
ETH Library

Real-time Onboard Visual-
Inertial State Estimation and Self-
Calibration of MAVs in Unknown
Environments

Conference Paper

Author(s):
Weiss, Stephan; Achtelik, Markus W.; Lynen, Simon; Chli, Margarita ; Siegwart, Roland

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-010023094

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2012.6225147

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-5611-7492
https://doi.org/10.3929/ethz-a-010023094
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2012.6225147
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Real-time Onboard Visual-Inertial State Estimation and

Self-Calibration of MAVs in Unknown Environments

Stephan Weiss, Markus W. Achtelik, Simon Lynen, Margarita Chli, Roland Siegwart

Abstract— The combination of visual and inertial sensors has
proved to be very popular in robot navigation and, in particular,
Micro Aerial Vehicle (MAV) navigation due the flexibility in
weight, power consumption and low cost it offers. At the same
time, coping with the big latency between inertial and visual
measurements and processing images in real-time impose great
research challenges. Most modern MAV navigation systems
avoid to explicitly tackle this by employing a ground station
for off-board processing.

In this paper, we propose a navigation algorithm for MAVs
equipped with a single camera and an Inertial Measurement
Unit (IMU) which is able to run onboard and in real-time.
The main focus here is on the proposed speed-estimation
module which converts the camera into a metric body-speed
sensor using IMU data within an EKF framework. We show
how this module can be used for full self-calibration of the
sensor suite in real-time. The module is then used both during
initialization and as a fall-back solution at tracking failures
of a keyframe-based VSLAM module. The latter is based on
an existing high-performance algorithm, extended such that it
achieves scalable 6DoF pose estimation at constant complexity.
Fast onboard speed control is ensured by sole reliance on the
optical flow of at least two features in two consecutive camera
frames and the corresponding IMU readings. Our nonlinear
observability analysis and our real experiments demonstrate
that this approach can be used to control a MAV in speed,
while we also show results of operation at 40Hz on an onboard
Atom computer 1.6 GHz.

I. INTRODUCTION

A. Visual-Inertial based airborne navigation

The combination of visual and inertial sensors for effective

control and navigation for Micro Aerial Vehicles (MAVs) has

been shown to be a viable and increasingly popular approach.

However, many implementations still rely on artificial fea-

tures [1] or heavier and costly sensors like laser scanners

[2]. Moreover, in order to manage the rich information of

the visual data online, current visual-inertial systems ([3],

[4], [5]) employ off-board processing units, limiting the

robustness and flexibility of such navigation solutions. Even

in outdoor scenarios where GPS might be available, it is

unrealistic to assume regular unobstructed GPS reception or

a permanent communication link to a ground station.

A carefully selected sensor suite can be used to increase

the autonomy of a MAV and hence improve robustness of

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement n. 231855 (sFly). Stephan Weiss, Markus Achtelik
and Simon Lynen are currently PhD students and Margarita Chli is a
senior researcher at the ETH Zurich (email: {stephan.weiss, markus.achtelik,
simon.lynen, margarita.chli}@mavt.ethz.ch). Roland Siegwart is full profes-
sor at the ETH Zurich and head of the Autonomous Systems Lab (email:
r.siegwart@ieee.org).

navigation. As a rule of thumb, every 10 grams require

1 W of motor power in hover mode for a small helicopter.

Our camera-IMU (Inertial Measurement Unit) setup weights

about 20 grams and provides the capability of real-time

onboard control of the MAV without the need for artificial

landmarks. At this point, it is worth mentioning that on an

airborne vehicle, estimating a goal vector for control is not

sufficient. Unlike ground vehicles, airborne vehicles cannot

simply hold all actuators still to achieve zero velocity. Hence,

for robust MAV control, a timely estimate of its actual state

is a requirement – then, based on this estimate, goal vectors

can be applied. As a result, this work will focus on the

prompt and consistent availability of the MAV state estimate,

allowing goal vectors to be generated by simply moving

setpoints or holding a setpoint for hover mode. We do not

focus on the control itself in this paper but refer to our

previous work [6].

B. Inter-sensor calibration

As in any multi-sensor system, the camera-IMU calibra-

tion is crucial to the robustness of our estimation processes.

While we assume the intrinsic camera parameters to be

known and fixed, the inter-sensor calibration parameters

describing the 6DoF pose between the camera and the IMU

are unknown. There exist various methods in the literature

to calibrate these unknowns [7], [8]. However, they usually

address off-line calibration exhibiting complexity of at least

O(M2) for M number of features observed by the camera.

Here, we aim at a power-on-and-go system which calibrates

itself while flying, thus computationally complex methods

are unsuitable. Instead, our non-linear observability analysis

in [9] reveals that we can decouple our vision algorithm by

treating the arbitrarily scaled 3D camera speed or 6Dof pose

as measurements. Since these measurements have constant

size (3 or 6 dimensions, respectively) our state estimator

which is also responsible for the inter-sensor calibration has

constant complexity.

C. Overall navigation framework

The proposed navigation framework consists of two com-

plementary visual measurement modules: a 3D speed esti-

mator and a 6DoF pose estimator. Speed estimation is used

to initialize the pose estimator by ensuring an appropriately

wide baseline to start building a map of the unknown envi-

ronment in a keyframe-based VSLAM (Visual Simultaneous

Localization And Mapping) scheme. While we have recently

seen some very successful monocular VSLAM systems [10],

[11], it is PTAM [12] that has been the most popular across

the Robotics literature due to the free availability of the

authors’ implementation and the nature of the algorithm:

its keyframe-based representation of past experience allows

great freedom in adjusting the desired accuracy-complexity

ratio. As a result, our pose estimator is based on PTAM,

which we improved with respect to robustness on self-similar

structure and computational complexity.

While the pose estimator relies on a feature map (thus

prone to lose it and fail), our inertial-optical flow based

speed estimator is map and feature-history independent.

This makes the speed estimator much more robust against

failures. Hence, whenever the SLAM map is lost, the speed-

estimator is used as a fall-back solution. Since only speed

is being calculated during a (re-)initialization phase, the

position estimate is prone to drift. In order to avoid this

drift, we exploit the dependency of optical flow with the

ratio of speed and feature distance to recover the metric scene

depth. Locking on at least 3 features prevents the MAV from

position drift.

Processing the visual information is the most computa-

tionally demanding part of the speed estimation. In theory, to

estimate the camera speed, it is enough to use the optical flow

of two features in two consecutive camera frames and the

corresponding IMU readings – i.e. we do not need to store

a history of any features/measurements such as keyframes.

Employing optical flow in visual-inertial tracking is increas-

ingly popular but existing systems either demonstrate results

in simulation [3], [13] or transmit images to a ground station

for off-board processing [4], [5].

Here, we demonstrate real, successful MAV navigation at

40 Hz while all processing is done onboard (on an Atom

computer 1.6 GHz). Moreover, we present a novel inertial-

optical flow based metric speed estimation algorithm which

not only provides a metric state estimate but is also capable

of determining the visual scale factor and allows full, online

calibration of the MAV’s sensor suite (including IMU biases

and inter-sensor states).

II. CAMERA AS A METRIC SPEED SENSOR

This section describes our inertial-optical flow framework

for metric speed estimation of a self-calibrating camera-IMU

setup. Firstly, we detail the pure vision part which is based on

the continuous 8-point algorithm [14] augmented with IMU

readings. This addition drastically reduced dimensionality.

In a next step, we focus on the semi-tightly coupling of

the vision part with an Extended Kalman Filter (EKF)

framework. We apply a non-linear observability analysis to

prove the observability of the visual scale as well as the

inter-sensor calibration between camera and IMU.

A. Our Reduced, Continuous 8-Point Algorithm

1) Recovering the Velocity Direction: The (discrete)

epipolar constraint is ~x′
T

E~x = 0 where ~x is the feature

direction vector and the essential matrix E(T,R) consists of

the camera rotation R and translation T . In continuous space,

we can calculate the translational and angular velocities v

and ω. For each 3D point’s coordinates X(t) the following

holds:

Ẋ(t) = ⌊~ω(t)⌋X(t) + ~v(t) (1)

Introducing the arbitrary scale factor λ yields λ(t) ∗ ~x(t) =
X(t). We substitute ~̇x by ~u as the optical flow vector and

obtain the following continuous epipolar constraint:

~uT ⌊~v(t)⌋~x+ ~xT ⌊~ω(t)⌋⌊~v(t)⌋~x = 0 (2)

with the skew symmetric notation of a vector cross product

⌊~a⌋~b = ~a×~b. As mentioned in [14], in contrast to the discrete

version, solving for the continuous essential matrix yields a

unique solution for ~v and ~ω as the twisted-pair ambiguity

is avoided. Moreover, the continuous approach handles well

zero-baseline situations avoiding the singularities of the

discrete case.

The system in (2) requires 8 features with their corre-

sponding optical flow vectors. From the discrete version, we

know that the problem actually has 5 dimensions only (3

for each of rotation and translation and -1 for the unknown

scale). Here, we can also incorporate the knowledge of

angular velocities from an attached IMU, bearing in mind

that the IMU needs to be time-synchronized with the camera

(i.e. temporal calibration, which is ensured in our setup)

and also, the spatial calibration between IMU and camera

needs to be known – the latter is addressed further on in

this section. This eliminates 3 more dimensions such that

only 2 dimensions remain (i.e. the direction of the velocity).

Measuring the angular velocities with the IMU allows to

unrotate the optical flow and allows to set ω in (2) to zero.

Then the 2 dimensions of the new problem are immediately

visible given that the velocity can be arbitrarily scaled. The

new problem can now be formulated as:

~uT ⌊~v(t)⌋~x = 0 , or equivalently:

(⌊~u(t)⌋~x)T~v = 0 (3)

Using the properties of the triple product. Equation (3)

suggests that the camera speed ~v is orthogonal to the cross

product of the optical flow ~u and the feature direction

vector ~x. In other words, ~v lies in the plane spanned by

~u and ~x. Geometrically, the intersection of two such planes

uniquely defines the direction of ~v. This is already sufficient

since ~v can be arbitrarily scaled, thus we need at least two

vectors ~u and ~x to define ~v up to scale. Fig. 1 depicts this

schematically.

With the above, we have an arbitrarily scaled visual speed

by only observing at least 2 features and their current

optical flow. Since any two features in a non-degenerate

configuration yield this information, we do not need to store

any feature history but instead solely depend on the last two

camera frames.

2) Recovering a Unifying But Arbitrary Scale Factor:

Above, we recovered the camera speed up to an arbitrary

scale. Without loss of generality we can set |~v| = 1. We can

then rewrite (1) as

Ẋ(t) = ⌊~ω(t)⌋X(t) + η~v(t) , (4)

feature including its optical flow and angle α to the EKF

framework discussed above:

hi =
ẋ

sinα
=

v

D
. (18)

For one such measurement h4 = v

D
we can define the MAV

position w.r.t. a single feature as D =
√

x2 + y2 + z2. The

gradient of its Lie derivative w.r.t. to the state space yields

∇L0h4. For a general movement, one such measurement

adds a 3×6 matrix block of rank 3 to the observability matrix

O. The entries of this matrix block are in particular non-zero

at the indices of pi
w

since D = D(pi
w
). This means, that (for

general movement), the position of the MAV is observable

and thus drift-free. In essence, we have a hyperplane that

still renders the position unobservable. This hyperplane is a

sphere around one feature or a circle between two features.

Naturally, this is the region where D remains unchanged.

In general, and as we know it from the Perspective-3-Point

algorithm, we eliminate all such hyperplanes by observing 3

or more features. This means, we would need to extend our

approach with a feature history of 3 or more features.

III. EFFICIENT VISUAL INERTIAL 6DOF POSE

ESTIMATION

In the previous section we described an approach to

speed-control an MAV. This approach solely depends on

two consecutive camera frames (and the corresponding IMU

readings), rendering it immune to failures due to map loss

or feature history corruption as in visual SLAM or visual

odometry systems. However, this approach is prone to po-

sition drift. In order to tackle this, we use the speed-based

control as a back-up and (re-)initialization algorithm of more

powerful, feature-history-based vision approaches. The latter

are usually more expensive, hence an efficient solution is

crucial for onboard MAV application. Here, we detail our

improvements on the existing monocular keyframe-based

VSLAM framework in [12], which enables onboard oper-

ation at 20 Hz on an onboard Atom computer 1.6 GHz. In

Section IV, we show how to initialize this framework with

the aid of our speed-based controller.

A. Real-Time Onboard Keyframe-based Monocular SLAM

As one of the most modern, high-performing systems,

we choose to tailor PTAM [12] to the general needs of a

computationally limited MAV platform. The framework has

been ported to be compatible to the Robot Operating System1

such that:

• the input image taken from an image node and a verifi-

cation image including the features found, is published.

This enables the user to handle PTAM on an embedded

system without human-machine interfaces.

• the 6DoF pose is published as a pose with a covariance

estimation calculated from PTAM’s internal bundle ad-

justment.

1www.ros.org

• the visualization of camera keyframes, trajectory and

features is ported to RVIZ such that visualization can

be done on a ground station, if necessary.

• tuning parameters can be changed dynamically in a GUI

for dynamic reconfiguration.

1) Keyframe Handling: In PTAM, the map is defined as

a set of keyframes together with their observed features. In

order to minimize the computational complexity, here we

set a maximum number of keyframes retained in the map.

If this number is exceeded, the keyframe furthest away from

the current MAV pose gets deleted along with the features

associated with it. If the maximum number of retained

keyframes is infinite, then the algorithm is equivalent to the

original PTAM, while if we set a maximum of 2 keyframes

we obtain a visual odometry framework. Naturally, the larger

the number of retained keyframes, the lower the estimation

drift, but also the larger the computational complexity.

2) Improved Feature Handling for More Robust Maps:

When flying outdoors, we experienced severe issues with

self-similarity of the environment – e.g. the asphalt in

urban areas or the grass in rural areas. Naturally, features

extracted at higher pyramidal levels are more robust to scene

ambiguity. Thus, while the finest-scale features are included

for tracking, we omit them in map-handling – i.e. we only

store features extracted in the highest 3 pyramidal levels.

This improves tracking quality when moving away from

a given feature (e.g. when taking-off with a MAV with a

downward-looking camera), making it possible to navigate

over both grass and asphalt.

Since this vision algorithm is keyframe-based, it has high

measurement rates when tracking. However, at keyframe

generation the frame-rate drops remarkably. Using only

features detected at the highest pyramidal levels also re-

duces drastically the number of newly added features upon

keyframe generation. This results to great speed-ups with

keyframe-generation running at 13Hz (in contrast to the 7Hz

of the original PTAM) and normal tracking rates of around

20 Hz on an onboard Atom computer 1.6 GHz.

3) Re-Initialization After Failure Mode: We use our

speed-based controller described in Section II to initialize

PTAM and stabilize the MAV on PTAM failures and during

(re-)initialization sequences. For automatic initialization we

ensure that the baseline is sufficiently large by calculating

the rotation-compensated median pixel disparity. For rotation

compensation we use efficient second-order minimization

techniques (ESM) [16] in order to keep PTAM independent

of IMU readings. For re-initializations, we store the median

scene depth and pose of the closest keyframe and propagate

this information to the new initialized map. This way we

minimize large jumps in scale and pose at re-initializations.

4) Inverted Index Structure for Map-point Filtering: On

each frame, PTAM projects the 3D points from the map

into the current image according to the motion-model prior,

which allows then point-correspondences to be established

for tracking. Since no filtering on point visibility is preceding

this step, it scales linearly with the number of points in the

map. We implemented an inverted index structure based on

the grouping of map points inside keyframes which allows

discarding large groups of map-points with low probability

of being in the field-of-view. The search for visible points

is performed by re-projecting a small set of distinct map-

points from every keyframe which permits inference on

their visibility from the current keyframe. The total number

of points that need evaluation by reprojection is thereby

significantly reduced leading to a scaling of the system in

linear order of the visible keyframes rather than in linear

order with the overall number of keyframes in the map.

IV. RESULTS

The proposed approach for visual-inertial MAV speed-

control is based on an EKF framework. While the observabil-

ity analysis in Section II showed that the metric speed, visual

scale and inter-sensor calibration parameters are observable,

it is crucial to demonstrate its applicability in real scenarios

in order to ensure that linearization effects are negligible.

Here, we firstly present results in simulation highlighting

the influence of non-observable states, followed by real data

experiments obtained by handheld motion of the MAV with

fully onboard computation. Finally, we assess the MAV’s

flight performance using the overall navigation framework

proposed in this paper (speed and pose estimation).

A. Simulation Results

Table I lists the values we used for the system in simula-

tion, during which we ensured that the motion has excitation

in at least two axes in acceleration and angular velocity (as

advocated in Section II). In practice, this is usually fulfilled

due to the agile nature of a MAV. After convergence, the filter

yields the average results listed in Table II for the inter-sensor

calibration and the visual scale factor L.

TABLE I

DEFAULT SIMULATION VALUES

pc
i
[m] [0.1 0.5 -0.04]T

qc
i
[rad] rpy[0.2 -0.3 0.4]T

L 0.5

ba[
m

s2
] [-0.1 -0.2 0.15]T

bw[rad
s

] [0.01 0.02 -0.015]T

TABLE II

INTER-SENSOR CALIBRATION RESULTS ON SIMULATED DATA

pc
i
[m] qc

i
rpy[rad] L ba[m/s2] bw[r/s]

Average
error

0.001
0.002
0.007

0.002
0.003
0.005

0.89%

0.037
0.033
0.017

< ǫ
< ǫ
< ǫ

Note that the estimation of the acceleration biases is

the least accurate whereas the estimation of the gyroscope

biases is the most precise. This may coincide with the fact

that the acceleration measurement is linked with the current

attitude and motion including their uncertainties, whereas the

gyroscope biases only link to the attitude change.

The RMS on the estimated pose is for vi
w

[0.044, 0.050,

0.034] m/s in x,y,z respectively and for qi
w

[0.024, 0.022]

rad in roll and pitch respectively. Note that we do not list

the RMS of the position pi
w

nor the yaw angle of the attitude

qi
w

since the observability analysis showed that they are not

observable.

The conducted experiment suggests that the linearization

effects do not corrupt the EKF estimation. Fig. 3 depicts the

state covariance matrix after convergence. The unobservabil-

ity of the position (first 3 states) is clearly visible by a high

uncertainty.

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

14

16

18

20

22

0

0.05

0.1

0.15

0.2

0.25

Fig. 3. State covariance matrix of the converged state. It is clearly visible
that the position states piw are not observable and hence they have a large
uncertainty (first 3 states in the matrix). Note that the covariance matrix
corresponds to the error state which represents all rotations in their minimal
form (i.e. 3 elements). Thus the dimension is 22× 22 only.

B. Real Experiments

1) Performance of the Inertial-Optical Flow Framework:

For the experiments on a real MAV, we used a hexacopter

platform provided by Ascending Technologies2. The plat-

form is equipped with an IMU and a WVGA monochrome

camera with global shutter. The camera frame-rate was set to

20Hz whereas the IMU provides measurements at 1kHz. As

ground truth data, we use a Vicon system with mm and sub-

degree accuracy. We take the temporal derivative of the Vicon

position for ground truth velocity. We measured the ground

truth inter-sensor calibration parameters to be pc
i
= [0.015,

-0.01, -0.03] m and rpy(qc
i
) = [0, π, 0]. Since the ground

truth scale-factor is very difficult to determine, we omit direct

analysis of this state. Instead, the true scale-factor is reflected

in the metric ground truth velocity data. Thus, comparing the

velocity estimate of the filter with ground truth implicitly

yields a qualitative picture of the correct scale estimate.

For the first experiment, we moved the MAV handheld

about 0.5m above the ground in all Cartesian directions.

The plot of the estimated speed vs. ground truth speed is

plotted in Fig. 4.

Evidently, the velocity is well estimated despite some

obvious outlier-updates from the visual speed measurement

(e.g. after sec. 44 in x, sec. 56.5 in y, sec. 74 in z). These

small outliers are sufficiently smoothed in the integrated po-

sition to not disturb the MAV position controller. Fig. 4 also

shows that the scale is estimated correctly, since otherwise,

the magnitude of the filter’s speed-estimate would differ from

the Vicon ground truth. In this experiment, we measured an

RMS of [0.028, 0.035, 0.025] m/s in x,y,z, respectively.

2www.asctec.de

36 37 38 39 40 41 42 43 44 45 46 47
−0.2

−0.1

0

0.1

sec

x
 [

m
/s

]

51 52 53 54 55 56 57 58 59 60 61

−0.2

−0.1

0

0.1

0.2

sec

y
 [

m
/s

]

72 74 76 78 80 82

−0.1

0

0.1

sec

z
 [

m
/s

]

Fig. 4. Estimated MAV speed in x (blue), y (green), z (red) directions for a
handheld MAV. The movements were made separately in x (top), y (middle)
and z (bottom). Bold lines correspond to Vicon ground truth (noise arises
from the position derivative of the Vicon data) and thin lines are the filter
estimates. Notice that at points, the visual reading is corrupted, imposing
a wrong update on the filter. Nevertheless, the estimates are robust with a
RMS of [0.028, 0.035, 0.025] m/s in x, y and z, respectively.

Fig. 5. Estimated MAV attitude. While roll and pitch are observable the
yaw angle is not. This is clearly visible by its drift w.r.t. the ground truth.
The RMS is [0.007, 0.014] rad in roll and pitch, respectively.

Fig. 5 illustrates that the roll and pitch angles are ob-

servable, while yaw is not which we derived theoretically in

Section II. The sequence is the same as taken for the velocity

plots in Fig. 4. The RMS to ground truth is [0.007, 0.014]

rad in roll and pitch, respectively.

For the inter-sensor calibration we measured an RMS of

[0.009, 0.011, 0.004] rad in roll, pitch, yaw of the attitude

between camera and IMU. The results indicate, however,

that our ground truth may not be precise enough to judge

in detail this RMS value. We experienced the largest issue

in estimating the translation between IMU and camera pc
i
.

For this, we measured an RMS of [0.008, 0.005, 0.083] m
in x,y,z, respectively. Given the small values for the ground

truth distance, this RMS is large. We assume that the system

would need more motion in order to converge better. Also,

the larger the distance between the sensors, the more relevant

is its influence on the measurements and thus the better can it

be estimated. However, this issue needs further investigation.

In a new experiment, we let the MAV hover autonomously

solely based on our inertial-optical flow approach. Fig. 6

shows the position plots. Note that the position performs a

slow random walk since it is not observable, however, based

on a good velocity estimate. This plot shows, that the MAV

10 20 30 40 50 60 70 80 90

−0.5

0

0.5

sec

x
,y

,z
 [

m
]

filt: x

filt: y

filt: z

gt: x

gt: y

gt: z

Fig. 6. Position plot of the autonomously hovering MAV. Because of the
non-observability of the position state, it performs a random walk. Notice,
however, that this walk is very slow due to the good estimate of the speed.

28 29 30 31 32 33 34

−0.1

0

0.1

sec

x
,y

,z
 [

m
/s

]

filt: x

filt: y

filt: z

gt: x

gt: y

gt: z

Fig. 7. Velocity of the autonomously flying MAV. The correct magnitude
of the speed estimate lets us assume that the scale is estimated correctly.
We notice also some erroneous vision updates (e.g. at sec. 32 in the y).
The high RMS of [0.053, 0.041, 0.017] m/s may arise from bad feature
matching and motion blur in the vision part due to vibrations during flight.

is indeed able to hover robustly long enough to perform a

(re-)initialization of higher level vision algorithms such as a

VSLAM framework.

A sample of the velocity estimate of the filter versus

the ground truth is plotted in Fig. 7. Again, the fitting in

magnitude of the two velocities indicate a correct estimate

of the scale factor. The RMS over the whole flight is [0.053,

0.041, 0.017] m/s. We assume that the higher RMS arises

from the vibrations while flying and thus possible motion

blur and inaccurate feature matching.

For the attitude we measure an RMS of [0.023 0.041] rad

for roll and pitch, respectively. After 80 sec of flight, the yaw

drifts 0.5 rad. The inter-sensor attitude RMS is [0.045, 0.016,

0.027] rad whereas the inter-sensor distance RMS is [0.033,

0.016, 0.252] m. Again here, we justify the high RMS value

for the estimate of pc
i

as due to insufficient movement and

has to be investigated further in detail.

For all real experiments, we run the filter as well as the

vision framework simultaneously on the onboard computer.

The timings for the vision algorithm are listed in Fig. 8. The

timings for the EKF framework are negligibly small since

the prediction step is performed on the embedded ARM7

processor at 1 kHz and the most complex part of the update

step on the onboard computer is an inversion of the 3 × 3
innovation matrix (since the visual velocity measurement

has 3DoF only). Note that on average, our inertial-optical

flow approach can run at just under 40 Hz on an onboard

computer. We divided the algorithm in 3 parts: (a) Feature

management ensures enough features equally spread in the

image – in the case of bad feature readings, this algorithm

takes longer to define suitable features. (b) Feature extraction

and matching establishes correspondences in consecutive

frames. (c) Visual velocity calculation using sparse SVD

methods to solve (3) and (5). The big difference in timings

in Fig. 8 are due to both our sparse matrix implementation

and our feature prediction methods for fast feature matching.

