largest γ (note that D is still zero)
for which the Module-SIS problem is still hard. Finally, after fixing n and
γ, we choose the largest D such that MSISn,m1`m2,B is still hard and also
2D´1ωd ă γ. Note that having larger D decreases the commitment size
at the cost of having larger hints and therefore, there is no advantage in
picking larger D than logpγ{pωdqq ` 1.

Now, we provide an asymptotic analysis of bounding the size of the
hint vector h. First, note that the coefficient vector h with high probability
satisfies }h}8 ď }HighBitsqpctA,2 ´ z2,2q}8 (here we assume the low-order
bits w0 of w do not cause the increase in the high-order bits). Then, }ctA,2`

z2,2}8 ď 2D´1ωd` 16s2 with an overwhelming probability by Lemma 3.2.2.
Hence, we conclude that (with high probability) the coefficients of h are
between ´x and x where

x :“
R

2D´1ωd` 16s2

γ

V

. (6.35)

For our parameters, the standard deviation s2 will be much smaller than
γ and thus x will be close to 2D´1ωd{γ. Finally, by picking D such that

2 This assumption is needed so that we can compute the frequencies for the Huffman coding.
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Integer Representation Bits

0 00 2

1 01 2

´1 10 2

k ě 2 1102k´41 2k´ 1

k ď ´2 1102k´31 2k

Table 6.1: Prefix-free encoding [Duc+17].

2D´1ωd ă γ, we conclude that the coefficients of h are between ´1 and 1
with high probability. Assuming heuristically that they follow a binomial
distribution, we encode h using a prefix-free encoding 3 [Duc+17] as shown
in Table 6.1. As computed in [Duc+17], encoding a coefficient of h requires
on average « 2.25 bits.

The final proof size including compression becomes:

κMSISdprlog qs´Dq ` p`` 512{d` λ` 2q drlog qs` rlogp2ω` 1qs ¨ d

` pm1 ` Zqd ¨ p2.57` rlog s1sq `m2d ¨ p2.57` rlog s2sq

` 2.25 ¨ κMSISd` 256 ¨ p2.57` rlog s3sq ` 256 ¨ p2.57` rlog s4sq bits.

6.5.1.1 Skipping the Non-Exact Norm Proof

In certain applications, we will not perform any non-exact norm proofs, as
described in Section 6.4.7. In this scenario, we do not send the commitments
y4, β4 and the masked opening z4. Also, the packing technique from Section
6.4.6 becomes pointless. In conclusion, the proof size for this case becomes:

κMSISdprlog qs´Dq ` p`` 256{d` λ` 2q drlog qs` rlogp2ω` 1qs ¨ d

` pm1 ` Zqd ¨ p2.57` rlog s1sq `m2d ¨ p2.57` rlog s2sq

` 2.25 ¨ κMSISd` 256 ¨ p2.57` rlog s3sq bits.

3 One could apply the Huffman coding as before, however this requires computing the frequen-
cies of the hint coefficients.



7
S H O RT E R P R O O F S V I A O N E - T I M E C O M M I T M E N T S

In order to provide zero-knowledge (or more precisely, simulatability) for
the protocols in Chapters 5 and 6, we apply rejection sampling to avoid
leaking any information about the short message s1 and a randomness
vector s2. As described in Sections 3.3.5 and 3.3.6, if one wants to use the
Gaussian rejection sampling procedure [Lyu12], then the coefficients of zi
output in the proof are around γi ¨ η}si} – here η is the constant dependent
on the challenge space and γi ą 0 determines the repetition rate. Indeed,
by the reasoning in Section 6.5.1 one would need to repeat at least 1

M :“ exp

˜
d

2pκ` 1q
logpeq

¨

ˆ

1
γ1
`

1
γ2

˙

`
1

2γ2
1
`

1
2γ2

2

¸

times to obtain an accepting transcript. In terms of concrete parameters, if

we main for 128-bit security then by setting γ1 “ γ2 “

c

2p128`1q
logpeq « 13, we

obtain M « 7.5. Hence, the coefficients of zi are about 13 ¨ 140 2 larger than
coefficients of s1.

The increased coefficient size implies that the proof pz1, z2q is noticeably
larger than the message and randomness themselves. However, it seems nec-
essary because leaking some information about the message or randomness
can be dangerous. For instance, if one were to repeatedly perform proofs of
knowledge for the same commitment and leak something about the same
randomness s2 each time, eventually the entire s2 could be recovered.

Interestingly, the role of the commitments in many of the privacy-based
primitives, such as group signatures [PLS18], is to commit to some in-
termediate messages m under fresh randomness s2 and give a proof-of-
knowledge of m and that they satisfy certain relations. This means that
the output of the primitive is a commitment and a proof. Consequently,
every new output contains a commitment with fresh randomness s2. In this
case, it is not immediately clear whether some leakage of the randomness
vector is problematic. Nevertheless, it would be good to have a technique

1 For the sake of the overview, we ignore the terms related to z3, z4.
2 We use the value of η from Figure 3.3 for d “ 64.

152
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which lowers the proof size, and concurrently allows one to understand ex-
actly how the hiding property of the commitment scheme is affected by the
leakage. Similar analysis can also be applied for the ABDLOP commitments.

As discussed above, if one wants to avoid leaking any information about
the randomness s2, then the “masked opening” z2 of s2 will have coefficients
around γ2 ¨ η}s2}. On the other end of the spectrum, if one simply sends
z2 “ s2 in the clear, then obviously the coefficients of z2 have size at
most }s2}8 but the whole randomness is leaked. Our contribution in this
chapter is finding a middle ground and showing that by applying bimodal
Gaussian rejection sampling on z2, i.e. use Rej1 instead of Rej0 defined
in Figure 3.2, we reduce the coefficient size of z2 by a factor of Opγ2q.
We achieve this improvement at the cost of (potentially) leaking the inner
product xs2, cz2y P Z where c P C is a challenge. Hence, we show that
the simulatability property of our protocols relies on the Extended-MLWE
assumption, first introduced by Alperin-Sheriff and Apon [AA16], which in
addition to the plain MLWE, it reveals the inner products of the secret with
public vectors to the adversary.

Similar results were proposed recently by Lyubashevsky et al. [LNS21a].
We describe the main differences. Firstly, for the same standard deviation,
we obtain a repetition rate which is two times smaller. This is because
in [LNS21a] the prover only sends z2 if the inner product xz2, cs2y is non-
negative which happens with probability at least 1{2. This means that
even an honest verifier learns the sign of the inner product. Although our
protocol relies on a stronger variant of the Module-LWE assumption, where
the adversary is given the whole inner product of the secret with a random
vector rather than just the sign, the honest verifier in our case is not given
explicit information about the inner product itself.

7.1 bimodal gaussian rejection sampling on the randomness

As evidenced in the case of signature schemes [Duc+13], applying bimodal
Gaussians significantly reduces the standard deviation used for rejection
sampling3. We attempt to follow the same methodology for our protocols.

In our constructions, we apply a rejection sampling procedure to mask a
secret vector ~v by first sampling ~y from a discrete Gaussian with standard
deviation s, and then computing~z :“ ~v`~y. By Lemma 3.3.2, if we addition-
ally run Rej0p~z,~v, s, Mq, then the distribution of~z is indistinguishable to the
one where we simply sample ~z from a discrete Gaussian and output ~z with

3 One can compare Lemma 3.3.3 to Lemma 3.3.2 to see the difference.
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Ap~vq
01 ~y Ð Dm

s

02 ~z :“ ~y`~v

03 output p~z,~vq with prob.
exp

´

}~v}2

2s2

¯

M coshpx~z,~vy{s2q

Fp~vq
01 ~y Ð Dm

s

02 p~z`,~z´q :“ psignpx~y,~vyq ¨~y,´signpx~y,~vyq ¨~yq

03 p :“
exp

´

2|x~y,~vy|
s2

¯

exp
´

2|x~y,~vy|
s2

¯

`1

04 ~z :“

$

&

%

~z` with prob. p

~z´ with prob. 1´ p
05 output p~z,~vq with prob. 1

M

Figure 7.1: Algorithms A and F for Lemma 7.1.1. We define signpxq “ 1 if x ě 0
and ´1 otherwise.

probability 1{M. Here, it is important that one could generate ~z without
having any information on ~v.

Now, suppose that instead of Rej0, we run Rej1. It is now a natural
question to ask whether there is a way to simulate the ~z by having as little
information on ~v as possible. We answer this question positively and show
that this distribution is simulatable given only the inner product x~z,~vy of ~z
and ~v. We summarise our observation with the following lemma.

Lemma 7.1.1. Let ~v P Zm be a vector of norm T. Fix s ě γT and M ě

exp
´

1
2γ2

¯

. Then the distributions of the outputs of Ap~vq and Fp~vq defined in
Figure 7.1 are identical. Moreover, the probability that A outputs something is
exactly 1{M.

Proof. Fix ~v P V and ~z P Zm and let

p :“
exp

´

2x~z,~vy
s2

¯

exp
´

2x~z,~vy
s2

¯

` 1
.

By definition of A, Ap~v,~zq is equal to

Dm
s p~z´~vq ¨

exp
´

}~v}2

2s2

¯

M cosh
´

x~z,~vy
s2

¯ “ Dm
s p~zq ¨

2 exp
´

2x~z,~vy
s2

¯

M
´

exp
´

2x~z,~vy
s2

¯

` 1
¯ “ Dm

s p~zq ¨
2p
M

Now, we focus on Fp~vq. We see that by construction, x~z`,~vy ě 0 and
x~z´,~vy ď 0. Let us consider three separate cases. First, suppose ~z satisfies
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x~z,~vy ą 0. Informally, we want to compute the probability that ~y “ ~̆z and
F picks ~z`. Then,

Fp~v,~zq “ 2Dm
s p~zq ¨

exp
´

2x~z,~vy
s2

¯

exp
´

2x~z,~vy
s2

¯

` 1
¨

1
M
“ Dm

s p~zq ¨
2p
M

.

Further, suppose x~z,~vy ă 0. Informally, we compute the probability that
~y “ ~̆z and F picks ~z´. Then,

Fp~v,~zq “ 2Dm
s p~zq ¨

1

exp
´

´2x~z,~vy
s2

¯

` 1
¨

1
M
“ Dm

s p~zq ¨
2p
M

.

Finally, assume x~z,~vy “ 0 and thus p “ 1{2. Then, Fp~v,~zq is simply the
probability that p~y “~z^F outputs ~z`q or p~y “ ~́z^F outputs ~z´q. Hence,

Fp~v,~zq “ Dm
s p~zq ¨

1
2M

`Dm
s p ~́zq ¨

1
2M

“ Dm
s p~zq ¨

1
M
“ Dm

s p~zq ¨
2p
M

.

Therefore, we proved that for every ~z, Ap~v,~zq “ Fp~v,~zq.
Finally, the second part of the statement follows from a simple observation

that F outputs something with probability exactly 1{M.

7.2 extended-mlwe

We observe that the only information about ~v needed in order to run the
simulator F in the security proof is the value of x~y,~vy. Hence, we reduce
the simulatability property of our protocols to the hardness of the so-called
Extended-MLWE. Here, as usual, an adversary needs to distinguish between
the tuples pB, Bsq and pB, uq, where u is a uniformly random vector but
this time it is also given a “hint” of the form pc, y, xcs, yyq where c and y are
sampled from some known distributions. For simplicity, we will describe
the problem in a “knapsack” form.

Definition 7.2.1 (Extended-MLWE). The Extended-MLWE problem with pa-
rameters n, m and distribution χ, ξc, ξy over R asks the adversary A to
distinguish between the following two cases: 1) pB, Bs, c, y, xcs, yyq and 2)
pB, u, c, y, xcs, yyq for B Ð Rmˆpn`mq

q , a secret vector s Ð χn`m, uniformly
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random vector u P Rm
q and pc, yq Ð ξc ˆ ξn`m

z . Then, A is said to have
advantage ε in solving Extended-MLWEn,m,χ,ξc ,ξy if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆpn`mq

q ; s Ð χn`m; pc, yq Ð ξc ˆ ξn`m
y ; b Ð ApB, Bs, c, y, xcs, yyq

ı

´ Pr

«

b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

B Ð Rmˆpn`mq
q ; s Ð χn`m; pc, yq Ð ξc ˆ ξn`m

y ; u Ð Rm
q ;

b Ð ApB, u, c, y, xcs, yyq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ě ε.

We say that Extended-MLWEn,m,χ,ξc ,ξy is hard if for all PPT adversaries A,
the advantage in solving Extended-MLWEn,m,χ,ξc ,ξy is negligible.

We note that the (Module-)LWE problem with various side information
has already been discussed in prior work e.g. [AP12; Dac+20; Dod+10].
As far as we are aware, this new variant of MLWE is the closest to the
Extended Module-LWE problems defined by Lyubashevsky et al. [LNS21a],
Alperin-Sheriff and Apon [AA16], Alperin-Sheriff and Peikert [AP12] and
Boudgoust et al. [Bou+21].

We observe that [AA16] describes a similar problem with the two differ-
ences: (i) there is no c involved (assume that c “ 1) and (ii) the hint is an
arbitrary Q-linear function on the “error” part e of the secret s (in particular,
it could be xe, yy P Z where y Ð ξm

y ). Alperin-Sheriff and Apon show that
their Extended-MLWE problem can be reduced to plain MLWE if the errors
come from a discrete Gaussian with a large enough standard deviation. The
proof strategy was later extended by Boudgoust et al. [Bou+21] who define
another Extended-MLWE problem. This time, however, the hint becomes
a whole polynomial xe, yy P R. Finally, the only difference between our
problem and the one in [LNS21a] is that the adversary is given the whole
inner product xcs, yy instead of its sign.

If we consider our Extended-MLWE without any polynomial ring struc-
ture, then the problem becomes almost identical to the one introduced by
Alperin-Sheriff and Peikert [AP12] (if we again assume c “ 1). The authors
additionally show that it is possible to reduce such a problem to plain LWE
with the reduction loss Op|x~s,~yy|q.

7.3 applications

For presentation, we apply our new rejection sampling strategy on the
commit-and-prove system Πlin “ pABDLOP,P ,Vq for the relation Rlin in
Figure 5.1. However, it can be almost identically applied to all other systems
described in Chapters 5 and 6.
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Concretely, we substitute Theorems 5.1.1 and 5.1.2 with the following
results.

Theorem 7.3.1. Let Rejp1q “ Rej0 and Rejp2q “ Rej1 as defined in Figure 3.2.
Fix standard deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1, γ2 ą 0 and

define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and M2 :“ exp

˜

1
2γ2

2

¸

.

Then, the commit-and-prove system Πlin for the relation Rlin has statistical com-
pleteness with correctness error 1´ 1

M1 M2
.

Proof. The proof follows directly from Lemma 7.1.1 which says that Rej1
does not abort with probability 1{M2.

Theorem 7.3.2. Let Rejp1q “ Rej0 and Rejp2q “ Rej1 as defined in Figure 3.2.
Fix standard deviations s1 “ γ1ηα and s2 “ γ2ην

?
m2d for some γ1 ą 0, γ2 ą 0

and define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and M2 :“ exp

˜

1
2γ2

2

¸

.

Suppose κMLWE :“ m2 ´ κMSIS ´ ` ě 0. Then, the commit-and-prove system Πlin

for the relation Rlin is simulatable under the Extended-MLWEκMLWE,κMSIS``,χ,C,Dd
s2

assumption.

Proof. Similarly as before, we prove the statement using a hybrid argu-
ment. First, we describe an efficient simulator S1, which knows s1, m and
simulates both the commitment and the transcript as follows. It generates
fresh randomness s2 Ð χm2 and a masking vector y2 Ð Dm2d

s2 and com-
putes ptA, tBq “ ABDLOP.Commitps1, m; s2q and z2 “ y2 ` cs2. It aborts if
Rej1pz2, cs2, s2, M2q “ 1. Next, S1 samples z1 Ð Dm1d

s1 . Finally, S1 computes

w :“ A1z1 `A2z2 ´ ctA

v :“ R1

«

z1

ctB ´ Bz2

ff

` cr0

and outputs a simulated transcript pw, v, c, z1, z2q with probability 1{M1.
Then, by Lemma 3.3.2, the non-aborted simulated commitment and tran-
script by S1 are statistically close to the honestly generated commitment
and non-aborted transcript.
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Next, we describe an efficient simulator S2, which still knows s1, m and
simulates both the commitment and the transcript in the following way. It
executes the S1 algorithm but instead of constructing z2 honestly as in the
protocol, S2 samples y2 Ð Dm2d

s2 and defines z` :“ signpxcs2, y2yq ¨ y2 and
z´ :“ ´z`. Then, it sets z2 :“ z` with probability p and z2 :“ z´ with
probability 1´ p where

p :“
exp

´

|xcs2,y2y|
M

¯

exp
´

|xcs2,y2y|
M

¯

` 1
.

It then continues with probability 1{M2. By Lemma 7.1.1, the non-aborted
simulated commitment and transcript by S1 and S2 are identical.

Further, we describe an efficient simulator S3, which still knows s1, m
and simulates both the commitment and the transcript as follows. Namely,
it executes the S2 algorithm but instead of generating ptA, tBq honestly, it
samples u Ð Rn``

q and computes:

«

tA

tB

ff

:“ u`

«

A1s1

m

ff

.

Now, under the Extended-MLWEκMLWE,κMSIS``,χ,C,Dd
s2

assumption, the non-

aborted output distribution of S2 is computationally indistinguishable from
the non-aborted output distribution of S2.

Finally, we define our simulator S , which has no access to private in-
formation anymore, as follows. Concretely, it executes the S3 algorithm
but instead of generating ptA, tBq as S3, it samples u Ð Rn``

q and sets
ptA, tBq :“ u. Also, it does not perform any abort operations. Then, clearly
the output distribution of S is identical to the non-aborted output of S3.
Hence, the statement holds by the hybrid argument.

In conclusion, for the same standard deviation s2 we manage to reduce the

repetition rate by a factor of exp
ˆ
c

2pκ`1q
logpeq ¨

1
γ2

˙

. For instance, by applying

the new rejection sampling technique in the protocol described in Figure
6.3, an honest prover convinces the verifier with probability

« exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1
`

1
2γ2

2
`

1
2γ2

3
`

1
2γ2

4

¸´1

.



8
A P P L I C AT I O N S

In this chapter, we show how to make use of our techniques developed
in Chapter 6 for proving norms in real-world applications. Concretely,
we apply our framework for proving knowledge of a Module-LWE secret
in Section 8.1, verifiable encryption in Section 8.2 and proving integer
relations in Section 8.3. Further, we focus on building more complex privacy-
preserving primitives such as group and ring signatures in Section 8.4 and
8.5. In order to show significance of our results, we compare our efficiency
with relevant prior work. We additionally provide SAGE [The22] scripts
which compute parameters for the examples described in this chapter:

https://github.com/khalvador/lantern.

8.1 proving knowledge of a module-lwe secret

As a primary benchmark for comparison with prior work [ENS20; LNS21a],
we prove knowledge of a Module-LWE secret. Namely, we want to prove
knowledge of ps, eq P Rn`m

q such that }ps, eq} ď B and

As` e “ u pmod qq (8.1)

where A P Rnˆm
q and u P Rn

q are public.
We propose the following solution using the framework developed in

Section 6.4. Simply, we commit to s and prove that
›

›

›

›

›

«

s

As´ u

ff
›

›

›

›

›

“

›

›

›

›

›

«

Im
A

ff

s´

«

0

u

ff
›

›

›

›

›

ď B.

In Figure 8.1 we show to properly instantiate the commit-and-prove system
Πtbox to prove knowledge of a Module-LWE secret.

Remark. We note that [ENS20; LNS21a] could not avoid committing to e
without having additional commitments. Indeed, previous work efficiently
prove smallness of a vector s, e.g. }s}8 ď 1, by committing to its coefficient
vector~s using NTT slots and then proving that

~s ˝ p~s´~1q ˝ p~s`~1q “~0.

159

https://github.com/khalvador/lantern
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variable description instantiation

N # of quadratic equations over Rq 0

M # of quadratic equations over Zq 0

nbin length of the vector to prove binary coefficients 0

Z # of exact norm proofs 1

– approximate shortness proof 7

s1 message in the Ajtai part s

m committed message in the BDLOP part H

Ep1qs matrix for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1

«

Im
A

ff

Ep1qm matrix for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 H

vp1q vector for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 ´

«

0

u

ff

B1 upper-bound on }Ep1qs s1 ` Ep1qm m` vp1q} B

Figure 8.1: Instantiation of the protocol in Figure 6.3 for proving As` e “ u
pmod qq and }ps, eq} ď B. The variables in the first two columns refer
to the ones defined in Section 6.4 and the ones in the last column
refer to the parameters in this section. Here, H denotes an empty
vector/matrix.

If one were not to commit to e, then one would need to prove an equation
of the form

pA~s´~uq ˝
´

A~s´~u´~1
¯

˝ pA~s´~u`~1q “~0.

However, this relation, which is a mix of linear and product relations, cannot
be proven using current methods included in [ENS20; LNS21a] without
making intermediate commitments.

8.1.1 Parameters

We instantiate our protocol for the case when q « 232 and n “ m “ 1024{d
similarly [BLS19; ENS20; LNS21a] using the methodology in Section 6.5.1.
We provide a summary of our parameter selection in Table 8.2.
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parameters description value

q prime modulus 232 ´ 99

d ring dimension of R 64

l # factors Xd ` 1 splits into mod q 2

n height of the A matrix 16

m width of the A matrix 16

γ1 rejection sampling constant for cs1 10

γ2 rejection sampling constant for cs2 1

γ3 rejection sampling constant for the ARP 6

ω maximum coefficient of a challenge in C 8

κMSIS height of matrices A1, A2 in ABDLOP 19

m1 length of the message s1 in the “Ajtai” part 16

` length of the message m in the “BDLOP” part 0

λ 2 ¨ p# of gj P Rq for boosting soundnessq 4

m2 length of the randomness s2 in ABDLOP 47

ν randomness s2 is sampled from Sm2
ν 1

γ parameter to cut low-order bits of w 65526

D number of low-order bits cut from tA 3

repetition rate 7

commitment + proof size 13.1KB

Figure 8.2: Parameter selection for proving As` e “ u pmod qq and }ps, eq} ď
?

2048 using the protocol in Figure 6.3
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Let us pick prime q :“ 232 ´ 99 ( i.e. q “ q1) and set d “ 64, l “ 2 and
B “

?
20481. Then we define the randomness distribution χ as a uniform

one over S1. For the challenge space, we set ω “ 8 and η “ 140 as in Figure
3.3. Then, any difference of two distinct challenges in C is invertible over
Rq. Also, for q « 232, we choose λ “ 4. Thus, q´d{l ă q´λ « 2´128.

There are three rejection sampling algorithms: one to mask cs1, another
one to mask cs2 and the last one to mask }R~s3}. Denote si “ γiTi where
T1, T2, T3 are the upper-bounds on }cs1}, }cs2} and }R~s3} respectively. The
repetition rate in our case, using the optimised rejection sampling in Chapter
7, is at least

exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1
`

1
2γ2

2
`

1
2γ2

3

¸

.

The rate in [LNS21a] is around 7 hence we set γ1 “ 10, γ2 “ 1 and γ3 “ 6.
Finally, the total communication size has been computed as in Section
6.5.1.1.

8.2 verifiable encryption

For presentation, we will consider a standard Regev public-key encryption
scheme [Reg09] but similar analysis can be applied for more complex
construction, such as Kyber [Bos+18], Saber [DAn+18] and NTRU [HPS98]
(see [LNS21a, Section 4] for more details). Namely, let p be a prime modulus
of the encryption scheme. In order to encrypt a binary message m P t0, 1ud

with w number of 1s, a user samples a randomness vector r Ð ξm, where ξ
is a distribution over R, and compute

«

t0

t1

ff

:“

«

A

bT

ff

r`

«

0

t
p
2 sm

ff

(8.2)

over Rp :“ ZprXs{pXd ` 1q where pA, bq P Rnˆm
p ˆRn

p is the public key 2.
Let B be an upper-bound on r such that the probability that }r} ą B for
r Ð ξm is negligible. Then, in the verifiable encryption scenario, we want to
prove knowledge of r P Rm and m P R such that (i) Equation 8.2 is satisfied
over Rp, (ii) }r} ď B and (iii) m P t0, 1ud.

The high-level idea is to commit to pr, mq using the ABDLOP commitment
modulo q and prove these three statements. Note that the latter two have

1 It is the case when s1, e only consist of ternary coefficients as assumed in the prior work.
2 Recall that all coefficients of the terms involved in (8.2) are between ´p{2 and p{2.
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already been covered in Section 6.4. Hence, from now on we focus on
proving the first statement.

We first observe that if q is divisible by p then (8.2) can be transformed
into a linear equation modulo q and can be proven as described in Section
6.4. However, in practical instantiations p will be significantly small relative
to q (e.g. p “ 3329 in Kyber). Consequently, if q has a small prime divisor
p then by Theorem 6.4.3, we would need to commit to more garbage
polynomials gi in order to keep the soundness error negligible. Moreover,
for implementation purposes one might want p to be a prime such that
Xd ` 1 splits into many factors modulo p (e.g. p “ 3329). In this case, if p
divides q, then the challenge space C does not have the invertibility property
which is necessary for the soundness proof. In Figure 8.4 we propose an
example instantiation for the case when q is divisible by p (see parameter
set II).

Now, suppose that p is co-prime to q. Then, (8.2) is true if and only if
there exists a vector v P Rn`1 such that

«

t0

t1

ff

:“

«

A

bT

ff

r`

«

0

t
p
2 sm

ff

` pv (8.3)

over R. From a simple calculation, }v}8 ď B
?
md{2` 1. We can avoid

committing to v by proving directly that vector

v :“ p´1 ¨

˜«

A 0

bT t
p
2 s

ff«

r

m

ff

´

«

t0

t1

ff¸

P Rn
q (8.4)

has norm at most Bv :“ pB
?
md{2` 1q

a

pn` 1qd. Since this expression is
linear in the committed messages r and m, we can apply the protocol in
Figure 6.3 to prove its norm. As we will show below, it is enough to prove
an approximate bound, i.e. }v}8 ď ψ ¨ Bv, where ψ :“ 2 ¨

?
2κ ¨ 337γ4, as

described in Section 6.4.3. Indeed, in the soundness argument we would
extract a pair pr˚, m˚q which satisfies

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

m˚ P t0, 1ud,

}r˚} ď B,
›

›

›

›

›

›

p´1 ¨

¨

˝

»

–

A 0

bT t
p
2 s

fi

fl

»

–

r˚

m˚

fi

fl´

»

–

t0

t1

fi

fl

˛

‚

›

›

›

›

›

›

8

ď ψ ¨ Bv.
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Denote the third expression as v˚ P Rn`1. Then, we have
«

t0

t1

ff

”

«

A

bT

ff

r˚ `

«

0

t
p
2 sm˚

ff

` pv˚ pmod qq. (8.5)

Thus,
›

›

›

›

›

«

A

bT

ff

r˚ `

«

0

t
p
2 sm˚

ff

` pv˚ ´

«

t0

t1

ff
›

›

›

›

›

8

ď p
´

B
?
md{2` 1` ψ ¨ Bv

¯

.

Hence, if q is bigger than the right-hand side of this inequality, then we
conclude that Equation (8.5) holds over integers. In particular pt0, t1q is a
valid encryption of m under randomness r over Rp.

In Figure 8.3 we instantiate the protocol from Figure 6.3 for verifiable
encryption as described above.

Remark. Note that the current state-of-the-art lattice based verifiable encryp-
tion [LN17], which is used in e.g. [Lyu+21; PLS18], only provide relaxed
verifiable encryption. Namely, the soundness argument only guarantees
knowledge of a message and randomness corresponding to the ciphertext
pc̄t0, c̄t1q, where c̄ P Rp is called a relaxation factor. More importantly, c̄ is
not known to the decryptor and thus it guesses a c̄ and attempts to recover
the ciphertext pc̄t0, c̄t1q. Consequently, the prior works had to equate the
decryption time with the adversary’s running time. Here, since we commit
to r and m using a separate ABDLOP commitment, we circumvent the
relaxation factor by proving exact norms on r and m P t0, 1ud.

8.2.0.1 Parameters

We provide our parameters choices3 in Figure 8.4. For the ciphertext modu-
lus and dimensions, we follow the Kyber instantiation. In particular, we set
d “ 64, n “ 8,m “ 18 and b “ ATs` e where the secret key s and error e
come from Bin8d

2 and Bin18d
2 respectively. For the randomness distribution,

fix ξ :“ Bind
2. Hence, we can set the upper-bound B on the norm of r Ð ξK

as B “ 2
?
md and thus Bv “ pmd` 1q

a

pn` 1qd.
To compute the decryption error probability, we want to calculate the

probability that for r, e Ð Binmd
2 , }xr, ey}8 ă q{4. First, we compute that

for any~r,~e Ð Binmd
2 , the probability that }x~r,~ey}8 ą 800 is less than 2´360.

3 One can also instantiate the encryption scheme over a larger ring, e.g. R1 :“ ZrXs{pX256 ` 1q.
Then, in order to apply our proof system over a smaller ring R, one would first map the
equations to work over R rather than R1 as described in Section 3.2.4.
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variable description instantiation

N # of quadratic equations over Rq 0

M # of quadratic equations over Zq 0

nbin length of the vector to prove bin. coeff. 1

Z # of exact norm proofs 1

– approximate shortness proof X

s1 committed message in the Ajtai part r ‖ m

m committed message in the BDLOP part H

Ps matrix to prove Pss1 ` Pmm` f has bin. coeff. r0 1s

Pm matrix to prove Pss1 ` Pmm` f has bin. coeff. H

f vector to prove Pss1 ` Pmm` f has bin. coeff. 0

Ep1qs matrix for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 rIm 0s

Ep1qm matrix for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 H

vp1q vector for proving }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 0

B1 upper-bound on }Ep1qs s1 ` Ep1qm m` vp1q} B

Ds matrix for proving }Dss1 `Dmm` u} ď B1 1
p ¨

«

A 0

bT t
p
2 s

ff

Dm matrix for proving }Dss1 `Dmm` u} ď B1 H

u vector for proving }Dss1 `Dmm` u} ď B1 1
p ¨

«

t0

t1

ff

B1 upper-bound on }Dss1 `Dmm` u} Bv

Figure 8.3: Instantiation of the protocol in Figure 6.3 for verifiable encryption.
The variables in the first two columns refer to the ones defined in
Section 6.4 and the ones in the last column refer to the parameters in
this section. Here, Bv :“ pB

?
md{2` 1q

a

pn` 1qd and H denotes an
empty vector/matrix.
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parameters description I II

p encryption modulus 3329 3253

n height of A 8 8

m width of A 18 18

ξ ξK is the rand. dist. of r Bind
2 Bind

2

q proof system modulus « 235 « 232

d dimension of R 64 64

l # factors Xd ` 1 splits into mod q 2 2

γ1 rej. samp. constant for cs1 32 9.5

γ2 rej. samp. constant for cs2 1 1

γ3 rej. samp. constant for exact ARP 16 6

γ4 rej. samp. constant for non-exact ARP 0.7 –

w max. coeff. of a challenge in C 8 8

κMSIS height of A1, A2 in ABDLOP 20 19

m1 length of the “Ajtai” message s1 19 11

` length of the “BDLOP” message m 0 0

λ 2 ¨ p# of gj P Rq for boosting soundnessq 4 12

m2 length of randomness s2 54 51

ν randomness s2 is sampled from Sm2
ν 1 1

γ parameter to cut low-order bits of w 113302 28822

D number of low-order bits cut from tA 8 6

repetition rate 7 7

ciphertext size 1KB 1KB

commitment + proof size 17.2KB 15.0KB

Figure 8.4: Parameter selection, ciphertext and proof sizes for verifiable encryp-
tion. For the second parameter set we choose q :“ 1320301 ¨ 3253.
Since p divides q, we do not need to do an approximate range proof
of v as for I. Consequently, we can pick smaller modulus q and apply
a similar strategy as in Section 8.1. In particular, we do not commit to
the whole vector r “ pr1, r0q P Rm´n

q ˆRn
q , but only a part of it, i.e.

the vector r1.
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Then, by the union-bound, the probability that }xr, ey}8 ą 800 is still at
most 2´300. Hence, in our parameter selection, we will pick a prime p larger
than 3200.

The rest of the parameters are chosen similarly Section 6.5.1. Finally, we
need to check that

q « 235 ą p ¨
´

B
?
md{2` 1` pB

?
md{2` 1q

a

pn` 1qdψ
¯

.

The term on the right-hand side is less than 235 thus the inequality holds.

8.3 proving integer relations

This section focuses on proving integer relations using the framework
developed in Section 6.4. We start by proving integer addition in Section
8.3.1 and then move to proving multiplication in Section 8.3.2. We highlight
that the relations we are interested in hold over integers, i.e. no wrap-around
modulo q occurs.

8.3.1 Integer Addition

In this subsection we provide an efficient commit-and-prove system for
addition on the committed integers. Specifically, given commitments to
integers a, b, c (depending on the application, some of these values can
be given out in the clear), we want to prove that a ` b “ c. In order to
consider both positive and negative values, we use the two’s complement
representation. Namely, let n be a power of two and suppose n “ kd for
k ě 1. Suppose a, b, c P r´2n´1, 2n´1 ´ 1s and we want to prove a` b “ c.
Then, a can be represented in two’s complement as n bits a0, . . . , an´1 P t0, 1u
which satisfy

a “ ´an´12n´1 `

n´2
ÿ

i“0

ai2i.

Similarly, we write

b “ ´bn´12n´1 `

n´2
ÿ

i“0

bi2i and c “ ´cn´12n´1 `

n´2
ÿ

i“0

ci2i.

Let us define polynomials â, b̂, ĉ P ZrXs as follows:

â :“ ´an´1Xn´1 `

n´2
ÿ

i“0

aiXi
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and similarly for b̂, ĉ. Then, clearly we have a` b “ c if and only if âp2q `
b̂p2q “ ĉp2q. The latter can be written equivalently as

âpXq ` b̂pXq “ ĉpXq ` p2´ Xq f̂ pXq (8.6)

for some f̂ P ZrXs of degree at most n´ 2. We will call f̂ the carry polyno-
mial. We now show that f̂ has binary coefficients.

Lemma 8.3.1. The polynomial f̂ P ZrXs defined above has coefficients in t0, 1u.

Proof. We prove the statement by induction and start with the constant
coefficient f0. Note that

2 f0 “ a0 ` b0 ´ c0

and thus
´

1
2
ď f0 “

a0 ` b0 ´ c0

2
ď 1.

Hence, f0 P t0, 1u. Next, consider 0 ă i ă n´ 2 and suppose fi´1 P t0, 1u.
Then

2 fi ´ fi´1 “ ai ` bi ´ ci

and therefore
´

1
2
ď fi “

ai ` bi ´ ci ` fi´1

2
ď

3
2

.

We conclude that fi P t0, 1u. Finally, focus on fn´2. We know that

´ fn´2 “ p´an´1q ` p´bn´1q ´ p´cn´1q “ cn´1 ´ an´1 ´ bn´1.

Now, we claim that 0 ď an´1 ` bn´1 ´ cn´1 ď 1 which concludes the proof.
Indeed, first note that an´1` bn´1´ cn´1 ď 1 since otherwise an´1 “ bn´1 “

1 and cn´1 “ 0. By definition of two’s complement, this implies that a, b ă 0
and 0 ď c. Thus, a` b ă 0 ď c “ a` b which is a contradiction. Next, we
show that an´1` bn´1´ cn´1 ‰ ´1. If it were the case, then an´1 “ bn´1 “ 0
and cn´1 “ 1. However, then a` b ě 0 ą c which leads to contradiction.
Hence,

0 ď fn´2 “ an´1 ` bn´1 ´ cn´1 ď 1.

Our strategy will be to prove (8.6). We do it by first proving the equation
over R1q :“ ZqrXs{pXn ` 1q “ ZqrXs{pXkd ` 1q and then showing that no
modulo q and Xn ` 1 wrap-around occurs. Let x̂ P R1q be an inverse of
2´ X. Such inverse exists if 2kd ` 1 is not divisible by q which will be the
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case in our instantiations. Consider the φ : R1q Ñ Rk
q map described in

Section 3.2.4, i.e.

φpuq “ pu0, . . . , uk´1q where u “
k´1
ÿ

i“0

uipXkqXi P R1q.

We showed in Lemma 3.2.11 that (8.6) is equivalent to

φpx̂q ‹ pφpâq ` φpb̂q ´ φpĉqq “ φp f̂ q.

For simplicity denote
φpâq :“ pâ0, . . . , âk´1q

and similarly for b̂, ĉ, x̂, f̂ . Then this equation is equivalent to

@ι P Zk,
ÿ

0ďi,jăk
i`j”ι mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

X
Y

i`j
k

]

“ f̂ι

over Rq. Hence, we will commit to φpâq, φpb̂q, φpĉq P Rk
q and prove the

following statements:

1. â, b̂ and ĉ are well-formed. We need to show that all the coefficients of
â`Xn´1, b̂`Xn´1, ĉ`Xn´1 are binary. Note that this is equivalent to
proving that â0, . . . , âk´2, âk´1`Xd´1 P Rq all have binary coefficients
and similarly for b̂, ĉ.

2. f̂ is well-formed. We prove that f̂ has binary coefficients. This is done
by proving that for all ι P Zk,

ÿ

0ďi,jăk
i`j”ι mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

X
Y

i`j
k

]

P Rq

has binary coefficients.

3. No overflow modulo Xn ` 1. Recall that we prove Equation 8.6 over R1q.
In order to conclude that the equation holds over integers, we prove
that there is no overflow modulo q and Xn ` 1. The first statements
above make sure no wrap-around modulo q occurs when q ě 7. For
the latter issue, note that it is enough to prove that the highest degree
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coefficient of f̂ is equal to zero. This is done by proving that the
constant coefficient of

X´d`1 ¨ f̂k´1 “ X´d`1 ¨
ÿ

0ďi,jăk
i`j”k´1 mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

X
Y

i`j
k

]

is equal to zero.

It is now easy to see that all the statements can be directly proven using
our framework developed in Section 6.4. Namely, set s1 :“ φpâq ‖ φpb̂q ‖
φpĉq and m “ H. For presentation, denote ka,i, kb,i, kc,i P R3k

q as

kT
a,i “

”

01ˆi 1 01ˆp3k´i´1q

ı

, kT
b,i “

”

01ˆpk`iq 1 01ˆp2k´i´1q

ı

kT
c,i “

”

01ˆp2k`iq 1 01ˆpk´i´1q

ı

.

Then, for any i P Zk we have

kT
a,is1 “ âi, kT

b,is1 “ b̂i, kT
c,is1 “ ĉi.

Next, define the following matrices

Ka :“

»

—

—

–

kT
a,0
...

kT
a,k´1

fi

ffi

ffi

fl

, Kb :“

»

—

—

–

kT
b,0
...

kT
b,k´1

fi

ffi

ffi

fl

, Kc :“

»

—

—

–

kT
c,0
...

kT
c,k´1

fi

ffi

ffi

fl

and

K f :“

»

—

—

—

—

—

—

–

ř

0ďi,jăk
i`j”0 mod k

x̂iX
Y

i`j
k

]

´

kT
a,j ` kT

b,j ´ kT
c,j

¯

...
ř

0ďi,jăk
i`j”k´1 mod k

x̂iX
Y

i`j
k

]

´

kT
a,j ` kT

b,j ´ kT
c,j

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Hence, to prove the first two statements, we want to prove that Pss1 ` f has
binary coefficients, where

Ps :“

»

—

—

—

—

–

Ka

Kb

Kc

K f

fi

ffi

ffi

ffi

ffi

fl

P R4kˆ3k
q , f :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0pk´1qˆ1

Xd´1

0pk´1qˆ1

Xd´1

0pk´1qˆ1

Xd´1

0kˆ1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R4k
q . (8.7)

Finally, the third statement is equivalent to proving that the constant co-
efficient of xs1y

T
σ R11,2xs1yσ ` r1T1,1xs1yσ ` r11,0 is equal to zero where R11,2 :“

06kˆ6k, r11,0 “ 0 and

r11,1 :“ X´d`1 ¨
ÿ

0ďi,jăk
i`j”k´1 mod k

x̂i ¨ JT
3k,2

´

ka,j ` kb,j ´ kc,j

¯

X
Y

i`j
k

]

(8.8)

where the matrix J3k,2 defined in Lemma 5.2.1 satisfies s1 “ J3k,2xs1yσ.
In Figure 8.5 we instantiate the protocol from Figure 6.3 for integer

addition as described above. Then, we present the proof sizes for various
values of n in Figure 8.6. For each instance, we choose pq, d, lq “ p« 232, 64, 2q
and set the standard deviations so that the overall repetition rate is at most
7. Other parameters are selected similarly as in the previous examples.

8.3.2 Integer Multiplication

We show how to prove knowledge of integers a, b, c such that ab “ c. We
first present a non-optimal solution which can be done by directly applying
the framework in Section 6.4. Then, we describe a way to reduce the proof
size at the cost of slightly extending our framework in Section 8.3.2.1.

Concretely, let us write a, b P r´2n´1, 2n´1´ 1s and c P r´22n´1, 22n´1´ 1s
in two’s complement representation, i.e.

a “ ´an´12n´1 `

n´2
ÿ

i“0

ai2i, b “ ´bn´12n´1 `

n´2
ÿ

i“0

bi2i
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variable description instantiation

N # of quadratic equations over Rq 0

M # of quadratic equations over Zq 1

nbin length of the vector to prove bin. coeff. 4k

Z # of exact norm proofs 0

– approximate shortness proof 7

s1 committed message in the Ajtai part φpâq ‖ φpb̂q ‖ φpĉq

m committed message in the BDLOP part H

R11,2 matrix used for the quad. equation over Zq 06kˆ6k

r11,1 vector used for the quad. equation over Zq (8.8)

r11,0 constant used for the quad. equation over Zq 0

Ps matrix to prove Pss1 ` Pmm` f has bin. coeff. (8.7)

Pm matrix to prove Pss1 ` Pmm` f has bin. coeff. H

f vector to prove Pss1 ` Pmm` f has bin. coeff. (8.7)

Figure 8.5: Instantiation of the protocol in Figure 6.3 for proving n-bit integer
addition where n “ kd. The variables in the first two columns refer
to the ones defined in Section 6.4 and the ones in the last column
refer to the parameters in this section. Here, H denotes an empty
vector/matrix.

and

c “ ´c2n´122n´1 `

2n´2
ÿ

i“0

ci2i.

We assume that n is a power of two and 2n “ kd for k ě 2. Now, define

âpXq “ a0 ` a1X` ¨ ¨ ¨ ` an´2Xn´2 ´ an´1Xn´1 P ZrXs

and similarly for b̂, ĉ P ZrXs. Now, observe that âp2qb̂p2q ´ ĉp2q “ 0. Hence,
there exists a “carry” polynomial f̂ of degree at most 2pn´ 1q ´ 1 which
satisfies:

âpXqb̂pXq ´ ĉpXq “ p2´ Xq f̂ pXq. (8.9)

The next lemma states that coefficients of f are between ´pn` 1q and n` 1.

Lemma 8.3.2. Let f̂ be the polynomial of degree at most 2n´ 2 defined above.
Then, for each coefficient fk of f̂ corresponding to Xk, | fk| ď n` 1.
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n proof size

64 10.8KB

128 11.6KB

512 14.4KB

Figure 8.6: Proof size comparison for proving integer addition a ` b “ c for
a, b, c P r´2n´1, 2n´1 ´ 1s.

Proof. We first show f0 P t´1, 0, 1u. Consider Equation 8.9 for X “ 0. Then,
we have a0b0 ´ c0 “ 2 f0. Since ´2 ď a0b0 ´ c0 ď 2, we get | f0| ď 1.

In general, by considering the k-th coefficient of âb̂´ ĉ and p2´ Xq f̂ for
k ą 0, we have the following equality:

|2 fk ´ fk´1| ď
ÿ

0ďi,jăn s.t. i`j“k

|aibj| ` |ck| ď n` 1.

Hence, by the triangle inequality:

| fk| ď
|2 fk ´ fk´1| ` | fk´1|

2
ď

n` 1
2

`
| fk´1|

2
.

Thus, | f1| ď n{2` 1. Then, one can show by induction that

| fk| ď pn` 1qp1{2` 1{4` 1{8` . . .` 1{2kq ` 1{2k ă pn` 1q ` 1{2k

for k ě 1. Since fk P Z, we have | fk| ď n` 1.

Unlike in Lemma 8.3.1, the coefficients of f̂ are much bigger than t0, 1u
but still small compared to q (if q is much larger than n` 1 which will be
the case). However, in order to show that no modulo q overflow occurs, we
just need to prove shortness of f̂ approximately.

Similarly as in the integer addition proof, we want to prove Equation
8.9 over ZrXs. In order to do so, we consider this equation over R1q :“
ZqrXs{pX2n ` 1q “ ZqrXs{pXkd ` 1q. Namely, consider the φ : R1q Ñ Rk

q
map described in Section 3.2.4, i.e.

φpuq “ pu0, . . . , uk´1q where u “
k´1
ÿ

i“0

uipXkqXi.
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As shown in Lemma 3.2.11, (8.9) over R1q is equivalent to

φpâq ‹ φpb̂q ´ φpĉq “ φp2´ Xq ‹ φp f̂ q.

For simplicity denote

φpâq :“ pâ0, . . . , âk´1q P Rk
q

and similarly for b̂, ĉ, f̂ . Also denote φp2´ Xq :“ px̂0, . . . , x̂k´1q. Then this
equation is equivalent to

@ι P Zk,
ÿ

0ďi,jăk
i`j”ι mod k

âi b̂jX
Y

i`j
k

]

´ ĉι “
ÿ

0ďi,jăk
i`j”ι mod k

x̂i f̂ jX
Y

i`j
k

]

. (8.10)

Now, in order to conclude that (8.9) holds over ZrXs, we need to show
that no wrap-around modulo q and X2n ` 1 occurs. For the first issue, we
show that coefficients of â` Xn´1, b̂` Xn´1 and ĉ` X2n´1 are binary (by
definition of two’s complement). As for f̂ , we conduct an approximate
shortness proof to show that f̂ has sufficiently small coefficients so that
no modulo q overflow happens. Next, in order to make sure there is no
wrap-around modulo X2n ` 1, we prove that the degree of â and b̂ are at
most n´ 1 and the degree of f̂ is at most 2n´ 2.

Hence, we will commit to φpâq, φpb̂q, φpĉq, φp f̂ q P Rk
q and prove the fol-

lowing statements:

1. â, b̂ are well-formed. We need to show that all the coefficients of â`
Xn´1, b̂ ` Xn´1 are binary and that the n-th,. . . , p2n ´ 1q-th coeffi-
cients of â, b̂ are equal to zero. These statements are to make sure
no wrap-around modulo q and X2n ` 1 occur respectively. Note
that the first one is equivalent to proving that â0, . . . , âk{2´2, âk{2´1 `

Xd´1, âk{2, . . . , âk´1 all have binary coefficients and similarly for b̂. The
latter one, on the other hand, is equivalent to proving that the d{2-
th,. . . , pd´ 1q-th coefficients of â0, . . . , âk´1, b̂0, . . . , b̂k´1 are all zeroes,
i.e. the constant coefficients of

X´i´d{2 ¨ âj and X´i´d{2 ¨ b̂j

are zeroes for i P Zd{2 and j P Zk.

2. ĉ is well-formed. In case of ĉ, we need to prove that ĉ`X2n´1 has binary
coefficients. This boils down to proving that ĉ0, . . . , ĉk´2, ĉk´1 ` Xd´1

all have binary coefficients.
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3. Equation 8.9 holds over R1q. We simply prove k quadratic equations
(8.10).

4. No overflow modulo q. We prove approximately that f̂ has small coeffi-
cients. By Lemma 8.3.2, }φp f̂ q} ď B1 :“ pn` 1q

?
2n “ pkd{2` 1q

?
kd.

We can convince the verifier that } f̂ }8 “ }φp f̂ q}8 ď ψ ¨ B1 for some
approximation factor. If

q ą 2n` 1` 3ψ ¨ B1

and we proved that that â, b̂, ĉ all have ternary coefficients, then (8.9)
holds over Z and no wrap-around modulo q occurs.

5. No overflow modulo X2n` 1. Recall that the first statement above makes
sure no wrap-around modulo X2n ` 1 occurs when multiplying âb̂.
Now, to prove no such wrap-around happens when multiplying
p2´ Xq f̂ , it is enough to prove that the highest degree coefficient of f̂
is equal to zero. This is done by proving that the constant coefficient
of X´d`1 ¨ f̂k´1 is equal to zero.

It is now clear that all the statements can be directly proven using our
framework developed in Section 6.4. Namely, define s1 :“ φpâq ‖ φpb̂q ‖ φpĉq
and m “ φp f̂ q. The reason to set m this way is because the coefficients of f̂
are much larger than the coefficients of â, b̂, ĉ.

We introduce the following notation. First, recall that matrix J4k,2 defined
in Lemma 5.2.1 satisfies:

J4k,2xs1 ‖ myσ “

«

s1

m

ff

.

Next, denote ka,i, kb,i, kc,i, k f ,i P R4k
q as

kT
a,i “

”

01ˆi 1 01ˆp4k´i´1q

ı

, kT
b,i “

”

01ˆpk`iq 1 01ˆp3k´i´1q

ı

kT
c,i “

”

01ˆp2k`iq 1 01ˆp2k´i´1q

ı

, kT
f ,i “

”

01ˆp3k`iq 1 01ˆpk´i´1q

ı

.

Then, for any i P Zk we have

kT
a,i

«

s1

m

ff

“ âi, kT
b,i

«

s1

m

ff

“ b̂i, kT
c,i

«

s1

m

ff

“ ĉi, kT
f ,i

«

s1

m

ff

“ f̂i.
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Next, define the following matrices

Ka :“

»

—

—

–

kT
a,0
...

kT
a,k´1

fi

ffi

ffi

fl

, Kb :“

»

—

—

–

kT
b,0
...

kT
b,k´1

fi

ffi

ffi

fl

, Kc :“

»

—

—

–

kT
c,0
...

kT
c,k´1

fi

ffi

ffi

fl

, K f :“

»

—

—

—

–

kT
f ,0
...

kT
f ,k´1

fi

ffi

ffi

ffi

fl

.

Therefore, to prove the first two statements, we want to prove that Pss1 `

Pmm` f has binary coefficients, where

”

Ps Pm

ı

:“

»

—

—

–

Ka

Kb

Kc

fi

ffi

ffi

fl

P R3kˆ4k
q , f :“

»

—

—

—

—

—

—

—

—

—

—

–

0pk{2´1qˆ1

Xd´1

0pk´1qˆ1

Xd´1

0p3k{2´1qˆ1

Xd´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R3k
q . (8.11)

Not to mention the fact that we need to show the constant coefficients of
X´i´d{2 ¨ âj and X´i´d{2 ¨ b̂j are zeroes for i P Zd{2 and j P Zk. Hence, we
define triples pRι,2, rι,1, rι,0q for ι P Zkd{2 as follows. Let us write ι “ i ¨ k` j
where i P Zd{2 and j P Zk. Then, we define

Rι,2 :“ 08kˆ8k, rT
ι,1 :“ X´i´d{2 ¨ kT

a,jJ4k,2, rι,0 :“ 0. (8.12)

Similarly, we denote triples pRkd{2`ι,2, rkd{2`ι,1, rkd{2`ι,0q for ι P Zkd{2 as

Rkd{2`ι,2 :“ 08kˆ8k, rT
kd{2`ι,1 :“ X´i´d{2 ¨ kT

b,jJ4k,2, rkd{2`ι,0 :“ 0. (8.13)

Further, to prove the third statement, we define triples pRι,2, rι,1, rι,0q for
ι P Zk as follows:

Rι,2 :“
ÿ

0ďi,jăk
i`j”ι mod k

X
Y

i`j
k

]

JT
4k,2ka,ikT

b,jJ4k,2

rT
ι,1 :“ ´

¨

˚

˚

˝

kT
c,ι `

ÿ

0ďi,jăk
i`j”ι mod k

X
Y

i`j
k

]

x̂ikT
f ,j

˛

‹

‹

‚

J4k,2

rι,0 “ 0.

(8.14)
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Next, in order to prove the norm of φp f̂ q approximately, we define Ds “

0kˆ3k, Dm “ Ik and u “ 0. Then,

}φp f̂ q} “ }Dss1 `Dmm` u} ď B1 “ pkd{2` 1q
?

kd.

Finally, we focus on the last statement. Namely, we want to prove that the
constant coefficient X´d`1 ¨ f̂k´1 vanishes. To this end, we define a tuple
pR1kd,2, r1kd,1, r1kd,0q where

R1kd,2 :“ 08kˆ8k, r1kd,1 :“ X´d`1JT
4k,2k f ,k´1, r1kd,0 “ 0. (8.15)

In Figure 8.7 we instantiate the protocol from Figure 6.3 for integer
multiplication as described above. Then, we present the proof sizes for
various values of n in Figure 8.8. For each instance, we choose pd, lq “ p64, 2q
and set the standard deviations such that the overall repetition rate is at
most 7. We show that for our parameter selection q ą 230 is large enough
to make sure no overflow modulo q occurs. Suppose for concreteness that
n “ 512. Then, k “ 16 and B1 “ pkd{2` 1q

?
kd “ 16416. If we pick γ4 “ 32

then by Theorem 6.4.3 we set ψ :“ 2γ4
?

337 ¨ 2κ ď 2 ¨ 104. Hence, we obtain

2n` 1` 3ψB1 ă 230 ă q.

Hence, there is no wrap-around modulo q.

8.3.2.1 Is Committing to the Carry Polynomials Necessary?

A natural question one might ask is why we have to commit to the “carry
polynomials” φp f̂ q in the integer multiplication case but not when doing
integer addition as in the previous subsection. What is similar in both cases
is that if we write s1 :“ φpâq ‖ φpb̂q ‖ φpĉq, m :“ H then there are known
polynomial functions F1, . . . , Fk : R3k

q Ñ Rq such that:

φp f̂ q “

»

—

—

–

F1ps1, mq
...

Fkps1, mq

fi

ffi

ffi

fl

.

Now, note that our framework natively only supports proving shortness
in the L8{L2 norm of linear functions in s1, m. The reason is that when
applying approximate range proofs, we introduce a sign β in order to use
bimodal Gaussian rejection sampling. Having this additional unknown β
turns a linear equation into a quadratic one which we know how to prove
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variable description instantiation

N # of quadratic equations over Rq k

M # of quadratic equations over Zq kd` 1

nbin length of the vector to prove bin. coeff. 3k

Z # of exact norm proofs 0

– approximate shortness proof 3

s1 committed message in the Ajtai part φpâq ‖ φpb̂q ‖ φpĉq

m committed message in the BDLOP part φp f̂ q

Rι,2 matrix used for the quad. equation over Rq (8.14)

rι,1 vector used for the quad. equation over Rq (8.14)

rι,0 constant used for the quad. equation over Rq (8.14)

R1ι,2 matrix used for the quad. equation over Zq (8.12),(8.13),(8.15)

r1ι,1 vector used for the quad. equation over Zq (8.12),(8.13),(8.15)

r1ι,0 constant used for the quad. equation over Zq (8.12),(8.13),(8.15)

Ps matrix to prove Pss1 ` Pmm` f has bin. coeff. (8.11)

Pm matrix to prove Pss1 ` Pmm` f has bin. coeff. (8.11)

f vector to prove Pss1 ` Pmm` f has bin. coeff. (8.11)

Ds matrix to prove }Dss1 `Dmm` u} ď B1 0kˆ3k

Dm matrix to prove }Dss1 `Dmm` u} ď B1 Ik

u vector to prove }Dss1 `Dmm` u} ď B1 0kˆ1

B1 bound of }Dss1 `Dmm` u} pkd{2` 1q
?

kd

Figure 8.7: Instantiation of the protocol in Figure 6.3 for proving n-bit integer
multiplication where 2n “ kd. The variables in the first two columns
refer to the ones defined in Section 6.4 and the ones in the last column
refer to the parameters in this section.
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n rlog qs proof size

64 32 14.2KB

128 32 16.1KB

512 33 26.6KB

n rlog qs proof size

64 32 13.5KB

128 32 14.6KB

512 33 21.0KB

Figure 8.8: Proof size comparison for proving integer multiplication ab “ c for
a, b P r´2n´1, 2n´1 ´ 1s and c P r´22n´1, 22n´1 ´ 1s. We present two
approaches: one which commits to φp f̂ q (on the left) and the one
explained in Section 8.3.2.1 (on the right).

from Section 5.2. Observe that for integer addition F1, . . . , Fk were indeed
linear. However, for integer multiplication F1, . . . , Fk become quadratic and
thus our framework cannot be used directly.

We circumvent this problem and still not commit to φp f̂ q by simply
removing the bimodal Gaussian rejection sampling when proving approx-
imate shortness of φp f̂ q. Then, we do not commit to β4 from Figure 6.3
and thus we can prove shortness of a quadratic expression in s1, m. The
drawback is a slightly increased repetition rate due to the standard rejection
sampling, i.e. Lemma 3.3.2. Concretely, when γ4 “ 32, our rejection rate
increases by a factor of

exp

˜
d

2pκ` 1q
log e

¨
1

γ4

¸

« 1.52 where κ “ 128

and therefore other standard deviations need to be adjusted in order to
maintain the repetition rate equal to 7. We include the optimised proof sizes
in Figure 8.8.

8.4 constant size group signature

We apply our proof system to contruct an ABB-like [ABB10a] group sig-
nature following the works by del Pino et al. [PLS18] and Lyubashevsky
et al. [Lyu+21]. Our construction inherits a big advantage from [Lyu+21;
PLS18], namely signature generation and verification time do not depend
on the size of the group and the signature itself is constant. Since, the
techniques are almost identical as in the aforementioned previous works,
we only sketch the scheme and refer to [Lyu+21] for more details. In this
subsection, we work over the larger ring Rkd :“ ZrXs{pXkd ` 1q where
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k ě 1 is a power-of-two. Then, define R1kd,p :“ Rkd{ppq for an integer p.
The benefit of having a larger ring than R is a small public key size of our
group signature. Operations in the construction will be over Rkd,p where p
is prime.

8.4.1 Overview

Let G Ď Rkd,p be the identity space. To begin with, the group manager

samples A Ð Rnˆpn`mq
kd,p , B1 Ð Rnˆτn

kd,p , randomness matrix R Ð Spn`mqˆτn
kd,1 ,

where
Skd,1 :“ tx P Rkd : }x}8 ď 1u

and sets B :“ AR. Further, it samples u Ð Rn
kd,p. Then, the public key is a

tuple
gpk :“ pA, B, B1, uq.

Now, for each user with identity i P G, the group manager samples the
secret key

ski :“ pspiq1 , spiq2 , spiq3 q Ð Dpp2τ`1qn`mqkd
s

such that

“

A|B` iG|B1
‰

»

—

—

–

spiq1

spiq2

spiq3

fi

ffi

ffi

fl

“ u

using the [MP12] trapdoor sampling with standard deviation s where
G :“ In b r1 g ¨ ¨ ¨ gτ´1s is a gadget matrix and g :“ rp1{τs.

The high level idea for signing is for the user with identity i P G to prove
knowledge of i and their secret key ski :“ pspiq1 , spiq2 , spiq3 q P Rp2τ`1qn`m

kd,p
which satisfy:

“

A|B` iG|B1
‰

»

—

—

–

spiq1

spiq2

spiq3

fi

ffi

ffi

fl

“ u,

›

›

›

›

›

›

›

›

»

—

—

–

spiq1

spiq2

spiq3

fi

ffi

ffi

fl

›

›

›

›

›

›

›

›

ď B :“ s
a

2pp2τ` 1qn`mqkd, i P G.

(8.16)
For the bound B we used Lemma 3.2.2 for t “

?
2.

In order to be able to open the group signature scheme, we will add
a verifiable encryption to the signature. Namely, we want the signer to
encrypt their identity i, using a public key associated to a decryption key
that the group manager possesses, and prove that this encryption is indeed
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of their identity. We do this exactly as described in Section 8.2 with a prime
penc :“ 3329. Similarly, all the dimensions and bounds included in that
section will be written with subscript enc.

8.4.2 Efficient Proof of (8.16)

To begin with, note that relations over Rkd,p such as the first one in Equation
(8.16) can be written equivalently over our usual subring Rp. Indeed, as
shown in Section 3.2.4 and demonstrated in the previous examples, arbitrary
relations over Rkd,p can be proven by showing that some corresponding
relations over Rp hold true.

Secondly, we observe that if we choose a proof system modulus q to
be divisible by p and commit to pi, spiq1 , spiq2 , spiq3 q in the “Ajtai” part of the
ABDLOP commitment then the first statement in (8.16) is simply a system
of quadratic equations in the committed messages. Indeed, we pick q “ q1 p
where q1 ă p and then prove an equivalent quadratic relation over Rq,
namely:

q1
“

A|B` iG|B1
‰

»

—

—

–

spiq1

spiq2

spiq3

fi

ffi

ffi

fl

“ q1
“

A|B|G|B1
‰

»

—

—

—

—

–

spiq1

spiq2

ispiq2

spiq3

fi

ffi

ffi

ffi

ffi

fl

“ q1u. (8.17)

Further, the second statement is about norms which is covered in Section
6.4. Next, we define the identity space G. It should be designed so that
we can efficiently prove that i P G (third statement). Let B be the set of
non-zero binary polynomials in Rp. Then, we define the identity space4 as

G :“ tipXkq P R1kd,p : i P B and }i}1 “ wu.

We choose w so that the set G has size « 223 for comparison with related
work [Beu+21; Esg+19c]. Note that for appropriate p, a difference of two
distinct elements from G is still invertible over Rkd,p which is crucial for
trapdoor sampling.

Note that the space G is constructed in such a way that when we map
equations over Rkd,p to Rk

p, then we only need to commit to one polynomial

4 Previous works [Lyu+21; PLS18] define the identity space G to be a set of integers Zp since
it was easier to prove set membership i P G with their proof system. Here, we make a small
modification and set the identity space to be a subset of binary polynomials with fixed norm.
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i P Rp using our ABDLOP commitment instead of k polynomials, i.e.
ipXkq P Rkd,p. Similarly, we only need to send an encryption of i over Rp

instead of ipXkq. Hence, for such a set G, proving ipXkq P G is equivalent to
proving that i has binary coefficients and xi,

řd´1
j“0 X jy “ w which is covered

in Section 6.4.
In summary, we show in Figures 8.9 and 8.10 how to instantiate the

protocol in Figure 6.3 to construct a group signature.

8.4.2.1 Parameters

We present our parameter selection in Figure 8.11 for a group signature
instantiation which achieves security level 111. We start by setting p “
238 ´ 107 and q “ p226 ´ 371q ¨ p « 264. Then, we choose d “ 64, k “ 8 and
l “ 2, thus Rkd,p “ ZrXs{pX512` 1q. Next, let n “ 2,m “ 3 and τ “ 5, hence
g “ rp1{5s. Further, we pick large enough standard deviation s used for
trapdoor sampling. We know from [MP12] that s ě 2ps1pRq ` 1q

a

g2 ` 1
where s1 is the operator norm. Note that if R did not have a polynomial
structure, i.e R Ð t´1, 0, 1upn`mqkdˆτnkd, we could use upper-bounds for
norms of random subgaussian matrices, e.g. [MP12, Lemma 2.9]. Namely,
we would obtain the following bound

s1pRq ď
a

pn`mqkd`
?

τnkd` 6 « 128

with probability at least 1´ 2163. We found experimentally that for our
structured matrix R a similar bound holds with at least 99% probability

s1pRq ď ψ :“ 113

and thus we set
s :“ 2pψ` 1q

b

p2{τ ` 1.

Further, we describe how we choose n and m, i.e. the height and the width
of the matrix A. Concretely, in the traceability proof, the challenger sets

B :“ AR´ i˚G and B1 “ AR1

where R, R1 Ð Spn`mqˆτn
kd,1 and i˚ Ð G. Additionally, it samples

skgm :“ psgm1 , sgm2 , sgm3 q Ð Dpp2τ`1qn`mqkd
s

and computes
u :“

“

A|AR|AR1
‰

skgm.
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variable description instantiation

N # of quadratic equations over Rq n

M # of quadratic equations over Zq 1

nbin length of the vector to prove bin. coeff. 1

Z # of exact norm proofs 2

– approximate shortness proof 3

s1 committed message in the Ajtai part pspiq1 , spiq2 , spiq3 , renc, iq

m committed message in the BDLOP part H

Rι,2 matrix used for the quad. equation over Rq to prove (8.17)

rι,1 vector used for the quad. equation over Rq to prove (8.17)

rι,0 const. used for the quad. equation over Rq to prove (8.17)

R1ι,2 matrix used for the quad. equation over Zq 0

r1ι,1 vector used for the quad. equation over Zq

»

—

—

–

0

σ´1

´

řd´1
i“0 Xi

¯

0

fi

ffi

ffi

fl

r1ι,0 constant used for the quad. equation over Zq ´w

Ps matrix to prove Pss1 ` Pmm` f has bin. coeff. 0

Pm matrix to prove Pss1 ` Pmm` f has bin. coeff.

«

0

1

ff

f vector to prove Pss1 ` Pmm` f has bin. coeff. 0

Figure 8.9: Instantiation of the protocol in Figure 6.3 for the group signature.
The instantiation is further explained in Figure 8.10. Variables in the
first two columns refer to the ones defined in Section 6.4 and the
ones in the last column refer to the parameters in this subsection.
Variables with subscript enc are defined for the verifiable encryption
in Section 8.2. Triple pR11,2, r11,1, r1,0q corresponds to proving that the
sum of coefficients of polynomial i is equal to exactly w. On the other
hand, triple pPs, Pm, fq corresponds to proving that polynomial i has
binary coefficients.
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variable description instantiation

Ep1qs matrix for }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 rIp2τ`1qn`m 0s

Ep1qm matrix for }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 H

vp1q vector for }Ep1qs s1 ` Ep1qm m` vp1q} ď B1 0

B1 upper-bound on }Ep1qs s1 ` Ep1qm m` vp1q} B

Ep2qs matrix for }Ep2qs s1 ` Ep2qm m` vp2q} ď B2 r0 Imenc 0s

Ep2qm matrix for }Ep2qs s1 ` Ep2qm m` vp2q} ď B2 H

vp2q vector for }Ep2s s1 ` Ep2qm m` vp2q} ď B2 0

B2 upper-bound on }Ep2qs s1 ` Ep2qm m` vp2q} B

Ds matrix to prove }Dss1 `Dmm` u} ď B1 1
penc ¨

«

0 Aenc 0

0 bT
enc t

penc
2 s

ff

Dm matrix to prove }Dss1 `Dmm` u} ď B1 H

u vector to prove }Dss1 `Dmm` u} ď B1 1
penc ¨

«

t0

t1

ff

B1 bound of }Dss1 `Dmm` u} Bv,enc

Figure 8.10: Instantiation of the protocol in Figure 6.3 for the group signature.
Triples pEp1qs , Ep1qm , vp1q,B1q and pEp2qs , Ep2qm , vp2q,B2q correspond to
proving exactly }pspiq1 , spiq2 , spiq3 q} ď B and }renc} ď Benc respectively.
The last triple pDs, Dm, u,B1q corresponds to proving approximately
that }venc} ď Bv,enc :“ pBenc

?
mencd{2` 1q

a

pnenc ` 1qd where venc

is defined in (8.4).

It will hope that an adversary forges a signature for the identity i˚5. In
that case, we can extract from the forged signature the secret vector ski˚ “

ps̄1, s̄2, s̄3q such that

“

A|AR|AR1
‰

»

—

—

–

s̄1

s̄2

s̄3

fi

ffi

ffi

fl

“ u “
“

A|AR|AR1
‰

»

—

—

–

sgm1

sgm2

sgm3

fi

ffi

ffi

fl

and thus
s :“ s̄1 ´ sgm1 `Rps̄2 ´ sgm2 q `R1ps̄3 ´ sgm3 q

5 Hence, there is a 1{|G| security loss.
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is a MSIS solution for the matrix A 6. Also, with high probability we have
s ‰ 0 since skgm was chosen independently by the challenger. Now, we need
to bound the norm of s. In order to do so, we will use the property that for
any x P Rτn

p , }Rx} ď s1pRq}x} ď ψ}x}. Thus, we can bound the norm of s
defined above using the Cauchy-Schwarz inequality as follows:

}s} ď }s̄1 ´ sgm1 } ` ψ}s̄2 ´ sgm2 } ` ψ}s̄3 ´ sgm3 }

ď

b

1` ψ2 ` ψ2 ¨

b

}s̄1 ´ sgm1 }2 ` }s̄2 ´ sgm2 }2 ` }s̄3 ´ sgm3 }2.

Finally, we observe that we can bound the second term as:

›

›

›

›

›

›

›

›

»

—

—

–

s̄1 ´ sgm1

s̄2 ´ sgm2

s̄3 ´ sgm3

fi

ffi

ffi

fl

›

›

›

›

›

›

›

›

2

ď 2 ¨

¨

˚

˚

˝

›

›

›

›

›

›

›

›

»

—

—

–

s̄1

s̄2

s̄3

fi

ffi

ffi

fl

›

›

›

›

›

›

›

›

2

`

›

›

›

›

›

›

›

›

»

—

—

–

sgm1

sgm2

sgm3

fi

ffi

ffi

fl

›

›

›

›

›

›

›

›

2˛

‹

‹

‚

ď 4B2 “ p2Bq2.

Hence
}s} ď BMSIS :“ 2s ¨

b

1` 2ψ2 ¨
a

2pp2τ` 1qn`mqkd.

Thus we have to choose n such that MSISn,n`m,BMSIS
is hard over Rkd,p and

take into account the 1{|G| security loss. Not to mention the fact that we
want AR to be computationally indistinguishable from a random matrix B,
i.e. the MLWEn,m,Skd,1 problem over Rkd,p to be hard.

Parameters for the ABDLOP commitment are chosen similarly to the
previous examples. In particular, the proof system modulus q has to be
large enough to prove exactly that the norm of a user secret key is at most
B “ s

a

2pp2τ` 1qn`mqkd. Also, we aim for repetition rate 7 similarly as
in the previous examples.

Last but not least, we observe that including a verifiable encryption from
Section 8.2 does not have a significant impact on the total signature size.
Indeed, identity i is already committed using the ABDLOP scheme and
additionally committing to the randomness r (in the “Ajtai part”) does not
increase the commitment size. Hence, the only extra cost consists of: (i) a
ciphertext, (ii) masked opening of the randomness r, (iii) commitments and
masked openings to polynomials involved in the approximate range proof
for v in (8.4). For our instantiation, the verifiable encryption costs « 6.5KB
compared to 17.3KB shown in Figure 8.4.

6 Since we prove the norm of ski˚ exactly, there is no relaxation factor c in front of the vector u
as in previous works.
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parameters description value

p modulus for the group signature 238 ´ 107

d ring dimension for of R 64

k kd is the ring dimension of R1 8

N height of the A matrix 2

M n`m is the width of the A matrix 3

τ τn is the width of the gadget matrix G 5

w #1’s in the identity i P G 5

penc encryption modulus 3329

Nenc height of Aenc 4

Kenc width of Aenc 9

ξenc ξK
enc is the randomness distribution of renc Bind

2

q modulus for the proof system « 264

l # factors Xd ` 1 splits into mod q 2

γ1 rejection sampling constant for cs1 9

γ2 rejection sampling constant for cs2 1.2

γ3 rejection sampling constant exact ARP 2.5

γ4 rejection sampling constant for non-exact ARP 12

ω maximum coefficient of a challenge in C 8

κMSIS height of matrices A1, A2 in ABDLOP 25

m1 length of the message s1 in the “Ajtai” part 219

` length of the message m in the “BDLOP” part 0

λ number of garbage gj P Rq for boosting soundness 6

m2 length of the randomness s2 in ABDLOP 78

ν randomness s2 is sampled from Sm2
ν 1

γ parameter to cut low-order bits of w « 235

D number of low-order bits cut from tA 27

signature size 87.5KB

public key size 47.5KB

secret key size 6.3KB

Figure 8.11: Parameter selection and concrete sizes for the group signature.
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8.5 one-out-of-many proof

8.5.1 Overview

In this section we construct an efficient logarithmic-size one-out-of-many
proof [GK15] with applications to lattice-based ring and group signatures
using techniques from Section 6.4 as the building block. The one-out-of-
many proof considers the following problem. Informally, we want to prove
knowledge of an opening to some commitment contained in a public set
S without revealing any information about the commitment itself. In the
lattice setting, we we would like to prove knowledge of a short vector
such that As P S, where S is a public set S “ tp1, . . . , ptu Ď Rn

q of size
t “ d ¨ dk. In this section we assume that s P t0, 1umd has binary coefficients
and d “ l ¨ d for l P N.

We now use the observation from [Boo+15; Esg+19b; GK15] that As P S
if and only if there exists a binary vector ~v P t0, 1ut with exactly one 1 such
that

”

~p1 ~p2 ¨ ¨ ¨ ~pt
ı

~v “ A~s (8.18)

where A “ RotpAq is the the rotation matrix of A. One could then directly
prove knowledge of ~s and ~v which satisfy conditions above using the
protocol from Section 6.4. However, the proof size grows linearly in t since
we would commit to the whole vector ~v.

In order to circumvent this limitation, [Boo+15; GK15] observe that vector
~v can be uniquely decomposed into unit vectors ~v1, . . . ,~vk P t0, 1ud and
~vk`1 P t0, 1ud such that

~v “ ~v1 b~v2 b ¨ ¨ ¨ b~vk`1 :“ ~v1 b p~v2 b p¨ ¨ ¨ b p~vk b~vk`1qqq . (8.19)

For notational convenience, let us define the set of polynomials X in Rq
with their coefficient vectors being a unit vector. Concretely, X is defined as
follows:

X :“ t1, X, X2, . . . , Xd´1u.

In the end, we want to commit to s and polynomials u1, . . . , uk, vk`1 P X
such that ~ui “ ~vi ‖ 0d´d P Zd

q
7 for i P rks and prove

Pp~v1 b ¨ ¨ ¨ b~vk`1q “ A~s (8.20)

7 Alternatively, ui P t1, X, X2, . . . , Xd´1u.
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where P P Znˆt
q is the matrix on the left-hand side of (8.18). We formally

define the corresponding relation:

Room :“

#

ppP, Aq, ps, u1, . . . , uk, vk`1qq : s P t0, 1umd ^ u1, . . . , uk, vk`1 P X
^Pp~v1 b ¨ ¨ ¨ b~vk`1q “ A~s where ~ui :“ ~vi ‖ 0d´d

+

.

We now describe a commit-and-prove system for relation Room using the
ABDLOP commitment. Suppose that k ě 1, otherwise one can prove this
relation directly using the framework from 6.4.

First, note that proving u1, . . . , uk, vk`1 P X and s P t0, 1umd can be done
directly using the techniques from Section 6.4 hence we focus first on (8.20).
Our strategy to prove this equation with k´ 1 tensor products would be
somehow to reduce it to proving an equation of the same form with only
k´ 2 tensor products. Then, by recursion, we will end up with a system of
linear equations with no tensor products involved and thus we can apply
the methods presented in Section 6.4.

The key idea to reduce the number of tensor products is to ask the verifier
for l challenges ~ϕ1, . . . , ~ϕl P Znd

q and then prove that:

xPp~v1 b ¨ ¨ ¨ b~vk`1q ´ A~s, ~ϕiy “ 0 for i “ 1, 2, . . . , l.

Note that if (8.20) was not true, then these l equations above would hold
with probability at most q´l

1 . Now, if we write

P :“
”

P0,1 P0,2 ¨ ¨ ¨ P0,d

ı

where each P0,i P Zndˆddk´1

q

then by simple algebraic manipulation we obtain

xPp~v1 b ¨ ¨ ¨ b~vk`1q ´ A~s, ~ϕiy “ xPp~v1 b ¨ ¨ ¨ b~vk`1q, ~ϕy ´ xA~s, ~ϕiy

“ x~v1 b ¨ ¨ ¨ b~vk`1, PT~ϕiy ´ x~s, AT~ϕiy

“ x~v1, P1,ip~v2 b ¨ ¨ ¨ b~vk`1qy ´ x~s, AT~ϕiy

where

P1,i :“

»

—

—

–

~ϕT
i P0,1

...

~ϕT
i P0,d

fi

ffi

ffi

fl

P Zdˆddk´1

q .

Now, let us define ~wi :“ P1,ip~v2 b ¨ ¨ ¨ b~vk`1q and w P Rq such that

~w “ ~w1 ‖ ¨ ¨ ¨ ‖ ~wl P Zd
q .
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Next, we commit to w and show that for all i,

x~v1, ~wiy ´ x~s, AT~ϕiy “ 0 and ~wi :“ P1,ip~v2 b ¨ ¨ ¨ b~vk`1q.

We observe that the first statement is equivalent to proving that the constant
coefficient of

Xpi´1qdu1σpwq ´ σpaiq
Ts

is equal to zero where the coefficient vector of ai P Rm
q is exactly~ai :“ AT~ϕi.

Lemma 8.5.1. Let i P rls. Then, the constant coefficient of Xpi´1qdu1σpwq P Rq
is equal to x~v1, ~wiy.

Proof. First, we note that x~v1, ~wiy “ xXpi´1qdu1, wy. Here, we used the fact
that the coefficient vector of u1 is of the form ~v1 ‖ 0d´d. Then, by Lemma
5.1.10, xXpi´1qdu1, wy is the constant coefficient of Xpi´1qdu1σpwq.

On the other hand, the second statement can be combined for all i and
written as:

~w “

»

—

—

–

P1,1
...

P1,l

fi

ffi

ffi

fl

p~v2 b ¨ ¨ ¨ b~vk`1q. (8.21)

Thus, we reduce the one-out-of-many problem to proving knowledge of a
tuple ps, u1, . . . , uk, vk`1, wq which satisfies the following conditions:

• s P t0, 1umd

• P1p~v2 b ¨ ¨ ¨ b~vk`1q “ ~w

• for all i P rls, the constant coefficient of Xpi´1qdu1σpwq ´ σpaiq
Ts is

zero

• u1, . . . , uk, vk`1 P X

where

~ui :“ ~vi ‖ 0d´d for i P rks and P1 :“

»

—

—

–

P1,1
...

P1,l

fi

ffi

ffi

fl

P Zdˆddk´1

q .

Note that the second statement only involves k´ 2 tensor products.
We can define the correspond relation as:
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R :“

$

’

’

&

’

’

%

´

pP1, paiqiPrlsq, ps, u1, . . . , uk, vk`1, wq
¯

: s P t0, 1umd ^ P1p~v2 b ¨ ¨ ¨ b~vk`1q “ ~w

^@i P rls, const coeff. of Xpi´1qdu1σpwq ´ σpaiq
Ts is zero

^u1, . . . , uk, vk`1 P X where ~ui :“ ~vi ‖ 0d´d

,

/

/

.

/

/

-

.

8.5.1.1 Intermediate Relations

We construct a commit-and-prove system for relation R using recursion.
Namely, take 1 ď j ď k and consider the following generalised relation

Rj :“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´

pPj P Zdˆddk´j
q , paiqiPrls, pϕι,iqιPrj´1s,iPrlsq, ps, u1, . . . , uk, vk`1, w1, . . . , wjq

¯

:

s P t0, 1umd ^ Pjp~vj`1 b ¨ ¨ ¨ b~vk`1q “ ~wj

^@i P rls, const coeff. of Xpi´1qdu1σpw1q ´ σpaiq
Ts is zero

^@ι P rj´ 1s, i P rls, const coeff. of Xpi´1qduι`1σpwι`1q ´ σpϕι,iqwι is zero

^u1, . . . , uk, vk`1 P X where ~ui :“ ~vi ‖ 0d´d

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

.

(8.22)
We highlight that in Rj elements ϕι,i are polynomials in Rq. Also, it is easy
to see that R1 “ R.

8.5.1.2 Base Case

We first show how to prove Rk only using the methods described in Section
6.4. Namely, we define

s1 :“ s ‖ u1 ‖ ¨ ¨ ¨ ‖ uk ‖ vk`1, m :“ pw1, . . . , wkq.

We also introduce the matrix J :“ Jm`2k`1,2 as in Lemma 5.2.1 which
satisfies:

Jxs1 ‖ myσ “

«

s1

m

ff

.

First, we prove Pk~vk`1 “ ~wk. This is equivalent to proving that the constant
coefficient of σppk,iqvk`1 ´ X´i`1wk is zero for all i P rds, where pk,i P Rq is
the polynomial such that its coefficient vector is the i-th row of Pk. Hence,
we define

R1i,2 “ 02pm`2k`1qˆ2pm`2k`1q, r1i,1 :“ JT

»

—

—

—

—

–

0pm`kqˆ1

σppk,iq

0pk´1qˆ1

´X´i`1

fi

ffi

ffi

ffi

ffi

fl

, r1i,0 “ 0. (8.23)
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Then,
rT

i,1xs1 ‖ myσ “ σppk,iquk ´ X´i`1wk.

The next thing to prove is that the constant coefficient of Xpi´1qdu1σpw1q ´

σpaiq
Ts is zero for i P rls. Thus, we define

R1d`i,2 :“ Xpi´1qd

»

—

—

–

0p2m`2k`3qˆ1

1

02pk´1qˆ1

fi

ffi

ffi

fl

”

02mˆ1 1 0p4k`1qˆ1

ı

,

r1d`i,1 :“ JT

«

´σpaiq

0p2k`1qˆ1

ff

, r1d`i,0 :“ 0.

(8.24)

Then,

xs1 ‖ myT
σ R1d`i,2xs1 ‖ myσ ` r1Td`i,1xs1 ‖ myσ ` rd`i,0

“ Xpi´1qdu1σpwq1 ´ σpaiq
Ts.

Further, we proceed to proving that for all ι P rk´ 1s and i P rls, the constant
coefficient of Xpi´1qduι`1σpwι`1q ´ σpϕι,iqwι is zero. Hence, we define

R1d`ιl`i,2 :“ Xpi´1qd

»

—

—

–

0p2m`2k`2ι`3qˆ1

1

0p2k´2ι´2qˆ1

fi

ffi

ffi

fl

”

02pm`ιqˆ1 1 0p4k´2ι`1qˆ1

ı

,

r1d`ιl`i,1 :“ JT

»

—

—

–

0m`k`ι

´σpϕι,iq

0pk´ιqˆ1

fi

ffi

ffi

fl

, r1d`ιl`i,0 :“ 0.

(8.25)
Thus,

xs1 ‖ myT
σ R1d`ιl`i,2xs1 ‖ myσ ` r1Td`ιl`i,1xs1 ‖ myσ ` rd`ιl`i,0

“ Xpi´1qduι`1σpwι`1q ´ σpϕι,iqwι.

Next, we prove that the coefficients of s, u1, . . . , uk are binary. We simply
define:

Ps :“ Im`k`1, Pm :“ 0pm`k`1qˆk, f :“ 0pm`k`1qˆ1. (8.26)

Then,
Pss1 ` Pmm` f “ s ‖ u1 ‖ ¨ ¨ ¨ ‖ uk ‖ vk`1
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is a binary vector. Further, we prove that the last d´ d coefficients of ui are
all zeroes for all i P rks. This is done by proving that for all 0 ď ι ă d´ d,
the constant coefficient of X´ι´dui is equal to zero. Hence, we define:

R1d`kl`ιk`i,2 :“ 02pm`2k`1qˆ2pm`2k`1q,

r1d`kl`ιk`i,1 :“ JT

»

—

—

–

0m`i´1

X´ι´d

0p2k´i`1qˆ1

fi

ffi

ffi

fl

, r1d`kl`ιk`i,0 :“ 0.
(8.27)

and by construction

xs1 ‖ myT
σ R1d`kl`ιk`i,2xs1 ‖ myσ ` r1Td`kl`ιk`i,1xs1 ‖ myσ ` rd`kl`ιk`i,0

“ X´ι´dui.

Last but not least, we have to prove that each u1, . . . , uk, vk`1 contains
exactly one 1. This is done by proving that the constant coefficients of

σ

˜

d´1
ÿ

ι“0

Xι

¸

¨ ui for i “ 1, 2, . . . , k, and σ

˜

d´1
ÿ

ι“0

Xι

¸

¨ vk`1

vanish. Therefore, we define for i P rk` 1s:

R1d`kpl`d´dq`i,2 :“ 02pm`2k`1qˆ2pm`2k`1q,

r1d`kpl`d´dq`i,1 :“ JT

»

—

—

–

0m`i´1

σ
´

řd´1
ι“0 Xι

¯

0p2k´i`1qˆ1

fi

ffi

ffi

fl

, r1d`kpl`d´dq`i,0 :“ 0.
(8.28)

We present the commit-and-prove system Πk “ pABDLOP,P ,Vq for relation
Rk in Figure 8.12. Here, we apply Πtbox defined in Figure 6.3 without doing
any approximate norm proof as described in Section 6.4.7.

8.5.1.3 Recursive Step

Let us assume we have a commit-and-prove system Πj`1 for relation Rj`1
where 2 ď j` 1 ď k. Now we want to use it to prove relation Rj. We observe
that the only statement which is included in Rj but not in Rj`1 is

Pjp~vj`1 b ¨ ¨ ¨ b~vk`1q “ ~wj. (8.29)
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS,m` k` 1, m2, k, `ext :“ 256{d` λ{2` 2q pp. dim, pp.norms

pp.norms “ pω,
?
md` k` 1, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2, B,

»

—

—

—

—

–

By

Bβ

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

tA, tB

s1 :“ s ‖ u1 ‖ ¨ ¨ ¨ ‖ uk ‖ vk`1 P t0, 1upm`k`1qd, s2 P Rm2
q Pk P Zdˆd

q

m “ pw1, . . . , wkq paiqiPrls

Pk P Zdˆd
q , paiqiPrls, pϕι,iqιPrk´1s,iPrls pϕι,iqιPrk´1s,iPrls

«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

run Πtbox with the following inputs: accept if:

pp :“ pp (i) Πtbox verifies

ps2, ps1, mqq :“ ps2, ps1, mqq

pR1i,2, r1i,1, r1i,0qiPrd`kpl`d´d`1q`1s as in (8.23), (8.24), (8.25), (8.27), (8.28)

pPs, Pm, fq as in (8.26)

Figure 8.12: Commit-and-prove system Πk for the relation Rk. Here, we use Πtbox

defined in Figure 6.3 but without an approximate norm proof.

We prove this equation as before. Namely, we ask the verifier for l challenges
~ϕj,1, . . . , ~ϕl P Zd

q and then prove that:

xPjp~vj`1 b ¨ ¨ ¨ b~vk`1q ´ ~wj, ~ϕj,iy “ 0 for i “ 1, 2, . . . , l.

Note that if (8.20) was not true, then these l equations above would hold
with probability at most q´l

1 . Now, if we write

Pj :“
”

Pj,1 Pj,2 ¨ ¨ ¨ Pj,d

ı

where each Pj,i P Zdˆddk´j´1

q

then we have

xPjp~vj`1 b ¨ ¨ ¨ b~vk`1q ´ ~wj, ~ϕj,iy “ x~vj`1 b ¨ ¨ ¨ b~vk`1, PT
j ~ϕj,iy ´ x~wj, ~ϕj,iy

“ x~vj`1 b ¨ ¨ ¨ b~vk`1, PT
j ~ϕj,iy ´ x~wj, ~ϕj,iy

“ x~vj`1, Pj`1,ip~vj`2 b ¨ ¨ ¨ b~vk`1qy ´ x~wj, ~ϕj,iy



8.5 one-out-of-many proof 194

where

Pj`1,i :“

»

—

—

—

–

~ϕT
j,iPj,1

...

~ϕT
j,iPj,d

fi

ffi

ffi

ffi

fl

P Zdˆddk´j´1

q .

Now, let us define ~wj`1,i :“ Pj`1,ip~vj`2 b ¨ ¨ ¨ b~vk`1q and wj`1 P Rq so that

~wj`1 “ ~wj`1,1 ‖ ¨ ¨ ¨ ‖ ~wj`1,l P Zd
q .

Then, we need to show that for all i,

x~vj`1, ~wj`1,iy ´ x~wj, ~ϕj,iy “ 0 and ~wj`1,i “ Pj`1,ip~vj`2 b ¨ ¨ ¨ b~vk`1q.

The first statement is equivalent to proving that the constant coefficient of

Xpi´1qduj`1σpwj`1q ´ σpϕj,iqwj

is equal to zero. The second statement, however, can be combined for all i
and written as:

~wj`1 “ Pj`1p~vj`2 b ¨ ¨ ¨ b~vk`1q where Pj`1 :“

»

—

—

–

Pj`1,1
...

Pj`1,l

fi

ffi

ffi

fl

P Zdˆddk´j´1

q .

(8.30)
Therefore, we reduced proving (8.29) to proving that

• Xpi´1qduj`1σpwj`1q ´ σpϕj,iqwj is equal to zero

• ~wj`1 “ Pj`1p~vj`2 b ¨ ¨ ¨ b~vk`1q

which in combination with other relations in Rj, it directly reduces to
proving relations in Rj`1.

We provide a commit-and-prove system Πj “ pABDLOP,P ,Vq for rela-
tion Rj in Figure 8.13. The prover proceeds as described above and eventu-
ally runs Πj`1.

In terms of security analysis, correctness follows by Theorem 6.4.1 and the
argument presented above. Then, for simulatability, we observe that before
running Πtbox, the prover only sends the “bottom part” commitments to wi
and these (as a part of the whole ABDLOP commitment) can be simulated
as in Theorem 6.4.2. Hence, we obtain the following results.
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS,m` k` 1, m2, j, `ext :“ k´ j` 256{d` λ{2` 2q pp. dim, pp.norms

pp.norms “ pω,
?
md` k` 1, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A1, A2, B,

»

—

—

—

—

—

—

—

–

By

Bβ

bT
w

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

tA, tB

s1 :“ s ‖ u1 ‖ ¨ ¨ ¨ ‖ uk ‖ vk`1 P t0, 1upm`k`1qd, s2 P Rm2
q Pj P Zdˆddk´j

q

~ui :“ ~vi ‖ 0d´d for i “ 1, 2, . . . , k paiqiPrls

m “ pw1, . . . , wjq pϕι,iqιPrj´1s,iPrls

Pj P Zdˆddk´j

q , paiqiPrls, pϕι,iqιPrj´1s,iPrls
«

tA

tB

ff

:“

«

A1

0

ff

s1 `

«

A2

B

ff

s2 `

«

0

m

ff

~ϕj,i� ~ϕj,1, . . . , ~ϕj,l Ð Zd
q

Pj :“
”

Pj,1 Pj,2 ¨ ¨ ¨ Pj,d

ı

Pj`1,i :“

»

—

—

—

–

~ϕT
j,iPj,1

...

~ϕT
j,iPj,d

fi

ffi

ffi

ffi

fl

P Zdˆddk´j´1

q for i P rls

Pj`1 :“

»

—

—

–

Ppj`1,1q
...

Ppj`1,lq

fi

ffi

ffi

fl

P Zdˆddk´j´1

q

~wj`1 :“ Pj`1p~vj`2 b ¨ ¨ ¨ b~vk`1q

tw :“ bT
ws2 `wj`1

tw -

run Πj`1 with the following inputs: accept if:

pp. dim “ pq, d, κMSIS,m` k` 1, m2, j` 1, `ext ´ 1q (i) Πj`1 verifies

pp.norms “ pω,
?
md` k` 1, B1, B2q

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2,

«

B

bT
w

ff

,

»

—

—

—

—

–

By

Bβ

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

ps2, ps1, mqq :“ ps2, ps1, m ‖ wj`1qq

Pj`1 P Zdˆddk´j´1

q , paiqiPrls, pϕι,iqιPrjs,iPrls

Figure 8.13: Commit-and-prove system Πj for the relation Rj defined in (8.22).
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Theorem 8.5.2. Fix 1 ď j ď k and let Rejp1q “ Rej0 and Rejp2q “ Rejp3q “ Rej1
as defined in Figure 3.2. Fix standard deviations

s1 “ γ1η
?
md` k` 1, s2 “ γ2ην

a

m2d, s3 “ γ3
a

337 ¨ pmd` k` 1q

for some γ1, γ2, γ3 ą 0 and define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and Mi :“ exp

˜

1
2γ2

i

¸

for i “ 2, 3.

Suppose that pm` k ` 1qd ě 5κ and m2d ě 5κ. Then, the commit-and-prove
system Πj for the relation Rj has statistical completeness with correctness error
1´ 1

M1 M2 M3
` 2´127.

Theorem 8.5.3. Fix 1 ď j ď k and let Rejp1q “ Rej0 and Rejp2q “ Rejp3q “ Rej1
as defined in Figure 3.2. Fix standard deviations

s1 “ γ1η
?
md` k` 1, s2 “ γ2ην

a

m2d, s3 “ γ3
a

337 ¨ pmd` k` 1q

for some γ1, γ2, γ3 ą 0 and define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and Mi :“ exp

˜

1
2γ2

i

¸

for i “ 2, 3.

Suppose κMLWE :“ m2´ κMSIS´pk´ jq´ λ{2´ 256{d´ 2 ě 0. Then, under the
Extended-MLWEκMLWE,κMSIS`pk´jq`λ{2`256{d`2,χ,C,Dd

s2
assumption, the commit-

and-prove system Πj for relation Rj is simulatable.

Finally, we consider knowledge soundness.

Theorem 8.5.4. Fix 1 ď j ď k and assume k “ Oplog κq. Suppose B1 ě

2s1
a

2pm` k` 1qd and B2 ě 2s2
?

2m2d. Let

s3 “ γ3
a

337pmd` k` 1q, Barp :“ 2

c

256
26

$s3

for γ3 ą 0. If q satisfies the following conditions

q ě 41 ¨ pm` k` 1q d ¨ Barp, to use Lemma 3.2.5

q ą B2
arp ` Barp

a

pm` k` 1qd, to prove Ps ` Pm ` f has binary coeff.
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Then, the commit-and-prove system Πj for the relation Rj is knowledge sound with
knowledge error

pk´ jqq´l
1 ` 2|C|´1 ` q´d{l

1 ` q´λ
1 ` 2´128.

Moreover, the extractor makes expected at most 2k´j ¨ polypκq queries to the prover.

Proof. We prove the statement by induction. First, consider j “ k. Then,
knowledge soundness follows directly from Theorem 6.4.3 (without an
approximate norm proof) and the corresponding extractor makes at most
expected polypκq queries to the prover.

Now, assume that Πj`1 is knowledge sound with knowledge error

pk´ 1´ jqq´l
1 ` 2|C|´1 ` q´d{l

1 ` q´λ
1 ` 2´128

for some j` 1 ď k. Also, denote E˚ as the knowledge extractor for Πj`1
from the induction hypothesis.

Let P˚ be a probabilistic prover which runs in time at most T and
convinces the verifier with probability ε ą pk´ 1´ jqq´l

1 ` 2|C|´1 ` q´d{l
1 `

q´λ
1 ` 2´128. Define a deterministic algorithm ApρP, ρE, p~ϕj,iqq which given

randomness ρ “ pρP, ρEq P RP ˆRE and challenge ~ϕj,1, . . . , ~ϕj,l P Zd
q does

the following. It first runs P˚pρPq on randomness ρP with challenges p~ϕj,iq

and stops after P˚ sends tw. Then, it runs the extractor E˚pρEq for Πj`1
with randomness ρE (which runs P˚pρP, p~ϕj,iqq in a black-box way).

We say that A succeeds if A outputs ppϕj,iq, tw, s̄1, m̄ ‖ w̄j`1, s̄2, c̄q such
that

ABDLOP.Openps̄1, m̄ ‖ w̄j`1, s̄2, c̄; tA ‖ tB ‖ twq “ 1

and
´

pPj`1 P Zdˆddk´j´1

q , paiqiPrls, pϕι,iqιPrjs,iPrlsq, ps̄, ū1, . . . , ūk, w̄1, . . . , w̄j`1q
¯

P Rj`1

where s̄1 “ s̄ ‖ ū1 ‖ ¨ ¨ ¨ ‖ ūk ‖ v̄k`1 and m̄ :“ pw̄1, . . . , w̄jq. As before,
we assume that E˚ does not the breaking property of ABDLOP since if it
did, then so does A (and later on E ). Clearly, by induction hypothesis, the
probability that A succeeds for random ρ and p~ϕj,iq is at least

ε´ pk´ 1´ jqq´l
1 ´ 2|C|´1 ´ q´d{l

1 ´ q´λ
1 ´ 2´128.

Moreover, the expected runtime ApρP, ρE, p~ϕj,iqq for any fixed ρP, p~ϕj,iq and
ρE Ð RE is at most 2k´1´j ¨ polypκq ¨ T.

Now, we define our extractor E .
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1. Sample ρ “ pρP, ρEq Ð RPˆRE and p~ϕj,iq P Zdˆl
q and run Apρ, p~ϕj,iqq.

If Apρ, p~ϕj,iqq does not succeed, abort.

2. If Apρ, p~ϕj,iqq succeeds, run ApρP, ρ1E, p~ϕ1j,iqq for the same prover ran-

domness ρP but fresh ρ1E Ð RE and p~ϕ1j,iq Ð Zdˆl
q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “
ps̄11, m̄1, s̄12, c̄1q such that one of the conditions below holds:

• ps̄1, s̄2q ‰ ps̄11, s̄12q and

1 “ ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq

“ ABDLOP.Openps̄11, m̄1, s̄12, c̄1; tA ‖ tBq.

• ABDLOP.Openps̄1, m̄, s̄2, c̄; tA ‖ tBq “ 1 and
´

pPj P Zdˆddk´j

q , paiqiPrls, pϕι,iqιPrj´1s,iPrlsq, ps̄, ū1, . . . , ūk, w̄1, . . . , w̄jq
¯

P Rj.

In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about E .

Claim 8.5.5. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of E is at most 2k´j ¨ polypκq ¨ T.

Claim 8.5.6. Probability that E succeeds is at least

ε´ pk´ jqq´l
1 ´ 2|C|´1 ´ q´d{l

1 ´ q´λ
1 ´ 2´128.

One proves the statement similarly as e.g. Claim 5.2.8. The key idea here
is that if

Pjp~vj`1 b ¨ ¨ ¨ b~vk`1q ‰ ~wj

then only with probability at most q´l
1 we have

xPjp~vj`1 b ¨ ¨ ¨ b~vk`1q ´ ~wj, ~ϕ1j,iy “ 0 for i “ 1, 2, . . . , l

for random challenges ~ϕ1j,i. Then, we know these l equations hold by con-
struction of the matrix Pj`1 and the relation Rj`1. Hence, E succeeds with
probability at most the difference of A succeeding and q´l

1 .
Finally, the statement follows by combining the two claims about the

extractor E .
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8.5.2 Commit-and-Prove System for Room

Recall that Section 8.5.1 presents a way to reduce proving relation Room

to R1. Further, in Section 8.5.1.1 we propose a commit-and-prove system
for relation R1. Hence, we formally describe the commit-and-prove system
Πoom for relation Room in Figure 8.14. Below we state security properties
of Πoom, however we omit the proofs since they are almost identical to the
ones included in Section 8.5.1.1.

Theorem 8.5.7. Let Rejp1q “ Rej0 and Rejp2q “ Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations

s1 “ γ1η
?
md` k` 1, s2 “ γ2ην

a

m2d, s3 “ γ3
a

337 ¨ pmd` k` 1q

for some γ1, γ2, γ3 ą 0 and define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and Mi :“ exp

˜

1
2γ2

i

¸

for i “ 2, 3.

Suppose that pm` k ` 1qd ě 5κ and m2d ě 5κ. Then, the commit-and-prove
system Πoom for the relation Room has statistical completeness with correctness
error 1´ 1

M1 M2 M3
` 2´127.

Theorem 8.5.8. Let Rejp1q “ Rej0 and Rejp2q “ Rejp3q “ Rej1 as defined in
Figure 3.2. Fix standard deviations

s1 “ γ1η
?
md` k` 1, s2 “ γ2ην

a

m2d, s3 “ γ3
a

337 ¨ pmd` k` 1q

for some γ1, γ2, γ3 ą 0 and define

M1 :“ exp

˜
d

2pκ` 1q
logpeq

¨
1

γ1
`

1
2γ2

1

¸

and Mi :“ exp

˜

1
2γ2

i

¸

for i “ 2, 3.

Suppose κMLWE :“ m2 ´ κMSIS ´ k ´ λ{2´ 256{d ´ 2 ě 0. Then, under the
Extended-MLWEκMLWE,κMSIS`k`λ{2`256{d`2,χ,C,Dd

s2
assumption, Πoom for relation

Room is simulatable.

Theorem 8.5.9. Assume k “ Oplog κq. Suppose B1 ě 2s1
a

2pm` k` 1qd and
B2 ě 2s2

?
2m2d. Let

s3 “ γ3
a

337pmd` k` 1q, Barp :“ 2

c

256
26

$s3
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Prover P Verifier V

Inputs:

pp. dim “ pq, d, κMSIS,m` k` 1, m2, 0, `ext :“ k` 256{d` λ{2` 2q pp. dim, pp.norms

pp.norms “ pω,
?
md` k` 1, B1, B2q pp.mat

pp.mat “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A1, A2,H,

»

—

—

—

—

—

—

—

–

By

Bβ

bT
w

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

tA

s1 :“ s ‖ u1 ‖ ¨ ¨ ¨ ‖ uk ‖ vk`1 P t0, 1upm`k`1qd, s2 P Rm2
q P P Zndˆddk

q

~ui :“ ~vi ‖ 0d´d for i “ 1, 2, . . . , k

P P Zndˆddk

q

tA :“ A1s1 `A2s2

~ϕ0,i� ~ϕ0,1, . . . , ~ϕ0,l Ð Znd
q

P :“
”

P0,1 P0,2 ¨ ¨ ¨ P0,d

ı

P1,i :“

»

—

—

–

~ϕT
0,iP0,1

...

~ϕT
0,iP0,d

fi

ffi

ffi

fl

P Zdˆddk´1

q for i P rls

P1 :“

»

—

—

–

Pp1,1q

...

Pp1,lq

fi

ffi

ffi

fl

P Zdˆddk´1

q

~w1 :“ P1p~v2 b ¨ ¨ ¨ b~vk`1q

tw :“ bT
ws2 `w1

tw -

run Π1 with the following inputs: accept if:

pp. dim “ pq, d, κMSIS,m` k` 1, m2, 1, `ext ´ 1q (i) Π1 verifies

pp.norms “ pω,
?
md` k` 1, B1, B2q

pp.mat “

¨

˚

˚

˚

˚

˝

A1, A2, bT
w,

»

—

—

—

—

–

By

Bβ

Bext

bT
ext

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

ps2, ps1, mqq :“ ps2, ps1, m ‖ w1qq

P1, paiqiPrls, where~ai :“ AT~ϕ0,i P Zmd
q

Figure 8.14: Commit-and-prove system Πoom for the relation Room.



8.5 one-out-of-many proof 201

for γ3 ą 0. If q satisfies the following conditions

q ě 41 ¨ pm` k` 1q d ¨ Barp, to use Lemma 3.2.5

q ą B2
arp ` Barp

a

pm` k` 1qd, to prove Ps ` Pm ` f has binary coeff.

Then, the commit-and-prove system Πoom for the relation Room is knowledge
sound with knowledge error

kq´l
1 ` 2|C|´1 ` q´d{l

1 ` q´λ
1 ` 2´128.

Let us consider the total proof size of our one-out-of-many proof. Based
on Section 6.5.1 and highlighting that we do not perform any approximate
norm proof, the total proof size becomes

κMSISdprlog qs´Dq ` pk` 256{d` λ` 2q drlog qs` rlogp2ω` 1qs ¨ d

` pm` k` 1qd ¨ p2.57` rlog s1sq `m2d ¨ p2.57` rlog s2sq

` 2.25 ¨ κMSISd` 256 ¨ p2.57` rlog s3sq bits.

which is logarithmic in the size of the set t “ ddk.

8.5.3 Logarithmic-Size Ring Signature

We sketch out the folklore approach to transform an one-out-of-many proof
into a ring signature [Boo+15; Esg+19b; GK15; LNS21b]. Suppose we have
a ring of t users. Each user i P rts has their associated private-public key
pski, pkiq such that ski :“ spiq Ð t0, 1umd and pki :“ Aspiq mod p where
A Ð Rnˆm

p and p is a modulus for the ring signature.
Now, user i signs a message by producing a non-interactive one-out-of-

many proof, i.e. proof of knowledge of a vector spiq such that spiq P t0, 1umd

and
Aspiq P tpk1, . . . , pktu.

We observe that if p divides q then this problem can be solved using the
(non-interactive) commit-and-prove system Πoom for relation Room.

Anonymity property of the ring signature follows directly from simu-
latability of Πoom. In order to argue unforgeability with respect to insider
collusion, we proceed as in [Esg+19b, Theorem 3] and [LNS21b, Theorem
C.4]. Namely, the reduction picks a uniformly random user j and sets a
uniformly random public key pkj Ð Rn

p (under the MLWEn,m´n,D assump-
tion where D is the distribution over Rp so that each coefficient is sampled
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t k proof size

26 0 13.9 KB

212 2 14.7 KB

221 5 16.2 KB

Figure 8.15: Ring signature sizes for t “ d ¨ dk users. For all parameter sets, we
choose pp, n,m, d, dq “ p65437, 1, 12, 64, 8q and q “ 65437 ¨ 65629 «
232.

uniformly at random from t0, 1u). If there is any signing query to j, then
the reduction simulates the one-out-of-many proof. Finally, the reduction
will hope that: (i) the adversary does not make a corruption query to j
and (ii) it forges a signature exactly for the public key pkj. In this case, one
can extract a secret key s˚ P t0, 1umd such that As˚ “ pkj. Thus, ps˚,´1q
is a non-zero vector of norm at most

?
md` 1 which is a Module-SIS so-

lution for the matrix rA | pkjs P Rnˆpm`1q
p and thus the reduction solves

MSISn,m`1,
?
md`1.

In Figure 8.15, we present ring signature sizes for various rings of
size between 26 and 221. We set pp, n,mq “ p65437, 1, 12q so that both the
MLWEn,m´n,D and the MSISn,m`1,

?
md`1 problems are hard. Namely, since

there is a reduction loss of 1{t, we pick the root Hermite factor δ « 1.0039
for MSISn,m`1,

?
md`1 which should be enough for rings of size at most 224.

In regard to MLWEn,m´n,D, we aim for the root Hermite factor δ « 1.0044
as in prior works. For such parameters, the user public key (resp. secret
key) has size 128B (resp. 96B) which is more than one order of magnitude
smaller than the public key in [LNS21b]. Next, we pick pd, d, lq “ p64, 8, 16q.
In all instantiations we picked q1 :“ p “ 65437 and q2 :“ 65629 such that
the proof system modulus q “ q1q2 « 232 and the repetition rate is « 7 as
in the previous examples.
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C O N C L U S I O N

In this thesis, we studied the problem of producing efficient zero-knowledge
proofs for statements related to lattice-based cryptography. Our proposed
framework Lantern performs very well compared to prior work with around
a factor of 2´ 3X improvement over the previous works for basic statements,
such as proving knowledge of a Module-LWE sample. Our protocol has
the advantage over prior works in a sense that it does not rely on the CRT
technique anymore. In particular, we can choose a prime q such that Xd ` 1
does not split into many factors modulo q (even two) at no extra cost1. This
comes with a huge benefit that we do not need to repeat any (costly) part of
the protocol for soundness amplification, thus making our proofs one-shot.

We provide new technical tools for proving various relations in the
committed messages, such as inner products (involving either one or two
secret vectors) and norm bounds which make use of the algebraic properties
of the Rq-automorphism σ´1. We believe that they can be of independent
interest for building more advanced privacy-preserving protocols.

As a final objective of the thesis, we applied our framework as a (black-
box) building block to construct more efficient privacy-oriented primitives,
such as verifiable encryption, proving integer relations, ring signatures and
group signatures. As evidenced in e.g. [ESZ21; Esg+19c; LNS21b; TW04],
these components can be used further for designing more sophisticated
protocols, such as cryptocurrencies or secure e-voting.

9.1 future research directions

implementation. Basic primitives based on lattices (e.g. encryption
and signature schemes) are renowned for their fast runtimes. Indeed, the
operations involved in lattice constructions have been shown to be read-
ily ported to more constrained devices. This opens up the possibility of
quantum-safe zero-knowledge proofs being used in “daily” interactions,
e.g. credit card transactions, where operations should take (significantly)
less time than a second.

1 This choice of a modulus might, however, have an impact on the protocol implementation. We
leave this aspect as a future work.

203
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It is an open question how our protocol performs in terms of the compu-
tational complexity. We recall that for the previous state-of-the-art lattice-
based proof system by Esgin et al. [ENS20], the prover (resp. verifier)
runtime is about 3.5ms (resp. 0.4ms). Unfortunately, we cannot precisely
extrapolate their results to our setting due to the following two reasons.
First, our modulus is not “NTT-friendly”, meaning Xd` 1 does not split into
many small factors. Hence, we cannot apply the standard fast algorithms
for polynomial multiplication2 as in [ENS20]. Secondly, Esgin et al. use
uniform rejection sampling and thus do not require efficient algorithms for
sampling from discrete Gaussians. This is not the case in our framework
since we explicitly provide new results for Gaussian rejection sampling.

further applications . A clear future direction is using our frame-
work in the context of other privacy-oriented applications. Indeed, some
currently most efficient lattice-based schemes, e.g. e-cash [Deo+20] or group
encryption with full dynamicity and message filtering policy [Pan+21], are
still based on the protocol by Yang et al. [Yan+19], and surprisingly not the
works which significantly build upon it [ENS20; LNS21a]. The reason is
that Yang et al. present a general protocol for proving so-called “instance
relations”, i.e. prove knowledge of a vector ~s over Zq such that A~s “ ~t
and for each triple pi, j, kq of indices in a fixed set M, we have si ¨ sj “ sk

3.
These specific statements were not considered explicitly in [ENS20], nor in
this thesis, and thus our framework cannot be applied in such applications
out-of-the-box. This raises a question whether our protocols can be easily
modified to prove “instance relations” which would consequently improve
the efficiency of [Deo+20; Pan+21].

sublinear proofs . Asymptotically, our framework provides proofs
which are linear in the number of committed messages. Hence, it is not
very suitable for proving larger statements, such as circuit satisfiability.

As discussed in Chapter 2, various lattice-based protocols with asymptot-
ically succinct proofs have been introduced. However, these constructions
fall short in practice since they require very large parameters to instan-
tiate, especially in comparison to PCP/IOP-type constructions [Ben+19;
Bha+20; COS20] which are also (plausibly) post-quantum. We recall that
the aforementioned schemes offer proofs in the order of 100KB for proving
arbitrary circuits with millions of gates. The bottleneck of the PCP-type

2 However, there is a recent work by Chung et al. [Chu+21] which provides fast polynomial
multiplication for “NTT-unfriendly” rings and might be useful for our setting.

3 Clearly, if M contains triples of the form pi, i, iq then~s has binary coefficients.
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constructions is arguably the prover runtime which in the order of tens
of seconds for even small instances. This is clearly evidenced by the work
by Boschini et al. [Bos+20] who built a group signature using the Aurora
proof system [Ben+19]. Namely, they computed that proving knowledge
of a Module-LWE sample takes around 40 seconds on a standard laptop.
What is worse, they could not successfully run the full signing algorithm,
even with the help of Google Cloud large-memory machines due to very
large memory requirements. This raises a very important future research di-
rection, from both theoretical and practical point of view, i.e. to construct a
concretely efficient sublinear-size lattice-based zero-knowledge proof system
which enjoys fast implementation and small memory requirements while
producing comparable proof sizes to the PCP-type systems.
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