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ABSTRACT

In preparation for the eventual arrival of quantum computers, there has
been a significant amount of work to construct quantum-safe cryptographic
primitives, as evidenced by the ongoing NIST PQC Standardization. To
ensure post-quantum security, the underlying public-key schemes have to
be built based on quantum-safe computational hardness assumptions. In
this regard, lattice-based primitives appear to be a leading choice. Indeed,
the currently most efficient, in terms of size and speed, quantum-safe
basic primitives (e.g. signatures and encryption schemes) are based on the
hardness of lattice problems with algebraic structure such as Module-SIS
and Module-LWE. As a natural next step, lattice-based cryptography can
be thus applied to build more advanced primitives such as zero-knowledge
arguments.

In this thesis, we present Lantern, a new lattice-based zero-knowledge pro-
tocol with short proofs based on the hardness of Module-SIS and Module-
LWE problems. In particular, our framework is suitable for proving lattice-
related statements, e.g. proving knowledge of a short vector § satisfying
A5 = f mod g. At the core of our constructions lies a more direct and more
efficient way to prove that § has a small Euclidean norm which, unlike in
prior works, does not require proving explicitly that each coefficient of 5 is
small, nor any conversion to the CRT representation. Instead, we use the
observation that the inner product (7#,5) between any two vectors 7 and §
can be made to appear as a constant coefficient of a product (or sum of
products) between polynomials which are functions of 7 and 5. Therefore,
by using a polynomial product proof system and hiding all but the constant
coefficient, we are able to prove knowledge of the inner product of two
vectors (or of a vector with itself) modulo g. Using a cheap “approximate
range proof”, we can then lift the proof to be over Z instead of Z,.

Performance-wise, our framework produces proofs of size 13KB for basic
statements which are 2 — 3X smaller than prior works. Furthermore, the
new proof system can be plugged into constructions of various lattice-
based privacy-oriented primitives in a black-box manner. As examples,
we instantiate a verifiable encryption scheme as well as ring and group
signatures which are significantly more compact than previously the best
solutions.
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ZUSAMMENFASSUNG

In Vorbereitung auf die Ankunft von Quantencomputern wurde viel an der
Entwicklung von quantensicheren kryptografischen Primitiven gearbeitet,
wie die laufende NIST PQC-Standardisierung zeigt. Um Post-Quantum-
Sicherheit zu gewéhrleisten, miissen die zugrundeliegenden Public-Key-
Verfahren auf der Grundlage von quantensicheren Komplexitdtsannahmen
aufgebaut werden. In dieser Hinsicht scheinen gitterbasierte Primitive eine
gute Wahl zu sein. Die derzeit effizientesten quantensicheren Grundprimiti-
ve (z. B. Signaturen und Verschliisselungsverfahren), was die Grofie und
Geschwindigkeit betrifft basieren auf der Hérte von Gitterproblemen mit
algebraischer Struktur, z. B. Module-SIS und Module-LWE. Als natiirlicher
néchster Schritt kann die gitterbasierte Kryptografie daher zur Entwick-
lung fortgeschrittener Primitive wie Zero-Knowledge-Arguments eingesetzt
werden.

In dieser Arbeit stellen wir Lantern vor, ein neues gitterbasiertes Zero-
Knowledge-Argument mit kurzen Beweisen, das auf der Harte von Module-
SIS und Module-LWE basiert. Insbesondere eignet sich unser Framework
fiir den Beweis von gitterbezogenen Aussagen, z.B. den Beweis der Kennt-
nis eines kurzen Vektors §, der A5 = f mod g erfiillt. Der Kern unserer
Konstruktionen ist ein direkterer und effizienterer Weg, um zu beweisen,
dass 5 eine kleine euklidische Norm hat, wofiir weder ein Beweis iiber
die Linge jedes einzelnen Koeffizienten von s, noch eine Umwandlung in
die CRT-Darstellung wie in fritheren Arbeiten erforderlich ist. Stattdessen
verwenden wir die Beobachtung, dass das Skalarprodukt (7, 5) zwischen
zwei beliebigen Vektoren 7 und s als konstanter Koeffizient eines Pro-
dukts (oder einer Summe von Produkten) zwischen Polynomen erscheinen
kann, die Funktionen von 7 und § sind. Indem wir ein Polynom-Produkt-
Beweissystem verwenden und alle Koeffizienten bis auf den konstanten
Koeffizienten verstecken, konnen wir die Kenntnis des Skalarprodukts
zweier Vektoren (oder eines Vektors mit sich selbst) modulo g beweisen.
Mit Hilfe eines relativ kostengiinstigen “Approximate Range-Proofs” kann
man dann den Beweis iiber Z statt Z, fiihren.

In Bezug auf die Leistung erreicht unser Framework etwa 2 — 3-mal
kleinere Beweisgrofien als friithere Arbeiten fiir grundlegende Aussagen,
wie z.B. den Nachweis der Kenntnis eines Module-LWE Samples. Dartiber
hinaus kann das neue Beweissystem in Konstruktionen verschiedener git-
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terbasierter privatsphérenorientierter Primitive Blackbox-artig integriert
werden. Als Beispiele instanziieren wir ein tiberpriifbares Verschliisselungs-
verfahren sowie Ring- und Gruppensignaturen, die wesentlich kompakter
sind als die bisher besten Losungen.
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NOTATION

FREQUENTLY USED SYMBOLS

KMSIS
KMLWE

set of natural numbers {1,2,3,...}

ring of integers modulo n

{1,2,...,n}

security parameter

proof system modulus

power-of-two, ring dimension

ring of integers Z[X]/(X? + 1)

ring Z,[X]/(X? + 1)

number of irreducible factors of X? + 1 modulo g

constant coefficient of a polynomial f € R

automorphism over R defined by the map X — X' for i e Zy,
the automorphism group {c; : i € Z,}

challenge space over R,

maximum coefficient in the absolute value of a challenge in C
discrete Gaussian distribution with standard deviation s
length of a “small” committed message s; € RZ“

length of the randomness for a commitment scheme over R,
length of a (not necessarily small) committed vector m € Rg
parameter used for soundness amplification

dimension of a Module-SIS problem

dimension of a Module-LWE problem

Xii
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INTRODUCTION

Zero-knowledge proofs form the foundations of many complex privacy-
oriented protocols, such as electronic voting, verifiable computation and
blockchain. In such applications, it is essential to be able to prove in zero-
knowledge, i.e. the proof does not leak any secret information, that one
knows how to open a cryptographic commitment, and to prove that the
committed values have particular properties or satisfy certain relations.

Recently, more and more zero-knowledge proof techniques have been
introduced, each with improvements in proof size, proving time, or verifica-
tion time. These new constructions are based on a variety of cryptographic
assumptions, including the discrete logarithm assumption, pairing-based as-
sumptions, collision-resistant hash functions, and lattice-based assumptions
such as (Module-)SIS and (Module-)LWE. However, only constructions from
hash-functions or lattices stand any chance of being secure against quan-
tum adversaries. The currently most efficient, in terms of size and speed,
quantum-safe basic primitives (e.g. encryption and signature schemes) rely
on the hardness of lattice problems with algebraic structure. This is highly
evidenced by the fact that majority of the NIST Post-Quantum Competi-
tion [NIS] finalists are based on lattices. Lattice-based constructions are
therefore natural candidates for more advanced cryptographic tools like
zero-knowledge proofs *.

Lattice-based cryptography relies upon the following fundamental hard-
ness assumption, i.e. it is computationally difficult to find a low-norm vector
s which satisfies

As = tmod g. (1.1)

Hence, a natural approach for building privacy-preserving protocols based
on the hardness of lattice problems would be to require proving knowledge
of a secret vector s which satisfies the above, or a related, equality. Unlike in
the discrete logarithm world, where proving knowledge of a secret s satisfy-
ing ¢° = t turns out to have a very simple and efficient solution [Sch89], the

Technically speaking, the protocols described in the thesis are called arguments since their
soundness property relies on a computational assumption. However, for simplicity, we use the
terms proof and argument interchangeably.



INTRODUCTION

additional requirement of showing that |s| is small appears to be a major
complication for practical lattice cryptography.

Currently, the most efficient lattice-based identification scheme over poly-
nomial rings* was proposed by Lyubashevsky [Lyuog; Lyu1z], who pre-
sented a zero-knowledge proof of knowledge of a vector § and a polynomial
c with small coefficients satisfying

A5 = ctmod g, (1.2)

where ||5] is some factor (depending on the dimension of s) larger than |s|.
The protocol enjoys small proof sizes since it achieves negligible soundness
error in one-shot, i.e. no repetition is required.

While such relaxed proof systems are good enough for constructing
efficient basic protocols, such as signature schemes [BG14; Duc+18], the fact
that the norm of the extracted § is much larger than the norm of s, along
with the presence of the extra factor c in front of t, makes these proofs
tricky to use in many other situations. This often results in not giving the
resulting scheme the desired functionality, or the protocols employing these
proofs being simply less efficient than necessary. Indeed, such constructions
are then required to select much larger parameters than needed in order to
accommodate the presence of the multiplicand ¢ and the “slack” between
the length of the known solution s and the solution § that one can prove.

Moreover, there are applications where relaxed proof systems are not
satisfactory, such as proving integer relations and range proofs. In these
protocols one wants to commit to integers, prove that they lie in certain
intervals, and prove additive and multiplicative relations between them. In
particular, one usually commits to the integers in their binary (or some other
small-base) representation, and then proves that the committed message
really is a binary vector [Esg+19c; Lib+18]. Hence, it is essential to prove
that it does not have any coefficients which come from a larger set.

First lattice-based protocols for exactly proving (1.1) used the combinato-
rial algorithm of Stern [Steg3] to prove that the Lo, norm of s is bounded by
revealing a random permutation of s. The main problem with these proto-
cols was that their soundness error was 2/3, and so they had to be repeated
around 200 times to achieve an acceptably small (i.e. 27128) soundness error.
This resulted in proofs for even simple statements being more than 1IMB
in size [Lin+13], while more interesting constructions produced outputs of
size tens of Megabytes [Lib+18; Lib+16; Lib+17]. A significant improvement
was shown in [Beu2o] by generically combining Stern’s protocol with a

2 Namely, rings of the form R := Z[X]/(f (X)), where f(X) is a monic, irreducible polynomial.
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“cut-and-choose” technique to decrease the soundness error of each protocol
run (at the cost of higher running times). This allowed proofs for basic
statements to be around 200KB in size.

Later on, a more algebraic approach for proving (1.1) combined lattice-
based commitments and zero-knowledge proofs of committed values to
prove linear relations between the coefficients of s and also prove a bound
on its Lo, norm. The first such protocols [BLS19; Esg+19a; Yan+19] had proof
sizes that were in the order of several hundred kilobytes. These schemes
were later significantly improved in [ALS20; ENS20; LNS21a], where it was
shown how to very efficiently prove polynomial products over a ring and
also linear relations over the CRT slots 3 of committed values. Optimisations
of these techniques decreased the proof size for basic statements to around
30 — 50KB.

The high level idea to prove the Ly, norm is as follows. For simplicity,
suppose we want to prove that s has coefficients in the set {—1,0,1}. Then,
we create a commitment to a polynomial vector m = (my,...,my) whose
CRT slots are the coefficients of s, prove this (linear) relationship and also
prove that

(mi—1)-m;j-(mij+1)=0 fori=1,2,...,4¢ (1.3)

By the homomorphic property of the CRT slots, Equation 1.3 is indeed
equivalent to the CRT slots of m being in {-1,0,1}. Note that if s € R}’
then the vector m consists of £ = m - d/I polynomials where R, := R/(q)
and [ is the number of factors of f(X) modulo g.

There are a few limitations of the aforementioned approach. Firstly, since
the CRT slots of m are small, this implies that the actual coefficients of m
can be large, and thus committing to it requires using a more expensive
commitment scheme, e.g. the BDLOP commitment [Bau+18b], which is
much more expensive than the standard Ajtai commitment [Ajtg96] for
long s. There is also an incompatibility between the requirement that the
underlying ring has a lot of CRT slots and negligible soundness error
of the protocol. Namely, if / is small, then we have to commit to more
polynomials because m gets longer. On the other hand, if we choose I to
be large (e.g. | = d) then a part of the protocol needs to be repeated for
soundness amplification. Another downside is that proving ||s|s < « in
general requires committing to 2 extra polynomials. Hence, for vectors

We recall that for a polynomial s € R, := Z4[X]/(f(X)), the Chinese Remainder Theorem
(CRT) slots [Esg+19c] of s are coefficients of the vector (s mod (g, f1(X)),...,s mod (g, fi(X)))
where f(X) factors into irreducible polynomials f1(X),..., f;(X) modulo 4. Note that if f(X)
splits into linear terms modulo g then CRT slots simply become integers in Z,.



1.1 OUR CONTRIBUTIONS

s with somewhat-large coefficients, such as ones that are obtained from
trapdoor sampling (e.g. [ABB1oa; DLP14; MP12]), proving the Lo, norm
becomes significantly costlier. Finally, proving the L, norm, rather than the
Lo one, is very often what one would like to do when constructing proofs
for lattice-based primitives. For instance, if one is interested in bounding
the norm of a linear combination of s, e.g. for proving no decryption error
occurred, then having the L, norm seems more optimal. Indeed, given
|s| < B over a widely-used ring R, = Z,[X]/(X? + 1) where d is a power-
of-two, we can bound

T
la"slloo < laf - [s] = [af - B
whereas given the Lo, norm bound |s|| < & we would only deduce that
T
la”s]o < [afl1-[Isllo = [allL -&

which is usually looser than the former inequality since in practice very few
coefficients of s will be close to a. Another application is proving knowledge
of vectors produced by trapdoor sampling because they have a (tightly)
bounded L, norm but not Ly, norm.

Outside lattice-based cryptography, there has been a significant advance-
ment in the construction of practical zero-knowledge proof systems, and
it has progressed to the point where they can be used routinely to prove
relatively large arbitrary arithmetic circuits, thus in particular (1.1). When
restricting to (plausibly) quantum-safe protocols, the PCP-type systems like
Ligero++ [Bha+20] or Aurora [Ben+19] achieve proof sizes that scale poly-
logarithmically with the witness size and only rely on collision-resistant
hash functions. As a drawback, they have a concrete base cost in the order
of 50 — 100 Kilobytes. Hence, using lattice-based zero-knowledge proofs
for statements of the form (1.1) still seems more advantageous in terms of
proof size.

1.1 OUR CONTRIBUTIONS

In this work we propose a simple and general framework, called Lantern4,
for proving statements related to lattice-based cryptography, such as (1.1).
Our new protocols do not rely on the CRT slots technique which results in
the following two immediate improvements over the current state-of-the-
art [ALS20; ENS20; LNS21a]. First, since we do not need to commit to long

4 The name stands for: lattice-based non-interactive zero-knowledge proofs.
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Stern-type proofs 3522 KB
Bootle et al. [BLS19] 384 KB
Beullens [Beu2o0] 233 KB
Ligero [Ame+17] 157 KB
Aurora [Ben+19; Bos+20] 72 KB
Esgin et al. [ENS20] 47 KB
Lyubashevsky et al. [LNS21a] | 33 KB
Lantern 13 KB

FIGURE 1.1: Proof length comparison for proving knowledge of short s, e satis-
fying As + e = t mod g, where A € R;*™, (n,m,d,q) = (16,16,64, ~
232), and |(s, e)| < +/2048. The protocols from prior works need to
make the additional restriction that all the coefficients in s, e are from
{—1,0,1}. The sizes for the Stern-type proof are taken from [BLS19].
The sizes for Ligero and the scheme from [Beu2o0] are originally
from [Beu2o] and are for the matrix A of height 8.

vectors with large coefficients anymore (e.g. m in the previous example),
we can actually use the Ajtai commitment [Ajtg6] which is much cheaper.
Secondly, we circumvent the issue of repeating certain (rather expensive)
parts of the protocol for boosting soundness. Consequently, our proof sizes
become around 2 — 3X smaller than prior works for basic statements (see
Figure 1.1). In particular, for statements of the form (1.1), the total proof size
is ~ 13KB where approximately 8KB of that consists of just the “minimum”
commitment (i.e. a commitment to just one element in R,) and its opening
proof. This implies that our construction is quite close to being optimal
for any approach that requires creating a commitment to s using known
lattice-based commitment schemes. Since most of the practical lattice-based
zero-knowledge proofs for proving knowledge of a witness s satisfying
certain relations follow the commit-and-prove approach and first commit
to s, it appears that any significant improvement to our framework (e.g.
another factor of two) would require significant improvements in theory
of lattices, basing security on stronger assumptions, or simply a different
approach.

Our framework is defined in such a way that it can be used out-of-the-box
to construct more advanced privacy-preserving primitives. We demonstrate

5
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1.1 OUR CONTRIBUTIONS

Decryption Time
Ciphertext Size | Proof Size Independent of

Forgery Time
[LN17] 9KB 9KB X
[LNS21a] 4KB 33 - 44KB X

Lantern 1KB 17KB

FIGURE 1.2: The table compares our instantiation of a verifiable encryption scheme
from this thesis with [LN17] and [LNS21a]. The latter paper presents
a verifiable decryption scheme, but the proof size for a verifiable
encryption scheme constructed in the same manner would be similar.

the applicability of our protocols with various real-world examples. First,
we build an efficient lattice-based verifiable encryption which is on-par
with the current state-of-the-art [LN17] in terms of the ciphertext + proof
size but overcomes the undesirable problem with the expected decryption
time being dependent on the adversary’s running time (see Figure 1.2).
Furthermore, we show how our framework can be applied to obtain ABB-
like group signatures> [ABB1ob; Lyu+21; PLS18] with signature size 2X
smaller than the currently most efficient construction [Lyu+21] (see Figure
1.3). Last but not least, we propose a new logarithmic-size lattice-based
one-out-of-many proof [GK15] which, using standard techniques, can be
transformed into efficient ring and group signatures. Our construction
produces signature sizes ~ 35% smaller while having more than one order
of magnitude smaller public keys than the current state-of-the-art lattice-
based ring signatures [ESZ21; LNS21b] for a large number of users (see
Figure 1.4). We highlight that the one-out-of-many proof, combined with
our new proofs of integer relations (see Figure 1.5), can be used to build an
efficient lattice-based confidential payment system as in [ESZ21; Esg+19c;
LNS21b].

We now give a technical overview of the main building blocks for con-
structing our framework. For the sake of concreteness, let us define the

The main advantage of ABB-like group signatures is the constant signing and verification time
as well as constant signature size, i.e. they do not depend on the size of the group.

6
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Opening Time
Public Key Size | Signature Size Independent of
Adversary’s
Forgery Time
[PLS18] 123KB 581KB x
[Lyu+21] 96KB 203KB X
Lantern 48KB 88KB v

FIGURE 1.3: Comparison of our ABB-like group signature with prior construc-
tions [Lyu+21; PLS18].

ring Ry := Z,[X]/(X? + 1) where d is a power-of-two which is a standard

choice of a ring in practical lattice-based constructions®.

1.1.1 Lattice-Based Hybrid Commitment Scheme

Our starting point is a new lattice-based commitment scheme, called
ABDLOP, which generalises the constructions of Ajtai [Ajtg6] and BD-
LOP [Bau+18b]. Concretely, to commit to a message vector s; € RZ“ with
small coefficients, as well as a “full-fledged” polynomial vector m € R, we
sample a randomness vector s; € R;”Z and compute:

ta 1+ A s+ |01,
tg B m

We observe that when ¢ = 0 (resp. m; = 0) then this construction ends
up being the Ajtai (resp. BDLOP) commitment scheme. In particular, the
commitment size does not depend on the length m; of s (but it does on ¢).
Hence, our strategy is to commit to long vectors with small coefficients in
the “Ajtai” part s1, e.g. vector s in Equation 1.1, and commit to a few garbage
polynomials used for the proofs in the “BDLOP” part m. The opening of
the commitment is a pair (s1,s2)7.

Using similar techniques as in [ALS20] one can show ABDLOP scheme is
binding with respect to weak openings, i.e. triples (s1, sy, ¢) which satisfy:

Ay
0

Our protocols are the most efficient here because they utilise a specific automorphism in this
ring. However, the high-level ideas can also be made to work for rings which do not have this
algebraic structure. We refer to [LNP22b, Section 7] for more details.

7 Message m does not need to be included in the opening since it can be deterministically
computed from tp and s;.

7
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sig. sizes for rings of size| hardness public
26 212 221 assumption | key size
Raptor [LAZ19] |81 5161 - NTRU 0.9
DualRing-LB [Yue+21]| 6 106 - MSIS, MLWE| [2.8,3.4]
Falafl [BKP20] 32 35 39 MSIS, MLWE| 1.9
MatRiCT [Esg+19c] |31 59 148 MSIS, MLWE|([3.4,22.7]
MatRiCT+ [ESZ21] |11 18 40(?) MSIS, MLWE -
SMILE [LNS21b] |18 19 22 MSIS, MLWE 2
Calamari [BKP20] |8 14 23 CSIDH-512 0.06
Lantern 14 15 16 MSIS, MLWE| 0.13

FIGURE 1.4: Comparison of the different post-quantum ring signature schemes
with approximately 128 bits of security. All the values are given in
KB. The signatures sizes for [ESZ21; LNS21b] only approximately
correspond to the ring sizes (e.g. 18KB signature size is for the ring
of 210 users and not 212). For DualRing-LB and MatRiCT(+) the user
public key size grows in the number of users. Further, we extrapolate
the signature size for MatRiCT+ with 22! users from the smaller
examples and from MatRiCT.

* Agsy +Agsy =ty
* ce Ry, is an invertible polynomial with small coefficients,

® |cs1| and |cs;| are small.

under the hardness of the Module-SIS assumption. On the other hand, the
hiding property of the ABDLOP scheme comes from the fact that if vector

. A e
s, is long enough, then |~ | s, is indistinguishable from a random vector
B

under the Module-LWE assumption.

Proof of knowledge of the ABDLOP commitment opening can be con-
structed using the standard Schnorr-like sigma protocol [Lyu12] adapted
to the lattice setting (see Figure 1.6). Suppose that C is a challenge space
consisting of polynomials with small coefficients such that any difference
of two distinct challenges is invertible in R,;. Hence, if one manages to
extract two valid transcripts with two different challenges ¢, ¢’ € C then one
immediately obtains a weak opening of (ta, tp).

8
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| N 128 512 | N 128 512 |
[LNS20] 25KB 45KB [LNS20] 40KB 100KB
Lantern 12KB 15KB Lantern 15KB 21KB

FIGURE 1.5: Proof size comparison for proving integer addition (on the left) and
multiplication (on the right). Here, N is the bit-length of the integers.
It is worth mentioning that [ESZ21; Esg+19c] also construct efficient
proofs of integer addition, alternatively called balance proofs, which
use similar CRT-packing techniques as [LNS20].

1.1.2  Product Proofs with Automorphisms

One of our main building blocks is a proof of linear and higher-degree
equations in the committed messages s;, m. Namely, we adapt the product
proof from [ALS20] to prove that f(sq,m) = 0 where f : RZ”M — Ry is
a polynomial function. For presentation purposes, let us describe how to
prove that

sis;+m’m = 0.

Generalisation to arbitrary quadratic and higher-degree relations follows
immediately.
First of all, consider the masked opening z; := y1 + cs1 of s; defined in
Figure 1.6. Note that
z{z) = c?s{s1 +2cyls1 +yiyi

and hence the coefficient corresponding to the quadratic term c? is what we
are interested in. We cannot do the same argument with m since no masked
opening of m was sent. However, we observe that the verifier can compute

tg —Bzp; = —Byy +cm
which is of the similar form as the masked opening of s1. Then
(tg — Bzy) T (tg — Bzy) = c*>m"m — 2cy! B m + yl BT By,.

Therefore, we want to prove that the term in front of ¢ in the following
expression disappears, i.e

Z{Z1 + (tg — BZz)T(tB —Bzy) = g1+ 8o

9
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Prover P(s1,sp, m, ty,tp) Verifier V(t4, tg)

mld

yl <~ DH]

mzd
52

w = A1y; + Agy2

y2 <D

_wv
[ S c—C
Z1] :=Yy1 +C81
Zp :=y2+ Sy 21,22
?
lz1] < B1
?
lz2] < B>

)
w = A1z + Ayzy —cty

FIGURE 1.6: Proof of knowledge of the ABDLOP commitment opening. Vectors y;
are sampled from a discrete Gaussian with standard deviation s;. We
neglect the rejection sampling step for the sake of the overview.

where
g1:=2(yis1 —y;B'm), go:=yi{yi +y;B By,.

The idea is then to additionally send commitments ¢; to g; fori = 1,2 (we
will put g1, go in the “BDLOP” part since their coefficients are large) and
prove that

Z{Zl + (tg — BZz)T(tB —Bzp) —ct] — by

is a commitment to zero. Finally, in order to reduce the number of garbage
commitments, we apply the technique by Attema et al. [ALS20] which does
not need to commit to gp. Consequently, proving a quadratic equation costs
an extra commitment to a R, element.

In our framework, we need to prove quadratic relations which addition-
ally involve automorphisms o of R®. For instance, we will be interested in
equations such as

o(s1) sy +o(m)'m =0 (1.4)

We denote the group Aut(R) of automorphisms of R as Aut(R) := {0; : i € Z);} where
0; : R — R is defined by 0;(X) = X'.
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where for x := (x1,...,%,) € Rg‘, we define (x) := ((x1),...,0(xy)). If we
were to apply the approach as above, we would obtain
0(2){z1 +0(tg — Bzo)" (ts — Bz2) = cg10+ 0(0)g11 + 80 (1.5)

where

910 :=0(y) s —o(By2)'m, g1 :=ylo(s)— (Byz) o(m)

and g is defined as

g0 := o(y1)Ty1 + o(Byz) " By,.

This means that now we would need to commit to both g;9 and g11. A
simple optimisation is to choose a challenge space C such that c € C is stable
under automorphism o, i.e. 0(c) = c. Then, the expression in (1.5) would be
equal to cg; + go where g1 := g1 + g1,1. This way, we only commit to one
extra polynomial g; as in the case previous case. The limitation is, however,
the additional condition on the challenge space C being stable under o. We
show that for typical choices of o used in this thesis, such a challenge space
of an exponential size in the security parameter can still be constructed 9.

1.1.3 Inner Products of the Polynomial Coefficients

We propose new techniques to prove inner products between polynomial
coefficients of the committed vectors. For instance, suppose we want to
prove for some public a; € R;ﬂl and a, € Rg that

(a1, s81)+(ap,m) =0 (mod q)

where we denote (x,y) to be the Z-inner product of their corresponding
coefficient vectors ¥ and j/. The crucial observation here is that {a,s;) +
(az, m) € Z,; is the constant coefficient of the following polynomial in R:

o_1(a1) sy +0_1(az)'m. (1.6)

In other words, we note that for any two polynomials u,v € R, the inner
product {u,v) € Z, is the constant coefficient of the polynomial o_1(u)v €
R, where automorphism ¢_; maps X — X 1. Indeed, if we write u :=

Z‘f:_ol u; X" and v := 2?2_01 ;X! then the constant coefficient of

d—1 d—1
o_1(u)v = (Z uiXi> <Z vl-Xi>
i=0 i=0

9 Recall we still want the difference of any two distinct challenges in C to be invertible over R,.

11
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is ugvg + U101 + ... + Ug_194_1 = {U,v).

Now, to show that the constant coefficient of (1.6) vanishes, one could
simply send that polynomial in the clear and the verifier would check that
the constant coefficient is indeed zero. However, that would reveal all the
other coefficients of (1.6) — making the scheme not zero-knowledge. Instead,
we apply the following strategy described first by Esgin et al. [ENS2o0].
Namely, we commit to a random polynomial g < {x € R, : £ = 0}, where
¥ means the constant coefficient of x. Then, given a challenge v < Z; from
the verifier, we send

h:.= g+v- (U,l(al)Tsl + U,l(ag)Tm> .

Then, the verifier checks whether the constant coefficient of /4 is zero. Since
we masked all the other coefficients of (1.6) using g, the verifier gets no
sensitive information. Finally, we need to prove that # was well-formed.
However, this is just a linear equation in the committed messages s;, m and
g and can thus be proved as in Section 1.1.2.

One observes that the soundness error of this approach is 1/q; where g1
is the smallest prime which divides 4. Indeed, a cheating prover might have
s1, m such that the constant coefficient of (1.6) is q/q; and hope that the
challenge v is divisible by q1. Then, by construction, the constant coefficient
of h would still be zero.

In order to exponentially decrease the soundness error, we repeat this part
of the protocol, i.e. we commit to extra A polynomials g1,...,8y < {x € Ry :
% = 0} and send corresponding A polynomials /1, ..., h,. Consequently, we
reduce the soundness error to g, A at the cost of committing to A garbage
polynomials. In the thesis, we also propose an optimisation which relies
on certain properties of the 0_; automorphism and reduces the number of
garbage polynomials from A to A/2.

We highlight that this strategy can be easily generalised to prove multiple
inner products at no extra cost. In particular, one can efficiently prove
arbitrary Z,-linear equations, i.e. that coefficients of s; and m satisfy

A8+ Ay = il

where 57 (resp. 1) is the coefficient vector of s; (resp. m) and the equation
is over Z,.

The aforementioned approach can also be used to prove inner products
between committed vectors. As an example, suppose we want to prove that

(s1,81)+(m,m) =0 (mod g).

12
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It is equivalent to prove that the constant coefficient of

o_1(s1)"s +0_1(m)'m
vanishes. Then, we can proceed as before, i.e. commit to g <~ {x e Ry : & =
0} and given a challenge v < Z;, we send

hi=g¢g+v- (U,l(sl)Ts + a,l(m)Tm> .

Now, proving that & is well-formed is simply a quadratic equation (with
the 0_; automorphism) in the committed messages s;, m and g and we
covered exactly those in the previous subsection.

1.1.4 Proving Euclidean and Infinity Norms

The next crucial component of our framework is proving exactly that
some of the committed messages satisfy certain norm bounds. Suppose
we want to prove |sq]| < . We first recall the “approximate range proof”
strategy [GHL21; LNS21a] which only proves the norm approximately.
Concretely, we first commit to a small '® masking vector i to ensure zero-
knowledge, and then given a random matrix R with coefficients in {—1,0,1},
we output

Z: =19+ Rs (1.7)

and prove that Z is well-formed (this is just a Z;-linear relation which can
be proven as described above). It can be shown that if |Z|| is small, then
with an overwhelming probability |s;|| must also be small. This approach is
only “approximate” since in the end the prover convinces the verifier that
|s1] < ¥ - B for some approximation factor i > 1. Even though this is not
what we originally wanted to prove, it will be an important building block.

For presentation, suppose first we want to prove ||s1 |?> = B2. One observes
that

B = [s1]* = (s1,51)

which boils down to proving an inner product between the secret coefficients
as described in Section 1.1.3. The only caveat is that we only proved that
|s1|? = B2 (mod gq). This is where we apply the approximate range proof.
Indeed, if (1 + ¢?) - B? < q then we can deduce that

B> —|s1]*| < B*+¢* B> <q

10 In our applications, vector i will be of dimension 256.

13
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and thus no modulo overflow occured. Hence, |s;|> = B? holds over
integers.

We go back to the old case ||s1|? < B2. Let & ¢ Z‘; be the binary decompo-
sition of B? — ||s{|?>. We can then commit to the polynomial ¢ e R4, where
its coefficient vector is exactly @, and prove that

(s1,81) + (pow(B?),6) = B> (mod q)

2 . .
where pow(B?) := ZP:O(%B lgi . xi ¢ R;. This is again an inner product
equation which can be proven using the techniques from Section 1.1.3. Now,
if we can prove that ¢ has binary coefficients, then we can deduce that

B — s1]? — (pow(B?), )] < B> + - B +-2B% = (3 + ¢*) - B

Hence, if (3 + ¢?) - B2 < g then we get that |s;|?> < B2. What we have left
is to prove that ¢ has binary coefficients. We make use of the following
observation: vector b = (b1,...,bn) € Z" has binary coefficients if and only
if

n

55 Z i(bj—1)=0 over Z.

Our strategy is thus to prove that

d—1
<19,19 -] X’> = 0mod g (1.8)

i=0

and apply an approximate range proof on ¢ to prove that || is relatively
small. Then, similarly as before, we deduce that (1.8) holds over integers and
by our observation, coefficients of ¢ are indeed binary. It is easy to see that
this strategy can be used to perform arbitrary Lo, proofs, i.e. |s|« < &, by
first binary-decomposing the coefficients of s and proving that the resulting
vector is binary.

1.1.5 Shorter Proofs via Bimodal Gaussians and One-time Commitments

In order to ensure zero-knowledge property of our schemes, we apply
the rejection sampling technique [Lyu1z2]. The idea is to mask the secret
vector, e.g. cs; in Figure 1.6, by adding to it a freshly sampled y; from a
discrete Gaussian Dgid with standard deviation s; and then aborting the
protocol with certain probability p; dependent on z; := y; + cs;. Note that

14
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choosing small standard deviation s; results in z; having small coefficients
which reduces the proof size but also drastically increases the aborting
probability p;. On the other hand, large s; implies bigger coefficients of z;
which not only increase the proof size but also forces us to pick less optimal
parameters for the commitment to satisfy the binding property.

If the protocol contains only one rejection sampling then the standard
choice [Lyu12] is to pick s; = 11 - |cs;|. Then, the aborting probability p;
becomes & 2/3. However, in our framework, we will have at least three
rejection sampling steps. The first two are for z1, z; as in Figure 1.6. At least
one more will be needed for the approximate range proof, i.e. (1.7). Hence,
if we were to set the same parameters for all (three) rejection sampling steps
as in [Lyu12] then the total probability of the prover not aborting would be
1/27. Thus, for run-time purposes, it is important to somehow increase the
non-abort probability with no big impact on the standard deviations.

We solve this issue by applying bimodal Gaussian rejection sampling,
first introduced by [Duc+13]. The difference from the standard rejection
sampling procedure is that we additionally sample a sign b; «— {-1,1}
and then output z; := y; + b; - cs;. Due to the symmetry of the distribution
of z;, [Duc+13] manage to reduce the standard deviation by one order of
magnitude (or for the same standard deviation, significantly reduce the
aborting probability p;). This technique would thus be beneficial for us since
we need to deal with (at least) three rejection sampling steps. We explain
below how to use bimodal Gaussian rejection sampling in our setting.

Let us first consider the approximate range proof. Now, instead of doing
(1.7), we would commit to a sign b < {—1,1}, send Z defined by

Z= y +b-Rs;
and prove that Z is well-formed. We show that, assuming that b is a sign,
this equation can be proven directly using our techniques from Section 1.1.3.
However, we still need to prove that b is indeed a sign. This can be then
done by proving that (b +1)(b — 1) = 0 over R, (Section 1.1.2) and that for
all 1 <i<d—1, the constant coefficient of X~ - b is zero (Section 1.1.3).

Further, we focus on the rejection sampling for the randomness of the
commitment scheme. Concretely, we compute z, as in Figure 1.6 (i.e. we
do not sample any additional signs) but we still apply the bimodal Gaus-
sian rejection sampling strategy and reject with certain probability defined
in [Duc+13]. Surprisingly, this (naive) strategy works at the potential cost
of leaking the value of (zy,csy) € Z. Clearly, leaking some information
about the randomness can be dangerous. For example, if one were to repeat-
edly perform proofs of knowledge for the same commitment which leaks

15
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[La ntern framework]

One-time commitments | | Proving exact norm bounds
Chapter 7 Chapter 6

Inner product proofs Approximate range proofs
Chapter 5 Chapter 6

Proving quadratic equations| |ABDLOP commitment
Chapter 5 Chapter 4

FIGURE 1.7: Main components of the Lantern framework.

something about the same randomness each time, eventually the entire
randomness could be recovered by even a passive observer. However, if
one looks closer at how the commitments are usually being used in many
of the privacy-based protocols, one would notice that the scheme is used
to commit to some intermediate value, give a proof-of-knowledge of the
value (i.e. proof of knowledge of the commitment randomness), and then
discards the commitment. Therefore, only one proof of knowledge is per-
formed and randomness is freshly sampled every time a proof is produced.
This is evidenced by the fact that our protocols (where commitment is a
part of the proof) are zero-knowledge under the Extended Module-LWE
problem [AA16] where the inner product of the secret with random vectors
are revealed as hints.

1.2 THESIS ORGANISATION

The structure of this thesis is summarised in Figure 1.7. We first describe
related works in the area of lattice-based zero-knowledge proofs and con-
structions of privacy-preserving primitives (e.g. ring and group signatures)
in Chapter 2. Next, we cover relevant cryptographic as well as mathematical
background in Chapter 3. Chapter 4 introduces the new ABDLOP com-
mitment which is a generalisation of the Ajtai and BDLOP schemes and
proposes a zero-knowledge opening proof. The focus on Chapter 5 can be
split into two parts. First, we show how to prove linear and higher-degree
equations in the committed messages (also the ones involving automor-

16
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phisms). Secondly, we show how to use the tools to prove linear relations

and inner products between the coefficients of the committed polynomials.

Chapter 6 describes how to prove both Euclidean and infinity norm bounds
and proposes a general framework, called Lantern, for proving arbitrary
(lattice-related) statements. Further, Chapter 7 presents new techniques to
further reduce the proof size by utilising one-time commitments. Next, we
demonstrate the importance of our results with real-world applications to
privacy-preserving primitives in Chapter 8. The thesis is concluded with
Chapter 9 with some discussions and potential future research directions.

17



RELATED WORKS

In this chapter we provide a literature review in the area of lattice-based
commitments, zero-knowledge proofs and current state-of-the-art privacy-
preserving constructions. For the sake of presentation, we define R :=
Z[X]/(X? + 1), where d is a power-of-two and R, := R/(q) for a prime
g. Also, we denote xysis and xymwe to be the module ranks required for
Module-SIS and Module-LWE security over the ring R, respectively.

2.1 LATTICE-BASED COMMITMENT SCHEMES

Commitment schemes are a powerful tool used in various cryptographic
constructions. This primitive allows one to commit to a chosen value with
the possibility to reveal it later. There are two main security properties of
commitment schemes. The first is called hiding meaning that the commit-
ment itself does not reveal any information about the committed value.
Second is binding which says that a party cannot change the value after they
committed to it.

Current state-of-the-art lattice-based commitment schemes can be di-
vided into two types ': Hashed-Message Commitments (HMC) [Ajt96] and
Unbounded-Message Commitments (UMC) [Bau+18b]. The former one
has the property that the sizes of commitments are almost independent
of the sizes of the committed values. This comes at the cost of the smaller
message space being only polynomials of small norm. On the other hand,
the main characteristic of UMC is the unbounded message space, but the
commitment size is linear in the size of the message.

HASHED-MESSAGE COMMITMENT. We describe the standard Module-
SIS commitment scheme [Ajtg6; Bau+18a; KTXo8] which was first intro-
duced implicitly in the seminal work by Ajtai [Ajtg6]. Concretely, let

K| X (K K
Al — R;Mszml, Ay — RqMSIS (kmsis +EMLWE)

be uniformly random matrices as public parameters, where m; is the
number of elements that one wishes to commit to. A commitment to a

1 We use the terminology from [ESZ21].
18
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vector s involves sampling a random vector s with small coefficients and
outputting the commitment vector

t=Ais1 +Apsp e ’R,EMSIS.

To see that the commitment is hiding, observe that the vector s, is much
longer than the height of the matrix A;. Hence, under the (knapsack)
Module-LWE assumption, Ajys; is indistinguishable from a random vector
u — RV, To prove binding, we note that if one can come up with two
(possibly different) pairs (sq,s,), (s}, s5) such that

Ais1+Arsy =t = Alsll + Azslz

then one obtains a Module-SIS solution

lsl — 5’11
!
S2 — 8y

for the matrix [A; Ay]. Hence, in order to obtain the binding property
under the Module-SIS assumption, one can only have a message space
consisting of vectors with small polynomial coefficients.

It is easy to see that the commitment is compact, i.e. it does not depend
explicitly on the length of the message vector m;.

UNBOUNDED-MESSAGE COMMITMENT. Next, we recall the BDLOP com-
mitment scheme from [Bau+18b] which allows committing to an arbitrary
vector of messages over R;. Suppose that we want to commit to a message
vector m € Rg Then, in the key generation, a uniformly random matrices

Ay — REMSISX(KMSIS'H(MLWE“‘@, B — RSX(KMS|5+KMLWE+5)

are generated and output as public parameters *. To commit to the message
m, we first sample the randomness vector s,. Now, there are two parts of
the commitment scheme: (i) the binding part and (ii) the message encoding
part. Concretely, we compute

ta = Azsy,
tg = Bsy + m

In practice, one may choose to generate Ay, B in a more structured way as in [Bau+18b] since
it saves some computation. However, for readability, we write the commitment matrices in the
“knapsack” form as above.
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where the top part ty € RgM" forms the binding part and the bottom part

tp e Rs encodes a message vector m.
The hiding property of the BDLOP commitment scheme follows from

the fact that if the randomness vector s; € RgMLWEJrKMS'SM is long enough,

A . . T .
then [ 21 sy is computationally indistinguishable from a random vector
B

u— RSMS'SH] under the Module-LWE assumption. On the other hand, to
prove binding suppose that one can find two pairs (sp, m), (sh, m’) such
that

Ajsy) =ty =As), and Bs;+m=tg =Bs,+m'.

Then, under the Module-SIS assumption for matrix A, we obtain s, = sé.
Furthermore, from the second equation we also get m = m’.

One observes that the commitment size as well as the length of the
randomness vector s; are linear in the length of the message vector. Hence,
using this commitment for zero-knowledge proofs is much more expensive
than the Ajtai commitment.

2.2 LATTICE-BASED ZERO-KNOWLEDGE PROOFS

Zero-knowledge proofs (ZKP), first introduced by Goldwasser, Micali, and
Rackoff [GMRS5], is a fundamental building block of various privacy-
preserving applications, such as ring/group signatures, anonymous cre-
dentials, electronic voting, verifiable computation and cryptocurrencies. In
this thesis, we restrict our attention to the ZKP constructions based on the
hardness of lattice problems.

Lattice-based zero-knowledge proofs is an active area of current research
which can be split into the following two groups. The first one focuses
on proving statements tailored to practical applications [ALS20; BLS19;
ENS20; Esg+19a; Lyu12; Yan+19], such as ring/group signatures [BKP20;
ESZ21; Esg+19c; LNS21b], proving integer relations [LNS20] as well as
blockchain [Esg+21; ESZ21; LNS21b]. The main drawback of using most of
these protocols is the linear proof size in the length of the witness. Conse-
quently, they are not suitable for proving larger statements. The latter group
of works, however, concentrates on building protocols which offer asymp-
totically sub-linear (ideally poly-logarithmic) proof sizes [AL21; ACK21;
Bau+18a; BCS21; Boo+20]. They additionally show how these constructions
can be turned into efficient arguments of circuit satisfiability. Unfortunately,
in terms of concrete sizes, they seem to be behind the schemes in the first
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Prover P(s, t) Verifier V(t)
y < Dy
w:= Ay
__w
- ¢ c—C
Z:=y+cs
Rej(z, cs, s) ..z
?
lz] < B
w Az —ct

FIGURE 2.1: Identification scheme by Lyubashevsky [Lyuog; Lyu12] . Here, Rej is
a rejection sampling algorithm to ensure zero-knowledge property of
the protocol.

group with respect to smaller statements, mainly due to parameters which
are neglected when doing an asymptotic analysis.

APPROXIMATE PROOFS. The starting point of practical lattice-based zero-
knowledge proofs is an identification scheme by Lyubashevsky [Lyuog;
Lyu12] which is an adaptation of the well-known Schnorr [Sch89] protocol
to the lattice setting. In this scheme, which we sketch out in Figure 2.1, we
want to prove knowledge of a secret vector s € Ry’ of small norm which
satisfies As = t over R,.

Let us consider the soundness property of the protocol in Figure 2.1.
Using standard rewinding techniques, we can obtain two accepting tran-
scripts (w, ¢, z) and (w, ¢, z') with the same first message w and distinct
challenges ¢, ¢’ € C. From the verification equations we deduce that

A(z—2Z)=(c—-)t and |z—-72| <2B.
If one were to adapt the strategy from the discrete logarithm setting, then
the next step would be to set

/
z._ 22—z m
and conclude that As = t. However, this comes with a few major issues.
First, we observe that due to the verification condition |z| < B, it is essential
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that coefficients of the challenges in C are relatively small. Hence, it is
unclear that for distinct challenges ¢,¢’ € C with small coefficients, the
difference of ¢ — ¢’ exists over Rq. Even if it does, we have no guarantee
that 5 defined above has small norm since the coefficients (c — ¢/)~! can be
actually large.

Benhamouda et al. [Ben+14] showed that the challenge space C := {Xi :
i€ Zy} S Ry almost circumvents all the problems discussed above. Namely,
each X' € C has small coefficients, the difference X! — X/, for distinct
0 <i<j < 2d,is invertible over R, and 2/(X’ — X/) € R, has coefficients
between —1 and 1. This implies that 2 - § has small norm and A(28) = 2t.
The drawback of this approach is the size of the challenge space C, which is
2d, and thus we end up with a large soundness error. Therefore, we would
need to further repeat the protocol for soundness amplification. Moreover,
it was recently showed by Albrecht and Lai [AL21] that any challenge
space that satisfies conditions mentioned above cannot have exponential
size in the security parameter and thus any similar approach would require
repeating the protocol for boosting soundness.

As noticed by Lyubashevsky, convincing the verifier that Az = ¢t, for z :=
z—2' and ¢ := c — ¢/, is enough for building simple, yet relatively efficient
cryptographic primitives, such as signature schemes [Duc+18], verifiable
encryption [LN17], and group signatures [BCN18]. As a concrete example,
Dilithium signature scheme [Duc+18], which is one of the finalists of the
NIST PQC Competition [NIS], produces signatures by essentially applying
the Fiat-Shamir transformation [FS86] to the identification scheme from
Figure 2.1. Nevertheless, the approach by Lyubashevsky [Lyuog; Lyu12]
still does not prove exactly that As = t and that s has small norm.

STERN PROOFS. There is a long line of research using Stern’s proto-
col [Steg3] to exactly prove relations as in (1.1), e.g. [KTX08; Lin+13]. But
even for the smallest statements, which for example arise when proving
correctness of a Module-LWE sample, the proofs produced by this approach
have several Megabytes in size and hence are not really practical. The reason
behind this is that a single protocol execution has a very large soundness
error of 2/3, and thus many protocol repetitions (in the order of hundreds)
are required to reach a negligible soundness error.

PROTOCOLS BASED ON THE CRT SLOTS. More recent constructions by
Bootle et al. [BLS19] and Yang et al. [Yan+19] allow proving exactly that
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As = t and that the coefficients of s are in a specified range, e.g. binary3.
The key component of their protocols is the use of so-called CRT (or NTT,
which stands for Number Theoretic Transform) slots. Namely, suppose that
g =1 (mod 2d) and thus X? + 1 can be factored into linear terms [L.S18] as

follows:
d—1

X'+1=]](X-7) (modq)
i=0
where rg,...,74_1 € Zq are distinct. Then, for a polynomial a € ’Rq, we
define “CRT of a” to be the polynomial 4 € R:

a:= Y ;X where 4 :=a(r;).

Similarly, we define the “inverse CRT of a” to be the polynomial i for which
CRT is equal to a.

One of the most useful properties of the CRT representation is that for
any a,b,c € Ry dob = ¢if and only if 4 b = & where @ (resp. E,E') is
the coefficient vector of a (resp. b, c) and o is the component-wise product.
Hence, to prove thats = (s1,...,s;) has binary coefficients, i.e. 5; o (5; — 1) =
Gfori=1,2,...,m we need to show that

§-(3—-1)=0 fori=1,2,...,m. (2.1)

Since § := (51,...,8,) might actually have large coefficients, we cannot
commit to § using the Ajtai commitment. Hence, [BLS19; Yan+19] commit
to § using the BDLOP construction. Now, we show the intuition to prove
(2.1). For simplicity, let us only consider the case m = 1. At some point
during the protocol, the prover outputs the masked opening z = y + u$ to
the verifier where i € R, is a challenge. Then, the verifier can compute

zz—c) =P +u- 25—y +u®-35-1).
Hence, the idea is to send commitments
t; = Com((2§—1)y) and ty = Com(y?)

and given a challenge u, output z and prove that z(z —c) — ut; —tp is a
commitment to zero. This implies that §(§ — 1) = 0. Now, if m > 1 then this

3 Esgin et al. [Esg+19a] also used the technique of CRT slots but directly in the context of
building privacy-oriented primitives.
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technique can be amortised so that one always send only two additional
commitments instead of 2m.

We still need to prove As = t. This becomes especially tricky since we
committed to § and not s. Here, the key observation is that if y € Z; and
we send z; = y; + u$; as defined above, then:

Z=y+us
where 2 = (Z4,...,2;) and similarly for §. Thus, the verifier can compute
Az = Ay + ut.

Therefore, the idea is for the prover to send w := Ay in the clear and at
the end the verifier checks that Az = w + ut. Since w can be computed
deterministically from the verification, it does not have to be a part of the
non-interactive proof. However, this technique forces the requirement that
u has to be an integer. Consequently, the size of the challenge space of y is
at most 4.

The one thing left to do is to show that all the commitments generated are
actually valid. The aforementioned protocols use the proof from [Bau+18b]
which requires the challenge space to satisfy that any difference of two
distinct challenges is invertible. Baum et al. [Bau+18b] resolve this issue by
picking a modulus g for which X“ + 1 does not split into many factors. Then,
using the main result of Lyubashevsky and Seiler [L518], they can choose an
exponentially large challenge space of small polynomials. The invertibility
result from [LS18], however, does not apply in the case g = 1 (mod 2d) and
hence [BLS19; Yan+19] have to choose a challenge space C := (X! :ieZyy).
Consequently, the proof needs to be repeated 128/log 2d times to obtain
negligible soundness error which significantly increases the total proof size.

UNIFORMITY IN THE CRT SLOTS. Attema et al. [ALS20] generalise the
result by Lyubashevsky and Seiler [LS18] and provide a way to compute
the min-entropy of a challenge c «<— C in a fixed CRT slot. Since an element
in R, is invertible if and only all its CRT slots are non-zero, it would suffice
to show that the probability that a random c from the challenge set hits
a particular value in a CRT slot is smaller than the targeted soundness
error. Note that if ¢ was picked uniformly at random from R, then the
probability that c(r;) = a for fixed i € Z; and a € Z,; is exactly 1/q. Attema
et al. show that if coefficients of ¢ are chosen from the set {—1,0, 1} then the
probability becomes close to 1/q. This result was later generalised by Esgin
et al. [ESZ21] to consider challenges with fixed L1 norm, and by Esgin et
al. [Esg+22] to include challenges with larger coefficients than ternary.
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Using the main result of [ALS20] in the setting when g = 1 (mod 2d), we
obtain a proof of a BDLOP commitment opening with soundness error 1/g
instead of 1/(2d) as in prior works. Moreover, Attema et al. propose a new
proof of multiplication which has the following two advantages. First, it

involves committing to one less polynomial than the degree of the equation.

In the case of Equation 2.1, we would then commit to only one polynomial
g1, instead of two as in [BLS19]. More importantly, there is no need to
send masked opening z; of s; to the verifier. Since the secret vector s (and
consequently $) can be relatively long, polynomials zy, ..., z; constitute a
big part of the overall proof size.

EFFICIENT LINEAR PROOFS. Recently, Esgin et al. [ENS20] presented
a new approach, which takes inspiration from the univariate sumcheck
protocol [Ben+19], to prove As = t without sending any masked openings
z; of §;. Firstly, we can write this equation equivalently as a linear equation
over Z:

AS=T7 (mod gq) whereA:[A1 Ay - Am]ezgdxmd.

The intuition is to let the verifier pick a challenge vector ¢ « ng and prove
instead
(A5 —t,$) =0. (2.2)

By simple transformation, this is equivalent to
G ATH G §) =0,

Further, Esgin et al. use the following fact. Namely, the sum of the CRT
slots of a polynomial f € R, is equal to the (scaled) constant coefficient of
f, or alternatively:

-f

QUL

-1
> flr) =
i

where f is the constant coefficient of f. Using this observation, it is enough
to prove that the constant coefficient of the following polynomial:

fi= % <sti'ﬁi_<?/$>>
i-1

is equal to zero where u; is the (public) polynomial defined by its coefficient
vector AlT(fi € ZZ fori =1,2,...,d. A naive way to prove this statement
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would be to send f in the clear and let the verifier check manually that
f = 0. However, this would also reveal other coefficients of f and potentially
reveal some information about . Instead, Esgin et al. reveal the constant
coefficient of f while masking all the other coefficients. Concretely, the

prover will commit to a random polynomial g < {x € R, : ¥ = 0} and send
1 (< -
hi=g+f=g+7 <i§§i'ﬁi—<t,¢>> :

Clearly, if f = 0 then also i = 0 and this can be checked manually by
the verifier. On the other hand, other coefficients of i do not reveal any
information about s. What is left to prove is the well-formedness of h.
However, since all §; and g are committed, this is just a linear proof in the
committed polynomials and can be done identically as in [Bau+18b].

We highlight that if A3 # f then (2.2) holds with probability 1/q. Since this
value will be much larger than the targeted soundness error, naively one
would need to repeat this part of the protocol 128/log g times, i.e. commit
to multiple polynomials g1, ..., 8128/10g 4- HOWever, using certain properties
of R-automorphisms, Esgin et al. reduce the number of additional garbage
commitments from 128/log g to 1.

Combining the results from [ALS20], Esgin et al. obtain a very efficient
proof system for proving statements of the form As = t and that the (in-
finity) norm of s is small. For basic examples, their protocols enjoy 7 — 8X
smaller proof sizes than [BLS19; Yan+19]. More recently, Lyubashevsky et
al. [LNS21a] improved upon [ENS20] by applying a bimodal-like [Duc+13]
rejection sampling strategy which results in the masked openings of the BD-
LOP randomness having smaller coefficients (by 2 — 3 bits per coefficients)
but each protocol execution reveals one bit of (fresh) randomness. Inde-
pendently, Tao et al. [TWZ20] showed how to apply the bimodal technique
to the BDLOP commitment scheme without any leakage. Consequently,
they managed to reduce the standard deviation used for sampling the
commitment randomness at the cost of relying on a Module-SIS problem
with a larger bound. In our setting, however, this approach has very little
improvement over the original opening proof [Bau+18b] with respect to
efficiency.

In terms of concrete performance of the aforementioned works, we refer
to Table 1.1 for more details.

SUBLINEAR PROOFS. The main bottleneck of the constructions described
above is the proof size linear in the length of the committed witness. The
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reason is that when proving knowledge of an opening of a BDLOP com-
mitment, one sends a masked opening of the BDLOP randomness which is
indeed linear in the size of the message. Hence, for solving more sophis-
ticated statements than (1.1), e.g. circuit satisfiability, practically efficient
sublinear-size proof systems are needed. There are several proposals of
asymptotically sublinear lattice-based proof systems in the literature [AL21;
ACK21; Bau+18a; Boo+20], but their concrete proof sizes are not analyzed
in the papers and they are not practically efficient yet.

The first zero-knowledge proof with sublinear communication complexity
for arithmetic circuit satisfiability was proposed by Baum et al. [Bau+18a].
At the core of the protocol lies an amortised proof of knowledge of vectors
$1,...,8; € R;” of small norm, such that As; = t; fori = 1,2,...,n. The total
proof size is of the order of O(n + m), hence square-root in the number of
secret coefficients N = nm. This approach was later generalised by Bootle et
al. [Boo+20] who define so-called “levelled commitments” and give O(N/?)
size proofs for proving knowledge of a commitment opening with d levels4.
The main drawback of this construction is that the modulus for the proof
system increases exponentially in d and thus considering more than 2 — 3
levels seems impractical.

Bootle et al. [Boo+20] also proposed the first lattice adaptation of the
Bulletproofs [Boo+16; Biin+18] which offers poly-logarithmic proofs. This
approach was later improved independently by Attema et al. [ACK21] and
Albrecht and Lai [AL21] in terms of tighter soundness analysis and also
generalised to a more abstract setting by Bootle et al. [BCS21].

While folding strategy from Bulletproofs is very effective in the discrete
logarithm setting and retains asymptotic efficiency in the lattice scenario,
they do not combine well with the shortness requirement in lattice cryp-
tography. Consequently, this leads to a concrete blow-up of the parameters
as well as the proof size. Informally, it must be possible to invert the fold-
ing in the extraction such that the extracted solution vector is still short.
For general (small) challenges, this will not be the case. Hence, Bootle et
al. [Boo+20] pick monomial challenges X' so that (a scaled) inverse of a
difference of two distinct challenges is still small [Ben+14]. This results in
a large soundness error, and hence the protocol needs to be repeated for
soundness amplification. Additionally, the length of the extracted solution
vector grows by a factor of O(d®) for every level of folding. Then, the pa-
rameters must be chosen such that the Module-SIS is hard with respect to
the length of the extracted solution vector, resulting in the need for a large

4 The construction by Baum et al. [Bau+18a] can be seen as a 2-level commitment.

27



2.3 LATTICE-BASED PRIVACY-ORIENTED PRIMITIVES

modulus g. Concretely, even for ~ 10 folding steps, the required modulus
g would need to be in the order of several hundred bits which results
in the proof size being in excess of 100 Megabytes for typical example
applications.

POST-QUANTUM SECURITY. The broadly used Fiat-Shamir Transforma-
tion [FS86] turns an interactive ZKP into a non-interactive zero-knowledge
proof (NIZK) in the random oracle model. In preparation for the eventual ar-
rival of quantum computers, there has been a significant amount of work in
understanding the quantum security in the quantum random oracle model
(QROM) [Bon+11]. Until recently, many aforementioned protocols either (i)
were not known to be (in)secure when applying Fiat-Shamir transformation
in the QROM or (ii) could be transformed into a QROM secure NIZK using
the Unruh transform [Unr15] which leads to a proof size increase by a
factor of ~ 50. Significant progress has been made by Katsumata [Kat21]
who proved QROM security of the current state-of-the-art lattice-based
zero-knowledge proofs [ALS20; BLS19; ENS20; LNS21a; Yan+19] at the cost
of increasing the proof size by only a factor of 2.6. Since the protocols in
this thesis have a similar structure as [BLS19; Yan+19], we believe that these
techniques can also be applied in our setting.

2.3 LATTICE-BASED PRIVACY-ORIENTED PRIMITIVES

As evidenced in the literature, any development in building efficient lattice-
based proofs of (1.1) brings new constructions of privacy-preserving ap-
plications from lattices. For instance, Stern proofs [KTXo8; Lin+13] were
used as a core component for constructing ring signatures [Lib+16], group
signatures [Lib+16; Lin+17], pseudo-random functions with applications
to e-cash [Lib+17] and proving integer relations [Lib+18]. Since the con-
structions relied on Stern proofs, their outputs were of the order of several
Megabytes.

Once the early works on proving (1.1) based on the CRT technique ap-
peared, significant improvements were made in the area of lattice-based
privacy-oriented primitives. As an example, Yang et al. [Yan+19] showed
that if one modifies the aforementioned constructions to use their new
protocols instead of Stern proofs, one immediately obtains one order of
magnitude improvement. Independently, a line of research started by Esgin
et al. [Esg+19a; Esg+19b; ESZ21; Esg+19c] uses CRT techniques to build
much more practical ring/group signatures and applications to sophisti-
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cated primitives such as confidential transactions. The end result [ESZ21] is
a Monero-like [NM16] lattice-based payment system where the communi-
cation complexity of a transaction is under 30KB.

As expected, the most efficient proof system for (1.1) [ALS20; ENS20;
LNS21a] is also getting used in the context of privacy-oriented primitives,
e.g. proving integer relations [LNS20], ring signatures and payment sys-
tems [LNS21b], group signatures [Lyu+21], blind signatures [LNP22a] and
verifiable random functions [Esg+22]. Since the proof system is relatively
new, more applications could emerge in the foreseeable future.

Due to the enormous amount of progress in the area of lattice-based
privacy-preserving primitives, we restrict our attention to ring and group
signatures.

RING SIGNATURES. First introduced by Rivest, Shamir and Tauman-
Kalai [RSTo1], ring signatures allow for anonymous signature generation in
a sense that the signer’s identity is hidden within a public set of identities,
called a ring.

One important aspect of ring signature schemes is the signature size
and its growth with respect to the number of identities N in the ring.
Lattice-based constructions can thus be split into the following two groups:
(i) “linear-size” ring signatures, namely the signature size scales linearly
in N and (ii) “logarithmic-size” ring signatures where the signature size
is only poly-logarithmic in N (see Figure 1.4 for concrete comparison).
Interestingly, the linear-size constructions, such as Raptor [LAZ19] and
Dual-Ring [Yue+21], offer very small signature sizes in the range of 4 — 6KB
for less than 64 identities. However, their performance does not scale well
for larger rings (more than 100MB for 212 users).

There has been significant of work in building logarithmic-size ring sig-
natures from lattices [BKP20; ESZ21; Esg+19c; LNS21b]. Most constructions
follow the approach by Groth and Kohlweiss [GK15] and propose efficient
one-out-of-many proofs in the lattice setting. Intuitively, in the lattice-based
one-out-of-many proof, the signer wants to produce a zero-knowledge
proof of knowledge of a short vector s such that

Asefty,... tn} S Ry (2.3)

In particular, the signing party does not want to reveal any information for
which index i, As = t;. The currently most efficient lattice-based ring signa-
ture for large number of users N = B has been proposed by Lyubashevsky
et al. [LNS21b]. To prove relations of the form (2.3), the authors show a new
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way to prove knowledge of a short vector s along with the binary vectors
v1,...,0c € {0, 1}5 with exactly one 1, such that

AS=T(th ®- --®Ty)

where ® is the standard Kronecker product’. Here, 7 := 71 ® - - - ® ¥y € Zé\]

is exactly the vector that shows the position of a column of T which is equal
to AS. Even though the proof size in [LNS21b] is logarithmic in N, both the
prover and verifier time are linear — thus making the protocol impractical
to run for very large rings of identities.

GROUP SIGNATURES.  First introduced by Chaum and van Heyst [CHg1]
and later formalised by Bellare et al. [BMWo03], group signature scheme
is another instance of an anonymous signature. In a group signature, the
setup authority uses a master secret key to distribute member secret keys
to the members of the group. The members can then use their secret keys
to sign messages on behalf of the group. An entity known as the opener
(or group manager) also has a special secret key that allows them to obtain
the identity of the signer of any message, e.g. in case of a dispute or a
misbehaviour.

Most of the early work in trying to construct lattice-based group signa-
tures were efficient only in an asymptotic sense with concrete signature
sizes being around 50MB (e.g. [GKV10; Lib+16]). Later on, del Pino et
al. [PLS18] proposed a scheme with the signature size of around 580KB
in which the parameters and computational complexity of signing and
verifying do not depend on the group size.

The advancement of lattice-based zero-knowledge proofs using CRT
slots [BLS19; Esg+19a; Yan+19] led to much more efficient constructions of
group signatures. For example, recent schemes [Beu+21; ESZ21; Esg+19c]
rely on efficient lattice-based OR/one-out-of-many proofs and achieve
signature sizes under 100KB for large groups and even less than 20KB for a
group of 1024 users. However, the signing and verifying time is linear in
the number of users which makes them less attractive to run in practice.
Independently, Lyubashevsky et al. [Lyu+21] proposed a group signature
that builds upon the framework of [PLS18] and uses the efficient proof
system from [ALS20; ENS20] as a building block. Thus, it inherits the
property of [PLS18], i.e. a constant signature size as well as signing and
verifying independent of the group size. The end result of [Lyu+21] is the
group signature of size ~ 200KB.

5 More precisely, we mean 71 ® (7, ® (73 - - - ® (Tx—1 ® Tx)))-
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PRELIMINARIES

In this chapter, we cover relevant cryptographic as well as mathematical
preliminaries that will be frequently used throughout the thesis. We start by
introducing notation. Then, we recall necessary mathematical background
which includes basic facts from linear algebra, lattices, discrete Gaussian
distribution and algebraic number theory. Furthermore, we cover definitions
of various cryptographic primitives (e.g. commitment scheme, commit-and-
prove functionality) and state our security assumptions.

3.1 NOTATION

Let Z, be the set of integers modulo 7n. Denote x € IN to be a security
parameter. Unless stated otherwise, all algorithms are implicitly given a
security parameter in unary. An algorithm here is defined as an interactive
Turing machine. Algorithms are randomised and PPT means "probabilistic
polynomial time" in the security parameter x. We describe (y1,...) <
A(1%,xq,...;r) as an event when A gets (1%,x1,...) as input, uses fresh
random coins r and outputs (yy, ... ). The joint execution of two algorithms
A and B is an interactive protocol with private inputs x to A and y to B
is written as (a,b) <« (A(x), B(y)) where a and b are the private outputs of
A and B respectively. The notation .A(") means that A expects a black-box
access to some other algorithm.

We write x < S when x € S is sampled uniformly at random from the
finite set S and similarly x < D when x is sampled according to the discrete
distribution D. The statistical distance between two probability distributions
X and Y over a countable set D is defined as A(X,Y) = > ;cp |X(d) — Y(d)|.
For integer n € N, we define [n] := {1,2,...,n}. A function v : N — R>°
is negligible if for any ¢ € N, limy_. v(x)x® = 0. For f,g : N — R>9,
we write f ~ g if |f(x) — g(x)| is a negligible function. We say that an
event, which is dependent on x, happens with negligible probability if
the probability that the event occurs is negligible in x. Similarly, an event
happens with overwhelming probability if its complement occurs with
negligible probability. We write negl to denote an unspecified negligible
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function. Similarly, we denote by poly(x) an unspecified polynomial in «.

We denote log and In to denote logarithms with base 2 and e respectively.

MODULAR REDUCTION. For an odd (resp. even) integer p, we define
" = r mod™ p to be the unique element 7’ in the range —pT_l <7< pT_l
(resp. —§ < ' < &) such that ¥’ = r mod p. We also denote ' = r mod™ p

to be the unique element ' in the range 0 < 7’ < p such that ¥’ = r mod p.

When the exact representation is not important, we simply write r mod p.

MATRICES AND VECTORS. Regular lower-case letters denote elements
in Z and lower-case letters with arrows (resp. upper-case regular letters)
represent column vectors (resp. matrices) with coefficients in Z. Given
two vectors ¥ = (vq,...,0y),W = (wq,...,wy) over Z, we define the inner
product as

n
<?7, Zﬁ> = Z 0jW; € Z
i=1

and the component-wise product as 7o @ = (v wy, ..., v,wy,) € Z". For a

rank-n matrix S € R"*", we define the set Ug := {|Si#i| : i € R", |ii|» = 1}.

Then, the least (resp. largest) singular value of S is defined as s, (S) = inf Ug
(resp. s1(S) = sup Us).

For an element w in Z,, we write |w|x to mean |w mod™ p|. Define the
Lo and Ly norms for @ = (wy, wy, . .., wy) over Zj, as follows:

[@]o0 = max lwillao, 1@l = 3/ Jw1l5 + - .. + [wnlE.
By default, |@| := |@|,.
3.2 MATHEMATICAL BACKGROUND
3.2.1 Lattices
An n-dimensional lattice A is a discrete subgroup of R”. Suppose B =

{El, .. ,Em} € R" consists of m linearly independent vectors. Then, the
n-dimensional lattice A generated by B is defined as

m
A=L(B) = {Zciyi:cl,...,cm GZ}.
i=1
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The determinant of the lattice A is defined as det(A) := +/det(BTB). The
minimum distance A{(A) of a lattice A in the L, norm is the length of the
shortest non-zero vector in A, i.e. ming_ AT} |X||¢- Similarly, define AJ°(A)

for the Lo, norm. We denote Aq(A) := A%(A), i.e. the shortest non-zero
vector in A w.r.t. L, norm.

We recall the following upper-bound on the shortest non-zero vector in
A which follows directly from Minkowski’s Theorem.

Lemma 3.2.1. For any n-dimensional lattice A, A1(A) < v/n det(A)V/".

3.2.2  Probability Distributions

DISCRETE GAUSSIAN DISTRIBUTION ON LATTICES. We first define a
Gaussian function on R™ centred at 7 € R™ with parameter s as:

7 (f) = 1 mex _M
pU,E T 27_[52 p 252 :

When @ = 0, we just write ps.
Now, the discrete Gaussian distribution over Z™ centred at some ¥ € Z™
with standard deviation s is defined as follows:

=\ . pz?,s(f)
Dy 4(X) := 0u(Z7)
As before, the subscript 7 is omitted when 7 = 0.

We recall the following tail bounds from [Bang3; Lyu1z].

Lemma 3.2.2. Let m,k > 1,7 > 0and ¥ € R™. Then

2
1. Pr,e p, [|z] > ks] < 27

2. Pracpn [[IZ]l, > ksy/m] < kme (1K),

2
_ r
3. Przcpn [|(Z,0)] > 1] <2e 20077,

BINOMIAL DISTRIBUTION. Next, we recall the binomial distribution.

Definition 3.2.1. The binomial distribution with a positive integer parame-
ter k, written as Biny, is the distribution Z?:l(“i —b;), where a;,b; — {0,1}.
The variance of this distribution is k/2 and it holds that Biny, + Bing, =
Bin k1 +ko-
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3.2.3 Approximate Shortness Test

A well-known result of Johnson and Lindenstrauss says that any set of n
points in m-dimensional Euclidean space can be embedded into a much
smaller k-dimensional Euclidean space, where k = O(log 1) and indepen-
dent of m, so that all pairwise distances are preserved within an arbitrarily
small factor. In practical scenarios, such embeddings are simply random
projections. Baum and Lyubashevsky [BL17] applied this result in the con-
text of proving shortness of a committed vector @ € Z’” Concretely, the
idea is to choose a random rectangular matrix R « Bm ", where k is only
dependent on the security parameter, and prove that the projection ¥ = Rw
with respect to R has small norm. We consider two particular norms, i.e.
the L, and Lo, norms.

SHORTNESS IN THE Los NORM. Baum and Lyubashevsky [BL17] showed
that if R@ has small coefficients, for a vector @ over Z; and uniformly
random binary matrix R, then with high probability @ must have small
coefficients as well. We will generalise their result in two aspects: (i) we
show that it also holds when R@ + ij has small coefficients, where i is an
arbitrary vector over Z,, and (ii) when R is sampled from a distribution
centred at 0, i.e. Biny. The main advantage of the latter generalisation is that
the Ly/ Ly norm of RS decreases significantly.

Lemma 3.2.3. Let @ € Z and j € Zg . Then

57 Lo -
o DRw+ﬂw<2WaJ<2h
R—Bin}*"

Proof. Let y € Z;. We first focus on proving

1, . 1
e 108wl < 5181 < 5

Let w; be the coefficient of @ so that |w;| e = |@]w. Then, one can write
(¥, W) +y = w;r; + a for some a € Z;. We consider two cases.

CASE 1:  [a]o = 5|@|w. Then, r; would have to be either 1 or —1 for any
chance of w;r; + a to be less than %H@'HOO This implies that

1, ., 1, .,
|7, @) + o < SI@leo|lalco = 5@l | < Pr [Jri| =1] =
Fe—Bink 2 2 rieBing
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CASE 2:  |a]e < %HZTJHOO. We will prove that

1
la + bw;|o = Esz'Hoo

for any b € {—1,1}. Therefore, we have

pe (1684 plke < g1l flale < 31| < Pe pi=01-
7«—Binj ri«<=Bing 2
which will complete the proof of the lemma.

First, we can assume that |w;| < q/2 and |a| < |w;|/2. Thus, |a + bw;||c is
either equal to |a + bw;| or |a + bw; + gq|. In the former case, we immediately
have |a + bw;| = |bw;| — |a| > |w;|/2. For the latter case, we can assume for
the sake of contradiction that u = a + bw; + g where |u| < |w;|/2. Therefore,

q=1£ql = la+bw; —ul < |a| + [bw;| + [u| < [wil/2 + |w;] + [wi]/2 < q.

This result can then be easily generalised to the matrix setting. Hence, the
statement holds.
O

SHORTNESS IN THE Ly NORM. In many lattice-based scenarios, we
are more interested in proving the L, norm of a vector rather than its
L. Indeed, even the definition of the shortest vector in a lattice is by
default over the Euclidean norm. Recently, Gentry et al. [GHL21] propose
an analogous result to Lemma 3.2.3 in the L, norm. First, they provide a
detailed analysis on how to pick parameters a,  such that probabilities

Pr |IR@ <@ a] and  Pr_ [|R@|? > @] ]

RHBin%Sﬁxm R<—Bin%56xm

are negligible for any @ € Z™. Their analysis relies on the following two
heuristics which stem from two lemmas proved by Achlioptas [Acho3].
Firstly, it is shown in [Acho3, Lemma 6.1] that all the respective moments of
the distribution |R%@| are largest among @ of norm +/m if @ = 1. Further,
[Acho3, Lemma 6.3] says that if we change the distribution of R to be the
normal distribution with the same mean and variance, then the moments
of |R@| are larger. Consequently, this means the tails of the continuous
distribution are fatter, and thus bounding them will imply bounds on the
discrete distribution. Note that discretization might cause certain errors,
that should become negligible if we look for «, 5 for which the probabilities
above are negligible, e.g. less than 27128,
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Now, the distribution ||R - 17|, where entries of R are chosen from the
normal distribution with mean 0 and variance /2, simply becomes the
scaled x? distribution with 256 degrees of freedom, i.e. x*[256]. Hence,
we obtain the following (heuristic) generalisation of [GHL21 Corollary 3.2].

Lemma 3.2.4. Under the heuristic substitution of Biny with the normal distribu-
tion of variance /2, for any @ € Z",

1. Pr [|R@|? < |@|*-13- y]§ Pr [y <26] <272%

Bin %56><m X2[256]
2. Pr |R@|? > |@]?-337 - u| < [y > 674] < 27128,
R« Bin3 6*" [ y] Y [256] 4

Gentry et al. prove shortness of a long vector @ € Zf' as follows. They

first commit to the random projection 7 := Rw € 2356 where R < B|n256xm

and prove that the norm of 7 is small and that 7 is a projection of @. Then,
[GHL21, Corollary 3.3] says that if |7 < bv/30, where b < q/(45m), then we
must have ||@0| < b (with an overwhelming probability). In our protocols, we
will need a modified version of this result which says that for every vector
ye 2356, if |R@ + ¥/| is small, then we must have that ||@0| is small. Even
though we believe this generalisation is true for the constants described
in [GHL21, Corollary 3.3], its proof does not easily extend to our setting.
Therefore, we provide a modified proof which results in slightly worse
bounds.

Lemma 3.2.5. Fix m,q € IN and a bound b < q/41m, and let W € [+q/2]" with
|@| = b, and let ij be an arbitrary vector in [+q/2]™. Then

Pr [|Rw+gmod g < ;b\@] <2712,

R(_Bin%56><m

Proof. We first prove an analogous result to [GHL21, Corollary 3.3] with
error 272 rather than 27128,

Claim 3.2.6. Fix m,q € IN and a bound b < g/(41m), and let @ € [+g/2]™
with @] > b. Then

Pr [|R@ mod g < bv/26] < 272%,

R%Bing%xm

Proof. Similarly as in the proof of Lemma 3.2.3 we have two cases:
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CASE 1: |[W|ew = q/(4m). Let i be an index of an entry in @ with mag-
nitude at least g/4m, and consider any row 7 of R. Then, we can write
71% = ryw; + a for some a € Z,. Note that at most one of the three values
{0, £1} for r; yields |r;w; + a mod g| < q/(8m). Indeed, first suppose that
we have |w; + a mod q| < q/(8m) and | — w; + a mod q| < q/(8m). Then, by
the triangle inequality, we have |2w; mod q| < q/(4m) which leads to con-
tradiction. Next, assume that for some sign b € {—1,1}, |bw; + a mod gq| <
g/(8m) and |a mod q| < g/(8m). Then, by the triangle inequality we get
|w;| = |bw;| < q/(4m) which is a contradiction.

Since the total probability of any two of {—1,0,1} is at least 1/2 (i.e.
Pr[0] = 3/8 and Pr[+1] = 1/4), we have that the probability of |R@ mod
9loo < q/(8m) is at most 2~2%°. Moreover, since b < q/(41m) we get q/(8m) >
bv/26 and therefore

Pr [|R@mod q| <bv26] <  Pr_ [|R® mod q|« < q/8m]

R<—Bin§56xm R<—Bin§56xm

< 2256

CASE 2:  |[@|s < q/(4m). Hence, we must have R € [+4/2]*°, so mod-q
reduction has no effect and the statement follows directly from Lemma

3.2.4.
O

Now, suppose for contradiction that for some @, i/,

Pr [|Rw + 7 mod g < ;b\/%] > 27128

R« Bin**"
which implies
Lo 1 Lo 1
|R1@ + ¥ mod q| < =bv26 A |Ry@ + i mod g| < =bv26
Ry,Rg«—Bin26xm 2 2
is at most 272%. By the triangle inequality, we have

Pr [H(Rl — Ry)@ mod ¢ < b\/%] > 2725,

Ry, Ry« Bin3* ™

Since the distribution of Ry — R; is exactly Bin%56xm, the above implies that

Pr [HRZT) mod q| < b\@] > 27256

R%Bing%xm
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which is a contradiction with the statement of Lemma 3.2.6.

3.2.4 Power-of-Two Cyclotomic Rings

Let d be a power-of-two and K = Q[X]/(X? + 1) be the 2d-th cyclotomic
field. Denote R = Z[X]/(X% + 1) to be the ring of integers of K. Suppose
that p =2 +1 (mod 4l) for some | € N. Then, by [LS18, Corollary 1.2], the
polynomial X% + 1 factors as:

-1
X 4+1= H(Xd/l —r;) (mod p)
i=0

for distinct r; € Z; where X! — y; are irreducible in the ring Z,[X]. In other
words, the ideal (p) in R can be uniquely written as a product of prime
ideals (p) = pop1 - - . p;—1 where each p; = (p, XN — r;). Define { = rg. Then,
{ro,...,1i—1} = {¢, 2%, ...,7%71}. Without loss of generality, we set r; =
{¥*lfori=0,1,...,1 — 1. Finally, denote R, = R\(p) = Z,[X]/(X? +1).

COEFFICIENT VECTORS AND ROTATION MATRICES. Lower-case letters
denote elements in R or R, and bold lower-case (resp. upper-case) letters
represent column vectors (resp. matrices) with coefficients in R or R.
Let f = fo+ fiX + ...+ f4_1X%"! be a polynomial in R. Then, we denote
fi=(fo,.--, fa_1) € Z* to be the coefficient vector of f, i.e. we attach an
arrow to the letter. Similarly, for f = (f1,..., fx) € R, we write f € Zk
to mean the concatenation of vectors fl,. . ﬁ; We define the rotation (or
alternatively, skew-circulant) matrix Rot(f) as:

foo —fasr - —h
T I I
faer fa2 o S0
Similarly, for a matrix F = (f; ;) € R"*™, we define
Rot(fl,l) ROt(sz) . ROt(fl,m)
Rot(F) = : : : : e grixmd,

Rot(fy,1) Rot(fu2) ... Rot(fum)
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One observes that for any f,g,h € R, gf = h if and only if Rot(g) f — h.

By default, for a polynomial, we write its i-th coefficient as its correspond-
ing regular font letter subscript i, e.g. f;/; € Z is a middle coefficient of
f € R. However, we also define f to be the constant coefficient of f.

Given two vectors f, g over R, we denote {f, g) to be the inner product
between their coefficient vectors over Z, i.e. (f,g) := (f,§) € Z.

GALOIS AUTOMORPHISMS. Let Aut(R) := {0; : i € Z},} be the auto-
morphism group of R where each automorphism c; : R — R is defined
by 0;(X) = X'. Then, G is isomorphic to Zy, =~ 7y xZy /2 For a vector
x = (x1,...,x) € RF and any ¢ € Aut(R), denote o'(x) := (c(x1),...,0(x))
(and similarly o(X) for a matrix X over R).

NoRrRMs. Forfe R’,‘,, we define the L, norm of f as ||f||, := ||f|\,,¢ Finally,
we define a set Sy = {s€ R : s < k} for ke N.
In this thesis, we will make use of the following inequalities.

Lemma 3.2.7 ( [Mico7]). Let c,r € Ry. Then
le- 7l < llcloo - [7]l1 and [ rloo < ] - 7]

We additionally present an alternative way to bound |cr| which stems
from the analysis in [Duc+13, Section 4] and uses the o_; automorphism.

Lemma 3.2.8. Let r € R and ¢ € R. Then, for any power-of-two k, we have

lex]| < R/llo—1 (c*) c[l1 - Jx].

Proof. Let C = Rot(c) € Z4*?. We simply want to upper-bound the largest
singular norm s1(C) of the matrix C. We will use the following two facts
from linear algebra. Namely, we have that s1(C) = 4/s1(CTC) and for every
power-of-two k,

sK(CTC) = s ((CTC)k)
since CTC is symmetric. Also, note that for any u,v € R, |uv| < |ul; - |v],

and thus s1(Rot(u)) < |lu|;. Therefore, using the observation that CT =
Rot(c_1(c)), we deduce that

SH(C) = 51 (€7C) =1 ((€TO)") = 1 (Rot(oma(M)eh)) < Joa (et

Hence, 51(C) < X/[o_1 (cX) k||l and thus the statement holds. O
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INVERTIBILITY OF SHORT POLYNOMIALS. A polynomial ¢ € R, is
invertible if and only if for all i € Z;,c mod p; # 0. Lyubashevsky and
Seiler [LS18] showed that if ¢ has a small norm then c is invertible over R .

Lemma 3.2.9 ( [LS18]). Let p =21+ 1 (mod 4l) be a prime and d > 4. Then,
any c¢ € Ry which satisfies either 0 < |c[oo < \i/lpl/l or 0 < |lc| < p¥'is
invertible in R.

In this thesis we will be working with polynomials in R, which are stable
under the ¢_1 automorphism. The following result says that for specific

primes p, if c € R, satisfies 0_1(c) = c and c is non-zero then c is invertible
over R.

Lemma 3.2.10. Let p = 5 (mod 8) be a prime. Take any c € R such that
0_1(c) = c. Then, c is invertible over R if and only if c # 0.

Proof. Since p is congruent to 5 modulo 8, we can factor the polynomial
X% +1 modulo p as

X*+1= (X2 —)(X¥?+1) (mod p)

for some r € Z, where polynomials X%2 + r are irreducible modulo p. Since
o_1(c) = ¢, we can write c as

Cc = C() + C]X + ...+ Cd/zilxd/zil _ Cd/27lxd/2+1 T e T Cleil.

Now, we observe that

/21
cmod (p, XY +7) =co+ Z (c; + rcd/z_l-)Xi.
i=1

Suppose ¢ # 0. Then, one of the coefficients c, ..., c4/,_1 € Z) is non-zero,
say c;. Note that if i = d/4 then ¢; £ rc;/,_; is not zero since r # +1. Now,
consider the case i # d/4. We claim that for any sign b € {—1,1}, either

¢i —breg_; or ¢y — brej is not zero. Indeed, assume both of them were
equal to zero, concretely ¢; = brcg,_;and ¢gpp_; = bre; for b € {—1,1}. Then
we would obtain

ci=bregn ;= b rlc; = r’c; = —c;

which is a contradiction since ¢; # 0. Hence, we deduce that ¢ mod
(p, X2 —r) and ¢ mod (p, X¥/2 + r) are non-zero. Therefore, by the Chinese
Remainder Theorem, we conclude that ¢ has an inverse in Ry. O
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WORKING OVER COMPOSITE MODULUS. In our protocols, we will work
over the ring R, := R/(q) where g is a product of odd primes q; < ... < gy
and each q; = 2] +1 (mod 4I). Usually, n € {1,2}. Then, by the Chinese
Remainder Theorem, an element c € R, is invertible if and only if ¢ mod g;
is invertible over R, for all i € [n]. Hence, by Lemma 3.2.9,if 0 < |c| < a/!
then c is invertible over R,. Moreover, if each g; =5 (mod 8) then we can
apply Lemma 3.2.10 which says that if a non-zero c € R, satisfies ||« < g1
and 0_1(c) = c then it is invertible over R,;. Additionally, note that if we fix
any a,u € Ry such that a # 0 then

—d/l

P =u] <
Pr lae =] <

WORKING OVER SUBRINGS. Our proof system will natively support
equations over the ring R of dimension d. However, when building various
privacy-preserving primitives, it would be more efficient to construct them
over a ring R’ = Z[X]/(X* + 1) of much larger dimension kd than d where
k is also a power-of-two (e.g. to reduce the public key size). Consequently,
we would need to be able to prove equations over the larger ring R’ rather
than R. Here, we show that equations over R’ can be equivalently written
as equations over .

First, we observe that R is isomorphic to the subring S := Z[X¥]/(X* +
1) of R'. Let us define the commutative ring Sk = (Sk, +,*) where + is a
component-wise addition and « is defined as:

(a(),. . .,ak,l) * (b(),. '-rbkfl) = (Co,. ..,Ckfl)

where for all 0 < ¢ < k

i+
Ccyp = Z llib]'XL ek €Ss.
0<i,j<k
i+j={¢mod k

Thus, (0,...,0) and (1,0, ...,0) are the additive and multiplicative identities
respectively.
Now, we prove the following lemma.

Lemma 3.2.11. Let k > 1 be a power-of-two. Then, R := Z[X]/(X* 4+ 1) = Sk,

Proof. First of all, we can write any polynomial 2 € R’ uniquely as a =
22:01 a;X' where each 4; € S. Let us define the map ¢ : R/ — Sk as

¢(a) == (ag, ... ar_1) € S.
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We claim that ¢ is a ring isomorphism. Bijection follows immediately since
one can define the inverse map ¢~ ((a, ..., a5_1)) := Zi‘(:_ol 1, X' € R'. Also,
¢(1) = (1,0,...,0). | |

Now, fix any a = Y"1 ;X" and b = Y%7} b;X? in R’. Clearly, we have
$(a) + ¢p(b) = ¢(a +b). Then, for multiplication, observe that

k—1 k—1
ab = (Z Ill‘Xi) (2 b]X]) = 2 aiijH_j + Z lliijkXH_j_k
i=0 =0

0<i,j<k 0<i,j<k
i+j<k i+j>k
i+ )|
= Z (aib]'Xl 3 Jk> X(H']) { 5 Jk
0<i,j<k
k-1
= Z C[XZ,
(=0
where .
it
Cp = Z Lliij{ k Jk € S.
0<i j<k
i+j=( mod k
Hence, by definition of » we have ¢(a) » ¢(b) = ¢(ab). O

Example. Suppose we want to transform the equation ab = ¢ (mod q) over
R’ into an equivalent system of equations over R,. First, we know that
ab = ¢ (mod q) if and only if there exists some d € R’ such that ab = ¢ + gqd.
This equation can then be written equivalently as

¢(a) xp(b) = ¢(c) + ¢(q) * P(d). (3.1)

Define ¢(a) = (ag(X¥), ..., a5_1(X¥)), where each a;, € R and therefore
ay(X¥) € S, and similarly for ¢(b), ¢(c), ¢(d). Also, note that ¢(q) * p(d) =
(qdo(X¥),...,qd_1(X¥)). Then, (3.1) holds if and only if for every ¢ =

0,...,k—1 we have:

i+j

T axhy

0<i j<k

i+j=( mod k

= cp(X¥) + qds (XF)
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which is then equivalent to

%]

Z llib]-X k1= Cy+ ng
0<i,j<k

i+j={ mod k

over R. Hence, we conclude that ab = ¢ (mod ¢) if and only if :

it]
Ve e Zy, Z aib]-Xl k J =c; (mod gq). (3.2)
0<i,j<k
i+j=¢ mod k

Remark. In various scenarios, apart from proving equations over R’ (or
R'/(q)), one also needs to prove that certain vectors have small coefficients.
For instance, suppose we want to prove ab = ¢ over R'/(q) and |b]s < 1.
It is easy to see that the map ¢ preserves the norm, i.e. |¢(b)||lx = [|b]« for
axe€{l,2,...,00}. Hence, in addition to proving (3.2), we would also need to
prove that for all £ € Zy, |by|lo < 1.

We conclude that we can keep the dimension d suitable for our proof
system while having the freedom to pick larger dimension kd when instan-
tiating the primitive.

3.3 CRYPTOGRAPHIC DEFINITIONS
3.3.1 Security Assumptions

Security of our constructions relies on the well-known computational lattice
problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15].
Both problems are defined over R,. Clearly, if we substitute R, with Z,
then these problems become plain SIS [Ajtg6] and LWE [Regog] problems.

Definition 3.3.1 (MSIS,, ,,, ). Given A RZX’", the Module-SIS problem
with parameters n,m > 0 and 0 < B < ¢ asks to find z € R such that
Az =0 over R;and 0 < |z| < B. An algorithm A is said to have advantage
€ in solving MSIS,, ,,, p if

Pr[O<HzH<B AAz=0 AHREXM;ZHA(A)]>€.

We say that MSIS,, ,,  is hard if for all PPT adversaries A, the advantage in
solving MSIS,, ,,, g is negligible.
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Definition 3.3.2 (MLWE,;, ;). The (knapsack) Module-LWE problem with
parameters n,m > 0 and an error distribution x over R asks the adversary
A to distinguish between the following two cases: 1) (A, As mod ¢q) for
A~ R;X("er), a secret vector s < """ and 2) (A,b) « R;X(nm) x Ry.
Then, A is said to have advantage € in solving MLWE,, ,, , if

‘Pr [b =1 ‘ A~ RZX("H"); s— X", b — A(A,As mod q)] (3-3)
—Pr [b ~1 ( ARy b RE b A(A,b)” > e.

We say that MLWE,;, , , is hard if for all PPT adversaries A, the advantage
in solving MLWE,;, ,,  is negligible.

Hardness of MSIS/MLWE problems is often analysed identically as the
plain SIS/LWE since, so far, the best known attacks do not make use
of the algebraic structure of the polynomial ring [Alk+16]. In order to
estimate the practical MSIS hardness, we apply the methodology used in
[Duc+18, Appendix C] and [AH]J21, Section 3.4]. Note that solving MSIS,, ,,, 5
is equivalent to finding a non-trivial vector of norm smaller than B in the
following ideal lattice

A={ZeZ" :(zeR)AAz=0 (mod q)}.

In order to find short non-trivial vectors in A, we apply the Block-Korkine-
Zolotarev algorithm (BKZ) [CN11; SEg4]. As a subroutine, BKZ uses an
algorithm for the shortest vector problem (SVP) in lattices of dimension
b, where b is called the block size. If we apply the best known algorithm
for solving SVP with no memory constraints by Becker et al. [Bec+16], the
time required by BKZ to run on the md-dimensional lattice A with block
size b is given by 8md - 202920+164 The algorithm outputs a vector of norm

smd det(A)ﬁ where ¢ is the root Hermite factor and it is given by

o 7
5—(““”) . (3.4)

27Te

For our usual parameter selection, the probability that a random matrix
A € Ry*™ is of full rank is overwhelming (see [Esg+19¢, Appendix C]

or the “knapsack” MLWE problem below) and thus det(A) = ¢". Next,
Micciancio and Regev [MRog] show that

5" det(A)mi = §Mgmi > p2y/ndlogqlogd
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level of bit security 80 128 256
root Hermite factor & 1.0066 1.0044 1.0025

FIGURE 3.1: Values of the root Hermite factor for specific levels of bit security
based on Equation 3.4 for full-rank lattices of dimension at least 128.

and the equality holds when md = \/ndlogq/logd. Hence, given a bound

B < g we compute § from the equation B = 22V"d10841085 Next, we
calculate the minimum block size b from Equation 3.4 and thus obtain the
total time for BKZ to solve MSIS,, ,, . In order to compare with previous
works, e.g. [ALS20; BLS19; Esg+19c], we set § = 1.0044 when aiming for
128-bit security (see Figure 3.1).

Further, we recall that the knapsack MLWE is as hard as the original
version of MLWE [Esg+19c; MM11], up to an additive factor which is the
probability that a uniformly random matrix A « R;X(”er)
Indeed, suppose that g is a product of k primes g1 < --- < g and each
gi =21 +1 (mod 4I). Then, Esgin et al. [Esg+19c, Appendix C] show that

the probability that a uniformly random matrix A « Rgx (4m) has full
rank is at least

(1 _ q;(m+l)d/l)k"l .

In our instantiations, we will pick (k,d,1) = (2,64,2) and g1 > 215 5 > 18.

Thus, the value above can be lower-bounded by 1 — 2-450, Hence, we
conclude that the probability that random A is singular is negligible and

thus knapsack MLWE is practically equivalent to the standard Module-LWE.

We estimate the hardness of Module-LWE against known attacks using
the LWE estimator by Albrecht et al. [APS15]. Namely, we run the estimator
under both “sieving” and “enumeration”, and set the final root Hermite
factor J as the largest root Hermite factor returned by the program. Similarly
as above, we aim for 6 = 1.0044. We remark that parameter m does not
play a crucial role in estimating hardness of MLWE as long as it is not too
large with respect to # - d. Indeed, in our constructions m ~ n and thus the
BKW [BKWo3] and Arora-Ge [AG11] attacks are not applicable here.

3.3.2 Commitment Schemes

A commitment scheme Com = (Com.KeyGen, Com.Commit,Com.Open) is a
triple of algorithms described below.

is singular.
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* Com.KeyGen is a PPT algorithm that on input security parameter 1*
outputs public parameters pp, which specify the message, randomness
and commitment spaces Sy, Sg, St. They also specify an efficiently
sampleable probability distribution D over Sg and a set of relaxation
factors Sc*.

* Com.Commit is a deterministic polynomial-time commitment function,
that on input public parameters pp, message m € Sy and randomness
r € Sg, outputs a commitment f € St. We write Com.Commit(pp, m)
to denote the PPT algorithm which first samples randomness r — D
and then outputs Com.Commit(pp, m;r).

* Com.Open is a deterministic polynomial-time algorithm that, on input
the public parameters pp, a tuple (m,r,c;t) € Sy x Sg x Sc x St
outputs a bit b which indicates “accept” when b = 1 and “reject”
otherwise.

The latter two algorithms are always given the public parameters, hence
for readability we will omit writing pp as an input to Com.Commit and
Com.Open.

Definition 3.3.3 (Correctness). We say that a commitment scheme Com is
correct if there exists ejq € Sc such that for all m € Sy,

Pr[Com.Open(m,t,e4;t) =1:r < D,t = Com.Commit(m;r)] = 1.

We now describe two essential properties of commitment schemes, i.e. hid-
ing and binding. In this thesis we are only interested in their computational
variants.

Definition 3.3.4 (Hiding). The commitment scheme is computational hiding
if for all PPT adversaries .4

prl PP Com.KeyGen(1%); (mg, m1) < A(pp);b < {0,1}; | 1
r < D;t « Com.Commit(my;r) : A(t) =b

4

N

where A outputs mg, mq € Sp;.

Definition 3.3.5 (Binding). The commitment scheme is computational bind-
ing if for all PPT adversaries A

Pr pp < Com.KeyGen(1%); (¢, yo,y1) < A(pp) : ~0
mg # mq and Com.Open(yg;t) = Com.Open(yy;t) =1

This is a crucial property of lattice-based commitment schemes and it will become clear when
analysis concrete instantiations in the next chapter.
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where y; = (m;, r;,¢;) for i = 0,1. Moreover, Com is strongly computational
binding if we replace my # mj in the definition above with (mg,ry) #
(my,11).

3.3.3 Commit-and-Prove Functionality

Let R < {0,1}* x {0,1}* be a binary relation. If (1, w) € R, we say that u is
a statement and w is a witness for u. We denote R(u) = {w : R(u, w) = 1}.
In this thesis we only consider NP relations R for which a witness w can
be verified in time poly(|u|) for all (1,w) € R. We also assume that the
length of all statements in R are polynomial in the security parameters, i.e.
ju] = poly(x).

A proof system IT = (P, V) for relation R consists of two interactive and
stateful PPT algorithms P and V which are called the prover and verifier.
We write (tr,b) < (P(u,w), V(1)) for running P and V on inputs u, w and
u respectively and getting communication transcript tr and the verifier’s
decision bit b. We use the convention that b = 0 means reject and b = 1
means accept the prover’s claim of knowing w such that (u, w) € R. If tr
contains a | then we say that P aborts. Unless stated otherwise, we will
assume that the first and the last message are sent from a prover. Hence,
the protocol between P and V has an odd number of rounds.

In this thesis, relations we consider have a very specific form. Roughly
speaking, we first commit to a witness w and then prove certain statements
about w. More formally, let Com be a commitment scheme and define a
relation R(¢°™) relative to R2:

R(Com) ._ ((w, pp, 1), (w,7,0)) -
1 e |

eRA Com.Openpp(w, r,ct)=1

In the literature, this approach is called commit-and-prove, e.g. [Can+02;
EG14]. Alternatively, one can think of this functionality as a standard proof
system where we additionally require the prover to generate and output a
commitment ¢ to the witness w in the very first round.

Example. Let Ryes := {0,1}* x {0, 1}*. Then, it is easy to find a witness to any

statement. Hence by definition, R§§s° ™) becomes simply a relation where

the statement contains a commitment and the witness is the commitment
opening.

Note that even if relation R is trivial, i.e. given u, it is easy to find w so that (u,w) € R, itis
not the case for R(°®™ if Com is binding and hiding.
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Formally, we define the commit-and-prove functionality (in an interactive
form) as follows. Namely, a commit-and-prove system for a relation R is
a triple IT = (Com, P, V) where Com is a commitment scheme and P and
V are interactive and stateful PPT algorithms. Now, we describe security
properties of a commit-and-prove system, i.e. completeness, knowledge
soundness and simulatability.

Definition 3.3.6 (Completeness). IT = (Com, P, V) has statistical complete-
ness with correctness error €(x) if for all adversaries A4,

pp < Com.KeyGen(1%); (u, w) « A(pp);r < D

Pr
(tr,b) «— (P(u, pp, t), (w,r)), V(u, pp, By ((w, pp, t), (w,r,eiq)) € R(Cm) and b =0

is at most €(x) + negl(x) for all x € N where ¢ := Com.Commity,(w; 7).
Next, we introduce the notion of knowledge soundness.

Definition 3.3.7 (Knowledge Soundness). IT = (Com, P, V) is knowledge
sound with knowledge error € : N — [0, 1) if there exists an algorithm &,
called a knowledge extractor, with the following property. Namely, given
a statement-commitment tuple (u, pp,t) and a black-box oracle access to
a probabilistic prover P*, which convinces the verifier V(u, pp, t) with
probability £ > €(x), the extractor runs in an expected polynomial time and
with probability at least

e—e(x)

poly(x)

outputs either a triple (w, r,c) which satisfies ((u, pp,t), (w,,c)) € R(Co™)
or two tuples (w,r,c), (w',7,c") so that (w,r) # (w’,+) and

Com.Openy,, (w,r,c;t) = Com.Openpp(w,r', ;).

We observe that an extractor either extracts a witness or breaks the strong
binding property of Com. In our examples, winning the strong binding
game of a commitment implies solving the MSIS problem. Technically, since
knowledge soundness will rely on the computational assumptions, our
protocols are arguments rather than proofs.

We say the protocol is public coin if the verifier’s challenges are chosen
uniformly at random independently of the prover’s messages.

We introduce a new notion called simulatability. Informally, it means that
there exists an efficient simulator S which can simulate both the commit-
ment generation and the proof at the same time. The difference between
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simulatability and (non-abort special honest-verifier) zero-knowledge is
that randomness 7 is directly generated from an honest party as it would
be in the real-world applications rather than chosen from an adversary.
This property becomes crucial when using the commitment introduced in
Chapter 4.

Definition 3.3.8 (Simulatability). A public-coin commit-and-prove system
IT = (Com, P, V) is said to be simulatable if there exists a PPT simulator S
such that for all PPT stateful adversaries A,

pe| PP Com.KeyGen(1); (u,w, ¢) < A(pp);r < D;t = Com.Commity,(w, 7);
(tr,b) — (P((pp,u,t), (w, 7)), V(pp,u,t;0)): (u,w) € Rand At tr) =1

~pr| PP Com.KeyGen(1%); (u,w, ) < A(pp); (t,tr) < S(pp,u,0) : ,
(u,w) € Rand A(t, tr) =1

whenever P does not abort. Here ¢ is the randomness used by the verifier.

Remark. Let us argue why this notion is useful in practice. First, by definition
of simulatability, if we naturally transform the commit-and-prove system
IT into a standard proof system IT', where the prover generates and sends
the commitment to the witness w in the first round, the simulatability of
IT implies non-abort special honest-verifier zero-knowledge (SHVZK) of
the proof system IT. One might wonder why we neglected the issue of
simulating the aborted transcripts. Luckily, this type of zero-knowledge
definition is enough for most of privacy-oriented applications, because
when transforming IT' into a non-interactive protocol using the Fiat-Shamir
heuristics [FS86], we can repeat certain parts of the protocol until a non-
abort occurs. Since the verifier only sees the non-aborting transcripts, only
these should be simulated.

In an interactive setting, a standard approach to modify the protocol
to be able to simulate aborting transcripts [Bau+18a; BLS19; Dam+21] is
as follows. Namely, we commit to the messages, which would be sent
before the prover potentially aborts, and only reveal them if no abort occurs
(e.g. when rejection sampling goes through). This method was recently
formalised by Damgard et al. [Dam+21] in the context of two-round n-out-
of-n and multi-signatures where it is essential to be able to simulate the
aborted executions.
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3.3.4 Techniques for Proving Knowledge Soundness

Various techniques have been developed to prove knowledge soundness
property, such as forking lemma [BNo6; Biin+18; HKL19; PLS19], splitting
lemma [HSo3; PSoo] or its simplified variant [Dam1o]. In this thesis we will
apply the strategy from [ACK21; AFK21] to extract transcripts.

Our knowledge extraction approach can be described by the following col-
lision game [ACK21]. Let k € N and consider a binary matrix H € {0, 1}R*N
where N > k. Informally, the R rows correspond to the prover’s randomness
and the N columns correspond to the verifier’s randomness, or alternatively,
the verifier samples a challenge ¢ < C uniformly at random where C has
size N. An entry of H equals 1 if and only if the corresponding protocol
transcript is accepting. The knowledge extractor will run the following
collision game.

1. First, sample (r,i) < [R] x [N] and check if H(r,i) = 1. If not, it
aborts.

2. If H(r,i) = 1, then it samples i* «— [N] without replacement until it
obtains distinct if, ..., i} ; such that H(r,if) = 1for [ =1,2,...,k—1.

The following lemma states the expected runtime and success probability
of the algorithm above.

Lemma 3.3.1 ([ACK21]). Let H € {0, 1}R*N and define € to be the fraction of
1-entries in H. Then, the expected number of H-entries queried in the collision
game is at most k and the probability of the collision-game is at least € — kﬁl
Proof. We first focus on the expected number of queries of the collision
game. Let X be the number of queries to H. For r € [R], define €, to be
the fraction of 1-entries in the r-th row. Note that if the entry checked in
the first step is of the form (r,-) and equals 1 then the second step can be
modelled by a negative hypergeometric distribution. In this case, Attema et
al. [ACK21] show that the expected number of draws is at most (k —1)/e.
Hence, we can compute E[X] as follows. Let success be the event that the
first entry queried by the algorithm is 1 (i.e. first step passes). Then,

R

1

E[X] = R Z E[X][success A 7 = j] - €j + E[X|—success A 7 = j] - (1 —€))

j=1
R

1 k—1

< @Z 1+ ] g+1(1-¢)=k

j=1 /

50



3.3 CRYPTOGRAPHIC DEFINITIONS

Now, we concentrate on the success probability of the collision game. Let
(r,i) be the randomness and challenge sampled in the first step. We want
to compute the probability H(r,i) = 1 and that there are at least k 1-entries
in the r-th row. Let T; be the fraction of rows which have exactly j 1-entries.
Then,

R ) R j ) k=11
) Joeo 2=l k-1
; i ;O Z Tig=ze—(k=1) == >e-
which concludes the proof. O

3.3.5 Rejection Sampling

In lattice-based zero-knowledge proofs, e.g. [ALS20; BLS19], the prover will
want to output a vector z whose distribution should be independent of a
secret randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z = y + cr
where r is the randomness used to commit to the prover’s secret, c < C is a
challenge polynomial, and y is a “masking” vector. In order to remove the
dependency of z on r, one applies the rejection sampling technique [Lyuz2].
We first formally define a rejection sampling algorithm as follows.

Definition 3.3.9. A rejection sampling algorithm Rej is an efficient prob-
abilistic algorithm which takes as input a secret 7 € Z!, masking Z € Z¢,
standard deviation s and a repetition rate M. Then, it outputs a bit b. We
say that Rej rejects if b = 1 and accepts when b = 0.

Below we recall commonly used rejection sampling algorithms in the
literature.

Lemma 3.3.2 ( [Lyu12]). Let V < Z be a set of polynomials with norm at most
T and p: V — [0,1] be a probability distribution. Fix the standard deviation

s =T and
B 2k+1) 1 1
M = exp ( log(e) > + 272> .
Now, sample U < p and ij — Dﬁ, set Z = ij + U, and run b — Rejy(Z, 7,8, M) as
defined in Fig. 3.2. Then, the probability that b = 0 is at least (1 —27%)/M and

the distribution of (¥, Z), conditioned on b = 0, is within statistical distance of 27"
of the product distribution p x D5,
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Rejy (2, 7,5, M) Rej (Z,9,5, M)

Tu—[01) 01 u <« [0,1)

02 Ifu> 4 -exp (%W) 02 fu > Mexp(— uzﬁuzzl) cosh (2]
03 return1 03 returnl ’ ’
04 Else 04 Else

05 return 0 05 return 0

FIGURE 3.2: Standard (left) and bimodal (right) rejection sampling algorithms.

In certain scenarios, we will also use the bimodal Gaussian rejection
sampling which was first introduced by Ducas et al. [Duc+13]. The main
difference from the standard rejection sampling is that we additionally
sample a sign < {—1,1} and mask 7 by setting Z := i + pfv. Thanks to
the reflective symmetry of the distribution of Z, we significantly reduce
the standard deviation (e.g. by a factor of 10 if we aim for M = 3). The
important part is, however, not to reveal any information about the bit j to
the verifier. To this end, we apply zero-knowledge proofs to commit to
and prove that € {—1,1}.

Lemma 3.3.3 ( [Duc+13]). Let V < Z! be a set of polynomials with norm at
most T and p: V — [0, 1] be a probability distribution. Fix the standard deviation

s =T and
1
M = eXp <2r),2> .

Now, sample T « p and §j « D% and B — {~1,1}, set Z = § + B3, and run
b — Rej(Z,7,s, M) as defined in Fig. 3.2. Then, the probability that b = 0 is at
least 1/M and the distribution of (v, z), conditioned on b = 0, is identical to the
the product distribution p x DL,

3.3.6 Challenge Space

In our applications, the set V < R! will consist of vectors of the form cr
where c € R is sampled from a challenge space C and r € Rs comes from
a set of secret (either randomness or message) vectors. In order to set the
standard deviation for rejection sampling, we need to bound the norm of
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1o d l w 7 1S IC]
o 128 2 1 27 2202 201
o, 128 2 2 59 2148 pld7
o4 64 2 8 140 2130 212

FIGURE 3.3: Example parameters to instantiate the challenge space C for a modu-
lus g such that its smallest prime divisor g; is greater than 16.

such vectors. We will use the inequality described in Lemma 3.2.8. In order
to apply this result, we set the challenge space C as:

¢i= {eest: ot <n 35

where
ST :={ceSy:0(c)=c}. (3.6)

and the ¢ € Aut(R) will be specified in our protocols. Also, we denote
C:={c—c :¢ccd e Candc # '} to be the set of differences of any
two distinct elements in C. In practice, o € {07,0_1}. We will choose the
constant 77 such that (experimentally) the probability for c < S, to satisfy

lo—1(c)cll1 < 7 is at least 99%. In our experiments, we observe that the
bounds in Lemma 3.2.8 are about 4 — 6X larger than the actual norms |cr].

. 1/1 .
For security of our protocols, we need w < ﬁql/ to ensure the in-

vertibility property of the challenge space C, i.e. the difference of any two
distinct elements of C is invertible over R, by Lemma 3.2.9. However, if
g is a product of primes g; = 5 (mod 8) and we want the challenges ¢ to
be stable under the ¢_; automorphism, i.e. ¢ = 0_q, then we can apply
Lemma 3.2.10 and set w < q1/2.

Further, to achieve negligible soundness error under the MSIS assumption,
we will need |C| to be exponentially large. In Table 3.3 we propose example
parameters to instantiate the challenge space C for different automorphisms
. Finally, for implementation purposes, in order to sample from C, we

simply generate c < SY, and check whether +/|c_1(c)c[; < 7.

SETTING THE STANDARD DEVIATION. By definition of the challenge
space C and Lemma 3.2.8, if we know that |r| < &, then we can set the
standard deviation s := yn& where > 0 defines the repetition rate M.
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ABDLOP COMMITMENT SCHEME

In this chapter, we describe a lattice-based hybrid commitment scheme
which combines both constructions by Ajtai [Ajtg6] and BDLOP [Bau+18b]
described briefly in Chapter 2. Namely, we propose our general lattice-
based commitment, which we call ABDLOP, in Section 4.1. Further, we
describe an argument of knowledge of the ABDLOP commitment opening
in Section 4.2. Finally, we show in Section 4.3 how to make use of the
compression techniques from Dilithium-G [Duc+17] in order to further
reduce the commitment as well as communication size. We remark that
although none of the techniques in this chapter are explicitly new, we
propose a way to conduct proofs in a generic way, i.e. without differentiating
whether we are working with Ajtai or BDLOP commitments.

In the following, denote xsis and xpmwe to be the module ranks required
for MSIS and MLWE security, respectively.

4.1 COMMITMENT CONSTRUCTION

Suppose we want to commit to a vector (s, m) € R;”ﬁf where s; has
a small L, norm, i.e. [s1]| < &, but not necessarily m. The intuition here
is to commit to s; using the Ajtai commitment and m using the BDLOP
commitment. If we were to construct each commitment separately, we
would end up with two randomness vectors. We describe a way to generate
the two commitments using one randomness vector.

We present our construction of the lattice-based commitment scheme
ABDLOP = (ABDLOP.KeyGen, ABDLOP.Commit,ABDLOP.Open) in Figure
4.1. In the key generation, uniformly random matrices

A (_RZMSISX”H/ Ay — Rngsxmzl B — Rgxmz

are generated and output as public parameters. To commit to the message
(s1, m), we first sample s, < x™2 and output the commitment t = t, || tp

defined as:
ta = = S1 + A Sy + 0 € R;MS'S-’_Z.
tp 0 B m

54
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o ABDLOP.KeyGen(1¥): select parameters gq,d,Kxmsis, 11, My,

U, lext,V,w,a, By, By. Let x be the uniform distribution on §,,.
Sample uniformly random matrices A; «— ’RZMS'Sxml,AZ —
R;MSIS xm g fomz’ Beyt — Rﬁext Xy

q
Define

pp- dim := (q/ d/ KmSIs, My, My, 6, geXt>
pp-norms := (v, w, &, By, By)
pp-mat := (A1, Ay, B, Bext).

Return pp = (pp. dim, pp.norms, pp.mat).

The public parameters define the following message, random-
ness, commitment spaces along with randomness distribution
and a set of relaxation factors:

Sm={s1e Ry" : |s1] <a}x Rﬁ, Sc = C as in Section 3.3.6,

Sr=RMSSTE Sp =R, D= ™.

e ABDLOP.Commit(s1, m;sp): Given message (s, m) € Sy and
randomness s, € Ry?, return t = (t,, tg) where

t A
A 1+ 2
19;] B

e ABDLOP.Open(si, m, sy, c;t): Given (s;,m) € Sy, so € Ri?,

relaxation factor c € R, and a commitment t € RZMS'SM, output

1 if all the conditions below hold:
1. ABDLOP.Commit(sy, m;sy) =t

Aq
0

Sy + 0 ER;MS'SJFE.
m

2
3. |esz]
4

FIGURE 4.1: Description of a general lattice-based commitment scheme ABDLOP.



4.1 COMMITMENT CONSTRUCTION

Intuitively, the top part t4 corresponds to binding the commitment as well
as encoding the message s; and the bottom part tg encodes the message
m. We remark that when ¢ = 0 (resp. m; = 0) then ABDLOP becomes the
standard Ajtai (resp. BDLOP) commitment. Informally, we will call s; (resp.
m) the message in the Ajtai (resp. BDLOP) part.

We explain the role of the matrix Bey;. Suppose that a party generates the
ABDLOP commitment (t4, tg) to the messages (s;, m) under randomness
sy. Then, if the party wants to commit to an additional message vector
Meyt € Rgm under the same randomness at some later point in time, they
can simply compute text := BextSp + m and thus (ta, tg || text) becomes
the commitment to the messages (s;, m || mey). This property is directly
inherited from the BDLOP commitment scheme and will be frequently used
in our protocols.

We now turn to proving security properties of ABDLOP.

Lemma 4.1.1 (Correctness). If By > aand By > v+/myd then ABDLOP is
correct.

Proof. Let ejg = 1 € S¢ and take any (s;, m) € Spr. Then, clearly |eigs1] <
« < By. Also, for sy — x™ we have:

leigsz|| < v/mad < By.
Hence, ABDLOP.Open (s1, m, s, ¢;q; ABDLOP.Commit(s1, m;sp)) = 1. O

Lemma 4.1.2 (Hiding). Suppose that xpmwe = mp — kmsis — £ = 0. Then,
ABDLOP is computational hiding if MUIWE,, = o 1 ¢ 18 hard.

Proof. The statement directly follows from the observation that lAzl sy is
B

indistinguishable from a uniformly random vector in REMS'SH under the
MLWE assumption. O

KMLwE Amsis X
Lemma 4.1.3 (Binding). ABDLOP is strongly computational binding under the
MSIS

; _ /2 2
Knisis, 1+, Busis ASsumption where Bysis = 4174/ By + B3.

Proof. Suppose that for two triples (s, s1,m,¢), (s5,s7, m’,c’) and a commit-
ment t = (tu, || tg) we have

BDLOP.Open(sy, m, sy, c; t) = BDLOP.Open(s], m’,s},c’;t) = 1.
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4.2 OPENING PROOF FOR THE ABDLOP COMMITMENT
This implies that
/ / s1— 8]
As; +Apsy =ty = Aysy + Agsy; — [Al Az] ,1 =0.
§2 — 8y
By the triangle inequality we have
/ /!
s1—s cs c's
e R | N L et c|l THI.
Sp — ) sy c’sh
Consider the first term on the right-hand side. By definition of the opening

algorithm and of S¢ = C we have that ¢ = ¢}, — ¢| where ¢, ¢} € C are
distinct. Next, by Lemma 3.2.8:
cs
¢ |71
CS»

¢ | oy | < 214/B? + B3.
CSy CSp

With the same argument for the second term, we deduce that

1|81 — 5/1 2 2
cc < 414/ B + B3.
S — sh

Hence, we have found a solution to the MSISy, . i, +m,,5 Problem for the

_|_

+

~

matrix [A; A;] where B = 417,/B? + B2. Assuming that this problem is
hard, we get s; = s} and s, = s}. Then, by construction we have m =
t3—352=tB—BSI2=m/. O

4.2 OPENING PROOF FOR THE ABDLOP COMMITMENT

The key component of proving various properties on a committed mes-
sage is a proof of knowledge of the commitment opening. Using ter-
minology from Section 3.3.3, we propose a commit-and-prove system
ITopen = (ABDLOP,P,V) for the relation Ryes which always outputs 1.
In this case, having a statement for Ryes is irrelevant, and hence we ignore
it.

In the following, we fix the challenge space C to be as in Section 3.3.6
with respect to the identity automorphism ;.

We present the commit-and-prove Ilopen = (ABDLOP, P, V) for relation
Ryes in Figure 4.2. Prover P starts by sampling two masking vectors y; <
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4.2 OPENING PROOF FOR THE ABDLOP COMMITMENT

Prover P Verifier V

Inputs:

pp.dim = (q,d, kmsis, M1, M2, €, Lext) pp.dim, pp.norms, pp.mat
pp.norms = (v, w, &, By, By) ta, tp

pp-mat = (A1, Ap, B, Bext)
s1 € Ry such that [s| <«

Sy € R’qﬂz,m € Rs
ta = Ay S1 + Az Sy + 0
tg 0 B m

myd
y1 < Ds)!

mpd

52

y2 <D
W= A1y1 + A2y2

- & cC
z1 :=Yy] + 81
z) :=Yy) +CSp
fori=1,2:
if Rej(i) (zi, csi, 81, M) =1
then (z1,2p) := (L, 1)
21,22

?

|z1] < s14/2m1d
?

HZzH < 8o/ 2mpd

?
w = A1z1 + Arzy —cty

FIGURE 4.2: Commit-and-prove system Ilopen for the relation Ryes which always
outputs 1. Here, Rej(l), Rej(z) are rejection sampling algorithms.
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?fd, y2 < D52 4 from discrete Gaussians and computes

w = Ay + Aoys.

Then, it sends w to the verifier V. After receiving the challenge c < C from
V), the prover computes

z1:=y1 +csyand zy :=y; +cs)

and applies rejection sampling. If it does not abort, P sends z3, z,. Finally,
the verifier checks that coefficients of each z; are small and

w z Aqz1 + Apyzy —cty.

4.2.1  Security Analysis

We summarise security properties of the protocol in Figure 4.2 below.

Theorem 4.2.1. Suppose that myd > 5 and mad > 5« and let Rej") = Rej®) =
Rejg as in Figure 3.2. Fix standard deviations s1 = y1qa and sp = y1qv+/mod
for v1,v2 > 0 and define

._ 2k+1) 11 -
M;:= exp ( logle) i 27?) fori=12

Then, I1open for the relation Ryes has statistical completeness with correctness error
1

lf—Mle.

Proof. We first compute the probability that an honest prover P does not
abort. Note that s1, s, are chosen such that 57 > v1|cs1| and s, > 72| css|
for any c € C. Then, by Lemma 3.3.2, Rej() does not abort with probability

1-27%
M;

Hence, the probability that none of the rejection algorithms abort is at least:

(1 _ 2—1()2 - (1 _ 2—K+l)

> = — [(r).
MM, M1 M, M1 M, neg (x)

Finally, we turn to checking the verification equations when interact-
ing with an honest prover. By Lemma 3.2.2 and the assumption that
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min {md, myd} > 5k, the first two verification inequalities hold with proba-
bility at least 1 — 2~1. Then, the last one is true because:
Az + Apzy —cty = A1y + Agyo + c(Aqry + Aprp) —cty
=W+cty —cty

=w.
O

Theorem 4.2.2. Let Rej(l) = Rej(z) = Rejy as in Figure 3.2 and suppose
KMWE = My — kmsis — . Fix standard deviations s1 = yina and s, =
Y1vA/mad for 1,2 > 0 and define

_ 2(+1) 1 1 .
M; :=exp ( logle) 7 + 2712> fori=1,2.

Then, under the MULWEy, . «usis+¢ assumption, Topen for the relation Ryes is
simulatable.

Proof. We describe an efficient simulator S as follows. First, it samples
Z] — D?lld and z, «— D;"zzd. Finally, S computes w := A1z + Ayzy — cty
and outputs a simulated transcript (w, ¢,z1,2p) Then, by Lemma 3.3.2, the
simulated transcript is statistically close to a real non-aborted one.

Finally, we simulate the commitment by sampling (t4, tg) < REMS'SM.
Then, it is computationally indistinguishable from the actual commitment
by the MLWE,,, \ c xysis+¢ assumption. O

Theorem 4.2.3. Suppose By > 2s1+/2m1d and By > 2sy+/2mpd. Then, Ilypen
for the relation Ryes is knowledge sound with knowledge error 1/|C|.

Proof. Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > |C|~!. By Lemma 3.3.1, there is
an algorithm £ which runs in expected time at most 2T and extracts two
accepting transcripts with the same first message w with probability at
least e — 1/|C|:

tr; = (w, c(i),zgl),zgl)) fori=0,1.

Let us define ¢ := c(1) — ¢(0) € . Note that by definition of the challenge
space, C is invertible over R, and | €[ < 2w. Next, we set

1 _ 0
A
5 := % fori=1,2 and m:=tg— Bs,.
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Then, by construction we get

(1) (1) (0) (0)
Azy 4+ Arz — A1z, + Arz =
A151 + A5y = ( ! 2 ) _( ! 2 ) :7tA =ty

c c

and thus ABDLOP.Commit(§;,m;§;) = t. Moreover,

_ 1 0
cs1] = |20 — 29 < 2611/2myd < By

and similarly

__ 1 0
652 = [28Y — 20| < 2651/2m2d < B,.

Thus, ABDLOP.Open(5;, 10, 55, ; t) = 1. O

4.3 IMPROVED OPENING PROOF WITH COMMITMENT COMPRESSION

In this section, we reduce the commitment and communication size by
applying compression techniques from Dilithium-G [Duc+17].

4.3.1 Low/High Order Bits

In order to reduce the size of the commitment, we need some algorithms
that extract “higher-order” and “lower-order” bits of elements in Z;. The
goal is that when given an arbitrary element r € Z; and another small
element z € Z,;, we would like to be able to recover the higher order bits of
7 + z without needing to store z. The algorithms are exactly as in [Duc+17],
and we repeat them for completeness in Figure 4.3. They are described
as working on integers modulo g, but one can extend it to (vectors of)
polynomials in R, by simply being applied individually to each coefficient.

Lemma 4.3.1. Suppose that q and <y are positive integers satisfying q = 1
(mod 7). Fix m := (q —1)/v. Let r and z be vectors of elements in R, where
|z|loo < y/2, and let y,y’ be integral vectors of elements in (—m/2,m/2]. Then
the HighBits,, MakeGHint,, and UseGHint, algorithms satisfy the following prop-
erties:

1. UseGHinty(MakeGHinty(z, 1,7), ¥, 7) = HighBits,(r + z, 7).

2. If UseGHint,(y, r,7) = UseGHint,(y', 1, ), then y =y’
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Power2Round, (7, D) Decompose,(r, 7)
00 r:=rmod™ q 10 r:=rmod*t g
01 rg := r mod® 2P 11 rg := r mod® v
02 return (r —rg)/2P 12 ifr—rg=g—1
13 thenr :=0;rg:=rg—1
UseGHint, (y,7,7) 14 else ry := (r—ro)/7y
03 m:=(g—1)/y 15 return (rq,7g)

04 rq := HighBits,(r,7)

05 return (r; +y) mod Tm
HighBits, (r,7)

MakeGHint,(z,7,7) 16 (r1,70) := Decompose,(r,y)
06 m = (q — 1)/7 17 return rq

07 rq := HighBits,(r,7)

08 vy := HighBits,(r + z,7) LowBits,(r, )

09 return (o1 — 1) mod Tm 18 (rq,10) := Decomposeq(r, 7)

19 return ry

FIGURE 4.3: Supporting algorithms for commitment compression.

4.3.2 ABDLOP Commitment Compression

We apply the aforementioned compression techniques in the opening proof
presented above. First, we reduce the size of the ABDLOP commitment by
not sending the low-order bits of t4. Namely, for a suitable D € IN we write

ta =ta1-20 +ta, where [t ] < 2P

and only send t4 1. Thus, we reduce the commitment size by Dxps|sd bits.

Further, instead of sampling uniformly random matrices A, and B, we
can choose them in the more structured way as originally in [Bau+18b]

A;
B

A/2 IKMSIS ]R;Mslsxmz‘ (41)
B’ OZXKMSIS

We call this version of the commitment ABDLOP ompress: We show the
commit-and-prove system Ilopen—compress = (ABDLOPcompress, P, V) for the
relation Ryes in Figure 4.4. We recall that Ryes is a relation which always
outputs 1.

Prover P starts by sampling vectors y; « Dsmlld,ym — DETZ_KMS'S)d

and ypo « DﬁyS'Sd from discrete Gaussians and computing w = Ajy;] +
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Prover P Verifier V

Inputs:

pp.dim = (q,d, kmsis, m1, M2, €, Lext) pp.dim, pp.norms, pp.mat
pp.norms = (v,w,«, By, By) tai ts

pp.mat = (Aq, Ay, B, Bext)
s1 € Ry such that [|s;] < a
s2 = (s21,822) € Ry%,me Rﬁ]

A}, B’ are defined as in (4.1)

t !

A = A s+ AZ S31+ S22

tp 0 B’ m
ta, := Power2Round,(ta, D)

tap =ty 72Dt,q/1

y1 < Dmld
51
(my—kmsis)d
y21 < Dgy > M
d
Yo, « Dgss
w = A1y1 + Ajy21 + Y22
(w1, Wo) := Decompose, (W, )

z1:=y1 + 81
7 = {12,1] — [Yz,l] +e {Sz,l}
Z22 Y22 $2,2

fori=1,2:

if Rej; (zj,cs,8;) = 1

then (z1,2zp,h) := (1, L, 1)

232 1= 2pp —Ctapr —Wo
if [(z2,1,222)| < B

then (z1,2zp,h) := (L, L, 1)
h := MakeGHint, (z22, YW1 — 22,2,7)

z1,221,h
? . ’ D
wy £ UseGHint, (h,Alzl +Ahzyy —c-2 tArl,”/)

?
1] < s1/2m1d

?
(221, A121 + Ahza1 — ¢ 20141 —ywy)| < B

? q—l
<
Ihlee < 1

FIGURE 4.4: Commit-and-prove system Ilopen—compress for the relation Ryes using
compression techniques from Dilithium-G [Duc+17].
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Aly21 + y2,.0. Additionally, P calculates (wq, wp) = Decom poseq(w, ) and
sends wj to the verifier where g — 1 is divisible by 7.
After receiving a challenge polynomial ¢ < C from V, the prover com-

putes
z s
Z1 =Yy1+C81 and z; = l 2’1] = lyz’ll +c l 2’1]
Z22 Y22 822
and applies rejection sampling for z; and z,. If it accepts, P modifies
Zp2 := 2p7 — cty o — W and calculates the hint vector

h = MakeGHint, (o0, YW1 — 222,7) -

Finally, the prover sends (z1,21,h). In the last stage, verifier V checks
whether vectors z; and (zp1, A1z1 + Az — - 2DtA,1 — ywq) have small

norms and the coefficients of h are between —% and % and

wy = UseHint, (h, Aqzy + Ahzp —c- 2DtA,1,'y) .

As opposed to the standard opening proof, the prover does not send any
masked opening of sy,. Instead, P sends a vector of hints h which has
much smaller impact on the communication size as opposed to z; 5.

SECURITY ANALYSIS. We first focus on the completeness of the protocol.

Theorem 4.3.2. Suppose myd > 5k, mpd > 5k and <y be an even divisor of q — 1.
Fix s1 = y1qa and sy = yonv~/myd for some 1,2 > 0. Then, denote

. 2(k+1) 1 1 .
M; :=exp ( log(e) 7 + 2%2> fori=1,2.

and Rej(l) = Rej(z) = Rejg as in Figure 3.2. Also, set
B := s5p+/2mod + 172D_1Vnd + i an.

Then, the commit-and-prove system Ilopen—compress for the relation Ryes satisfies
statistical completeness with statistical error 1 — 1/ (M1 M3) .

Proof. First, if the rejection sampling steps pass, the distributions of z;, z,
are discrete Gaussians centered at 0 with standard deviations s; and s;
respectively. Since m1d, mpd > 5x, we have that

Pr [|zi] <siv/2md] >1-27" fori=1,2

ZiHDsi
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by Lemma 3.2.2 for t = /2. Now, since we perturb the vector z,,, the
bound on |z increases slightly. Using the inequalities |/cta,| < #7[tas| =

7201\ /kmsisd and [wol < 7/xkwmisisd/2, we get
0
Wo

Zyp —ctap —wWo Z) ctap

< 5o/ 2mod + 172D*1\/nd + 7 znd = B.

< + +

The verification equation on |||« follows by definition of MakeGHint. Fi-
nally, note that

Az + A/222,1 +2zpp C2DtA,1 + W — Wy

CZDtA,l + YWy
and thus
Az + A/222,1 — CZDtA,l = YW1 — Z2).
Consequently, by Lemma 4.3.1:
UseGHinty(h, A1zq + Abzo1 —c-2Pts1,7)
= UseGHint, (MakeGHint, (222, YW1 — 222,7) , YW1 — Z22,7)
= HighBits, (yw1,7)

= Wi.

Next, we focus on the simulatability property.

Theorem 4.3.3. Let Rej(!) = Rej® = Rejg as in Figure 3.2 and fix s1 = y1n«
and sy = yonva/mod for some 71, y2 > 0. Denote

Mi:—exp< 2+ 1) 1—1—12) fori=1,2

log(e) i @ 2

and xKymuwe = m2 — kmsis — £ = 0. Then, under the MIWE,, o s ¢ a5~
sumption, the commit-and-prove system Ilgpen—compress for the relation Ryes is
simulatable.

Proof. As in the proof of Theorem 4.3.3, the algorithm S simulates the
commitment by generating (ta, tg) < RZMS'SM and computing

ta,1 := Power2Round,(t, D)
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under the MLWE,,, .. xusis+¢ assumption. Furthermore, S samples z; «
DI, 2, — DI and computes

w:=A1z1 + A/222,1 + 235 —cta.
Then, S calculates (w1, wo) := Decompose, (w, 7). Finally, the hint vector h

can be computed deterministically from all the previous components. [

Now, we turn to proving knowledge soundness.

Theorem 4.3.4. Suppose By > 2s1+/2myd and By > 2B. Then, the commit-
and-prove system Ilgpen—compress for the relation Ryes is knowledge sound with
knowledge error 1/|C|.

Proof. Let P* be a probabilistic prover which convinces the verifier with
probability ¢ > |C|~!. By Lemma 3.3.1, there is an algorithm £ which
extracts two accepting transcripts with the same first message w; and
distinct challenges with probability at least € —1/|C|:

tr; = (w1,c(i),z§i),z§2,h(i)) fori=0,1.

Let us define ¢ := c¢(1) — ¢(0) € . Note that by definition of the challenge
space, C is invertible over R,. Let us define
(i)

u = ywy + 2Pty — Alzgi) —ASzy7.

Thus, we have ‘

(zéi%,u(i)) H < B for i = 0,1. Then, by combining the two

equations on u® we get
Aq (zgl) — zgo)) + A/2 (zgl) — zéo)) + (u(l) - u(O)) = E-ZDtAll.

Next, we set

o Zgl) _ZEO) - lgz,ll .
1 =—F7——, §= =

S22

| =
| e——
S N
—~ N~
2w

N
E-\N/é\
ere
|

and
m = tg — Bs;.
By construction we obtain [¢51| < 2s14/2m1d < B and ||52]| < 2B < Bo.
Hence,
ABDLOP.Open (sl,m, 5),¢; (2DtA,1,tB)) -1
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PROVING LINEAR AND HIGHER-DEGREE RELATIONS
BETWEEN COMMITTED MESSAGES

This chapter focuses on proving arbitrary linear and higher-degree equa-
tions between committed polynomials by extending the opening proofs
presented in Chapter 4. Namely, we first show how to prove knowledge of

a message vector (sq, m) € RZ”H which satisfies

f(sy,m) =0

where f is a public (m; + £)-variate polynomial function over R,;. We extend
our argument to the case when one wants to prove multiple such relations
in parallel, i.e. fi(s;,m) = fo(s;,m) = ... = fy(s1,m) = 0. Furthermore,
we also cover statements where we do not necessarily have f(m) = 0 but
one of the coefficients of f(m) is equal to zero. Without loss of generality,
we will only consider the constant coefficient.

More precisely, denote P},(R;) to be the set of all polynomial functions
f Ry — Ry over Ry of total degree at most . Then, we are interested in
proving the following statements:

* Single equation. Given a public polynomial function f € anl +0(Rq),

prove knowledge of the message vectors s; € Ry and m € Rg, where
[s1] < &, which satisfy
f(sy,m) = 0.

* Many equations. Given N public polynomial functions f; € anl +0(Rg),

prove knowledge of the message vectors s; € Ry and m € Rg, where
[s1] < «, which satisfy

fi(s;,m) =0fori=1,2,...,N.

* Function evaluations with vanishing constant coefficients. Given N + M
public polynomial functions f,..., fu, Fi,...,Fm € P1511+€(Rq), prove

knowledge of the message vectors s; € R;"l and m € Rﬁ, where
[s1]] < &, which satisfy the following:

1. fi(s;,m)=0fori=1,2,...,N.
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2. Denote x; := Fj(s;, m). Then, ¥; = ... = Xp = 0.

We provide our protocols in a commit-and-prove fashion, i.e. we first
generate an ABDLOP commitment t = (t4, tg) to (s;, m) and then prove
that the messages satisfy certain relations.

We start by proving linear equations in Section 5.1 by simply extending
the argument by Baum et al. [Bau+18b]. Next, we adapt the product proof
protocol by Attema et al. [ALS20] to prove general quadratic relations in
Section 5.2. In our applications, degree two equations are sufficient, but it
will be clear how to generalise the techniques for proving higher-degree
relations.

5.1 PROOF OF LINEAR RELATIONS

For convenience, throughout this section we denote s := s || m e R,
. . 1
Moreover, we represent a linear function f € P, . ,(Ry) as

f(x) = rlTx + 9.
my+4
where 1| € R; and rp € R.
In this section, the challenge space C is defined as in Section 3.3.6 with
the identity automorphism ;.

5.1.1  Single Equation

Let f be a (m; + £)-variate linear function over R,. In this subsection, we
will be interested in the following relation:

R:={(f,(s1,m)): f(s1,m) = 0}

and the corresponding commit-and-prove relation RagpLop as defined in
Section 3.3.3.

Let us first consider the opening proof in Figure 4.2. We observe that
vector z; := y + ¢s; “masks” our first message vector s;. We will informally
call z; to be a masked opening of s1. Even though this is not the case for m
(i.e. we do not send anything of the form z,; = y,; + cm), we observe that

ctg —Bzy; = —Bys +cm

my+¢
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is a masked opening of m which can be computed by the verifier. Hence, if

we define
y = y and z:= 1
—By> ctg — Bz,

then we have z = y + cs. Now, we observe that
rsz+cr0 = rlTy+crlTs +crg = rlTy+c(r1Ts +79) = rlTy+cf(s) = rlTy.

Hence, in the protocol in Figure 4.2, if we additionally let the prover send
v := 1]y to the verifier V in the first round, then V simply has one more
verification check

11z + crg Lo

As we formally show later, this is sufficient to prove that f(s) = 0.

5.1.2  Multiple Equations

Firstly, we observe that proving N linear equations

fi(s) =0 for fl,...,fNeP,}ﬁH(Rq)

boils down to proving
Ris+rg=0 (5.1)

where R; € jox (m+0) and g € Ré\’ . Hence, we define the corresponding
relation
Rjin := {((Ry,10),8 := (s1,m)) : Rys + 1o = 0}.

We extend the approach from the previous subsection naturally. Namely, if
(5.1) holds then we have:

Riz +crg = R1y + cRys + crg = Ryy + ¢(R1s + r9) = Ryy.

Thus, the prover in the first round of the protocol in Figure 4.2 additionally
sends v := Ryy. Then, in the end the verifier VV has one more verification
check Riz + crg v,

We provide a commit-and-prove system I1j;, := (ABDLOP, P, V) for the
relation Ry, in Figure 5.1.
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5.1 PROOF OF LINEAR RELATIONS 70

Prover P Verifier V

Inputs:

pp.dim = (q,d, kmsis, M1, Mz, £, Lext := 0) pp.dim, pp.norms, pp.mat
pp-norms = (v, w,a, By, By) ta, ts, Ry, 1o

pp.mat = (A1, Ay, B, Bext)

s1e Ry, s2eRy%,me Ré so that [sq| <«

Rt

R, e R'Ia\lx(mﬁr(’),ro c RqN

myd

y1 < Dg,
y2 < D2t
w:i=A1y; + Aoys

v:=R; yi ]
—By;

— ¢ C
z1:=Yy]+C8q
Zy :=Yyp+CSy
fori=1,2:
if Rej(!) (z;, csj, 5, Mj) = 1
then (z1,2;) := (L, 1)
Z1,Z

?

[z1] < 51\/2"77
?

|za]| < s2/2mpd

5
wW = A121 + A222 — CtA

? z
le{ ! ]+Cr0
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5.1.2.1  Security Analysis
We summarise security properties of the protocol in Figure 5.1 below.

Theorem 5.1.1. Let Rej(l) = Rej(z) = Rejy as defined in Figure 3.2. Fix standard
deviations s1 = y1na and sy = yov+/mad for some 1,7y, > 0 and define

._ 2k+1) 11 -
M;:= exp ( logle) i 27?) fori=12

Suppose that myd > 5« and mpd > 5«. Then, the commit-and-prove system I,
for the relation Ry, has statistical completeness with correctness error 1 — m

Proof. Correctness follows directly from Theorem 4.2.1 and the fact that if
Ris + 1y = 0 then Ryz + crg = Ryy. O

Theorem 5.1.2. Let Rej() = Rej® = Rejq as defined in Figure 3.2. Fix standard
deviations s1 = y1na and sy = yov+/mad for some 1,7y, > 0 and define

- 2k+1) 11 -
M;:= exp ( logle) i 27?) fori=1,2

Suppose kpmuwe = M — kmsis — £ = 0. Then, the commit-and-prove system I1j,

for the relation Ry, is simulatable under the MLWE,, | o cc.« y 7,y assumption®.

Proof. We prove the statement using a hybrid argument. First, we describe
an efficient simulator &7, which knows s, m and simulates both the commit-
ment and the transcript as follows. Namely, it generates fresh randomness
sy — X™ and computes (ty,tg) = ABDLOP.Commit(s;, m;sp). Next, it
samples z; < D21 and z, « D22, Finally, S computes

w:= A1z + Ayzy —cty

z
v:=Ry 1 ]+Cr0

ctg — Bz,

and outputs a simulated transcript (w, v, c, z1,z) Then, by Lemma 3.3.2,
the simulated commitment and transcript by S; are statistically close to the
honestly generated commitment and non-aborted transcript.

Further, we describe an efficient simulator S,, which still knows s;, m
and simulates both the commitment and the transcript as follows. Namely,

1 Recall that yx is defined to be the uniform distribution on S, as described in Figure 4.1.

71



5.1 PROOF OF LINEAR RELATIONS

it executes the S; algorithm but instead of generating (t4, tg) honestly, it
samples u « Rg*f and computes:

ol ]

Now, we observe that under the MLWE,, .« s +¢,x @assumption, the out-
put distribution of & is computationally indistinguishable from the output
distribution of Sj.

Finally, we define our simulator &, which has no access to private in-
formation anymore, as follows. Concretely, it executes the S, algorithm
but instead of generating (t4,tp) as Sy, it samples u « ng and sets
(ta, tg) := u. Then, clearly the output distributions of S and S, are identi-
cal. Hence, the statement holds by the hybrid argument.

O

Theorem 5.1.3. Suppose By > 2s1/2m1d and By > 2sy+/2mpd. Then, the
commit-and-prove system L1, for the relation Ry, is knowledge sound with knowl-
edge error 1/|C|.

Proof. Let P* be a probabilistic prover which runs in time a most T and
convinces the verifier with probability € > |C|~!. By Lemma 3.3.1, there is
an algorithm £ which runs in expected time at most 2T and extracts two
accepting transcripts with the same first message (w, v) with probability at
least e — 1/|C|:
tr; = (w, v,c(i),zgl),zg)> fori=0,1.

Let us define ¢ := ¢(1) — ¢(0). By definition of the challenge space, ¢ € C is

invertible over R,. Next, we set

™ _ 0

e . % % . L _
si.—fforz—ll and m:=tg— BS).

Then, by construction

(1) (1) (0) (0)
Azy 4+ Arz — A1z, + Arz =
A181 + A5y = ( ! 2 ) _< ! 2 ) =7tA =ty

c c

and therefore ABDLOP.Commit(81, m, 5p) = t. Moreover,

e = 12" — 20| < 261v/2m1d < B
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and similarly

__ 1 0
652 = 125" — 23| < 26y+/2myd < B,.

Thus, ABDLOP.Open(s1,m, 8y, ¢ t) = 1.
Finally, from the last verification equation we have

R, l Zgl) ] + C(l)ro =R l ZgO) ] + Crp
C(l)tB — BZS) C(O)tB — Bzgo)
which implies
R, [_ C_‘§1_ 1 +crg = 0.
ctg — CB§y

Again, since C is invertible over R,;, we obtain

Ry ! +19=0.
m

5.1.3 Function Evaluations with Vanishing Constant Coefficients

In addition to proving the linear relation R;s + ry = 0, we now also want
to prove that for publicuy,...,up 1 € R;nﬁe and uy,...,upmp € Ry, the
constant coefficients of

lliT,1S+Mi,0 eRyfori=1,2,.... M

is equal to zero. We define the corresponding relation as follows:

((Rl,rof (i1, ui0)ie[an), s -= (Slrm)) :
Ris+ 1y =0 A %; = 0 where x; := uiTls + u;q for i € [M]

Riin—eval :=
A naive solution to prove that #; = 0 would be for the prover to simply
send x; to the verifier in the clear and then prove uiT,ls +u;9 — x; = 0 which
is a linear equation. Then, the verifier can check itself whether the constant
coefficient of x; is indeed zero. However, the protocol is not simulatable
since sending x; in the clear reveals information about other coefficients
apart from the constant one.
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We first provide intuition for proving %; = ... = &, = 0 with soundness
error 1/g;. To begin with, note that this implies that for any vy,...,vpm € Zy,
the constant coefficient of

v
X = Z v; (uiTlls + ui,o) e R,
i=1

is equal to zero. Now, suppose that for some i, the constant coefficient of
uiT,ls + u; 9 is not equal to 0. Then, if vy,..., vy are chosen uniformly at
random then with probability at most 1/q; we have ¥ = 0. This will be a
key observation for soundness. Thus, vy, ..., vy will be random challenges
output by the verifier.

As explained above, we cannot simply reveal all the coefficients of x.
Hence, we first commit to a random polynomial ¢ « {x € R, : ¥ = 0}
which also has the constant coefficient equal to zero. Then, we mask other
coefficients of x apart from the constant one by outputting:

v
h;:g-}-x:g—kZUZ‘(uaS—}—uilo). (52)
i=1

By construction, /1 = 0 and it can be manually checked by the verifier. Finally,
we need to prove that i was constructed correctly. Note that Equation 5.2 is
a simple linear relation in the committed messages s and g and thus can
be proven identically as in the previous subsection. Indeed, define vectors
v = YM viu;1 and vy = M viujo — h. Then, we want to prove the
following linear relation:

Ry Onxa| [s]| | |To| _.
vlT 1 g Up

The intuition for the soundness can be described as follows. If for some i €
[M], the constant coefficient of ul-T,ls + u; is not equal to 0 and polynomial
g was committed before challenges vy, ..., vy were generated, then with
probability at most 1/q; we have / = 0.

BOOSTING SOUNDNESS. Often the prime g; is too small to guarantee
negligible soundness error. We exponentially reduce the soundness error to
9, A by repeating the strategy above A times in parallel. Concretely, we first
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5.1 PROOF OF LINEAR RELATIONS

commit to A polynomials g := (g1,...,81) < {x € Ry : £ = 0}*. Then, given
uniformly random challenges Y := (v;j)ic[A],je[m] < Z?XM, we output:

hy $1 i1 UM uf s +uip
ha 82 Ug1 e Uam | | Ug4S 20
= + : o (5:3)
hy SA Ual e Uam | | US4 o
Thus, the verifier manually checks whether /i; = ... = i1y = 0. Finally,

to prove well-formedness of hy,...,h, we note that (5.3) is again a linear
relation in the committed messages. Concretely, we can define the matrix
V1 and the vector vy as follows:

T
vl o UM ujq
T
. U1 - UM U4
Vi= |~ ) ' ) (5-4)
v v ul
Al AM M,1
and
vig o vMm || 10 hy
Up1 - UM | | H20 hy
vo:i=| . _ e R I (5-5)
va1 o vam | | UM hy

Then, proving well-formedness of h; and Ris +rg = 0 is equivalent to

proving:
K ON“] H + lr‘)] - 0. (5:6)
Vi L [lg] Lvo

We provide a commit-and-prove system ITj,_eval := (ABDLOP, P, V) for
the relation Rjj,_eval in Figure 5.2. Namely, prover P starts by committing
to the vector g, i.e. computing t; := Bexs + g*. Then, given a challenge
matrix Y = (v; ;) from verifier ), the prover outputs the vector h defined in
Equation 5.3. Finally, P runs the subprotocol I}, to prove well-formedess
of h as well as Rys + rg = 0, or alternatively (5.6). The verifier then checks
whether the constant coefficients of i1, ..., h, are indeed zeroes and if ITj;,
verifies.

2 As explained in Section 4.1, having the matrix Bex: allows appending further commitments to
(ta, tg)-
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Prover P Verifier V

Inputs:

pp.dim = (q,d, kmsis, M1, M2, £, bext := A) pp.dim, pp.norms, pp.mat
pp-norms = (v, w, &, By, By) ta, tg, Ry, 1

pp-mat = (Aq, A, B, Bext) Uy, .., UM U0, - - UM

s1€ Ryl s2€ Ry, me ’Rg so that [|sq] < &

ta = A S| + A S2 + 0
tp 0 B m
Nx (m1+0) ro € RN

4 q

RleRq

my+L
upg,--um1 € Ry 0, Umo € Ry

g&{xeRq:f=O}}‘
to:=Bexts2 + 8

t
Y Y = (V)i jepm] — Zy M
ulTJs + U0
T
u, S + u
himgty| 2070
u[/llls + uUpmo
__h
run I, with the following inputs: accept if (i) I}, verifies and
pp. dim := (q,d,KMSB,ml,mz,f + )\,0) (11) fll =...= ;l;L =0

pp.norms := pp.norms

pp.mat := <A1,A2, [ B } ,@)
Bext

(52/ (Slrm)) = (52/ (slrm ” g))

r
Ui, Ui
T
u uz0
Vi=Y| |, vo=Y| 7| -h
u}\“/[,l_ UM,0
R 0 | T
Ry:= | ! rgi=| 0
U I ug

FIGURE 5.2: Commit-and-prove system ITjj,_eya for proving Ris +rg = 0 and
that the constant coefficient of ul-Tls + u; vanishes fori = 1,2,..., M.
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5.1.3.1 Security Analysis
We summarise security properties of the protocol in Figure 5.2 below.

Theorem 5.1.4. Let Rej(l) = Rej(z) = Rejy as defined in Figure 3.2. Fix standard
deviations s1 = y1na and sy = yoyv+/mad for some 1,2 > 0 and define

B 2k+1) 1 1 -
Mi = exp ( logle) m 27?) fort =12

Suppose that myd > 5k and mpd > 5k. Then, the commit-and-prove system
Ijin—eval for the relation Rjin_eval has statistical completeness with correctness
error 1 — ﬁ

Proof. Take any i € [A]. Then, if the constant coefficients of g; and ujT,ls +ujp
for j € [M] are zeroes, then we must have that the constant coefficient of

M
T
hi =gi+ Z Ui (uj/ls + u]‘,())
j=1
is also equal to zero. The rest of the correctness argument follows from the

proof of Theorem 5.1.1. O

Theorem 5.1.5. Let Rej(l) = Rej(z) = Rejy as defined in Figure 3.2. Fix standard
deviations s1 = y1na and sy = yov+/mad for some 1,7y, > 0 and define

2k+1) 1 1 .
L L ~1,2.
M; :=exp ( logle) 7 271-2> fori=1,

Assume xpmuwe = My — kmsis — £ — A = 0. Then, the commit-and-prove system
Ijin—eval for relation Rjin_eval is simulatable under the MLWE
assumption.

KMLWE KMsIs TE+A,x

Proof. The proof is almost identical to the one for Theorem 5.1.2 with the

addition that the simulator S samples t, < ’RqA and h — {x e R, : ¥ = 0}

Indeed, since in an honest execution tg is chosen uniformly at random
from {x e R;: X = 0}*, the distribution of the vector h constructed as in
Equation 5.3 is also uniformly random over {x € R, : ¥ = 0} O

Theorem 5.1.6. Suppose By > 2s1/2myd and By > 2sy+/2myd. Then, the
commit-and-prove system 11, _eyal for the relation Rjjn_eval is knowledge sound
with knowledge error |C|~1 + g7 ™.
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Proof. Let P* be a probabilistic prover which convinces the verifier with
probability € > |C|~! + g, A and runs in time at most T. Define a determinis-
tic algorithm A(pp, pg, Y) which given randomness p = (pp, ) € Rp x Rg
and challenge Y € ZQ‘XM does the following. It first runs P*(pp) on ran-
domness pp with challenge Y and stops after the third round. Let t; and h
be the output of P* in the first and third round respectively. Then, it runs
the extractor £*(pg) defined in the proof of Theorem 5.1.3 with randomness
pe (which runs P*(pp, Y) in a black-box way).

We say that A succeeds if A outputs (tg, Y, h, §1,m, 8,5y, c:) such that
ABDLOP.Open(5;,m || §,52,Cta | tg || tg) =1and iy = ... =h) = 0and

Vi I, g Vo

where V1, v are defined as in (5.4),(5.5) and § = 51 || m. It is easy to see
that by Theorem 5.1.3, the probability that A succeeds for random p and Y
is at least € — 1/|C|. Moreover, the expected runtime of A(pp, o, Y) for any
fixed pp, Y and pg < R is at most 2T.

We introduce the following notation. Let H < JRp x R x ZZI\XM be the

set of triples (p,Y) such that A(p,Y) succeeds. Also, define H(pp) to be the

set of all (pg,Y) for which (pp, pg,Y) € H. For fixed (p,Y) € H, denote §§p’Y)

to be the §; part of the output of A(p,Y) (and similarly for other variables)

and denote
§(p,Y) . (§EP’Y),1TI(‘D’Y)) .

Finally, we define
H = {(p, Y) € H : 3k € [M], const. coeff. of u,{,lﬁ(p'y) + Uy is non—zero} .

Then, we have the following claim.

Claim 5.1.7. If (op,pe,Y) € H then

Pr [(op,E, Y') € H] > 0.
(0 Y )R x2Z)*M

Moreover, if (op, pg,Y) € H' then

M

—A

xl-—gz Z (115 +”f°) ST
j=1

Y 2z M

Pr [We[]xl—O
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Proof. First, we observe that if (op, pr,Y) € H then

Pr [(op, 0, Y') € H] = Pr [ =peAY =Y]
(0 X)) R xZg M (0 Y') R x ZI¥M

Now, if the constant coefficient of uk s0Y) 4 uy o is non-zero for some k
then for fixed i, with probability at most 1/4; the constant coefficient of

g(PY +Z 1]( ]15( )_|_u]0)
j=1

vanishes. The statement follows by parallel repetition. O
Now, we can define our extractor £. It does the following.

1. Sample p = (pp,pr) — Rp xRpand Y € Z?XM and run A(p,Y). If
A(p,Y) does not succeed, abort.

2. If A(p,Y) succeeds, run A(pp, p, Y’) for the same prover randomness
op but fresh pi, < Rp and Y — Z3*M until A succeeds.

We say that £ succeeds if it extracts two tuples x = (51, m, §p,¢) and x’
(51' m’ sz, ¢’) such that one of the conditions below holds:

* (51,52) # (57,85) and

ABDLOP.Open(s1, 10,35, t) = 1 = ABDLOP.Open(5], m’,85,¢'; t).

e ABDLOP.Open(s1,m,5,,5t) = 1 and for all i € [M], the constant
coefficient of ul-TJé + u; is zero where § := (51, m)

where t := t4 || tg. In the first case, we break the binding property of the
ABDLOP commitment scheme. On the other hand, we extract the witness
in the second case. Then, we have the following claims about £.

Claim 5.1.8. The expected number of calls to A is at most 2.
Proof. Let X be the expected number of calling A. Take any i € Rp and

denote €; to be the probability that A(7, pg, Y) succeeds for pg < R and
Y — ZQ‘XM. If in the first step of £ algorithm A succeeds and pp = i, then
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the expected number of running A in the second step is at most 1/¢;. Next,
define E to be the event that A succeeds in the first step. Then,

1
— ST E[X|op — ]
B iem

E[X]

1
—— > E[X|op =i nE]-€+E[X[pp =i n —E]- (1 - ¢)
%Rp| 5
P
1

1
< 5 Z <1+>~e,-+1.(1ei):2.
el & €

O

We conclude from the claim above that the expected runtime of £ is at
most 4T.
Claim 5.1.9. Probability that £ succeeds is at least € — 1/|C| — q; A,
Proof. First, we observe that £ terminates (without aborting) with prob-
ability at least € — 1/|C|. Suppose £ indeed terminates and let us write
(t;,Y,h,51,m,§,5,¢) and (t,, Y/, W,s],m’,g/,5),&) to be the respective
outputs of A in the first and second step of £. We have the following
three disjoint cases:

1= ABDLOP.Open(§1,rﬁ || g,52,Cty || tg H tg)
= ABDLOP.Open(s], m’ || g,55,0;ta || tg || t,).

Case 2. (51,m,8,8;) = (5§, m’,g’,8}) and I1j = fz; =0 for j € [A] and
ABDLOP.Open(sy,1h || ,52,Cta || tp || tg) =1

and
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and for all i € [M] the constant coefficient of uz 18 + u; is zero.
Case 3. (51,m,8,8;) = (5], m’,g’,8}) and I1j = fz; =0 for j € [A] and

ABDI-OP°Open(§1/ITl || g S2,C ta || tp || tg) =1
and

Ry Ona | (S| [T0| _gang [R1 Onxa| 8] L |T0|
Vi L |[8] [vo Vi L lls] [v

and there exists i € [M] so that the constant coefficient of u};5 + 1, is
non-zero. Here, we define V/, v{, are as in (5.4) and (5.5) with respect to the
challenge Y'.

Define E; to be the event that £ terminates and Case i occurs. Then, we

have
€ —1/|C| < Pr[€ terminates] = Pr[E; v E; v E3]

and Pr[€ succeeds] = Pr[E; v E;]. Hence, we only need to upper-bound
the probability Pr[E3]. Define F(8, g) to be the event that for all i € [A], the
constant coefficient of

M
j=1
vanishes. We apply Claim 5.1.3.1 as follows:

Pr[Es] < P (A(p,Y) succeeds) A F(s, g)
r s I'r
3 A (Hi € [M] : const. coeff. of uzl§ +up is non—zero>

S S 5(0Y) (oY)
= [l 9] LIAM( Z): (Y )PiH(pP) [F (S '8 )]

1 Py g £ (5978
< —
Fel[Rel g™ P g el Y) € Hipp)

1 Z QfA'qAM'|mE\
\iﬂpl Re| - g'M |H(op)|

(o \)eh
< 1 Z ‘71)\ qAM |RE|
Rp| - [Re|-gM (o XeH |H(pp)|
.y ¥ MWHA
\SRP| ‘mE| q |H(op)|

PPERP (o£,Y)eH (op)
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which concludes the proof. O

Finally, the statement follows by combining the two claims about the
extractor £. O

5.1.3.2 Proving Linear Equations over Z,

We apply the commit-and-prove system I1ji,_eyal to prove linear equations
between the polynomial coefficients of s; and m. Namely, suppose that we
want to prove for public vectors a; € Ry}, ap € Rs and u € Z,; that:

(ar,s1)+<(azm)y=u (mod gq). (5-7)

In order to use the techniques described in this section, we present the
following result.

Lemma 5.1.10. Let X,y € Z’,;d and define the polynomial f = 0_1(x)Ty € R,

Then, the constant coefficient of f is equal to (X, y).

Proof. Denote x = (xq,...,x¢) and y = (y1,...,Yx). We just need to prove
that for every i € [k], the first coefficient of f; := o_1(x;)y; € R4 equals to
(xi, ;). Indeed, let us explicitly write f; as a product of two polynomials:

(xiro — xz-,d_lX — .= xi/lxd_l) (]/i,O + me + ...+ ]/i,d_lxd_l) .
Then, it is easy to see that the constant coefficient of o_1(x;)y; is equal to

XioYi0 + Xi1Yi1 + -+ Xig_1Yid—1 = Xi, Yi)-
O

Using the lemma above, we see that (5.7) holds if and only if the constant

coefficient of

T

U,l(al)Tsl + Ufl(az) m-—uec Rq

is equal to zero. Hence, we can define the linear function F : R;”ﬁg — Ry

F(x) := [U'fl(al)T Ufl(az)T] X—u

and prove that the constant coefficient of F(s;, m) equals to zero using
ITjin—eval- It is easy to see that this argument extends naturally to the case
when one wants to prove multiple equations of the form (5.7).
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5.2 PROOFS OF QUADRATIC RELATIONS

We show how to prove quadratic equations between committed messages
(s1, m) using the ABDLOP commitment. For various applications, we will
also need to prove relations between the images of (s;, m) under an auto-
morphism o € Aut(R), e.g. o(s1)"s; + o(m)"m = 0 which is a quadratic
relation involving o.

More concretely, let o € Aut(R) be a public automorphism over R of
degree k and for presentation purposes define:

(X 1= (x,(r(x), . ..,(fkfl(x)> € Rf; for x € Ry.

Similarly, for a vector x = (x1,...,x,), define (x)¢ = ((X1)g,...,{Xn)e) €
Rg”. We will use the following simple properties.

Lemma 5.2.1. Forany x,y € Ry and any ¢ € Ry such that o(c) = c:
X y)e =0 [ {y)e and {x+cy)e = ()0 + c(y)o-

Also, denote J,,  := I ® [1 0 --- 0] € R;’Xk”. Then

X = Jn,k<x>17-

Suppose we have message vectors s; € R;nl and m € Rf] such that
[s1]| < a. Then, we consider the following statements:

e Single quadratic equation with automorphisms. For a public k(mq + ¢)-
variate quadratic function f over Ry,

f({s1 || m)s) =0.

* Many quadratic equations with automorphisms. For N public k(m; + ¢)-
variate quadratic functions fy,..., fy over R,

fj ({s1 || m)¢) = 0 for j e [N].

* Many quadratic equations with automorphisms and a proof that polynomial
evaluations have no constant coefficients. For N + M public k(mq + £)-
variate quadratic functions fi,..., fy and Fy,...,Fy over Ry, the
following hold:

- fi({s1 | m),) =0 for j e [N],
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- let xj := F; ({s1 || m)y) € R, for j € [M]. Then %; = ... = %p; = 0.

Clearly, the statements presented at the beginning of this chapter are a
special case when ¢ is the identity automorphism o7.

Remark. Similarly as for [ALS20], our techniques can be easily generalised
to prove higher degree relations. Concretely, if we want to prove degree
k equations, we end up committing to k — 1 additional garbage terms.
Throughout this thesis, however, we will only consider quadratic relations.

5.2.1  Single Quadratic Equation with Automorphisms

Let (ta, tg) be the commitment to the message pair (s1, m) under random-

ness sy, i.e.
b Ay [A2] g4 |9
t 0 B m
Suppose the prover wants to prove knowledge of the message
. l<51>(71 e RAOND
(m)y

such that f(s) = 0 where f is a k(m; + ¢)-variate quadratic function over
R;. Note that each quadratic function f can be written explicitly as:

f(s) = sTRys + rl's + 19

where rg € Ry, 11 € Rg(mﬁg) and R, € Rg(mﬁé)x’((mﬁg). Hence, we define
the corresponding relation:

Rouad i— ((Rg, 11, 70), (81, m)) :
uad = .
K sTRys +1l's + g = 0 where s := ((s1 || m);)

In order to prove this relation, let us consider the protocol for proving linear
equations over R, in Figure 5.1. In the last round, the honest prover sends
the masked openings z; = cs; +y; of s; for i = 1,2 where the challenge space
C is defined as in (3.5) with the o automorphism. Even though this is not
the case for m, we can define the masked opening of m as

zy, = ctpg — Bzy = cm — Byy.

By construction, z,, can be computed by the verifier.
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Define the following vectors y and z:

.: (z1)o _ (s1)¢ Y1)o _ _ )
“ Lzm»] C[<m>o]+[—<sy2>g] ey 59)

Here we used the fact that for c € C, o(c) = c. Then, we have
z"Ryz + crsz + c?rg = 2 (sTst + rlTs + ro) +cg1+ 80 (5.10)
where polynomials g1 and gy are defined as:
g1=s"Roy +y'Ros + 1]y, go=y Roy.

Hence, we want to prove that the quadratic term in the expression z' Rz +
crlz + ¢?r vanishes. This is done by first sending a commitment ¢ to the

polynomial g1, i.e. t = bl s, + g1 as well as v := gy + bl,y, in the clear.

Then, given t and the masked opening z, of s, the verifier can compute
f=ct—bl,z; = cg; —bl,ys. Finally, it checks whether

?
z'Ryz+crfz+c?rg—f =0

which is a simple transformation of (5.10) when sTRys + rlTs +r9=0.

We present the commit-and-prove system Ily,.q = (ABDLOP, P, V) for
the relation Rq,aq in Figure 5.3. Prover P starts by sampling masking
vectors y; <« D?lld,yz — D;"Zd and computing w = A1y; + Azyz. Then, it
calculates g1 = sTRpy + y Ros + rly, where y is defined in (5.8), and the
commitment t = bl;s; + g1 to g;. Finally, the prover sets v = y'Rpy +
bl.y> and sends w, t, v to the verifier.

Next, given a challenge ¢ < C, the prover computes z; = cs; +y; for
i = 1,2 and applies rejection sampling. If it does not abort, the prover
outputs z1, z.

Eventually, the verifier checks whether z; and z; have small norms,
A1z; + Apzy = W+ cty and 2" Roz + crlz + c?rg — f = v where z is defined
in (5.9) and f is defined as f = ct — bl ,z,.
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Prover P

Inputs:

pp.dim = (q,d, kmsis, m1, M2, £, Lexe 1= 1)
pp.norms = (v,w, &, By, By)

pp-mat = (A, Ay, Brb;rxt)

s1e Ryl s2€ Ry2,me ’Rs so that [s1] <«

-

ro € Ry 1y € REMHD R,y ¢ REMHODKmAD 5 o pug(R)

Verifier V

pp.dim, pp.norms, pp.mat
ta, tg, 10,11, Ry, 0

S =

<51 >r7:|
(m),

myd

51

y1<D

npyd
52

w = A1y + Agyz

- e
v [*<By2>a}

81:= sTRzy + yTst + rlTy

y2<D

= bZXtSZ +81
v:=y Ryy +bL.y>

z1 =81 +Y1

Zy =Sy +Y2
fori=1,2:
if Rej(i) (zi, csj, 81, M;) =1
then (z1,2p) := (L, 1)

w,t,v

c—C

21,22

7= <zl>l7
(ctg — Bza),

fi=ct— betZZ
Accept iff
|z1]l < s14/2m1d and
22| < s2v/2md and

Aqz1 + Ayzy = w+cty and

2'Roz +erlz+Prg—f =0

FIGURE 5.3: Commit-and-prove system Ilg,,q for proving sTRys + rlTs +7r9=0.

Here, Rej"), Rej(?) are rejection sampling algorithms.
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5.2.1.1 Security Analysis
We summarise security properties of the protocol in Figure 5.3 below.

Theorem 5.2.2. Let Rej(l) = Rej(z) = Rejy as defined in Figure 3.2. Fix standard
deviations s1 = y11a and sy = yav+/mad for some 1,7y, > 0 and define

_ 2k+1) 1 1 o
M = exp ( logle) 7 27?) fori=1,2

Suppose that m1d > 5« and myd > 5k. Then, the commit-and-prove system Ilq,ad

for the relation Rquaq has statistical completeness with correctness error 1 — VoG

Proof. To begin with, we bound the norm of cs; and cs,. Note that by
Lemma 3.2.8 and the definition of C in (3.5) we have |cs1| < ay and
|esa |vipy/mad. Then, by Lemma 3.3.2, the probability that the two rejection
sampling algorithms Rejy do not abort is at least 1/(M;M,). Furthermore,
by Lemma 3.2.2 for t = v/2 and our assumption that myd, mpd > 5k, the
probability that ||z1| < s14/2m1d and |zp| < sp4/2mpd is overwhelming.
The other verification equations hold based on the discussion above. [

Theorem 5.2.3. Let Rej(l) = Rej(z) = Rejy as defined in Figure 3.2. Fix standard
deviations s1 = y1qa and sy = yanv+/mad for some 7y1,y2 > 0 and define

_ 2k+1) 1 1 o
M = exp ( logle) 7 27?) Jor =2

Suppose that kpmuwe = my — kmsis — £ — 1 = 0. Then, the commit-and-prove sys-
tem Ilquaq for the relation Rqyaq is simulatable under the MLWE
assumption.

KMLWE AMmsis ++1,x

Proof. We can simulate the commitment and a non-aborting transcript
between the honest prover and the honest verifier in the following way.

First, we define a hybrid simulator S; which still knows secret informa-
tion s;, m. Given a challenge c < C, it honestly generates the commitment
(ta, tp, t) under randomness s; <« x™2. Further, it samples fresh masked
opening z; « Dsmlld and z, < DZ;zd. Finally, it sets w := A1z; + Azy — cty
and v := zTRyz + crf z + c?rg — ct + bL,z,. Then, by Lemma 3.3.2, the dis-
tribution of the commitment and a transcript output by Sy is statistically
close to the one in the actual non-aborting protocol.

Further, we describe an efficient simulator S;, which still knows s;, m
and simulates both the commitment and the transcript as follows. Namely,
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it executes the S; algorithm but instead of generating (t4, tg) honestly, it
samples u « Rg*“l and computes:

ta Aqsg
tg|=u+| m |- (5.11)
t 81

Now, we observe that under the MLWE, - cuss+¢+1,¢ assumption, the
output distribution of &, is computationally indistinguishable from the
output distribution of Sj.

Finally, we can simply set S (which does not use any secret information)
to proceed identically as S, but instead of defining (tg4, tg, ) as in (5.11), it
directly samples (t, tg, t) < R 1. Then, the output distributions of S
and S are identical. Hence, the statement holds by the hybrid argument.

O

Theorem 5.2.4. Suppose By > 2s1/2m1d and By > 2sy+/2mpd. Then, the
commit-and-prove system Ilq,aq for the relation Rqaq is knowledge sound with
knowledge error 2|C| 1.

Proof. Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > 2|C|~!. By Lemma 3.3.1, there
is an algorithm £ which runs in expected time at most 3T and extracts
from P* three accepting transcripts with pairwise distinct challenges with
probability at least € —2/|C]:

() (w, | v,c@,zf),zg)) fori=0,1,2.

First we focus on tr(®) and tr()). Define
Z(l) (0)

i %
() — ((0)
By construction, we have ¢ € C, 81| < 2s14/2m1d < By and also |5 <

260+/2mrd < Bp. Moreover, A181 + AySy = ty. Further, we define the ex-
tracted message vector

g:i=cM ¢ and §; = fori=1,2.

m:=tg—B5; and §j:=t-— ngtgz.
Then, we have

ta A8 A; 0
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Hence, we get ABDLOP.Open(81,m, 55, ta || tg) = 1.
@ _ . (0)

; Si=1z; — c© §; for i = 1,2. Moreover, consider

1(2) = zfz) —c@s; fori =1,2. We claim

Next, let §; := z

the third transcript tr(?) and define y
2) )

that (§1,¥2) = (y; ', y, ') unless £ breaks the binding property of ABDLOP.

Indeed, note that:

@ ) @ )
o | Z; "% _
Al (cm Y ) + A2 <c<z) — ) ta-

Hence, unless

€ finds two different openings to (t4, tg). Assume this is not the case. Then,
we get
zgz) - zgl) = (c® — Mg,

Note that the term on the left-hand side can be expanded as:

2D 50 _y@ g (@ _ g

Thus, we conclude that ygz) — ¥1 = 0. Similarly, we deduce that y(z) =¥o.

2
Finally, let us define the following vectors:

§:= l<§1>‘7] and y := l 1) ] .
<ﬁ1>17 _<B)_’2>¢7
Then, from the verification equations we have that for i = 0,1,2:
z(i)TRzz(i) + C(i)rsz(i) + c(i)2r0 — (c(i)t — beTxtzg)) =0 (5.12)
where

i)
2 .— ] z1")o . =51y
(cWtg — BZ§Z)>U‘ y

By expanding Equation 5.12, we obtain

N2 .
c® <§TR2s +rls+ r0> +cgl +gh =0 fori=0,1,2
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where

g1 =8 "Ry + ¥ Rp5 + 11§ — 51

/
1
/
8o

=y Roy + bl.y2 —v.

Alternatively, we can write these three equations as follows:

1 O 0(0)2 20 0
1 @ c(l)2 g =10
1 @ @ sTRys +1l5+ 1 0

Since the difference of each two challenges in {c©,cM, @} is invertible
over R,;, we must have that TR, + r1T§ +r9=0. O

5.2.2  Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N
quadratic relations. Clearly, if one were to prove them separately using the
approach from Section 5.2.1, one would end up committing to N garbage
polynomials g. Here, we circumvent this issue by linear-combining the N
equations into one quadratic equation and prove it using the protocol in
Figure 5.3. This results in committing to only one garbage polynomials at
the cost of reducing the soundness error by a negligible additive factor.

More precisely, suppose that we want to prove for N public k(m; + ¢)-
variate quadratic functions f1, ..., fy, over R, that

fj(s) =0 for j e [N] where s := (s; || m),. (5.13)

As before, we can write each function f; as f;(x) := xTlezx +r1j1x+71j0. We
define the corresponding relation Rqyad—many as:

((Rz‘,Zr 1i1,7i0)ie[N]/ (Slrm)) :

sTR;»s +1];s + ;9 = 0 for i € [n] where s := ({s1 || m),)

We let the verifier begin by sending challenges 1, ..., un < Ry. Then,
we define a single quadratic function

N N N N
Fx) =Y uifi(x) = x" <2 ijj,z) X + (Z wr,%) X+ D HiTo
i=1 i=1 i=1 i=1

90



5.2 PROOFS OF QUADRATIC RELATIONS 91

Prover P Verifier V

Inputs:

pp.-dim = (q,d, kmsis, M1, M2, £, bt == 1) pp-dim, pp.norms, pp.mat
pp.norms = (v, w, &, By, By) ta, ts

pp-mat = (A1, Ay, B, bl,) (rio 1i1, Rip)ie[n) @

s1e Ry, sp e Ry, me Rﬁl so that [s1]| < a

-3} [3]- [

(rio, 111, Rip)ie[n), 7 € Aut(R)

M1, BN < Ry

run Ig,,q with the following inputs: accept if Iqaq verifies
pp = pp
(s2,(s1,m)) := (s2, (s, m))

N N N
Ry = Y wiRip 11 i= Y Hitin, o = ), Hitig
iz1 iz1 i=1

FIGURE 5.4: Commit-and-prove system Ilgyad—many for proving STR,',zs + rlrls +
rig=0fori=1,...,N where s := {51 || m),.

and prove that
f(s)=0 (5.14)

using the protocol from Figure 5.3. Now, we observe that if one of the
conditions in (5.13) does not hold, then Equation 5.14 is satisfied with
probability at most g, a/ts,

We present the commit-and-prove system Il ad—many = (ABDLOP, P, V)
for the relation Rqyad—many in Figure 5.4. Since correctness and simulatability
will be implicitly included in the more general case in Section 5.2.3, we only
focus on knowledge soundness.

Theorem 5.2.5. Suppose By > 2s1/2m1d and By > 2sp+/2mpd. Then, the
commit-and-prove system Ilqyad—many for the relation Rquad—many s knowledge

sound with knowledge error 2|C|~1 + qfd/l.

3 Recall that ! is the number of factors that X? + 1 splits into modulo 4.
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Proof. Let P* be a probabilistic prover which convinces the verifier with
probability e > 2|C|~! +q; ! and runs in time at most T. We define a
deterministic algorithm .A(p, ) which given randomness p € R and a
challenge p € Rfi\] , it does the following. It simply runs the extractor £*(p)
from the proof of Theorem 5.2.4 with randomness p which then calls P*(u)
in a black-box way.

We say that A succeeds if A outputs (p, 51, M, 5, ) such that

ABDLOP.Open(8;, 1,8y, t4 || tg) = 1

and
N N N
§T <Z }l]R],2> S+ (Z ‘Z/l]r}:1> S + Z ‘Z/l]'T() =0
i=1 i=1 i=1

where 5 := (81 || ). Note that £* could also extract two different openings
of (ta, tg). But then, A would break the binding property of ABDLOP. For
presentation, we will assume this never occurs.

From Theorem 5.2.4 we know that the expected runtime of A4 for any u
and p < R is at most 3T and the probability that .A succeeds for random p
and p is at least € — 2/|C].

We introduce the following notation. Let H < R x Rg’ be the set of triples
(p,#) such that A(p, u) succeeds. Also, define H(p) to be the set of all u for
which (p, u) € H. For fixed (p, u) € H, denote §§p”‘) to be the §; part of the
output of A(p, u) (and similarly for other variables) and denote

slom) ._ <5§P'14) I m(P:I‘)> .

g

Finally, we define

H = {(p,y) eH:3je[N], 8PP RjpsPw + rf 80 Ly 2 0}.
Then, we have the following claim.
Claim 5.2.6. If (o, u) € H then

Pr [(o,#') e H] > 0.
WeRY

Moreover, if (p, #) € H' then
(N N N
_ / _ _
s (S () S
1= 1= 1=

/1

is at most ql_d .
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5.2 PROOFS OF QUADRATIC RELATIONS

Proof. First, we observe that if (o, #) € H then
Pr [(ou)eH]> Pr [u'=pu]>0.

;l’<—7?,£\’ F"_R{q\]

Now, if E(P'”)TR]»,ZE(P"‘) + r].Trlé(P"‘) +1j0 # 0 for some j, then with probability
/1

at most g, ! we have

N

T
Z pi (5("”‘) R;,5(H) + rz‘T,lg(p"‘) + ri'0> =0
i=1

Hence, the claim follows. O
Now, we can define our extractor £.

1. Sample p — R and p € R} and run A(p,p). If A(p,p) does not
succeed, abort.

2. If A(p, u) succeeds, run A(p, p) with fresh p’ < R and p’ ’Ré\] until
A succeeds.

We say that £ succeeds if it extracts two tuples x = (§1,m,§;,¢) and 1’ =
(), m’,85,¢") such that one of the conditions below holds:

* (51,52) # (8},85) and

1 = ABDLOP.Open(s1,m, 5y, ¢ ty H tz)
= ABDLOP.Open(s}, m’, 8,7ty || tp).

e ABDLOP.Open(51,1,5,,Cts || tg) = 1 and for all i € [N], 57R;»5 +
riT,1§ +1ip = 0 where 5 := (51 || m).
In the first case we break the binding property of the commitment scheme.

On the other hand, we extract the witness in the second case. Then, we have
the following claims about £.

Claim 5.2.7. The expected number of calls to A is at most 2.

Proof. Let X be the expected number of calling A and let & be the probability
that A(p, u) succeeds for random p and p. Define E to be the event that .4
succeeds in the first step. Then,

E[X] = E[X|E] - e+ E[X|E]- (1 —¢) = <1+1)-£+1~(1—s)=2.
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5.2 PROOFS OF QUADRATIC RELATIONS

We conclude from the claim above that the expected runtime of £ is at
most 6T.

Claim 5.2.8. Probability that £ succeeds is at least € —2/|C| —q; i,

Proof. First, we observe that £ terminates (without aborting) with prob-
ability at least € — 2/|C|. Suppose £ indeed terminates and let us write
(u,81,m,8,,¢) and (', 8}, m’,8},') to be the respective outputs of A in the
first and second step of £. We have the following three disjoint cases:

Case 1. (51,m,57) # (5], m’,85) and

N
i (§TR1-,2§ +rl5+ rl-,o) =0 and )y <§’TRZ-,2§’ +rl8 + ri,O) =0
i=1

=

I
—

1

and

1= ABDLOP.Open(§1, m, Sy, Gty || tB)
= ABDLOP.Open(s}, m’, 85,8’ t4 || tg).

Case 2. (51,m,8,) = (5], m’,8,) and ABDLOP.Open(81, 1,5, G ts || tg) =
1 and

N N
Z i (gTRirzg + 1‘3:15 + 1’1',0) =0 and Z ]4; (§TRI',2§ + 1‘3:15 + ri,O) =0
i=1 i=1

and for all i € [N], §TR;55 + 1] ;5 + ;9 = 0.

Case 3. (51,m,8) = (5], m’,8,) and ABDLOP.Open(81, 1,5, G t4 || tg) =

1 and

N N
Z Ui (ETRLZE + r{ls + ri,o) =0 and Z yg (ETRLZE + rglé + ri,o) =0
i=1 i=1

and there exists i € [N], such that 8" R;,5 + riTlé +71i9 # 0.
Define E; to be the event that £ terminates and Case i occurs. Then, we
have
€ —2/|C| < Pr[€ terminates] = Pr[E; v E; v E3]

and
Pr[€ succeeds| > Pr[E; v Ep].
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Hence, we only need to upper-bound the probability Pr[E3]. We apply
Claim 5.2.6 as follows:

(A(p, p) succeeds) n (Zfil i (ﬁTRi,zg 8 “130) - 0)
A (3:‘ € [N]:8TRp8 + 118 +7i0 # 0)

Pr[E;] < Pr [

(o.u)eH’ i=1

1 —d/
< R gNd PN
(pu)eH’

1 —d/l _ —d/I
< 18] g Z fi " sS4
(om)ERXRY

The statement thus follows by combining the two previous claims. [

5.2.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (5.13))
and additionally prove that for quadratic k(m; + £)-variate polynomials
Fi,...,Fy, evaluations F; ({(s1 || m),) have the constant coefficient equal to

zero. Concretely, denote the quadratic function
. TR/ /T / :
Fj(x) := x"Rjx + 1j1x + 1/ for j € [M].

We define the correspond relation

((Riorin riodieny, (R} o, %) 1,7 )jeqagy ) (s1,m) ) -

Rquad—eval = Vie [N], STRl',zs + 1‘3:18 +7ri0=0and Vje [M], f] =0
where s := ((s1 || m);) and x; := sTR;.Izs + rﬂs + ”;‘,0
(5.15)

For simplicity we first present an approach with soundness error 1/g;.

We apply the strategy from Section 5.1.3 and first commit to a random
masking polynomial g < {x € R, : X = 0}. Then, given random challenges
U1,..., UM < Zg, we send

=

Il
—

hi=g+ ) v (sTR;-’zs + r;»,Tls + r},o) (5.16)

J
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to the verifier where s := (s; || m), as before. Then, it simply checks
whether the constant coefficient of h is indeed equal to zero. What is left
to prove is that i is well-formed, i.e. (5.16) holds. Clearly, Equation 5.16
is a quadratic relation in the committed messages. Indeed, note that it is
equivalent to:

TPH AT .
<Sl || m H g>¢TRN+1,2<Sl H m H g>l7' + rN+1,1<Sl || m || g>‘7 + rN—‘rl,O — 0
where
M /
RN+1,2 = Z:]*1 77,2 k(my+0) xk c Rs(m1+€+1)><k(ml+£+1)
0k><k(m1+é) Ox xk

T L M T k(my+0+1)
INt11 = [Zj:l vty 1 le(k—l)] € Ry

M

5 . /

'N+1,0 = Z Uj”j,o —he Rq.
=1

We provide intuition for the soundness argument. Assume that the verifier
is convinced that / is of the correct form (5.16) and & = 0. Also, note that

a cheating prover committed to g before seeing the challenges vy, ..., vp;.

Hence, if for some j € [M], the constant coefficient of sTR;- ,S + r;-Tls + r;- o is
non-zero, then the cheating prover has probability at most 1/4; of guessing
the constant coefficient of Z]j\i1 vj (sTR;Izs + rﬁs +70)-

Recall that we also need to prove (5.13), i.e.

(s1 || m)gRi(sq || m)s +xf1(s1 || m)y, +7i9 =0 (5.17)
fori =1,...,N. Note that each such quadratic equation can be equivalently
written as:

H T A
(s1 [l m [} o Rialst [| m [| o + &y (st (| m [| 0 +7i0 =0 (5.18)

where

Ri,z . [ Ri,2 Ok(m1+é)xk1 c Rg(m1+é+1)><k(m1+é+l)
Ok sk (my +0) Ok sk

~T . T
L= [ri,1 01k

171‘/0 =Tip € Rq.

] . RI{;(nquerl)

Hence, we end up with proving N + 1 quadratic equations of the form
(5.18) fori=1,...,N + 1 and can thus apply the protocol I'q,ad—many-
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BOOSTING SOUNDNESS. We exponentially decrease the soundness error
by parallel repetition. Namely, in order to obtain g;° A soundness error, we
commit to A random masking polynomials g = (g1,...,81) < {x : Ry : X =
0} as follows:

ty = Bexisy + 8.

Then, we send t, to the verifier which in return outputs the challenge matrix
(Vij)ie[A]je[M] < Z;}XM. Then, we compute the vector h = (hy,...,h,) as
follows:

TR/ /T /
hy 81 ; ; ; s'Ry,8+ 1738 +17,
1,1 V12 - UM
bl (&2 | . : s"R) s + 1318 + 15
Upl Upap o0 UM '
hy A TRMzs+rM1s+rM0
(5.19)

and send it to the verifier. It directly checks if all polynomials h, ..., k), € R,
have constant coefficients equal to zero.

As before, we still need to prove that vector h was constructed correctly.
We reduce this problem to proving quadratic relations. Let us fix i € [A].

Then,

M
e o . T/ T /
hi:=gi+ Z vjj (s Rjys + 1718+ ”j,o)
=1

is equivalent to

(s m || g)gRyvizs1 || m |l g + iy 45151 | m || g + Frio =0

where
- >, v R Okmy+0)xkA k(1 +0+A) xk(imy +0+A)
Ryyip:= |77 70 ! € Ryq
Okch sk (1my +0) OkAxckr
T k(my+L+A)
1'N+1 1° [Z] 1 Vi T ]1 €; ] € Rq (5.20)

N L /
rN-l-i,O = Z Ui,j”j,o — hi € Rq.
j=1

and eiT = [lek(i—l) 1 lek()\—iﬂ)fl] € R”;A is the binary vector which
has exactly one 1 in the (k(i — 1) + 1)-th position.
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Further, we need to prove (5.13), or alternatively (5.17) fori =1,...,N.
Similarly as before, Equation 5.17 can be written equivalently as

(s m || ggRio(s1 || m | g)o +1f1¢s1 | m |l go+Fip=0  (521)

where Ri,zr f}:yf’i,O are defined as follows

ﬁi,z . l Ri» Ok(m1+€)><k/\] c ng(ml-&-é-&-/\)xk(ml—&-ﬂ—&-/\)

Ocrxk(m+0)  Okaxka

(5.22)
T . k(mq+0+A
1= [r{l lekA] € Rq( ey

TA’Z‘,O = 1’1‘,0 € Rq.

Hence, we reduce the problem to proving N + A quadratic equations in
(s1 || m || g)s and can thus run the commit-and-prove system Ilq;ad—many-

We present the commit-and-prove system I1g,,q—eval = (ABDLOP, P, V)
for the relation Rq,ad—eval in Figure 5.5.

5.2.3.1 Security Analysis
We summarise security properties of the protocol in Figure 5.5 below.

Theorem 5.2.9. Let Rej) = Rej® = Rejq as defined in Figure 3.2. Fix standard
deviations s1 = y1qa and sy = yayv+/mad for some 7y1,y2 > 0 and define

_ 2k+1) 1 1 -
M = exp ( logle) 7 27?) fori=1,2

Suppose that myd > 5« and mad > 5x. Then, the commit-and-prove system
Iguad—eval flor the relation Rquad—eval has statistical completeness with correctness
error 1 — VoG

Proof. Take any i € [A]. Then, if the constant coefficients of g; and sTR;- 58 +
r/T
i
have that the constant coefficient of h; also zero. The rest of the correctness
argument follows from Theorem 5.2.2. O

s+ r; o are all zeroes for j € [M] and each v; ; is an integer, then we must

Theorem 5.2.10. Let Rej(l) = Rej(z) = Rejq as defined in Figure 3.2. Fix stan-
dard deviations s1 = Y1y and sy = yonv~/mad for some y1,v2 > 0 and define

. 2(k+1) 1 1 .
M; :=exp ( logle) 7 + 2712> fori=1,2.
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Prover P Verifier V
Inputs:
pp.dim = (q,d, kmsis, m1, Mo, €, bt == A+ 1) pp.dim, pp.norms, pp.mat
pp.norms = (v,w,a, By, By) ta, tg, 0

o Bext
pp-mat = | Ay, Az, B, | U (ri0,1i1, Rig)ie[N]

bext

s1€ R, 55 € Rj?, m e R so that ||s1| < a (rfo T, R ierm

e[l

(ri0, 11, Rig)ien) (Mo, 11 Rip)ie[m)
o e Aut(R)

s = |:<51>17:|
(m)s

g:=(81,---.81) H{x:Rq:JE:O})‘
tg = Bexts2 + 8

te
(vij) —Z3"M
(Vi,)ie[ALjerm]

forie[A]:

M
= o (TR /T /
hi = gi + Z Vi j (s Rjos+1jys + ’j,o)

j=1
hy,...,hy
run Iguad—many With the following inputs: accept if:
pp.dim := (q,d, xmsis, m1, my, £ + A, 1), pp.norms := pp.norms (i) Mquad—many Verifies
pp.mat := (Al,Az,{ B ],b;t> @)y =...=hy =0
ext
(s2, (s1,m)) = (s2, (s1,m || g))
forie[N]:
Ry i— Ri> Ok(m1+/)><k/\:|,rll . [ ri1 }
Okrxck(m+6)  Okaxka Oax1
ri0 *=Tio
forie[A]:
M
Rusn im 21 VijRiy Ok o) xia
Oph x k(i +) OpA kA

ZM Vi ir M

. j=1Yijti1 o /

ty i = | TV e = Y ot — B
€; j=1

FIGURE 5.5: Commit-and-prove system Ilg,ad—eval for the relation Rgyad—eval-
Here, e; € RZA is the binary vector which has exactly one 1 in the
(k(i—1) + 1)-th position.
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Suppose kpmuwe := My — Kkmsis — £ — A —1 = 0. Then, the commit-and-prove sys-
tem Tguad for relation Rquaq is simulatable under the MLWE,, = oo 4oy a41,x
assumption.

Proof. The proof is almost identical to the one for Theorem 5.2.3 with the
addition that the simulator S samples tg « RqA and h «— {xeR;: X = 0},
Indeed, note that since in an honest execution ty is chosen uniformly at
random from {x € R, : X = 0}*, the distribution of the vector h constructed
as in Equation 5.19 is still uniformly random over {x € R, : ¥ = 0}". O

Theorem 5.2.11. Suppose By > 2s1+/2myd and By > 2sy+/2mpd. Then, the
commit-and-prove system Ilq ad—eval for the relation Rqyad—eval s knowledge

sound with knowledge error 2|C|~1 + qfd/l + qf)‘.

Proof. Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > 2|C|~! + ¢, iy 91 A Define a de-
terministic algorithm A(pp, pg, Y) which given randomness p = (pp, pg) €
Rp x R and challenge Y € Z?XM does the following. It first runs P*(pp)
on randomness pp with challenge Y and stops after the third round. Let t,
and h be the output of P* in the first and third round respectively. Then,
it runs the extractor £*(pg) defined in the proof of Theorem 5.2.5 with
randomness pg (which runs P*(pp,Y) in a black-box way).

We say that A succeeds if A outputs (tg, Y, h, §,m, 8,5, c')~ such that
ABDLOP.Open(sy,m || g,82,Cta || tg || tg) =1and iy = ... = hy = 0and
for all i,

M
hi =gi+ 2 Ui j (ETR},ZE + r;lTlé + r;l())
j=1
and
§TR]<,2§ + r}:lé + 10 =0for je [N]
where § = (31 || m),. As before, we assume that £* does not break the

binding property of ABDLOP since if it did, then so does A (and later on £).
Clearly, by Theorem 5.2.5, the probability that A succeeds for random p and
Y is at least € — 2/|C| — q; i, Moreover, the expected runtime A(pp, pg, Y)
for any fixed pp, Y and pg < R is at most 6T.

We introduce the following notation. Let H < p x Rg x Z{]\XM be the
set of triples (p,Y) such that A(p,Y) succeeds. Also, define H(pp) to be the

set of all (pg,Y) for which (pp, pg,Y) € H. For fixed (p,Y) € H, denote égp’Y)
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to be the §; part of the output of A(p,Y) (and similarly for other variables)
and denote (oY)

-(p,Y) [ g\0 T (p,Y)

§) 1o (50, )

Finally, we define
o (p,Y) e H:3je [M], const. coeff. of
’ A R;,ZE(P'Y) + r;,,Tls(PrY) + 7;,0 is non-zero |

Then, we have the following claim which follows identically as in Claim

5.1.3.1.
Claim 5.2.12. If (pp, pg,Y) € H then

Pr [(op, 0, Y') € H] > 0.
(0f Y )R x 2§ *M

Moreover, if (op, pg,Y) € H' then

M
Y T (oY
x; = gl Z ( ,8(0Y) 4 r},ls(f" )+ ”;,0)
j=1

Y —z)M

Pr [Vi e[A], % =0

is at most q; A
Now, we define our extractor £.

1. Sample p = (pp,pg) — Rp x Rg and Y € Z7*M and run A(p, Y). If
A(p,Y) does not succeed, abort.

2. If A(p,Y) succeeds, run A(pp, p%, Y’) for the same prover randomness
op but fresh pi. < Rp and Y — Z3*M until A succeeds.

We say that £ succeeds if it extracts two tuples x = (§1,m,§;,¢) and 1’ =
(), m’,8},¢") such that one of the conditions below holds:

* (51,82) # (8),85) and
1 = ABDLOP.Open(s1, ,Cta H tp)
= ABDLOP.Open(s ’1 m’, 8,7ty || tg).

e ABDLOP.Open(s1,m,3,Gts || tg) = 1 and for all j € [N], § R]2§ +
]Tl§ + rj o0 = 0 and for all i € [M], the constant coefficient of 57 R/ oS+

115 + rlo is zero where § := (51, m).
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In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about £.

Claim 5.2.13. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of £ is at most 12T.

Claim 5.2.14. Probability that £ succeeds is at least € —2/|C| — g~ %" — qu

Proof. First, we observe that £ terminates (without aborting) with prob-

ability at least € —2/|C| —q; i/t . Suppose & indeed terminates and let us
write (tg, Y, h,8;,m,g,5>,¢) and (tg,Y h’ sl,m g/,s5,¢) to be the respec-
tive outputs of A in the first and second step of £. We have the following
three disjoint cases:

Case 1. (51,m, §,52) # (5], m’,g,8)) and for i € [A], h; = fzg =0and

h; —g1+2] 1Vi ( ]2§+r’-7i§+r;o)
W = gl+Z] 1 ; (’TR’2§ +r’7is’+r]0)
and for all j € [N],
ETRj,2§+ 1s+r]0f0ands/TR]zs+r 18 +71j0=0
and

1 = ABDLOP. Open( S1, || g,ﬁz,c_'tA || tg H tg
= ABDLOP.Open(s], m’ || g,55,0;ta || tg || t,).

Case 2. (81,1, §,8) = (5], m’,g/,8}) and fori € [A], i; = i} = 0 and

and
ABDLOP.Open(51,m || §,52,Cta || tg || tg) =1
and for all j € [N], ETR]-,ZE + r]-T,lé +1;0 = 0 and for all j € [M], the constant

coefficient of §TR;- )5+ r;Tls + r§ o is zero.
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Case 3.(51,Mm, 8,5,) = (8}, m’,g,8}) and fori € [A], h; = i} = 0 and

hi =gi + Z]Ail v;j (§TR;.,2§ +v ls + r )
_ M To/ =
h=gi+ i1 vg,j (s R;-,zs + 1 ls + ”]0)

and
ABDLOP.Open(sy,1h || ,52,Cta || tp || tg) =1

and for all j € [N], §TR'2§ + rT1§ + 70 = 0 and there exists j € [M] such
that the constant coefficient of sTR/ 2s +r 1s +7 i0 is non-zero.

Define E; to be the event that £ termmates and Case i occurs. Then, we
have
e—2/|c|—q; "
and Pr[€ succeeds] > Pr[E1 v Ep]. Hence, we only need to upper-bound
the probability Pr[E3]. Define F(§, ) to be the event that for all i € [A], the
constant coefficient of

< Pr[€ terminates| = Pr[E; v Ep v E3]

M
_ / =Tp! = /T = /
gl + Z Ui,j (S Rj/zs + r]"ls + 7’]',0)
j=1

vanishes. Now, by Claim 5.2.12 we obtain:

(A(p,Y) succeeds) A F(5,8) A

Pr[E3] < Pr
[Es] (EI je[M]: const. coeff. of §TR;-,2§ + rﬁé + r;/o is non—zero)

< E (5Y) oY)
%p|- ISREI qAM( YZ)eH,(pE eH(pp)[ ( & )]
1 PrY,(_ngM [P (s(P’Y),g(P/Y))]
< —
IRp| - |RE| - M (o )ek Pr(p,E Y,)(_mEXZ/\xm[(p%,Y’) € H(pp)]
AM
’11 - |RE|
< ST 2 G
P El"9 (0,Y)eH’ op
I Z % AM - |RE|
= %l |mg| oM S o)
—A AM
IRl U -
S 9 |mg| B o W 2 X [H(pp)| f

prERp (op,Y)eH (pp)
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5.2 PROOFS OF QUADRATIC RELATIONS 104

Finally, the statement follows by combining the two claims about the
extractor £. O

5.2.3.2  Reducing the Number of Garbage Commitments

The approach in Section 5.2.3 requires us to commit to A additional poly-
nomials g; in order to have ~ g, A soundness error. Here, we consider a
special case when ¢ := ¢_14 and show how to reduce this number by a
factor of two for free. In particular, will use the following property of o_;.

Lemma 5.2.15. Define the o0_q-trace map Tr: Ry — R, as
Tr(x) =27  (x + 0_1(x)).
Then for any a, b € Ry, the polynomial y = Tr (a) + X427y (b) satisfies:

Yo = ag and Y, = bo.

Proof. We first observe that for any c € R, such that ¢_1(c) = c we have
¢q/2 = 0. Indeed, if we compare the d/2-th coefficient of ¢ and 0_1(c), we
get cyp = —¢cy)p and thus ¢, = 0.

Let a’ = Tr(a) and V' = Tr(b). Clearly, a/,b’ are stable under the o4
automorphism and hence we have 4/, = v, 5 =0. Also, by construction

ay = ag and by = by. Therefore, yo = ay — b/, n = ap = ag. Similarly,
yd/Zza;/2+b6:b0- O

For simplicity, suppose that A is even. The strategy here is to consider
each pair (a®, b)), where i € [A/2], defined as

M
i) . T’ /T /
al) = Z Vi1, (s Rjos +1j;s + 7’]',0)

j=1
M
i) . TR/ /T /
pi) .— Z V24 (s Rjos +1j;s + ”j,o)
j=1

and apply Lemma 5.2.15 to simultaneously prove that the constant coeffi-
cient of both elements in R is equal to zero. Concretely, we prove that the
constant and middle coefficient of each

Tr (@) + x¥27e () € R,

4 Thus its degree k is equal to 2.
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is equal to zero.

Similarly as before, we first generate A/2 random masking polynomials
8= (81,--,8p) « {xeRg:x0 = x4 = 0}*2. Then, given a chal-
lenge matrix (v;;) < ZqAXM, we construct () and b() as above and send
hy, ..., h), defined as follows:

hi=gi+Tr (M) + X2y (b@) for i e [A/2]. (5.23)

The verifier then checks whether the constant and middle coefficient of each
h; is equal to zero.

Finally, we need to prove that all y,...,h) /2 are well-formed. First, we
observe that there is an efficiently computable matrix U € Rs(mﬁe) x2(m+0)

such that for all x € R;’“M:

o((x)e) = U{x)o.
Hence, we have the following lemma.

Lemma 5.2.16. Let Ry € Rﬁ(mlﬂ)“(ml“),rl € Ré(mﬁg) and rg € Ry. Then

Tr (sTst + rlTs + ro) = sTst + vlTs + 79

where
vV, =271 (Rz + UTU(RZ)U> )
vy =271 (r1 + UTa(r1)>
vo 1= 27" (ro + o(ro)).-
Proof. The proof follows directly from the fact that o(s) = Us. O

By applying Lemma 5.2.16, we note that Equation 5.23 can be written
equivalently as:

(st || m || @)eRnpindsy | m || 8o + 244151 || m || )0 + Prip =0
(5-24)
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where Ry 2, i{] +i1, PN+ip are defined as follows

M _
. 2 27 (0 + X Py;) (R},z + UTU(R},Q)U) 02y 4-0)x A
Rn+ip =

O/\><2(m1+€) Orxa

rN+z 1- [Z] 1 2~ (1)21'_1,]' + Xd/2U2,‘,]‘) (I’;?i + U(I;E)U) EZT]

PN —1 2
PN1i0 = Z 27 (vgim1,j + X0y ) (ff,o + (T(f;,o)) — h;.

(5-25)
and el-T = [lez(i—l) 1 Ol><(/\—2i+l)] € ’RqA is the binary vector which has
exactly one 1 in the (2(i — 1) + 1)-th position. Not to mention the fact that
we also need to prove (5.17) fori = 1,..., N. Identically as before, Equation
5.17 can be written equivalently as

(s m || g)gRiz(s1 || m || g)o +f1¢s1 || m | go+Fig=0  (526)

where Ri,Z/ fiT,y’A’i,O are defined as follows

R, = l R;» 02(m1+€)></\] eR;(m1+£+)\/2)><2(m1+é+)\/2)

0)\ 5 2(m; +0) 0xxA (5:27)
AT . 2(my+L+A/2 5.27
L= [riTll leA] € Rq(ml ?

?1‘,0 = 1’1',0 € Rq.
Hence, we reduce the problem to proving N + A/2 quadratic equations in

(s1 || m || g)s and can thus run the commit-and-prove system Ilg,ad—many-
We present the commit-and-prove system

Y — (ABDLOP,P,V)

quad—eval

for the relation Rqyad—eval in Figure 5.6. Below, we state the security proper-

ties of I_I((1u A 3 eval- We omit the proofs since they are almost identical to the

ones presented in Section 5.2.3.1.

Theorem 5.2.17. Let Rej(l) = Rej(z) = Rejg as defined in Figure 3.2. Fix stan-
dard deviations s1 = y1na and sy = yanva/mad for some 1, y2 > 0 and define

. 2(k+1) 1 1 .
Ml.—exp< Iog(¢) 7i+27%>forz—12
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Prover P

Inputs:
pp.dim = (q,d, xmsis, m1, 12, L, bext := A/2 + 1)
pp.norms = (v,w, &, By, By)

pp.mat = (AerZ, B, [B;*‘D
bext
s1e Ry, s2e Ry, me Rfy so that [s1] < a
A A
ta = ! s1+ 2 S2 + 0
tg 0 B m

(ri0, %1, Rig)ie[nys (o, 10 Rip)ie[ )
0:=0_1€Aut(R)

Verifier V

pp.dim, pp.norms
pp.mat

tatgoi=0
(rijo Ti1, Ri)ie[n)

(';,0: r;,ll R;,Z)xE[M]

. [<s1>y]
(m)g

8= (81, 8np) « (X1 Ry : =0
tg = BextS2 + g

forie[A/2]:

M
. d/2 T T
hi =g+ Z(Uz,,w + XYy ) Tr (s R,s +rfis + ';/,0)
=

run Igyad—many With the following inputs:
pp.dim := (q,d, kmsis, my, mp, £+ A, 1), pp.norms := pp.norms

pp.mat := <A1,Az,[ B :|/be(>
Bext

(s2,(s1,m)) := (s2, (s1,m || g))
forie [N]:

R; 0. P
Rip i [ i2 2(ml+t)><}\:| ri i [ ri1 ] o= Tio
00 52(my+£) 0xxa 0)x1

forie [A/2]:

M -1 d/2 T
Rusin = [27:1 27 (vgi—1,j + X0 ) (R;/z +U J(R}(Z)U) 03y +0)x A

O)x2(my +0) OpxA

M H—1 . d/2 / T (4
it e [21:1 2 (uz,,w + X%vy;5) (1'//1 +U ‘T(r/,l)):|

€

M
N0 = 027 (v + XY Pu5i) (% + ”<’§,o)) —hi
=1

A/2x M
(Uz,/) - Zq'/

(Vi)ie[r /2] je[M]

hy .o hy

accept if:

(1) TTquad—many Verifies

(i) =...=fy =0

|

(=1

FIGURE 5.6: Commit-and-prove system T, ad—eval

A

for the relation Rquad—eval With

0:=0_1. Here, e; € Rq is the binary vector which has exactly one 1

in the (2(i — 1) + 1)-th position.
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Suppose that myd > 5« and mpd > 5x. Then, the commit-and-prove system

-1 ) . .
nga d)7 eval fOT the relation Rquad—eval has statistical completeness with correctness
1
error 1 — MG

Theorem 5.2.18. Let Rej(l) = Rej(z) = Rejq as defined in Figure 3.2. Fix stan-
dard deviations s1 = vy and sy = yonv/mad for some y1,v2 > 0 and define

Y (N TV S A AP
M,.—exp( log(e) %4—2%2) fori=1,2.

Suppose kpwe = My —kmsis — € —A/2—1 = 0. Then, Hg:alg_evalfor relation

Rquad—eval is simulatable under the MLWE ., we kmsis -+ /241,y dssumption.

Theorem 5.2.19. Suppose By = 2s1+/2m1d and By > 2s3+/2mpd. Then, the

commit-and-prove system Hg:ald)_eval for the relation Rquad—eval is knowledge

d/

sound with knowledge error 2|C| ™! + g gt ql_)‘.

5.2.3.3 Proving Inner Products over Z;

(1)

We apply the commit-and-prove system IT_ .4 . to prove inner products
between the polynomial coefficients of s; and m. Concretely, let V;,V; €

Rnxz(ml%), Vi,Vy € Rg and u € Z,; be public. Denote ¢ := 0_; and
s := (s1 || m), as before. Then, we want to prove that
(Vis—vy, Vs —vo)=u (mod q). (5.28)

Similarly as in Section 5.1.3.2, we apply Lemma 5.1.10 to deduce that (5.28)
holds if and only if the constant coefficient of the polynomial

o (Vis —vi)" (Vas —vo) —u

is equal to zero. Now, using the fact that o(s) = Us described in Section
5.2.3.2, we obtain

o (Vis—v)! (Vas —va) —u = (¢(V1)Us — 0(v))" (¢(V2)Us — 0(v2)) — u
=s"R)s +r{l's + 7}
where
R, := UTo(V))To(Vo)U
1 = —o(v2) o (V1)U —o(v) o (V2)U

rh = o(vy)lo(va) — u.
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5.2 PROOFS OF QUADRATIC RELATIONS

Since this is a quadratic relation on s, we can directly apply Hg;al 3 _eval tO

prove that the constant coefficient of o (Vs — vi) (Vas —vy) —uis equal to
zero. The approach extends naturally if we want to prove multiple equations
of the form (5.28).
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TOOLBOX FOR PROVING NORM BOUNDS

Often lattice relations combine two types of statements. First, we want
to prove that the committed messages are a solution to some public (e.g.
linear or quadratic) equation. This has already been covered in Chapter
5. The second one, however, focuses on proving that the secret messages
have small coefficients. One simple yet important example is a proof of
knowledge of a MSIS solution. Namely, we want to prove knowledge of a
vector s € Ry such that:

As=u and |[s|<B

where A € ’Rg‘xm, uc Rg’ and bound B are public.

In this chapter, we concentrate on proving that the norms of committed
messages are below certain public bounds. At the core of our techniques
lie the so-called approximate range proofs (ARP) described in Section 6.1. To
briefly show the intuition, suppose we have a vector s such that

[s| < B (6.1)

where bound B is public. Approximate range proofs allow us, not to prove
exactly that ||s| < B, but to prove that for some known approximation
constant §, > 1, ||s| < ¢ - B. Similarly, we can prove for the infinity norm
that ||s|o < ¢ - B where 1o > 1. Intuitively, the primary goal of using
ARP is to prove that certain equations over R, hold also over R by showing
that no wrap-around modulo g occurs.

We apply approximate range proofs and the techniques presented in
Chapter 5 to prove smallness of a vector in both Lo, and L norm. Concretely,
in Section 6.2 we propose a novel method to prove that a polynomial vector
consists of binary coefficients. For proving larger ranges, one can simply
binary-decompose the vector and prove that the longer vector is binary.
However, we observe that in applications it is sufficient to only have binary
proofs. Furthermore, Section 6.3 focuses on proving (6.1) exactly, i.e. without
any approximation constants as in the case of ARP.

Finally, we combine the newly introduced methods with techniques for
proving linear and quadratic relations from Chapter 5. The end goal of this
chapter is thus a general toolbox for proving various relations which (i)
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6.1 APPROXIMATE RANGE PROOFS

hold over R, (e.g. quadratic relations) or (ii) are related to the smallness of
the secret polynomials (e.g. proving the Ly norm).

6.1 APPROXIMATE RANGE PROOFS

In this section we provide techniques for proving that the Lp norm of
polynomial vector s, which satisfies |s| < B, is at most ¢ - B where ¢ is a
public constant that does not depend on B. We will consider the two cases
P € {2,00}. Since in practice i will be much larger than 1, we only prove
shortness of s approximately. In order to apply the results from Section 3.2.3,
we set k¥ = 128 and aim for 128-bit security. We assume that d < 256 which
will always be the case in our instantiations.

Concretely, let (sq, m) € RZ”M such that ||s1| < « . We initially want to
prove that s;, m satisfy the following:

|Dss1 + Dym+u| < B

where D; € Rgxml,Dm € R’;Xé and u € Rg are public. We can define the
corresponding relation Ryrp as

Rarp := {((Ds, Dy, u, B), (s1,m)) : [Dss1 + Dyym + u| < B}. (6.2)
We additionally introduce the relaxed relation R&’,’,;”’)

R~ {((Ds, Dy, B), (s1,m)) : [ Dysy + Dym +ulp < - B}

Clearly, for any P > 2 and ¢ > 1 we have Rarp & Rs(,f,;lp).

GENERAL STRATEGY. We prove shortness of Dgss; + D;ym + u using
the following template. First, we embed its coefficient vector into a 256-
dimensional Euclidean space under a random projection. Concretely, let
s :=Dgsi+Dym+uand s e Z;‘d be its coefficient vector. We commit

. 256/d : .
to a random masking vector y; € R; /"1 and given a random matrix

R « Bin%SéX”d as a challenge, we output the polynomial vector z3 € R§56/ a

such that
Z3 = ]73 + RS. (6.3)

Note that the subscript 3 comes from the fact that y;,y, are already defined in Figure 5.3
which we use as a black box.
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If we also apply rejection sampling on Z3 then revealing it to the verifier
leaks no information about s. Now, the prover simply needs to prove
well-formedness of zz which is a Z,-linear relation in sy, m and ys.

Finally, the verifier checks whether z3 has small coefficients. Then, by
Lemmas 3.2.3 and 3.2.5, if z3 is indeed small and of the correct form then
s must also be small. Since there is a separation between the Ly and L,
norms, we will consider these cases separately.

6.1.1 Approximate Infinity Norm Proof

We follow the strategy described above. More precisely, we start by com-
mitting to the messages (s1, m) using the ABDLOP commitment defined in
Section 4.1. Namely, we sample the randomness s < x"2 and compute

t A 0
A S1 + 2 Sy + .
tp B m

Next, we commit to a random masking vector y3 «— D§§6,

Aq
0

ie.
ty := Bysy +ys.
Then, given a random matrix R « Bin%g’éxnd as a challenge from the verifier,
we compute the polynomial vector z3 defined by Z; := i3 + RS. If the
rejection sampling algorithm does not abort then we output z3.
Now, we need to prove that z3 was well-formed. Let i € [256] and define

T € RgmlM) to be the polynomial vector so that its coefficient vector is the

i-th row of R. Also, denote e; € ’Ré%/ ? to be the polynomial vector such

that its coefficient vector consists of all zeroes and one 1 in the i-th position.
Then, (6.3) holds if and only if for all i = 1,...,256 we have

<ei, Zg> = <e,~, Y3> + <I‘l', Dgs1 + Dyym + u>

o_1(Ds)Tr; $1 6
=< o_1(Dy)7r; |+ | m >+<rl~,u> (6.4)

€; y3
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where we used the property that (r;, Dss1) = {o_1(Ds)Tr;,81) which follows
directly from Lemma 5.1.10. Now, this equation is equivalent to the constant
coefficient of the following polynomial being equal to zero:

51
[U_l(ri)TDs U_l(ri)TDm U_l(ei)T] m | + <rir u> - <eir Z3> € Rq'
Y3
Proving 256 such statements can be easily done using Il.,, from Figure 5.6.

Indeed, if we define ¢ := 0_; and use Lemma 5.2.1 then we need to prove
fori=1,...,256 that the constant coefficient of

rii(s1 || m | ys)e +7rig € Ry

vanishes where

T 2
ry = [U_l(ri)TDs o_1(1;)TDy, (7_1(ei)T] Vi +e+256/a2 € Ry

1 := (x;,u) — (e, z3) € Ry.

Finally, the verifier accepts if the verification equations in Il hold and if
|z3]00 < v/2xs3. By Lemma 3.2.2 and the union bound, the probability that
the infinity norm of z3 « D§§6 is greater than 1/2xs3 is at most 256 - 2¢*.

Now, if z3 is well-formed and |z3]s < v2xs3 then by Lemma 3.2.3 we
deduce that

(my+(+256/d)

|Dss1 + Dym + uf o = [s]oo < 2V2ks3.

As before, we can denote the standard deviation s3 := 373 where 3 > 0
dictates the repetition rate of the rejection sampling and T3 is an upper-
bound on |R5||. Note that by Lemma 3.2.4, |RS| < +/337B with an over-
whelming probability, and thus we can set s3 := 31/337B. Therefore, we
conclude that

|Dss1 + Dyym + uoo < 23v2k - 337 - B.

UTILISING BIMODAL GAUSSIANS. In order to reduce the value of 3

and thus the approximation factor on the right-hand side, we apply the

bimodal rejection sampling. Namely, we also commit to a sign g — {—1,1}:
tlg = bZ;Sz +p

and then compute z3 in the following way:

—

Z3 :]?3+ﬁ-R§.
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Then, the equation above holds if and only if for all i = 1,...,256 we have

(ej,z3) = (e;,y3) + B-(r;,Dss1 + Dyym + u)

s W R R

s1 s1
0,1, x (11 +0+256/d) o_1(Ds)"r; al 1w

:< 07 (my+0+256/d) o_1(Dwm)"r; il ys >
| 0(256/d+1) x (my+6+256/d)  O(256/d+1)x1 8 8

01y x1 S1

+< 0751 , m >
e y3
aw| LB

which by Lemmas 5.1.10 and 5.2.1 is equivalent to the constant coefficient
of the following polynomial being equal to zero:

(stllm [l ys || ByoRipést [ mllys | By +xiis1 | m || ys || Byo € Ry

where

R, =" lo(m1+€+256/d)><m1 Oy ++256/d)x ¢ O(my+0-+256/d) x (256/d+1) ]
%
o_1(1;)TDs o_1(r;) Dy 01 (256/d+1)

K = [01xm1 Orr 01(e)" Ufl(<riru>)]l

and J := J,; 1 ¢1256/d+1,2 as defined in Lemma 5.2.1. Here, we used the
property of the matrix J that

S1

=Js1 ([ m [l ys || Bo
Y3

p

As before, proving such statements can be easily done using Il from
Figure 5.6.

We still need to prove that § € {—1,1}. We apply the following simple
fact.
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Fact 6.1.1. Let b € R,. Then, b € {—1,1} if and only if b2 = 1 and the
constant coefficients of X -b,..., X4 1. pe R, are all zeroes.

Hence, we prove that 8% = 1 which is equivalent to

S1

T T T 0 (1my+0+256/d) x (my ++256/d)  O(my+0+256/d)x1 | | M
[51 m- 'y /3]

01 x (17 +£+256/d) 1 y3

p

being equal to 1. As a quadratic relation over {s; || m || y3 || )s, we can
write g2 = 1 as:
(s1|m | ys [l ByeRui2¢s1 | m || y3 || Br+710=0

where

0 0
Ry = JT l (mq+€+256/d) x (m1+0+256/d) (m1+0+256/d) x1 J
01 x (1my +0+256/d) 1
r,0 = —1.

Next, we need to show that the constant coefficient of X - 8 equals zero for
i € [d —1]. Equivalently, the constant coefficient of

S1

m

y3
B

~ [01 (o525 X7 Tt m [l ys | B

X'-p= [le(m1+f+256/d) Xi]

vanishes. Hence, we reduced the problem of proving shortness of Dgsq +
D,;m + u approximately to proving various quadratic relations.

We present the commit-and-prove system I137, = (ABDLOP, P, V) for the
relation Ryrp in Figure 6.1. In the protocol, we run I, defined in Section
5.2.3 for proving quadratic relations.

6.1.1.1 Security Analysis

We provide security properties of the commit-and-prove IT5;; below.
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Prover P Verifier V
Inputs:
pp.dim = (q,d, xmsis, 11, 1o, L, lexy := 256/d + A/2 + 2) pp.dim, pp.norms
pp.norms = (v,w,«, By, By) pp.mat

B.V

bT
pp.mat = | Ay, Ay, B, | P ta tg

Bext

bl
s1 € RZ,"‘,SZ € Ry’z,m € RS so that [s1]| < & D, Dy, u

A A
o i S L P
tp 0 B m
DSGRL,’X'"‘,D,,,ER;X’,uGRg
s:=Dss; +D,m+u,|s| <B

ys < D
p—{-11}

ty = Bysa +y3
tg = bf;'sz +pB

ty, tg
R « Bin2¥xnd
R

compute z3 € R(ZISGM so that 23 := ij3 + - R§
if Rej® (23, RS, 53, M3) = 1

then z3 := | 7z
run I, with the following inputs: accept if:

pp.dim := (q,d, kmsis, my, my, £ +256/d +1,A/2 + 1), pp.norms := pp.norms (i) ey verifies

B B
pp.mat:= | Ay, Ay, B, |, [b;“} (ii) 23] 00 < V2xs3
ext

T
by

(s2, (s1,m)) := (s2, (s, m || y3 || B))
) :=Jy4256/d+1, defined in Lemma 5.2.1, (€;);e[256) defined as in (6.4)

Rip:=)" |:U(ml+ﬂ+256/d)><(ml+i+256/d) Oy +0+256/d) x 1 ] I,
01 (my +0+256/d) 1
1,1 = O 104256/d)x 1/ 71,0 7= —1

for i € [256] :

Rl,:=]" [0(1vt|+(+256/d)xm1 Oy +0-+256/d) x ¢ 0(m1+l‘+256/d)><(256,’d+1)]J
fye

o-1(r)"Ds o-1(x) D 01 (256/d-+1)
0y x1
rl/] :=]T O ,71{0:=0
' o-1(e;) ’
o1 (i, wp)

forie[d—1]:

0y +04256/d) 1]

R} =0, 2 =7
256402 = 02(my +0+256/d-+1) x2(m; +(+256/d+1)r T256+i,1 *= J X

Taserin = —<€i,23)

o0

FIGURE 6.1: Commit-and-prove system 1137,

for the relation Rap.

116



6.1 APPROXIMATE RANGE PROOFS

Theorem 6.1.2. Let Rej(l) = ReJ(Z) = Rejg and Rej(3) = Rejy as defined in
Figure 3.2. Fix standard deviations s1 = yiqa, s = Yonv/mod and sz =
Y3V 337B for some 71, Y2, v3 > 0 and define

2(K+1) 1 1 1
M; :=ex — + ori=1,2 and M;j:=ex .
l P ( log(e) i Z'YZ > f ’ P ( 73)

Suppose that mid > 5k and myd > 5k. Then, the commit-and-prove system
T137, for the relation Rarp has statistical completeness with correctness error 1 —

1 128
MG H 2

Proof. First, note that ||Rs| < v/337B with probability at least 1 — 27128 by
Lemma 3.2.4. Assuming this inequality holds, the probability that an honest
prover succeeds in all three rejection sampling algorithms is 1/(MjMpM3)
by Lemmas 3.3.2 and 3.3.3. In terms of verification equations, |z3|« >
V/2Ks3 with probability at most 256 - 2¢7* by Lemma 3.2.2. All the other
verification equations hold by the discussion above. O

Theorem 6.1.3. Let Rej(l) = Rej(z) = Rejg and Rej(3) = Rejy as defined in
Figure 3.2. Fix standard deviations s1 = Yia,s2 = Yanv/mad and s3 =
Y3V 3378 for some 71, Y2, y3 > 0 and define

2(k+1) 1 1 1
M; = ex C—+ ori=1,2 and Mj:=ex .
PR ( log(e) 7 = 297 ) f 2T ( 73>

Suppose kpuwe = My — kmsis — £ — A/2 —256/d — 2 = 0. Then, under the
MLWEKMLWE,KMSB+K+A/2+256/d+2,X,C,D§ assumption, 113, for relation Rayp is
simulatable.

Proof. The simulator S simply simulates zz by picking z3 — Dﬁfé and
following the simulator in Theorem 5.2.18. Thus, the statement holds by
Lemma 3.3.3 and the aforementioned theorem. O

As described above, we now show that the commit-and-prove system

T30, for the relation Rgrp’lp) (and not R,p) is knowledge sound where 1 is

a public approximation factor.

Theorem 6.1.4. Suppose By > 2s1+/2myd and By > 2sy+/2mpd. Let s3 :=
3\/33 Band ¢ := 273v/337 - 2k for y3 > 0. Then, the commit-and-prove system
T137, for the relation Rg,p ) s knowledge sound with knowledge error

20C) 7 4 gy g 278,
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6.1 APPROXIMATE RANGE PROOFS

Proof. Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > 2|C|™! + g, an 4 g, A 40256,
Define a deterministic algorithm A(pp, pg, R) which given randomness p =
(op, pE) € Rp x R and challenge R € {—1,0,1}%%0%"? does the following.
It first runs P*(pp) on randomness pp with challenge R and stops after
the third round. Let t,, 5 and z3 be the output of P* in the first and third
round respectively. Then, it runs the extractor £*(pg) defined in the proof of
Theorem 5.2.19 with randomness pr (which runs P*(pp, R) in a black-box
way).

We say that A succeeds if A outputs (t,, tg,R, 23,81, m,Y3, B, §y,€) such
that

ABDLOP.Open(51,m || 73 || B,82,Gta || ts || ty || tg) =1

and ||z3|| < v2xs3 and Z; = B - RS + i3 where s := D51 + D;ym + u and
B € {—1,1}. As before, we assume that £* does not break the binding
property of ABDLOP since if it did, then so does A (and later on £). Clearly,
by Theorem 5.2.19, the probability that .4 succeeds for random p and R is at
least € —2/|C| — q;d/l - ql_A. Moreover, the expected runtime A(pp, pg, R)
for any fixed pp, R and pg < R is at most 12T.

We introduce the following notation. Let H € Rp x Rg x {—1,0,1}2%0xnd
be the set of triples (p, R) such that A(p, R) succeeds. Also, define H(pp)
to be the set of all (og, R) for which (pp, pg, R) € H. For fixed (p,R) € H,

denote Sgp ) to be the s1 part of the output of A(p, R) (and similarly for

other variables) and denote
s(PR) . DSEEP’R) + D,mPR .
Finally, we define
H = {(p, RyeH:|stR|, > z\/ﬂsg,} :

Then, we have the following claim.
Claim 6.1.5. If (op, pg,R) € H then

Pr [(op,pF, R') € H] > 0.

(04 R") g x Bing>® <™
Moreover, if (pp, pg, R) € H' then

Pr A+ RSOD| < V| <27,
R’HBing%X”d 00
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6.1 APPROXIMATE RANGE PROOFS

Proof. The first part of the claim is identical as e.g. Claim 5.1.3.1. The second
one follows directly from definition of H' and Lemma 3.2.3. O

Now, we define our extractor £.

1. Sample p = (op, 0g) < Rp x Re and R € Bin?®**™ and run A(p, R).
If A(p, R) does not succeed, abort.

2. If A(p, R) succeeds, run A(pp, pf, R’) for the same prover randomness

pp but fresh o, < 9%g and R’ < Bin3>®*™ until A succeeds.

We say that £ succeeds if it extracts two tuples x = (§1,m,§;,¢) and 1’ =
(s},m’,8},¢) such that one of the conditions below holds:

* (51,87) +# (5],85) and

1 = ABDLOP.Open(s1,m,8,,Gt4 || tg)
= ABDLOP.Open(s}, m’,85,&;t4 || tg).

e ABDLOP.Open(s1, ™, 5, C; ty H tg) = 1and

|Ds§1 + Dy + u|| < 2v2xks3 = B.

In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about £.

Claim 6.1.6. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of £ is at most 24T.

Claim 6.1.7. Probability that £ succeeds is at least € — 2/|C| — q;d/l - qf/\ -
=256

Proof. First, we observe that £ terminates (without aborting) with proba-

bility at least e — 2/|C| — g, an _ 9, A, Suppose & indeed terminates and let
us write (t,, tg, R, 23,51,M,¥3,5,C) and (ty, tg, Rz}, 8}, m',y},8),0) to be
the respective outputs of A in the first and second step of £. We have the
following three disjoint cases:

Case 1. (81,m,¥3,B,8,) # (8, m',¥5,B,85), B, B’ € {—1,1} and |z3] o <
V2Ks3, 23] 00 < V2Ks3 and

- =

23

=
=
&y
J’_
St
fo¥]
=]
a.
oY
Il
™
A
L
+
g
(e8]
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6.1 APPROXIMATE RANGE PROOFS

and

1 = ABDLOP. Open( ,m || V3 || B Sy, Cta H tg H tg)
— ABDLOP.Open(sy,m’ || 33 || B',55, ¢ ta || ta | tg).

where
s:= |Ds8; + Dym +uf, s:=|Ds8] + Dym’ +u.

Case 2. (81,m,¥3,B,82) = (8], m,y5,B,8,) and B € {—1,1} and |z3]|oc <
V2xs3, 23] 0 < v2xs3 and

23=‘B-R§+g3 and Zg:B R,S+y3
and

1 = ABDLOP.Open(s1, m H V3 || B,Ez,c_;t/\ || 19;] H tﬁ)

and [5] < 2v/2xs3 where s := |Ds51 + Dyym + ul.
l =/

Case 3.(51,m,¥3,,82) = (57, m’,¥5,p,8,) and B € {—1,1} and ||z3]l» <
V2xs3, |20 < Vv2ks3 and
Z3=‘B-R§+g3 and Z3=B~R/§+?3
and

1= ABDLOP.Open(gl,ﬁl H V3 || B,ﬁZ,E;tA || tg H i"g)

and ||5| > 2v/2ks3 where s := |Ds§1 + Dy + u.
Define E; to be the event that £ terminates and Case i occurs. Then, we
have

—d/l

e—-2/IC| - —ql_)‘ < Pr[€ terminates] = Pr[E; v E; v E3]

and

Pr[€ succeeds] = Pr[E; v E;].
Hence, we only need to upper-bound the probability Pr[E3]. Clearly, we
have

Pr[Es] < Pr[(A(p, R) succeeds) n (|3 + RS, < vaxss) a (Is] > 2v2xs3)].

Define D(p*, R*) := Pr(p,R)empme><Bin§56xnd[(p’R) = (p*, R*)] for fixed

(p*, R*) € Rp x RE x {_1,0,1}256><nd‘
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6.1 APPROXIMATE RANGE PROOFS

Now, by Claim 6.1.5 we obtain:

2: % R¥) | pro* R¥)
Pr[E + R
hl= (0% R¥)eH! (%R “H [H ’

< 21(53} -D(p*, R*)

0

< \/2?53]
0 .

@ imer e e (5 RY) € Hop)]

R%) 4 RIg(0% R)

PrR' Bin256><nd [Hy3
< 2
X

D(p*, R¥)

2—256
< ) D(p*/ R*)
<p*,z§>eH/ Py ) one xginporal (P RY) € HipE)]

2—256
< -D(p*,R¥)
(P*,%;)EH PE oy Ry orp xgingsoxni (P, R') € Hpp)]

<2

pEeRp (of R*)eH (o})

2—256

. D *, R*
Pr(Pﬁ;,R’)hmE x Bin236xnd [(p’E, R e H(pla;)] (p )
2ot r¥)em(pk) P(*, R¥)

<2256
Pr(pE,R’)emEXBin%S(’X”d[(p/E'R/) € H(pp)]

pFERP
<2756,

O

Finally, the statement follows by combining the two claims about the
extractor £. O

6.1.2 Approximate Euclidean Norm Proof

Suppose we want to prove the L, norm approximately, i.e. [Dss; + Dym +
u| < - B. The approach is almost identical to the one presented in Section
6.1.1 with the only change being that the verifier checks if the L, norm
of the message z3. Indeed, instead of requiring ||z3]« < v/2ks3, we check
whether |z3] < 0531/256 where ¢ € R™ satisfies

Q256 L e128(1—0%) _ p—x

For example, when x = 128 then we can set ¢ = 1.64. Clearly, if z3 — D256

then by Lemma 3.2.2, the probability that |z3|| < 0s3v/256 is at least 1 —2~ ".

Assume that we proved the well-formedness of z3 as before, namely

:?3+,B-R§.
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6.1 APPROXIMATE RANGE PROOFS

Now we can apply Lemma 3.2.5. Concretely, with probability at least
1—27128 we conclude that

V/256.

g 5| < 53
18] =18-5l < \ﬁ -0
As before, we will set s3 = y3v/337B by Lemma 3.2.4 and thus we proved
337 256 073

One of the main differences from the infinity norm case is that in order to
use Lemma 3.2.5, we need large enough modulus g so that no wrap-around
occurs. Namely, g should satisfy

the norm of s approximately where ¢ := 2

qg=>41-nd- V/256.

53
\/7 @
We present the commit-and-prove system Harp (ABDLOP, P, V) for the
relation Rarp in Figure 6.2. In the protocol, we run I, defined in Section
5.2.3 for proving quadratic relations.

6.1.2.1 Security Analysis

As discussed above, the only difference to I3}, is that the verifier checks
the shortness of the vector z3 in the L, rather than the Ly, norm. Thus,
the security analysis is almost identical to the results presented in Section
6.1.1.1. Hence, we provide security properties of the commit-and-prove I,
and omit the proofs.

Theorem 6.1.8. Let Rej(l) = Rej(z) = Rejy and Rej(3) = Rejy as defined in
Figure 3.2. Fix standard deviations s1 = y1qa,s2 = Yoyv/mad and s3 =
Y3V 3378 for some 71, Y2, y3 > 0 and define

2(k+1) 1 1 . 1
M; = eXp< ( )+272> fori=1,2 and M;j:=exp (27%>
1

log(e) i
Suppose that myd > 5k and mpd > 5x. Then, the commit-and-prove system

ngp for the relation R, has statistical completeness with correctness error 1 —

1 —128
MM T2

Theorem 6.1.9. Let Rej(l) = Rej(z) = Rejg and Rej(3) = Rejy as defined in
Figure 3.2. Fix standard deviations s1 = yia,s2 = Yanv/mod and s3 =
Y3V 3378 for some 71, Y2, y3 > 0 and define

2k+1) 1 1 . 1
M; = ex c— 4+ —= | fori=1,2 and Mz :=exp| — |.
FTEP ( log(e) i 27?) f TR (27§>
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6.1 APPROXIMATE RANGE PROOFS

Prover P Verifier V
Inputs:
pp.dim = (q,d, xmsis, m1, M2, £, Lexy := 256/d + A /2 +2) pp.dim, pp.norms
pp.norms = (v, w, x, By, By) pp-mat
BV
b7
pp.mat = | Aj, Ay, B, | P ta,tp
ext
bl
s1e Ry, s2e Ry2,me Rg so that |s1] < & D, Dy, u
tal _ A1 s1+ A sy + 0 0 > 0 which satisfies:
tg 0 B m
Dse Ry™™, Dy € R;‘X[,u eRj 0% 128007 — o=

s:=Dys; +Dym+u,|s| <B

256
ys < Dg

B {-11)
ty:=Bysa +y;
tpi=bisy+p
ty, 15
R Bin%Séxm‘l
R

compute z3 € 7%256’/4 so that Z3 := ij3 + - RS
if Rej®®) (25, RS, 53, M3) = 1

then z3 := L B
run I, with the following inputs: accept if:

pp-dim := (q,d, kmsis, my, ma, £ +256/d +1,A/2 + 1), pp.norms := pp.norms (i) ITeyq verifies

B B
pp.mat:= | Ay, Ay, By |, [b;ﬂ} (ii) [ z3]| < 053256
ext

4
by

(s2, (s1,m)) := (s, (s1,m || y3 || B))

J = Joy256/d+1, defined in Lemma 5.2.1, (;)e[256] defined as in (6.4)

0 0 / 0, ,
1T | Oy +0+256/d) x (my +04256/d) Oy +04256/d) x1
R]/Z;I[(l /d) x (1 /d) P (my /d) ]L
01 (my +0+256/d) 1
11,1 5= Og(y 1 04256/d) x1/ 71,0 = —1

for i € [256] :

R, =" |:0(ml+£+256/d)><m1 O (imy +0+256/d) x 0 0(ml+£+255/d)x(zse/dﬂ)]J
i2 =

o-1(r;)"Ds o-1(r;) "D 01 (256/d+1)
(U
ty:=J" O Tig =
' o_1(e) ’
01 (<xi, w))

forie[d—1]:

Oy +0+256/d) ><1:|

R/ =0 / — ]T
256+, *= 02(my+04256/d-+1) x2(my +0+256/d+1)s T256+i,1 *= xi

Thserio = —(€i 23)

FIGURE 6.2: Commit-and-prove system ngp for the relation Rarp.
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6.2 PROVING EXACT SHORTNESS IN THE INFINITY NORM

Suppose kmwe = My — kmsis — £ — AJ2 —256/d — 2 = 0. Then, under the
. 2 . .

MLWEKMLWE,KM5|5+€+?\/2+256/d+2,x,C,D‘;’2 assumption, 115, for relation Rarp is

simulatable.

Theorem 6.1.10. Suppose By > 2s1+/2m1d and By > 2sy/2mpd. Let s3 :=

Y3V337B and 1 1= 24/ 3372'6256 073 for v3 > 0. If

g=41-nd- V256

\/7Q53
2y)

then, the commit-and-prove system Ha,p for the relation Rarp is knowledge sound

with knowledge error 2|C|~! + g7 "y gyt +271%8,

The soundness proof is almost identical to the proof of Theorem 6.1.4 with
the only difference being that we apply Lemma 3.2.5 instead of Lemma 3.2.3.
This has two consequences. Namely, (i) we need large enough modulus g to
use Lemma 3.2.5 and (ii) the constant term in the knowledge error becomes
27128 instead of 272%.

Remark. As expected, this approximate Euclidean norm proof is tighter
than just proving the Ly norm proof from Section 6.1.1 and deducing the
L, norm by using trivial inequalities. Indeed, if one were to do the naive
method, one would end up with proving |s|. < 273337 - 2x and thus

Is|| < 2v3V337 - 2xvnd

which is dependent on the dimension of the vector s. As shown in Theorem
6.1.10, we can prove the L, norm of s approximately, where the approxi-
mation factor ¢ is independent of dimension of s. However, this comes at
the cost of an additional condition on the proof system modulus q. Hence,
when it is not important to prove the norm of s tightly, i.e. we are fine with
a relatively large approximation factor, then it is more beneficial to prove
the Euclidean norm through the Lo, norm proof from Section 6.1.1.

6.2 PROVING EXACT SHORTNESS IN THE INFINITY NORM

In this section, we present a way to prove exactly that coefficients of a secret
vector s lie in a certain (public) range. At the core of our techniques is a
new proof that coefficients of s are binary. Note that if one were interested
in proving larger ranges, e.g. that coefficients of s are in {—1,0, 1}, then one
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6.2 PROVING EXACT SHORTNESS IN THE INFINITY NORM

could simply binary-decompose s into a larger vector s’ and prove that s’
has binary coefficients instead.

Concretely, let (sq, m) € ’le% such that ||s1| < a . We initially want to
prove that the coefficients of the following vector are binary

s::Dss1-|—Dmm—&-ue7€;Z

where Ds € Ry*™, Dy, € Ri*! and u € R} are public. In order to prove
such statements, we rely on the following simple observation.

Lemma 6.2.1. Let § € Z™. Then, 5 € {0,1}" if and only if (8,5 — 1) = 0.

Proof. Clearly, if § € {0,1}" then for each i € [m], s;(s; —1) = 0 and thus
(5,5 —1) = 0. On the other hand, note that

VaeZ,a(a—1) >0

and the equality holds if and only if a € {0,1}. Hence, if 5 ¢ {0,1}™ then
,5-1)>0. O

We denote

=+ X+ +XTL 1+ X+ X e RY (6.5)

to be the vector such that ¥ = 1"¥ € Z". Then, Lemma 6.2.1 says that s has
binary coefficients if and only if (s,s —x) = 0 over integers. We observe that
if one were to prove the inner product modulo g then by Lemma 5.1.10, this
corresponds to proving that the constant coefficient of o(s — x)Ts, which
can be equivalently written as

0 0 00 51
0 0 0 0

[sT m" ols)” o(m)T] /DD, o(D)Dy 0 0 |ota)

o(Dy)"D; 7(Dy)"Dy 0 0] [o(m)

T T T m
+lo(u—x)'Ds o(u—x)'Dy, u'c(Ds) u (rDm

+o(u—x)Tu
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6.3 PROVING EXACT SHORTNESS IN THE EUCLIDEAN NORM

vanishes where ¢ := 0_ as usual. Proving such a statement was already
covered in Section 5.2.3. Finally, in order to prove that {(s,s — x) = 0 holds
over integers and modulo g, we apply the approximate L, proof on s. Since
its coefficients are binary, we have ||s| < v/nd. The proof system in Section
6.1.2 allows us to prove that

337 - 256
Isl < - Vind =24/ =2 073 Vind.

Now, note that for any 4 € R™ such that ||@] < B we have:

L 2, - 2 2?1—1“2
<Y+ ol <> a?+m ==t < B? + By/m. (6.6)

i=1 i=1 i=1

||M§
I

Here we used the inequality of arithmetic and geometric means.
Hence, we want to set the modulus g so that the extracted s satisfies
[{s, s — x)| < q. Namely, we pick g such that

(s, s — )| < ¢?nd + ynd = pnd(Pp +1) <

If this is the case and (s,s —x) = 0 modulo g then we can deduce that
(s, s —x) = 0 over integers. This proves that the coefficients of the extracted
s are binary.

63 PROVING EXACT SHORTNESS IN THE EUCLIDEAN NORM

This section focuses on proving exactly that a secret vector s satisfies |s| < B
for some bound B < /g, without any approximation factors. For simplicity,
we first consider a simple case — proving that |s|| =
Concretely, let (sq, m) € le% such that |sq]| < « . We initially want to
prove that
Is| = B where s := Dss; + Dym + u € Ry

and D € Rnxml D, € R”Xf and ue R” are public.

The main observatlon in this section is that |s|> = (s, s) and thus in order
to prove |s| = B modulo g, we simply need to prove that the constant
coefficient of the polynomial ¢(s)”s — B? vanishes. We can do that using
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6.3 PROVING EXACT SHORTNESS IN THE EUCLIDEAN NORM

techniques from Section 5.2.3. Indeed, the polynomial can be equivalently
written as

0 0 0 0 s1
0 0 0 0 m
[S%w mT (T(Sl)T U(m)T] U(DS)TDS U'(DS)TDm 00 0—(51)
c(Dw)'Ds ¢(Dy)'Dy 0 0] [o(m)
S1
m T 2
4—[(7(u)TDS c(w)’D,, ulo(Dy) uT(T(Dm)] o(s +o(u)'u—B
1
o(m

To prove that (s, s) = B? over integers, we show |(s,s) — B?| < g for a large
enough proof system modulus 4. Using the approximate range proof from
Section 6.1.2, we can convince the verifier that ||s| < ¢ - B. Thus, we pick g
such that

|(s,s) — B < ¢?-B?+B? = (¢* +1)B*> < q.

This implies that ||s|? = B? over integers.

Next, suppose we want to prove that [s|| < B, i.e. relation Ryrp in (6.2).
The idea is to commit to the binary representation of the difference B — |s|
and prove that it has binary coefficients. Namely, for 0 < x < /g, define
pow(x) as

[log x|
pow(x) := Z 20X e R4 6.7)
i=0
and ¢ € R, be the binary polynomial such that

(pow(B?), 8) = B — [s|2. 6.8)

We will commit to ¢ and prove that (i) it contains binary coefficients and
(if) Equation 6.8 holds over integers. These two statements imply that
0 < {pow(B?),9) = B> — ||s||> which is what we want.

The first statement can be proven using the techniques in Section 6.2. For
the latter one, we follow the strategy as before, i.e. we want to prove that
(6.8) holds over Z; and that no wrap-around modulo g occurs. Hence, we
show that the constant coefficient of the polynomial

o (pow(Bz)) 9 +0(s)Ts — B?
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6.4 TOOLBOX FOR PROVING LATTICE RELATIONS

is equal to zero. Again, this is a quadratic relation (with an automorphism)
which can be proven as in Section 5.2.3. This proves that (6.8) is true over
Z,. Next, by doing the approximate L, proof on s, i.e. proving ||s| < ¢ - B
and assuming that ¢ has binary coefficients, we want to choose g such that

[(pow(B?), 8) + [|s|* — B?| < (y* +3) - B < q.

Then, we are sure there is no overflow modulo g and thus (6.8) holds over
integers.

64 TOOLBOX FOR PROVING LATTICE RELATIONS

We describe a general protocol to prove various quadratic relations by
combining all the techniques introduced in the previous sections. Namely,

we want to prove knowledge of the secret messages (s, m) € R;"ﬁ[ which
satisfy all the following conditions (below we define ¢ := 0_1):

1. Quadratic relations over Ry with automorphisms. For i € [N] and public

)€ Rs(m1+f)><2(m1+4) y R;(ml'i'f)

triples (R;2,1i1,%i0 x R4, we have:

{s1 || m)¢Ro(sq || m)s + 1/ 1(s1 || m)s +7;9 = 0. (6.9)

2. Quadratic relations over Z, with automorphisms. For i € [M] and public

triples (R}, 1/ ,,7,) € R;(m1+€)><2(m]+f) " Rﬁ(mﬁ[) < Ry

const. coeff. of (s || m)IR,(sq || m)s + {1 (s1 || m)s + 1 equals 0.
(6.10)

3. Shortness in the infinity norm. For public Ps € Ry ™™ Py, € Rgb‘”w
and f € Rgb", the following polynomial vector has binary coefficients

Pssq + P,ym + f € {0, 1}"ind (6.11)

4. Shortness in the Euclidean norm. For i € [Z], public bound B; < /7 and
B ¢ Rg"xml,ngl) € Rg"xz and v() € Ry, we have:

HEgi)sl + Eg,i)m +vi| < B,

This is equivalent to additionally proving knowledge of the binary
polynomial ¢; € R such that

2

(pow(B2), 8;) = B2 — |EVsy + Ef)m + v

over Z. (6.12)
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5. Approximate Shortness. For a public bound B’ and D; € Rg/xml, Dy, €
RZ’M and u € Rg/, we have:

|Dsst + Dyym + u|| < B'. (6.13)
However, we are fine with convincing the verifier that
IDsst + Dym +ul|y < ¢ - B (6.14)
where ¢ > 1 is a public approximation factor.

We define the corresponding relation as

Reouibox = (u,(s1,m,0,...,0z)) : (Vie [N],(6.9) » (Vie [M],(6.10))
roemex (6.11) A (Vi€ [Z],(6.12)) A (6.13)

(6.15)
where

(Ri,zr L1, T’i,O)ie[N]r (Rg,zr 1';,1/ r;,o)ie[M]r (Ps, Py, £),

U= i ] i
(5B NO.B) (Do D B)

(6.16)
As mentioned in the fifth statement, we are only interested in proving the
norm approximately. Hence, our protocol will be sound with respect to the
following relaxed relation:

¥ _ ) (u(s1,m,dy,...,87)): (Vie [N],(6.9) n (Vi e [M],(6.10))
toolbox (6.11) A (Vi€ [Z],(6.12)) A (6.14)
(6.17)
where the statement u is defined identically as above.
In order to prove the aforementioned statements, we commit to the
secrets ((s1,%,...,9z), m) using the ABDLOP commitment from Section
4.1. Concretely, we sample randomness s < x"2 and compute

For proving the third and fourth statements, we apply the approximate
range proof strategy for both L, and Ly, norms. This requires us to commit
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to two masking vectors y3 « D%gf’, Vi — D§456 and two signs B3, B4 —

{—1,1} for bimodal Gaussian rejection sampling. Concretely,

Y3
-
tg Bﬁ B3
Ba

Overall, (ty, tg || ty || tg) is the ABDLOP commitment to (s}, m*) where

sii=s ][O ]|--- |9z and m*:=m|ys|ysll B3 Ba

Clearly, if [s1]| < a then [s¥] < va? + Zd. Our goal will be to reduce all the
five statements above to proving quadratic relations in (s}, m*), or more
concretely, in (s} || m*),. We cover them one by one, but first we start with
introducing notation.

6.4.1 Notation

To begin with, we recall the U matrix defined in Section 5.2.3.2. Namely,

Ue R;(m1+Z+Z+512/d+2)><2(m1+Z+Z+512/d+2) is the public matrix such that

o((sy [ m*)y) = U(s{ || m™),.

Now, we will write all the variables in (s, m*) as a linear combination of
elements in (s} || m*),. We start with (s;, m) and observe that

lﬁ} _ l Ly Omyxz Omyxe Om1><(512/d+2)] lsik]
m O¢sm,  Orxz I 0/ (512/d+2) | [m*
_ l Iml 0m1><Z Om1><€ Omlx(512/d+2)] J<5T ” m*>0
Orxmy  Orxz I Oux(s12/d+2)

(6.18)

where J :=J,, 7. 71512/442, as defined in Lemma 5.2.1. Similarly, we have

(s1 || mde = l Dy O2myx2z O2my x20 02mlx2(512/d+2)1 (st || m*e.

02752m;,  O2rx2z Iy 02¢%2(512/d+2)
(6.19)
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For convenience, we define
| Im Omyxz Omyxe Oy x(512/d42)
K := J
O¢smy,  Orxz I 0/ (512/d+2)

and
K __[ Ly O2myx2z Oy 20 02m1><2(512/d+2)]
S,0 N
027x2m;  O2ex2z Iy 02¢%2(512/d+2)

Further, for i € [Z] we have

4 o
i=[01><(m1+i71) 1 01><(Z7i+€+512/d+2)] m* :

Hence, denote

T ._
kl9i T [olx(m1+i—1) 1 le(z_i+é+512/d+2)] J.

Next, note that
l%} _ l0256/d><(m1+2+m1) Dse/a  0256/dx256/d 0256/d><21 l si ]
Y4 0256/dx (my+2+m1) 0256/ Losejixase/d  O2se/dx2) [m*
Thus, we define matrices Ky, and Ky, as follows:

lK%} . l0256/dx(m1+2+m1) Dse/a 0256/dx256/d 0256/dx2] 7.

Ky, 0256 /dx (my+7+m;)  0256/d  Lose/ax256/d  0256/dx2

Finally, we focus on 3, B4. Clearly

[/33] _ lolx(m1+2+m1+512/d) 1 0] [ST ] .
Ba 01 (my+z4m 4512y 0 1] [m*
Consequently, we define vectors kg,, kg, as follows:

kgg — l01><(m1+z+m1+512/d) 1 01 J.

kj, 015 (my+z+my+512/0) 0 1
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In conclusion, we obtain the following equalities:

l511 = Ky(s7 || m*)¢

m

(s1 || m)e = Kso(s7 || m*)s
vie[Z],8; = kg (st || m*)o
y3 = Ky, (sT || m™),

Y4 = Ky4<sik | m*)s

Bs = K (st | m*)

Ba =Kk (sT || m*)o-

6.4.2 Proving Quadratic Relations

We concentrate on the first two statements. Using the notation above, we
observe that proving Equation 6.9 is equivalent to proving

Gl m*>ngT,aRi,2Ks,cr<ST | m*)o + 1'1‘T,1Ks,t7<si< | m™)y +7i0=0 (6.20)

which is a quadratic equation in (s} | m*), covered in Section 5.2.1.

Similarly, for (6.10) we need to show that the constant coefficient of

Gl m*>ngT,aRg,2Ks,0<ST | m™)y + r;,Tle,0<sT | m™), + ”;,0 (6.21)

is equal to zero, which we discussed in Section 5.2.3. In conclusion, we can
reduce the first two statements to proving quadratic relations covered by
ITeyal from Section 5.2.3.

6.4.3 Proving Exact Shortness

We now focus on the third and fourth statement. We follow the strategy
described in Sections 6.2 and 6.3 and first start by proving that

P;s1 + Pym + f

Es(i)s1 +E,(1§)m+v(i) fori = 1,2,...,7Z
®:=(01,...,07)
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are approximately small in the L, norm using the techniques from Section
6.1.2. Namely, define ney := npj, + ZiZ:1 n; + Z and

i P;s; + Pyym + f 1 I P Py 0y, ><Z7 £
1 1 1 1
EVs; + EVm +v(D YV EY 0.2 | [s 0
83 = } = : : : m |+
Egz) S1 + Egnz)m + V(Z) EEZ) E](’IIZ) OanZ 4 V(.Z)
L 4 | _OZ><m1 0z Iz |
(6.22)
where s3 € Rg*. Then,
Z
Issll < y | (bin + Z)d + > B2,
i=1
Now, given a matrix R « Bin§56xnexd from the verifier as a challenge, we
compute the polynomial vector z3 € Ré%/ 4 which satisfies
Z3 1= i3 + B3 - Rs3. (6.23)

After applying the bimodal rejection sampling, we output z3. The verifier

checks whether |z3|| < 0531256 where ¢ satisfies 02 - 128(1-0%) — px

Then, we need to prove well-formedness of z3. For i € [256], denote e; €

Rs%/ % to be the binary polynomial vector such that ¢; € {0,1}* and it has

one 1 exactly in the i-th position. Also, let r; € Rg* be the vector so that 7; is
the i-th row of the matrix R. Then, (6.23) holds if and only for all i € [256]:

(z3, ;) = (y3, &) + B3 - (ri, s3).
That is, the constant coefficient of the following polynomial vanishes:
o(e)Tys + B3 -0(r) s3 — (z3,€))
which can be written equivalently using the notation from Section 6.4.1 as

(T m* g Riy (st | m*)e + 11 (T 1 Mo + 740
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where
[ P Py Onbian_
D g g K,
s m nyx2Z T
R/ o k . T . . kl91
Maip = Kpyo(17) :
z z
E” B Oz | |
]
[ 0z%m;  Ozxe Iz | g (6.24)
24
f
T T T v T
v(@)
"myio = —(Z3,€).

Hence, we prove this relation using the techniques from Section 5.2.3.

Not to mention the fact that we also need to prove that 83 € {—1,1}.

We do this by proving that B3 = 1 and the constant coefficient of X'B; is
equal to zero for i = 1,...,d — 1. The former statement can be written as a
quadratic equation:

B3 —1=(s} | m*) IRy 10¢87 || m*)o + 1841 1¢5F | m*)e + rni10 =0

where
Ryi12:= kg K, tng11 =0, g0 = —1. (6.25)

To prove the latter statement, note that X - B3 equals to
* \T/ * * /T * * /
(s1 [ m™)g Ry 1056112¢8T | M™)o + Oy 1956.411¢8T | M Do + 71056410
for
. i1.T
Ruios6tio =0, Tmiose+in = X'Kg,  mi256+4i0 = 0. (6.26)

Now, assuming well-formedness of z3, we can convince the verifier that

z
s3] < Barp 1= ¢+ | (nbin + Z)d + > B?
i=1
for some public ¢ > 1. In particular, we get that
HPSs] + Pmm + fH < Barp,
Vie [Z],

By + EDm + v < By andl|éi] < Bup
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6.4.3.1 Infinity Norm

Now, we prove that Pss; + P,,m + f and ¢4, ..., 9z have binary coefficients.
To prove the former statement, we show

(Pss1 + Pym+ £, Pssy + Pym + f —x) = 0 over Z
where
xi=(1+X+... + X7 1+ X+ + X e Rpbn.

We first prove this equation modulo 4. By Lemma 5.1.10, this boils down to
showing that the constant coefficient of

U(PS)TPS U(PS)TPm 81
[U(Sl)T a(m)T] lU<Pm)TPs U(Pm)TPm‘| Ln]
+ [O'(Sl)T U(m)T] lZ((II:S))TT] (f—x) + U(f)T [Ps Pm] leﬂ +{f, f—x)

vanishes. Now, we use the property of the U matrix defined in Section 6.4.1,
ie.

l“(slﬂ =0 (K)o ((s7 || m*)) = o (Ks) U(sf || m*)e.
o(m)

Then, the polynomial above can be written equivalently using the notation
from Section 6.4.1 as

T T
Gl m*>aR§v1+256+d,2<5T | m™)y + r§\/1+256+d,1<5T | m™)s + T§\/1+256+d,0
where

c(P)TPs  o(Ps)TP,
o(Py)TPs o (P,)TP,

"i12s6rd1 o= (£ —x") [(T(Ps) U(Pm)] o(Ko)U +o(f)" [PS Pm] K,

Ry 056142 = UTo(Ks)" Ks

"Myaserdo = (£ =%
(6.27)
Thus, we prove this relation using the techniques from Section 5.2.3. Now,

assuming that
B§,p + Barp\/ bind < g
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we can deduce similarly as in (6.6) that
[(Pss1 + Pyym + £, Pssy + Pym + £ — x| < g.

Therefore, we conclude that the inner product equals zero over integers.
By Lemma 6.2.1, this implies that the vector Pss; + P,;m + f has binary
coefficients.

Next, we focus on ¥y, ..., 0z. Similarly as before, we want to prove that
(8;,6; — Z?:_ol X' = 0 over integers. In order to prove it in Z,, we need to
show that the constant coefficient of

d—1
0'(191') <1.91‘ — Z Xi>
i=0

is equal to zero. Using the notation from Section 6.4.1, we can write this
polynomial as

T T
Gl m*>aR§v1+256+d+i,z<ST | m*)g + r;\/1+256+d+i,1<sik | m™),

where

d—1
/ 1T T /T e i T
RM+256+d+i,2 =U ‘T(kl?i)kﬂir TN 4256+d+il = (Z X> 'U(kl?i) u.
i=0

(6.28)
Thus, we prove this relation using the techniques from Section 5.2.3. Now,
if
Bg,p + BapVd < gq

then we conclude that (8;, 9; — Z;tol X'y = 0 over integers. Hence, ; has

binary coefficients.

6.4.3.2 Euclidean Norm

Now, we turn to proving that for every i € [Z],

2

(pow(B2), 8, = B? — |[Esy + Efy/m + v(0

over Zq.

Note that this implies that the equation holds over integers if the modulus
q is appropriately large. Indeed, we observe

R . . 2
on(57), 8+ [Es1 + im0 — 1] < 387 + 2,
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Hence, if g > 315’1-2 + Bgrp foralli=1,2,...,7Z then we are done.
To prove the initial equation over Z;, we apply the strategy from Section
6.3 and write

(pow(B?), 0;) + <E£i)s1 +EDm 4+ v, Egi)s1 +EYm o+ vy —B? 0.

This is equivalent to proving that the constant coefficient of the following
polynomial equals to zero

o(E)TEL a(Eﬁ“)TE,S?} lsll

[U(Sl)T U(m)T] L(E‘:&;))TE@ o(EW)TE®

m

(0 . . . o
+[U(51)T (T(m)T] o(E )ﬂ v(’)+a(v(l))T[E(i) Eg;)] l511+<v(z),v<z>>

m

This polynomial can be alternatively written using the notation from Section
6.4.1 as:

T T
ol m*>oR§\/I+256+d+Z+i,2<5>1k | m*)s + r§\/1+256+d+Z+i,l<s>1k | m*)y
/
+ TM4256+d4+2+i0 € Ry

where

/ 11T T
Rivisos6+d+z+ip = U 0(Ks)

oENTEY  o(B)TE)
o(ES)TEY o(E)TER |

NT . . . . .
asearzeit = VO [U(Egl)) U(Ei(é))] (KU +o(v)T [Egl) E;(ﬁ)] Ks
Yo (pow(Biz)) K}

Psasesdrzio = (v, vy — B2 (6.29)
6.29

Therefore, we prove this relation using the techniques from Section 5.2.3.

Now, if (6.12) holds and ¢; has binary coefficients then we conclude that

2

0 < (pow(B2), 8, = B2 — |E{s; + E'm + v

and we are done.
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6.4.4 Approximate Shortness

Finally, we deal with the last statement, i.e. proving approximately that
|Dsst + Dyym + u|| < B'.

The proof follows the first part of Section 6.4.3. Concretely, define

S1

s4:=Dgs1 +D;ym+u = [DS Dm] l ] +uce ’Rg/. (6.30)

m

. . - / . e
Now, given a matrix R’ < Bin2®*" from the verifier as a challenge, we

56/d

compute the polynomial vector z4 € R; which satisfies

Zy = g4 + ‘34 : R/§4. (6.31)

After applying the bimodal rejection sampling, we output z4. Since we are in-
terested in proving the Ly, norm approximately, the verifier checks whether

|Z4] oo < V/2K84 as in Section 6.1.1. Then, we need to prove well-formedness

of z4. For i € [256], denote e; € Ré%/ “ to be the binary polynomial vector

such that &; € {0,1}?°° and it has one 1 exactly in the i-th position identically
as in Section 6.4.3. Also, let 1} € RZI be the vector so that 7/ is the i-th row
of the matrix R’. Then, (6.31) holds if and only for all i € [256]:

(z4,€;) = (ya, &) + Pa - (¥, 84).
Alternatively, the constant coefficient of the following polynomial vanishes:
o(e)Tyy +Pa-0(x) sy — (za,€))
which can be written equivalently using the notation from Section 6.4.1 as
(s 1l m* IRy oserdrazein(St | M*o + o561 ar0z4i1(55 | m*)o
+ M 1256 412240

where
/ o NT
Rivi1256+d+27+i2 = Kp, 0 (17) [Ds Dm] K,
T T T1,T
Tniias6+dr2z+i1 i= 0(€i) Ky, +0o(r}) ukg, (6.32)

/ e i
T M+256+d+2Z+i0 = —(24, ;).
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Finally, we need to prove that B4 € {-1,1}. As before, we do this by
proving that 7 = 1 and the constant coefficient of X'By is equal to zero for
i=1,...,d — 1. The first statement can be written as a quadratic equation:

Bi—1 = (st | m*) IRy yo2(s] || m*), + rva+2,1<ST | m*)¢ +7N420 =0
where
Rni22 = kg kg, tny21 =0, 7nio0=—1. (6.33)

To prove the second one, observe that Xt B4 equals to

T
Gl m*>aR;\/I+512+d+ZZ+i,2<ST | m*),
/T
+ 12442240181 | m™)e
/
+ TM5124d 42740

where

. _ il T B

Ry4s14d+27+i2 = 0, Tmysioaroz+in = X'Kg,,  "mis124d422+i0 = 0-
Ba

(6.34)

Hence, we prove all the necessary relations using the techniques from

Section 5.2.3.

6.4.5 Main Protocol

We summarise the strategies presented in the previous subsections and pro-
pose a commit-and-prove system 1,0« = (ABDLOP, P, V) for the relation
Rioolbox in Figure 6.3. In the protocol, we run Il defined in Section 5.2.3
for proving quadratic relations.

We provide security properties of the commit-and-prove IT;)_ below.

Theorem 6.4.1. Let Rej(l) = Rej(z) = Rejy and Rej(3) = Rej(4) = Rej; as
defined in Figure 3.2. Fix standard deviations

51 = 'Yﬂlm, sy = Y2V Mad,

V4
53 = 73V337, | (nin + Z)d + Y. B2, 54 = 14V/3378'
i=1

for some 1,2, Y3, va > 0 and define

2(k+1) 1 1 .
og(e) 1 + 2%2> fori=1,2

exp 23r2> fori=3,4.

exp
Mi =
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Prover P Verifier V
Inputs:
pp.dim = (q,d, kmsis, M1 + Z,mp, £, bexe = 512/d + A /2 + 3) pp.dim, pp.norms
pp.norms = (w, Va2 + Zd, By, By) pp.mat
By
Bs
pp-mat = | Ay, Ay, B, ta tp
ext
bl
s1e Ry, spe Ry?,me Rﬁ,: [s1] <a (Ri2, Ti1,7i0)ie[N]
(Ri2, 13,1, 7i0)ie[n], (Ri2 ¥ 1,7 )i}, (Ps, P, £) (Ri2 71, 7i0)ie[M]
(9, £, w0, B,-)iem ,(Ds, Dy, u, B) (P, Py, £)
_ zd () g )
8= (6 ...,07) €01} (e B v 'B');e[z]
s1
L2
tal._ A1 '1 4|2 St 0 (Ds, Dy, u, B')
tp 0 . B m
¥z
Pssy + Pym + f
Egl)sl + EE})m +v®
s3 1= : eR:{“, Sy 1= Dssl+Dmm+ueRg'
E§2)51 + E,(“Z)m +v(®
2
(¥3, Y4, B3, Bs) « DE® x DI x {~1,1} x {-1,1}
ty == Bysy + [YB] , tgi= B,;sz + [ﬁ%]
ya Ba
ty tp
R Bin%ssxuexd
R, R R « Bin2s6xn'd
compute z3,z4 € R:se’/d s.t. [ﬁg] = [ﬂ + [ﬁ3 ’ Rlsj]
Zy Ya B4 R'5y
if Rej®) (23, RS3, 53, M3) = 1 or Rej®) (24, R'Sy, 54, My) = 1
then (z3,24) := (L, 1) 737y
run I, with the following inputs: accept if:
pp.dim := (q,d, kmsis, my + Z,ma, £+ 512/d +2,A/2 + 1) (i) ITeya verifies
B B
pp.norms := (v,w,\/ a2+ Zd, By, By), pp.mat:= | Ay, Ay, By |/ [ ;Xt] (ii) ||z3] < 0s3Vv256
5| [Pk
(s2,(s1,m)) = (s2, (s1 || &, m | ys || ya || B3 || Bs) (i) 240 < V2xs4
(Ri2,Ti1,7i0)ie[N+2) as in (6.20), (6.25), (6.33)
(Rio, 1, 70)ie[M+511424+27] @5 in (6.21), (6.24), (6.27), (6.28), (6.29), (6.32), (6.34)

FIGURE 6.3: Commit-and-prove system Ili,o for the relation Rigoipox in (6.15).
Here, we define ney := ng;, + Zizzl n; + Z and o which satisfies Q256 -
e128(1—0?) _ o~k
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Suppose that (my + Z)d = 5x and mpd > 5. Then, the commit-and-prove system
Iipox for the relation Rioolbox has statistical completeness with correctness error
27

1 -1
L= swpaesg; +2 7
Proof. First of all, note that

Z
|RS3] < V337 | (1pin + Z)d + > B? and |R'5y| < V3378’
i=1

with probability at least 1 — 27?7 by Lemma 3.2.4 and the union bound.

Assuming these inequalities hold, the probability that an honest prover
succeeds in all four rejection sampling algorithms is 1/(M;Mp;MsM,) by
Lemmas 3.3.2 and 3.3.3. In terms of verification equations, |z3| > 0s34/256

or |z4] 0 > Vv2Ks4 with probability at most 256 - 2¢7* 4+ 27" by Lemma 3.2.2.

All the other verification equations hold by the discussion above. O

Theorem 6.4.2. Let Rej(l) = Rej(z) = Rejy and Rej(3) = Rej(4) = Rejy as
defined in Figure 3.2. Fix standard deviations

51 = 71ﬂm, 8y = YayvA/ myd,

Z
53 = 13V337, | (npin + Z)d + Y B2, 54 = 743378’
i=1

for some 1, 72,73, va > 0 and define

2(k+1 .
exp 15;(3)) . % + 21) fori=1,2

7
Mi = !
exp 2%) fori=3,4.

Suppose kpuwe = My — kmsis — £ — A/2 —512/d — 3 = 0. Then, under the
MLWEKMLWErKMSIS A /24+512/d43,0,0,D, assumption, Ilipox for relation Repey 1S
simulatable.

Proof. Identically as in Theorems 6.1.3 and 6.1.9, the simulator S simulates
73,24 by picking (z3,z4) < D2° x D2 and then follows the simulator in
Theorem 5.2.18. O

As we already mentioned, we now show that the commit-and-prove
system Ili,ox for the relation Rz}oolbox (and not Ripolbox) is knowledge sound

where 1 is a public approximation factor.
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Theorem 6.4.3. Suppose By = 2s14/2(mq + Z)d and By > 2sy+/2myd. Let

i=1

z
53 = Y3V 337J (Mpin + Z)d + Z B2, 54 = 74V3378'

/256
ll) = 2’)’4\/ 337 - 2K, Barp =2 %953
for 7v3,va > 0. If q satisfies the following conditions

Z
g=41- <nbin + Z n; + Z) d-Bap, touseLemma3.2.5
i=1

q> Birp + Barp\/ bind, to prove Ps + Py, + £ has binary coeff.
q> Bgrp + Barp\/al to prove O, . .., %z have binary coeff.
Vie|[Z],q > 331-2 + Bez,,p, to prove (6.12)

P

Then, the commit-and-prove system Ilipox for the relation R
sound with knowledge error

thox 18 knowledge

2\C|*1 +q1—d/l +q1—A 1128 | »—25

under the MSISy,q . m, +my,B Assumption where B = 41, / B% + B%.

Proof. Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > 2|C|™ + ¢, i 9, A g1
272%, Then, similarly as in the proof of Theorems 6.1.4 and 6.1.10, we
can define an extractor £ which in expected runtime of at most 24T either
solves the MSIS problem or extracts (57, m,5;) and ¢ € C such that all the

conditions below hold
1. ABDLOP.Open(5],1m;8),Ct4 || tp) = 1.
2. |Ds81 + Dyt + ufop < 274V/337 - 2kB' = - B'.
3. Let®:=9; || --- || 8z. Then,

P51 + Pym + f
EVs + EYm + v
. 256
: < 2 %QEQ, = Barp
E%s + EPm 4+ v®
'
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. (Ps81 + Py + £, P51 + Pyym + f — x) = 0.
(98— (X5 x7) ) =0

- (pow(B2), ;) + (EVsy + EPm + v, EVs) + Em + vy — B2 — 0

U A

=)

. Forallie[N], 8TR;,5 + riTlé +1i0 = 0 where § := 51 || 1

®

. For all i € [M], the constant coefficient of 8TR!,§ + r/}5 + 7/, is zero

—d/p ) 7—128 _ »—256

with probability at least € — 2|C| ™1 — g, /" — g] where

d—1 d—1
St =80 B[ 9z, xi= (z X, .,y xr) e Rl
i=0

i=0
Now, by the assumptions on g and the fact that Statement 3 holds, we
deduce that Statements 4, 5, 6 hold over integers. Hence, we conclude that
Ps51 + Py + £, 94, ..., ¥z have binary coefficients as well as

Bi— [EVs + EVm +v®| > 0fori=1,2,...,2

Thus, we conclude the proof. O

6.4.6 Packing Signs

Recall that we commit to each sign 3 and B4 separately. We can reduce the
proof size by committing to both of them in the following way. Namely, we
compute

Bi=ps+ X"2BreRy
and commit to S:
tg = b[gs +B.
In order to prove certain properties of f3 and B4, we observe that:
fa=2"1(p+o(p) and py =271 (XV2p+ o(X72p)).

Then, for example, to prove that 3 is a sign, we show that

2

Bi—1- (27 (B+a(p)) 1 =471 (B +20(BB+ () 1 =0
and the constant coefficient of
X'y = X271 (B+o(p))

is equal to zero fori = 1,2,...,d — 1. Hence, these quadratic relations (with
automorphisms) can be handled directly by Ileya,.
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6.4.7 Simplified Versions of the Framework Protocol

In certain applications, we will not use the commit-and-prove system Il ox
in its full capacity. For instance, it will not be necessary to do any infinity
norm proofs or to prove shortness approximately. In the former case, this
boils down to simply not adding relations (6.27) as an input to Ile,, and
we remove one condition on g in Theorem 6.4.3. For the latter statement,
we can omit the approximate range proof part, i.e. not commit to y4, 4 and
not send z4. Moreover, the relations described in (6.32),(6.33) and (6.34) as
well as the improvement from Section 6.4.6 become irrelevant.

To conclude, it is easy to modify the protocol in Figure 6.3 in order to
prove relations suitable for various applications.

65 NON-INTERACTIVE COMMIT-AND-PROVE FUNCTIONALITY

The broadly used Fiat-Shamir Transformation [DFM2o0; FS86] turns a public-
coin interactive argument into a non-interactive argument in the random
oracle model. The approach is to compute the i-th challenge c; as a hash of
the i-th prover message a; as well as some part of the previous communica-
tion transcript (including the statement u itself). Then, if 7 = (a1, ay,...) is
a proof then the verifier can manually recompute challenges c; from 7 and
a statement u.

We apply the multi-round Fiat-Shamir transformation for the protocol
in Figure 6.3 to obtain a non-interactive commit-and-prove functional-
ity for Ricolbox- Let Lantern = (ABDLOP, Lantern.Prove, Lantern.Verify) be
the non-interactive commit-and-prove system where Lantern.Prove and
Lantern.Verify are defined in Algorithms 1 and 4 respectively. Both algo-
rithms use a subroutine ComputeRelations in Algorithm 3 respectively. In-
formally, ComputeRelations builds new relations analogously as in Figure
5.6.

We apply the standard optimisation where we do not send w and v but
only the challenge c instead. Indeed, the verifier can compute w, v directly
from the verification equations and then check whether

c ; H4(u/ PP/ tA/ tB/ ty/ t‘B/ Z3/ Z4, tg/ h/ W, t/ U)'

Security analysis of the non-interactive version of our commit-and-prove
system can be derived similarly as in the interactive case. For example,
since Iy aq defined in Figure 5.3 (which is the last black-box protocol called
by Ilipox) is @ 3-special-sound X-protocol, its non-interactive version via
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Algorithm 1 First Part of Lantern.Prove

Input: u as in (6.16), (pp, ta, tg), (s1, m, @ = (81,...,087)),s2
Output: 7w = (ty, tg, 23,24, tg, h, t,¢, 21, 27)

t: (y3,¥a, B3, Ba) — D20 x D26 x {—1,1} x {~1,1}

2ty = Bysy + [yﬂ , tg= BﬁSZ + ['331
Y4 Pa

3 (R, R') = Hy(u, pp, ta, tp, ty, tg)
4: define s3, s4 as in (6.22),(6.30)

5: compute z3,z4 € Rﬁ%/d s.t. lZB] = lyﬂ + lﬁ3 ' RS?’]
Zy Ya Bs-R'5y

for i€ {3,4} do

if Rej)) (z;, RS, 5, M;) = 1 then

(z3,z4) = (L, 1)

end if
10: end for
11: ST =81 || de R;nlJrZ

(+512/d+2

1 m* =m | ys || ys [l B3 || Ball€ Ry
13 8% =(sf || m*), = Compute relations for the following s} and m*
142 (Rip, ¥i1,7i0)ie[N+2) as in (6.20), (6.25), (6.33)
(6.21), (6:24),(6.27), (6.28), }
(6.29), (6.32), (6.34)

e *® N D

/ / / .
15: (Ri,Z’ ri,l’ ri,O)iG[M+511+2d+ZZ] as {

16: run Algorithm 2

Fiat-Shamir transform is also knowledge sound by [AFK21, Theorem 1].
Then, proving knowledge soundness for the next building blocks, such as
Iguad—manys [Tquad—eval and eventually I, follows almost identically as
in the interactive setting.

6.5.1  Commitment and Proof Size

We provide a general strategy on instantiating the non-interactive commit-
and-prove functionality Lantern (or its interactive version in Figure 6.3). As
before, we pick the challenge space C as described in Section 3.3.6 with
respect to the automorphism o_;. Further, we choose A and [ such that

/1

terms qf)‘ and q; W are negligible.
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Algorithm 2 Second Part of Lantern.Prove

1

=
Q

R
[

=
N

13:
14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

e ® N > oA RN

g=(81,---,8rp) < {x: Ry: X =0}
te = Bextso + g
Y = (vij) = Ha(u, pp, ta, ts, ty, tg, 23, 24, tg)
forie [A/2] do

hi=gi+ Z]-Ail(vzi_l,j + Xd/ZUZi,]')Tr (s*TR;-,Zs* + r;,Tls* + ”;,o)
end for
§1 = 81 || de 'R,qu—‘rz

(+512/d+2+1/2

th=mlys|ysll B3l Pall g€ Ry
§ = | m), = Compute relations for the following §; and

(Rj,zf rzl,r}io) <« ComputeRelations ((Ri,2, i1,%i0), (Rglz, rf,l/r;,o)'Y' h)

: (I’lll ey ,uN) = H?)(ur pp/ tA/ tB/ ty/ tﬁ/ Z3,24, tg/ h)

(R;, 1']1Lr V(T)) = (Zfil ViRzT,zr le'il P‘irly Zzzil Virj,o>

mld

yl — D51
y2 < Dg2?
w = A1y; + A2y2

y = l y1)o ]
_<BYZ>¢7

g* = sTR;y + yTR;s + rTlTy
t=Dblyso +g*
U= yTR;y + ngty2
c = 7‘[4(1/1, pp, tA,tB,ty, t/g, 73,24, tg, h,w,t, U)
z; =81t Y1
Zy =CSp + Y2
for ie{1,2} do

if Rej(i) (zi,cs;, 5;, M;) = 1 then

(z1,22) = (L, 1)

end if

end for
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Algorithm 3 ComputeRelations

Input: (Ri,Z/ i1, ri,O)ie[N+2]/ (RQ,Z’ rg,y r;,o)ie [M+51142d+2Z]~ Y = (Ui,j)
Output: (RI Y rz 17 V,T, o)ie[N+2+A/2]

1:

2
3:
4

N

S

® N

O

10:

11:

12:

14:

i=m+2Z+0+512/d+2 > Length of §; ||
: M =M+511+2d+2Z = Number of quadratic relations over Z;
compute U € RZ"*?" such that for all x € RY, 0((x)¢) = U)o

: forie [N +2] do

Ri2  023xa
RzT,Z _ i, fix
Orx2n Oaxa
. [ fi ]
OAxl
T’ZO =Ti0
end for
: forie[A/2] do

02(i—1)x1
€ = 1
0A—2i+1)x1
| gt Camt X0 (R UTo R)U)
_ | e 271 % A
Ryjip = | <=1 2 "
0rx2n Orxa
T ZM (uz,-,l,]-+xd/2v2,-,j)(r;,1+UTg(r;,1))
Ingin = | =T 2
e
b Gt X o) (etere)
N0 ' 2=1 2 — M

end for
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Algorithm 4 Lantern.Verify

Input: pp,ta,tp, u asin 6.16, 71 = (t,, tg, 23,24, tg, h, t,c, 21, 22)
Output: b e {0,1}

6:

10:

118

12:

13:
14:
15:

16:

17:
18:

19:

. if HZ3H > p53\/256 \4

1
2
3:
4
5

Z4]|loo > V/2x54 v Ji € [A/2], h; # O then

return 0
end if

: (R, Rl) = H; (u, pp, ta, tp, ty, t‘B)
: (Ri,2/ Y1, T’iro)ie[NJrz] as in (6.20), (625), (633)

(6.21), (6.24), (6.27), (6.28), }

(R/'zl r/'llr/'o)ie[M+511+2d+zz] as in {
i2r %170 (6.29), (6.32), (6.34)

(RZZ, rzl, 71T,O) « ComputeRelations ((Rl’,Z, i1,7i0), (R;,Z' r;,lf r;,o)' Y, h)
(l/lll ceey VN) = 7—[3(14, PP/ tA, tB/ ty/ tﬂ/ Z3I Z4/ tg/ h)

N N N
(R; r]1Lf r(T)) = (Zi:l ViRj,erizl P‘irj,lf Dis1 ﬂir;r,o)

B t

Bf = By , th = ty
Bg ts

Bext tg

_ (z1)¢
o LCtT - BTZz%l

f =ct— ngtZQ
wl=A1zy +Azy —cty, of =z"Riz+ crITz + c2r:§ —f
if ¢ # H4(M,pp,tA,tB,ty,tlg,Z3,Z4,tg,h,WT,f,UT) Vv HZlH > §14/2m1 v
|z2| > s24/2m; then
return 0
else

return 1
end if
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There are now 4 rejection sampling algorithms: each to mask csq, ¢sp, Rs3
and RSy respectively. Denote s; = 7;T; where Ty, Ty, T3, Ty are the upper-
bounds on ||cs1 |, [csz|, |RS3] and |R'Sy| respectively. The non-aborting prob-
ability of the prover is

log(e) 71 72

—1
2(xk+1) 1 2(x + 1) 1 1 1 1
72 log(e) 22 22 22 '
11 og T2 40 Y3 in

Then, as in Theorem 6.4.1, we define
51 =17V a? + Zd, sy = Y2V Mad,

Z
53 = 73V337, | (npin + Z)d + Y. B2, 54 = 14V/3378'
i=1

Now we set kp51s and m; such that the MLWE and MSIS from Theorems
6.4.2 and 6.4.3 are hard against known attacks. Here, we assume that MLWE
is as hard as plain MLWE. We measure the hardness with the root Hermite
factor 6 and aim for J ~ 1.0044.

As discussed above, messages w and v need not be included in the output
as they are uniquely determined by the remaining components. Moreover,
all the challenges apart from c can be computed as a hash of the previous
components of the proof. On the other hand, sending ¢ requires at most
[log(2x +1)] - d bits.

As “full-sized” elements of R,, we have ty, tg, t,, tg to,t and h;. There-
fore, we have in total xysis + £ + 512/d + A + 3 full-sized elements of R,
which altogether costs at most (xusis + ¢ + 512/d + A + 3) d[log q] bits. If
we further apply the optimisation described in Section 6.4.6, the total cost
is at most (kmsis + € +512/d + A + 2) d[log q] bits.

Now, the only remaining part are the vectors z3, zy, z3, z4. We can encode
them using the Huffman coding. Concretely, suppose that z < D;. Then,
we can write

.254—1

Z:=21 + 2z

where zp = z mod $29+1. Since the expected absolute value of z is 5 and
assuming that 2° ~ s, the value of zj is close to being uniformly random
between —2° and 2°. Due to the discrete Gaussian tails, the tails of the
distribution of z; decrease very fast. Hence, the idea is to send z( in the
clear (which has 6 + 1 bits) and then encode z; using the Huffman coding.
If we assume that s = 29 and the tails of z; are the same as in the normal
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distribution centred at zero ?, then the above compression requires on aver-
age approximately 1.57 bits to represent z;. Thus, the total representation of
z requires on average ~ 2.57 + ¢ bits. Applying this strategy to z, zo, z3, z4,
the overall commitment and proof length is around

(n+¢+512/d + A +2)d[log q] + [log(2x + 1)] - d + mpd - (2.57 + [log s2])
+ (mq + Z)d - (2.57 + [log s1]) + 256 - (2.57 + [log s3]) + 256 - (2.57 + [log s4])

bits.

Finally, we can further reduce the commitment and proof size by applying
the compression techniques described in Section 4.3. The only change
from the previous case is the introduction of the variables D (for cutting
low-order bits of the commitment t,) and v (for cutting low-order bits
of w which allows us not to send some part of the masked opening z,
of the commitment randomness s;). Then, by Theorems 4.3.2 and 4.3.4,
we choose #msis, m2 and D,y so that the MSISy, o m,+m,,B is hard for

B := 41 - 1/B? + B where
B1 = 2s1+/2m1d and By = 2sy+/2mpd + 2D77\/ Kmsisd + Y/ Kmsisd.

As a rule of thumb, we first set D = ¢ = 0 and pick the largest n such that
MSIS;; 1, +m,,B is hard. Next, we find the largest -y (note that D is still zero)
for which the Module-SIS problem is still hard. Finally, after fixing n and
7, we choose the largest D such that MSIS,, ,;, {1, 5 is still hard and also
2P=1wd < v. Note that having larger D decreases the commitment size
at the cost of having larger hints and therefore, there is no advantage in
picking larger D than log(y/(wd)) + 1.

Now, we provide an asymptotic analysis of bounding the size of the
hint vector h. First, note that the coefficient vector h with high probability
satisfies |h|o < |HighBits,(cta2 —z22)[lo0 (here we assume the low-order
bits wy of w do not cause the increase in the high-order bits). Then, |ct4, +
22700 < 2P~1wd + 165, with an overwhelming probability by Lemma 3.2.2.
Hence, we conclude that (with high probability) the coefficients of h are
between —x and x where

v {ZD_lwd + 1652}
= |

(6.35)

For our parameters, the standard deviation s, will be much smaller than
7 and thus x will be close to 2P~!wd /. Finally, by picking D such that

2 This assumption is needed so that we can compute the frequencies for the Huffman coding.
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Integer Representation Bits
0 00 2
1 01 2
-1 10 2
k=2 110241 2k—1
k< -2 110%31 2k

TABLE 6.1: Prefix-free encoding [Duc+17].

2P=1wd < v, we conclude that the coefficients of h are between —1 and 1
with high probability. Assuming heuristically that they follow a binomial
distribution, we encode h using a prefix-free encoding 3 [Duc+17] as shown
in Table 6.1. As computed in [Duc+17], encoding a coefficient of h requires
on average ~ 2.25 bits.

The final proof size including compression becomes:

kmsisd([logq] — D) + (£ +512/d + A + 2) d[log q] + [log(2w + 1) - d
+ (m1 + Z2)d - (2.57 + [log s1]) + mad - (2.57 + [log s2])
+2.25 - xmsisd + 256 - (2.57 + [log s3]) + 256 - (2.57 + [log s4]) bits.

6.5.1.1 Skipping the Non-Exact Norm Proof

In certain applications, we will not perform any non-exact norm proofs, as
described in Section 6.4.7. In this scenario, we do not send the commitments
y4, B4 and the masked opening z,. Also, the packing technique from Section
6.4.6 becomes pointless. In conclusion, the proof size for this case becomes:

kmsisd([logg] — D) + (€ +256/d + A + 2) d[log q] + [log(2w + 1)] - d
+(my+2)d-(2.57 + [IOgﬁl]) +mpd - (2.57 + [IOgSQ])
+2.25 - xmsisd + 256 - (2.57 + [log s3]) bits.

3 One could apply the Huffman coding as before, however this requires computing the frequen-
cies of the hint coefficients.



SHORTER PROOFS VIA ONE-TIME COMMITMENTS

In order to provide zero-knowledge (or more precisely, simulatability) for
the protocols in Chapters 5 and 6, we apply rejection sampling to avoid
leaking any information about the short message s; and a randomness
vector sp. As described in Sections 3.3.5 and 3.3.6, if one wants to use the
Gaussian rejection sampling procedure [Lyu12], then the coefficients of z;
output in the proof are around 7; - 77s;| — here 7 is the constant dependent
on the challenge space and ; > 0 determines the repetition rate. Indeed,
by the reasoning in Section 6.5.1 one would need to repeat at least *

2(k+1) (1 1 1 1

M = exp — |t — |+t =+
( log(e) (71 72) 292 27%)
times to obtain an accepting transcript. In terms of concrete parameters, if
2(128+1)
log(e)
obtain M ~ 7.5. Hence, the coefficients of z; are about 13 - 140 * larger than
coefficients of s;.

The increased coefficient size implies that the proof (z1, zy) is noticeably
larger than the message and randomness themselves. However, it seems nec-
essary because leaking some information about the message or randomness
can be dangerous. For instance, if one were to repeatedly perform proofs of
knowledge for the same commitment and leak something about the same
randomness s, each time, eventually the entire s, could be recovered.

Interestingly, the role of the commitments in many of the privacy-based
primitives, such as group signatures [PLS18], is to commit to some in-
termediate messages m under fresh randomness s, and give a proof-of-
knowledge of m and that they satisfy certain relations. This means that
the output of the primitive is a commitment and a proof. Consequently,
every new output contains a commitment with fresh randomness s,. In this
case, it is not immediately clear whether some leakage of the randomness
vector is problematic. Nevertheless, it would be good to have a technique

we main for 128-bit security then by setting y; = ¥, = ~ 13, we

1 For the sake of the overview, we ignore the terms related to z3, z4.
2 We use the value of # from Figure 3.3 for d = 64.
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7.1 BIMODAL GAUSSIAN REJECTION SAMPLING ON THE RANDOMNESS 153

which lowers the proof size, and concurrently allows one to understand ex-
actly how the hiding property of the commitment scheme is affected by the
leakage. Similar analysis can also be applied for the ABDLOP commitments.

As discussed above, if one wants to avoid leaking any information about
the randomness sy, then the “masked opening” z; of s, will have coefficients
around 7; - #7||s2[. On the other end of the spectrum, if one simply sends
zy = sy in the clear, then obviously the coefficients of z, have size at
most [s2]e but the whole randomness is leaked. Our contribution in this
chapter is finding a middle ground and showing that by applying bimodal
Gaussian rejection sampling on zj, i.e. use Rej; instead of Rej, defined
in Figure 3.2, we reduce the coefficient size of z, by a factor of O(77).
We achieve this improvement at the cost of (potentially) leaking the inner
product {sp,czy) € Z where c € C is a challenge. Hence, we show that
the simulatability property of our protocols relies on the Extended-MLWE
assumption, first introduced by Alperin-Sheriff and Apon [AA16], which in
addition to the plain MLWE, it reveals the inner products of the secret with
public vectors to the adversary.

Similar results were proposed recently by Lyubashevsky et al. [LNS21a].
We describe the main differences. Firstly, for the same standard deviation,
we obtain a repetition rate which is two times smaller. This is because
in [LNS21a] the prover only sends z; if the inner product {z;, cs;) is non-
negative which happens with probability at least 1/2. This means that
even an honest verifier learns the sign of the inner product. Although our
protocol relies on a stronger variant of the Module-LWE assumption, where
the adversary is given the whole inner product of the secret with a random
vector rather than just the sign, the honest verifier in our case is not given
explicit information about the inner product itself.

7.1 BIMODAL GAUSSIAN REJECTION SAMPLING ON THE RANDOMNESS

As evidenced in the case of signature schemes [Duc+13], applying bimodal
Gaussians significantly reduces the standard deviation used for rejection
sampling3. We attempt to follow the same methodology for our protocols.

In our constructions, we apply a rejection sampling procedure to mask a
secret vector ¥ by first sampling i/ from a discrete Gaussian with standard
deviation s, and then computing Z := ¥ + ij. By Lemma 3.3.2, if we addition-
ally run Rejy(Z, 7,8, M), then the distribution of Z is indistinguishable to the
one where we simply sample Z from a discrete Gaussian and output Z with

3 One can compare Lemma 3.3.3 to Lemma 3.3.2 to see the difference.
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A®) 70)
91 7 < D 017« DI
02 Z=F+7 02 (Z1,2-) = (sign((F, D) -7, ~sign({F, D) - 7)

op( L5 12 ) exp (2421

M cosh({Z,7)/s?) = exp(ZKﬁy‘iﬁM )+1

Z, with prob.
os 7. | Z+ with prob. p
Z_ with prob. 1 —p

03 output (Z, ¥) with prob.

o]
w
=

05 output (Z,7) with prob. ﬁ

FIGURE 7.1: Algorithms A and F for Lemma 7.1.1. We define sign(x) = 1if x > 0
and —1 otherwise.

probability 1/M. Here, it is important that one could generate Z without
having any information on 7.

Now, suppose that instead of Rej;, we run Rej;. It is now a natural
question to ask whether there is a way to simulate the Z by having as little
information on 7 as possible. We answer this question positively and show

that this distribution is simulatable given only the inner product {Z, ¥) of Z

and 7. We summarise our observation with the following lemma.

Lemma 7.1.1. Let 7 € Z™ be a vector of norm T. Fix s = 4T and M >
exp ( ) Then the distributions of the outputs of A(¥) and F(0) defined in

Figure 7.1 are identical. Moreover, the probability that A outputs something is
exactly 1/M.

Proof. Fix 7€ V and Z € Z™ and let

e 2<§§7>)
& exp (2<ff>) +1
By definition of A, A(7,Z) is equal to
e g oP(aE) L 2ee((ER) oy
Ds(zU)'Mcosh(zz;?)zDs(Z)'M(exp(z@;) ):D Z)'M

Now, we focus on F (7). We see that by construction, (Z;,7) > 0 and
(Z_,7) < 0. Let us consider three separate cases. First, suppose Z satisfies
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(Z,7) > 0. Informally, we want to compute the probability that i = +Z and
F picks Z. Then,

Further, suppose (Z,7) < 0. Informally, we compute the probability that
i = +Z and F picks Z_. Then,

. B 1 1 2
F(9,Z) =2D}(Z) - — -— =DHZ) =
S EE R

Finally, assume (Z,7) = 0 and thus p = 1/2. Then, F(7,Z2) is simply the
probability that (if = Z A F outputs Z) or (i = —Z A F outputs Z_). Hence,
1 1 1 2p
77 = mezy, m—_‘.iz m_»-iz mezy,
Therefore, we proved that for every z, A(7,Z) = F(7,Z2).
Finally, the second part of the statement follows from a simple observation
that F outputs something with probability exactly 1/M.
O

7.2 EXTENDED-MLWE

We observe that the only information about ¢ needed in order to run the
simulator F in the security proof is the value of (i, 7). Hence, we reduce
the simulatability property of our protocols to the hardness of the so-called
Extended-MLWE. Here, as usual, an adversary needs to distinguish between
the tuples (B, Bs) and (B, u), where u is a uniformly random vector but
this time it is also given a “hint” of the form (c, y, (cs,y)) where c and y are
sampled from some known distributions. For simplicity, we will describe
the problem in a “knapsack” form.

Definition 7.2.1 (Extended-MLWE). The Extended-MLWE problem with pa-
rameters n,m and distribution x, ¢,y over R asks the adversary A to
distinguish between the following two cases: 1) (B, Bs,c,y,{cs,y)) and 2)

n—+m

(B,u,c,y,{(cs,y)) for B — RZM (n+m), a secret vector s « x , uniformly
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random vector u € Ry’ and (c,y) « Gc x &M Then, A is said to have
advantage € in solving Extended-MLWE,, ,,, » z ¢, if

[Pr[b= 1B Ry<CH; s )1 (0 y) g x G b A(B,Bs,c,y, (cs, y)]

= €.

b [b . B — RZzX<n+m); § — Xn+m; (C,y) - CC x Cg+m;u - R;",' :|

b— A(B,u,c,y,{cs,y))

We say that Extended-M LWEn,m/x,éc,Cy is hard if for all PPT adversaries A,
the advantage in solving Extended-MLWE,, ;, , = ¢, is negligible.

We note that the (Module-)LWE problem with various side information
has already been discussed in prior work e.g. [AP12; Dac+20; Dod+10].
As far as we are aware, this new variant of MLWE is the closest to the
Extended Module-LWE problems defined by Lyubashevsky et al. [LNS21a],
Alperin-Sheriff and Apon [AA16], Alperin-Sheriff and Peikert [AP12] and
Boudgoust et al. [Bou+21].

We observe that [AA16] describes a similar problem with the two differ-
ences: (i) there is no c involved (assume that ¢ = 1) and (ii) the hint is an
arbitrary Q-linear function on the “error” part e of the secret s (in particular,
it could be (e, y) € Z where y < ¢i'). Alperin-Sheriff and Apon show that
their Extended-MLWE problem can be reduced to plain MLWE if the errors
come from a discrete Gaussian with a large enough standard deviation. The
proof strategy was later extended by Boudgoust et al. [Bou+21] who define
another Extended-MLWE problem. This time, however, the hint becomes
a whole polynomial {e,y) € R. Finally, the only difference between our
problem and the one in [LNS21a] is that the adversary is given the whole
inner product {cs,y) instead of its sign.

If we consider our Extended-MLWE without any polynomial ring struc-
ture, then the problem becomes almost identical to the one introduced by
Alperin-Sheriff and Peikert [AP12] (if we again assume ¢ = 1). The authors
additionally show that it is possible to reduce such a problem to plain LWE
with the reduction loss O(|(5, i/))).

7.3 APPLICATIONS

For presentation, we apply our new rejection sampling strategy on the
commit-and-prove system I1;, = (ABDLOP, P, V) for the relation R, in
Figure 5.1. However, it can be almost identically applied to all other systems
described in Chapters 5 and 6.
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7.3 APPLICATIONS

Concretely, we substitute Theorems 5.1.1 and 5.1.2 with the following
results.

Theorem 7.3.1. Let Rej(M) = Rejg and Rej(® = Rejy as defined in Figure 3.2.
Fix standard deviations s1 = y1na and sy = yanv/mad for some y1,v2 > 0 and

define
2k+1) 1 1 1
M = — 4 — d M, := — |-
' eXp( log(e) ™ 27%) T eR (M%)

Then, the commit-and-prove system I1j;, for the relation Ry, has statistical com-
pleteness with correctness error 1 — ﬁ

Proof. The proof follows directly from Lemma 7.1.1 which says that Rej;
does not abort with probability 1/M,. O

Theorem 7.3.2. Let Rej() = Rejg and Rej® = Rej, as defined in Figure 3.2.
Fix standard deviations s1 = y1ya and sy = yojv+/mad for some y1 > 0,7y > 0
and define

2 1) 1 1 1
M; = exp (k& )~—+—2 and Mp :=exp | = | -
logle) 711 297 273
Suppose kpmuwe = M — kmsis — £ = 0. Then, the commit-and-prove system I,
for the relation Ry, is simulatable under the Extended-MLWE

assumption.

KMLWE KMSIS +f,X,C,D§2

Proof. Similarly as before, we prove the statement using a hybrid argu-
ment. First, we describe an efficient simulator Sy, which knows s;, m and
simulates both the commitment and the transcript as follows. It generates
fresh randomness s; < X2 and a masking vector y, « D;"zzd and com-
putes (ta,tg) = ABDLOP.Commit(s1, m;sy) and zp = yz + csp. It aborts if
Rej1(z2, csp, 52, Mp) = 1. Next, S1 samples z1 « D;"lld. Finally, §; computes

w=A1z1 + Ayzy —cty

v:=Ry = + crg
ctg — Bz,

and outputs a simulated transcript (w, v, c, 21, zp) with probability 1/M;.
Then, by Lemma 3.3.2, the non-aborted simulated commitment and tran-
script by Sj are statistically close to the honestly generated commitment
and non-aborted transcript.
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7.3 APPLICATIONS

Next, we describe an efficient simulator S,, which still knows s;, m and
simulates both the commitment and the transcript in the following way. It
executes the S algorithm but instead of constructing z honestly as in the
protocol, S, samples y, «— D?jd and defines z := sign({csy, y2)) - y2 and
z_ = —z;. Then, it sets z; := z with probability p and z; := z_ with
probability 1 — p where

exp (L2

exp (W) +1

pi=

It then continues with probability 1/M;. By Lemma 7.1.1, the non-aborted
simulated commitment and transcript by S; and S, are identical.

Further, we describe an efficient simulator S3, which still knows s;, m
and simulates both the commitment and the transcript as follows. Namely,
it executes the S, algorithm but instead of generating (t4, tg) honestly, it
samples u « Rg” and computes:

l=ee ]

Now, under the Extended-M LWEKMLWE,KMSB +0xC,DY, assumption, the non-

aborted output distribution of S, is computationally indistinguishable from
the non-aborted output distribution of S,.

Finally, we define our simulator S, which has no access to private in-
formation anymore, as follows. Concretely, it executes the S3 algorithm
but instead of generating (ta,tp) as Ss, it samples u < R;’“ and sets
(ta, tg) := u. Also, it does not perform any abort operations. Then, clearly
the output distribution of S is identical to the non-aborted output of S;.
Hence, the statement holds by the hybrid argument. O

In conclusion, for the same standard deviation s, we manage to reduce the
2(k+1) 1
log(e) 72
the new rejection sampling technique in the protocol described in Figure
6.3, an honest prover convinces the verifier with probability

—1
~ exp 2+t) 12 1 1 1 1
logle) m 2v% 2y 295 2vi)

repetition rate by a factor of exp ( ) For instance, by applying
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APPLICATIONS

In this chapter, we show how to make use of our techniques developed
in Chapter 6 for proving norms in real-world applications. Concretely,
we apply our framework for proving knowledge of a Module-LWE secret
in Section 8.1, verifiable encryption in Section 8.2 and proving integer
relations in Section 8.3. Further, we focus on building more complex privacy-
preserving primitives such as group and ring signatures in Section 8.4 and
8.5. In order to show significance of our results, we compare our efficiency
with relevant prior work. We additionally provide SAGE [The22] scripts
which compute parameters for the examples described in this chapter:

https://github.com/khalvador/lantern.

8.1 PROVING KNOWLEDGE OF A MODULE-LWE SECRET

As a primary benchmark for comparison with prior work [ENS20; LNS21a],
we prove knowledge of a Module-LWE secret. Namely, we want to prove
knowledge of (s, e) € Rj*™ such that |(s,e)| < B and

As+e=u (mod gq) (8.1)

where A € R7*™ and u € Ry are public.
We propose the following solution using the framework developed in
Section 6.4. Simply, we commit to s and prove that

L L

In Figure 8.1 we show to properly instantiate the commit-and-prove system
Iipox to prove knowledge of a Module-LWE secret.

Im
A

< B.

Remark. We note that [ENS20; LNS21a] could not avoid committing to e
without having additional commitments. Indeed, previous work efficiently
prove smallness of a vector s, e.g. |s|o < 1, by committing to its coefficient
vector § using NTT slots and then proving that

So(3—1)o(3+1) =0.
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8.1 PROVING KNOWLEDGE OF A MODULE-LWE SECRET

variable description instantiation
N # of quadratic equations over R, 0
M # of quadratic equations over Z; 0
npin | length of the vector to prove binary coefficients 0
Z # of exact norm proofs 1
- approximate shortness proof X
s1 message in the Ajtai part s
m committed message in the BDLOP part %]
Egl) matrix for proving HEgl)sl + E,(nl)m +vD| < B I
A
E,(,}) matrix for proving |\E§l)s1 + E,(nl)m +v| < B %)
v(l) | vector for proving HEgl)sl + E,(ﬂl)m +vD| < B - 01
u
B upper-bound on \|Es(1)s1 + E,(,Pm +v(® | B

FIGURE 8.1: Instantiation of the protocol in Figure 6.3 for proving As +e = u
(mod ¢) and |/(s, e)|| < B. The variables in the first two columns refer
to the ones defined in Section 6.4 and the ones in the last column
refer to the parameters in this section. Here, (§ denotes an empty
vector/matrix.

If one were not to commit to e, then one would need to prove an equation
of the form
(A5 —ii)o (A5 —ii—T) o (A5 —ii + 1) = 0.

However, this relation, which is a mix of linear and product relations, cannot
be proven using current methods included in [ENS20; LNS21a] without
making intermediate commitments.

8.1.1 Parameters

We instantiate our protocol for the case when g ~ 232 and n = m = 1024/d
similarly [BLS19; ENS20; LNS21a] using the methodology in Section 6.5.1.
We provide a summary of our parameter selection in Table 8.2.
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8.1 PROVING KNOWLEDGE OF A MODULE-LWE SECRET

parameters description value

q prime modulus 232 99
d ring dimension of R 64
l # factors X4 + 1 splits into mod ¢ 2
n height of the A matrix 16
m width of the A matrix 16
7 rejection sampling constant for cs; 10
72 rejection sampling constant for cs; 1
73 rejection sampling constant for the ARP 6
w maximum coefficient of a challenge in C 8
KMSIS height of matrices Aj, Ay in ABDLOP 19
my length of the message s; in the “Ajtai” part 16
14 length of the message m in the “BDLOP” part| 0
A 2. (# of gj € Ry for boosting soundness) 4
my length of the randomness s, in ABDLOP 47
v randomness s, is sampled from S} 1

% parameter to cut low-order bits of w 65526

D number of low-order bits cut from t4 3
repetition rate 7

commitment + proof size 13.1KB

FIGURE 8.2: Parameter selection for proving As +e = u (mod g) and |(s, e)||
+/2048 using the protocol in Figure 6.3

<

x
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8.2 VERIFIABLE ENCRYPTION 162

Let us pick prime g := 232 —99 (i.e. g = q;) and set d = 64,1 = 2 and
B = 1/2048'. Then we define the randomness distribution x as a uniform
one over S;. For the challenge space, we set w = 8 and # = 140 as in Figure
3.3. Then, any difference of two distinct challenges in C is invertible over
R, Also, for g ~ 232, we choose A = 4. Thus, =% < g7} ~ 27128,

There are three rejection sampling algorithms: one to mask cs;, another
one to mask cs; and the last one to mask |Rs3|. Denote s; = ;T; where
Ty, Tp, T3 are the upper-bounds on |cs1|, [csz| and |RS3| respectively. The
repetition rate in our case, using the optimised rejection sampling in Chapter
7, is at least

ool e 1111
P\ Togle) "1 " 202" 22 22 )
The rate in [LNS21a] is around 7 hence we set 41 = 10,7, = 1 and 3 = 6.

Finally, the total communication size has been computed as in Section
6.5.1.1.

8.2 VERIFIABLE ENCRYPTION

For presentation, we will consider a standard Regev public-key encryption
scheme [Regog] but similar analysis can be applied for more complex
construction, such as Kyber [Bos+18], Saber [DAn+18] and NTRU [HPS98]
(see [LNS21a, Section 4] for more details). Namely, let p be a prime modulus
of the encryption scheme. In order to encrypt a binary message m € {0,1}%
with w number of 1s, a user samples a randomness vector r < ¢™, where ¢
is a distribution over R, and compute

to o A , 0 »
il L o

over Ry, := Z,[X]/(X? + 1) where (A,b) € Ry*™M x Ry is the public key 2.
Let B be an upper-bound on r such that the probability that |r| > B for
r < (™ is negligible. Then, in the verifiable encryption scenario, we want to
prove knowledge of r € R™ and m € R such that (i) Equation 8.2 is satisfied
over R, (ii) t| < B and (iii) m € {0, 1}".

The high-level idea is to commit to (r, m) using the ABDLOP commitment
modulo g and prove these three statements. Note that the latter two have

1 It is the case when sy, e only consist of ternary coefficients as assumed in the prior work.
2 Recall that all coefficients of the terms involved in (8.2) are between —p/2 and p/2.



8.2 VERIFIABLE ENCRYPTION

already been covered in Section 6.4. Hence, from now on we focus on
proving the first statement.

We first observe that if g is divisible by p then (8.2) can be transformed
into a linear equation modulo g and can be proven as described in Section
6.4. However, in practical instantiations p will be significantly small relative
to g (e.g. p = 3329 in Kyber). Consequently, if g has a small prime divisor
p then by Theorem 6.4.3, we would need to commit to more garbage
polynomials g; in order to keep the soundness error negligible. Moreover,
for implementation purposes one might want p to be a prime such that
X% +1 splits into many factors modulo p (e.g. p = 3329). In this case, if p
divides g, then the challenge space C does not have the invertibility property
which is necessary for the soundness proof. In Figure 8.4 we propose an
example instantiation for the case when g is divisible by p (see parameter
set II).

Now, suppose that p is co-prime to g. Then, (8.2) is true if and only if
there exists a vector v e R"*! such that

to L , 0 v
o= bl Ll s

2
over R. From a simple calculation, |v||w < Bvmd/2 + 1. We can avoid
committing to v by proving directly that vector

N A 0 r| to c RP )
g | M R

has norm at most B, := (Bvmd/2 + 1)/(n + 1)d. Since this expression is
linear in the committed messages r and m, we can apply the protocol in
Figure 6.3 to prove its norm. As we will show below, it is enough to prove
an approximate bound, i.e. |[v|x < ¢ - By, where ¢ := 2 +/2k - 33774, as
described in Section 6.4.3. Indeed, in the soundness argument we would
extract a pair (r*, m*) which satisfies

A
bT

m* e {0,1}4,

Ir*| < B,

L [lA o
p o
151
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8.2 VERIFIABLE ENCRYPTION

Denote the third expression as v* € R""!. Then, we have

t Al ., 0 .
Lﬂ = le] o+ Lg]m*} +pv*  (mod 7). (8.5)

A r* + 0 + pv* — to
b’ [%]m* t

Hence, if g is bigger than the right-hand side of this inequality, then we
conclude that Equation (8.5) holds over integers. In particular (to,t1) is a
valid encryption of m under randomness r over R .

In Figure 8.3 we instantiate the protocol from Figure 6.3 for verifiable
encryption as described above.

Thus,

<p(BVmd2+1+¢-B,).

0

Remark. Note that the current state-of-the-art lattice based verifiable encryp-
tion [LN17], which is used in e.g. [Lyu+21; PLS18], only provide relaxed
verifiable encryption. Namely, the soundness argument only guarantees
knowledge of a message and randomness corresponding to the ciphertext
(Cto, cty), where ¢ € Ry is called a relaxation factor. More importantly, ¢ is
not known to the decryptor and thus it guesses a ¢ and attempts to recover
the ciphertext (t, ¢t1). Consequently, the prior works had to equate the
decryption time with the adversary’s running time. Here, since we commit
to r and m using a separate ABDLOP commitment, we circumvent the
relaxation factor by proving exact norms on r and m € {0,1}%.

8.2.0.1 Parameters

We provide our parameters choices? in Figure 8.4. For the ciphertext modu-
lus and dimensions, we follow the Kyber instantiation. In particular, we set
d=64,n=8m=18and b = ATs + e where the secret key s and error e
come from Bin§? and Binl® respectively. For the randomness distribution,
fix ¢ := BinJ. Hence, we can set the upper-bound B on the norm of r « ¢K
as B = 2v/md and thus B, = (md +1),/(n + 1)d.

To compute the decryption error probability, we want to calculate the
probability that for r,e « Bing‘d, [<r,e)|0 < g/4. First, we compute that
for any 7,¢ «— Bin", the probability that |[(7,&)[ . > 800 is less than 2360,

One can also instantiate the encryption scheme over a larger ring, e.g. R’ := Z[X]/(X?° +1).
Then, in order to apply our proof system over a smaller ring R, one would first map the
equations to work over R rather than R’ as described in Section 3.2.4.

164



8.2 VERIFIABLE ENCRYPTION

variable description instantiation
N # of quadratic equations over R, 0
M # of quadratic equations over Z, 0
Mbin length of the vector to prove bin. coeff. 1
z # of exact norm proofs 1
- approximate shortness proof v
1 committed message in the Ajtai part r|m
m committed message in the BDLOP part 0]
P, matrix to prove Pss; + P, m + f has bin. coeff. [01]
P, | matrix to prove Pss; + P;;m + £ has bin. coeff. (%)
f vector to prove Pss; + P,;m + f has bin. coeff. 0
Es(l) matrix for proving HE§1)51 + Eg,})m +v(® | < By [Im O]
E,(nl) matrix for proving HEgl)sl + E,(nl)m +vD| < B %)
v() | vector for proving HEgl)sl + EE,})m +vD| < B 0
B upper-bound on HEgl)sl + E,(ﬂl)m +vD)| B
D; matrix for proving |Dssy + Dyym + u| < B’ % : lAT 2 ]
b® 3]
Dy, matrix for proving |Dssy + Dym + u| < B’ (%]
u vector for proving |Dssy + Dyym + u| < B’ % : Lto}
1
B’ upper-bound on |Dss; + Dyym + u By

FIGURE 8.3: Instantiation of the protocol in Figure 6.3 for verifiable encryption.

The variables in the first two columns refer to the ones defined in
Section 6.4 and the ones in the last column refer to the parameters in

this section. Here, B, := (BvVmd/2 + 1)4/(n+ 1)d and J denotes an

empty vector/matrix.
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8.2 VERIFIABLE ENCRYPTION

parameters description I I
p encryption modulus 3329 | 3253
n height of A 8 8
m width of A 18 18
¢ &K is the rand. dist. of r Bing Bing
q proof system modulus ~ 2% | ~ 2%
d dimension of R 64 64
l # factors X + 1 splits into mod ¢ 2 2
7 rej. samp. constant for csg 32 9.5
72 rej. samp. constant for cs; 1
73 rej. samp. constant for exact ARP 16 6
V4 rej. samp. constant for non-exact ARP 0.7 -
w max. coeff. of a challenge in C 8 8
KMSIS height of A;, A; in ABDLOP 20 19
my length of the “Ajtai” message s1 19 11
14 length of the “BDLOP” message m 0 0
A 2. (# of gj € R, for boosting soundness) 4 12
my length of randomness s; 54 51
v randomness s, is sampled from S 1 1
v parameter to cut low-order bits of w | 113302 | 28822
D number of low-order bits cut from t4 8 6
repetition rate 7 7
ciphertext size 1KB | 1KB
commitment + proof size 17.2KB | 15.0KB

FIGURE 8.4: Parameter selection, ciphertext and proof sizes for verifiable encryp-
tion. For the second parameter set we choose g := 1320301 - 3253.
Since p divides g, we do not need to do an approximate range proof
of v as for I. Consequently, we can pick smaller modulus g and apply
a similar strategy as in Section 8.1. In particular, we do not commit to
the whole vector r = (ry,1g) € ’Rg‘_” X R;, but only a part of it, i.e.

the vector r;.
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8.3 PROVING INTEGER RELATIONS

Then, by the union-bound, the probability that |[{r,e)|« > 800 is still at
most 273%. Hence, in our parameter selection, we will pick a prime p larger
than 3200.

The rest of the parameters are chosen similarly Section 6.5.1. Finally, we
need to check that

g~2¥>p. (Bm/z +1+ (BVmd/2+1)y/(n+ 1)dl/)> .

The term on the right-hand side is less than 2% thus the inequality holds.

83 PROVING INTEGER RELATIONS

This section focuses on proving integer relations using the framework
developed in Section 6.4. We start by proving integer addition in Section
8.3.1 and then move to proving multiplication in Section 8.3.2. We highlight
that the relations we are interested in hold over integers, i.e. no wrap-around
modulo g occurs.

8.3.1 Integer Addition

In this subsection we provide an efficient commit-and-prove system for
addition on the committed integers. Specifically, given commitments to
integers a,b,c (depending on the application, some of these values can
be given out in the clear), we want to prove that a + b = c. In order to
consider both positive and negative values, we use the two’s complement
representation. Namely, let n be a power of two and suppose n = kd for

k = 1. Suppose a,b,c € [—2"’1,2"*1 — 1] and we want to prove a + b = c.

Then, a can be represented in two’s complement as n bits ag, . .., a,-1 € {0,1}
which satisfy

n—2
a=—a,_ 12" 1+ Z a;2'.
i=0
Similarly, we write
n—2 ) n—2 )
b=—b,_12" '+ Z b2 and c=—c, 12" ' + Z ;2"
i=0 i=0

Let us define polynomials 4, b, ¢ € Z[X] as follows:

n—2
= —an X"+ Y aX
i=0
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8.3 PROVING INTEGER RELATIONS

and similarly for b,é. Then, clearly we have a + b = c if and only if 4(2) +
b(2) = ¢(2). The latter can be written equivalently as

~ ~

a(X) + b(X) = e(X) + 2 - X)f(X) (8.6)

for some f € Z[X] of degree at most n — 2. We will call f the carry polyno-
mial. We now show that f has binary coefficients.

Lemma 8.3.1. The polynomial f € Z[X] defined above has coefficients in {0,1}.

Proof. We prove the statement by induction and start with the constant
coefficient fy. Note that

2f0 :a0+b0—00
and thus
ag + by — ¢

2

Hence, fp € {0,1}. Next, consider 0 < i < n—2 and suppose f;_1 € {0,1}.
Then

1
—=<fo= <L
3 <f

2fi—fic1=a;+bi—c;

and therefore
*1<fi= ai+bi—citfia 3
2 2 2

We conclude that f; € {0,1}. Finally, focus on f,_». We know that

_fan = (_an—l) + (_bn—l) - (_Cn—l) =Ch—1—n—1 — bn—1~

Now, we claim that 0 < a,_1 + b,_1 — ch—1 < 1 which concludes the proof.
Indeed, first note that a,_1 + b,_1 — cn_1 < 1 since otherwise a,_1 = b,,_1 =
1 and c,_; = 0. By definition of two’s complement, this implies that a,b < 0
and 0 < ¢. Thus, a+b < 0 < ¢ = a + b which is a contradiction. Next, we
show thata,_1 + b,_1 — ch_1 # —1. If it were the case, thena,_1 = b,_1 =0
and ¢,_1 = 1. However, then a + b > 0 > ¢ which leads to contradiction.
Hence,
0< fan =ln—1+ bn—l -1 < 1

O

Our strategy will be to prove (8.6). We do it by first proving the equation
over Ry := Zy[X]/(X" +1) = Z, [X]/(X* + 1) and then showing that no
modulo g and X" + 1 wrap-around occurs. Let £ € R} be an inverse of
2 — X. Such inverse exists if 254 + 1 is not divisible by g which will be the
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case in our instantiations. Consider the ¢ : R} — R’g map described in
Section 3.2.4, i.e.

k—1
¢(u) = (ug, ..., ux_1) where u = Z ui (XM X' e Ry
i=0

We showed in Lemma 3.2.11 that (8.6) is equivalent to

P(2) * (9(a) + p(b) — Pp(¢)) = p(f).

For simplicity denote
¢(a) := (Ao, ..., fk—1)

and similarly for be z, f . Then this equation is equivalent to

R o,
VieZy, Y. & (aj+b]-7@j)x{ a - f
0<i,j<k
i+j=:mod k

over R,;. Hence, we will commit to ¢(a), p(b), ¢(¢) € ’R’,; and prove the
following statements:

1. 4,b and ¢ are well-formed. We need to show that all the coefficients of
a+ X", b+ X 1,6+ X" are binary. Note that this is equivalent to
proving that dy, ..., d_2,dk_1 + X%~ € R, all have binary coefficients
and similarly for b,é.

2. f is well-formed. We prove that f has binary coefficients. This is done
by proving that for all 1 € Z,

> w(arb-g)xtFler,
0<i,j<k
i+j=:mod k

has binary coefficients.

3. No overflow modulo X" + 1. Recall that we prove Equation 8.6 over R"a.
In order to conclude that the equation holds over integers, we prove
that there is no overflow modulo g and X" + 1. The first statements
above make sure no wrap-around modulo g occurs when q > 7. For
the latter issue, note that it is enough to prove that the highest degree
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83 PROVING INTEGER RELATIONS 170

coefficient of f is equal to zero. This is done by proving that the
constant coefficient of

i+j
—d+1 p _ ye—d+1 s (a2 b, — ¢, 3
XL =x Y xl(a]—kb]—cj)Xl |
0<i,j<k
i+j=k—1mod k

is equal to zero.

It is now easy to see that all the statements can be directly proven using
our framework developed in Section 6.4. Namely, set s; := ¢(@) || ¢(b) ||
¢(¢) and m = F. For presentation, denote k, ;, k; ;, k. ; € ng as

T T
ku,i:[olxi 1 01><(3k7i71)]' kb,i:[olx(kJri) 1 01><(2k7i71)]

T
ke, = [01X(2k+i) 1 le(k—i—l)]'

Then, for any i € Z; we have

~

T A T
k81 =4d;, k81 =10, k i1 = Cj.
Next, define the following matrices
T T T
ku,O kb,O kc,O
K, := , K= , K¢:= :
T T
ka,k—l kb k—1 kc,k—l

and
it
Z 0<i <k X { k J (kT +k k;)
i+j=0mod k
Kf =
i+
2 o<ij<k %X xl%] (kT +ky chj)
i+j=k—1 mod k ’
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Hence, to prove the first two statements, we want to prove that Pss; + f has
binary coefficients, where

0k—1)x1
Xd—l
K,
K 0k—1)x1
Poi= | Pl eRFE, fi=| xi1 | eREE (87)
K,
K 0k—1)x1
f Xd*l
L 0k><1 A

Finally, the third statement is equivalent to proving that the constant co-
efficient of (s1)¢R{ ,(s1)¢ + 1{/(s1)s + 1 ¢ is equal to zero where R, :=
sk 6k, 71 o = 0 and

i+j
/o —d+1 s 1T *
n, =X ' Z XiJako (ka,j +kyj— kc,j) X { ' J (8.8)
0<i,j<k
i+j=k—1 mod k

where the matrix J3;, defined in Lemma 5.2.1 satisfies s1 = J3 2(s1)0-

In Figure 8.5 we instantiate the protocol from Figure 6.3 for integer
addition as described above. Then, we present the proof sizes for various
values of n in Figure 8.6. For each instance, we choose (g,d,]) = (~ 232 64, 2)
and set the standard deviations so that the overall repetition rate is at most
7. Other parameters are selected similarly as in the previous examples.

8.3.2 Integer Multiplication

We show how to prove knowledge of integers a, b, c such that ab = c. We
first present a non-optimal solution which can be done by directly applying
the framework in Section 6.4. Then, we describe a way to reduce the proof
size at the cost of slightly extending our framework in Section 8.3.2.1.

Concretely, let us write a,b € [-2"~1,2""1 —1]and c e [-22"~1,22n=1 1]
in two’s complement representation, i.e.

n—2 n—2
a= 7an,12n71 + Z al-2", b= 7bn,12n71 + Z biZi
i=0 i=0
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variable description instantiation
N # of quadratic equations over R, 0
M # of quadratic equations over Z; 1
Nbin length of the vector to prove bin. coeff. 4k
V4 # of exact norm proofs 0
- approximate shortness proof X
s1 committed message in the Ajtai part o) || p(b) || (2
m committed message in the BDLOP part 0]
Ri,z matrix used for the quad. equation over Z; O6k < 6k
) vector used for the quad. equation over Z, (8.8)
r{lo constant used for the quad. equation over Z; 0
P;  |matrix to prove Pgs; + P;,;m + f has bin. coeff. (8.7)
P, |matrix to prove Pssq + P, m + f has bin. coeff. (%)
f |vector to prove Pss; + P;;m + f has bin. coeff. (8.7)

FIGURE 8.5: Instantiation of the protocol in Figure 6.3 for proving n-bit integer
addition where n = kd. The variables in the first two columns refer
to the ones defined in Section 6.4 and the ones in the last column
refer to the parameters in this section. Here, (§ denotes an empty
vector /matrix.

and
2n—2

c= —C2n,122n71 + Z Cizi.
i=0
We assume that n is a power of two and 2n = kd for k > 2. Now, define

aX) =ap+m X+ +ay 2 X"? —a, 1 X" e Z[X]

and similarly for b, ¢ € Z[X]. Now, observe that 2(2)b(2) — ¢(2) = 0. Hence,
there exists a “carry” polynomial f of degree at most 2(n — 1) — 1 which
satisfies:

~

a(X)b(X) —6(X) = (2 - X)f(X). (8.9)

The next lemma states that coefficients of f are between —(n+ 1) and n + 1.

Lemma 8.3.2. Let f be the polynomial of degree at most 2n — 2 defined above.
Then, for each coefficient fi of f corresponding to XX, |f| < n + 1.
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H n  proof size H

64 10.8KB
128 11.6KB
512 14.4KB

FIGURE 8.6: Proof size comparison for proving integer addition a + b = ¢ for
a,b,ce[-2n—1,2n—1 1]

Proof. We first show fy € {—1,0,1}. Consider Equation 8.9 for X = 0. Then,
we have agby — ¢o = 2fp. Since —2 < apbg — cp < 2, we get |fo| < 1.

In general, by considering the k-th coefficient of 26 — ¢ and (2 — X)f for
k > 0, we have the following equality:

2fk = fr—1l < 2 |aibj| + |exl < n +1.

0<i,j<n s.t. i+j=k
Hence, by the triangle inequality:

12f = fi—1| + | fr—1] “+1+ =
5 .

2 2

fil < <

Thus, |f1| < n/2 + 1. Then, one can show by induction that
ol S (M +1)(1/2+1/4+1/8+...+1/25 +1/2" < (n+1) +1/2F
for k > 1. Since f; € Z, we have |fy| < n+1. O

Unlike in Lemma 8.3.1, the coefficients of f are much bigger than {0,1}
but still small compared to g (if g is much larger than n + 1 which will be
the case). However, in order to show that no modulo g overflow occurs, we
just need to prove shortness of f approximately.

Similarly as in the integer addition proof, we want to prove Equation
8.9 over Z[X]. In order to do so, we consider this equation over RZI =
Z,[X]/(X*™ +1) = Z4[X]/(X* +1). Namely, consider the ¢ : Ry — R’g
map described in Section 3.2.4, i.e.

k—1
¢(u) = (uo, ..., ux_1) where u = Z u,-(Xk)Xi.
i=0
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As shown in Lemma 3.2.11, (8.9) over R; is equivalent to

() x p(B) = P(&) = p(2— X) * p(f).
For simplicity denote
¢(a) := (ag, ..., a_1) € R

and similarly for b, ¢, f. Also denote ¢(2 — X) := (R, ..., %x_1). Then this
equation is equivalent to

L it .|
VieZy, ) aibjxl 7 —&= > ael-fjxl F J (8.10)
0<i,j<k 0<i,j<k
i+j=tmod k i+j=: mod k

Now, in order to conclude that (8.9) holds over Z[X], we need to show
that no wrap-around modulo g and X?" + 1 occurs. For the first issue, we
show that coefficients of @ + X"~1,b + X"~ and ¢ + X*"~! are binary (by
definition of two’s complement). As for f, we conduct an approximate
shortness proof to show that f has sufficiently small coefficients so that
no modulo g overflow happens. Next, in order to make sure there is no
wrap-around modulo X2 + 1, we prove that the degree of 4 and b are at
most n — 1 and the degree of f is at most 2n — 2.

Hence, we will commit to ¢(a), ¢(b), p(¢), ¢(f) € Rg and prove the fol-
lowing statements:

1. 4, b are well-formed. We need to show that all the coefficients of 4 +
X1 h 4+ X1 are binary and that the n-th,..., (2n — 1)-th coeffi-
cients of 4,b are equal to zero. These statements are to make sure
no wrap-around modulo g and X" + 1 occur respectively. Note
that the first one is equivalent to proving that 4o, ..., 52, 8xp—1 +
X1, 4, /2, - - -, A1 all have binary coefficients and similarly for b. The
latter one, on the other hand, is equivalent to proving that the d/2-
th,..., (d — 1)-th coefficients of 4y, ...,d4r_1, bo, ..., br_q are all zeroes,
i.e. the constant coefficients of

X4/, a; and X—i=d/2. Ej
are zeroes for i € Z;, and j € Zy.

2. ¢is well-formed. In case of ¢, we need to prove that ¢ + X"~ has binary
coefficients. This boils down to proving that ¢y, ..., 2,1 + xd-1
all have binary coefficients.
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3. Equation 8.9 holds over R;. We simply prove k quadratic equations
(8.10).

4. No overflow modulo q. We prove approximately that f has small coeffi-
cients. By Lemma 8.3.2, |[¢p(f)| < B’ := (n+1)v/2n = (kd/2 + 1)Vkd.
We can convince the verifier that |f]o = [¢(f)|eo < ¢ - B for some
approximation factor. If

g>2n+1+3yp-B

and we proved that that 4, b, ¢ all have ternary coefficients, then (8.9)
holds over Z and no wrap-around modulo g occurs.

5. No overflow modulo X?" + 1. Recall that the first statement above makes
sure no wrap-around modulo X" + 1 occurs when multiplying ab.
Now, to prove no such wrap-around happens when multiplying
(2 — X)f, it is enough to prove that the highest degree coefficient of f
is equal to zero. This is done by proving that the constant coefficient
of X~4*+1. f_ is equal to zero.

It is now clear that all the statements can be directly proven using our
framework developed in Section 6.4. Namely, define s1 := ¢(a) || ¢(b) || ¢(¢)

P

and m = ¢(f). The reason to set m this way is because the coefficients of f
are much larger than the coefficients of 4, b, e.

We introduce the following notation. First, recall that matrix J4 » defined
in Lemma 5.2.1 satisfies:

51
Jak2(s1 || m)s = [ ] :
m
Next, denote ky;, kp i, ke i, kg, € R as

T T
ka,i:[olxi 1 01><(4k—i—1)]’ kb,i:[olx(k+i) 1 01><(3k—i—1)]

T T
kc,i:[olx(2k+i) 1 le(Zk—i—l)]’ kf,i:[olx(3k+i) 1 le(k—i—l)]'

Then, for any i € Z; we have
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Next, define the following matrices

T T T T
ka,O kb,O kc,O kf,O
K, := , Kp:= : , K.:= , Kf = .
T T T T
Ko k1 Kj 1 | S LS

Therefore, to prove the first two statements, we want to prove that Pssq +
P,,m + f has binary coefficients, where

0(k/2-1)x1
Xd—l
K,
0
. Bkxdak ¢ k—1)x1 3k
[P, Pu]i= K, | e REH, £im (Xd—)1>< eR¥ (811)
K.
0(3k/2—1)x1
Xd*l

Not to mention the fact that we need to show the constant coefficients of
X—i—d/2. aj and X—i=d/2. Ej are zeroes for i € Z;, and j € Z;. Hence, we
define triples (R,2,1,1,7,0) for 1€ Z;, PEE follows. Let us write t =i -k +j
where i € Z;/, and j € Z. Then, we define

T —i—d/2 T
RL,2 = 08k><8k/ rl,l =X 1 / 'kﬂ,jJ4k,2/ rz,O = 0. (8.12)
Similarly, we denote triples (Ryi/24,2, Tkd/244,1/ Tkd/2+40) fOT L € Zyy)p as

. T o y—id2 T o
Rig/o412 7= Okxshr  Trajoi1 = X / Ky Jakor Trkajari0 = 0. (8.13)

Further, to prove the third statement, we define triples (R,2,1,1,7,0) for
1 € Zj as follows:

i+j
. * (7T T
Rpi= > X [ JJ4k,2ka,ikb,j]4k,2
0<i,j<k
i+j=1mod k
. . {%J . (8.14)
1= — kc,z + Z X xikf,]' J4k,2
0<i,j<k
i+j=1mod k

Y0 =0.

7!
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Next, in order to prove the norm of ¢(f) approximately, we define Dy =
0k 3k, Dm = I and u = 0. Then,

|¢(f)| = |Dss1 + Dym + u|| < B = (kd/2 + 1)vkd.

Finally, we focus on the last statement. Namely, we want to prove that the

constant coefficient X ~7+1. fix—1 vanishes. To this end, we define a tuple
/ / /

(Ri 2/ Tha 1 Tha0) Where

I /. —d+14T /
Riao i= Oskxser  Tign = X7 JapoKpk—1, Thag =0 (8.15)

In Figure 8.7 we instantiate the protocol from Figure 6.3 for integer
multiplication as described above. Then, we present the proof sizes for
various values of n in Figure 8.8. For each instance, we choose (d,1) = (64,2)
and set the standard deviations such that the overall repetition rate is at
most 7. We show that for our parameter selection g > 2% is large enough
to make sure no overflow modulo g occurs. Suppose for concreteness that
n = 512. Then, k = 16 and B’ = (kd/2 + 1)vkd = 16416. If we pick v, = 32
then by Theorem 6.4.3 we set 1 := 241/337 - 2x < 2-10%. Hence, we obtain

2n+1+3ypB <230 < 4.
Hence, there is no wrap-around modulo g.

8.3.2.1 Is Committing to the Carry Polynomials Necessary?

A natural question one might ask is why we have to commit to the “carry
polynomials” ¢(f) in the integer multiplication case but not when doing
integer addition as in the previous subsection. What is similar in both cases
is that if we write s1 := ¢(a) || ¢(b) || ¢(¢), m := F then there are known

polynomial functions Fy, ..., Fy : Rsk — Rg such that:

Fl (Sl, m)
¢(f) =

Fk<sl/ m)

Now, note that our framework natively only supports proving shortness
in the Ly /Ly norm of linear functions in s;, m. The reason is that when
applying approximate range proofs, we introduce a sign f in order to use
bimodal Gaussian rejection sampling. Having this additional unknown §
turns a linear equation into a quadratic one which we know how to prove
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variable description instantiation
N # of quadratic equations over R, k
M # of quadratic equations over Z, kd +1
Mpin length of the vector to prove bin. coeff. 3k
V4 # of exact norm proofs 0
- approximate shortness proof v
1 committed message in the Ajtai part o) || ¢(b) || ()
m committed message in the BDLOP part o(f)
R,> | matrix used for the quad. equation over R, (8.14)
I vector used for the quad. equation over R, (8.14)
r,0 |constant used for the quad. equation over R, (8.14)
RZ,Z matrix used for the quad. equation over Z; |(8.12),(8.13),(8.15)
ri/l vector used for the quad. equation over Z; |((8.12),(8.13),(8.15)
rf,O constant used for the quad. equation over Z,; ((8.12),(8.13),(8.15)
P; |matrix to prove Pss; + P;;m + £ has bin. coeff. (8.11)
P,, |matrix to prove Pss; + P,;m + f has bin. coeff. (8.11)
f vector to prove Pss; + P, m + f has bin. coeff. (8.11)
D; matrix to prove |Dss1 + Dym + uf < 0% 3k
Dy, matrix to prove |Dgsy + Dym +ul| < B I
u vector to prove |Dssy + Dyym + u| < B’ Ok 1
B’ bound of |[Dss; + Dyym + u (kd/2 + 1)Vkd

FIGURE 8.7: Instantiation of the protocol in Figure 6.3 for proving n-bit integer
multiplication where 2n = kd. The variables in the first two columns
refer to the ones defined in Section 6.4 and the ones in the last column

refer to the parameters in this section.
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H n [logg] proof size H H n [logg] proof size H
64 32 14.2KB 64 32 13.5KB
128 32 16.1KB 128 32 14.6KB
512 33 26.6KB 512 33 21.0KB

FIGURE 8.8: Proof size comparison for proving integer multiplication ab = ¢ for
a,be[-2""1,2"=1 —1] and c € [-22"~1,22"~1 _ 1]. We present two

approaches: one which commits to ¢(f) (on the left) and the one
explained in Section 8.3.2.1 (on the right).

from Section 5.2. Observe that for integer addition F, . .., Fy were indeed
linear. However, for integer multiplication Fj, . .., F; become quadratic and
thus our framework cannot be used directly.

We circumvent this problem and still not commit to ¢(f) by simply
removing the bimodal Gaussian rejection sampling when proving approx-
imate shortness of ¢(f). Then, we do not commit to B4 from Figure 6.3
and thus we can prove shortness of a quadratic expression in s;, m. The
drawback is a slightly increased repetition rate due to the standard rejection
sampling, i.e. Lemma 3.3.2. Concretely, when 4 = 32, our rejection rate
increases by a factor of

exp ( 2+ 1) 1) ~ 152 where x = 128
loge 74

and therefore other standard deviations need to be adjusted in order to
maintain the repetition rate equal to 7. We include the optimised proof sizes
in Figure 8.8.

84 CONSTANT SIZE GROUP SIGNATURE

We apply our proof system to contruct an ABB-like [ABB1oa] group sig-
nature following the works by del Pino et al. [PLS18] and Lyubashevsky
et al. [Lyu+21]. Our construction inherits a big advantage from [Lyu+21;
PLS18], namely signature generation and verification time do not depend
on the size of the group and the signature itself is constant. Since, the
techniques are almost identical as in the aforementioned previous works,
we only sketch the scheme and refer to [Lyu+21] for more details. In this
subsection, we work over the larger ring Ry := Z[X]/(X* + 1) where
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k > 11is a power-of-two. Then, define R;, p = Ryia/(p) for an integer p.

The benefit of having a larger ring than R is a small public key size of our
group signature. Operations in the construction will be over Ry, , where p
is prime.

8.4.1 Ouverview

Let G S Ryq,p be the identity space. To begin with, the group manager

samples A « RZ:}SHm), B’ — RZ‘;;", randomness matrix R « S]((ZJ{m)XTn,

where
Ska1 i={x € Ryg : |x]oo <1}

and sets B := AR. Further, it samples u — R}, . Then, the public key is a
tuple

grk := (A,B,B/,u).
Now, for each user with identity i € G, the group manager samples the
secret key

sk; == (51,1, sy  p{@rHintmkd
such that
S(i)
1
[A[B +iG|B'] |s{) | =u
S(i)
3

using the [MP12] trapdoor sampling with standard deviation s where
G:=I,®[1g --- g7 !]is a gadget matrix and g := [p"/7].
The high level idea for signing is for the user with identity i € G to prove

(s 6 gy ¢ grHinem

knowledge of i and their secret key sk; := (s;’,s,’,8; kd,p

which satisfy:
(l)

i)
D =u, (1) <B:=352(2t+1)n+m)kd, ieG.
i) (1)

gl
51
[A[B +iG[B'] | s{
gli
S3
(8.16)

For the bound B we used Lemma 3.2.2 for t = V2.
In order to be able to open the group signature scheme, we will add
a verifiable encryption to the signature. Namely, we want the signer to
encrypt their identity i, using a public key associated to a decryption key
that the group manager possesses, and prove that this encryption is indeed
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of their identity. We do this exactly as described in Section 8.2 with a prime
Penc = 3329. Similarly, all the dimensions and bounds included in that
section will be written with subscript enc.

8.4.2  Efficient Proof of (8.16)

To begin with, note that relations over Ry, , such as the first one in Equation
(8.16) can be written equivalently over our usual subring R,. Indeed, as
shown in Section 3.2.4 and demonstrated in the previous examples, arbitrary
relations over Ry, can be proven by showing that some corresponding
relations over R, hold true.

Secondly, we observe that if we choose a proof system modulus g to
be divisible by p and commit to (i, ng)’ sgl), sgl)) in the “Ajtai” part of the
ABDLOP commitment then the first statement in (8.16) is simply a system
of quadratic equations in the committed messages. Indeed, we pick g = g1p
where g1 < p and then prove an equivalent quadratic relation over R,
namely:

(@)

sy K
71 [A|B +iG|B'] sg) = q1[A|B|G|B’] ;2(1,) = giu. (8.17)
(i) 2
S .
3 sg)

Further, the second statement is about norms which is covered in Section
6.4. Next, we define the identity space G. It should be designed so that
we can efficiently prove that i € G (third statement). Let B be the set of
non-zero binary polynomials in R,. Then, we define the identity space* as

G:={i(X") e Ry, : i Band [i|y = w}.

We choose w so that the set G has size ~ 223 for comparison with related
work [Beu+21; Esg+19c]. Note that for appropriate p, a difference of two
distinct elements from G is still invertible over Ry, , which is crucial for
trapdoor sampling.

Note that the space G is constructed in such a way that when we map
equations over Ry, , to R’;,, then we only need to commit to one polynomial

Previous works [Lyu+21; PLS18] define the identity space G to be a set of integers Z,, since
it was easier to prove set membership i € G with their proof system. Here, we make a small
modification and set the identity space to be a subset of binary polynomials with fixed norm.
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i € Rp using our ABDLOP commitment instead of k polynomials, i.e.

i(XK) e Rya,p- Similarly, we only need to send an encryption of i over R,
instead of i(X¥). Hence, for such a set G, proving i(X¥) € G is equivalent to
proving that i has binary coefficients and (i, Z?;Ol X7y = w which is covered
in Section 6.4.

In summary, we show in Figures 8.9 and 8.10 how to instantiate the
protocol in Figure 6.3 to construct a group signature.

8.4.2.1 Parameters

We present our parameter selection in Figure 8.11 for a group signature
instantiation which achieves security level 111. We start by setting p =
238 107 and g = (226 —371) - p ~ 2%*. Then, we choose d = 64,k = 8 and
I'=2,thus Ry, = Z[X]/(X?? +1). Next,let n = 2,m = 3and T = 5, hence
g = [p/?]. Further, we pick large enough standard deviation s used for
trapdoor sampling. We know from [MP12] that s > 2(s1(R) + 1)4/g? + 1
where s; is the operator norm. Note that if R did not have a polynomial
structure, i.e R — {-1,0, 1}(“+m)kd”"kd, we could use upper-bounds for
norms of random subgaussian matrices, e.g. [MP12, Lemma 2.9]. Namely,
we would obtain the following bound

51(R) < A/(n+ m)kd + vVTnkd + 6 ~ 128

with probability at least 1 — 2163, We found experimentally that for our
structured matrix R a similar bound holds with at least 99% probability

s1(R) <y :=113

5:=2(p + 1)/ p¥7 + 1.

Further, we describe how we choose n and m, i.e. the height and the width
of the matrix A. Concretely, in the traceability proof, the challenger sets

and thus we set

B:= AR-i*G and B’ =AR’

where R, R’ « S,E;jm)”n and i* — G. Additionally, it samples

27+1 kd
SkEM (S%m, ng/ ng) - Dg( T+1)n+m)

and computes
u:= [AJAR|AR'] sk&".
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variable description instantiation
N # of quadratic equations over R, n
M # of quadratic equations over Z, 1
Mpin length of the vector to prove bin. coeff. 1
V4 # of exact norm proofs 2
- approximate shortness proof v
S1 committed message in the Ajtai part (sgi), sg), sgi), Tenc, 1)
m committed message in the BDLOP part &)
R,> | matrix used for the quad. equation over R; | to prove (8.17)
1 vector used for the quad. equation over R, to prove (8.17)
.0 const. used for the quad. equation over R, to prove (8.17)
R/, | matrix used for the quad. equation over Z, 0
0
1 vector used for the quad. equation over Z; | [ 0_; (Z?;()l X )
0
rf o |constant used for the quad. equation over Z, —w
P; |matrix to prove Pss; + P;;m + f has bin. coeff. 0
P, |matrix to prove Pss; + P;;m + f has bin. coeff. lﬂ
f vector to prove Pss; + P, m + f has bin. coeff. 0

FIGURE 8.9: Instantiation of the protocol in Figure 6.3 for the group signature.
The instantiation is further explained in Figure 8.10. Variables in the
first two columns refer to the ones defined in Section 6.4 and the
ones in the last column refer to the parameters in this subsection.
Variables with subscript enc are defined for the verifiable encryption
in Section 8.2. Triple (R ,, r’m, r1,0) corresponds to proving that the
sum of coefficients of polynomial i is equal to exactly w. On the other
hand, triple (Ps, Py, f) corresponds to proving that polynomial i has

binary coefficients.
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variable description instantiation
Egl) matrix for HEgl)sl + E£,11>m +vD| < By [I(2t4+1)n+m O]
E,g) matrix for HEgl)sl + E,(nl)m +v| < B %)
v(D) | vector for HEgl)sl + EE,})m +vD| < B 0
Bi  |upper-bound on ||E§1)s1 + E,S})m +vD)| B
Egz) matrix for HEgz)sl + E,(,f)m +v®| < B 01, 0]
ES,%) matrix for HEgz)sl + Eﬁf)m +v@| < B %)
v® | vector for \\E§2s1 + E,(ﬁ)m +v@| < B, 0
B, |upper-bound on ||E§2)sl + Eg)m +v®@ | B
D; |matrix to prove |Dss; + Dyym + uf| < B/ pelnc |0 A;"C p?nc ]
0 beye [
D,, |matrix to prove [Dss; + Dym +ul| < B’ &)
u  |vector to prove |[Dss; + Dyym +ul| < B/ ﬁ . tol
1
B bound of |Dss; + D;ym + u| By enc

FIGURE 8.10: Instantiation of the protocol in Figure 6.3 for the group signature.
Triples (Eq gV E(l) v(l) B1) and (E § ),ES,,),V(Z)

By) correspond to

proving exactly H(s1 ,sg),s;))H < B and |tenc|| < Benc respectively.
The last triple (Ds, Dy, u, B’) corresponds to proving approximately
that HVencH < Bv,enc = (Benc\/mencd/2 + 1)\/(nenc + 1)d where Venc
is defined in (8.4).

It will hope that an adversary forges a signature for the identity i*5. In
that case, we can extract from the forged signature the secret vector sk;x =
(81,82, 83) such that

S1 S%m
[A|AR|AR’] S | =u= [A‘AR|AR’] ng
S3 s&™

53

and thus
s:=5 —sf"+R(E —s§") + R/ (33 —s§")

5 Hence, there is a 1/|G| security loss.
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is a MSIS solution for the matrix A °. Also, with high probability we have
s # 0 since sk&™ was chosen independently by the challenger. Now, we need
to bound the norm of s. In order to do so, we will use the property that for
any x € R;", [Rx|| < s1(R)|x| < ¢[x|. Thus, we can bound the norm of s
defined above using the Cauchy-Schwarz inequality as follows:

sl < [181 = "] + ¥l52 — 837 + 53 — 55" |

<1292y ls— S5 4 sy — ™2 + 5 — sE™

Finally, we observe that we can bound the second term as:

2 2 2
S1— S%m S1 S%m
s —sE™ || <2-||]sa|| +||sET < 4B% = (2B)%.
S3 — S%m S3 S%m

Hence

Is| < Bumsis := 2s - \/m V/2((27T + 1)n + m)kd.

Thus we have to choose n such that MSIS;, - m pygs is hard over Ry, , and
take into account the 1/|G| security loss. Not to mention the fact that we
want AR to be computationally indistinguishable from a random matrix B,
i.e. the MLWE, 1, s, i1 problem over de,p to be hard.

Parameters for the ABDLOP commitment are chosen similarly to the
previous examples. In particular, the proof system modulus g has to be
large enough to prove exactly that the norm of a user secret key is at most
B = 54/2((27 + 1)n + m)kd. Also, we aim for repetition rate 7 similarly as
in the previous examples.

Last but not least, we observe that including a verifiable encryption from
Section 8.2 does not have a significant impact on the total signature size.
Indeed, identity i is already committed using the ABDLOP scheme and
additionally committing to the randomness r (in the “Ajtai part”) does not
increase the commitment size. Hence, the only extra cost consists of: (i) a
ciphertext, (ii) masked opening of the randomness r, (iii) commitments and
masked openings to polynomials involved in the approximate range proof
for v in (8.4). For our instantiation, the verifiable encryption costs ~ 6.5KB
compared to 17.3KB shown in Figure 8.4.

Since we prove the norm of sk;: exactly, there is no relaxation factor ¢ in front of the vector u
as in previous works.
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parameters description value
p modulus for the group signature 2% 107
d ring dimension for of R 64
k kd is the ring dimension of R’ 8
N height of the A matrix 2
M n + m is the width of the A matrix 3
T Tn is the width of the gadget matrix G 5
w #1's in the identity i € G 5
Penc encryption modulus 3329
Nenc height of Aenc 4
Kenc width of Aenc 9
Cenc fnc is the randomness distribution of renc Bing
q modulus for the proof system ~ 264
I # factors X¢ + 1 splits into mod g 2
7 rejection sampling constant for cs; 9
72 rejection sampling constant for cs, 1.2
73 rejection sampling constant exact ARP 25
Y4 rejection sampling constant for non-exact ARP 12
w maximum coefficient of a challenge in C 8
KMSIS height of matrices Aj, Ay in ABDLOP 25
mp length of the message s; in the “Ajtai” part 219
14 length of the message m in the “BDLOP” part 0
A number of garbage g; € R, for boosting soundness 6
My length of the randomness s; in ABDLOP 78
v randomness s, is sampled from S 1
% parameter to cut low-order bits of w ~ 2%
D number of low-order bits cut from t4 27
signature size 87.5KB
public key size 47.5KB
secret key size 6.3KB

FIGURE 8.11: Parameter selection and concrete sizes for the group signature.
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8.5 ONE-OUT-OF-MANY PROOF
8.5.1  Overview

In this section we construct an efficient logarithmic-size one-out-of-many
proof [GK15] with applications to lattice-based ring and group signatures
using techniques from Section 6.4 as the building block. The one-out-of-
many proof considers the following problem. Informally, we want to prove
knowledge of an opening to some commitment contained in a public set
S without revealing any information about the commitment itself. In the
lattice setting, we we would like to prove knowledge of a short vector
such that As € S, where S is a public set S = {py,...,p} S R of size

t = d - 0. In this section we assume that s € {0, 1}™ has binary coefficients
andd =1[-0 for [e N.

We now use the observation from [Boo+15; Esg+19b; GK15] that As € S
if and only if there exists a binary vector 7 € {0, 1}' with exactly one 1 such
that

nl

ALY (8.18)
where A = Rot(A) is the the rotation matrix of A. One could then directly
prove knowledge of § and 7 which satisfy conditions above using the
protocol from Section 6.4. However, the proof size grows linearly in t since
we would commit to the whole vector 7.

In order to circumvent this limitation, [Boo+15; GK15] observe that vector
¥ can be uniquely decomposed into unit vectors 7y,..., 7 € {0,1}° and
D41 € {0,1}¢ such that

T=11Q0n® QU1 =1 ® (2 (- ® (T ®Ti11))) - (8.19)

For notational convenience, let us define the set of polynomials X" in R,
with their coefficient vectors being a unit vector. Concretely, X is defined as
follows:

X={1,X,X%,..., X1,

In the end, we want to commit to s and polynomials uy, ..., u, vy € X
such that if; = 7; || 072 € Zg7 for i € [k] and prove

P(1® - ®Tpyi1) = AS (8.20)

7 Alternatively, u; € {1, X, X?,...,X°71}.
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where P € Z[]‘Xt is the matrix on the left-hand side of (8.18). We formally
define the corresponding relation:

R ) (P, A),(s,u1, ... U, Ugy1)) 1S E (0,13 A uy, ... up, vpsq € X
oo AP(31® - ®Try1) = AS where if; 1= 5; || 092

We now describe a commit-and-prove system for relation Room using the
ABDLOP commitment. Suppose that k > 1, otherwise one can prove this
relation directly using the framework from 6.4.

First, note that proving uy, ..., u, vr41 € X and s € {0,1}™ can be done
directly using the techniques from Section 6.4 hence we focus first on (8.20).
Our strategy to prove this equation with k — 1 tensor products would be
somehow to reduce it to proving an equation of the same form with only
k — 2 tensor products. Then, by recursion, we will end up with a system of
linear equations with no tensor products involved and thus we can apply
the methods presented in Section 6.4.

The key idea to reduce the number of tensor products is to ask the verifier
for I challenges @1, ..., @ € Z;d and then prove that:

<P(Z_)'1®~--®?7k+1)—A§,g3i>=0 fori=1,2,...,1L

Note that if (8.20) was not true, then these [ equations above would hold
with probability at most q; . Now, if we write

Dk_l

P = [PO,l Pyy - PO,D] where each Py ; € Z;’“d

then by simple algebraic manipulation we obtain
P(O1®- - @T1) — A5, §i) = (P01 ® - - - @ T1), §) — (AS, §i)
= (51 ® - @Tp41, PT§i) — (5, ATG)
= (O, PLi(52 ®- - @ T1)) — 5, AT )

where
=T
¢; Poa
. . oxdok—1
Pl,i = : € Zq .

3 Pop
Now, let us define @; := Py (02 ® - - - ® Uy41) and w € R, such that

=@ ||| @ eZf.
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Next, we commit to w and show that for all i,
(@1, @) — 5, ATg) =0 and @ := P (G2 ® - ®@Tjy1)-

We observe that the first statement is equivalent to proving that the constant

coefficient of '
XD, 0(w) — o(a;) s

is equal to zero where the coefficient vector of a; € R;‘ is exactly d; := AT @;.

Lemma 8.5.1. Let i € [[]. Then, the constant coefficient of X~y 0(w) e R,
is equal to (U1, W;).

Proof. First, we note that (7, @;) = (X(~D%y;,w). Here, we used the fact
that the coefficient vector of u; is of the form 7 || Od‘_a. Then, by Lemma
5.1.10, (XU=D?y; w) is the constant coefficient of X~y 0(w). O

On the other hand, the second statement can be combined for all i and

written as:
P,

(2@ @Tgy1)- (8.21)

SL
Il

P

Thus, we reduce the one-out-of-many problem to proving knowledge of a
tuple (s, u1, ..., Uy, Uxy1, w) which satisfies the following conditions:
e sec{0,1}m
* P(th®  ®Tyy1) =@
e for all i € [I], the constant coefficient of XU~D%y;0(w) — o(a;) s is
Zero
® Ul,..., Uk, V41 € X

where

il =1 || 09 forie [k] and P := Cle Zngak_l,

P

Note that the second statement only involves k — 2 tensor products.
We can define the correspond relation as:
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((Pr @) (5,11, 11, D1, ) ) 8 € {0, 1™ A PUE @+ @ Ts) = @
R:= AVi € [1], const coeff. of X(—Dy 0 (w) — o(a;)Ts is zero

AUL, ... U, Vkp1 € X where if; := 7; || 097

8.5.1.1 Intermediate Relations

We construct a commit-and-prove system for relation R using recursion.

Namely, take 1 < j < k and consider the following generalised relation

((P], c ngdak*/, (af)fe[[],((Pt/i)ze[jfll,iE[l])' (s,ul,...,uk,ka,wl,...,wj)) :
s€ {0, 1™ A Pj(Tj11® - ®Tip1) = T;
AVi € [1], const coeff. of XU~y 0(wy) — o(a;)Ts is zero
AVie[j—1],i€[l], const coeff. of X(i_l)Du,HU(w,H) —o(@,;)w, is zero
Al ..., Uk, Ugsq € X where if; := ; || 0970
(8.22)
We highlight that in R; elements ¢,; are polynomials in R,;. Also, it is easy

to see that Ry = R.

8.5.1.2 Base Case

We first show how to prove Ry only using the methods described in Section
6.4. Namely, we define

spi=s|up || |uk || ok, mi=(wy,. .., wp).

We also introduce the matrix J := Jn 42412 as in Lemma 5.2.1 which
satisfies:

J(s1 || m)o = H :
m

First, we prove P71 = Wy. This is equivalent to proving that the constant
coefficient of o(py;)vx1 — X~ Flwy is zero for all i € [d], where py; € R, is
the polynomial such that its coefficient vector is the i-th row of P. Hence,
we define

0(m+k)x1
O Pki
Ry = Op(mioki1)x2(mizkt1) Tia =" (i) , Tip=0. (823)
0(k—1)><1
_X—z'+l
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Then, .
(s | m)o = o(pr)ue — Xy

The next thing to prove is that the constant coefficient of X~y 0 (w;) —

o(a;)Ts is zero for i € [[]. Thus, we define
02m+2k+3)x1
: i—1
R, i= X(T1? 1 Oomx1 1 0(4k+1)><1] /
02(x—1)x1 (8-24)
7| o) |
r/d+i,1 =] l 1 , ”:@l+i,0 =0.
[ 0(2k+1)x1

Then,

T T
{s1 | m>aR¢Ii+i,2<51 | m) + 1'21+i,1<51 | Mg + 74400
= XD o(w); — o(a;) s

Further, we proceed to proving that for all € [k —1] and 7 € [I], the constant
coefficient of X(=12y, 1o (w, 1) — o(¢,i)w, is zero. Hence, we define

0(2m+2k+21+3) x1

/ . i—1)d
Riyuyio = X1 1 0o(minx1 1 0(4k—21+1)><1]’
0(2k—21—2)x1
0m+k+1
! =77 . ! =0
Yot =1 | —o(u) | Tdtu+io == Y
0(k—1)x1
(8.25)
Thus,

(s1 || m>ng1+[[+i,2<Sl | mye + r:iT—i-1[+i,1<sl | M)+ rayitio
= XU, 10 (wig1) — o(g,)wi.
Next, we prove that the coefficients of s, uy, ..., uy are binary. We simply
define:
Ps:=Iniket, Proi= O(mikstyxir £ O(mpksn)xa- (8.26)

Then,
Pesy +Pum +f =s || ug || - || ug [| vk
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is a binary vector. Further, we prove that the last d — 0 coefficients of u; are
all zeroes for all i € [k]. This is done by proving that forall 0 <: < d -9,
the constant coefficient of X" °u; is equal to zero. Hence, we define:

R’ =0
d+ki+ik+i2 = Y2(m+2k+1)x2(m+2k+1)”

0m+i—l
/ 1T N , . (8.27)
Yy kikil =) X , Tavkirk+io = U

0(2k—i+1)x1

and by construction

T T
G MRy e i2$81 | M0 + 1 ke i1$81 | Mo + 7akirio
= Xﬁliaui.

Last but not least, we have to prove that each uy,...,u, vy contains
exactly one 1. This is done by proving that the constant coefficients of

d—1 d—1
0(2 X‘>~uifori=1,2,...,k, and U(Z X‘)~vk+1
1=0 =0

vanish. Therefore, we define for i € [k + 1]:

, Pp—
Rd+k([+d—a)+i,2 T 02(m+2k+1)x2(m+2k+1)r
Opi
, S i , . (8.28)
Y ik(trd—o)+in =1 | (Zz:o X) ’ Tdrk(t+d—o)+i0 = O-
00k—i+1)x1

We present the commit-and-prove system I'Ty = (ABDLOP, P, V) for relation
Ry in Figure 8.12. Here, we apply Ilipox defined in Figure 6.3 without doing
any approximate norm proof as described in Section 6.4.7.

8.5.1.3 Recursive Step

Let us assume we have a commit-and-prove system 11, for relation R;4
where 2 < j+1 < k. Now we want to use it to prove relation R;. We observe
that the only statement which is included in R; but not in R;, is

Pi(0j11® - ®Try1) = Dj. (8.29)
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Prover P Verifier V
Inputs:
pp.dim = (q,d, kmsis, m + k + 1, mo, k, lexe 1= 256/d + A/2 + 2) pp.dim, pp.norms
pp.norms = (w,vVmd + k +1, By, By) pp.mat
By
Bg
pp.mat = | Ay, Ay, B, ta tp
ext
ngt
sii=s | ur || | ug || vgpr € {0, 1} (MDD s, € R P e Zi
m = (wy,..., W) (ai)ie[[]
Pee Zg, (ai)ie (@u)iefk—1)ief] (@1,1) e[k—11,ie[1
ta = A S|+ A Sy + 0
tg 0 B m
run Iy, with the following inputs: accept if:
pp = pp (1) Tpox Vverifies

(SZr (Sl, m)) = (52/ (slr m))
(R}, 1)1, 7 0)ie[d-+k(i+d—o+1)+1] @S in (8.23),(8.24), (8.25), (8.27), (8.28)
(Ps, Py, £) as in (8.26)

FIGURE 8.12: Commit-and-prove system I for the relation Ry. Here, we use ITipox
defined in Figure 6.3 but without an approximate norm proof.

We prove this equation as before. Namely, we ask the verifier for [ challenges
@it PLE Zg and then prove that:

<P](Z7]+1 X - '®5k+l) — ZT)], @j,i> =0 fori= 1,2,. . .,[.

Note that if (8.20) was not true, then these [ equations above would hold
with probability at most q; ! Now, if we write

k—j1
P := [le Pip P]a] where each P;; € ngda !

then we have
(Pi(Tj41 @+ @Tpy1) = @y, §ji) = (Fi1 @ @ Teyn, P §ji) — (@j, F)
= @41 ®- - @Ty1, P §;i) — @, ¢

= (Tj11, Pi31,i(042 @ - - - @ Tyy1)) — (@, §j i)
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where
@}:ip A
Piyy)i= e zJ* @
@;ipj,a
Now, let us define @; 1, := Pj11,i(j12® - ®Tx11) and wj 1 € Ry so that
D1 = Bjga || - || Bjg1, € Zo-

Then, we need to show that for all i,
(Tj41,@j1,) — Wj, §jipy =0 and  @jy1,; = Piy1,i(0j12® - @ Typ1)-
The first statement is equivalent to proving that the constant coefficient of

X(i—l)ﬁuj+1(7(Wj+1) — () i)w;

is equal to zero. The second statement, however, can be combined for all i
and written as:

Pit11
— - - k—j—1
Wit1 = Piy1(0j42® - @Try1) where Piyq = € ngda .
Pit1,0
(8.30)
Therefore, we reduced proving (8.29) to proving that

o X(i—l)buj+lg-(w]«+1) — 0(@ji)w;j is equal to zero
* Wiy1 = Piy1(0j2® - ®@Try1)

which in combination with other relations in R;, it directly reduces to
proving relations in R; .

We provide a commit-and-prove system I1; = (ABDLOP, P, V) for rela-
tion R; in Figure 8.13. The prover proceeds as described above and eventu-
ally runs I1;.

In terms of security analysis, correctness follows by Theorem 6.4.1 and the
argument presented above. Then, for simulatability, we observe that before
running I, the prover only sends the “bottom part” commitments to w;
and these (as a part of the whole ABDLOP commitment) can be simulated
as in Theorem 6.4.2. Hence, we obtain the following results.
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Prover P

Inputs:

pp- dim = (q,d,KM5|5,m +k+ 1zm2:]'/‘€ext = k—j+256/d + /\/2 +2)

pp.norms = (w,vVmd +k +1,Bq, By)

By
Bp
pp-mat = | Ay, Ay, B, szu
BEX[
bz)(t

= flug oo | ug || v € {0, 1M HADE ) e R

i =T || 09 fori=1,2,...,k

S

=

m = (wy,...,wj)

xdok—i
P e Z& (@) ieq, (91, -1l

HERREER

Verifier V

pp.dim, pp.norms
pp.mat

ta tp

Py e ZIx®"
(ai)ie[q
(<P:/z'),e[j—1],ie[l]

Pj= [Pm Pip - Pj,n]

PP
Piy1ii= : € Z;X@FH forie [I]

#l:Pio

P10

k—j—1

Piyy i= L | ez

Pt

Wiy = P02 @ - ®Tit1)
ty = bz:,sz +Wjt1
run I1;,1 with the following inputs:
pp.dim = (q,d,kmsis,m +k+1,mp, j+ 1, lexe — 1)
pp.norms = (w,vV/md +k +1,By, By)
By
B B
pp.mat = | Ay, Ay, [b};] , Bei
ngt
(s2,(s1,m)) := (2, (s, m || wj11))

wdok—i—1
Pip1 € Z9 @iy, (@) eilieln

@j,i

= o d
Pise o P — 2y

accept if:

(i) T1j41 verifies

FIGURE 8.13: Commit-and-prove system I1; for the relation R; defined in (8.22).
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Theorem 8.5.2. Fix 1 < j < k and let Rej(l) = Rejg and Rej(z) = Rej(3) = Rej;
as defined in Figure 3.2. Fix standard deviations

s1=myvmd+k+1, sy =yonua/med, s3= ')/3\/337- (md+k+1)

for some 71, Y2, y3 > 0 and define

. 2(k+1) 1 1 o 1 .
M :=exp ( log(e) 71 + 27%) and M; 1= exp (2’7,2> fori=2,3.

Suppose that (m + k +1)d > 5k and mpd > 5k. Then, the commit-and-prove
system I1; for the relation R; has statistical completeness with correctness error

1 —127
= 3, £277

Theorem 8.5.3. Fix 1 < j < k and let Rej(l) = Rejy and Rej(z) = Rej(3) = Rej;
as defined in Figure 3.2. Fix standard deviations

s1=mnvmd+k+1, sy = ynua/mod, s3= Y34/337 - (md + k + 1)

for some 7y1, Y2, 3 > 0 and define

_ 20c+1) 1, 1 mexp [ ) fori=
M :=exp ( log(e) 11 + 2’7%) and M; 1= exp (2%2> fori=2,3.

Suppose kmLwe 1= My —Kkmsis — (k—j) —A/2 —256/d — 2 = 0. Then, under the
Extended-M LWEKMLWE/KMSIS (k—j)+A/2+256/d+2,3,C, DS, assumption, the commit-
and-prove system 11; for relation R; is simulatable.

Finally, we consider knowledge soundness.

Theorem 8.5.4. Fix 1 < j < k and assume k = O(logx). Suppose By >
2614/2(m + k + 1)d and By > 2sp+/2mpd. Let

2
s3 = Y34/337(md + k + 1), Barp := 24 %Q%

for vz > 0. If q satisfies the following conditions

g=41-(m+k+1)d- Bar, to use Lemma 3.2.5
q> Bgrp + Barpv/ (m+k+1)d, to prove Ps + P, + £ has binary coeff.
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Then, the commit-and-prove system 11; for the relation R; is knowledge sound with
knowledge error

N o -1 —d/l —A —12
(k= +21e1 ™ + g7 gt 1271,
Moreover, the extractor makes expected at most 257 - poly(x) queries to the prover.

Proof. We prove the statement by induction. First, consider j = k. Then,
knowledge soundness follows directly from Theorem 6.4.3 (without an
approximate norm proof) and the corresponding extractor makes at most
expected poly(x) queries to the prover.

Now, assume that I1;; is knowledge sound with knowledge error

(k=1 gt 2001+ gt 4271

for some j + 1 < k. Also, denote £* as the knowledge extractor for I1;;
from the induction hypothesis.

Let P* be a probabilistic prover which runs in time at most T and
convinces the verifier with probability € > (k—1—j)g; " +2|C| 7' + ¢ Wy
;" +27128. Define a deterministic algorithm A(pp, oF, (@) which given
randomness p = (pp, pg) € Rp x R and challenge @;1,..., @i € Zg does
the following. It first runs P*(pp) on randomness pp with challenges (§;;)
and stops after P* sends ty. Then, it runs the extractor £*(pg) for I,
with randomness pg (which runs P*(pp, (¢;,;)) in a black-box way).

We say that A succeeds if A outputs ((q)j,,'), tw,S1,m || Wjy1,82, ¢) such
that

ABDLOP.Open(sy, m || Wj+1,82,Cta | tg || tw) =1

and
k—j—1 o o _
((Pj+1 e Zy ™ (@)ie[ys (@ui)ieljier))s (8B, - T, wl/--~/wj+1)) € Rjp

where 81 = 5 || @ || -+ || @ || 041 and @ := (@,...,@)). As before,
we assume that £* does not the breaking property of ABDLOP since if it
did, then so does A (and later on £). Clearly, by induction hypothesis, the
probability that .A succeeds for random p and (¢;;) is at least

w _ —d/l _ _
e—(k—1—jgr —2lc|™ =gy — g7t =271,

Moreover, the expected runtime A(pp, g, (@) for any fixed pp, (¢;,) and
pr <« Mg is at most 25~177 - poly (k) - T.
Now, we define our extractor £.

197



85 ONE-OUT-OF-MANY PROOF

1. Sample p = (pp, p£) < Rp x Re and (F,;) € Z4*" and run A(p, (§:))-
If A(p, (@) does not succeed, abort.

2. If A(p, (¢;:)) succeeds, run A(op, o, (gb';.li)) for the same prover ran-
domness pp but fresh p < R and (¢};) < Z‘;X[ until A succeeds.

We say that £ succeeds if it extracts two tuples x = (§1,m,§;,¢) and ' =
(s}, m’,8},¢) such that one of the conditions below holds:

* (51,52) # (87,85) and

1 = ABDLOP.Open(s1,m, 5y, ty H tz)
= ABDLOP.Open(s}, m’,8),&’;ts || tp).

e ABDLOP.Open(sy,m,5;,¢tys || tg) =1 and
k—j _ _ _ _
((Pj e Z3 (@))ier, (9)efj—1)ie[q)s (B0, - - - Bk, w1,~-wwj)) €R;.

In the first case we break the binding property of the commitment scheme.
On the other hand, we extract the witness in the second case. Then, we have
the following claims about £.

Claim 8.5.5. The expected number of calls to A is at most 2.

The proof follows identically as in Claim 5.2.7. We conclude that the
expected runtime of £ is at most 2877 - poly (k) - T.

Claim 8.5.6. Probability that £ succeeds is at least
N — — —d/l — —
e~ (k=g =200 gy gt 27,

One proves the statement similarly as e.g. Claim 5.2.8. The key idea here
is that if
Pi(Uj41® -+ ®Tgy1) # W;

then only with probability at most q;° ' we have
<Pj(5j+l ®--- ®5k+l> — ZT)], (ﬁ;-ll-> =0 fori=1,2,...,1

for random challenges qb’;l Then, we know these [ equations hold by con-
struction of the matrix Pj;; and the relation R;, ;. Hence, £ succeeds with
probability at most the difference of A succeeding and q;° '

Finally, the statement follows by combining the two claims about the
extractor £. O
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8.5.2  Commit-and-Prove System for Room

Recall that Section 8.5.1 presents a way to reduce proving relation Room
to R;. Further, in Section 8.5.1.1 we propose a commit-and-prove system
for relation R;. Hence, we formally describe the commit-and-prove system
Iloom for relation Room in Figure 8.14. Below we state security properties
of I1oom, however we omit the proofs since they are almost identical to the
ones included in Section 8.5.1.1.

Theorem 8.5.7. Let Rej(!) = Rejy and Rej® = Rej®) = Rej; as defined in
Figure 3.2. Fix standard deviations

s1=mnpvmd+k+1, sy =yonua/mod, s3= 73\/337- (md +k+1)

for some 71, Y2, 3 > 0 and define

- 20c+1) 11 —exp [ fori=
M = exp ( log(©) 11 + 27%> and M; = exp (2%2> fori=2,3.

Suppose that (m + k +1)d > 5k and mpd > 5k. Then, the commit-and-prove
system Iloom for the relation Room has statistical completeness with correctness
error 1 — i zvlj =+ 2127

14V124VE3

Theorem 8.5.8. Let Rej(l) = Rejy and Rej(z) = Rej(3) = Rejy as defined in
Figure 3.2. Fix standard deviations

s1=myvmd+k+1, sy =yonvy/mpd, s3= 73\/337~ (md+k+1)

for some 71, Y2, 3 > 0 and define

. 2(k+1) 1 1 L 1 .
M :=exp ( log(e) 71 + 27%) and M; 1= exp (2%2> fori=2,3.

Suppose kmwe 1= My — kKmsis — k — A/2 —256/d —2 = 0. Then, under the
Extended-M LWEKMLWE/KMSIS h+A/2+256/d+2,1,C,D8, assumption, Iloom for relation

Room is simulatable.

Theorem 8.5.9. Assume k = O(logx). Suppose B = 251+/2(m + k + 1)d and
By > 2s9+/2mpd. Let

853 = Y3/337(md + k+ 1), Barp = 24/225—66953
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Prover P Verifier V
Inputs:
pp.dim = (q,d, kmsis, m + k +1,1m3,0, Loyt := k+256/d + A/2 +2) pp.dim, pp.norms
pp-norms = (w,v'md +k + 1, By, By) pp.mat

By

By
pp-mat = | Ay, Ay, O, szu ta

Bext

bl
stims g [+ Il | o € {0, 1D, g, c R p e Zpixid*

=7 || 0% fori=1,2,...,k

p e Zndxdo
q

ta = Ais; + Apsy

b= [PO,] Pop - Po,n]
(p(]):jpl),]
L . dxdok—1 .
Py:= : €Z; forie [l
(ﬁaipo,n
P(l,l)
Pi=| 1 |ezP®!
py

W1 = P02 ®- - ® Tpp1)
by 1= bg,sz + wq
run IT; with the following inputs:
ppdlm = (q, drKMSIS/ m+k+ 1rer1r€sxt — 1)
pp.norms = (w, \/m,Bl,Bz)
By
pp.mat = | A1, Ay, b,f,, Bg
ext
bzxt
(s2,(s1,m)) := (s, (s1,m || wy))

Py, (ai)e[), where @; := ATgo; € ZI™

Po,i

o o d
— P01, PO — ZS

tw

accept if:

(i) Iy verifies

FIGURE 8.14: Commit-and-prove system IT,om for the relation Room.
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for v3 > 0. If q satisfies the following conditions

g=41-(m+k+1)d- Bar, to use Lemma 3.2.5
q> Bgrp + Barp/ (m +k+1)d, to prove Ps + Py, + £ has binary coeff.

Then, the commit-and-prove system Iloom for the relation Room is knowledge
sound with knowledge error

/

kayt+2c)7 + ql_d g gyt + 2712,

Let us consider the total proof size of our one-out-of-many proof. Based
on Section 6.5.1 and highlighting that we do not perform any approximate
norm proof, the total proof size becomes

kmsisd([logg| — D) + (k +256/d + A + 2) d[log q] + [log(2w + 1)] - d
+ (m+k+1)d-(2.57 + [logs1]) + mpd - (2.57 + [log sz])
+2.25 - kmsisd + 256 - (2.57 + [log s3]) bits.

which is logarithmic in the size of the set t = do*.
8.5.3 Logarithmic-Size Ring Signature

We sketch out the folklore approach to transform an one-out-of-many proof
into a ring signature [Boo+15; Esg+19b; GK15; LNS21b]. Suppose we have
a ring of t users. Each user i € [t] has their associated private-public key
(ski, pk;) such that sk; := s() — {0,1}™ and pk; := As() mod p where
A < Rp*™ and p is a modulus for the ring signature.

Now, user i signs a message by producing a non-interactive one-out-of-
many proof, i.e. proof of knowledge of a vector s() such that s() e {0,1}™
and

As() e {pkq, ..., pke¢}-

We observe that if p divides g then this problem can be solved using the
(non-interactive) commit-and-prove system Iloom for relation Room.
Anonymity property of the ring signature follows directly from simu-
latability of IToom. In order to argue unforgeability with respect to insider
collusion, we proceed as in [Esg+19b, Theorem 3] and [LNS21b, Theorem
C.4]. Namely, the reduction picks a uniformly random user j and sets a
uniformly random public key pk; < Ry (under the MLWE, i, o assump-
tion where D is the distribution over R, so that each coefficient is sampled
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H t k ‘ proof size H
26 0| 139KB
212 2 | 147KB
221 5| 162KB

FIGURE 8.15: Ring signature sizes for t = d - 0¥ users. For all parameter sets, we

choose (p,n,m,d,d) = (65437,1,12,64,8) and q = 65437 - 65629 ~
232,

uniformly at random from {0, 1}). If there is any signing query to j, then
the reduction simulates the one-out-of-many proof. Finally, the reduction
will hope that: (i) the adversary does not make a corruption query to j
and (ii) it forges a signature exactly for the public key pk;. In this case, one
can extract a secret key s* € {0,1}™ such that As* = pk;. Thus, (s*, 1)
is a non-zero vector of norm at most vmd + 1 which is a Module-SIS so-
lution for the matrix [A | pk;] € ’R;X(mH) and thus the reduction solves
MSIS, i1 v/md i1

In Figure 8.15, we present ring signature sizes for various rings of
size between 2° and 221. We set (p,n,m) = (65437,1,12) so that both the
MLWE, n—n,o and the MSISn,m P A/md T problems are hard. Namely, since
there is a reduction loss of 1/t, we pick the root Hermite factor é ~ 1.0039
for MSIS 11 \/mas1 Which should be enough for rings of size at most 2%,
In regard to MLWE, n,_, o, we aim for the root Hermite factor § ~ 1.0044
as in prior works. For such parameters, the user public key (resp. secret
key) has size 128B (resp. 96B) which is more than one order of magnitude
smaller than the public key in [LNS21b]. Next, we pick (d,9,[) = (64,8, 16).
In all instantiations we picked g1 := p = 65437 and g, := 65629 such that
the proof system modulus g = g142 ~ 2°% and the repetition rate is ~ 7 as
in the previous examples.
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CONCLUSION

In this thesis, we studied the problem of producing efficient zero-knowledge
proofs for statements related to lattice-based cryptography. Our proposed
framework Lantern performs very well compared to prior work with around
a factor of 2 — 3X improvement over the previous works for basic statements,
such as proving knowledge of a Module-LWE sample. Our protocol has
the advantage over prior works in a sense that it does not rely on the CRT
technique anymore. In particular, we can choose a prime g such that X + 1
does not split into many factors modulo g (even two) at no extra cost’. This
comes with a huge benefit that we do not need to repeat any (costly) part of
the protocol for soundness amplification, thus making our proofs one-shot.

We provide new technical tools for proving various relations in the
committed messages, such as inner products (involving either one or two
secret vectors) and norm bounds which make use of the algebraic properties
of the Rj-automorphism o_1. We believe that they can be of independent
interest for building more advanced privacy-preserving protocols.

As a final objective of the thesis, we applied our framework as a (black-
box) building block to construct more efficient privacy-oriented primitives,
such as verifiable encryption, proving integer relations, ring signatures and
group signatures. As evidenced in e.g. [ESZ21; Esg+19c; LNS21b; TWo4],
these components can be used further for designing more sophisticated
protocols, such as cryptocurrencies or secure e-voting.

9.1 FUTURE RESEARCH DIRECTIONS

IMPLEMENTATION. Basic primitives based on lattices (e.g. encryption
and signature schemes) are renowned for their fast runtimes. Indeed, the
operations involved in lattice constructions have been shown to be read-
ily ported to more constrained devices. This opens up the possibility of
quantum-safe zero-knowledge proofs being used in “daily” interactions,
e.g. credit card transactions, where operations should take (significantly)
less time than a second.

This choice of a modulus might, however, have an impact on the protocol implementation. We
leave this aspect as a future work.
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9.1 FUTURE RESEARCH DIRECTIONS

It is an open question how our protocol performs in terms of the compu-
tational complexity. We recall that for the previous state-of-the-art lattice-
based proof system by Esgin et al. [ENS20], the prover (resp. verifier)
runtime is about 3.5ms (resp. 0.4ms). Unfortunately, we cannot precisely
extrapolate their results to our setting due to the following two reasons.
First, our modulus is not “NTT-friendly”, meaning X¢ + 1 does not split into
many small factors. Hence, we cannot apply the standard fast algorithms
for polynomial multiplication® as in [ENS20]. Secondly, Esgin et al. use
uniform rejection sampling and thus do not require efficient algorithms for
sampling from discrete Gaussians. This is not the case in our framework
since we explicitly provide new results for Gaussian rejection sampling.

FURTHER APPLICATIONS. A clear future direction is using our frame-
work in the context of other privacy-oriented applications. Indeed, some
currently most efficient lattice-based schemes, e.g. e-cash [Deo+20] or group
encryption with full dynamicity and message filtering policy [Pan+21], are
still based on the protocol by Yang et al. [Yan+19], and surprisingly not the
works which significantly build upon it [ENS20; LNS21a]. The reason is
that Yang et al. present a general protocol for proving so-called “instance
relations”, i.e. prove knowledge of a vector § over Z; such that As = 3
and for each triple (7, j, k) of indices in a fixed set M, we have s; - sj = 813
These specific statements were not considered explicitly in [ENS20], nor in
this thesis, and thus our framework cannot be applied in such applications
out-of-the-box. This raises a question whether our protocols can be easily
modified to prove “instance relations” which would consequently improve
the efficiency of [Deo+20; Pan+21].

SUBLINEAR PROOFS. Asymptotically, our framework provides proofs
which are linear in the number of committed messages. Hence, it is not
very suitable for proving larger statements, such as circuit satisfiability.

As discussed in Chapter 2, various lattice-based protocols with asymptot-
ically succinct proofs have been introduced. However, these constructions
fall short in practice since they require very large parameters to instan-
tiate, especially in comparison to PCP/IOP-type constructions [Ben+19;
Bha+20; COS20] which are also (plausibly) post-quantum. We recall that
the aforementioned schemes offer proofs in the order of 100KB for proving
arbitrary circuits with millions of gates. The bottleneck of the PCP-type

However, there is a recent work by Chung et al. [Chu+21] which provides fast polynomial
multiplication for “NTT-unfriendly” rings and might be useful for our setting.
Clearly, if M contains triples of the form (i,i,) then 5 has binary coefficients.
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9.1 FUTURE RESEARCH DIRECTIONS

constructions is arguably the prover runtime which in the order of tens
of seconds for even small instances. This is clearly evidenced by the work
by Boschini et al. [Bos+20] who built a group signature using the Aurora
proof system [Ben+19]. Namely, they computed that proving knowledge
of a Module-LWE sample takes around 40 seconds on a standard laptop.
What is worse, they could not successfully run the full signing algorithm,
even with the help of Google Cloud large-memory machines due to very
large memory requirements. This raises a very important future research di-
rection, from both theoretical and practical point of view, i.e. to construct a
concretely efficient sublinear-size lattice-based zero-knowledge proof system
which enjoys fast implementation and small memory requirements while
producing comparable proof sizes to the PCP-type systems.
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