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A B S T R A C T   

The decarbonization of the transport system requires a better understanding of human mobility behavior to 
optimally plan and evaluate sustainable transport options (such as Mobility as a Service). Current analysis 
frameworks often rely on specific datasets or data-specific assumptions and hence are difficult to generalize to 
other datasets or studies. In this work, we present a workflow to identify groups of users with similar mobility 
behavior that appear across several datasets. Our method does not depend on a specific clustering algorithm, is 
robust against the choice of hyperparameters, does not require specific labels in the dataset, and is not limited to 
specific types of tracking data. This allows the extraction of stable mobility profiles based on several small and 
inhomogeneous tracking data sets. Our method consists of the following main steps: Representing individual 
mobility using location-based graphs; extraction of graph-based mobility features; clustering using different 
hyperparameter configurations; group identification using statistical testing. The method is applied to six 
tracking datasets (Geolife, Green Class 1 + 2, yumuv and two Foursquare datasets) with a total of 1070 users that 
visit about 3′000’000 different locations with a total tracking duration of over 200′000 days. We can identify and 
interpret five mobility profiles that appear in all datasets and show how these profiles can be used to analyze 
longitudinal and cross-sectional tracking studies.   

1. Introduction 

Individual motorized transportation is a major contributor to global 
greenhouse gas (GHG) emissions [Chapman, 2007; Creutzig et al., 2015] 
and linked to additional problems such as the creation of microplastics 
[Evangeliou et al., 2020], injuries, an increase of impervious cover for 
infrastructure [Gössling, 2020], and more traffic and congestion which 
already results in high economic costs [Reed, 2019]. 

Tackling these problems requires to cover people's growing mobility 
needs using less resources like energy, cars, or space. This is the goal of 
several novel mobility concepts such as mobility-as-a-service (MaaS) but 
apart from being more sustainable, these services will need to be com
parable with personal cars in terms of comfort and flexibility in order to 
convince people to change their mobility behavior. 

This challenge will require knowledge about the mobility behavior of 
people and the ability to predict it in the near future in order to opti
mally allocate shared mobility resources. With the recent success of 

machine learning algorithms [LeCun et al., 2015], research in compu
tational movement analysis [Long et al., 2018] shifted towards using 
machine learning methods to support data interpretation (e.g., labeling 
[Toch et al., 2019], clustering tasks [Ben-Gal et al., 2019, Jonietz et al., 
2018]) or prediction tasks [Luca, Barlacchi, Lepri, & Pappalardo, 2023; 
Kumar and Raubal, 2021; Kreil et al., 2020]. 

While large tracking datasets of human movement have become 
available in recent years, they are oftentimes unlabeled [Chen et al., 
2016], thereby preventing the use of supervised machine learning 
methods. Furthermore, available datasets are often different in key 
properties such as the duration of a tracking study, the deployed 
tracking technology, and its spatio-temporal resolution of trackpoints, 
and sample biases. 

A particularly difficult problem in this situation is the identification 
of stable groups of users with similar mobility behavior, which are 
comparable across datasets. Finding such mobility types can help us to 
enhance our understanding of mobility behavior [Pappalardo et al., 

Abbreviations: MaaS, Mobility as a Service; GNSS, global navigation satellite system; GPS, global positioning system; TG, treatment group; CG, control group; CDR, 
call detail record; LBSN, location based social network; GHG, greenhouse gas. 
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2015], to measure regional similarities between cities McKenzie and 
Romm [2021] or neighborhoods Calafiore et al. [2021], and to detect 
changes in mobility behavior over time [Jonietz et al., 2018; Hong et al., 
2021]. However, existing solutions are often based on dataset-specific 
features and can either not be applied to different datasets, or results 
from different datasets are not comparable. 

In this work, we develop an approach to identify mobility types with 
minimal dataset specific assumptions, which facilitates the application 
to different datasets. The problems stated above are solved with a graph- 
based approach that uses a compact representation, does not require 
labeled data, and allows to easily merge different datasets. Our method 
is tested on six datasets to demonstrate its general validity independent 
of the specifics of one tracking study. 

In summary, our contributions are the following:  

• We propose a set of features that are based on a compact graph 
representation. They describe integral dimensions of individual 
mobility behavior and are robust to dataset properties such as 
tracking duration or spatio-temporal resolution of trackpoints. 

• We develop a method that uses statistical testing on multiple clus
tering results of the same dataset and yields stable user groups.  

• We apply our method to six tracking datasets and extract five 
mobility profiles that appear in all datasets. These profiles are robust 
against the parameters and initialization of the clustering algorithm.  

• We demonstrate in two applications how to use graph-based mobility 
profiles to analyze longitudinal and cross-sectional tracking studies. 

The remainder of this paper is structured as follows: In Section 2 we 
describe related research on human mobility profiling, clustering, and 
graph representations. In Section 3, our graph features and the clus
tering approach are explained. Next, in Section 4 the data and pre
processing steps are outlined, and the results and applications are 
presented and discussed in Section 5. Section 6 includes further exper
iments that validate our proposed methodology. Finally, we summarize 
our conclusions in Section 7. 

2. Related work 

2.1. Representing individual human mobility 

In transport planning, human mobility is commonly modeled based 
on the hypothesis that travel demand is derived from the need to 
perform different activities at different locations [Jiang et al., 2017]. 
This activity-based perspective interprets travel demand as a result of 
people's decisions whether, where and when to perform activities 
[Axhausen and Gärling, 1992; Castiglione et al., 2015]. In practice, data 
about human mobility are often collected passively to avoid asking users 
to perform time consuming labelling tasks. Therefore, additional infor
mation such as activity labels are often not available in datasets [Chen 
et al., 2016]. 

To circumvent this problem, most approaches fall back on available 
tracking information such as the activity location as proxy for the true 
activity. A common way to represent an individual's mobility behavior is 
based on a sequence of visited locations such as the concept of location 
history mentioned in [Yu et al., 2009] or the concept of lifeline beads 
introduced in [Hornsby and Egenhofer, 2002]. In this case the move
ment profile of a person is a list of locations, ordered by the time of 
visitation. Depending on the definition, the model can include context 
data for each visit such as temporal information like start time or 
duration, spatial information such as coordinates, or semantics such as 
an associated POI category. Some further variations of this model can be 
found in [Bhattacharya and Das, 2002]. 

A major downside of this representation is that it grows quickly in 
size because the raw data are appended to the sequence for every visit. 
Furthermore, this representation is privacy sensitive as it contains in
formation such as the time and duration of each individual visit. 

Representing individual movement profiles using a location graph of 
visited locations can solve these problems as it can be stored and pro
cessed efficiently. In such a graph, nodes correspond to visited locations 
(as a proxy for activities) and edges correspond to the transition count 
between two locations. Alessandretti et al. [2018] showed that people 
only visit a limited set of locations that slowly evolves over time and 
Schneider et al. [2013] demonstrated that our daily mobility can be 
described by a small set of sequential location visiting patterns (motifs). 
Furthermore Yan et al. [2017] created a model based on a graph of 
visited locations that reproduced important scaling laws of human 
mobility. This provides evidence that a personalized graph that is based 
on the visited locations can parsimoniously represent individual human 
mobility. 

Graphs based on visited locations of individual persons have already 
been explored in the past. For example, [Yu et al., 2008] transformed 
GPS tracking data into a graph representation to support the prediction 
of the transport mode of transitions between nodes. [Rinzivillo et al., 
2014] transformed a large GPS tracking data set of about 150 k vehicles 
from Tuscany into individual graph representations. They then com
bined structural features extracted from the graphs and classical fea
tures, such as length or duration, to show that including graph features 
increases the performance of trip purpose classification. Furthermore, 
[Martin et al., 2018] used graph representations of individuals in com
bination with graph neural networks to predict the distribution of ac
tivity labels at visited locations. Even though all these examples show 
promising results, the literature in this area is still sparse, especially with 
regards to unsupervised learning applications such as the identification 
of groups with similar mobility behavior based on graphs. 

2.2. Clustering based on mobility behavior 

Research on the identification of similarities based on movement 
data is mostly used for the discovery of previously unknown patterns 
and insights. Studies that do not focus on individuals often analyze 
movement at a city scale, such as in [Yuan and Raubal, 2012] where 
CDR data enriched with demographic data are used to classify different 
urban areas in a city in China. Their approach allows to identify areas of 
the city in which people move alike. Similarly, Ratti et al. [2006] 
analyze urban activities from mobile phone data in Italy, and Sulis and 
Manley [2018] use a combination of twitter data and smart card data to 
cluster places in London according to their travel activity patterns, 
which can be used to analyze the daily rhythms of places in a city. 

Studies that focus on the movement of individuals usually present 
workflows that are used to mine patterns from specific situational 
datasets such as in [El Mahrsi et al., 2016] where the authors use public 
transport smart-card data to cluster users by their travel behavior with 
respect to time and frequency of trips. They identify 13 different pas
senger clusters which they further analyze to identify fine grained 
commute patterns. Xin and MacEachren [2020] present a methodology 
to extract mobility patterns to characterize different groups of football 
fans from twitter data. These studies are insightful; however, the 
methods often rely on very specific features such as the mode of trans
port of a trip or the content of a twitter message related to a trip desti
nation. This makes the methods difficult to apply to different datasets or 
other types of tracking data where the required information might be 
unavailable. There are exceptions such as [Pappalardo et al., 2015] who 
group individuals in returners and explorers based on their (k-) radius of 
gyration. These groups can be found across many datasets, but their 
work does not contain an approach to identify novel groups based on 
mobility behavior that generalize over different datasets, and further 
research showed that the results may depend on dataset properties such 
as the study duration [Wang et al., 2021]. A potentially generalizable 
clustering approach is presented in Ben-Gal et al. [2019] who develop a 
lifestyle-based clustering method. They identify five patterns, namely 
home, sweet home, working 9 to 5, traveling salesmen, and commuters based 
on a large CDR dataset. Their activity-based approach could be applied 
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to different datasets but they do not provide any analysis in this regard. 
We fill this gap by presenting a workflow that allows to identify 

groups of individuals based on their mobility behavior. Our approach 
only requires minimal assumptions on tracking data, no labels and it 
permits to integrate different tracking datasets to identify their overall 
user groups. 

3. Methods 

3.1. Location based graph representation 

In contrast to sequential tracking data, graph representations are 
compact, privacy-preserving, easy to process and still rich in 

Fig. 1. Overview of graph features with an example graph from the Green Class 1 dataset for which the feature is rather low or rather high. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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information. Motivated by these properties, we choose a graph-based 
representation of individual human mobility. The graph is constructed 
based on the location sequence of a person, where a location is seen 
broadly as a place of interest that a person visited to perform an activity. 
The location sequence of a user Lseq = [l11, l22, l13…, lmn ] is a list of visits at 
locations ordered by their visitation time. Lseq contains n visits to m 
unique locations and li is defined as the ith element of Lseq. Based on the 
location sequence we define the set of all visited locations as L = {l1, l2, 
…, lm} as the collection of all visited locations without repetition, 
therefore ∣L ∣  = m. 

The graph is constructed using unique locations as nodes and the 
number of direct transitions between pairs of nodes as weighted and 
directed edges. More formally, given the location sequence and the set of 
all visited locations of a person we define the weighted directed indi
vidual location graph as the pair (GL,W) where 

GL = {L,E},withe =
(
li, lj

)
∈ E(GL) ∀

(
lk
i , lk+1

j

)
∈ Lseq ∣ k < n (1)  

and the elements w of the weight matrix W ∈ ℝ∣L∣×∣L∣ are 

wij =
∑n− 1

k=1
θ with θ =

{
1 if

(
lk, lk+1) =

(
li, lj

)

0 otherwise. (2) 

Examples of individual location graphs are given in Fig. 1, where the 
transition count is proportional to the edge line width. Creating the 
graph representation only requires Lseq, it does not require specific label 
or context information. It can therefore be applied to datasets that differ 
in properties such as the data collection methods (e.g., global navigation 
satellite system (GNSS) vs. CDR). A notable exception would be a sig
nificant bias in the sampling of visited locations as it might be present for 
example in public transport smart card data, where only visits at public 
transport stations are recorded and important locations such as the 
home location are missing systematically. This would lead to a sys
tematically different graph structure that is incomparable to graphs 
based on other collection methods. 

The graph representation compresses the location sequence of an 
individual significantly as we are mostly revisiting known locations 
[Gonzalez et al., 2008; Alessandretti et al., 2018]. However, despite the 
compression we know from previous work that the topology of location 
graphs is highly unique for each individual [Manousakas et al., 2018] 
and that human mobility can be well represented by substructures of 
such a graph [Schneider et al., 2013]. 

3.2. Graph-based mobility features 

In order to characterize human mobility, we leverage the topology of 
the graph representation. Network characteristics extracted from the 
individual location graph can yield insights into a user's mobility 

behavior, despite relying on a compressed version of the raw movement 
data. 

We propose a set of non-redundant and interpretable features that 
each represent separate dimensions of human mobility behavior. The 
features are motivated by a set of questions that address individual 
mobility behavior along the dimensions of the role of base locations, the 
complexity, the regularity and the geometry of individual mobility 
behavior. The numbers in square brackets link to the corresponding 
features from Fig. 1 that relate to the specific question. 

Role of home bases:  

• Does a person have a single home base where he starts her trips from 
or several such bases? [1, 6]  

• How home-centered is the person's behavior? Does he return home 
after each activity, or rather move from place to place? [1, 5] 

Complexity:  

• Are the activities of the person focused on few locations and trips, or 
distributed over many? [1, 2, 6]  

• Are most trips of the user between the same locations? [2] 

Regularity and geometry:  

• Is the user flexible, or does he have a very regular mobility behavior? 
[5, 2] 

• How far does a user usually travel? How far does he travel excep
tionally? [3,4] 

3.2.1. Node degree β 
The feature node degree β measures whether users start most of their 

trips from a single location or have several base locations. This will allow 
us to distinguish users who prefer to return home before visiting a new 
location from users who are more flexible, e.g., go to different places 
directly after being at work. 

The (unweighted) out-degree of a node u in the location graph is 
defined as the number of locations that are visited starting from node u. 
If a single node has a very high out-degree compared to the other nodes, 
the user starts most of his trips from the same location. If multiple nodes 
have a high out-degree, the user has several base locations from where he 
starts his trips. 

The importance of locations ranked by visitation frequency follows a 
power law distribution [Gonzalez et al., 2008]. We therefore propose to 
fit a power law to the distribution of ranked node out-degrees. Let δ1, δ2, 
…, δn be the degrees of a graph with n nodes, sorted in descending order 
(δ1 ≥ δ2 ≥ … ≥ δn). The values are normalized by the highest degree: 
δ̂i = δi

δ1
. We then fit a simple power law following the rule ̂δi = i− β, where 

Fig. 2. Power law fit for location graphs. The degrees are normalized by the highest degree found and ranked, and a power law is fitted.  
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0 ≤ β ≤ 5 (β > 5 is not realistic in our data and was thus excluded to 
accelerate the optimization). Note that we defined δ̂1 = 1− β = 1. 

A small β therefore describes graphs that have a multi-hub behavior, 
meaning that users start trips from several base locations. A high β 
characterizes user behavior that is centralized to few base locations. 
Fig. 2a shows the power law fit for exemplary location graphs and Fig. 1 
shows example graphs of a user with high and a user with low node 
degree β. 

3.2.2. Transition γ 
This feature measures whether most trips (i.e., transitions between 

two locations) of a user are between the same locations or between many 
different locations. This information provides insights about the variety 
of a person's mobility behavior and visiting patterns. The transitions are 
stored as edge weights wij in the location graph, and their rank distri
bution follows a power law. Thus, we can measure this feature with the 
parameter of a power law distribution fitted on the sorted transition 
weights, where the weights are normalized by the maximum (maxi, jwij). 
Examples are shown in Fig. 2b. In the commuter example, we expect 
high transition γ, in contrast to low transition γ for a salesman because 
trips are very distributed. 

3.2.3. Median and 9th decile trip distance 
The median trip distance describes how far users usually travel in their 

day-to-day mobility while the 9th decile trip distance describes the travel 
behavior for non-everyday trips. The distribution of trip distances fol
lows a power law [Brockmann et al., 2006]. It is therefore important to 
use robust measures such as the median or the 9th decile as metrics. 

The median or 9th decile are computed over the distances between 
each pair of nodes, weighted by their transition counts wij. Note that we 
use the Haversine distance between node coordinates and no map- 
matched distances, since the latter cannot be recovered from the loca
tion graph alone and would require information on the transport mode. 

3.2.4. Average journey length 
The average journey length of a user measures how flexible a user is in 

moving from place to place. If a user oftentimes visits multiple places 
without returning home, his graph will become more connected and 
show more (highly weighted) edges. We measure this quantity as the 
number of visited locations in a journey, where a journey is defined as a 
simple cycle in the location graph that starts and ends at the home 
location following the definition of journeys from [Axhausen, 2007]. We 
propose to approximate the journey length using a random walk in the 
graph: Starting at the home location node, we conduct a random walk of 

5000 steps. Assuming that the current location is li, we select the next 
node j with probability p(j) =

wij∑
k
wik

, i.e., proportional to the transition 

counts. When reaching a node that does not have any outgoing edges, or 
only an edge pointing at itself, we reset the random walk to home. The 
journey length is then defined as the number of steps between each 
consecutive encounter of the home location, excluding the resets. 

3.2.5. Hub size 
With the hub size feature we measure how many locations are visited 

on a regular basis and thereby account for a significant portion of the 
user's activity. It is therefore a measure of concentration of the mobility 
behavior (on few or many locations) and by that of the user's flexibility. 
In the graph, we measure the hubbiness as the number of nodes required 
to account for at least 80% of the total visits. The feature can be 
approximated from a random walk, similarly to the journey length. A 
random walk of 5000 steps yields a list of visited locations Lrandom[l1, l2, 
…, l5000]. The locations are sorted by their occurrence count (cl) in 
Lrandom, such that c(̂l1) ≥ c(̂l2),≥ …. The (unnormalized) hub size h* is 
the required number of locations such that their counts sum up to >4000 
occurrences (80% of 5000 steps), formally h* = minh :

∑h
i c(̂li)〉4000. 

Since this number increases with the size of the graph, we normalize the 
feature by the square root of the total number of locations, h = h*

̅̅̅̅
|L|

√ . We 

chose a square root as it has been shown that the number of locations 
that are important to a person can be characterized with sub-linear 
exponential growth [Alessandretti et al., 2018]. The importance 
values assigned to each node by this method correspond to the PageRank 
value of a node [Page et al. [1999], Schütze et al. [2008]], with the 
slight variation that the implemented random walk always starts at the 
home node and restarts at the home node if it hits a dead end. 

A visual summary of all features is given in Fig. 1. In addition, Fig. 3 
shows the correlation matrix of all features of the users of six datasets 
combined as described in Section 5. It demonstrates that only few fea
tures are significantly correlated. Apart from the obvious correlation 
between median and 9th-decile trip distance, we find that journey length is 
negatively correlated with degree β (− 0.47) and transition γ (− 0.27), and 
positively correlated with hub size (0.27). Intuitively, if there are many 
nodes with high degree (=low degree β) the probability to encounter 
longer cycles in a random walk (=high journey length) increases. 
Nevertheless, we decided to keep both features to further distinguish 
users with a flexible mobility behavior. Specifically, a high average 
journey length characterizes users that visit several locations in a row, 
independent of the locations' node degree. The journey length feature is 

Fig. 3. Correlation between features.  
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also included due to its robustness to the tracking duration (cf. Section 
6.1). 

3.3. Identifying user groups 

3.3.1. User group definition based on statistical testing 
Given a clustering algorithm and m mobility features f1, …, fm, we 

aim to find meaningful user groups of distinct mobility behavior. Un
supervised machine learning methods can identify patterns in high- 
dimensional feature spaces based on a given distance metric. Howev
er, clustering methods are oftentimes sensitive to initialization or to 
their parameters, e.g., the number of desired clusters. To overcome these 
problems, we propose a method based on statistical testing that yields 
stable user groups. The method is explained visually in Fig. 4. 

Based on a fixed set of features and users, the clustering algorithm is 
run t times with different parameter choices or randomization, yielding 
multiple partitions P1, P2, …, Pt where each Pi = {ci1,…,cis} is the set of 
clusters that define the i-th partition (see Fig. 4a and b). One such 
partition is shown in Fig. 4c. We then consider all clusters in each 
partition and apply a suitable statistical test to determine which features 
are significantly different from the other clusters (Fig. 4d). Let Fj(cik) 
denote the distribution of feature fj in cluster cik. We test the hypothesis 
that Fj(cik) does not differ from Fj(Pi\cik), i.e., the distribution of fj in all 
other clusters. 

Next, the test results are combined in a m-tuple for each cluster, 
called g(cik), which defines a potential user group. The entries of g(cik) 
describe for each feature whether it is significantly lower (− 1), higher 
(1) or not significantly different (0) from the other clusters. For example, 
given the features height, age and weight of a person, the tuple 
g(cik) = (0,1, − 1) would denote that the people in cluster cik are not of 
significantly different height, but are significantly older and of lower 
weight than the people in other clusters. 

3.3.2. Merging similar user groups 
In the next step, we aggregate clusters to user groups (Fig. 4e). In the 

aggregation step, the assignment of a cluster cik is independent of its 

partition Pi and we therefore drop the partition-index to simplify nota
tion in this section, i.e., a cluster is simply denoted as ck. Two clusters are 
of the same user group if their significant features do not contradict each 
other. Formally, we define a valid merge of two clusters ck, cl as the 
following: Let [g(ck)g(cl)]− be the result of subtracting g(ck) from g(cl) 
element-wise. If any of the values in [g(ck)g(cl)]− is 2 or − 2, then the 
clusters are not merged. The intuition is that if one or more features are 
opposite to each other (low in one but high in the other), the clusters are 
dissimilar. However, with this definition it could still occur that, for 
example, g(ck) = (1,1,0) is merged with g(cl) = (0,0,1) because [g(ck)g 
(cl)]− = (1,1, − 1), even though not a single significant feature corre
sponds. Thus, as a second requirement, they are only merged if they 
share at least θminf significant features, i.e., at least two elements of [g(ck) 
g(cl)]− are zero. By definition of this merging process, the maximum 
number of resulting groups is 2m. 

3.3.3. Iterative group finding and assignment 
In practice, we distinguish an iterative group-finding phase and an 

assignment phase. In the group finding phase, we start with c11 ∈ P1 and 
store G1 = g(c11) as the first user group. For c12 it is then checked 
whether a merge with G1 is possible; otherwise, a new group G2 = g(c12) 
is added. All subsequent clusters are assigned to the existing groups or 
serve as new groups. Clusters with less than θminf significant features are 
skipped. Note that this rarely occurs in practice and the effect of θminf is 
therefore limited, as analyzed quantitatively in appendix D. 

After the groups have been identified, we iterate over all clusters a 
second time and assign each cluster cik the group with best correspon
dence which is defined as the largest overlap between characteristic 
tuples. Formally, let g[j] denote the entry at the j-th position in the tuple 
g. Then the group of cik is assigned to the group with index 
l*, l* = arg maxl 

∑
j g(cik)[j]⋅Gl[j]. Finally, each user is assigned to the 

group that occurred most often in her clusters. Two groups can occur 
equally often. However, as ties were not frequent (<5%), this case was 
disregarded, and ties are solved by randomly assigning a user to one of 
the groups. 

Fig. 4. Workflow of user identification via clustering. 
a) Features fi are extracted from the location graphs of 
each user ui and form a feature matrix. b) A clustering 
algorithm is applied t times with different random 
initialization and parameters, yielding t different par
titions of the users. In c), one such partition P is shown 
schematically for two features. d) By means of a sta
tistical test, we determine for each feature whether the 
values in one cluster are significantly different from 
feature values in all other clusters of the partition. e) 
Based on the significant features, the clusters of all 
partitions can be merged to an existing group or define 
new groups. The result is a set of groups G with every 
cluster assigned to one group.   
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4. Data and preprocessing 

All preprocessing steps are performed using Python and the Track
intel movement data processing library[ Martin et al. [2022]] which 
provides functionality to extract staypoints, triplegs, trips and locations. 
Triplegs are defined as continuous movement trajectories, staypoints are 
periods of stationary behavior. Staypoints are defined as activity if their 
duration is longer than 25 min or if there exists a non-trivial purpose 
label (any purpose except wait or unknown). Trips are defined as the 
collection of all movement and idling between two activities [Axhausen 
[2007]]. Trips with gaps longer than 25 min are considered to have an 
unknown destination as a person could have performed an activity in 
between, Locations are extracted using DBSCAN with 1 sample required 
for a cluster and a search radius of 30 m for GNSS datasets. See Table 1 
for an overview of the used datasets. 

4.1. Yumuv 

The yumuv dataset was recorded during the roll-out of a new 
Mobility as a service (MaaS) offer in Zurich, Switzerland, called yumuv 
to study the impact of mobility bundles on mobility behavior [Martin 
et al., 2021]. The total study duration was three months and participants 
were either part of the treatment group (TG), which had access to the 
new MaaS offer available via the yumuv app after one month of pre- 
tracking, or part of the control group (CG). Both groups had to install 
the app MyWay,2 a GNSS based tracking app, on their phone to record 
their mobility behavior. The app already provided staypoints and trip
legs. The participants labeled triplegs with the used mode of trans
portation and staypoints with an activity label. Additionally, all 
participants took part in an online survey before and after the study 
period and provided person and household specific data such as socio- 
demographic information or mobility tool ownership. The dataset con
tains a total of 871 users (161 TG, 710 CG) of which 498 (71 TG, 427 CG) 
finished the study. 

We additionally separate the dataset into four weeks before and four 
weeks after getting access to the MaaS bundle via the yumuv app. The 
exact dates and durations of the before and after period are slightly 
different for every user depending on when users started tracking and 
installed the yumuv app. For the users of the TG we use each individuals 
start and end date as defined above. As the users of the CG do not get 
access to a MaaS bundle, we use the average start and end date of all TG 
users as the start and end date for the CG. 

4.2. Green class 

The Swiss Federal Railways (SBB) conducted two large-scale 1-year 
pilot studies to evaluate the use of a comprehensive all you can travel 
mobility package [Martin et al., 2019]. In the pilot studies the partici
pants had access to a general public transport pass valid in Switzerland, 
access to popular car- and bike-sharing programs and taxi vouchers. 
Additionally, participants of the first pilot study referred to as Green 
Class 1 (GC1) had access to a personal battery electric vehicle whereas 
participants of the second pilot study referred to as Green Class 2 (GC2) 
had access to a premium electric bike. Participants agreed to be tracked 
via the MyWay app and provided socio-demographic information in 
surveys. 

4.3. Geolife 

The Geolife GPS trajectory dataset was collected by Microsoft 
Research Asia over a span of three years [Yu et al., 2009]. Employees 
were provided with different global positioning system (GPS) loggers 
and GPS-phones that were used to passively track their everyday 
movement continuously. The dataset does not systematically provide 
additional label or socio-demographic information; however, it is still 
one of the few publicly available large-scale tracking datasets and is 
included to allow an easy reproduction of the results of this study. 
Staypoints are generated with Trackintel using the staypoint detection 
algorithm from [Li et al., 2008]. We used the parameters proposed by 
the authors for this dataset and we additionally added a threshold that 
excludes periods without trackpoints for >24 h as gaps. 

4.4. Foursquare 

The global scale Foursquare-dataset3 presented in [Yang et al., 2015, 
2016] is a vast collection of publicly available check-in data from the 
location based social network Foursquare. We chose to include the 
Foursquare dataset to showcase the possibility of the graph-based 
approach for non-GPS datasets. The full dataset contains check-ins of 
144′704 users all over the world collected over the course of 18 months. 
Users track their movements by checking in at venues (e.g., points of 
interests). Data quality varies highly between users and not all users 
provided check-ins at their home location. Especially the second issue is 
problematic, as the structure of the location graph with a missing home 
location would be systematically different. We therefore create two 
subsets of the Foursquare dataset. The Foursquare Home subset consists 
of the 100 users with the most home check-ins in the dataset. As these 
are some of the most active users in the dataset, we further create the 
Foursquare Random dataset where we randomly draw 100 users from the 
27′227 users that have at least 81 check-ins reported (above the 25th 

percentile), that checked-in at least at 40 different locations (above the 
25th percentile) and that have at least 24 check-ins at home (above the 
75th percentile). 

4.5. Graph generation 

The location graph for each person is generated as described in 3.1. 
Following the definition of trips given in Section 4.1, every trip of a 
person increases the edge weight between the two activity locations (i.e. 
nodes) by 1. The graph creation for the Foursquare dataset is slightly 
different as it uses check-ins without stay duration instead of continuous 
tracking. Here, all sequential check-ins at locations are used to increase 
the edge weight between two venues (nodes). 

Before creating the graphs for the GNSS based datasets, we filter to 
include only users with at least 14 days with tracking coverage of 

Table 1 
Overview of the datasets used in this study. Column users shows the number of 
participants used in the study after filtering and the total number of available 
users. The columns tracking days and visited locations show the average and 
standard deviation over users.  

Study Tracking type Users Tracking 
days 

Visited 
locations 

Geolife GPS tracker 66/177 301±392 168 ± 187 
GC1 GNSS via app 134/ 

139 
401±60 756 ± 249 

GC2 GNSS via app 47/50 321±63 718 ± 318 
Foursquare home LBSN 

checkins 
88/100 477±94 219 ± 146 

Foursquare 
random 

LBSN 
checkins 

82/100 413±116 88 ± 43 

yumuv GNSS via app 653/ 
871 

99±27 184 ± 86  

2 https://play.google.com/store/apps/details?id=ch.sbb. 

myway 

3 https://sites.google. 

com/site/yangdingqi/home/Foursquare-dataset#h.p_ID_56 
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>70% of the time of the day). 

5. Results and discussion 

Given the location graphs for all users, we calculate the features as 
described in Section 3.2. We then combine the six datasets and classify 
users by their mobility behavior with K-means clustering and our group 
identification algorithm (Section 3.3). In the following, we first describe 
the obtained user groups, secondly, we present cross-sectional and 
longitudinal studies based on these groups, and finally validate our 
feature set and the method. 

5.1. Identification of user groups across datasets 

The aim is to study universal differences in mobility behavior that 
appear in diverse tracking studies. Therefore, the six datasets (GC1, GC2, 
yumuv, Geolife, Foursquare-Random and Foursquare-Home) are com
bined and processed in an analogous manner. We then exclude users if 
one or more of their feature values is more than four standard deviations 
apart from the mean value of that feature. By that 67 users or ~6% of the 
total users are excluded. The Foursquare-Random dataset has the 
highest outlier ratio with 18%. 

Next, the features are normalized to z-scores.We proceed with the 
group identification algorithm introduced in Section 3.3. Here, the K- 
Means++ algorithm [Vassilvitskii and Arthur, 2006] is utilized for 
clustering, since it enforces compact clusters which are more likely to 
have significantly different feature values. Although the impact of the 
initialization of K-Means++ is significantly lower than for the original 
K-Means algorithm [Lloyd, 1982], we observed different outcomes 
depending on the initialization. Therefore, we vary both the random 
initialization as well as the number of clusters k. Specifically, we apply 
K-means three times for each k ∈ [6,7,8,9], resulting in t = 4*3 partitions 
P1, …P12. We test for significant difference in the feature distribution 
with a Mann-Whitney U test [Mann and Whitney, 1947]. Furthermore, 
we set θminf = 2, such that clusters with less than two significant features 
are skipped. In the group finding phase (cf. Section 3.3.3) we identified 
six user groups. However, in the subsequent group assignment phase, 
the users were only assigned to five groups. In other words, one of the 
groups only appeared in few clustering runs and every user was assigned 
to one of the other five groups more often. The consistency of user-group 
assignments is analyzed further in Section 6.4. 

5.1.1. Interpretation of user groups 
To further analyze the identified groups, we inspect which feature 

Fig. 5. Feature properties for each user group: The user groups that are consistently found in the data are named based on significant differences in their feature 
values with respect to the other clusters. 

Fig. 6. User groups by study. With the exception of the Foursquare dataset, the user groups are similarly distributed. Differences can be explained by variations in the 
study target group, e.g., the Green Class 1 offer attracted individuals that cover longer distances. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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dimensions are distinctive for a group. For that we calculate the devia
tion of the feature value of a single group from the mean of the distri
bution of this feature value from all other groups. Fig. 5 shows the 
deviation for each feature by group. For example, the median trip distance 
of the first group is more than two standard deviations above the 
average of this feature in all other groups. On the basis of Fig. 5 we 
interpret the clustering results and summarize each group's mobility 
behavior in one term. This group-naming is a subjective decision that is 
dataset- and context dependent; however, it greatly facilitates the 
communication of results to decision makers and the public. Here, we 
base our group description on the underlying mobility behavior that 
leads to a specific layout in the mobility graph as measured by the 
features described in Fig. 1. 

The first two groups are clearly related to trip distances, where we 
can safely assume that users with a high median distance cover much 
distance on a regular basis (as commuters do), whereas the 9th decile is 
expected to be high only for users that regularly cover very long dis
tances. The third group is characterized by their flexibility, because their 
activities are highly distributed (high hub size), they move from place to 
place (high journey length) and their graphs are less concentrated on 
single nodes or edges. In contrast, the fourth group's activity is more 
skewed towards one or few trips (high transition γ) and few nodes (low 
hub size) and takes place at a lower radius (low median distance). The fifth 
group uses a single node (or few nodes) with high degree (high degree β) 
as a base and other activities are started from this center of the locations 
(low journey length). For a more detailed visualization of the groups, we 
refer to the scatterplot matrix of each pair of features in Fig. 11 in ap
pendix A. 

5.1.2. Comparison of user groups across datasets 
One of the main contributions of this work is the identification of 

user groups across several datasets that do not depend on technical data 
set properties such as tracking technology or the study duration. To 
verify this hypothesis, we analyze the distribution of user groups over 
the different studies in Fig. 6. We observe that the groups are not study- 
specific as two groups appear in all studies and the other four groups 
appear in all studies but Foursquare-Home. This rules out the case where 
the clustering process identifies each dataset as its own cluster. In ap
pendix F, we further use a logistic regression model to show that 
tracking duration and coverage have very little influence on the graph- 
based mobility profiles while they strongly influence the mobility pro
files generated based on basic features from the literature (cf. Section 
6.2). 

The variation in group distribution over studies can be explained by 
actual differences between study populations: For example, the yumuv 
app attracted mainly young people living in urban areas while the Green 
Class studies had a focus on suburban professionals. An exception are the 
two subsets of the Foursquare dataset where only few user groups are 
present. In general, it is reasonable to assume that persons in the 
Foursquare datasets are rather young and live in cities, similar to users of 

the yumuv app. Therefore, it is not surprising that all three datasets 
share the same two majority classes Flexible and Local routine. One 
important difference between the datasets is certainly that many loca
tion based social network (LBSN) users do not check-in at their home 
location. However, even though the group distribution of Foursquare 
users who do check-in at home (Foursquare-Home) is closer to yumuv as 
the group distribution of Foursquare-Random, it is still significantly 
different. Further analysis revealed that Foursquare users rarely cover 
long distances and have a rather low degree β. At this point it is still 
unclear to which degree these differences can be attributed to a sample 
bias of the study participants or to a technical bias caused by the char
acteristics of check-ins compared to GNSS tracking. 

Overall, we conclude that the differences in the group distribution 
over datasets can mainly be explained by differences in the mobility 
behavior of study participants. The presented method is therefore robust 
to changes in tracking techniques and reflects actual differences in 
mobility behavior. 

5.2. Use cases of mobility profiling in MaaS applications 

After having established stable mobility profiles, we can use them to 
answer questions that are typically of interest when analyzing longitu
dinal or cross-sectional tracking studies. Here, we consider questions 
that arise around the introduction of a novel MaaS offer:  

• What are the target groups for the MaaS offer? (Section 5.2.1)  
• How does access to a specific MaaS offer change mobility behavior 

over time? (Section 5.2.2) 

The yumuv dataset is very suitable for a case study due to the 
availability of distinct control group (CG) and treatment group (TG), and 
the availability of tracking data before and after access to the app. For 
the following analysis we split the yumuv dataset into four parts: TG- 
Before, TG-After, CG-Before and CG-After (cf. Section 4.5). For this 
analysis, we consider only participants that finished the study; after pre- 
processing and outlier-filtering the TG consists of 51 users and the CG of 
372 users. 

These four yumuv subsets were not part of the merged datasets D that 
were clustered (cf. Section 5.1). Consequently, the graphs of these 
subsets must be assigned to a user group first. However, the final user 
groups Gfinal = G1, …, G5 resulting from the iterative group finding and 
assignment procedure do not have unique cluster center assigned to 
them, as they are the result of merging different partitions P1, …, P12. We 
therefore chose the specific partition Pi out of all partitions P1, …, P12 
with the highest correspondence to the final user groups Gfinal, meaning 
that most users are assigned to the same group. 

Here, in the best partition P4 (with k = 7), 95% of the users were 
assigned to the same as their final user group. The graphs in subsets TG- 
Before, TG-After, CG-Before and CG-After are now assigned to a user 
group by finding their closest cluster center in P4, as it is commonly done 
in K-Means clustering for new test data. These preprocessing steps yield 
a user group for all users per subset, such that the before- and after- 
group of one user may differ. 

5.2.1. Cross sectional comparison 
The assignment of user groups to each of the subsets (TG-Before, CG- 

Before) can now be used for a cross-sectional analysis. For mobility 
service providers and more general the design of MaaS offers it is 
important to know the target group of their offer. For this purpose, we 
compare the distribution of groups in the TG with the group distribution 
in the CG. We do this comparison for the period before access to the app 
in order to exclude possible confounding factors from the app usage that 
might affect mobility behavior. The comparison in Fig. 7 shows that 
persons who bought the yumuv offer (TG) are more often assigned to the 
groups Flexible and Travellers, whereas the Local routine group is more 
prevalent in the control group (distributions significantly different in χ2 

Fig. 7. Characteristics of yumuv users compared to the control group. Users 
assigned to the groups Flexible and Traveller are more likely to be interested in 
the yumuv MaaS offer. 
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test with p = 0.02). These target and non-target groups can now be 
characterized using Fig. 5 and using additional information such as 
demographics if available (cf. Section 5.2.3). 

5.2.2. Longitudinal study 
One of the main questions with regards to the introduction of MaaS 

offers is if and how they impact the mobility behavior of users [Hensher 
et al., 2021]. The assignment of user groups to participants before and 
after the intervention allows to analyze whether the group assignment of 
one user changes from the before period to the after period and allows to 
compare the changes between CG and TG. 

Fig. 8 shows the changes between user groups from the period before 
intervention to afterwards. Each row is normalized to 1 and each cell 
shows the percentage of users that were assigned to a specific group 
before the intervention (row label) and moved to another group after the 
intervention (column label). We observe that more people in the treat
ment group switch towards the Traveller group than in the control group 
(cf. rightmost column). Furthermore, it seems that the Flexible group is 
more stable in the treatment group (cf. the values on the diagonal for the 
row Flexible). However, we compared the distributions row-wise with a 
χ2 test and due to the small size of the Treatment group (51) there are no 
significant differences (the lowest p-values are p = 0.09 for the changes 
of the former Flexible group and p = 0.23 for former Traveller). Despite 
the lack of statistical significance this analysis still serves as a show-case 
of how to use the identified user groups for a longitudinal analysis. A 
graph-based visualization of the user group changes can be seen in 
Fig. 13 in appendix C. 

5.2.3. Cluster analysis with respect to labels 
The yumuv study also included surveys that collected socio- 

demographic and household information of the participants. In this 
section we analyze which of these features are significantly different for 
a specific group with respect to all other groups and therefore charac
terize that group. Table 2 shows the replies for each user group for a 

selection of relevant questions. Many results confirm the assumptions 
about mobility behavior that determined our naming of the clusters as 
user groups. For example, Commuters are less satisfied with the public 
transport connections to their home; they oftentimes travel by car and 
are seldom in home office. Only 37% of the Commuters live in cities. 
Travellers and Flexible users in contrast are younger, oftentimes live in 
cities and spend more days in home office. Interestingly, the Centered 
group works from home significantly more often than others. The fact 
that working behavior such as home office is reflected in the user groups 
provides evidence for a strong influence of the home and work locations 
on the graph features. Last, the naming of the group Local routine is re
flected well in the users' self-reporting of their covered distance. 

6. Validation 

This section provides analyses to validate the method for extraction 
of generalizable user groups based on graph representations of indi
vidual mobility. 

6.1. Feature robustness to study duration 

An important factor in the feature selection process is their robust
ness to dataset properties. Here we investigate how much the feature 
values depend on the tracking duration. For this experiment, we split the 
Green Class 1 data into distinct bins of t = 4,8,12,16,20,24 and t = 28 
weeks. Since the participants in the study were tracked for 56 weeks, t =
4 yields 14 non-overlapping bins and t = 28 is the maximum duration 
with two distinct bins. Next, we construct the location graphs from the 
activity of each user in each time bin, and compute the corresponding 
features. In Fig. 9 the mean feature values for all users per time bin are 
shown. Our selected features (top two rows) are largely robust to the 
tracking period, or converge after around t = 12 in the case of degree β 
and transition γ. In contrast, other considered features show a strong time 
dependency, such as the mean Eigenvector centrality in a graph or the 

(a) Control group (b) Treatment group

Fig. 8. User group changes upon intervention (start of the yumuv offer).  

Table 2 
User group analysis with respect to demographic and mobility characteristics from study questionnaire. The mean values are given and compared to the other groups in 
a Mann-Whitney U test for continuous variables or a Chi-Squared test for categorical variables. Significant differences are marked bold, and PT denotes public 
transport. Note that all fields are self-reported in a questionnaire and not measured in the tracking study.   

Commuter (n = 57) Traveller (n = 39) Flexible (n = 206) Local routine (n = 267) Centered (n = 84) 

[pht] Age 39.11 p = 0.46 37.72 p = 0.351 37.86 p ¼ 0.022 40.7 p = 0.059 40.65 p = 0.217 

Money spent on PT (in CHF per month) 66.5 p ¼ 0.023 78.89 p = 0.127 94.19 p = 0.243 94.04 p = 0.39 107.0 p = 0.311 

Home office (in days per week) 0.86 p ¼ 0.034 1.81 p ¼ 0.007 1.31 p = 0.168 0.93 p ¼ 0.003 2.19 p ¼ 0.002 

Distance travelled by car yearly (in km) 11,840 p = 0.106 11,844 p = 0.097 11,039 p ¼ 0.027 7855 p ¼ 0.001 9656 p = 0.413 

Satisfaction with PT reachability (%) 79.12 p ¼ 0.034 86.25 p = 0.364 85.4 p = 0.205 87.22 p = 0.079 84.69 p = 0.416  
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clustering coefficient as proposed by [Onnela et al., 2005]. Similarly, 
features of human mobility that are commonly used in the literature 
usually depend on the number of nodes and therefore change signifi
cantly with the tracking duration. 

6.2. Relation of graph-based and classical mobility features 

Furthermore, we investigate the relation of the proposed graph fea
tures to a selection of classical non graph-based mobility features that 
are commonly used to characterize mobility behavior. These features are 
directly calculated from the raw data and can therefore make use of 
information that is lost in the location graph, such as the order of the 
activities or their duration. 

Concentrating on the most widely used measures, we consider the 
following features, which are termed basic features from here on:  

• Number of visited locations  
• Radius of gyration ([Gonzalez et al., 2008])  
• Maximal distance from home  
• Random, uncorrelated, and real entropy ([Song et al., 2010])  
• Mean trip duration and distance 

Except for trip distance and trip duration, we utilize the imple
mentation in the scikit-mobility package [Pappalardo, Simini, Barlacchi, 
& Pellungrini, 2022]. 

For this experiment we use only the datasets Green Class 1 and 2, 

Fig. 9. Mean and standard deviation of different features with respect to tracking period. The selected features are within the green box. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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yumuv and Geolife, because there is no trip information available for the 
Foursquare datasets (only check-ins). First, we were interested whether 
a clustering based on the basic features results in similar clusters as our 
user groups. We cluster the basic features with k = 5 and compare the 
resulting clustering to our user groups with the Adjusted Rand Index 
[Hubert and Arabie, 1985; Rand, 1971]. Intuitively, the Rand Index is 
proportional to the number of pairs that end up in the same cluster in 
both partitions, or in different clusters in both partitions. The Adjusted 
Rand Index is its normalized version that yields a value between − 1 and 
1. An index of 0 means that there is no relation between two partitions 
while the same partitions would yield an index of 1. Here, the similarity 
to our user groups is 0.08., i.e., the user groups found with graph fea
tures are fairly distinct from clusters that are identified with the basic 
features. 

Secondly, Fig. 10 depicts the mean and standard deviation of the raw 
features in the proposed user groups. It can be observed that Traveller 
obtain significantly higher values also in these basic features, confirming 
the differences between groups also with respect to these basic 
measures. 

We conclude that using graph features results in different user groups 
that can then be analyzed with respect to classical features. 

6.3. Group robustness to cluster ordering 

Last, although it was shown that all clusters of 12 partitions can be 
reduced to five user groups, we found that the resulting groups still 
depend on the order of considered clusters during the iterative group- 
finding phase. For example, the first cluster is always used as G1, and 
other clusters may be merged with this particular cluster. The properties 
of G1 thus depend on which cluster is considered first. Nevertheless, we 
qualitatively observed a strong stability of the resulting groups and their 
properties. 

To quantify this stability, we perform 20 runs of the group-finding 
and assignment phases with different random seeds and compare the 
resulting groupings to the main grouping found in Section 5.1 on a per- 
user basis using the Adjusted Rand Index [Hubert and Arabie, 1985, 
Rand, 1971]. In our analysis, the Adjusted Rand Index of the pair-wise 
comparison of the groupings with the main grouping is 0.91 on 
average. Another initialization would therefore yield a very similar 
output, where the resulting groups could be named in a similar manner 
and a large majority of users would be assigned to the same group. 

Fig. 10. Distribution of basic features over the identified user groups. On the one hand, differences in the basic features are also reflected in our user groups. On the 
other hand, our groups seem to identify further differences in mobility behavior that are hardly reflected in the basic features (e.g., group Centered). 

Table 5 
Dependence of mobility user groups, derived from basic features, on tracking coverage and duration. The coefficients with p-values in brackets of a multinomial logistic 
regression model are shown. Significant coefficients are marked bold.   

Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

Days tracked ¡30.04 (0.0) 32.7 (0.0) 32.78 (0.0) − 18.13 (0.12) ¡13.66 (0.0) ¡38.51 (0.02) 
Tracking coverage 6.11 (0.3) ¡40.0 (0.0) ¡32.07 (0.0) ¡21.11 (0.02) − 5.39 (0.22) − 6.51 (0.66) 
Intercept − 5.25 (0.35) 31.98 (0.0) 24.59 (0.0) 17.87 (0.04) 5.5 (0.19) 4.52 (0.74)  
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6.4. Consistency of group assignment 

In the method presented in (cf. Section 3.3) the clusters resulting 
from the different runs are assigned to groups. A user can therefore 
belong to clusters that are assigned to different groups and is finally 
assigned to the group that most of his clusters are assigned to (cf. Section 
3.3.2). 

We now analyze how consistent this assignment is by computing a 
consistency score that indicates how often a user belonged to its most 
dominant group. The score is calculated by counting the number of 
times a user was assigned to its majority group divided by the total 
number of assignments. 

In our case study, the average consistency score over all users is 0.87, 
i.e., an average user is assigned in 87% of the runs to its most dominant 
group. 80% of the users obtain a consistency >0.9. 

7. Conclusion 

Research on mobility behavior oftentimes suffers from a lack of 
reproducibility and transferability. Big tracking datasets are inherently 
noisy and usually unlabeled, and proposed methods do not generalize to 
other datasets. Here, we have presented an attempt to develop a generic 
clustering approach that yields stable mobility behavior groups on 
several diverse datasets. In contrast to previous work, we base our 
analysis on a compact graph representation of the tracking data, which 
1) reduces memory resources needed to store long-term tracking data, 2) 
facilitates the comparability of different datasets, and 3) captures other 
aspects of mobility behavior than time-series based basic features. Based 
on six features that were shown to be particularly robust with respect to 
the time period, we apply a clustering algorithm multiple times and 
extract stable and interpretable user groups in an iterative fashion based 
on statistical testing. 

Our analysis showed that five groups could consistently be found in 
the six datasets, which differ by the complexity, the role of home bases 
and the geometric extent of their mobility behavior. All user groups can 
be found in all studies except Foursquare, despite significant differences 
in the tracking quality, duration, and user demography of the studies. 
These user groups were also shown to be robust to the clustering pa
rameters, consistent, and seem to depict novel aspects of mobility 
behavior that are not contained in classical mobility features. It is still 
unclear to what degree the differences of the Foursquare data are due to 
a sample bias of highly active urban LBSN users or due to systematic 
differences between GNSS based and check-in based tracking data. 
However, the Foursquare datasets did not generate exclusive user 
groups and could still be described by our framework. Furthermore, it 
could be shown that differences of the distribution of user groups also 

reflect differences of the target groups of each study. Such analysis is of 
interest to providers of MaaS offers to direct their services to the right 
people. Similarly, it could be shown that the effect of a MaaS offer on 
mobility behavior can be viewed in the context of user group changes 
over time. While a detailed analysis of the changes of location-graphs 
over time is out of scope of this paper, it is an interesting endeavor for 
future research. While the cluster analysis can be used to describe the 
change in mobility behavior over time, we noticed that this description 
of mobility behavior exhibits a higher volatility than expected, i.e., up to 
50% of users change their group from one slot to the next. A possible 
reason for this could be that the mobility behavior did not fully stabilize 
after the considered tracking duration or clusters are overlapping which 
may lead to a certain number of samples that lie between two clusters 
and thus easily switch clusters over time. Further work could explore the 
possibility to connect our clustering approach with soft assignments 
where each sample belongs to multiple groups with certain probability. 

Finally, it should be stressed that much of the proposed methodology 
is by no means restricted to mobility research. Some of the proposed 
features could be relevant in other fields where data is represented in 
graph structures, such as molecules in biology or computer networks (e. 
g., hub size as a descriptor of network activity). More importantly, 
clustering is a popular method used in many fields, and the identifica
tion of stable, statistically valid groups is a common problem. Our al
gorithm is a simple yet effective method to make clustering results more 
generic and reproducible. 
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Appendix A. Feature exploration 

For a more in-depth understanding of the distribution of features over user groups, we provide the scatterplot matrix in Fig. 11. The two largest 
groups are Flexible and Local routine which differ mostly in the hub size feature. The Flexible group also has a striking difference from the other groups 
with respect to the journey length feature. Commuters and Travellers are clearly distinguished by their high median and 9th-percentile trip distance 
respectively. In contrast, the group Local routine has a particularly left-skewed distribution in the distance-based features. Last, the Centered profile is 
clearly characterized by the high node degree β in this group. 
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Fig. 11. Scatterplot matrix for the features of all datasets. Outliers were removed beforehand. The user groups can be clearly distinguished on certain features axes.  

Appendix B. Cross-sectional study 

The cross-sectional study on the yumuv dataset in Section 5.2.1 can be conducted in similar form for the Green Class dataset. Since no control group 
is available in the Green Class studies, we instead compare their user group distribution to the one in all other studies. Fig. 12 shows the group 
prevalence’s. In Green Class 1 and 2, there is a significantly higher share of the Commuter and Traveller groups compared to the other studies, i.e., these 
two groups are above average attracted to the Green Class offer. In contrast, less users are part of the Local routine and Flexible groups. The differences 
are slightly weaker for Green Class 2. In both cases, these differences in the distribution of the user groups are significant (χ2 test, p < 0.01). These 
target and non-target groups can be characterized using Fig. 5 and it could be further analyzed with respect to additional information such as de
mographics (cf. Section 5.2.3). 
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Fig. 12. Cross-sectional study for Green Class 1 and 2: There are more Travellers and Commuters taking part in the Green Class studies compared to the proportion in 
other datasets. 

Appendix C. Longitudinal study 

Analogous to Figs. 8, 13 visualizes the movements of users between groups in a network. The width of the edges is proportional to the number of 
users that are assigned to group A before, but switch to group B during the trial period.

Fig. 13. Changes of user groups from the period before access to the yumuv offer to the period after intervention. The arrow width corresponds to the number of 
users that change from one group to another. 

Appendix D. Dependence on clustering hyperparameters 

Although our clustering approach does not depend on a major design choice such as the number of clusters as input, it still uses several hyper
parameters. Those either provide more flexibility than before (e.g. the choices of k) or have minor influence on the result, such as the threshold θminf. 
The latter is demonstrated with an additional experiment reported in Table 3. The initial partitions (cf. Fig. 4a) with 3 runs for each of k = [6,7,8,9] 
yield 90 clusters in total. The cluster are merged (cf. Fig. 4e) if no features are significant in contradicting directions and if there are more than θminf 
significant features corresponding. Increasing θminf leads to more unmerged user groups since more and more clusters have an insufficient number of 
significant features to be merged. Similarly, users can only be assigned to groups with a sufficient number of significant features. Therefore the number 
of unassigned users increases (see Table 3). However, the resulting user groups that are consistently assigned (see section 3.3.3) are clearly stable and 
robust to θminf.  

Table 3 
Effect of the θminf threshold, defining the minimum number of significant features to merge user groups. Only when θminf is set to a high value, the merging 
process is affected, i.e. clusters cannot be merged due to a small number of significant features.  

θminf Clusters User groups (merged) User groups (assigned consistently) Unassigned users (%) 

1 90 6 5 0.00 
2 90 6 5 0.00 

(continued on next page) 
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Table 3 (continued ) 

θminf Clusters User groups (merged) User groups (assigned consistently) Unassigned users (%) 

3 90 8 5 0.00 
4 90 18 6 0.03 
5 90 35 7 0.14 
6 90 80 2 0.82  

As a rule of thumb, a user of the framework should set θminf ≤
m
2, i.e. not more than half of the number of features, and ensure that all users can be 

assigned to a group. 

Appendix E. Mobility profiling based on classical mobility features 

To demonstrate the generality of our clustering algorithm, we additionally show its results when applied on a set of classical mobility features, i.e. 
the basic features described in section 6.2. The same parameters are used. Note that we can not include the two Foursquare datasets, as the calculation 
of some of the features requires trajectory data. In the group finding phase, 10 groups are identified, but the users are only assigned consistently to 7 of 
them. The average consistency score (c.f. 6.4) is 0.9, meaning that on average a user is assigned to its most dominant group in 90% cases. This gives 
evidence that our algorithm is in general suitable to derive stable user groups. Fig. 14 shows the user groups based on classical features analogously to 
Fig. 5 (we omit the step of naming the user groups as it is not the focus of this work). Fig. 15 depicts the groups per dataset and shows strong differences 
between the studies, indicating a strong influence of tracking period and other technical dataset properties on the user groups (c.f. appendix F for 
further analysis). We argue that graph features are thus more robust to technical dataset properties and are therefore suitable for comparing mobility 
behavior of users in different studies.

Fig. 14. Characteristics of the identified groups based on classical mobility features.  

Fig. 15. Distribution of user groups (found based on classical mobility features) over datasets. Clearly, the groups are highly dependent on dataset properties.  

Appendix F. Dependency of mobility profiles on technical dataset properties 

In section 5.1.2 the distribution of user groups over studies was discussed, and the occurrence of all groups in most datasets indicated a certain 
generality of the mobility profiles. Here, we provide further evidence that the user groups are robust to technical properties of the data. A multinomial 
logistic regression model is used to quantify the dependence on data properties, namely tracking duration and tracking coverage. We compare the 
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resulting coefficients and p-values for the user groups derived from graph features (c.f. section 5.1), given in Table 4, to the ones for the basic features 
(c.f. appendix E), listed in Table 5. The logistic regression model for graph-based user groups is hardly better than random, with an accuracy of 0.375 
(random is 0.35 for the 5 imbalanced classes) and an R-Squared value of 0.035. The coefficients in Table 4 are also lower than for the basic features and 
mostly non-significant, with the exception of the Commuter group. Note that the coefficients of the first group (Centered) can not be computed since it 
serves as the reference group in the model.  

Table 4 
Dependence of graph-based mobility profiles on tracking period and coverage. The coefficients with p-values in parentheses of a multinomial 
logistic regression model are shown. Significant coefficients are marked bold.   

Commuter Flexible Local routine Traveller 

Days tracked 5.48 (0.0) 0.13 (0.93) − 0.69 (0.62) 6.95 (0.0) 
Tracking coverage ¡13.57 (0.02) 4.89 (0.37) 9.82 (0.07) − 5.94 (0.39) 
INTERCEPT 12.54 (0.02) − 3.78 (0.47) − 8.32 (0.11) 4.55 (0.49)  

In contrast, the basic-features lead to user groups that are strongly influenced by the number of tracked days and the coverage, as shown by the 
large and significant coefficients in Table 5. The accuracy is 0.59 (random: 0.47) and R-Squared is 0.279. In summary, while undesired dependencies 
on dataset-specific properties may still exist, the experiment shows the advantages of our approach with a comparably high robustness of the proposed 
graph-based feature set for mobility profiling. 
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