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Abstract: The contactless recording of a photoplethysmography (PPG) signal with a Red-Green-
Blue (RGB) camera is known as remote photoplethysmography (rPPG). Studies have reported on
the positive impact of using this technique, particularly in heart rate estimation, which has led
to increased research on this topic among scientists. Therefore, converting from RGB signals to
constructing an rPPG signal is an important step. Eight rPPG methods (plant-orthogonal-to-skin
(POS), local group invariance (LGI), the chrominance-based method (CHROM), orthogonal matrix
image transformation (OMIT), GREEN, independent component analysis (ICA), principal component
analysis (PCA), and blood volume pulse (PBV) methods) were assessed using dynamic time warping,
power spectrum analysis, and Pearson’s correlation coefficient, with different activities (at rest, during
exercising in the gym, during talking, and while head rotating) and four regions of interest (ROI): the
forehead, the left cheek, the right cheek, and a combination of all three ROIs. The best performing
rPPG methods in all categories were the POS, LGI, and OMI methods; each performed well in all
activities. Recommendations for future work are provided.

Keywords: Imaging PPG; imaging photoplethysmogram; camera-based photoplethysmography;
remote health monitoring; light interaction with tissue; vasomotor reactivity; vascular regulation;
early diagnostic methods; imaging and sensing; optical imaging

1. Introduction

Photoplethysmography (PPG) is an optical measurement technique for estimating
cardiovascular parameters such as heart rate and blood pressure [1,2]. PPG sensors are
inexpensive and may easily be included in wearables; therefore, the number of studies
investigating this issue have increased in recent years [3]. The underlying principle is
simple: reflected light from certain regions of the skin is affected by the amount of blood
under the skin. The captured light can then be used to measure blood volume changes.
Remote PPG (rPPG) is the contactless measurement of the reflected light using a Red-Green-
Blue (RGB) camera [4]. This low-cost method makes the recording of health-related data
easier for many people to access because RGB cameras are often built into smartphones
or laptops.

In the current body of literature, the rPPG signal is frequently compared solely to
the extracted health-related information, such as heart rate or blood pressure, rather than
to the ground truth PPG signal [5,6]. The error metrics used in this case are often the
mean absolute error (MAE) or Pearson’s correlation coefficient (r) between the estimated
and ground truth health-related information. This can be of limited help in determining
whether the rPPG signal is of high quality because it only assesses the signal indirectly.
The metrics most often used to compare the ground truth PPG with the estimated rPPG
are the MAE or r of all sample points [7]. Furthermore, the PPG signal is occasionally
evaluated with the rPPG signal via a frequency analysis or using the signal-to-noise ratio

Bioengineering 2022, 9, 485. https://doi.org/10.3390/bioengineering9100485 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9100485
https://doi.org/10.3390/bioengineering9100485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-7205-6554
https://orcid.org/0000-0003-1831-0202
https://orcid.org/0000-0002-2309-9977
https://doi.org/10.3390/bioengineering9100485
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9100485?type=check_update&version=3


Bioengineering 2022, 9, 485 2 of 12

(SNR) [8]. However, with a reasonably long rPPG signal, sample noise and an offset are to
be expected, leading to a high error and a low r, although to a human observer, the signal
might seem very similar.

A lower-quality rPPG signal is often used for heart rate measurement since frequency
analysis or peak detection algorithm are sufficient. A higher quality signal is required to
determine more complex health-related information, such as diastolic or systolic blood
pressure. The diastolic peak and notch are especially important for estimating health-
related information that goes beyond heartbeat. To compare the quality of the signal of
multiple rPPG methods, we used dynamic time warping (DTW), which, to the best of our
knowledge, is new in this field.

The DTW algorithm is a popular alternative approach for comparing the similarities
of different time series [9]. By allowing “elastic” transformation and time shifting, it has
been proven to be extremely efficient in detecting similar shapes with different phases [10].
Furthermore, we performed a power spectrum (PS) analysis and compared the r of these
two signals. In this study, we evaluated eight non-deep learning rPPG methods (plant-
orthogonal-to-skin (POS), local group invariance (LGI), the chrominance-based method
(CHROM), orthogonal matrix image transformation (OMIT), GREEN, independent compo-
nent analysis (ICA), principal component analysis (PCA), and blood volume pulse (PBV)
methods) and compared the similarities between the estimated rPPG and the reference
fingertip RPPG signals using three evaluation metrics.

2. Methodology

For non-deep learning approaches, the procedure from the video to the rPPG signal
has already been explained in detail by Boccignone et al. [11] In this paper, we will merely
review the most significant parts of the procedure. The pipeline from the video to the rPPG
signal is shown in Figure 1.

Figure 1. Graphical representation of the pipeline from a selfie video to an rPPG signal. Note that
ROIs = region of interest, RGB signal = time series of average color channel value, rPPG method =
method from the RGB signal to the rPPG signal.

Due to blood volume changes, some areas of the human face influence the reflected
light more than other areas. In this study, we evaluated some of the most frequently used
ROIs for rPPG in the current literature: the right cheek, left cheek, and forehead [12,13].
Moreover, two independent ROI assessments from Sungjun et al. [14] and Dae-Yeol et al. [7]
determined that the forehead and cheeks are the most promising ROIs for rPPG.

The landmarks that separate the ROIs from a frame that contains the face of the
participant were detected with MediaPipe Face Mesh [15]. In the subsequent processing,
the average value of the respective RGB channel was used. In this study, we evaluated four
different ROIs. The forehead, left cheek, and right cheek were evaluated individually and
then combined. The exact landmark numbers are as follows: forehead (107, 66, 69, 109, 10,
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338, 299, 296, 336, 9), left cheek: (118, 119, 100, 126, 209, 49, 129, 203, 205, 50), and right
cheek (347, 348, 329, 355, 429, 279, 358, 423, 425, 280).

The rPPG method is used to convert an RGB signal to an rPPG signal. All rPPG
methods explored in the literature are listed in Table 1. It is important to note that principal
component analysis (PCA) and independent component analysis (ICA) are rPPG methods
based on blind source separation, in other words, without supervision or data labeling. In
this study, the second component of ICA and PCA was used as the rPPG signal. All the
mentioned rPPG methods were implemented in the Python framework for virtual heart
rate and pyVHR, as reported in Boccignone et al. [16]. The present study used all the rPPG
methods exactly as implemented in this framework. A wide variety of possible filters can
be used to improve the rPPG signal. The present study aimed to assess different rPPG
methods, not the optimal filter combination. Consequently, only a bandpass filter on the
estimated rPPG signal was applied. The sixth-order bandpass filter ranged from 0.65 to
4 Hz.

Table 1. Summary of the rPPG methods.

rPPG Method Summary

GREEN [17] Of the three channels, the green channel is most like the PPG signal and
can be used as its estimate.

ICA [18]
To recover three separate source signals, independent component analysis
(ICA) is applied to the RGB signal. A significant rPPG signal was usually
found in the second component.

PCA [19] Principal component analysis (PCA) is applied to distinguish the rPPG
signal from the RGB signal.

CHROM [20]
The chrominance (CHROM)-based method generates an rPPG signal by
removing the noise caused by the light reflection using a ratio of the
normalized color channels.

PBV [21] PBV calculates the rPPG signal with blood volume pulse fluctuations in the
RGB signal to identify the pulse-induced color changes from motion.

POS [8] The plane-orthogonal-to-skin (POS) method uses the plane orthogonal to
the skin tone in the RGB signal to extract the rPPG signal.

LGI [22] The local group invariance (LGI) calculates an rPPG signal with a robust
algorithm as a result of local transformations.

OMIT [23]

Orthogonal matrix image transformation (OMIT) recovers the rPPG signal
by generating an orthogonal matrix with linearly uncorrelated components
representing the orthonormal components in the RGB signal, relying on
matrix decomposition.

2.1. Dataset

For the evaluation, the LGI-PGGI dataset from Pilz et al. [22] was applied. It contains
video recordings with the participants’ faces in the center labelled with the referenced
fingertip PPG signal. Videos from six participants, each with four different activities, are
publicly available. The following activities are shown in the videos:

1 Resting. The participant is seated indoors with only minimal head movement.
2 Gym. The participant is doing an indoor workout on a bicycle ergometer.
3 Talk. The participant engaged in a conversation in an urban scenario with natural light.
4 Rotation. The participant made arbitrary head movements while indoors.

Each video is over 1 min in length. The pulse oximeter’s average sampling rate was
60 Hz, while the rate of the RGB camera was 25 Hz. A recent study [24] showed that a
sampling rate of 25 Hz is sufficient for estimating heart rate.
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2.2. Evaluation Metric
2.2.1. DTW Distance

Under specific constraints, the goal of DTW is to provide a distance metric between
two input time series by allowing “elastic” transformation and time shifting [10]. The
distance metric is calculated by transforming the data into vectors and then computing the
Euclidean distance between the points in vector space [10]. The present study used the
software package DTAIDistance [25] for the DTW analysis.

The average distance is calculated between a 10 s reference fingertip PPG signal
and a 10 s rPPG window extracted from the video. The length of each video was cut to
1 min, resulting in six windows per video. Four different ROI cases, six participants with
four different activities, and eight different rPPG methods, which created six windows
per video, were evaluated, resulting in 4608 rPPG windows to compare with the reference
fingertip PPG signal. As seen in Figure 2, the PPG signal and the reference fingertip rPPG
signal window with a high similarity are compared to a PPG signal and the reference rPPG
signal window with a low similarity.

(a) High quality window [↓ DTW, ↓ |∆BPM|,
and ↑ |r|]

(b) Low quality window [↑ DTW, ↑ |∆BPM|,
and ↓ |r|]

Figure 2. Comparison of a high quality window (a) and a low quality window (b). The high quality
signal is from the participant named “Angelo” in the first window. It was recorded with the CHROM
rPPG method at the Resting video activity with the forehead as the ROI: DTW = 1.63, |∆BPM| = 0.73,
and |r| = 0.72. The low quality signal is from the participant named “Harun” in the first window.
It was recorded with the rPPG method ICA at the Resting video activity, with the left check as the
ROI: DTW = 2.47, |∆BPM| = 18.31, |r| = 0.26. Note that BPM = beats per minute, DTW = dynamic
time warping, ICA = independent component analysis, rPPG = remote photoplethysmography,
ROI = region of interest, |r| = correlation, OMIT = orthogonal matrix image transformation,
PPG = photoplethysmography, ↑ = increase, and ↓ = decrease.

2.2.2. Beats-per-Minute Difference (∆BPM)

The hlPS is commonly defined as the Fourier transformation of the autocorrelation
function. This analysis is very popular for PPG and rPPG signals, as the peak in the PS
graph corresponds to the heart rate. The frequency of the maximum in the PS graph from
the PPG matches the heartbeat. In this study, we analyzed the absolute difference between
the peak frequency of the rPPG signal and the PPG signal as an evaluation metric in the PS
graph. As seen in Figure 3, the PS from the constructed rPPG and the reference fingertip
PPG signal window with high similarity is compared to an rPPG signal and its referenced
fingertip signal window with low similarity in the frequency domain.
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(a) Window in which the rPPG signals and
the referenced PPG signals are in alignment.

(b) Window in which the rPPG signals and the
referenced PPG signals are in minimal alignment
within the 50–90 band.

Figure 3. Comparison of a high quality window (a) and a low quality window (b) in the PS.
The high quality signal is from the participant named “Angelo” in the first window. It was
recorded with the CHROM rPPG method at the Resting video activity, with the forehead as the ROI:
DTW = 1.63, |∆BPM| = 0.73, and |r| = 0.72. The signal of low quality is from the participant named
“Harun” in the first window. It was recorded with the ICA rPPG method at the Resting video activity,
with the left cheek as the ROI: DTW = 2.47, |∆BPM| = 18.31, |r| = 0.26. Note: BPM = beats per minute,
DTW = dynamic time warping, ICA = independent component analysis, PS = power spectrum,
rPPG = remote photoplethysmography, ROI = region of interest, |r| = correlation, OMIT = orthogonal
matrix image transformation, and PPG = photoplethysmography.

2.2.3. Correlation (r)

The r is calculated for each sampling point in a window

r = ∑n
i=1 xiyi−∑n

i=1 xi ∑n
i=1 yi√

n ∑n
i=1 x2

i −(∑
n
i=1 yi)2

√
n ∑n

i=1 y2
i −(∑

n
i=1 yi)2

,

where xi are the sampling points of the PPG time series and yi are the sampling points of the
rPPG time series. A 10 s window with a sampling rate of 25 Hz has 250 sampling points.

2.2.4. Overall Evaluation Score

The overall evaluation score (OS) was calculated

OS = 1
3 ((1− DTWn) + (1− ∆BPMn) + rn)

where DTWn, ∆BPMn, and rn are the average values for all the ROI cases normalized
between the eight rPPG methods. DTWn, ∆BPMn, and rn are always in the range between
0 and 1.

3. Results

The PPG and rPPG signals were normalized with min–max normalization and com-
pared with DTW, |∆BPM|, and |r|. The results are shown below. After calculating the DTW,
|∆BPM|, and |r| per window of the signals, the mean of all six windows was calculated,
followed by the mean for all six persons. All results in detail for each ROI case are shown
in Table 2. The values have been rounded to two decimal digits for readability.
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Table 2. Evaluation metric results for constructing rPPG signals using eight methods. BPM = beats
per minute, DTW = dynamic time warping, ROI = region of interest, r = correlation.

ROI Metric Video
Activity CHROM LGI POS PBV PCA GREEN OMIT ICA

Forehead

DTW

Resting 1.85 1.91 2.07 2.11 1.98 1.92 1.91 2.20
Gym 2.33 2.27 2.27 2.44 2.51 2.66 2.27 2.52
Talk 2.11 2.27 2.40 2.59 2.45 2.79 2.27 2.78

Rotation 2.44 2.56 2.59 2.84 2.63 2.96 2.51 2.68

|r|

Resting 0.40 0.39 0.37 0.33 0.39 0.38 0.39 0.32
Gym 0.21 0.24 0.29 0.21 0.16 0.19 0.24 0.16
Talk 0.27 0.26 0.28 0.22 0.22 0.24 0.26 0.20

Rotation 0.18 0.19 0.17 0.13 0.18 0.11 0.19 0.13

|∆BPM|

Resting 2.01 2.01 2.10 2.46 2.03 2.24 2.01 8.20
Gym 16.38 11.03 7.57 23.38 29.01 25.55 11.01 29.01
Talk 4.62 8.52 9.20 13.49 8.32 9.34 7.85 21.34

Rotation 15.10 15.50 12.90 23.25 16.11 27.06 15.38 19.73

Left cheek

DTW

Resting 2.14 2.05 2.18 2.29 2.12 2.00 2.05 2.24
Gym 2.51 2.36 2.42 2.36 2.56 2.69 2.37 2.62
Talk 2.46 2.52 2.58 2.86 2.51 2.93 2.53 2.65

Rotation 2.31 2.70 2.59 2.72 2.63 2.90 2.73 2.59

|r|

Resting 0.35 0.37 0.36 0.24 0.35 0.34 0.37 0.25
Gym 0.18 0.20 0.23 0.20 0.14 0.19 0.20 0.17
Talk 0.21 0.21 0.24 0.18 0.20 0.21 0.21 0.17

Rotation 0.15 0.17 0.15 0.15 0.17 0.13 0.17 0.14

|∆BPM|

Resting 2.22 2.22 2.18 13.39 2.28 2.99 2.22 11.70
Gym 30.68 26.10 20.04 23.62 32.43 24.31 26.12 23.70
Talk 12.57 7.71 6.10 16.28 8.44 11.41 7.67 16.01

Rotation 21.97 18.66 14.91 23.80 19.31 23.15 19.25 26.61

Right cheek

DTW

Resting 1.96 1.95 2.14 2.12 2.06 1.93 1.95 2.28
Gym 2.28 2.28 2.35 2.33 2.47 2.67 2.27 2.47
Talk 2.36 2.36 2.41 2.54 2.44 2.86 2.36 2.68

Rotation 2.46 2.60 2.49 2.79 2.45 2.94 2.62 2.62

|r|

Resting 0.36 0.37 0.36 0.31 0.32 0.36 0.38 0.26
Gym 0.17 0.21 0.26 0.17 0.15 0.19 0.21 0.16
Talk 0.26 0.26 0.28 0.23 0.23 0.24 0.26 0.22

Rotation 0.13 0.15 0.14 0.12 0.14 0.13 0.15 0.12

|∆BPM|

Resting 2.85 2.87 2.60 4.01 2.85 2.34 2.85 23.25
Gym 18.01 19.29 15.46 23.44 35.87 31.51 19.31 28.65
Talk 4.68 7.34 8.77 11.25 7.08 10.68 7.36 8.79

Rotation 19.21 17.84 15.30 21.06 20.41 22.32 18.09 23.76

Combined

DTW

Resting 1.88 1.87 2.08 2.25 1.97 1.94 1.87 2.21
Gym 2.38 2.30 2.32 2.47 2.53 2.67 2.30 2.57
Talk 2.07 2.13 2.25 2.52 2.33 2.74 2.12 2.57

Rotation 2.41 2.57 2.54 2.91 2.58 3.02 2.57 2.48

|r|

Resting 0.41 0.39 0.36 0.32 0.40 0.41 0.39 0.34
Gym 0.21 0.25 0.30 0.21 0.16 0.20 0.25 0.18
Talk 0.27 0.27 0.27 0.19 0.23 0.25 0.27 0.20

Rotation 0.18 0.19 0.19 0.14 0.19 0.13 0.19 0.14

|∆BPM|

Resting 1.91 1.91 1.99 2.95 1.93 2.03 1.87 8.10
Gym 14.81 12.39 7.06 22.73 28.42 27.22 11.23 26.00
Talk 3.68 4.52 6.37 13.08 7.91 9.09 6.39 14.16

Rotation 18.84 15.12 14.44 26.16 15.60 28.06 16.72 22.38
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3.1. DTW Evaluation
3.1.1. Different ROIs

The first objective was to evaluate the performance of the different rPPG methods for
different ROIs. The more challenging video activities, Talking, Gym, and Rotation, were
compared to the easiest activity, Resting (Figure 4).

With only minor movements in the Resting video activity, a smaller ROI, such as a
forehead, can outperform the combined ROI approach. However, with more movement
and natural lightning, as seen in the Talking video activity, the combined ROI case is best.
In the natural light from the Talking video activity, the performance of the smaller ROIs, the
left cheek and right cheek, was significantly worse than the performance of the forehead
ROI. This result seems explicable because noise is less of a factor with a larger surface area.

Moreover, the landmark tracking of MediaPipe Face Mesh [15] was excellent for the
forehead ROI, but there can be small shifts in the ROI on the cheeks with greater movement.
For example, it is possible that with an extreme head position, the skin and background
comprise the ROI of one of the cheeks (left or right cheek). In the Rotation video activity, it
seems that every ROI was challenged in a similar way; there were no major differences in
the ROIs for that activity.

Figure 4. Comparison of DTW from the video activities Resting (top left), Gym (top right), Talking
(bottom left), and Rotation (bottom right) for each ROI case. This chart shows the average of all the
methods, participants, and windows for each investigated ROI. Note: DTW = dynamic time warping,
ROI = region of interest.

3.1.2. Different Video Activities

The second objective was to evaluate the performance of the different rPPG methods
for different video activities. As seen in Table 2, Rotation was the most challenging video
activity for DTW. That activity contains arbitrary and unnatural movements, followed by
sections without movement, which makes it very difficult to create an rPPG signal. In this
case, the errors of the applied landmark detection algorithm are an additional factor to
consider due to fast and extreme movements.

There is a unique ranking of the rPPG methods for each video activity. For the Resting
and Gym video activities, LGI was the best method. For the Talking and Rotation video
activities, the CHROM rPPG method showed particularly good results. For the difficult
video activities, Gym and Talking, LGI was one of the two best performing methods. This
data makes sense because earlier studies from the group behind developing LGI [22] have
shown that the rPPG method has a high level of motion and lightning resilience in heart
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rate estimation. CHROM appeared to perform well in the natural light of the Talking video
activity. In three out of four activities, GREEN was the worst method. Here, it can be
observed that in different video activities, the various rPPG models performed differently,
and there was no overall best model. However, it is easy to see that the worst results were
obtained for activity with movement and natural lighting. The DTW results for different
video activities are shown in Figure 5a.

3.1.3. Beats-per-Minute Difference (∆BPM)

As previously mentioned, a PS analysis was conducted. Only the first low-frequency
envelope amplitude in the PS graph was compared because it determines the heart rate.
The results are shown in Figure 5b. POS excelled in this area. It is particularly intriguing
that the performance of POS significantly surpassed that of the other rPPG methods in the
more difficult video activity, Gym. POS was found to be the best method in three of the
four video activities. CHROM also showed a strong performance in the natural lightning in
the Talking video activity. In the video activity Resting, it was found that the performance
of the five best rPPG methods were similar; in fact, the differences in the performances
were not significant. In two of the four video activities, ICA had the worst results.

3.1.4. Correlation (r)

The achieved |r| between the rPPG signals and the reference fingertip PPG signals for
all video activities can be seen in Figure 5c. A high correlation of (|r| > 0.7) for a single
10 s window was achieved. However, on average, it was very low, even for the best video
activity, Resting. Notably, in this study, the window was not moved to avoid possible
offsets because different frequencies made it impossible to significantly increase the |r| for
the 1 minute recording. POS was one of the best methods in this comparison; it had the best
performance in two of the four video activities: Gym and Talking. OMIT was also found
to be one of the top two methods in every video activity. ICA was the worst-performing
method in two out of four studied video activities.

Resting Gym Talk Rotation

(a)

(b)

(c)

Figure 5. Average DTW (a), |∆BPM| (b), |r| (c) over all participants, windows, and ROIs for every rPPG
method. Note that BPM = beats per minutes, DTW = dynamic time warping, PPG = photoplethys-
mography, rPPG = remote photoplethysmography, |r| = correlation.
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3.2. Best rPPG Method Overall

To find the best rPPG method overall, all values were normalized with min–max
normalization, and the weighted sum was taken. DTW, |∆BPM|, and |r| were weighted
equally. The overall performance results are shown in Table 3 and Figure 6.

Table 3. Average overall evaluation score for each rPPG method.

Video
Activity CHROM LGI POS PBV PCA GREEN OMIT ICA

Resting 0.98 1.00 0.74 0.30 0.84 0.96 1.00 0.00
Gym 0.58 0.78 0.96 0.51 0.14 0.19 0.78 0.23
Talk 0.91 0.85 0.86 0.21 0.60 0.38 0.84 0.09

Rotation 0.78 0.80 0.83 0.20 0.76 0.00 0.78 0.34

Average 0.81 0.86 0.85 0.30 0.58 0.38 0.85 0.17

LGI, POS, and OMIT were the best overall methods for all the video activities com-
bined, as seen in Figure 6. With a small advantage, LGI was the best method overall. For
the Resting video activity with minimal movements, the rPPG methods LGI and OMIT
showed the best results. In the Gym video activity, with a lot of movement and indoor
lightning, the POS rPPG method performed particularly well. For natural lightning in the
Talking video activity, CHROM was the best rPPG method. In the Rotation video activity,
POS was again found to be the best rPPG method.

Figure 6. Average OS score for each rPPG method. Note that OS = overall evaluation score.

4. Discussion

This study demonstrated that none of the studied rPPG methods are the best for all the
investigated cases. It has been shown that rPPG methods perform differently depending
on the movement, the lighting conditions in the video, and the error metric that is applied.
It is remarkable that in the Resting video activity, no major performance differences were
found for the top five rPPG methods for BPM estimation; the differences in performance
became greater in more challenging video activities. The performance of the POS rPPG
method was the best overall among all the categories, and it was by far the best in the
Gym video activity for BPM estimation. Thus, POS was the best rPPG method for BPM
estimation in this study.

The performance of the POS rPPG method was superior to the other tested methods
for the more difficult datasets with indoor lighting, such as the Gym and Rotation video
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activities. The great advantage of POS is that it is a mathematical model, which can
be beneficial for medical applications to blind sourcing approaches. In the study by
Boccoignone et al. [11], the POS rPPG method also showed superior performance for the
LGI-PGGI dataset from Pilz et al. [22]. However, these results only apply to heartbeat
estimation. The Talking video activity is of particular interest, as it was recorded under
natural lighting. In our study, we also observed that the POS rPPG method had a good
OS. Although very good results have already been achieved for heart rate estimation,
it is clear from the |r| results that the rPPG is not yet a high quality signal; its quality
is not equal to that of the reference fingertip PPG signal. When comparing the rPPG
signal to the referenced PPG signal, it was discovered that the signals were still highly
dissimilar, resulting in a low correlation. There are several factors that play a role here.
When measuring a PPG signal with skin contact, there is significantly less noise. With rPPG,
the signal is measured over a much larger area, which is why there is an average effect. The
rPPG signal often does not have sharp systolic peaks; rather, the peaks are rounded. The
quality of the rPPG signal heavily depends on the environment and movement conditions,
which do not affect the PPG signal. Further research is needed to determine all the factors
that influence an rPPG signal.

Windowing was performed on the RGB signal. Thus, blind source separation rPPG
methods, such as PCA and ICA, could perform differently if windowing is applied to the
rPPG signal. PCA and ICA try to find the most periodic signal in the RGB signal, which
can lead to errors since motion can also be periodic, for example, in the Gym video activity.
In this review, the ICA rPPG method did not show good results overall. The PBV method
normalized the hole input color channels, which is why the windowing time also had a
large influence. POS applies temporal normalization; therefore, in the POS method, a 10
s window starts and ends with a small amplitude. Eventually, the |r| and DTW could be
higher if windowing is applied on the rPPG signal.

To determine the optimal ROI, further research is needed. Through the 458 landmarks
in MediaPipe Face Mesh [15], the ROI can be determined accurately, and the tracking works
very well. Many new ROIs can be easily tested. The size of the ROI is of particular interest;
we assume that, under ideal conditions, a smaller ROI will result in a higher quality rPPG
signal. We would like to point out that the LGI-PGGI dataset from Pilz et al. [22] has a
bias and does not correspond to the general population. In that dataset, the prevailing
ethnicity is Caucasian, which facilitates the creation of the PPG and rPPG signals [26].
No information was provided on the health status of the participants. Moreover, the
public dataset only contains six people: five men and one woman. The participants are
predominantly younger adults. Bias associated with race and gender is a well-known
influencing factor in the literature [27,28]. However, related problems that intensify these
issues also occur for rPPG methods [26]. The dataset employed in this study does not
use specific lighting in front of the participants’ bodies, which is expected to increase the
accuracy for every performance metric. Another important result of this study is that all
the applied metrics have a comparable ranking. Well-performing methods frequently have
a high ranking in all the applied metrics.

In the future, additional research is needed to obtain a high quality rPPG signal over
a longer time window, which is suitable for blood pressure estimation or other health-
related information. However, the technology of rPPG is very promising and can be
beneficial, especially for a large population, because simple RGB cameras are installed in a
variety of mobile devices. The recommendations derived from this study’s findings are
summarized below:

1 We advise focusing research on optimal environmental conditions (minimal move-
ment, constant light in front of the participant), as no high quality rPPG signal could
be achieved with a good |r| over a longer time widow (>1 min).

2 We recommend using larger ROIs (such as forehead and cheeks) for challenging
video activities (such as shifting background lights) and smaller ROIs (such as only a
forehead) for easier activities.
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3 We suggest using DTW as an error metric for comparing different ROIs, rPPG meth-
ods, and filters, because it handles time offsets very well, and it is very suitable for
comparing signals from the different methods.

4 We advise using LGI, OMIT, or POS to obtain a high quality rPPG signal.

5. Conclusions

When comparing the rPPG signal to the referenced PPG signal, it was discovered
that the constructed rPPG signals from RGB videos were highly dissimilar, resulting in a
low correlation. However, comparing and ranking the rPPG construction methods is still
possible. We demonstrated that different rPPG methods with different ROIs performed
better or worse in different recording conditions. DTW was proven to be an effective
technique for comparing various rPPG signals. In this study, the best-performing rPPG
approaches were LGI, POS, and OMIT. In natural lighting conditions, larger ROIs showed
better results than smaller ROIs. Future research is needed on the whole pipeline from
facial video to rPPG; the impact of different filter combinations or ROI selection is still
mainly unknown.
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