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Abstract—We propose a novel beam-tracking algorithm based
on channel charting (CC) which maintains the communication
link between a base station (BS) and a mobile user equipment
(UE) in a millimeter wave (mmWave) mobile communications
system. Our method first uses large-scale channel state informa-
tion information at the BS in order to learn a CC. The points
in the channel chart are then annotated with the signal-to-noise
ratio (SNR) of best beams. One can then leverage this CC-to-SNR
mapping in order to track strong beams between UEs and BS
efficiently and robustly at very low beam-search overhead. Simu-
lation results in a mmWave scenario show that the performance
of the CC-assisted beam tracking method approaches that of an
exhaustive beam-search approach while requiring significantly
lower beam-search overhead than conventional tracking methods.

Index Terms—Beam tracking, channel charting, channel state
information, mmWave communication, SNR prediction.

I. INTRODUCTION

The ever-increasing demand for higher data rates for mobile
users pushes wireless communication systems towards higher
frequencies where large contiguous portions of bandwidth
are still available. The millimeter wave (mmWave) frequency
spectrum is an integral part of fifth generation (5G) new
radio (NR). However, the high path loss between transmitter
and receiver is a critical challenge for reliable mmWave
communication systems. The relatively small wave length of
mmWave signals is in favor of deploying a large number of
antenna elements at both ends of the wireless link and enables
beamforming, which can compensate for the high path loss [1].

Narrow beams require constant refinement in order to main-
tain link quality. In a mobile environment, beam alignment
becomes more challenging as the channel is changing more
frequently, and the base station (BS) needs to continuously
update the transmitting beam. As a result, significant beam-
tracking (BT) overheads are imposed on the network [2]. Thus,
by devising more efficient BT methods, more resources can
be utilized for data transmission rather for beam management.

The 3rd Generation Partnership Project (3GPP) has defined
procedures for beam management for downlink (DL) and
uplink (UL) transmission through several mechanisms [3].
The standard approach for identifying the best BS-to-User-
Equipment (UE) pair is beam sweeping (i.e., an exhaustive
search over all beams in a given codebook); beam-tracking
is commonly carried out by probing neighboring beams [4].
The authors in [4]–[6] investigate 5G-NR beam management
and discuss the associated overhead. To describe how long the
BS beam provides the best possible link quality, the sensitivity

of the served beam-to-UE mobility under different operating
frequencies and channel dynamics was studied in [7].

The literature describes a variety of beam tracking methods.
A non-standalone system was proposed in [8], so that the sub-6
GHz cell coordinates the control signals to reduce link failure.
Angle and channel gain tracking was investigated in [9],
where based on previous beamformers, the beam directions
are estimated. Machine learning (ML) methods have received
great attention due to the ability to find hidden patterns from
data. The references [10], [11] proposed an ML-based beam
selection strategy by considering UE location. The Neural
Network (NN) model in [11] not only selects the strongest
beam but also finds an alternative beam for the communication
so that the beam selection remains robust to blockage. While
these methods reduce the beam-tracking overhead, they require
knowledge of the UEs’ movement patterns.

Channel Charting (CC) is the process of learning a mapping
from high dimensional channel state information (CSI) to a
low dimensional chart of the network, called channel chart, in
which nearby points indicate UEs that are nearby in physical
space [12]. It has been shown that CC is an effective tool
for applications in which absolute location information is not
required, such as handover prediction [13] and mm-Wave
system beam selection [14], [15].

Contributions: By building on our CC-based SNR predic-
tion work in [14], we develop a novel CC assisted beam-
tracking algorithm. The best BS-to-UE beam is predicted using
a served BS beam. Our approach avoids error propagation in
a conventional beam tracking approach, in which the best BS
beam is determined assuming that the UE uses its previous best
beam. Furthermore, our proposed CC-assisted beam tracking
approach does not exploit UE mobility patterns and avoids
knowledge of the UE’s physical location.

Notation: Matrices and vectors are set in upper and lower
boldface letters, respectively. I is the identity matrix. We use
[X]ij for the element of matrix X in the ith row and jth
column. The operators (·)H and | · | denote the Hermitian
conjugate and the absolute value, respectively; E{·} denotes
expectation and ∥·∥F is the Frobenius norm. We use log(·) to
denote the matrix logarithm.

II. SYSTEM MODEL AND BACKGROUND

We consider a Millimeter Wave (mmWave) system, where
the UE and BS have multiple antennas following 5G NR. The
BS is equipped with an antenna array with B elements and
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each UE antenna array has U elements. At both the BS and the
UE beamformers are used. The UE beamformer is autonomous
such that the UE uses the best UE beam towards a BS beam.
For simplicity, the number of Radio Frequency (RF) chains
is equal to the number of antenna elements at the BS and
the UEs. We assume that wideband beams are used at both
the BS and the UE, i.e., for all subcarriers, the same beam is
employed.

A. Channel and Beam Models

We consider a Time Division Duplex (TDD) system. The
channel matrix between a UE and the BS at subcarrier ω is
represented by Hω ∈ CB×U . Beam management is carried out
by a beam sweeping approach, which is an exhaustive search
over beam pairs at the BS and the UE. The entire angular
space is scanned by narrow beams at the BS and UEs [5].

The received signal at the BS from a UE transmission at
one subcarrier is:

yω = wHHωv sω + nω, (1)

where w ∈ CB×1 is a BS beamformer, v ∈ CU×1 is a UE
beamformer, nω is circularly symmetric Gaussian noise with
variance N0 and sω is the transmitted signal from the UE with
unit power, i.e., E|s|2 = 1.

Let, wb ∈ CB×1 for b = 1, . . . , B denote the set of
BS beamformers and vu ∈ CU×1 for u = 1, . . . , U denote
the set of UE beamformers. Assuming Uniform Linear Array
(ULA) antennas with M elements, the unitary M×M Discrete
Fourier Transform (DFT) based codebook, FM = [f1, . . . , fM ]
is used with:

fm =
1√
M

[1,e−j2π
(m−1)

M , . . . , e−j2π
(M−1)(m−1)

M ]T ,

m = 1, . . . ,M.

(2)

For the BS, a codebook containing a set of B DFT code-
words defined as W = FB and for the UE a codebook
containing a set of U DFT codewords defined as V = FU

is used.
Assuming an uplink based beam management approach,

the received signal at the BS implementing exhaustive search
through all the BS and UE beams can be expressed as:

Yω = WHHωV +N = Y′
ω +N, (3)

where Yω ∈ CB×U , [Yω]i,j is the received signal using the
ith BS beam and jth UE beam and N ∈ CB×U is the noise
matrix. The best BS-UE beam pair can be obtained as:

(̂
i, ĵ

)
= argmax

i∈{1,...,B}
j∈{1,...,U}

Ω∑
ω=1

|[Y′
ω]i,j |2, (4)

where Ω is the number of subcarriers. The average Signal-to-
Noise-Ratio (SNR) for a transmission at the best beam pair(̂
i, ĵ

)
is computed as:

γ =
1

ΩN0

Ω∑
ω=1

|[Y′
ω ]̂i,ĵ |

2. (5)

Assuming the transmission from UE best beam

ĵ(b) ≜ ĵ(wb) = argmax
j∈{1,...,U}

Ω∑
ω=1

|wH
b Hωvj |2, (6)

towards beam wb of the BS, the effective channel is defined
as

hω,ĵ(b) = Hωvĵ(b). (7)

The measured covariance matrix from the effective channel at
the BS is defined as:

R =
1

Ω

Ω∑
ω=1

hω,ĵ(b)h
H
ω,ĵ(b)

+N0I. (8)

B. Channel Charting and SNR Prediction

We assume a mobile UE in the radio environment served
by a given BS beam and we would like to predict the SNR of
the UE at other BS beams. We are going to predict beam SNR
based on the channel chart location of the UE at the served
beam.

Channel charting maps high dimensional CSI to low di-
mensional chart that reflects relative spatial distance of the
corresponding UEs. Channel chart is constructed from channel
features that capture large scale fading effects. In this paper,
we shall use channel covariance matrices at the BS as feature:

{Rk}Kk=1 , (9)

where Rk is the channel covariance of the kth UE, and K
is the number of UEs in the radio environment. The charting
function is defined as:

C : CB×B → Rd′×1,

Rk → zk ≜ C(Rk),
(10)

where z ∈ Rd′×1 is the channel chart location associated to
channel covariance matrix Rk and d′ is the chart dimension.

By using a suitable Dimensionality Reduction (DR) tech-
nique a chart of the radio environment will be constructed in
which local geometry of UEs are preserved. To do so, a con-
ventional DR method such as t-SNE can be used [16].. First,
pairwise feature distance between UEs should be calculated
and a distance matrix D is formed. We use the log-Euclidean
distance to compute the distance between covariance matrices
of UE k and UE k′, i.e.,

[D]k,k′ =
∥∥∥R̃k − R̃k′

∥∥∥
F
, (11)

where R̃ = log(R). A low dimensional representation of the
CSI features is obtained by applying t-SNE DR.

For each BS beam, we construct the corresponding CC, and
annotate the CC locations with SNR values of other beams.
We assume, each UE uses its best beam towards a BS beam.
In the offline phase, the SNR at different BS beams needs to
be measured. The UE needs to transmit towards different BS
beams. If a UE has a single antenna, the best BS beam can
be directly measured at the BS. However, when the UE has
multiple antennas, and autonomously uses a beamformer, the
BS cannot unilaterally measure and find the best beam towards
the user. We train a model to predict SNR of other beams given
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Fig. 1: An illustration of beam tracking Approaches: (Left); beam sweeping. (Middle); beam tracking, (Right); CC-assisted beam tracking.

the CC location of the serving beam. We predict SNR value
of the UE at other beams, thereby switching to another beam
can be handled. In this regard, a CC is constructed for each
BS beam, and a NN is then trained so as to predict the SNRs
of all other BS beams:

γCC = g(z), (12)

where, g(·) is the SNR predictor function and γCC is the vec-
tor of predicted SNR at other BS beams. All these processes
are done in an offline phase. In the online phase, once the UE
establishes its connection to the BS, it will be mapped on the
CC and using SNR predictors, the SNR at other beams can
be predicted.

III. BEAM TRACKING

Beam tracking is introduced to reduce the number of beam
measurements as few as possible, and find the optimal beam
pair in a mobile scenario. Once the initial access connec-
tion is established, due to mobility of the UE, link quality
degradation should be handled by beam refinement. Exhaustive
search (beam sweeping) gives the most accurate transmission
direction. However, it is time and resource consuming.

A. Beam Sweeping

Fig. 1 (Left) illustrates the beam sweeping approach where
all beams have to be examined so that the best BS-UE beam
pair is found. The BS sequentially sweeps its beams by
sending synchronization signal blocks. Then, the BS beam
is fixed and the UE performs beam sweeping. This is the
standard method to find best beam pairs. While beam sweeping
gives the most accurate transmission direction, it requires
a significant amount of resources. The best beam pair is
determined using (4).

B. Beam Tracking

In Fig. 1 (Middle) the beam tracking approach is shown
where, first the best UE beam is determined, conditioned on
previous location best BS beam. A pilot signal is then trans-
mitted towards the BS, and the best BS beam is determined
based on the received signal.

Considering this beam tracking approach, we assume that
an exhaustive search is conducted at the starting point of a
UE mobility path. Thus, from the previous transmission, the
BS beamformer ŵ is used for the current transmission. Given
ŵ, the UE measures the received power at all its beams by
forming a vector:

ȳω = VHHH
ω ŵ, (13)

where ȳ ∈ CU×1. The UE determines its best beam for a
transmission from the previous best BS beam as:

ū = argmax
u∈{1,...,U}

| [ȳω]u |2. (14)

The UE sends a pilot to the BS given the UE beam vū. At the
BS the effective channel from UE transmitting towards beam
ŵ is:

hω,ū = Hωvū. (15)

The corresponding channel covarinace for the transmission
towards beam ŵ is:

R̄ =
1

Ω

Ω∑
ω=1

hω,ū(hω,ū)
H . (16)

The best BS beam for the UE is then determined by finding
the beam that provides highest SNR as:

ī = argmax
b∈{1,...,B}

wH
b R̄wb. (17)

The beam wī will be used for the next position and this
procedure repeats until the next exhaustive search is carried
out. However, the main issue with this approach is that after
few steps, due to error propagation, the UE loses the best beam
and is not able to recover the best beam pairs. Consequently,
a new exhaustive search is needed. Furthermore, since the UE
beamformer is based on the previous best BS beam, the UE
may be pointing towards a wrong direction and the BS cannot
find the best beam from this transmission.

C. CC-assisted Beam Tracking

In Fig. 1 (Right), the CC-assisted beam tracking is depicted.
In this approach after receiving the pilot signal from the UE,
the covariance matrix is estimated, the UE is then mapped
to beam ŵ CC, using SNR predictors, the best BS beam
is found. CC-based beam SNR prediction showed excellent
prediction accuracy. The SNR predictor is able to predict other
beam SNRs quite accurately, thereby correcting misaligned
beams [14]. In the CC-assisted beam tracking approach, the
same procedures as in (13) to (16) are followed. Given the
effective channel covariance matrix R, the UE is mapped to
beam ŵ CC. Due to non-parametric nature of t-SNE DR,
the out-of-sample extension for the new UE is applied by
averaging over the n nearest CC locations. Then, the SNR
at other beams is predicted using SNR predictors. Therefore,
by measuring the SNR at the current beam and predicted SNR
at other beams, a decision regarding choosing the best beam
can be made.
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TABLE I: Simulation Parameters

Parameter Value Parameter Value
Center Freq. 28 GHz Subcarriers 256
Scenario 3GPP 38.901

UMa-NLOS
Subcarrier Band-
width

240 KHz

BS Array 32 ULA UE Array 8 ULA
BS Height 25 m UE Height 1.5 m

IV. SIMULATION RESULTS

In our simulations, we consider a 10 m × 10 m street
segment. The BS is equipped with ULA antenna with 32
elements, and UEs are equipped with ULA antennna with
8 elements. Quadriga channel simulator is used to generate
the radio environment [17]. Simulation parameters are listed
in Table I. We uniformly scattered 1600 UEs in the area of
interest for training and validation of the NN SNR predictors.

t-SNE DR with perplexity 200 is chosen for beam CC
construction. The quality of channel charts are evaluated by
Continuity (CT) and Trustworthiness (TW) which are widely
used performance measures in DR methods [18]. CT shows
whether nearby UEs in the physical space are mapped to
nearby points on the CC. On the other hand, TW determines
whether nearby points on the CC correspond to UEs who are
spatially close to each other in the physical space. The value
of both CT and TW are in the range [0, 1], and the larger the
value the higher is quality of channel chart. The CT and TW
performance metric for the constructed CCs are 0.98 and 0.98
respectively.

Fig. 2 shows the constructed CC where the boundaries for
the dominant beams are shown. Also, one mobility path is
shown with black dot markers which corresponds to a mobility
path in the middle of the street.

A NN with 3 layers and 30 neurons in each layer with ReLu
activation function is used for SNR prediction. The input layer
of NN gets 2D CC location and current beam SNR value, and
the output layer has SNR values for the other beams.

In the street segment, we consider 20 mobility paths along
the positive x-axis. Each path consist of 60 locations where
a UE is assumed to travel through. At the beginning of each
path, exhaustive search is carried out and UEs are supposed
to track the best beam for their connection to the BS.

Fig. 3 shows best BS beam for each location. In the area
of interest, seven dominant beams are observed. Once the
best beam changes, the beam tracking approach shows error
in tracking the best beam; Magenta circles shows UEs that
cannot follow the best beam through their path based on
beam tracking approach. Black circles show UEs that have
erroneous best beam based on CC-assisted beam tracking.
We see that CC-assisted beam tracking approach has fewer
erroneous beams compared to the beam tracking approach.

In Fig. 4, we evaluate beam tracking accuracy in terms
of SNR difference. For each location, the reference SNR is
obtained from exhaustive search. For performance comparison,
we introduce a baseline scheme that after some steps in each
mobility path, an exhaustive search is carried out so as to
refresh the beam information for next steps. We consider every

Fig. 2: CC of the training data set. Black triangle markers depict a
mobility path in the middle of street.

Fig. 3: Beam dominance areas as a function of the x-y coordinates
of the street. Black dots shows points that the UE has error in CC-
assisted beam tracking. Magenta circles show points that the UE has
error in beam tracking.

[2nd, 5th, 10th, 15th, 30th] step, a refreshing of the best beam
information is conducted. We define the percentage of total
number of exhaustive searches in a mobility path to the total
number of points in the mobility path as:

ρ =
# exhaustive search

# points in the mobility path
× 100, (18)

where the number of points in the mobility path is 60 points.
The blue solid line corresponds to the exhaustive search, it is
a baseline for performance comparison. The blue dashed line
represents the case where only at the start of mobility path
we have an exhaustive search beam information. Our proposed
CC-assisted beam tracking approach outperforms conventional
beam tracking for different refreshing criteria. Moreover, the
largest SNR prediction error for CC-assisted method is less
than 1.5 dB, whereas for beam tracking, the SNR prediction
error can reach 4.0 dB.

The motivation for beam tracking is to avoid the exhaustive
search over all BS beams. Assuming each exhaustive search
counts as one unit of overhead, in Fig. 5 we have depicted the
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Fig. 4: The CDF of SNR prediction error in dB for beam tracking and
CC-assisted beam tracking approaches. For beam tracking different
refreshing criteria are considered. The CC-assisted beam tracking ap-
proach outperforms beam tracking approach with different refreshing
frequencies.

Fig. 5: Overhead-SNR difference trade-off for beam tracking and CC-
assisted beam tracking. The 80 / 90 percentile SNR difference in dB
is used as the performance measure.

percentage of exhaustive searches to the total number of points
in a mobility path to achieve 80 / 90 percentile SNR difference
for various exhaustive search frequencies on the mobility path.
CC-assisted approach has a significant overhead reduction as
it only needs the exhaustive search at the beginning of the
mobility path.

V. CONCLUSION

In this paper we have considered beam tracking for 5G
mm-Wave networks. CC-assisted beam tracking is proposed
and compared to conventional beam tracking approach. In
this regard, beam SNRs are predicted based on CC locations.
Accordingly, the best beam is chosen from predicted SNRs
and compared to the reference SNR obtained from exhaus-
tive search. Simulation results demonstrate that the proposed
CC-assisted approach can significantly reduce overhead and
accurately enable beam refinement.
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