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Abstract

This thesis deals with the design of composite laminates with integrated
damping layers. The damping capability of structural elements is an im-
portant design aspect. It enables to reduce the amplitude of vibrations
which increases the long-term reliability and fatigue life. In transporta-
tion systems, it also improves the acoustical comfort of the passengers. A
typical solution is to bond a viscoelastic material layer on the surface of
the load-carrying structure. When the damping treatment is constrained
by a stiff layer, high damping rates can be obtained. With the use of
fiber-reinforced composite materials, it is possible to have one of the lay-
ers made of a soft damping layer. In that case, the damping treatment is
constrained by composite laminates that have also to fulfill mechanical re-
quirements. The goal of this PhD thesis is to propose design guidelines for
composite laminates with integrated damping treatments. The objective
is to obtain a structural component having simultaneously high mechan-
ical and vibration damping properties at the lowest possible weight. The
first part of the work deals with the design and the optimization of seg-
ments of constrained layer damping treatment. It is shown that free edges
of the damping layer have to be placed where the bending curvature of the
load-carrying structure is the highest. The results also demonstrate that
there is a number of segments of constrained layer damping treatments for
each bending modes that maximizes their modal loss factor. An optimiza-
tion technique has been developed with the goal to maximize the damping
rate by adjusting the segments’ position. This enables to further increase
the damping rates. In the second part, a numerical model of a compos-
ite beam with a soft core layer is validated using an analytical solution.
The presence of the damping layer tends to decouple the sublaminates:
they behave as two separate bodies experiencing the same bending cur-
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vature. This effect vanishes by increasing the length-to-thickness ratio of
the structure. In the third part, the influence of the different damping
layer design variables on the laminate’s deflection, maximal flexural force,
stability and in-plane stiffnesses is studied. Different integration solutions
are considered: a damping layer integrated with open edges (like a sand-
wich configuration), a damping layer integrated with closed edges along
its width and a damping layer integrated with closed edges both along
its length and width. The results show that two distinctive design rules
have to be followed depending on whether the goal is to achieve high me-
chanical properties or high damping rates. The damping layer should be
integrated with open edges, should be placed in the middle of the laminate
lay-up, should be significantly long and should have a low shear modulus
to obtain high damping rates. The damping layer should be integrated
with closed edges, should be placed as far away as possible from the plate’s
mid-plane, should be short and should have a high shear modulus to ob-
tain high mechanical performances. The most promising solution is for
a damping layer integrated with all edges closed. This enables to reduce
the decoupling effect. As a consequence, the structural bending stiffness
and strength and stability properties are significantly improved. Nonethe-
less, the damping material has to have special properties. It must have
simultaneously high shear modulus to ensure high mechanical properties
and high loss factor to ensure a high damping rate. Additionally, such
damping treatment has to have much larger dimensions than a classical
constrained layer damping treatment. Therefore, the latter is the most
suitable solution as it ensures to have high mechanical properties, high
damping rate at the lowest weight.



Zusammenfassung

Diese Dissertation behandelt die Auslegung von Faserverbundlaminaten
mit integrierten Dämpfungsschichten. Das Dämpfungsvermögen von Struk-
turelementen ist eine bedeutende Auslegungsgrösse, welche es erlaubt,
Schwingungsamplituden zu reduzieren und damit Langzeitzuverlässigkeit
und Lebensdauer zu vergrössern. In Verkehrssystemen führt eine Schwing-
ungsdämpfung überdies zu verbessertem akustischem Komfort für die Pas-
sagiere. Das Aufbringen einer viskoelastischen Materialschicht auf die
Oberfläche einer lasttragenden Struktur stellt eine typische Lösung hi-
erfür dar. Wenn das Dämpfungselement durch eine steife Deckschicht
begrenzt wird (sog. ”Constrained-layer damping”), lässt sich eine grosse
Dämpfung erzielen. Werden Faserverbundwerkstoffe verwendet, so kann
eine der Lagen des Schichtverbundes als weiche Dämpfungslage ausgeführt
werden. In diesem Fall ist das Dämpfungselement durch ein Faserlami-
nat begrenzt, welches zudem mechanische Anforderungen erfüllen muss.
Das Ziel dieser Doktorarbeit besteht darin, Richtlinien für die Ausle-
gung von Faserverbundlaminaten mit integrierten Dämpfungselementen
zu entwickeln. Auf diese Weise sollen Strukturbauteile realisiert wer-
den, die bei geringstmöglichem Gewicht sowohl gute mechanische als auch
schwingungsdämpfende Eigenschaften aufweisen. Der erste Teil der Ar-
beit beschäftigt sich mit der Auslegung und Optimierung segmentierter
”Constrained-layer damping”-Elemente. Es wird gezeigt, dass die freien
Ränder eines Dämpfungselements dort platziert werden müssen, wo die
Krümmung infolge Biegung der lasttragenden Struktur am grössten ist.
Die Ergebnisse demonstrieren zudem, dass für jede Biegeeigenform eine
Anzahl von Segmenten existiert, welche den modalen Verlustfaktor max-
imiert. Mit dem Ziel, die Dämpfung durch Anpassung der Segmentlängen
zu maximieren, wurde ein Optimierungsverfahren entwickelt, welches er-
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laubt, das Dämpfungsvermögen leicht zu erhöhen. Im zweiten Teil wird
das numerische Modell eines Faserverbundbalkens mit einer weichen Kern-
schicht mithilfe einer analytischen Lösung validiert. Es zeigt sich, dass das
Vorhandensein der Dämpfungsschicht zu einer Entkopplung der Unterlam-
inate des Faserverbundes führt. Diese verhalten sich wie zwei getrennte
Elemente, welche die gleiche Biegung erfahren. Dieser Effekt verschwindet
bei Strukturen mit grösserem Schlankheitsgrad. Im dritten Teil wird der
Einfluss der verschiedenen Variablen für die Auslegung der Dämpfungss-
chichten auf die Durchbiegung der Laminate sowie auf deren maximale
Biegespannung, deren Stabilität und deren Steifigkeit in der Ebene un-
tersucht. Hinsichtlich der Integration werden mehrere Lösungsvarianten
betrachtet: eine integrierte Dämpfungsschicht mit offenen Rändern (wie
bei einer Sandwichkonfiguration), eine Schicht mit geschlossenen Querrän-
dern sowie eine mit geschlossenen Längs- und Querrändern. Die Ergeb-
nisse zeigen, dass zwei unterschiedliche Auslegungsregeln befolgt werden
müssen, abhängig davon, ob gute mechanische Eigenschaften oder eine
grosse Schwigungsdämpfung angestrebt werden. Die Dämpfungsschicht
sollte mit offenen Rändern integriert werden, in der Mitte des Laminats
positioniert werden und einen niedrigen Schubmodul aufweisen, um ein
grosses Dämpfungsvermögen zu erreichen. Falls gute mechanische Eigen-
schaften erzielt werden sollen, sind geschlossene Ränder, eine Platzierung
mit grösstmöglichem Abstand von der Plattenmittelebene sowie ein ho-
her Schubmodul vorzusehen. Die meistversprechende Lösung besteht in
einer integrierten Dämpfungsschicht mit allseitig geschlossenen Rändern.
Es ist möglich, den Effekt der Entkopplung zu verringern, was zu einer
signifikanten Verbesserung der Biegesteifigkeit, -festigkeit und Stabilität
führt. Gleichwohl muss das Dämpfungsmaterial spezielle Eigenschaften
aufweisen: sowohl einen hohen Schubmodul, um gute mechanische Eigen-
schaften zu gewährleisten, als auch einen hohen Verlustfaktor, um eine
grosse Dämpfung zu erreichen. Darüber hinaus sind Dämpfungselemente
mit viel grösseren Abmessungen als im Fall des klassichen ”Constrained-
layer damping” erforderlich. Somit handelt es sich bei der letztgenan-
nten Variante, welche gute mechanische Eigenschaften und grosses Dämp-
fungsvermögen bei geringem Gewicht verspricht, um die geeignetste Lö-
sung.
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Chapter 1

Introduction

This dissertation deals with the design of structural composite laminates
with integrated vibration damping treatments. Conventional design re-
quirements for structural elements can be summarized as follows: high
stiffness, high strength and low weight. The main limitation is that the
dynamic response is not taken into account. Nowadays, a structure has
also to fulfill other design criteria such as low noise, long life and increased
reliability. In order to reach these objectives, the solution is to add to the
structure a mechanism of energy dissipation.

Damping is defined as a mechanism that dissipates vibratory energy
in another form of energy (e.g. heat in the case of viscoelastic damping).
In the transportation industry, vibration damping solutions are used to
reduce the vibration level of the different panels. This gives an improve-
ment of the long term reliability of the different parts and an increase of
the acoustical comfort of the passengers. Figure 1.1 shows typical areas
on a car body where damping treatments are applied [1].

Vibration damping solutions are also widely used for commercial air-
craft applications. Local vibration damping treatments are added to the
fuselage to reduce the overall vibrations which leads to a noise reduction in
the cabin. Figure 1.2 shows the typical locations for damping treatments
on an aircraft fuselage section.
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Figure 1.1: Damping treatment locations on an automotive body structure
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Figure 1.2: Damping treatment locations on an aircraft fuselage structure
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Since decades, the use of fiber-reinforced composites has significantly
increased in domains such as aerospace, aircraft and automotive indus-
tries. Their main advantages are the high specific stiffness, strength and
tailorable properties. Although fiber-reinforced composites exhibit better
viscoelastic properties than conventional metal alloys, it is not enough to
reach a significant level of damping. A solution is to add within the stack-
ing sequence a viscoelastic material layer to further increase the structural
damping. Therefore, the amplitude of the vibrations is reduced, which im-
proves the fatigue endurance and the impact resistance of the laminate.
In the later case, viscoelastic materials can actually limit the damaged
area and the damage propagation, because they have the capacity to ab-
sorb energy. However, the presence of a soft layer in the lay-up leads to a
decoupling of the laminate in two sublaminates. This changes the overall
mechanical properties of the composite structure and increases its weight.

This thesis aims at understanding and quantifying the effect of an
integrated damping material layer on the mechanical properties of a fiber-
reinforced composite laminate, and at evaluating if a trade-off between
weight, mechanical and vibration damping design criteria is possible.

1.1 State-of-the-art

In this section, the available literature on the damping of composites and
viscoelastic damping treatments is presented. First, the different damping
mechanisms of composite materials are detailed. A review of the laminate
theories is also done. Then, the different possibilities to apply viscoelastic
materials to structural elements are discussed. The state-of-the-art of
composite laminates with embedded damping layers is presented. Finally,
previous works on the damping optimization of laminated structures are
detailed.

1.1.1 Damping of composites

The damping mechanisms of composite materials are completely different
of those ones of conventional materials. The sources of energy dissipation
in fiber-reinforced composites are [2]:

1. Viscoelastic properties of matrix and fiber. Because of their viscous
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properties, composite materials have a time-dependent behaviour
which enable them to dissipate energy. Schlutz and Tsai [3, 4] were
among the first to perform experimental work on the damping of
composites. They showed that the damping rate of a glass fiber
beam is almost five times larger than the one of an aluminium beam.
Bert and coworkers [5] correlated experimental and analytical results
to determine the damping capacity of E-glass epoxy. Gibson [6]
also performed experimental and analytical analysis on composite
laminates to estimate their damping properties under flexural vi-
brations. Hashin [7] proposed analytical expressions for the on-axis
ply-damping. Adams and coworkers [8, 9] showed that the damp-
ing ratio decreases as the fiber volume content increases. Adams
also correlated experimental results with theoretical investigations.
It was shown that the shear deformation is an important parame-
ter that gives high damping, that the transverse stress gives some-
times high energy dissipation and the longitudinal stress is negli-
gible. Saravanos and Chamis [10] developed an integrated theory
for the modeling of composite damping. The proposed equations
based on hysteretic damping show the effect of temperature, mois-
ture and interply hysteretic damping. They also presented a unified
micromechanics theory for the damping capacity of composites for
all damping coefficients of a composite ply associated with the longi-
tudinal stress, transverse stress, through the thickness normal stress,
in-plane shear stress, through the thickness shear stress [11]. The
theory includes the damping capacities based on elastic and dissipa-
tive properties, interface properties, ply temperature and moisture,
off-axis loading and temperature rise due to continuous vibration.

2. Damping due to interphase. The interphase is the region adjacent
to the fiber surface along the fiber length. Energy dissipation is
due to the high shear strain in the interphase region. Ziegel and
Ramanov [12] defined parameters to cover the range of interfacial
imperfection: from weak to ideal. Ideal interface means there is
a perfect bonding and therefore no damping occurs. Chinquin et
al. [13] and Murayama [14] observed a direct relation between the
damping at the interface of fiber/matrix and the interfacial shear
strength. Hwang and Gibson [15] presented a strain energy approach
for the micromechanical modeling of both damping and stiffness in
composite including the fiber/matrix interface.
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3. Damping due to damage: frictional damping in the unbonded re-
gions between fiber and matrix interface or delamination. Damping
occurs because of energy dissipation in the area of matrix cracks.
Hence, the damping capacity can be used to measure damages in
composites [16, 17]. Saravanos and Hopkins [18] developed a lam-
inate theory for stiffness, damping and inertia terms to handle de-
laminated composite laminates. They correlated analytical and ex-
perimental results for graphite-epoxy delaminated beams.

4. Viscoplastic damping. There is a limited number of papers on
this aspect. Jenny and Marchetti [19] developed a micromechan-
ical model including the plastic behaviour of the matrix in order to
study the nonlinear behaviour of composite laminates. They showed
that there is a correlation between the plastic deformation and the
increase of damping at high stresses.

5. Thermoelastic damping. It is described as the coupling between the
elastic deformation in the matrix and the temperature field. In any
vibrating structures, the strain field causes a change in the internal
energy such that compressed regions become hotter and extended
regions become colder. Energy is dissipated because of the lack of
thermal equilibrium. Thermoelastic damping is preponderant for
metal composites.

1.1.2 Laminate theories and models

The classical laminate theory (CLT) is usually used to analyze laminates
and to determine their stiffness properties. As the CLT does not consider
the effect of the out-of-plane strains, more accurate theories, like first
order deformation and higher order theories, have been used for thick
laminates. The works of Pagano [20, 21], Reddy [22], Srinivas [23] and Di
Sciuva [24] have been used as a reference for the development and valida-
tion of several improved laminate theories and related finite elements to
analyze the damping of composite laminates. Saravanos [25] presented a
layerwise damping plate theory for sandwich composite plates including a
semi-analytical solution for predicting the modal damping and natural fre-
quencies. Alam and Asmani [26] used the variational principles to derive
governing equations of motion for laminated plate. Hwang and coworkers
[27, 28] developed a three-dimensional finite element and used the strain
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energy to characterize the damping of angle-ply composites. Koo and Lee
[29] applied the finite element method based on the transverse incom-
pressibility and layerwise linear distribution of in-plane displacement to
determine the modal loss factor and resonance frequency of anisotropic
plates. They showed that the resonance frequency and loss factor are
strongly influenced by the fiber orientation and the length-to-thickness
ratio.

1.1.3 Structural elements with viscoelastic damping
treatments

Viscoelastic damping treatments can be applied in two ways as presented
in Figure 1.3.

Base structure
Viscoelastic layer

Constraining layer

a) Free layer damping treatment b) Constrained layer damping treatment

Figure 1.3: Surface damping treatments

For the free layer damping treatment (FLD treatment), a viscoelastic
layer is bonded on the surface on the load-carrying structure. The energy
dissipation is due to the extensional strain occuring in the damping layer.
Oberst [30] proposed an equation to calculate the effective flexural rigidity
and the loss factor of the damped membre.

For the constrained layer damping treatment (CLD treatment), a thin
metallic sheet is applied on top of the viscoelastic layer. During bend-
ing vibrations, the damping material is mainly deformed in shear which
leads to energy dissipation. It is important to note that the top layer is
not used to improve the overall mechanical properties of the structure.
Kerwin [31] was one of the first to observe that a stiff constraining layer,
placed on top of the viscoelastic layer, can increase the structural damp-
ing rate. Di Taranto [32] developed an analytical model to determine
the damping rate of freely vibrating beams having any possible boundary
conditions. Mead and Markus [33] derived a mathematical expression for
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the transverse displacement of a three-layered sandwich beam with a vis-
coelastic core. They assumed different boundary conditions at one end
of the beam such as no transverse displacement, no rotation, no bend-
ing moment, or no shear force. Rao [34] also presented a formula for
the frequency and loss factor of a sandwich beam under the following
boundary conditions: clamped-free, clamped-simply supported, clamped-
clamped, simply supported-simply supported and free-free. Ohayon et al.
[35, 36] presented a finite element formulation using fractional derivative
operators for the transient dynamic analysis of sandwich structures with
constrained layer damping treatment. Grootenhuis et al. [37, 38, 39, 40]
studied the flexural vibrations of symmetrical multi-layer beams with vis-
coelastic damping, and compared numerical and experimental results.

With the use of fiber-reinforced composite laminates, it is possible to
integrate in the laminate lay-up a viscoelastic layer. The stiff laminates
constrain the damping material that is deformed in shear during bend-
ing vibrations, like for a CLD treatment. The major difference is that
both of the stiff parts are also designed according to mechanical crite-
ria. Moser and Lumassegger [41] were actually among the first to show
that the damping of laminated fiber-reinforced composite structures can
be increased by means of a soft shear-deformable ply. Biggerstaff and
Kosmatka [42] performed experimental and analytical studies of cocurred
graphite/epoxy composite laminates with embedded damping materials.
Cao et al. [43] realized an experimental parametric study of alternately
laminated damped structures. They investigated the influence of the fiber
orientation angle and layer thicknesses. Rao and coauthors [34] presented
an analysis of the dynamic properties of fiber-reinforced composite lam-
inates with embedded damping layers by means of finite elements based
on a modal strain energy approach. Saravanos and Pereira [44] developed
a discrete damping layer mechanics by using a semi-analytical method
for predicting the modal damping of simply-supported composite plates.
They also proposed a finite element to predict the damping of thick com-
posite plates with interlaminar damping layers [45]. Plagianakos and Sar-
avanos [46, 47] presented a high-order discrete-layer theory and the cor-
responding finite element for the prediction of the damping of laminated
composite sandwich beams and plates.
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1.1.4 Damping optimization

The damping of composite depends strongly on the plies elastic properties
and fiber volume content. By selecting an appropriate design, one can ob-
tain an improvement of the dynamic properties. On the other hand, the in-
crease of damping of composite structures leads to a decrease of structural
stiffness and strength properties. Hence, the optimal design is based on a
trade-off between damping and mechanical performances. Saravanos and
Chamis [48] presented a multi-objective optimal design methodology for
lightweight, low-cost composite structures with improved dynamic perfor-
mances. They included the effect of composite damping on the dynamics
of composite structures. Kam and Chang [49] performed an optimization
of a composite plate with the goal to minimize the weight considering as
constraints the first natural frequency, the damping of the first vibration
modes and the deflection. The design variables were the layer thickness
and fiber orientation. They did two case studies on simply-supported
and cantilever composite plates to demonstrate the feasibility of their ap-
proach. Park et al. [50] presented a multi-constrained optimization for
the design of composite plates manufactured with resin transfer molding
method. The objective was to minimize the weight by minimizing the
layer thickness and considering the strength as structural constraint and
the maximum allowable mold filling time as process requirement. They
compared the strength and the filling time for different number of layers.
Araujo et al. [51] performed a multiple objective optimization of com-
posite laminates with a viscoelastic layer. They used a gradient based
approach to maximize the loss factor of the first bending mode consider-
ing a maximum allowable mass and displacement. The design variables
were the thickness and fiber orientation of each ply. They showed the
validity of their approach for simply supported beams and plates. Hao
and Rao [52] presented a procedure for the maximization of damping and
the minimization of the weight of a simply-supported beam covered with
a constrained layer damping treatment. The design variables were the
thicknesses of the different layers. Marcelin and coworkers [53] also per-
formed a damping optimization of constrained layer damping treatment
considering treatment position and location as design variables. Zheng et
al. [54] did a similar study but they also considered the shear modulus
of the viscoelastic layer as design variable. Trindade [55] performed a ge-
ometrical optimization of composite beams with shear deformable layers
with the goal to minimize the transverse velocities and to maximize the



1.2. Research needs 9

loss factors of the first five eigenmodes. The design variables were the
number of composite layers, their thickness and orientation.

1.2 Research needs

From the literature research presented in the previous section, most of
the studies on composite structures with integrated damping layers were
focused only on their performances regarding damping [41, 44, 46, 47].
To the author’s knowledge, few studies looked at the static properties of
such laminated composite [49]. There is no work where the mechanical
properties of laminates with interlaminar shear deformable layers consid-
ering tension, compression and shear load-cases are reported. In the field
of the optimization of multi-layered structures with viscoelasic materials,
the design variables are typically the thickness and orientation of the fi-
brous layers [51, 55]. Only Zheng [54] included the material properties
of the damping layer in the list of design variables but the optimization
objectives were only on the dynamic properties of the vibrating beam.
There is actually no research work where the optimization of damping
of composites with integrated damping treatments is considered together
with weight and static requirements.

However, structures are designed according to multiple objectives.
They have to fulfill conventional mechanical criteria but also to perform
other functions, like vibration damping. It is demanded to dissipate the
largest amount of energy over the largest frequency range. For structural
elements with embedded shear deformable layers, it would be required to
obtain a design solution that provides: high stiffness, high strength, high
vibration damping capacities and low weight. Such design requirements
raise the following questions:

• Is it possible to use a viscoelastic layer not only for vibration damp-
ing purposes but also to improve the mechanical properties of the
load-carrying structure?

• Is it possible to design a composite laminate with an integrated
damping layer that is lighter than a composite laminate with a clas-
sical CLD treatment?
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1.3 Goals and approach

The goals of this thesis work can be divided as following:

1. To develop complete knowledge on modeling and optimization of
constrained viscoelastic materials.

2. To have a clear understanding on the effect of a soft core layer on
the overall mechanical properties of a composite laminate.

3. To propose design rules for structural composite components with
integrated damping treatments considering mechanical and vibra-
tion damping criteria with the goal to minimize the weight.

In order to answer the questions and to reach the goals above pre-
sented, the present work is divided in three parts.

First, an analysis of the state-of-art on the vibration damping of struc-
tural elements is done. The main analytical and numerical methods and
theories for structures with damping layer treatments are reviewed. A
numerical model of a plate with a constrained damping layer treatment
is validated. The performances of segmented constrained layer damping
treatment on two- amd three-dimensional structures are investigated.

With the second part of this thesis starts the integration of damping
materials in composite laminates. A finite element model of a composite
beam with a soft core layer in cylindrical bending is built up and validated
using Pagano’s exact solution [20]. The numerical model is used to gain
a first understanding of the effect of the damping layer on the bending
properties of the laminated beam.

In the third part, a parametric study on a composite plate with an
embedded damping material layer is realised. The influence of each design
variable of the damping layer on the mechanical properties of the laminate
is investigated. An optimization method is used to obtain a structural
element with the minimum weight and simultaneously high mechanical
and vibration damping properties. Finally, design rules for composite
laminates with integrated damping layers are proposed.
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1.4 Thesis outline

In chapter 2, the available analytical and numerical models and theories
for the analysis of the dynamic response of lightweight structures are
reviewed. Chapter 3 studies the possibility to increase the damping rates
of constrained layer damping treatments by means of segmentation. The
validation of the numerical model of a composite beam with a soft core
layer is shown in chapter 4. Chapter 5 is focused on the parametric
study of a composite plate with an integrated damping layer considering
mechanical and vibration damping criteria. Design recommendations are
extracted. Chapter 6 deals with the optimization of a composite plate with
an integrated damping layer. For different mechanical situations, a trade-
off between weight, damping and mechanical requirements is estimated.
Chapter 7 summarizes the results. Final conclusions are presented and
suggestions for future works are proposed.





Chapter 2

Vibration damping of
lightweight structures

This chapter presents theoretical, analytical and numerical approaches to
analyze the dynamic response of lightweight structures with viscoelastic
damping treatments. At first, basics of structural dynamic are recalled
to introduce the concept of damping. The different mechanisms of energy
dissipation are presented using the nonmaterial and material damping
classification. Then, a deeper study on the damping properties of vis-
coelastic materials is performed as they are used in this thesis. Typical
design solutions using such damping treatments are presented as well as
related analytical and numerical methods. Finally, theories for the anayl-
sis of the dynamic response of composite laminates without and with
viscoelastic damping layers are presented.

2.1 Basics of structural dynamics

The dynamic behaviour of structural systems can be described with the
folllowing equation

[M ] {ü}+ [C] {u̇}+ [K] {u} = {F} (2.1)

13
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[M ] is the mass matrix. It is a generalization of the concept of mass
to generalize coordinates. The damping matrix [C] is used to describe
the energy dissipation mechanism, also called damping mechanism, of the
considered system. Damping refers to the ability of a structure to dissipate
vibration energy into an other form of energy, like heat for example [56].
[K] is the stiffness matrix used to describe the stiffness between all the
degrees of freedom of the system. {u} is the displacement vector and {F}
is the vector of external forces applied to the system.

2.2 Classification of damping

According to Sun and Lu [56], damping can be classified in two categories:
nonmaterial damping and material damping.

2.2.1 Nonmaterial damping

2.2.1.1 Viscous damping

Viscous damping is due to a non-conservative force that is directly pro-
portional to the velocity of vibration. In schematics of vibrating systems,
it is usually represented as a dashpot. A force is created by the fluid re-
sistance during oscillation and the mechanical behaviour is described by
the equation

Fd = cdx
dt

(2.2)

where c is the coefficient of viscosity. It is a measure of the resistance of
the fluid which is being deformed. dx/dt is the velocity of the particle
relative to the fluid. The dissipated energy Ud is equal to

Ud =
∮
Fddx (2.3)

Ud depends on the frequency, amplitude and temperature. A measure of
damping can be defined with the loss factor η. It is the ratio between
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the energy dissipated per radian and the peak of potential energy and is
defined by

η = Ud
2πUp

(2.4)

where Up is the peak of potential energy.

2.2.1.2 Coulomb damping

The Coulomb damping, also named dry damping, comes from the friction
of two dry surfaces. The Coulomb damping force is described with the
following equation

Fc = μN (2.5)

where N is the normal force between the two surfaces and μ the coefficient
of friction. Fc is assumed to be independent of the relative velocity of
motion between the surfaces. The sign of the damping force is always
opposite to that of the motion.

2.2.1.3 Radiation

Structures are usually considered in vacuum when discussing their dy-
namic behaviour. In reality, the surrounding medium (e.g. air or water)
interacts with the structure changing its vibrational behaviour. Addition-
ally, the structure radiates energy into the medium. The loss factor due
to radiation is defined as

η = Urad
2πUrev

(2.6)

where Urad is the radiated energy and Urev is the reversible energy.
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2.2.1.4 Gas pumping

Gas pumping or linear air pumping comes from entrapped air between two
plates. The air is alternately compressed and rarified during vibration.
The energy is dissipated because of the viscous friction of the gas between
the surfaces of the plates. For thin plates, this damping mechanism can
be dominant.

2.2.2 Material damping

Materials dissipate energy during cyclic deformation. For conventional
structural materials (e.g. steel or aluminium), the energy dissipation is
much smaller than for high damping alloys, polymer matrix composites
and rubberlike materials.

2.2.2.1 High damping alloys

High damping alloys have lower stiffness, strength, corrosion resistance
and thermal properties than structural materials. Their damping prop-
erties are highly nonlinear with respect to the mode of vibration, strain
amplitude and temperature.

2.2.2.2 Composite laminates

The author refers to section 1.1.1 for a detailed description of the damping
mechanisms in composite materials. Damping properties, like stiffness
properties, are highly dependent of the fiber orientation. The loss factor
along the fibers is different from the one of the transverse direction of
the fiber. Section 2.5 details damping properties of laminated composites
in terms of constituent material properties, fiber volume fraction, fiber
orientation and stacking sequence.

2.2.2.3 Viscoelastic materials

The properties of viscoelastic materials are detailed in section 2.3.
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2.3 Damping properties of viscoelastic ma-
terials

Viscoelastic materials are also called materials with memory: their be-
haviour depends of the loading history. The vibrational energy is dis-
sipated into heat because of the relaxation process occuring in the long-
chain molecules during vibration. They have frequency- and temperature-
dependent properties.

2.3.1 Viscoelastic models

Viscoelasticity is the subject of materials with both elastic and viscous
properties. The elastic element can be modeled by a linear spring with
a stiffness coefficient k and the viscous element by a dashpot with a co-
efficient of viscosity c. Hence, viscoelastic models are combinations of
linear springs and dashpots. The four classic viscoelastic models are here
discussed [56].

2.3.1.1 The Maxwell model

It can be represented by a purely viscous damper and a purely elastic
spring in series, as shown in Figure 2.1. The total strain is given by

εtotal = εspring + εdashpot (2.7)

with σspring = kεspring and σdashpot = cdεdashpotdt . The Maxwell model can
be represented by the following equation

dεtotal
dt

= dεspring
dt

+ dεdashpot
dt

(2.8)

If the material is put under a constant strain, the stresses decrease grad-
ually. If the material is put under a constant stress, the strain has two
components: an elastic component corresponding to the applied stress
and a viscous component that grows with time as long as the stress is
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applied. One limitation of the model is that it does not predict creep
accurately.

kc

Figure 2.1: Maxwell model

2.3.1.2 The Kelvin-Voigt model

This model, also known as the Voigt model, consists of a spring and a
dashpot in parallel as shown in Figure 2.2. It is used to explain the creep
behaviour of polymers. The constitutive relation is a linear first-order
differential equation

σ (t) = kε (t) + cdε (t)
dt

(2.9)

If a constant stress is applied, the material deforms at a decreasing rate,
asymptotically approaching the steady-state strain. When the stress is
released, the material relaxes gradually to its undeformed state. This
model is very good to model creep in materials but is much less accurate
to model relaxation.

k

c

Figure 2.2: Kelvin-Voigt model
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2.3.1.3 Standard linear model

The standard linear model is shown in Figure 2.3: it is a combination of
the Maxwell model and a linear spring in-parallel. The governing consti-
tutive equation is

dε

dt
= k2
c2 (k1 + k2)

(
c2
k2

dσ

dt
+ σ − k1 + ε

)
(2.10)

Under a constant stress, the modeled material will instantaneously deform
to some strain, which is the elastic portion of the strain, and after that it
will continue to deform and asymptotically approach a steady-state strain.
This last portion is the viscous part of the strain.

k1

c2k2

Figure 2.3: Standard linear model

2.3.1.4 Generalized Maxwell model

The generalized Maxwell model, also called the Maxwell-Weichert model,
is the most general form of the models above described. It takes into
account that the relaxation does not occur at a single time, but at a
distribution of times (see Figure 2.4). This is realized by having as many
Maxwell elements as necessary to accurately represent the distribution.
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k1

c2k2

cnkn

Figure 2.4: Generalized Maxwell model

2.3.2 Frequency domain behaviour

In the section, the behaviour of viscoelastic materials in the frequency
domain is explained.

2.3.2.1 Viscoelastic behaviour

For most purposes, it is convenient to study the vibrational behaviour
of viscoelastic materials in the frequency domain. Figure 2.5 presents
the strain- and stress-time history for a viscoelastic material. The phase
lag means that there is a velocity-dependent term in the stress-strain
relationship, which, for τ (t) = τ0sin (ωt) and γ = γ0sin (ωt− ψ) is

τ (t) = τ0sin (ωt)
= τ0sin [(ωt− ψ) + ψ]
= τ0sin (ωt− ψ) cos (ψ) + τ0cos (ωt− ψ) sin (ψ)

= τ0
γ0
cos (ψγ (t)) + τ0

γ0 |ω|sin (ψ) dγ (t)
dt

By writing that G = (τ0/γ0) cos (ψ) and η = tan (ψ), it follows
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τ = Gγ + Gη|ω|
dγ

dt
(2.11)

One obtains a similar equation for extensional deformation

σ = Eε+ Eη|ω|
dε

dt
(2.12)

where E is the Young’s modulus for extensional deformation, G is the
shear modulus and η is the loss factor. The second terms of Equation 2.11
and 2.12 represent the energy dissipation characteristics of the material
under harmonic excitation.
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Figure 2.5: Harmonic excitation and response for a viscoelastic solid
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2.3.2.2 Complex modulus model

It is difficult to use the approach described in the previous section to
address most problems. A representation in terms of complex numbers is
prefered. The strain is represented by γ = γ0exp (iωt) and the strain rate
by dγdt = iωγ. Equations 2.11 and 2.12 become

τ = Gγ + Gη|w| iωγ = G
(

1 + iη ω|ω|
)
γ (2.13)

σ = Eε+ Eη|w| iωε = E
(

1 + iη ω|ω|
)
ε (2.14)

Assuming that ω is always positive, this reduces to

τ = G (1 + iη) γ (2.15)

σ = E (1 + iη) ε (2.16)

From Equations 2.15 and 2.16, one can define the complex moduli

G∗ = G
′
+G

′′
= G (1 + iη) (2.17)

E∗ = E
′
+ E

′′
= E (1 + iη) (2.18)

where G′ and E′ , the storage moduli, are a measure of the stiffness of the
material, and G′′ and E′′ , the loss moduli, are a measure of the capacity of
the material to dissipate energy. The loss factor can also be expressed in
terms of potential energies. The energy dissipated per cycle of vibration
is calculated from
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Ud =
∮
τdγ

=
∫ 2π/ω

0
τ

(
dγ

dt

)

=
∫ 2π/ω

0

[
G
′
γ0sin (ωt) +G

′′
γ0cos (ωt)

]
ωγ0cos (ωt)dt

= G
′′
ωγ2

0

∫ 2π/ω

0
cos (ωt)2 dt

= πG
′′
ε20

The energy dissipated per cycle of vibration is proportional to the square
of the strain amplitude but is independent of the frequency of excitation ω.
The potential energy Up can be evaluated in terms of the strain amplitude
γ0

Up =
1
2G

′
γ2

0 (2.19)

Finally, the loss factor can be defined as

η = G
′′

G′
= Ud

2πUp
(2.20)

A similar equation may be derived for the extensional strain. The loss
factors for extension and shear are generally not equal. However, the
differences are very small and unmeasurable in most cases.

2.3.3 Hysteresis behaviour

The stress-strain relation for a linear viscoelastic material under a re-
peated cyclic loading is an ellipse. The deformation occuring in the vis-
coelastic material follows a different path when a force is applied than
when a force is released. Figure 2.6 presents the measured stress as a
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Strain

Stress

Figure 2.6: Ideal elliptical hysteresis loop

function of the measured strain. The slope of the major axis of the ellipse
is a measure of stiffness and the aspect ratio (the ratio of the minor axis
to the major axis is a measure of damping). The equation of the elliptical
loop has the following form in the case of shear deformation

τ (t) = Gγ (t)±Gη
√
γ2

0 − γ (t)2 (2.21)

where τ (t) is the shear stress at time t, γ (t) is the shear strain at time t,
γ0 is the maximal strain amplitude at each cycle of the hysteresis loop, G
is the shear modulus and η is the material loss factor. The positive and
negative signs refer, respectively, to the upper and to the lower path of the
loop. If the strain varies harmonically, one can write γ (t) = γ0sin (ωt)
with ω being the frequency in radians. Equation 2.21 becomes
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τ (t) = Gγ (t)±Gηγ0
√

1− sin (ωt)2

= Gγ (t)±Gηγ0 |cos (ωt)| (2.22)

= Gγ (t)± Gη|ω|
dγ (t)
dt

A similar equation can be derived for extensional strain. The shape of
the ellipse does not change with the strain amplitude but it changes with
the loss factor.

2.3.4 Effects of environmental factors

The performances of viscoelastic materials are affected by temperature,
frequency of vibration, amplitude of strain and static preload. This section
presents the effects of these factors on the storage modulus and loss factor
as they are the most important quantitites to describe such materials.

2.3.4.1 Effects of temperature

Temperature is considered as the most important environmental factor
affecting the properties of damping materials. A typical plot of the stor-
age modulus E′ and η of rubberlike materials is presented in Figure 2.7.
Temperature-affected material states can be divided into four regions: the
glassy region, the transition region, the rubberlike region and the flow re-
gion. The glassy region occurs at room temperature: the storage modulus
changes slowly in the glassy region while the loss factor increases sharply
as the temperature increases. The second region is characterized by hav-
ing a modulus that decreases rapidly with increasing temperature, while
the loss factor reaches a maximum value at the transition temperature Tg.
In the rubberlike region, E′ and η remain nearly constant. In the fourth
region, the material continues to soften with increasing temperature as it
melts. The loss factor takes on a very high value. In engineering applica-
tions, most structures will not be used beyond Tg. The storage modulus
could be as high as 105 GPa in the glassy region and as low as 10−2 GPa
in the rubberlike region. The width of the transition region can go from
20◦C to 200◦C [57]. The loss factor in the glassy region is usually below
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10−2 or 10−3. It can reach values up to 1 or 2 in the transition region. In
the rubberlike region, η varies between 0.1 and 0.3.
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Figure 2.7: Effects of temperature on the storage modulus and loss factor
from [57]

2.3.4.2 Effects of frequency

The effect of frequency on the storage modulus E′ and the loss factor η
can be divided into three regions: the rubberlike region, the transition
region and the glassy region. Figure 2.8 presents the typical behaviour of
E
′ and η as a function of frequency. In the rubberlike and glassy regions,

the rate of increase of E′ is very small; the largest rate of increase is
observed in the transition region. Regarding the loss factor, it increases
in the rubberlike region, reaches a maximum in the transition region and
then decreases in the glassy region. Nevertheless, it is important to no-
tice that a logarithmic scale is always needed to represent the frequency
dependency. This means that the same change of E′ and η is reflected
over several orders of magnitude of frequency but on few degrees of tem-
perature. Therefore, the effect of frequency on the strorage modulus and



2.3. Damping properties of viscoelastic materials 27

loss factor is much smaller than the effect of temperature.
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Figure 2.8: Effects of the frequency on the storage modulus and loss factor
from [57]
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Figure 2.9: Effects of the strain amplitude on the storage modulus and
loss factor from [57]
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2.3.4.3 Effects of cyclic dynamic strain

The effects of dynamic strain amplitude on the properties of viscoelas-
tic materials are very complex. High dynamic strain amplitude results
in high dissipation of energy, and high energy dissipation increases the
temperature in the material. Therefore, the effects of temperature and
strain amplitude are combined. In the glassy region, the variations of E′

and η with the strain amplitude are small. In the transition region, the
storage modulus decreases sharply and the loss factor reaches a peak. In
the rubberlike region, the effect of temperature is secondary compared
to the effect of strain amplitude. A typical plot of the behaviour of the
damping material in this region is shown in Figure 2.9.

2.3.4.4 Effects of static preload

The effects of static preload on the dynamic properties are usually the
most important in the rubberlike region. The storage modulus increases
with increasing the preload, whereas the loss factor decreases.

2.4 Vibration control using viscoelastic ma-
terials

Viscoelastic materials can be applied in a FLD or CLD configuration, as
explained in section 1.1.3. This section details analytical and numerical
models and methods for the analysis of FLD and CLD treatments.

2.4.1 Free layer damping treatment

As presented in Figure 1.3, the free layer damping treatment consists of
a viscoelastic material applied on the surface of a structural membre. In
this case, the stiffnessess can be added

k∗ = k1 + k2 (1 + iη2) (2.23)

where k∗ is the complex stiffness of the combination, k1 is the stiffness
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of the structural element, k2 (1 + iη2) is the complex stiffness of the vis-
coelastic layer with η2 being its loss factor. The effective stiffness and loss
factor are

k = k1 + k2 (2.24)

η = η2
1 + k2/k1

(2.25)

The change of flexural stiffness is calculated from the dimensions of the
beam and from the thickness and complex modulus of the viscoelastic
layer by means of the equation 2.23 first introduced by Oberst [30]. The
maximum loss factor depends of both η2 and k2/k1. Oberst was one of
the first to propose an equation for the change of stiffness

(EI)∗

E1I1
= 1 + E

∗
2
E1

(
H2
H1

)3
+ 3
(

1 + H2
H1

)2 (E∗2/E1) (H2/H1)
1 + (E∗2/E1) (H2/H1)

(2.26)

with

I1 = (H1)3
/12 (2.27)

where H1 is the thickness, E1 the Young’s modulus of the base structure
and E2 is the complex Young’s modulus of damping layer. By calculating
the real and the imaginary parts of the equation 2.27, one can deter-
mine the effective flexural rigidity and loss factor of the damped member.
Oberst’s equation is only valid for structural components deformed in
bending and under the assumption that the plane sections remain plane.

2.4.2 Beams with constrained layer damping treat-
ment

Ross, Ungar and Kerwin [58] were the first to develop a theory for the
damping of bending vibrations by means of a constrained layer damping
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treatment, also known as the RKU analysis. They considered the following
assumptions:

• For the entire sandwich structure, there is a neutral axis, whose
location varies with frequency.

• There is a perfect bonding between the different layers.

• The damping comes mainly from the shear deformation occuring in
the viscoelastic material.

• The elastic layer holds the structural layer and the constraining layer
at the same distance.

• The beam is infinitely long so that end effects may be neglected.

The flexural rigidity, EI, of the three-layer system is

EI =
E1H

3
1

12
+
E2H

3
2

12
+
E3H

3
3

12
−
(
E2H

2
2/12

)
(d−D)

(1 + g2)
+ E1H1D

2 +

E1H1D
2 + E2H2 (H21 −D)2 + E3H3 (d−D)2 −

(
E2H2 (H21 −D)

2
+ E3H3 (d−D)

)
(d−D)
(1 + g2)

(2.28)

with

D = (E2H2 (H21 − d/2) + g2 (E2H2H21 + E3H3d))
(E1H1 + E2H2/2 + g2 (E1H1 + E2H2 + E3H3))

(2.29)

d = H2 + (H1 +H3)
2

(2.30)

H21 = (H1 +H2)
2

(2.31)
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g2 = G∗

E3H3H2p21
(2.32)

where g2 is called the shear parameter. It is the most important param-
eter controlling the effectiveness of the shear damping treatment. From
equation 2.32, one can see that g2 does not only depend on the shear
modulus of the viscoelastic material but also on the wavelength, p, the
thickness H3 and the Young’s modulus E3 of the constraining layer. The
RKU analysis is the most widely used and is very useful for simple struc-
tures. Using the work of Kerwin, Di Taranto [32] derived an equation
of motion for freely vibrating beams having any boundary conditions.
Yan and Dowell [59] used the principle of virtual work in the theory of
elasticity and the theorem of correspondence to derive a set of five partial
differential equations for vibrating three-layered damping sandwich plates
and beams. Rao and Nakra [34] included the inertia effects of transverse
longitudinal and rotatory motions for unsymmetrical sandwich structures.
Mead and Markus [33] derived a differential equation of motion in terms
of transverse displacement of sandwich beams subjected to a transverse
loading.

2.4.3 Plates with constrained layer damping treat-
ment

2.4.3.1 Differential equations of motion

Rao and Nakra [34] developed basic equations of vibratory bending of
unsymmetrical sandwich plates. The effects of flexural and membrane
energies are taken into account as well as the transverse shear in the core,
rotatory, translatory and transverse inertia in both core and faces. The
strain energy, Us, of the sandwich plate is given by
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Us =
∫ ∫ [

E1H1
2 (1− ν2

1)

(
u
′2
1 + ν1u

′
1v
∗
1 + v∗21 + ν1v∗1u

′
1

+
(1− ν1)

2

(
u∗21 + v

′2
1 + 2u∗1v

′
1

))

+ E3H3
2 (1− ν2

3)

(
u
′2
3 + ν3u

′
3v
∗
3 + v∗23 + ν3v∗3u

′
3

+(1− ν3)
2

(
u∗23 + v

′2
3 + 2u∗3v

′
3

))
(2.33)

+ E1H
3
1

24 (1− ν2
1)

(
w
′′2 + 2ν1w

′′
w∗∗ + w∗∗2 + 2 (1− ν1)w

′∗2
)

+ E3H
3
3
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(
w
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′′
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)
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)( d
H2

)2

− 2d
H2

(
w
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H2
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H2

))]
dxdy

The kinetic energy, Uk, of the plate is

Uk = ρ
2

∫ ∫
ẇ2dxdy + 1

2

∫ ∫ (
ρ1H1u̇

2
1 + ρ3H3u̇

2
3

+ẇ
′2 ρ1H

3
1 + ρ3H3

3
12

+ ρ1H1v̇
2
1 + ρ3H3v̇

2
3

+ẇ∗2 ρ1H
3
1 + ρ3H3
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12

+ ρ2H2

((
u̇1 + u̇2

2
+ ẇ

′
ε1

)2
(2.34)

+
(
v̇1 + v̇2

2
+ ẇ∗e1

)2
)

+p2H2
2

((
u̇− u3 − ẇ′e2

)2
+ (v̇ − v3 − ẇ∗e2)2

))
dxdy
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with

ρ = ρ1H1 + ρ2H2 + ρ3H3 (2.35)

where the subscript 1 indicates the load carrying plate, 2 the core and 3
the constraining layer. w is the transverse displacement and ui, vi (with
i=1,3) are the in-plane displacement components. The symbol prime (′)
denotes the differentiation with respect to x, the symbol star (∗) that to
y and the dote (.) to the time t. According to Hamilton’s principle, the
stationary value of Φ̄ is equivalent to the equilibrium statement

δΦ̄ =
∫ t2
t1

(δUk − δUs − δUp) dt (2.36)

where t1 and t2 are any two instants of time. Performing the variation
term by term, the following equations of motion are obtained for arbitrary
virtual displacements

φ1

(
u
′′
1 + 1

2
(1 + ν1) v

′∗
1 + 1

2
(1− ν1)u∗∗1

)
+ φ2

(
d

H2
2
w
′ − u1 − u3

H2
2

)
(2.37)

−ρ1H1ü1 − ρ2H2

(
ü1
3

+ ü3
6

+ ẅ
′
e3

)
= 0

φ1

(
v∗∗1 +

1
2 (1 + ν1)u

′∗
1 +

1
2 (1− ν1) v

′′
1

)
+ φ2

(
d

H2
2
w∗ − u1 − u3

H2
2

)
(2.38)

−ρ1H1v̈1 − ρ2H2

(
v̈1
3

+ v̈3
6

+ ẅ∗e3
)

= 0

φ3

(
u
′′
3 + 1

2
(1 + ν3) v

′∗
3 + 1

2
(1− ν3)u∗∗3

)
− φ2

(
d

H2
2
w
′ − u1 − u3

H2
2

)
(2.39)

−ρ3H3ü3 − ρ2H2

(
ü1
3

+ ü3
6

+ ẅ
′
e4

)
= 0
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φ3

(
v∗∗3 + 1

2
(1 + ν3)u
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3 + 1

2
(1− ν3)u

′′
3
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2
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)
(2.40)

−ρ3H3v̈3 − ρ2H2
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v̈1
3

+ v̈3
6

+ ẅ∗e4
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= 0

(D1 +D3)∇4w − γ2 d
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+e4
(
e21 + e

2
2

12

)(
ẅ
′′

+ ẅ∗∗
) )

+ ρ+̈Q (x, y) g (t) = 0

with

∇4w =
∂4w

∂x4 + 2
∂4w

∂x2∂y2 +
∂4w

∂y4 (2.42)

φi = EiHi
1− ν2

i

(2.43)

φ2 = G∗H2 (2.44)

Di =
EiH

3
i

12 (1− ν2
i )

(2.45)

e1 = H3 −H1
4

(2.46)

e2 = H1 +H3
2

(2.47)
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e3 = H2 − 2H1
12

(2.48)

e4 = 2H3 −H1
12

(2.49)

where Q(x, , y) and g(t) are concentrated loads. The derived equations of
motions are valid under the following assumptions:

• A plane transverse to the middle surface remains plane before bend-
ing and perpendicular to the mid surface after bending.

• Transverse displacement at a section does not vary along the thick-
ness.

• All displacements are small.

• There is a perfect bonding between the different layers.

• The extension effect in the core are ignored and stresses in the core
are considered as negligible.

Based on these equations of motion, Rao and Nakra [34] derived analytical
solutions for different boundary conditions.

2.4.4 Finite element modeling of structural element
with constrained viscoelastic treatments

2.4.4.1 Overview

As presented in section 2.1, the discretized version of the differential equa-
tion for the free vibration of any structural system is

[M ] {ü}+ [C] {u̇}+ [K] {u} = {F} (2.50)

Considering that
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[u] =
∞∑
n=0

[X∗n] eiw
∗
nt (2.51)

and substituing Equation 2.51 in Equation 2.50, one obtains the following
eigenvalue problem

(
[K]− w∗2n [M ] + iw∗n [C]

)
= 0 (2.52)

where w∗n and [X∗n] are the nth complex eigenvalue and eigenvector.

2.4.4.2 Numerical example

To validate the finite element modeling of constrained layer damping treat-
ment, the experimental work of Liebowitz et. al [60] is taken as reference.
They tested cantilever beams on top of which is bonded a CLD treatment.
The samples are clamped on one side and excited at their free-end. The
samples are 0.3 m long and 0.012 m wide. The material properties of the
load-carrying beam and the constraining layer are given in Table 2.1. Two
cases of thicknesses are considered, see Table 2.2.

Table 2.1: Material data of the base beam and constraining layer

E-modulus Poisson ratio Loss factor Density
[MPa] [-] [-] [kg.m−3]
68,900 0.33 0.005 2700

Table 2.2: Layer thicknesses for the two considered cases [60]

Case 1 Case 2
Thickness of the base beam [mm] 5.5 4

Thickness of the viscoelastic layer [mm] 0.8 1.7
Thickness of the constraining layer [mm] 2 4
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The viscoeleastic material has a frequency-dependent shear modulus
and loss factor given by

Gd(f) = 1.007× 10−3 × f + 1.386× 106 (2.53)

η(f) = 1.608× 10−4 × f + 0.256 (2.54)

For the numerical modeling, the commercial sotfware ANSYS is used. The
different layers are modeled with structural elements SOLID183. They
utilize three translations at each of the 20 nodes. They also have the fea-
ture, if activated, to input frequency- and temperature-dependent elas-
tic constants and loss factor with the ANSYS command TB,ELASTIC
and TB,SDAMP. For finite element models having multiple layers with
frequency-dependent material properties, the stiffness and damping ma-
trix have the following form

[K] =
Ne∑
e=1

[Ke (E (w))] (2.55)

[C] = α [M ] + β [K] +
Nmat∑
j=1
βj [Kj ] + βc [K] + [Cζ ] +

Ne∑
e=1

[Ce] (2.56)

with

• α constant mass matrix multiplier. It represents friction damping
occuring in the structure. As perfect bonding is considered between
the different layers, it is equal to 0.

• β constant stiffness matrix multiplier. It represents the damping of
the whole structure regardless of frequency. As it cannot be used
for models with multiple materials, it is set to 0.
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• βj constant stiffness material multiplier, material-dependent damp-
ing. It is like β but for a given material. It is constant over the
entire frequency range of the analysis. As it cannot be used for
frequency-dependent material properties, it is taken equal to 0.

• βc variable stiffness matrix multiplier. It is used to input a constant
damping ratio to the whole structure having a dominant natural
frequency. It is expressed as followed

βc = 2ζ
ωn

= η

ωn
(2.57)

As the structure of interest is made of different materials with
frequency-dependent properties, it is set to 0.

• ζ constant material damping ratio. From Eq. 2.57, it comes

ζ = η
2

(2.58)

where η is the material loss factor. It is not suitable for frequency-
dependent damping properties. Therefore, it is taken equal to 0.

• [Cζ ] frequency-dependent damping matrix. It is calculated from a
specified ζr (damping ratio for mode r).

• [Ce] element damping matrix. For each element type, it is possible
to give frequency-dependent damping properties. It is defined as

[Ce] = β (ω) [Ke] (2.59)

where β (ω), equal to ηi(ω)/ω, is the frequency-dependent damping
coeffient. It is calculated with η(ω) the frequency-dependent ma-
terial loss factor (obtained from Equation 2.54) and the frequency
ω.

In order to calculate the eigenfrequency of the system, a damped modal
analysis is performed. Then, an harmonic analysis is done at the desired
resonance frequency. The modal loss factor is calculated with modal strain
energy method by the following equation

ηk =
∑n
i=1 ηi,kUs,i,k
Us,total,k

(2.60)
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where ηi,k is the material loss factor of the layer i at mode k, and Us,i,k
is the modal strain energy of the layer i at mode k. Us,total,k is the total
modal strain energy at mode k and is given by

Us,total,k =
n∑
i=1
Us,i,k (2.61)

However, the method gives good estimates only if the following conditions
are fulfilled:

• The structure must be in a state of harmonic oscillation.

• The structural damping must be weak enough for the eigenmodes
and eigenfrequencies of the undamped system to approximate the
real eigenmodes and eigenfrequencies.

• The frequency influence on the storage modulus of the viscoelastic
material must not perceptibly affect the stiffness of the total struc-
ture.

The first assumption is fulfilled as an harmonic analysis is performed
at the desired resonance frequency. The second does not apply as the
damped model is considered in the modal analysis. The third assumption
is considered as fulfiled as the shear modulus of the viscoelastic material
at 100 Hz is significantly smaller than the Young’s modulus of the base
beam. The comparison between the experimental and numerical results
are presented in Table 2.3 and Table 2.4 for case 1 and 2, respectively.
A good agreement bewteen the experimental results and the numerical
model is obtained. The largest difference is observed for case 2. There is
a difference of 0.6% for the resonance frequency and of 6.4% for the modal
loss factor.

Table 2.3: Results comparison for case 1

f [Hz] η [%]
Experimental results [60] 139.5 6.2

Finite element results 139.2 6.1
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Table 2.4: Results comparison for case 2

f [Hz] η [%]
Experimental results [60] 115.5 7.8

Finite element results 114.8 7.3

2.5 Damping of composite laminates

This section details the micromechanics theory developed by Saravanos
and Chamis [11] for the damping of unidirectional and off-axis composites.
In contrast with other research works [5, 6, 7, 8, 9], they presented a com-
plete micromechanics theory for six damping coefficients of a composite
ply associated with the following stresses:

• Longitudinal, σ11;

• Transverse, σ22;

• Through the thickness normal stress, σ33;

• In-plane shear, σ12;

• Through the thickness shear, σ13 and σ23.

2.5.1 On-axis damping

Figure 2.10 presents a segment of fiber/matrix. If a uniform cyclic longi-
tudinal normal stress σl11 is applied, the dissipated energy is then

δU = 1
2

∫
V f

ηf11σf11εf11dVf + 1
2

∫
Vm

ηmnσfmnεfmndVm (2.62)

The indices f andmn denote, respectively, the fiber and matrix properties
in the normal direction of the fiber. As the damping is assumed to be
independent of stress and strain, one can write
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Figure 2.10: On-axis fiber composite plies

δUs =
1
2
ηf11

∫
V f

σf11εf11dVf +
1
2
ηmn

∫
V m

σfmnεfmndVm (2.63)

Considering that

δUs,l11 = ηl11Us,l11 (2.64)

The maximun stored strain energy during one cycle of vibration is

Us,l11 = 1
2

∫
V f

σf11εf11dVf + 1
2

∫
Vm

σmnεmndVm (2.65)

From Equation 2.65, one obtains the rule of mixtures for the longitudinal
modulus

El11 = vfEf11 + vmEm (2.66)
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Combining Equations 2.63, 2.64 and 2.65, the loss factor in the longitu-
dinal direction is

ηl11 = ηf11vf
Ef11
El11

+ ηmnvmn
Em
El11

(2.67)

For cyclic transverse normal stress σl22, the dissipated and maximum
strain energy, respectively, are

δUs,l22 = 1
2

∫
V f

ηf22σf22εf22dVf + 1
2

∫
Vm

ηmnσfmnεfmndVm (2.68)

Us,l22 = 1
2

∫
V f

σf22εf22dVf + 1
2

∫
Vm

σfmnεfmndVm (2.69)

Assuming a uniform stress distribution within the fiber and the matrix
[11] and combining Equations 2.68 and 2.69, one obtains the transverse
normal loss factor

ηl22 = ηf22
√
vf
E22
Ef22

+ ηmn
(
1−√vf

) E22
Em

(2.70)

with

E22 =
(
1−√vf

)
Em +

√
vfEm

1−√vf
(

1− Em
Ef22

) (2.71)

As the composite material is transversely isotropic, the transverse through-
the-thickness loss factor is

ηl33 = ηl22 (2.72)
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Using the same assumptions and similar procedure than for the transverse
damping, the in-plane shear loss factor is given by

ηl12 = ηf12
√
vf
G12
Gf12

+ ηms
(
1−√vf

) G12
Gm

(2.73)

with

G12 =
(
1−√vf

)
Gm +

√
vfGm

1−√vf
(

1− Gm
Gf12

) (2.74)

As composite materials are transversely isotropic, the interlaminar loss
factor ηl13 is equal to the in-plane loss factor of the ply

ηl13 = ηl12 (2.75)

The out-of-plane shear loss factor is obtained in a similar way

ηl23 = ηf23
√
vf
Gl23
Gf13

+ ηms
(
1−√vf

) Gl23
Gm

(2.76)

with

Gl23 = El22
2 (1 + νl23)

(2.77)

νl23 = νm
1− vfνm + vf

(
νf23 − (1− vf ) νm

1− vfνm

)
(2.78)

2.5.2 Off-axis ply damping

Figure 2.11 displays the off-axis cyclic loading. More than one of the
on-axis loss factors contribute to the composite damping. The hysteretic
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Figure 2.11: Off-axis fiber composite plies

strain energy loss per unit volume in the structural (off-axis) coordinate,
noted with the index c, is

δU =s
1
2
{σc}T {ηc} {εc} (2.79)

For the on-axis case with motion along the fiber direction, the hysteretic
strain energy loss per unit volume is

ΔU = 1
2
{σl}T {ηl} {εl} (2.80)

Transforming the stress and strain from the material coordinate system to
the structural coordinate system, the specific strain energy loss becomes

ΔU = 1
2
{σc}T [Rσ]T [ηl]

[
R−1
σ

]T {εc} (2.81)

with

{σc} = [Ec] {ec} (2.82)

[Ec]−1 = [Rσ]T [El]−1 [Rσ] (2.83)
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[Rσ] =

⎡
⎣ cos2θ sin2θ cos2θ
sin2θ cos2θ −sin2θ
−0.5sin2θ 0.5sin2θ cos2θ

⎤
⎦ (2.84)

[Ec]−1 =

⎡
⎣ 1/Ecxx νcyx/Ecyy νcsx/Gcxy
−νcxy/Ecxx 1/Ecyy νcsy/Gcxy
νcxs/Ecxx νcys/Ecyy 1/Gcxy

⎤
⎦ (2.85)

Combining Equations 2.79 and 2.80, one obtains the following damping
transformation

[ηc] = [Rσ]T [ηl]
[
R−1
σ

]T (2.86)

In the case of on-axis loading, the damping matrix is diagonal

[ηc] =

⎡
⎣ηl11 0 0

0 ηl22 0
0 0 ηl33

⎤
⎦ (2.87)

In the case of off-axis loading, the damping matrix is fully populated

[ηc] =

⎡
⎣ηcxx ηcxy ηcxsηcyx ηcyy ηcys
ηcsx ηcsy ηcss

⎤
⎦ (2.88)

The nondiagonal terms represent the coupling between the axial and shear
stresses.

2.6 Composite structures with embedded
damping layers

In order to predict the damping properties of composite structures with
embedded damping layers, Saravanos and Pereira [44] developed a dis-
crete layer laminate damping theory (DLTD) incorporating a piecewise
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continuous displacement field through the thickness [45] in order to model
composite laminates including the effect of thicker sections, interlaminar
inhomogeneity and compliant interlaminar layer. Compared with other
laminate theories [3, 10, 44], the DLDT provides more accurate strain and
dissipative-energy calculation in each ply. The displacement field has the
following form [61]

u (x, y, z, t) = u0 (x, y, t) +
N∑
j=1
uj (x, y, t)F j (z)

v (x, y, z, t) = v0 (x, y, t) +
N∑
j=1
vj (x, y, t)F j (z) (2.89)

w (x, y, z, t) = w0 (x, y, t)

where 0 represents the uniform through-the-thickness midplane deflection,
uj and vj are displacements along the x- and y-direction at the interfaces
between composite plies and interlaminar damping layers. F i (z) are in-
terpolation functions. Therefore, the assumed in-plane displacement field
can represent extensional, flexural, shear, coupled deformation and in-
terlaminar shear strains through the thickness of the laminate. From
Equations 2.89, the laminate strains are the following

εci (x, y, z, t) = ε0ci (x, y, t) +
N∑
j=1
εjci (x, y, t)F

j (z)

i = 1, 2, 6

εci (x, y, z, t) = ε0ci (x, y, t) +
N∑
j=1
εjci (x, y, t)F

j
,z (z) (2.90)

i = 4, 5

where the midplane strains are
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ε0c1 = u0
,x

ε0c2 = v0,y

ε0c6 = u0
,y + v0,x (2.91)

ε0c4 = w0
,y

ε0c5 = w0
,x

and the generalized strains are

εjc1 = uj,x

εjc2 = vj,y

εjc6 = uj,y + vj,x (2.92)

εjc4 = vj

εjc5 = uj

The comma in the subscripts denotes the differentation. Assuming vis-
coelastic constituents, the viscoelastic law between generalized stresses
and strains at the ply level can be written as the following [62]

{σc} =
[
Q̃c
] ∗ {εc} =

∫ t
−∞

[
Q̃ (t− τ)] d {ε (τ)} (2.93)

where [Q∗c ] is the complex stiffness matrix. Combining Equations 2.93 and
2.90, and integrating through-the-thickness of the laminate, one obtains
the following stress-strain relation in the time domain
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{
N0 (t)

}
=
∫ h/2
−h/2
{σ} dz =

[
˜A (t)
]
∗ {ε0 (t)

}

+
N∑
m=1

[
B̃m (t)

] ∗ {εm (t)} (2.94)

{
N j (t)

}
=
∫ h/2
−h/2
{σ}F jdz =

[
B̃j (t)

] ∗ {ε0 (t)
}

+
N∑
m=1

[
D̃jm (t)

] ∗ {εm (t)}

where
{
N0} and

{
N j
}

are the generalized stresses. The complex laminate
stiffness matrices include both elastic and damping matrices

[A∗] = [A∗] + i [Ad][
B∗j
]

=
[
Bj
]

+ i
[
Bjd

]
(2.95)[

D∗jm
]

=
[
Djm

]
+ i
[
Djmd

]

where [Ad] is the extensional laminate damping matrix,
[
Bjd

]
are the

damping coupling matrices and
[
Djmd

]
are flexural/shear damping matri-

ces, see [45]. The dissipated strain energy per unit area of the laminate,
ΔUs,l is defined as

ΔUs,l = 1
2

({
ε0c
}T [Ad]

{
ε0c
}

+ 2 {εc}T
N∑
j=1

[
Bjd

] {
εjc
}

+ (2.96)

N∑
j=1

N∑
m=1

{
εjc
}T [
Djmd

]
{εmc }

)

The maximum laminate strain energy per unit area, Us,l, is defined as
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Us,l = 1
2

({
ε0c
}T [Ad]

{
ε0c
}

+ 2
{
εTc
} N∑
j=1

[
Bj
] {
εjc
}

+ (2.97)

N∑
j=1

N∑
m=1

{
εjc
}T [
Djm

] {εc})

The interlaminar damping layers are considered as individual plies hav-
ing isotropic elastic and damping matrices [Qc] and [ηc]. Therefore, the
laminate damping mechanics of Saravanos and Pereira [45] can handle
any composite material, number of plies, damping layers and laminate
lay-ups.





Chapter 3

Segmented constrained
layer damping treatment

This chapter investigates the possibility to improve the damping perfor-
mance of constrained layer damping treatment by means of segmentation.

3.1 Introduction

Plunkett and Lee [63] invented the concept of segmenting CLD treat-
ments. They showed that the damping performance of CLD treatments
can be improved by cutting the damping treatment through the thickness.
Therefore, the shear strain in the viscoelastic layer can be locally increased
which leads to an increase of the energy dissipation. Their study included
experiments and derivation of a formula for optimum distance of their
equidistant cuts arrangement. Torvik and Strickland [64] investigated a
structure consisting of a base plate with a multiple-layer damping treat-
ment with unanchored constrained layers, attached to one side of it. They
assumed a rectangular plate with segments of constrained layer damping
material. The segments were not designed according to the deformation
of the plate at the frequency of interest. Mantena et. al [65] also in-
vestigated the optimal side length of constrained layer damping material.
They considered various geometric arrangements of a load-carrying struc-

51
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ture in terms of the clamping situation with special regards to the damping
material. The main limitation of their work is that they focused their in-
vestigation on a single mode and considered just one segment. Kung and
Singh [66] developed an energy-based approach of multiple constrained
layer damping patches. Lesieutre and Lee [67] performed a finite element
analysis on segmented active constrained layer damping. Liu and Wang
[68] investigated the distribution of passive and active constrained layer
damping patches. In both papers, no length optimization of the damping
treatment was performed. In the field of structural optimization, genetic
algorithms have been used by Trompette and Fatemi [69], and by Al-Ajmi
and Bourisli [70] to optimize the segments’ length. They were only able
to identify a distribution of segments for a single mode. The main lim-
itations of the studies above presented are that they do not address the
following questions:

• What are the damping performances of segmented CLD treatments
at higher bending modes than the first one?

• Is it possible to optimize simultaneously several modes using a single
distribution of segments?

• For a plate-like structure, what is the best segment topology?

These questions are important when one wants to obtain the best design
solution that provides the largest amount of energy dissipation over the
largest frequency range. The first two questions are addressed considering
a beam-like structure in section 3.2. Section 3.2.1 presents the structure of
interest and the related finite element modeling. Section 3.2.3 explains the
mechanism of segmented constrained layer damping treatment. Results
for equally spaced cuts are presented in section 3.2.4. An optimization
method is presented in Section 3.2.5 to maximize the loss factors of the
first four bending modes. The last question is addressed in section 3.3.
Section 3.3.1 presents the finite element model. A topology study is per-
formed in section 3.3.2. An optimization technique is used in section 3.3.3
to identify the characteristic of the segments arrangement that maximizes
the loss factor. A conclusion is drawn in section 3.4.
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3.2 Beam-like structure with segmented con-
strained layer damping treatment

3.2.1 Finite element modeling

The structure of interest is a cantilever beam on which is bonded a con-
trained layer damping treatment, see Figure 3.1. Plane elements are used
in order to reduce the computation time which is important to consider
for the optimization later presented in this chapter. The base beam and
the constraining layer are modeled using plane42 element with the com-
mercial software ANSYS. The viscoelastic core is modeled with plane182
elements. It has the feature to specify the material parameters (shear
modulus and loss factor) as a function of frequency and temperature, like
solid186 used section 2.4.4.2.

Base beam

Constrained layer damping

Constraining layer

Plane42

Plane182

Plane42

Figure 3.1: Finite element model of a constrained layer damping treatment

Table 3.1: Thicknesses table

Thickness
[mm]

Beam 10
Constrained layer 1
Constraining layer 1

The load-carrying beam and the constraining layer are made of alu-
minium. The total length of the beam is of 1 m. The thickness of each
layer is given in Table 3.1. The finite element model includes details of a
realistic clamping situation as illustrated in Figure 3.2. It takes into ac-



54 Chapter 3. Segmented constrained layer damping treatment

count the influence of the clamping on the vibration damping properties
of the beam. The material parameters of the different layers are presented
in Table 3.2.

Free region (0.9 m)Clamped region
(0.1 m)

xx

y

z

Figure 3.2: Dimension of the numerical model

Table 3.2: Material parameters

E-modulus Poisson ratio Loss factor Density
[MPa] [-] [-] [kg.m−3]

Beam 69,000 0.33 0.005 2700
Viscoelastic layer - 0.48 - 1000
Constraining layer 69,000 0.33 0.005 2700

The shear modulus and loss factor are taken from the material called
EAR C-2003 that is typically used in the automotive industry. The mate-
rial properties are extracted from its nomogram representation, see Figure
3.3. It enables to represent the temperature and frequency dependency of
the dynamic shear modulus and loss factor. Such plot is possible because
the effects of temperature and frequency can be actually combined in a
single variable called the reduced frequency. The author refers to [71, 72]
for further details on reduced frequency analysis. The outcome is a plot of
the log of the dynamic shear modulus and loss factor as a function of the
log of the reduced frequency. The effect of the temperarure is displayed
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using isotherms. On Figure 3.3, the green lines show how to determine,
for a given frequency (10 Hz) and temperature (20◦C), the dynamic shear
modulus and loss factor. The material properties of the viscoelastic ma-
terials are red from 10 Hz to 500 Hz at 20◦C every 25 Hz and input in
the finite element model with the method presented in section 2.4.4.2.

Figure 3.3: Reduced frequency nomogram of EAR C-2003 from [73]

3.2.2 Edge effect

The efficiency of segmenting a constrained layer damping treatment relies
on the fact that a high-shear region is created in the viscoelastic layer.
Such phenomenon is observed by looking at the deformation of the damp-
ing layer at the free end of the cantilever beam. It is called ”edge effect”
and is illustrated in Figure 3.4. From such observation comes the idea of
segmenting a constrained layer damping material. Indeed, one can eas-
ily assume that by cutting the damping treatment at several positions, it
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will increase the total shear deformation occuring on the visceolastic layer
compared to a full coverage configuration.

Edge effect

Base beam

Constraining layer

Damping layer

Figure 3.4: Edge effect at the free end of a cantilever beam

3.2.3 Damping performance

This section investigates where a cut should be located in order to reach
the maximal shear deformation considering the third bending mode (see
upper graphic of Figure 3.5). Four different cases are studied:

• A beam with full coverage;

• A beam with a cut placed at the maximum of displacement (xcut =
0.37 m);

• A beam with a cut placed at the null displacement point (xcut =
0.56 m);

• A beam with a cut placed at the minimum of displacement (xcut =
0.74).

The results are presented in Figure 3.5 comparing the deflection line
and the normalized shear energy deformation in the viscoelastic material
for the four different cases. An abrupt variation of the shear deformation
is observed at the cut. Additionally, this effect is more significant for a
cut placed at a maximum of displacement. Table 3.3 displays the results
in terms of the modal loss factor for each of the four configurations. They
suggest the hypothesis that the cut has to be placed where the bending



3.2. Beam-like structure with segmented constrained layer damping
treatment 57

moment is maximal in order to reach the highest modal loss factor. Here,
the highest bending occurs at xcut = 0.74 m and configuration four, plac-
ing a cut right there, reaches the highest damping factor. It is almost
three times higher than for the full coverage configuration. In the latter
case, the shear deformation in the viscoelastic material is not significant
in regions where the bending moment is maximal. There, mainly exten-
sional deformation occurs in the damping layer. By placing a cut at the
region of highest curvature, the compliance of the whole structure is fur-
ther increased, leading to a local high shear deformation in the damping
material.
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Constrained layer damping − Full coverage
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Constrained layer damping − x
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Constrained layer damping − x
cut

 = 0.74 m

Figure 3.5: Comparison between the deflection line and the shear defor-
mation at the third bending mode

3.2.4 Equally segmented constrained layer damping

In section 3.2.3, the effect of the position of a single cut on the modal
loss factor was investigated at a given mode. From this result, the author
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Table 3.3: Modal loss factor as a function of the cut position

Position of the cut Modal loss factor
[m] [-]

No cut 0.0542
0.36 0.1116
0.56 0.0560
0.74 0.1509

deduces as an hypothetical rule-of-thumb namely that a cut has to be
located at the maximum of the bending moment. The rule-of-thumb
can be applied if a modal analysis obtains information on mode shape
and/or the shear strain distribution in the viscoelastic material is known.
However, this section investigates the influence of the number of equally
spaced cuts on the modal loss factor, without any considerations on the
flexural displacement and shear strain distribution. Nonetheless, it is
observed that a significant enhancement is achieved. In Figure 3.6, the
modal loss factor as a function of the number of cuts for the first four
modes is presented. For each mode, there is a certain number of cuts that
optimizes the modal loss factor: seven cuts for mode one, two and three
with an increase of loss factor of 90%, 85% and 79%, respectively, and nine
cuts for mode four with an increase of 48% of the loss factor compared to
a full coverage configuration. One can also see from Figure 3.6 for mode
4 that the modal loss factor is higher for 1 cut than for 2 cuts. For the
latter case, the cuts are placed at locations where the bending curvature is
smaller compared to the position of the single cut. Therefore, a reduction
of the energy dissipation is observed. In Figure 3.7, the damped frequency
response function at each mode separately is presented in terms of mean
square displacement. It is calculated by performing an harmonic analysis.
The FRF is calculated with the following formula

FRF = 10× log
( u
F

)2
(3.1)

where u is the mean displacement of the beam and F is the input force,
taken equal to 1 N for this case. The results are displayed for one, four
and eight cuts. For each mode, the vibration reduction is about 10 dB
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Figure 3.6: Modal loss factor as a function of the number of equally spaced
cuts

between the full coverage configuration and the constrained layer damping
with eight cuts. It is observed that the frequency of the resonance peaks
are shifted down as the number of cuts increases. Assuming that the
mass of the damping treatment remains constant, this means that the
compliance of the whole structure is increased.

3.2.5 Optimization

The goal of this section is to identify a segments’ arrangement, using an
optimization method, that maximizes the loss factors of several modes
simultaneously. In order to reach this objective, three different cases are
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Figure 3.7: Response of the cantilever beam with segmented constrained
layer damping treatments at the first four bending modes

considered. First, the optimization method is used considering one cut
for a single mode. The goal is to investigate the convexity of the objective
function. Then, a beam with equally spaced cuts as initial position is
considered. The goal is to find for each bending mode a cuts’ arrangement
to maximize the loss factor. Therefore, one will be able to conclude for the
different bending mode if it is meaningful to adjust the segments’ length
to maximize the loss factor. The third considered case is a beam with
several cuts but the objective of the optimization is maximize the loss
factor of the first four modes simultaneously. Therefore, one is able to
conclude whether it is better to simply consider equally spaced cuts or to
optimize the cuts’ distribution to increase the efficiency of the segmented
CLD over a large frequency range.
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3.2.6 Definition of the optimization problem

Considering the goal of the optimization problem, the objective function
can be defined by

f (x) =
m∑
i=1

Ai
ηi ({x}) (3.2)

where {x} is the vector of design variables which are the position of the
cuts along the beam. It is defined as

{x} =
{
x1
dj

}
(3.3)

where x1 the position of the first cut and dj is the distance between the
different cuts. The objective is to minimize the sum of the inverse values
of the loss factor of m modes. Ai is the weighting parameter for the
ith mode. It enables to give more importance to one mode compared to
the others. The design variables x are the position of the cuts along the
beam. In order to keep the design variables within the feasible domain, the
objective function is transformed using the exterior penalty method [74].
Quadratic terms are used to penalize constraints violations. Therefore,
the transformed objective function has the following form

f =
m∑
i=1

Ai
ηi {x} +R×

(
max (0, Lc − x1)2 +max (0, x1 − L)2 +

n∑
j=2
max (0, dmin − dj)2 +

p∑
k=2
max

(
0,

((
q∑
l=1
dl

)
+ x1

)
− L
)2

k

)
(3.4)

where

• η is the modal loss factor.

• R is the penalty factor.
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• L is the free length of the beam.

• Lc is the clamped length of the beam.

• x1 is the position of the first cut.

• dj is the distance between cuts j and j-1 : dj = xj − xj−1.

• dmin is the minimal distance between any two cuts equal to 0.001
m.

• n = q = number of cuts - 1;

• p = number of cuts.

The penalty factor R is taken equal to 109. With this penalty factor value,
one obtains a violation of the design domain of less than 1%. The first
and second terms of the constraining function mean that the first cut has
to be placed in the free region of the beam, defined in Figure 3.2. The
third term is used to impose a mininum distance beteewn each cut; dmin
is taken equal to 5 mm. The last term means that the position of the
second cut and higher have to be smaller than the actual length of the
beam. The iteration scheme is presented in Figure 3.8. At first, the eigen-
frequency of the mode under consideration is identified with a modal anal-
ysis. From the harmonic analysis, performed at the identified frequency,
the strain energy of each layer is extracted. Then, the modal loss factor
is estimated using the modal strain energy method. This value, as well as
the position of each cut, is inserted in the pseudo objective function for
evaluation. This process runs as long as the termination criterion is not
satisfied. The selected algorithm based on mathematical programming
follows a deterministic method: the Nelder-Mead simplex method [75]. It
is implemented in the Matlab Optimization Toolbox [76]. It attempts to
minimize a scalar-valued nonlinear function of n real variables using only
function values, without any derivative information. The method uses
the concept of simplex, which is a polyhedron of N+1 in N dimensions
[77]. Simplices are a line, a triangle and tetrahedron in one-, two-, and
three-dimensional space, respectively, and so forth. The method approxi-
mately finds a local optimal solution with N variables when the objective
function varies smoothly. Nelder-Mead generates a new test position by
extrapolating the behaviour of the objective function measured at each
test point arranged as a simplex. Then, the algorithm chooses to replace
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one of these test points with the new test point. Thereby, a new simplex
is generated with a single evaluation of the objective.

Initial Design Variables

Modal Analysis

Harmonic Analysis

Evaluation of the Modal
Loss Factor

Termination Criterion
Satisfied?

Solution

New Design Variables

NO

YES

Evaluation of the
Transformed Objective

Function

Figure 3.8: Iteration scheme for cuts arrangement optimization

3.2.7 Optimization of a single mode with one cut

For the optimization of a single mode with one cut, two cases are con-
sidered. In the first case, the cut is initially placed in the middle of the
free length of the beam. In the second case, the cut is initially placed
where the bending moment is the largest. The results are presented in
Table 3.4. First of all, one can see that the largest improvement is ob-
served for mode 1 compared with the beam without cuts. The loss factor
is almost multiplied by 10. For mode 1 to 3, the initial position of the
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initial cut does not have any influence on the optimized value of the loss
factor. Indeed, the final position of the cut is the same in both cases.
For mode 4, one obtains two different positions leading to two different
loss factor values. This means the optimization problem is not convex.
This is confirmed by looking at the shape of the objective function for the
first four bending modes, see Figure 3.9. For mode 2 and above, there is
more than one local minimum. Therefore, the initial position of the cut
has to be choosen with care in order to reach the global minimum of the
objective function.

Table 3.4: Effect of the initial cut arrangement on the optimized modal
loss factor

Mode Initial position Final position Optimized modal Loss factor
number [m] [m] loss factor [-] (No cut) [-]
Mode 1 0.55 0.19 0.065 0.0071

0.15 0.19 0.065 -
Mode 2 0.55 0.59 0.12 0.029

0.53 0.59 0.12 -
Mode 3 0.55 0.75 0.15 0.054

0.73 0.75 0.15 -
Mode 4 0.55 0.54 0.13 0.10

0.82 0.84 0.14 -

3.2.8 Optimization of a single mode with several cuts

A comparison between the modal loss factors obtained with equally spaced
cuts and an optimized distribution of them is presented in Figure 3.10.
One can see that the improvement is the most significant at the first
bending mode. For the 7 cuts configuration, Figure 3.11 compares the
optimized distribution of cuts with equally spaced ones. The circles show
the position of equally spaced ones and the crosses show their position
after optimization. One can see that their position is the most changed
for mode 1. This confirms that the optimization is mainly useful for the
first bending mode.
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Figure 3.9: Objective function as a function of the position of a single cut
from modes 1 to 4
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Figure 3.10: Modal loss factor as a function of number of cuts for equally
spaced and optimized positions
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3.2.9 Optimization over a large freqency range

In this section, results for the optimization process over a larger frequency
range are presented. The goal is to obtain a distribution of cuts that
optimizes the loss factor of several modes simultaneously. In Table 3.5, the
modal loss factors of three different configurations are listed: full coverage,
7 cuts equally spaced and 7 cuts optimized. The 7 cuts configuration is
selected because it provides the highest modal loss factors in both cases:
equally spaced cuts and optimized cuts arrangement for a single mode (see
Figure 3.10). The idea is to further optimize the best configuration. The
results from Table 3.5 show that it is possible to identify a configuration
of cuts that increases all loss factors. The largest improvement is just of
11% at mode 1.

Table 3.5: Optimization over a large frequency range: modal loss factor
at each mode - 7 cuts

Mode 1 Mode 2 Mode 3 Mode 4
Full coverage 0.0071 0.0294 0.0542 0.1004

7 cuts equally spaced 0.0913 0.1931 0.2564 0.1907
7 cuts optimized 0.1025 0.2094 0.2652 0.1960

Figure 3.12 presents the obtained cuts distribution. The circles corre-
spond to the position of the equally spaced cuts and the crosses are their
optimized position. Compared to the equally spaced configuration, the
optimized position is significantly different for cuts close to the clamping.

3.3 Plate-like structure with segmented con-
strained layer damping treatment

In this section, the effect of segmenting constrained layer damping treat-
ment when it is applied to a three-dimensional structure is studied. The
goal of this study is to determine the best topology of segments to maxi-
mize the modal loss factor.
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Figure 3.11: Deflection lines and cuts distribution for the single mode
optimization with 7 cuts

3.3.1 Finite element model

The structure of interest is a clamped circular plate on which is bonded
a constrained layer damping treatment. The finite element modeling
method is the same than the one presented in section 2.4.4.2. The el-
ement type solid185 are used to model the different layers. The base
plate and the constraining layer are made of aluminium. The material
properties of the damping layer are the same than those for the beam-like
structure case. Table 3.6 presented the geometry of the circular plate.

Table 3.6: Dimension of the plate

Radius [mm] 250
Thickness of the base plate [mm] 2

Thickness of the damping layer [mm] 0.25
Thickness of the constraining layer [mm] 0.25
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Figure 3.12: Deflection lines and cuts distribution for the large frequency
range optimization with 7 cuts

3.3.2 Topology study

This topology study is based on the pattern of the cuts. Two cases are
investigated:

• Circular cuts;

• Radial cuts.

All the study is realized at the frequency corresponding to the first
eigenfrequency of the plate, see Figure 3.13. A normal force is applied
at its centre. Therefore, the mode shape at that frequency is a simplified
reproduction of the deformation at a belly of vibration of a more generic
three-dimensional plate-like structure. The circular plate fully covered
with a constrained layer damping material is taken as reference configura-
tion. Values of its first resonance frequency and corresponding loss factor
are presented in Table 3.7.
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Figure 3.13: Deformation of the structure at the first eigenfrequency,
depictured with level lines

Table 3.7: Resonance frequency and modal loss factor in a full coverage
configuration

Resonance frequency [Hz] 91.2
Modal loss factor [-] 0.016

3.3.2.1 Circular cuts

In this section, the effect of circular cuts is investigated by simulating the
structural response of a set of configurations with increasing number of
cuts ranging from 1 to 9. For the first configuration, the circular cut has
a radius of 25 mm. For each new configuration, a new circle is added
at a distance of 25 mm from the previous one. The results are listed in
Table 3.8: the highest loss factor is obtained with the largest number of
circular cuts. Additionally, the value of the resonance frequency decreases
with the number of cuts. The segmentation with 9 circles is presented in
Figure 3.14.
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Table 3.8: Effect of the number of circular cuts on the resonance frequency
and on the modal loss factor

Number of circular cuts Resonance frequency [Hz] Modal loss factor [-]
1 89.7 0.043
2 88.8 0.061
3 87.7 0.083
4 86.9 0.096
5 86.2 0.106
6 85.7 0.114
7 85.3 0.120
8 85.1 0.124
9 84.9 0.125

3.3.2.2 Radial cuts

In this section, the effect of radial cuts is investigated. The results are
presented as a function of the number of radial cuts in Table 3.9. Accord-
ing to the different configurations under study, the optimum value for the
loss factor is obtained with 9 cuts. In that case, the angle between each
cut is 20◦. The distribution of the segments is presented in Figure 3.15.
Compared with the results from Table 3.8, radial cuts have more effect
than circular ones. This is due to the fact that each radial cut crosses
the plate centre where the bending moment is the highest; the same is
not true in the case of circular cuts. Additionally, the decrease of the res-
onance frequency is significant compared with the previous cuts pattern
and with the full coverage configuration.

3.3.3 Optimization

The goal of the optimization is to maximize the loss factor of the first
bending mode. The plate consists on 9 circular cuts and 9 radial cuts as
they provide the largest loss factor, see Table 3.8. The design variables
of the optimization are the position of the circular cuts. The objective
of this section is to understand what is the best position of the circular
cuts. The optimization follows the method described in section 3.2.6. The
objective function is defined as
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Figure 3.14: Distribution of 9 circular cuts

f (x) = 1
η ({x}) (3.5)

where {x} is the vector of design variables. It consists of the radius of the
smallest circle, r1, and the distance, di, between one circle and the next
one. It is written as

{x} =
{
r1
di

}
(3.6)

The objective function is transformed using the exterior penalty method
in order to keep the design variables in the feasible region. The trans-
formed objective function has the following form

f = 1
η

+R ×
(
max (0, rmin − r1)2 +

m∑
i=2
max (0, dmin − di)2 +

m∑
j=1
max

(
0,

(
m∑
k=1
dk

)
− dmax

)2)
(3.7)
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Table 3.9: Effect of the number of radial cuts on the resonance frequency
and the modal loss factor

Number of radial cuts Resonance frequency [Hz] Modal loss factor [-]
6 82.1 0.149
8 80.9 0.150
9 80.4 0.151
10 80.1 0.147
12 79.6 0.139
18 78.0 0.124

Figure 3.15: Distribution of 9 radials cuts

where

• η is the modal loss factor.

• R is the penalty factor equal to 109. With this penalty factor value,
one obtains a violation of the design domain of less than 1%.

• rmin is the minimal radius value equal to 2 mm.

• dmin is the minimal distance between two circles equal to 1 mm.

• dmax is the maximum value for the sum of the distances between
each cut equal to 250 mm.
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The first term of the constraining function means that the first circle has
to be larger than the minimum radius value. The second term of the
objective function means that the distance between each circle has to be
larger than the minimum value. The last term of the constraining function
means that the sum of the distances between each circle has to be smaller
than the maximal value of the sum for the distances between each circle.

3.3.4 Results and discussion

The results of the optimization is presented in Figure 3.16. Initially,
the circular cuts are positioned with an equal distance between them.
Maximization of damping is sought by adjusting the radial position of
each circle, as explained in section 3.3.3. One can see that the radius of
each circle is reduced. It comes from the fact that the bending moment of
the plate is increasing by getting closer the center of the plate. Therefore,
the shear deformation at the cut increases by reducing the circle radius.
The obtained cuts’ arrangement provides an increase of modal loss factor
of 9% as presented in Table 3.10.
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Figure 3.16: Comparison of circle radii between their initial and final value
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Table 3.10: Comparison of resonance frequency and modal loss factor
between the initial and the final segmentation

Resonance frequency [Hz] Modal loss factor [-]
Initial segmentation 79.9 0.132

Optimized segmentation 80.3 0.145

Table 3.11 details the radius of the 9 circles. The first circle has a
radius of 19.7 mm. There is a still a difference of 17.8 mm with the
minimal possible radius. One can also see that the difference bewteen
the first and the second radius is of 1.2 m which is almost the minimal
possible distance between two cuts: it means the minimal radius value is
around 20 mm. For circle 2 to 9, the radius difference is always around
30 mm: it means that the radius difference can be constant to maximize
the loss factor.

Table 3.11: Radii values

r1 19.7 mm
r2 20.9 mm
r3 51.3 mm
r4 77.8 mm
r5 106.1 mm
r6 131.5 mm
r7 161.5 mm
r8 191.4 mm
r9 220.5 mm

3.4 Conclusion

This chapter has investigated the design of segmented constrained layer
damping treatment on two- and three-dimensional structures. A beam
has been used to explain the effect of cutting the damping treatment. At
the core of the new approach is a rule-of-thumb for the position of a single
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cut: it has to be placed at the location where the bending of the respec-
tive modal deflection line is the highest. According to the mode under
investigation, there exists an optimum value of cuts that maximizes the
loss factor. Compared to a full coverage configuration (no cut), the loss
factor improvement can go up to 90% for the first bending mode. The
increase of loss factor is smaller at higher modes. Nevertheless, it is of
48% at mode 4 for this case study. An optimization algorithm has been
developed to optimize the distribution of cuts. Investigation for a single
cut reveals that the pseudo-objective function is not convex. The deflec-
tion line should be used to identify the location of the highest bending
moment and therefore the initial cut placement for the iteration process.
The optimization over a larger frequency range showed that it is possible
to further increase the modal loss factors of several modes simultaneously
with one cuts arrangement. A circular plate has been used to identify
between circular and radial cuts which topology gives the largest increase
of modal loss factor. Radial cuts are the best design solution as they
cross the plate in its centre where the bending moment is the highest. An
optimization also has been used to determine the optimum distribution
of radii for circular cuts. It has been shown that there exists an optimum
radius value for the first two circles and that the difference between the
radius for the other circles can be constant to maximize the modal loss
factor.





Chapter 4

Composite beams in
cylindrical bending

This chapter is the first one of this thesis directly dealing with the integra-
tion of viscoelastic materials into fiber-reinforced composite laminates. A
finite element model of laminted beam is validated using Pagano’s exact
solution and is used to have an understanding of the effect of the soft core
layer on the bending properties of composite laminates.

4.1 Introduction

The introduction of fiber-reinforced composite materials, which in lightwe-
ight designs are most often used to make laminated plates by laying up
a number of pre-impregnated sheets (prepregs), allows the so-called in-
tegrated damping treatment, where one of the laminate’s interior layers
consists of a soft damping material. The research effort has been directed
towards the damping rates from various treatment techniques and to fur-
ther improve those. In the available literature presented in 1.1, there
is no study that addresses the change of stiffness, stability and struc-
tural strength of structures due to the presence of the damping treatment.
These aspects are very important when designing structures in pratice, as
the multiple objective of low weight and high stiffness, stability, strength,

77
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and damping properties must be pursued concurrently. The first goal of
this chapter is to validate a finite element model of a composite beam with
a soft core. The second goal is to perform a parametric study to assess
the effect of the damping layer position in the laminate lay-up, its thick-
ness and its material properties on the bending stiffness. Pagano’s exact
solution is discussed in section 4.2. The finite element model is presented
and validated in section 4.3. Section 4.4 details the parametric study. A
conclusion is proposed in section 4.5.

4.2 Pagano’s exact solution

In 1969, Pagano [20] presented an approach to define the elasticity so-
lutions for laminates consisting of arbitrary numbers of orthotropic or
isotropic layers, which is free from the assumptions imposed by the classi-
cal plate theory (CPT). Whitney extended this work to laminated plates
which includes transverse shear effects [78]. These exact solutions have
been used by researchers since decades as benchmark solutions for the
validation of improved laminate theories and related finite elements. To
describe the stress-strain relation of fiber-reinforced laminate, the classi-
cal laminate plate theory is usually used. Nonetheless, its limitations are
the following [20]:

• The assumption of linear in-plane displacements through the thick-
ness, in particular for laminates in which the stiffness properties
vary drastically from layer to layer.

• The presence of only 2 boundary conditions per edge in the bending
theory, which precludes the precise calculation of boundary layer
effects, such as stress concentration factors.

• The neglect of shear deformation, implied by the Kirchhoff hypoth-
esis (normals remain normal).

• The assumption of a state of plane stress in the constitutive re-
lations, which eliminates the possibility of rigorous calculation of
interlaminar stresses.

To overcome these limitations, Pagano proposed a solution for any kind of
stress and displacement fields provided that they satisfy the stress equi-
librium equations. For simple support boundary conditions, these are
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satisfied in the axial direction by Fourier series. As interface continuity
conditions are taken into account, Pagano’s exact solution is also valid
for thick laminates with layers, having large different stiffness properties.
It is actually the case for fiber-reinforced composites with integrated vis-
coelastic layers. The derivation of Pagano’s exact solution and the one
obtained from the classical plate theory (CPT) are detailed in appendix
B.

4.3 Finite element modeling

Pagano’s exact solution is used to validate the finite element model of a
three-layer laminated beam. The numerical model is developed with the
commercial software ANSYS. It has the following lay-up: 0◦-Viscoelastic
core-0◦. The different layers are modeled with 2D-solid elements for map-
ping a state of plane strain. The material properties of the fibrous layer
are taken from [20] and presented in Table 4.1. The material properties
of the viscoelastic material (VM) are given in Table 4.2. The deformed
mesh of in cylindrical bending is presented in Figure 4.1.

Figure 4.1: Deformed mesh

The results of Pagano’s exact solution, CPT and FEM are compared
for the three layers laminate. The function of prime interest is the trans-
verse shear stress τxz , as the dominant mechanism of damping is the shear
occuring in the core layer. For the considered structure, the span-to-depth
ratio S is taken equal to 50. The span-to-depth ratio, the normalized
thickness and the transverse shear stress are defined with the following
equations
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S =
l

h
(4.1)

z = z
h

(4.2)

τ = τxz (0, z)
q0

(4.3)

Table 4.1: Material properties of the undirectionnal layer from [20]

Property Value
Ex [MPa] 173 000
Ez [MPa] 6 900
Gxz [MPa] 3 500
Gyz [MPa] 1 400
νxz 0.25
νyz 0.25

Table 4.2: Material properties of the viscoelastic core

Property Value
E [MPa] 1
G [MPa] 0.34
ν 0.49

A convergence analysis of the finite element model is realized in order
to identify the number of element in x- and z-direction to obtain a satis-
fying correlation with a reasonable numerical effort. Figure 4.2 compares
the tranverse shear distribution obtained with Pagano’s exact solution,
with the CPT solution and with the numerical model for 3 different num-
bers of elements along the x-axis (the number of elements along the z-axis
is kept equal to 5). One looks at the transverse shear stress at x=0 as
it is important to have an accurate modeling of it at this location as the
edge effect is responsible for the damping performance of constrained vis-
coelastic material. As a consequence, the effect of the damping layer on
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the overall mechanical properties of the beam can be clearly understood.
One can see the correlation between Pagano’s exact solution does not im-
prove by increasing the mesh density along the x-axis. Figure 4.3 presents
the transverse shear stess distribution through the thickness at x = 0 ob-
tained with Pagano’s exact solution, the CPT solution and the numerical
models for 3 different number of elements along the z-axis (the number
of elements along the x-axis is kept equal to 30). With increasing the
number of elements along the z-axis, the FEM solution converges to the
exact one. Additionaly, the difference between the exact solution and the
CPT solution is significant. Pagano’s solution reveals that, qualitatively,
the shear stress within the compliant viscous layer is much less than the
maxima located within the stiff CFRP layers. Quantitatively, Pagano’s
exact solution detects much higher values than the CPT. The FEM solu-
tion shows a good correlation with the exact solution. The distribution of
the transverse shear stress in the lower and upper sublaminates is similar
to the one of a single layer laminate [20]. Therefore, it seems that the
lower and upper laminates are partially decoupled. This effect is further
investigated in the next section.
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Figure 4.2: Effect of the number of elements along the x-axis on the
normalized transverse shear stress distribution at x = 0
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Figure 4.3: Effect of the number of elements along the z-axis on the
normalized transverse shear stress distribution at x = 0

4.4 Parametric study

The parametric study considers the following design parameters:

• The viscoelastic layer position in the laminate lay-up;

• The material properties of the core layer;

• The thickness of the damping material;

• The span-to-depth ratio.

The influence of the parameters above listed is evaluated on the nor-
malized transverse shear stress (see Equation 4.3) and the normalized
deflection defined as

w =
100Ezh3w

(
l
2 ,−h2

)
q0l4

(4.4)
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4.4.1 Effect of the position of the viscoelastic layer in
the laminate lay-up

Figure 4.4 presents the considered configurations, where the viscous layer
is placed at different positions within the laminate stack-up, while Figure
4.5 gives the normalized deflections connected with the respective configu-
rations. The deflection decreases of 60.3% when shifting the viscous layer
from zVM=0 to zVM=h/4. If the viscous layer (see ’VM’ in Figure 4.4)
has the same material properties as the CFRP layers (see ’0◦’ in Figure
4.4) the laminate would be a homogeneous plate and the position of ’VM’
would be of no consequence. To illustrate the effect of the position of
the viscous layer, with simple means, we consider the extreme case of the
viscous layer having non-zero stiffness only in the through-the-thickness
direction. Then, both CFRP layers must experience the same bending cur-
vature but are otherwise decoupled, see Figure 4.6. In this limiting case,
the lower and upper laminates can be considered as two separated bodies
deformed by the same bending curvature, where the total laminate bend-
ing stiffness is simply the sum of those of the CFRP sublaminates. For the
considered cylindrical bending situation, it holds that ε0z=γ0

xz=κz=κxz=0
and Nx=0. Therefore, the relation between forces, moment and strains
for each unidirectional laminate is reduced to

Mx = D11κx (4.5)

where κx is the curvature. The bending moment of the whole structure
is simply given by

M totalx =M lowerx +Mupperx (4.6)

Table 4.3 presents Dtotal11 as a function of z. Dtotal11 is defined as

Dtotal11 = Dlower11 +Dupper11 (4.7)

with
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D
lower,upper

11 = D
lower,upper
11

Dref11
(4.8)

where Dref11 is the first coefficient of the D matrix for the lower and upper
laminate in the case z=0, see Figure 4.4. Considering that κx is assumed
to be the same for both sublaminates, the increase ofM totalx from z=0 to
z=h/4 reaches 62.6%. In other words, the bending stiffness decreases by
62.6% which closely agrees with FEM results. The CPT analysis validates
that the viscoelastic core has a negligible stiffness if compared to those
of the two sublaminates. The real situation comes close to the limiting
case discussed before. The deflections shown in Figure 4.5 indicate that
the stiffness is highest for the most excentric position of the viscoelastic
layer shown at the right in Figure 4.4. This we explain by the fact that
the bending stiffness increases with the third power of the CFRP layer
thickness.

Table 4.3: Dtotal11 as a function of z

z D
lower
11 D

upper
11 D

total
11

0 1 1 2
h/12 0.423 1.866 2.289
h/6 0.126 3.385 3.511
h/4 0.016 5.336 5.352

VM

00 00
00 00

00
00

00
00

VM
VM

VM

z=0

zVM=0 zVM=h/12 zVM=h/6 zVM=h/4

Figure 4.4: Position of the viscoleastic layer in the laminate
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Figure 4.5: Effect of the position of the VM on the normalized deflection
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Figure 4.6: Deformation of the sublaminates considered as decoupled with
the same bending curvature

4.4.2 Effect of the material properties of the viscoelas-
tic layer

In Figure 4.7, the normalized deflection is presented as a funtion of the
of EVM ranging from 0.1 MPa to 1 GPa. As the core layer becomes
stiffer, the whole laminate is also getting stiffer which reduces its deflec-
tion. An asymptotic behaviour is also observable for lower and larger
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Young’s moduli. In these regions changing this parameter does not signif-
icantly change the deflection values. The increase of bending stiffness is
also due to coupling between the lower and upper laminate which increases
with increasing the core stiffness.
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Figure 4.7: Effect of the E-modul of the core layer on the normalized
deflection

The phenomena is presented in Figures 4.8, 4.9 and 4.10. The shear
strain distribution is plotted respectively for EVM=1 MPa, EVM=100
MPa, EVM=1000 MPa. One can see that the normalized transverse shear
stress values in the compliant layer increase to reach the maximal value
occuring in the lower and upper laminates. Therefore, these are more and
more coupled. Additionally, the exact and FEM solutions converge to the
CPT one by increasing the core layer stiffness.
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Figure 4.8: Normalized transverse shear stress for EVM=1 MPa at x = 0

0 5 10 15 20 25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ [−]

z
[−

]

 

 

Exact solution
FEM solution
CPT solution

Figure 4.9: Normalized transverse shear stress for EVM=100 MPa at x =
0
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Figure 4.10: Normalized transverse shear stress for EVM=1000 MPa at x
= 0
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Figure 4.11: Effect of the core thickness on the normalized deflection
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4.4.3 Effect of the thickness of the viscoelastic layer

In this section, the effect of the thickness of the core layer is investigated.
In Figure 4.11, the normalized deflection is presented as a function of hc,
the thickness of the inner layer.

hc = αhf (4.9)

where hf is the thickness of the face sheets and α is ranging from 0.25 to
5. One can see that the deflection decreases with the core thickness. In
other words, the bending stiffness increases. This effect can be explained
using the linear sandwich beam theory. For a two-dimensional beam, the
total bending stiffness is defined as

Btotal = Btotalface +Bcore (4.10)

with

Btotalface = Bface +BSteiner (4.11)

whereBSteiner is the bending stiffness calculated with the Huygens-Steiner
theorem. Bface, BSteiner and Bcore are respectively defined with

Bface =
Efh

3
f

6
(4.12)

BSteiner = Efhfd
2

2
(4.13)

Bcore = Ech
3
c

12
(4.14)

with

d = hf + hc (4.15)
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where Ef is the Young’s modulus of the the face sheet, Ec is the Young’s
modulus of the core, hc is the core thickness. Using values of Table 4.4,
one obtains the results in Figure 4.12.

Table 4.4: Data to calculate the bending stiffness of the beam

Property Value
Ef [MPa] 173 000
Ec [MPa] 1
tf [mm] 0.33
α from 0.25 to 5

The overall beam bending stiffness is driven by the one calculating
using the Huygens-Steiner theorem. As the core stiffness is negligible,
the total bending stiffness increases with the distance between the middle
line of the whole laminate and the middle line of the face sheet, which
increases with the core thickness.
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Figure 4.12: Bending stiffness of the two-dimensional beam using the
linear sandwich theory
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Figure 4.13: Normalized transverse shear stress for S=10 at x = 0

4.4.4 Effect of the span-to-depth ratio

Figures 4.13, 4.14 and 4.15 illustrate the effect of the span-to-depth ra-
tio S on the normalized transverse shear stress distribution. For small
span-to-depth ratio (S=10), the transverse shear stress approaches zero
everywhere in the viscous layer. Additionally, the transverse shear stress
distribution is not symmetric. The maximal stress value is observed in
the upper sublaminate. This is explained by the fact that the loading is
applied only to one side of the laminate and that the viscous layer has
low stiffness also in the thickness direction (contrary to the assumption
underlying the limiting case consideration in section 4.4.1), both of which
show their effects for small S ratio. Then, the exact and FEM solutions
converge to the CPT one for larger S values.

4.5 Conclusion

In this chapter, Pagano’s exact solution has been used as a benchmark for
the validation of a finite element model of a laminate with a viscoelastic
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Figure 4.14: Normalized transverse shear stress for S=50 at x = 0
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Figure 4.15: Normalized transverse shear stress for S=500 at x = 0
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core. A convergence analysis of the FEM model has provided an optimal
mesh refinement to closely approach the exact solution. In a second step,
a parametric study has been realized. The design parameters were the
position of the viscoelastic layer in the laminate, the material properties
of the damping layer, its thickness and the structure dimension. The goal
was to assess the impact of the viscoelasic material on the mechanical
behaviour of the structure, such as the bending stiffness and the transverse
shear stress. For the first parameter, it has been shown that the bending
stiffness can be increased of about 60% when the compliant viscous layer
is away from the middle line of the beam. The classical plate theory
shows that one can neglect the stiffness of the soft core layer. Therefore,
the lower and upper sublaminates can be considered as decoupled. The
effect of the material properties of the damping layer has revealed that the
decoupling effect can be strongly reduced when its modulus of elasticity
is increased. An asymptotic behaviour is also observed. The impact of
the middle layer thickness on the deflection has been explained using the
Huygens-Steiner theorem. As the distance between the middle line of the
whole laminate and the one of the lower and upper sublaminates increases
with core thickness, the resulting bending stiffness decreases. Finally, the
effect of the span-to-depth ratio has been studied. By increasing the
length of the laminate, the decoupling between the two sublaminates is
reduced. As a consequence, the predictions of Pagano’s exact solution
and the FEM model converge to those obtained from the classical plate
theory.





Chapter 5

Parametric study on
composite plates with
integrated damping layers

In this chapter, a parametric study on composite laminates with inte-
grated damping layers is performed. The effect of the viscoelastic layer
on the mechanical and dynamic responses of the laminated structure is
assessed. Basic rules for the design of composite plates with embedded
damping treatments are extracted.

5.1 Introduction

This chapter continues with the study on the integration of viscoelastic
damping layers in composite laminates. The previous chapter showed
that the presence of a soft isotropic layer in the lay-up decouples the
laminate in two sublaminates from a bending stiffness perspective. The
main limitation of chapter 4 is that only a laminate under a bending
configuration was considered. To have a complete understanding about
the influence of the damping layer on the mechanical response of composite
laminates, it is necessary to consider other load cases and mechanical
criteria. The questions arising for the design of a composite structure
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with embedded damping layers are the following:

• What is the change of stiffness, structural strength and stability
compared to a laminate without damping treatment?

• Which design variables of the damping layer can simultaneously
improve the mechanical and vibration damping properties of the
laminate?

The answers can help to extract basic design rules for composite lami-
nates with embedded damping layers. In order to reach this objective,
a parametric study is performed. A composite laminate with an inte-
grated damping layer is considered. Each design variable of the damping
layer is varied separately and the change in terms of stiffness, structural
strength, stability and vibration damping properties is calculated. Section
5.2 describes the composite structure of interest. An insight is given on
the integration of the soft layer in the laminated structure. The different
mechanical load cases are introduced in section 5.3. The results of the
parametric study are presented in section 5.4. A discussion is done in
section 5.5.

5.2 Structure of interest

The structure of interest is a composite laminated plate with an integrated
viscoelastic layer. In contrast to chapter 4, the plate which is considered
here can be subjected to more load cases than a beam. For example, it is
possible to study the in-plane shear properties of the laminate. The plate
is 300 mm long and 100 mm wide. It consists of 8 composite layers with
a thickness of 0.30 mm each. The damping layer is embedded like in a
sandwich configuration between two sublaminates as presented in Figure
5.1, implying that the damping layer has the same length and width than
the plate. The damping layer thickness is 0.25 mm. The elastic properties
of an unidirectional carbon fiber layer are given in Table 5.1.
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z Upper sublaminate

Lower sublaminate

Damping layer

x

Figure 5.1: Integration of the damping layer

Table 5.1: Material properties of the unidirectional carbon fiber layer [79]

Property Value
Ex 135000.0 MPa
Ey 10000.0 MPa
Gxy 5000.0 MPa
Gyz 3846.0 MPa
νxy 0.27
νyz 0.30
ρ 1500.0 kg/m3

Fiber volume fraction 60%

Table 5.2: Material properties of the damping layer [80]

Property Value
G 1.0 MPa
ν 0.49
ρ 1000.0 kg/m3

η 0.5
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From [6, 9, 10, 11], it was shown that the damping properties of com-
posite laminates, like stiffness properties, depend of the fiber orientation.
As the damping properties of the composite layer are small compared to
those of the damping material, it is assumed that the damping properties
of the composite layers are the same in all directions. A value of 0.015 is
taken [81]. The material properties of the damping layer are presented in
Table 5.2. They are assumed to be constant over the frequency. A finite
element model of the plate above described is done using the commer-
cial software ANSYS. Each layer is modelled using SOLID183 elements
as described in section 2.4.4.2.

5.3 Load cases

In this section, the different load cases, design criteria and reference con-
figuration are presented, namely:

• 3-point bending;

• In-plane compression;

• In-plane shear;

• Combined in-plane compression and shear;

• Vibration damping.

5.3.1 3-point bending

The influence of the viscoelastic layer on the laminate’s deflection and
maximal flexural force is evaluated by loading the plate to simply-supported
boundary conditions. A normal force of 100 N is applied according to Fig-
ure 5.2. The design criteria are the maximal deflection, denoted as wmax,
at the middle of the plate and the maximal flexural force, denoted as
Pz,max. It is the required force to obtain a strain of 0.3 % in the lam-
inate. The strain value taken to calculate Pz,max is the strain in the
x-direction in the middle of the plate at z=0 and x = 0.15 m.
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Pz

X

Z

u = u = 0y z

u = 0
x

w     & εmax x

Figure 5.2: Plate in a 3-point bending configuration

Figure 5.3 shows the related FE model used for this load-case. On all
edge nodes, no displacement is the z-direction is enable.

Figure 5.3: Finite element model of the plate under a 3-point bending
load case

5.3.2 Stability

The stability properties of the laminate are investigated for three different
load cases: in-plane compression, in-plane-shear and combination of in-
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plane compression and shear. The boundary conditions are presented in
Figure 5.4. At y = 0 mm, the plate is clamped. At y = 100 mm, the
displacement along the z-axis is disabled. The displacements along the x-
and y-axis of all the nodes on this edge are coupled with the cp command
in ANSYS. At the short edges, all displacements of the nodes along the
z-direction are specified to zero. In addition, the displacements along the
y-axis at both of these edges are coupled. For the in-plane compression,
Nx is equal to 0 N and Ny is equal to 1 N. For the in-plane shear, Nx is
equal to 1 N and Ny is equal to 0 N. For the combined configuration, both
Nx and Ny are equal to 0.5 N. For the three load cases, the design criteria
are the critical forces: Ncomp,cr, Nshear,cr and Ncombi,cr. These are the
forces at which the plate looses its stability and they are calculated by
performing an Euler-type eigenvalue buckling analysis.

X

Y

Nx

u = u = u = 0x zy

u = 0 z
 u = 0

 u = 0  / cp,u  / cp,u z

z

x y

 cp,u y

Ny

Figure 5.4: Plate subjected to an in-plane compression and shear loading

Figure 5.5 shows the finite element model and the boundary conditions
for the compression case. The force is applied on the upper right corner
through the laminate thickness. The constraining equations at y = 0.1 m
cause all nodes to undergo the same displacement ux and uy. The green
lines show that the nodes at x = 0 and x = 0.3 m are nodes with identical
y-position having the same uy displacement.
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Figure 5.5: Finite element model of the plate under the compression load
cases

5.3.3 In-plane stiffness

In-plane compression loading

The plate configuration is the same than the one described in Figure
5.4. The stiffness of the plate under this load case is evaluated with the
stiffness constant, kcomp, defined as

kcomp = Ny
ΔLy

(5.1)

with Ny being the absolute applied force as shown in Figure 5.4 and ΔLy
the displacement along the y-axis.

In-plane shear loading

The plate configuration is the same as the one described in Figure
5.4. The stiffness of the plate under this load case is evaluated with the
stiffness constant, kshear, defined as
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kshear = Nx
ΔLx

(5.2)

with Nx being the absolute applied force as shown in Figure 5.4 and ΔLx
the displacement along the x-axis.

5.3.4 Vibration damping

In order to evaluate the vibration damping performance of the laminated
plate, the structure is assumed to be under free-free boundary conditions.
A modal and harmonic analysis are performed to estimate, respectively,
the eigenfrequency and the modal loss factor. The latter is calculated
using the modal strain energy method.

5.3.5 Reference configurations and design criteria

In order to quantify the effect of the damping layer on the mechanical
and vibration damping properties of the laminate, it is necessary to define
reference values for each design criteria. Table 5.3 summarizes the load
cases, the reference values and the design criteria which are presented in
terms of normalized values, denotes with (X). Two reference laminates
are considered:

Reference I

For the load cases: 3-point bending, in-plane compression, in-plane
shear and combined in-plane compression and shear, the reference lami-
nate is made of 8 composite layers with the following stacking sequence:
[0/90,±45,0/90,±45]s. The plate is 300 mm long and 100 mm wide.
There is no viscoelastic layer in the lay-up. This reference is named I.
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Reference II

For the vibration damping case, the reference laminate has the follow-
ing lay-up: [0/90,±45,0/90,±45] + damping layer + [±45,0/90,±45,0/90].
The damping layer is integrated according to Figure 5.1 and it has a thick-
ness, hd, of 0.25 mm. The plate is 300 mm long and 100 mm wide. This
reference configuration is named II.
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5.4 Parametric study

The parametric study is divided in two parts. In the first part, the con-
sidered laminate is the one presented in Figure 5.1. The design variables
are:

• Damping layer thickness, hd;

• Position of the damping layer in the laminate lay-up. The different
positions are presented in Figure 5.6. VM stands for Viscoelastic
Material.

0/90 0/90 0/90 0/90 0/90

0/90 0/90 0/90 0/90 0/90

±45 ±45 ±45 ±45 ±45

±45 ±45 ±45 ±45 ±45

±45

±45 ±45 ±45 ±45

±45 ±45 ±45

±45 ±45

0/90 0/90 0/90 0/90

0/90

0/90 0/90

0/90 0/90 0/90

VM

VM

VM

VM

VM

1 2 3 4 5

Figure 5.6: Position of the viscoelastic layer in the laminate

• Damping layer material properties, Gd and ηd;

• Length of the plate, l.

In the second part of the parametric study, the effect of the length
of damping layer is investigated. As it does not cover the entire plate’s
surface, the damping layer can be integrated in two ways: with closed
edges or with open edges. Figure 5.7 presents the considered integration
solutions. The damping layer width is equal to the plate’s width.
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ld

ld

Viscoelastic material

a.)

b.)

Figure 5.7: Damping layer integrated with closed (a.) and open (b.) edges

Table 5.4 summarizes the parametric study.
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5.4.1 Influence of the damping layer thickness

In this section, the influence of the thickness of the damping material layer
on the different design criteria is presented.

Normalized deflection and in-plane stiffnesses

The effect of the thickness on the normalized deflection and in-plane
stiffnesses is presented in Figure 5.8. The in-plane stiffnesses do not vary
with a damping layer thickness change. The viscoelastic layer separates
the laminate in two sublaminates and each of them is loaded with half
of the total force. An increase of the damping layer thickness simply
implies an increase of the distance between the two sublaminates. The
normalized deflection remains lower than its reference for all thickness
values. First, it decreases from hd = 0.1 mm to hd = 0.65 mm where
the normalized deflection reaches a reduction of 23%. In this thickness
range, the shear deformation in the damping layer is so large that the total
bending stiffness of the plate is reduced. From hd = 0.65 mm to hd =
2.5 mm, w increases again. In this thickness range, the shear deformation
in the damping layer is very small and the ’Huygens-Steiner’ effect is
preponderant, see section 4.4.3. The overall bending stiffness increases
with the distance between the mid-plane of the whole laminate and those
of the sublaminates, which increases with the damping layer thickness.

Normalized maximal flexural and critical forces

The effect of the damping layer thickness on the maximal flexural and
critical forces is shown in Figure 5.9. The normalized maximal flexural
force has, qualitatively, the same behaviour than the normalized deflec-
tion. For hd ranging from 0.1 mm to 0.2 mm, P z,max decreases until the
reduction compared to the reference is 10%. Then, it increases again.
At a damping layer thickness of 1.1 mm, P z,max is equal to its reference
and at hd = 2.5 mm, the increase of maximal flexural force is 20%. For
the critical forces (N comp,cr, Nshear,cr and N combi,cr), the presence of the
damping layer reduces their values along the thickness range. The reduc-
tion compared to their respective reference is at the lowest for hd equal
to 0.1 mm. For this thickness value, N comp,cr, Nshear,cr and Ncombi,cr
are reduced of 69%. The function of the damping layer is only to main-
tain the sublaminates parallel to each other. In stability problem, both
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Figure 5.8: Effect of the damping layer thickness on the normalized de-
flection and in-plane stiffnesses

sublaminates remain equally long. This is different to a bending situation
where the lower and upper sublaminates are extended and compressed,
respectively. Considering the selected load introduction (see Figure 5.5),
it results that the buckling behaviour of the plate is similar to that of one
sublaminate. Hence, the critical forces are significantly reduced compared
to their reference values.

Vibration damping

Figure 5.10 shows the effect of the damping layer thickness on the
normalized modal loss factors for the first 4 bending modes. The increase
of weight is also presented. The normalized weight is defined as

m = m
ref

m
(5.3)
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Figure 5.9: Effect of the damping layer thickness on the maximal flexural
and critical loads

where mref is the plate’s weight without damping treatement. m is the
weight of the structure with a damping layer of thickness going from 0.1
mm to 2.5 mm. For decreasing m, the total weight is increasing. For
mode 1 and 2, the loss factor increases with the damping layer thickness.
At hd = 2.5 mm, η1 is twice as large as its reference and η2 is increased by
15%. For mode 3 and 4, the modal loss factors decrease until a minimum
is reached and then they increase again. At these modes, the wavelength
of the mode shape is 3 and 4 times smaller than that of the bending
mode 1, respectively. Therefore, the damping layer strongly decouples
the lower and upper laminates. It has the consequence that the thinner is
the damping layer the larger is the shear strain deformation. The effect is
illustrated in Figure 5.11. One can see that the shear strain is larger for
hd=0.1 mm than for hd=2.5 mm. Above a given thickness value, η3 and
η4 increase again because the reduction of shear strain is compensated
by the fact that more and more damping material is added to the plate.
The effect of the damping layer thickness on the normalized resonance
frequency values is presented in Figure 5.12. All resonance frequencies
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Figure 5.10: Effect of the damping layer thickness on the normalized
modal loss factors

decrease with hd as the weight of the plate increases much more than its
bending stiffness. The resonance frequency of the first mode is reduced
by 15 % and the resonance frequencies of the other three bending modes
are reduced by approximately 25 % for hd equal to 2.5 mm. Additionally,
increasing the damping layer thickness has for effect to reduce the bending
curvature of all modes. This effect is shown in Figure 5.13. It compares at
the first bending mode for hd = 0.25 mm and hd = 2.5 mm the amplitude
of vibration in the z-direction. One can that the amplitude is larger for
the thinner case.
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Figure 5.13: Effect of the damping layer thickness on the amplitude of
vibration

5.4.2 Influence of the damping layer position

Normalized deflection and in-plane stiffnesses

Figure 5.14 presents the normalized deflection, compression and shear
stiffnesses as a function of the damping layer position. For w, the further
the damping layer is away from the neutral axis of the plate, the larger is
its bending stiffness. This phenomena has been explained in section 4.4.1.
At position 1, the reduction of w is of 16% compared to the reference. At
position 5, w is very close to its reference. In the latter case, the damp-
ing layer is simply laid on the surface of the laminate. For the in-plane
compressive and shear stiffnesses, the damping layer has no effect. As its
stiffness is much smaller than those of the sublaminates, it is negligible.

Normalized maximal flexural and critical forces

Figure 5.15 presents the effect of the damping layer position on the
maximal flexural and critical forces. The best position of the damping
layer under all of these criteria is when it is bonded on the surface of the
laminate (position 5). P z,max increases as the damping layer moves away



114
Chapter 5. Parametric study on composite plates with integrated

damping layers

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Damping layer position [-]

[-
]

 

 

w
kcomp

kshear

Figure 5.14: Effect of the damping layer position on the normalized de-
flection and in-plane stiffnesses

from the mid-plane of the laminate. It is due to the fact that bending
stiffness of the plate increases with the increase of thickness of the lower
laminate (as explained in chapter 4). The critical forces also increase as
the damping layer is moved away from the mid-plane of the plate. As
explained in section 5.4.1, the function of the damping layer is just to
maintain the sublaminates parallel to each other. Hence, the buckling of
the plate is similiar to the one of the thicker sublaminate. By increasing
the thickness of one of those, it also improves the buckling properties of
the whole laminate.

Vibration damping

The effect of the damping layer position on the normalized modal
loss factors for the first four bending modes is presented in Figure 5.16.
One can see that the modal loss factor reduces as the damping material
is moved away from the mid-plane of the plate. Because the shear de-
formation in the soft layer depends of the stiffness and thickness of the
contraining layers, the shear strain in the damping material is reduced as
the stiffness and thickness of one of the sublaminates decreases by moving
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Figure 5.15: Effect of the damping layer position on the maximal flexural
and critical forces

the core layer away from the laminate mid-plane. This effect is illustrated
in Figure 5.17. The shear strain distribution along the x-axis is displayed
from x = 0.15 mm to 0.25 mm for the first bending mode. One can see
that the shear deformation reduces as the damping treatment is moved
away from the plate’s mid-plane. Moreover, the maximum of shear strain
does not occur at the plate’s edge. It is due to the fact that the shear
forces are proportional to the first derivative of the curvature, which tends
to zero approaching the plate’s edge as illustrated in Figure 5.18
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Figure 5.18: Deflection line of the plate at the first bending mode

5.4.3 Influence of the damping material parameters

In this section, the effect of the material properties of the damping layer
on the different design criteria is presented.

Normalized deflection and in-plane stiffnesses

Figure 5.19 presents the normalized deflection and in-plane stifffnesses
as a function of Gd. w increases with increasing the damping layer shear
modulus. For Gd larger than 2 108 Pa, the normalized deflection is greater
than the reference value. One can also see that w has an asymptotic be-
haviour. For Gd larger than 108 Pa, w does not increase significantly. The
augmentation of normalized deflection is of 32% over its reference. The
in-plane compression and shear stiffnesses remain equal to their respective
reference values throughout the considered range. As the damping layer
stiffness is so small compared to the one of the composite laminate, it has
no effect on the in-plane stiffnesses of the whole plate.

Normalized maximal flexural and critical forces

The effect of the damping layer shear modulus on the normalized flex-
ural and critical forces is presented in Figure 5.20. For all criteria, they
increase as the shear modulus of the damping layer increases. For Gd
larger than 2.7 107 Pa, P z,max is larger than its reference. For Gd larger
than 6.5 107 Pa, Ncomp,cr is larger than its reference. For Gd larger than
1.3 108 Pa, Nshear,cr is larger than its reference. For Gd larger than 9
107 Pa, N combi,cr is larger than its reference. One can also see that the
critical forces have an asymptotic behaviour. From Gd = 105 Pa to Gd =
106 Pa, the changes of N comp,cr, Nshear,cr and N combi,cr are very small
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Figure 5.19: Effect of the shear modulus of the damping layer on the
normalized deflection and in-plane stiffnesses

compare to their changes for Gd going from 106 Pa to 107 Pa. For very
soft damping layer, a change of the shear modulus has no effect of the
buckling behaviour of the plate. The damping layer just keeps the two
sublaminates always parallel to each other.

Vibration damping

The effect of the variation of the shear modulus and material loss
factor on the normalized resonance frequency and loss factor is presented
for the first bending mode in Figure 5.21. The normalized resonance
frequency, f , increases as the stiffness of the damping layer increases until
an asymptote is reached. One can also see that for each material loss
factor, there exists a shear modulus value that maximizes the modal loss
factor. Figure 5.22 shows the effect of the dynamic shear modulus for the
first four bending modes. The material loss factor remains equal to 0.5.
For each mode, there is an optimal value for the dynamic shear modulus.
With increasing frequency, the viscoelastic material needs to be stiffer to
be more efficient.
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Figure 5.20: Effect of the shear modulus of the damping layer on the
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5.4.4 Influence of the length of the structure

In this section, the effect of the length of the plate, l, on the different
design criteria is presented.

Normalized deflection and in-plane stiffnesses

Figure 5.23 presents the normalized deflection and stiffnesses as a func-
tion of the length of the plate. The normalized deflecion decreases with
increasing the length of the structure. As the internal bending moment in-
creases, at constant force, with l, the maximal deflection, wmax increases.
As w is inversely proportional to wmax, w decreases with l. It is important
to note that w is not equal to 1 at l = 0.25 m. This is also visible in Figure
5.8 at hd = 0.25 mm. It comes from the fact that the reference deflection
value is calculated for a laminate without damping treatment and a lam-
inate with an integrated damping layer is considered in the parametric
study. For the in-plane compression and shear stiffnesses, they increase
with an increase of the plate’s length. As the plate becomes longer and



5.4. Parametric study 121

the applied force remains constant, the applied stress decreases. Therefore
kcomp and kshear increase with l.
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Figure 5.23: Effect of the length of the structure on the normalized de-
flection and in-plane stiffnesses

Normalized maximal flexural and critical forces

Figure 5.24 presents the effect of the length of the structure on the
maximal flexural and critical loads. P z,max decreases as the length of the
plate increases. It comes from the fact that the bending moment increases
with increasing the length of the plate. This leads to an increase of the
longitudinal strain and a reduction of P z,max. Considering the boundary
conditions, the plate is clamped at y = 0 and loaded in the x-direction
at y = 100 mm. If the plate is getting longer, the required force to reach
instability also increases.

Vibration damping

Figure 5.25 shows that the modal loss factor decreases with increasing
the plate’s length. It was shown in chapter 4, the damping layer tends to
decouple the sublaminates. They can be considered as two separate bodies
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with the same bending curvature. This leads to a high shear deformation
in the core layer. By increasing the plate’s length, the decoupling effect
is reduced. Hence, the shear deformation in the damping layer decreases.
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Figure 5.24: Effect of the length of the structure on the maximal flexural
and critical forces

5.4.5 Influence of the length of the damping layer

In this section, the effect of the length of the damping treatment is in-
vestigated on the different design criteria. The length of the viscoelastic
material, ld, is defined in Figure 5.7. Two configurations are considered:
one with closed edges (configuration a) and one with open edges (config-
uration b). Additionally, the width of the damping layer remains equal
to the one of the plate. The results are presented as a function of the
normalized damped length ld. It is defined as

ld = ld
l

(5.4)

where l is the length of the plate.
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Figure 5.25: Effect of the length of the structure on the normalized modal
loss factor of the first bending mode

Normalized deflection and in-plane stiffnesses

Figure 5.26 presents the effect of the damping layer length on the
normalized deflection and in-plane stiffnesses. For the closed edge con-
figuration, w is larger than the reference along the all range of the ld.
At ld = 0.4, w reaches a maximum. It is 20% higher than its reference.
This integrated solution is like a reinforcement to the plate resulting in
an increase of the bending stiffness. For the open edge configuration, w
increases with ld from a reduction of 62% at ld=0.2 to a reduction of
27% at ld=0.8. It is due to the Huygens-Steiner effect. With increasing
ld, this effect is more and more important providing an increase of the
bending stiffness. For the in-plane stiffnesses, they remain constants for
both integration configuration throughout the all rane. This confirms that
the damping layer does not have any effect on the in-plane stiffnesses of
the plate. For the open edge configuration, kcomp and kshear are reduced
compared to their respective references by 3% and 8%. This reduction
comes from the fact that the lower and the upper laminate at the edges
of the damping treatment are not connected.
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Normalized maximal flexural and stability forces

Figure 5.27 presents the effect of the length of the damping layer on
the maximal flexural force considering closed and open edge configura-
tions. Better results are obtained with closed edges. However, P z,max
with closed edge and P z,max converge to the same value with increasing
ld. As the edges of the damping layer move away from the center of the
plate with increasing ld, they have less and less influence on the maximal
flexural force. As one can see in Figure 5.28, the normalized critical forces
decrease with ld for both configuration. Both, the open and closed config-
urations endure similar critical force values. This can be explained with
the influence of boundary conditions. As all the nodes are coupled at y =
100 mm, the upper laminate constraining the damping layer also carries
part of load applied to the plate regardless of the edge configuration.
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Figure 5.26: Effect of the normalized damped length on the normalized
deflection and in-plane stiffnesses

Vibration damping

The effect of the damping layer length on the normalized modal loss
factor at the first mode is presented in Figure 5.29. For both configura-
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Figure 5.27: Effect of the normalized damped length on the normalized
flexural forces

tions, the modal loss factor increases with ld. For configuration b.), a high
shear deformation occurs at the free edges of the damping layer resulting
in a higher loss factor. One can also see that there exists an optimal length
of the damping layer that maximizes the modal loss factor. The effect is
observed and explained in section 5.4.2. At ld = 0.7, the increase of loss
factor is of 20% for the open edge configuration. For the closed edge case,
η1 increases with ld but is always lower than its reference value. At ld =
0.8, the reduction is of 46%.
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5.5 Design guidelines

A parametric study has been performed to investigate the effect of an
integrated damping layer on the mechanical and dynamic responses of
a composite laminate. The design variables of the damping layer were:
its thickness, its material properties, its position in the lay-up, and its
length together with the integration configuration. The mechanical and
damping properties of the laminate were asssessed with the following cri-
teria: normalized deflection, in-plane compression and shear stiffnesses,
maximal flexural load, critical forces in compression, shear and combined
compression-shear and modal loss factors.

First, the material properties of the damping layer are the design vari-
ables that influence the most the normalized deflection, maximal flexural
and critical forces, and loss factors. Nonetheless, there are bounds to the
effect of these design variables. Above 108 Pa, a change of Gd does not sig-
nificantly influence the normalized deflection and maximal flexural force.
The normalized critical forces are affected by a change of the damping
layer shear modulus if it stays within the range 106 - 109 Pa. The modal
loss factors are affected by a change of Gd if it stays within the range 105

- 108 Pa. The material loss factor can be as high as possible to obtain the
highest modal loss factors.

The damping layer thickness can be used to increase the normalized
deflection, the maximal flexural force and the damping rate of the lami-
nate. The thickness can be as large as possible.

The study on the damping layer position shows that it should be placed
in the middle of the laminate lay-up to obtain high vibration damping
properties and it should be placed as far away as possible from the plate’s
mid-plane to obtain high mechanical performances.

The damping layer should be integrated with closed edge and it should
be as short as possible to obtain the highest normalized deflection, maxi-
mal flexural and critical forces. The damping layer should be integrated
with open edges and should be significantly long to have high damping
properties. However, the influence of the integration solution has to be
considered together with the plate’s length. It was shown in a previous
chapter that the damping layer tends to decouple the sublaminates for
small length-to-thickness ratio. This decoupling effect reduces with in-
creasing the length of the plate. Hence, the difference of mechanical and
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damping properties between the closed and open edges configurations re-
duces as the plate is getting longer. Hence, the choice of configuration
ceases to have an influence on the performance of thin plates.

Finally, the in-plane stiffnesses of the laminate are not influenced by
the presence of the damping layer.

Table 5.5 summarizes the required values for the different design vari-
ables to obtain at least the same values as the reference. DL stands for
Damping Layer. NE (No Effect) means that this design variable has no
effect on the design criteria. CR (Criteria Reduced) means that, for any
value of the design variable, the design criteria is reduced compared to its
reference. The primary design rules that can be extracted from Table 5.5
are:

• The damping layer should be integrated with closed edges and it
should be short and placed as far away as possible from the mid-
plane of the laminate to obtain good structural properties.

• The damping layer should have open edges, it should cover more
than 45 % of the plate’s surface and it should be placed in the
middle of the laminate lay-up to reach good vibration damping per-
formances.

For the design of composite laminates with integrated damping layer
with closed edges along its length, the additional design rules are:

• If the objective is to achieve high bending properties, hd has to be
larger than 2.5 mm, Gd has to be larger than 2.7 106 Pa and ld has
to be smaller than 0.1 m to reach the reference value.

• If the objective is to obtain good stability, Gd has to be larger than
1.3 108 Pa.

Using the design variable values that would provide at least the same
mechanical properties than the reference, namely:

• hd = 2.5 mm;

• Gd = 1.3 108 Pa;
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• ηd = 0.5;

• ld = 0.1 m;

the modal loss factor of the laminate with closed edge damping layer is
2.5% and the modal loss factor of the laminate with open edge damping
layer is 8.0%. Using the same damping layer characteristics, the closed
edge integration concept can introduce only much smaller amounts of
damping than the classical constrained layer damping treatment config-
uration (open edges). Hence, the design of such structure is based on a
trade-off between mechanical and vibration damping performances. This
will be quantified by using parameter optimization as presented in the
next chapter together with the weight impact of the damping treatment.
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Chapter 6

Performances of
composite laminates with
viscoelastic damping
treatments

In this chapter, the performances of constrained layer damping treatment
and integrated layer damping treatment are compared. The comparison
is based on mechanical, damping and weight criteria with the goal to
identify the design solution which provides the best trade-off.

6.1 Introduction

This section deals with the design optimization of composite laminates
with integrated damping layers. In chapter 5, a parametric study has been
performed with the goal to establish a guideline for composite laminates
with integrated damping treatments. It was shown that, using the same
damping layer design properties, a composite laminate with a constrained
layer damping treatment (open edees) always provides better damping
performances than a composite laminate with integrated damping layer.
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That said, the next question arising is the following:

• How large has to be the change of weight and mechanical properties
for the composite laminate with integrated damping layer to reach
the same damping performance than a composite laminate with a
constrained layer damping treatment?

The objective of this chapter is to quantify for different mechanical
criteria the trade-off with vibration damping properties and weight. The
approach is the following:

1. A reference composite laminate without damping treatment is used
to define reference values for the different mechanical criteria.

2. A composite laminate with a constrained layer damping treatment is
considered. The dimensions and material properties of the damping
treatment are optimized in order to minimize the weight of the plate
and to obtain, at least, the same mechanical properties than the
reference laminate and 10% of damping rate.

3. A composite laminate with an integrated damping treatment is con-
sidered. The dimensions and the material properties of the damping
treatment are optimized in order to minimize the weight of the plate
and to obtain, at least, the same mechanical properties than the ref-
erence laminate and 10% of damping rate.

A comparison of the results from step 2 and 3 will allow to conclude on
the sensitivities of the laminate properties on the design configuration of
the damping treatment (either constrained layer damping or integrated
layer damping). Section 6.2 presents the reference laminate, the different
mechanical criteria and their reference values. Section 6.3 deals with the
composite laminate with a constrained layer damping treatment. Sec-
tion 6.3.1 details the composite structure and explains the optimization
method. The results are presented in section 6.3.2. Section 6.4 deals
with the composite laminate with an integrated damping layer treatment.
Section 6.4.1 presents the structure of interest. The results are listed in
section 6.4.2. A conclusion is given in section 6.5.
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6.2 Reference laminate

The reference laminate is the same as the reference used in chapter 5. It
is a composite laminated plate that is 300 mm long, 100 mm wide and is
made of 8 layers with the following stacking sequence: [0/90,±45,0/90,±45]s.
Each layer has a thickness of 0.30 mm. Their material properties are also
the same than the ones used in chapter 5 (see Table 5.1). The mechanical
criteria are the following:

• Deflection, w;

• In-plane compression stiffness, kcomp;

• In-plane shear stiffness, kshear ;

• Maximal flexural force, Pz,max;

• In-plane compressive critical force, Ncomp,cr;

• In-plane shear critical force, Nshear,cr;

• Combined compression and shear critical force, Ncombi,cr.

The boundary conditions are detailed in chapter 5. Table 6.1, 6.2
and 6.3 summarize, respectively, the reference values for the stiffness,
structural strength and stability criteria.

Table 6.1: Reference values for the stiffness criteria

Deflection w [mm] -9.47
In-plane compressive stiffness kcomp [N/mm] 336220

In-plane shear stiffness kshear [N/mm] 119602

Table 6.2: Reference values for the structural strength criteria

Maximal flexural force Pz,max [N] 200
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Table 6.3: Reference values for the stability criteria

In-plane compression Ncomp,cr [N] 70158
In-plane shear Nshear,cr [N] 142976

Combination shear and compression Ncombi,cr [N] 124939

6.3 Composite laminate with constrained layer
damping treatment

In this section, the trade-off between weight, mechanical and damping
performances for a composite plate with constrained layer damping treat-
ment is investigated.

6.3.1 Structure of interest

The structure of interest is a quasi-isotropic composite laminate on top
of which is bonded a constrained layer damping treatment. The load-
carrying plate is 300 mm long and 100 mm wide. It consists of 8 lay-
ers. The stacking sequence is the following: [0/90,±45,0/90,±45]s. Each
composite layer is 0.30 mm thick. Their material properties are the those
given in chapter 5. Figure 6.1 shows the laminate with constrained layer
damping treatment. It also presents the design variables considered for
the optimization. The vector of design variable is defined as follows

{x} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hd
ld
wd
Gd
ηd
hcons

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.1)

where hd is the thickness of the damping layer, ld its length, wd its width,
Gd its shear modulus, ηd its loss factor and hcons is the thickness of the
constraining layer which is made of aluminium. As explained in section
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6.1, the goal of the optimization is to minimize the weight of the plate and
to have, at least, the same mechanical performance as the reference and
10% of damping rate. Constraints are also placed on the design variables
in order to obtain realistic values. The objective function is transformed
using the exterior penalty method to take into account the constraints. It
can be written as follows

p ({x} , R) = min (weight) +R× (max (0, Aref −A)2 +
max (0, ηmin − η)2 +max (0, η − ηmax)2 +
max (0, hd,min − hd)2 +max (0, hd − hd,max)2 +
max (0, ld,min − ld)2 +max (0, ld − ld,max)2 + (6.2)
max (0, wd,min − wd)2 +max (0, wd − wd,max)2 +
max (0, Gd,min −Gd)2 +max (0, Gd −Gd,max)2 +
max (0, ηd,min − ηd)2 +max (0, ηd − ηd,max)2 +
max (0, hcons,min − hcons)2 +max (0, hcons − hcons,max)2 )

R is the penalty factor and it is equal to 103. With this penalty fac-
tor value, one obtains a violation of the design domain of 1%. The first
element of the constraining function is used to enforce the considered me-
chanical criteria, noted A in Equation 6.7, to be better than its reference,
noted Aref in Equation 6.7. The second and the third elements are used
to impose that the modal loss factor reaches 10%. ηmin and ηmax are,
respectively, equal to 9.99% and 10.01%. The other elements of the con-
straining fuction are used to define lower and upper bounds for the feasible
domain of the design variables.
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Figure 6.1: Composite laminate with a constrained layer damping treat-
ment
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Table 6.4: Bounds for the feasible domain of the design variables

hd,min [mm] 0.1
hd,max [mm] 5
ld,min [mm] 10
d,max [mm] 295
wd,min [mm] 10
wd,max [mm] 95
Gd,min [Pa] 105

Gd,max [Pa] 109

ηd,min [-] 0.1
ηd,max [-] 3
hcons,min [mm] 0.1
hcons,max [mm] 2

Table 6.5: Inital values of the design variables

hd [mm] 2.5
ld [mm] 100
wd [mm] 50
Gd [Pa] 1.3 108

ηd [-] 0.5
hcons [mm] 0.5
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The optimization algorithm is based on the gradient of the objective
function using the method of the steepest descent [79]. Considering x0, a
reference point, f the function value at that point and ∇f the gradient,
the latter provides the direction of the steepest descent in the space of
the optimization variables x. At the reference point, the direction of the
steepest descent is defined as

s = −∇f (6.3)

The direction of the steepest descent is the direction along which to locate
points with lower function values. Moving along the search direction will
initially obtain smaller function values but after reaching a minimum the
values, from there on, again increase. This generates the sequence

x (α) = xk + α.sk (6.4)

where α is the step length. The slope f ′ is the component of the gradient
in the search direction.

f
′

= ∂f
∂α

= ∂f
∂α
.
∂x
∂α

= ∇f (α) .sk (6.5)

It vanishes at the minimum point along the search direction because there
the search direction and the gradient are perpendicular to each other. The
initial values of the design variables are presented in Table 6.5. They cor-
respond to the values extracted from the parametric study and presented
in section 5.5.
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6.3.2 Results

The results of the optimization for the laminate with a constrained layer
damping treatment is presented in Table 6.6 for each design criteria. It is
shown in parenthesis the difference with the reference value.

Table 6.6: Mechanical properties of the optimized laminate with a con-
strained layer damping treatment

w [mm] -4.4 (-55%)
kcomp [N/mm] 339553 (+1%)
kshear [N/mm] 123176 (+3%)
Pz,max [N] 593 (+197%)
Ncomp,cr [N] 92333 (+32%)
Nshear,cr [N] 186616 (+31%)
Ncombi,cr [N] 151479 (+21%)

One can see that the deflection and maximal flexural force are sig-
nificantly changed. It was shown in chapter 5 that the damping layer
has no effect on the mechanical properties of the load-carrying structure
when it is simply laid on its surface. However, this is not true when the
damping layer is constrained. It further increases the bending stiffness of
the plate because of the ”Huygens-Steiner” effect. Hence, the deflection
is reduced and the maximal flexural force is increased. This effect also
influences the critical forces that are increased. One can also see that
the in-plane stiffnesses change only sligthly compared to their reference.
Table 6.7 presents the plate’s weight, the modal loss factor and the fi-
nal design variables values. They are the same for each design criteria.
As the damping layer does not have a negative effect on the mechanical
properties of the laminate, the mechanical constraint in the transformed
objective function is never active. As a consequence, the optimization
objective is only to minimize the weight and to reach 10 % of damping
rate. Compared to the initial values presented in Table 6.5, the material
properties of the damping layer are the most changed design variables. It
confirms the observation made in the parametric study that the material
properties of the damping layer are the parameters that affect the most
the mechanical properties of the load-carrying structure.
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Table 6.7: Final design variable values for the composite laminate with
CLD treatment

Weight [g] 0.132
η [%] 10
hd [mm] 2.3
ld [mm] 104.6
wd [mm] 48.4
Gd [MPa] 386.3
ηd [-] 1.4

hcons [mm] 0.73

6.4 Composite laminate with integrated layer
damping treatement

In this section, trade-off between weight, mechanical and damping perfor-
mances of a composite plate with an integrated layer damping treatment
is investigated.

6.4.1 Structure of interest

The structure of interest is a composite laminate with integrated damp-
ing layer treatment. Figure 6.2 presents a picture of the finite element
model of it. The composite plate is 300 mm long and 100 mm wide.
The damping layer is integrated with closed edges along its length and
its width. The design variables of the damping layer are also shown. The
composite laminate also consists of 8 layers with the following stacking
sequence: [0/90,±45,0/90,±45]s. Each composite layer is 0.3 mm thick.
Their material properties are presented in Table 5.1. The goal of the opti-
mization is, like for the composite plate with a constrained layer damping
treatment, to minimize the weight and to obtain, at least, the same me-
chanical properties than the reference and 10 % of damping rate. The
design variables are the damping layer thickness, length, width and ma-
terial properties. The vector of design variables can be written as follows
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{x} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hd
ld
wd
Gd
ηd

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.6)

The transformed objective function has the following form

p (x, R) = min (weight) +R× (max (0, Aref −A)2 +
max (0, ηmin − η)2 +max (0, η−ηmax)2 +
max (0, hd,min − hd)2 +max (0, hd − hd,max)2 +
max (0, ld,min − ld)2 +max (0, ld − ld,max)2 + (6.7)
max (0, wd,min − wd)2 +max (0, wd − wd,max)2 +
max (0, Gd,min −Gd)2 +max (0, Gd −Gd,max)2 +
max (0, ηd,min − ηd)2 +max (0, ηd − ηd,max)2

where the parameter R and the boundaries of the feasible domain of each
design variables have the same values than the ones given in section 6.3.
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Figure 6.2: Composite laminate with an integrated damping treatment
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6.4.2 Results

The results of the optimization are presented in Table 6.8. It is shown the
value of the different mechanical criteria and in parenthesis the difference
with the reference value.

Table 6.8: Mechanical properties of the optimized laminate with an inte-
grated layer damping treatment

w [mm] -1.7 (-82%)
kcomp [N/mm] 335646 (-0.2%)
kshear [N/mm] 118593 (-1%)
Pz,max [N] 571 N (+186%)
Ncomp,cr [N] 146401 (+101%)
Nshear,cr [N] 234681 (+64%)
Ncombi,cr [N] 246583 (+97%)

One can see that the deflection, maximal flexural load and critical
forces are significantly increased compared to the reference values. The
design variable values are presented in Table 6.9. They are the same
for each of these design criteria. Like for the composite plate with a
constrained layer damping treatment, the presence of the damping layer
does not reduce the values of these criteria compared to the reference.
Hence, the mechanical constraint in the objective function is never active.
Compared to the results presented in chapter 5, the performances of the
laminate with an integrated damping layer are significantly better. It
comes from the fact that all edges of the damping layer are closed. Hence,
there is no decoupling effect anymore. This explains the reduction of
deflection and the increase of maximal flexural and critical forces.

The in-plane stiffnesses are very similar to their reference. Table 6.10
shows the value of the obtained damping rate and design variable values
for the in-plane stiffness criteria. One can see that the modal loss factor
is only 1.5 % . The main difference compared to Table 6.9 is that the
damping layer thickness is more than 5 times smaller. Hence, the damping
rate is so low. If the damping layer thickness were larger, the upper
sublaminate covering the damping layer would carry less of the applied
load. This would lead to a reduction of the in-plane stiffnesses. Such
effect was actually not observed in the parametric study of chapter 5
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Table 6.9: Final design variable values for the composite laminate with an
integrated damping layer treatment considering the deflection, maximal
flexural and critical forces

Weight [g] 0.154
η [%] 10
hd [mm] 2.7
ld [mm] 257.1
wd [mm] 71.7
Gd [MPa] 849.8
ηd [-] 1.7

as the damping layer thickness was not changed while the effect of the
damping layer length and the integration solution (closed or open edges)
were investigated. Using the design characteristics from Table 6.8, the in-
plane compression and shear stiffnesses of the laminate would be further
reduced by 19% and 13%, respectively. It means that it is not possible
to obtain a composite laminate with an integrated damping layer having
simultanously high in-plane stiffnesses and damping rate.

Table 6.10: Final design variable values for the composite laminate with
an integrated damping layer treatment considering the in-plane compres-
sion and shear stiffnesses

kcomp kshear

Weight [g] 0.111 0.111
eta [%] 1.5 1.5
hd [mm] 0.5 0.5
ld [mm] 196.8 259.1
wd [mm] 61.7 85.0
Gd [MPa] 772.9 558.2
ηd [-] 1.5 2.8
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6.5 Discussion

In this chapter, the performances of a composite laminate with a con-
strained layer damping treatment and of a composite laminate with an
integrated damping layer treatment are compared. An optimization tech-
nique is used to find the design variable values that give the most satisfying
trade-off between weight, mechanical and vibration damping properties.
Table 6.11 compares the obtained mechanical properties for the composite
laminate with a constrained layer damping (CLD) treatment and for the
composite laminate with an integrated damping layer (ILD) treatment.
The difference of performances between the ILD and CLD treatments are
also shown.

Table 6.11: Performance comparison

Plate with Plate with Difference
CLD ILD [%]

w [mm] -4.4 -1.7 -61
kcomp [N/mm] 339553 335646 -1
kshear [N/mm] 123176 118593 -4
Pz,max [N] 593 571 -4
Ncomp,cr [N] 92333 146401 +58
Nshear,cr [N] 186616 234681 +25
Ncombi,cr [N] 151479 246583 +62

One can see that the integrated damping layer solution provides sig-
nificantly better deflection and buckling properties than the classical con-
strained layer damping treatment. These results slightly differ from the
ones presented in chapter 5. It was shown that the buckling properties
are strongly reduced for a composite laminate with an integrated damping
layer. It is because the damping layer was integrated with closed edges
only along its width and its shear modulus was much smaller. Presently,
the damping layer is closed on each edge and the shear modulus is almost
1000 times higher. Hence, the integrated design solution reinforces the
composite laminate. One can also see that there is no significant differ-
ence between the two design solutions for the maximal flexural strength
and for in-plane stiffnesses. For the latter, the results show that it is not
possible to reach the objective of 10 % modal loss factor.



146
Chapter 6. Performances of composite laminates with viscoelastic

damping treatments

Table 6.12 compares the design variable values and weight to obtain
10 % of damping rate. One can see that the damping solution with the
smallest weight is the constrained layer damping treatment. When the
damping layer is integrated with closed edges, there is no possible edge ef-
fect. Hence, the damping layer has to be thicker (+18%), longer (+146%),
wider (+50%), stiffer (+119%) and to be able to dissipate more energy
(+21%) in order to reach the same damping properties as a constrained
layer damping treatment. Hence, a constrained layer damping treatment
is lighter than an integrated layer damping treatment. However, Table
6.11 shows that the deflection, maximal flexural force and buckling prop-
erties are significantly higher for composite laminate with an integrated
damping layer. As a consequence, there would be the possibility to reduce
the plate’s weight by reducing the number of composite layers and to keep
these mechanical properties above their reference.

Table 6.12: Comparison of the weight and design variable values

Plate with Plate with Difference
CLD ILD [%]

Weight [g] 0.132 0.154 +16
hd [mm] 2.3 2.7 +18
ld [mm] 104.6 257.1 +146
wd [mm] 48.4 71.7 +50
Gd [MPa] 386.3 849.8 +119
ηd [-] 1.4 1.7 +21

hcons [mm] 0.73 - -

Finally, it must be said that the integrated damping layer solution
requires a much more efficient damping material than the CLD solution
in order to reach the same structural damping rates. Moreover, it is
significantly heavier than the CLD solution. Therefore the constrained
layer damping treatment is the design solution that proposes the most
satisfying trade-off between weight, mechanical properties and vibration
dampig performance.
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Conclusions and outlook

7.1 Conclusions

This thesis studies the performance of composite laminates with inte-
grated damping layer treatments. Performance aspects include damping
rates as well as structural stiffness, strength and stability under various
loading conditions. A combined assessment of all these items have not
been found in the open literature. The performances are compared with
those of a classical constrained layer damping treatment. In the latter, the
constraining layer has for unique function to increase the damping rate.
In the integrated concept, the damping layer is constrained by composite
laminates that have also to fulfill mechanical requirements. This thesis
has investigated the hypothesis that integrating the damping layer in a
fiber-reinforced structure would lead to high mechanical properties as well
as high vibration damping rates. The study results in design guidelines
for the composite laminates with embedded damping layers.

First, a finite element model of a constrained layer damping treatment
is developed and validated using experimental results from the available
literature. The performances of segmented constrained layer damping
treatments are investigated. It is shown that the free edges of the damp-
ing treatment have to be placed at locations where the bending curvature
of the load-carrying structure is the highest to reach the largest damp-
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ing rate. This study also investigated the effects of the number and the
position of the segments. It is demonstrated that there exists a given
number of segments for each bending mode that maximizes their loss fac-
tor. Optimizing the segment’s position provides a moderate increase of
the structural damping properties.

In the second part, the behaviour of a composite beam with a soft
core layer is investigated. A numerical model of it is validated using
Pagano’s exact solution of composite laminate in cylindrical bending. The
main outcome of this study is that the core layer tends to decouple the
sublaminates. They behave like two separate bodies experiencing the
same curvature. However, this effect vanishes by increasing the length-to-
thickness ratio of the structure.

In the last part, the influence of an integrated damping layer on the
structural stiffness, strength and stability properties of a composite lam-
inate is studied. Three integration solutions are considered: a composite
plate with a damping layer integrated in a sandwich configuration (the
damping layer has the same length and width than the laminated plate
and open edges), a composite plate with an integrated damping layer hav-
ing closed edges along its width and a composite plate with an integrated
damping layer having closed edges along both its length and width. The
study on the first integration solution showed that the damping layer can
be used to increase the structural bending stiffness and bending strength
by having a stiff and thick damping layer. Nonetheless, it is also shown
that this integration solution significantly reduces the buckling strength of
the laminate. The investigation on the second integration solution shows
that it is possible to sligthly improve the buckling strength if the damping
layer edges are closed along its width and as short as possible. However,
the obtained damping rates are significantly smaller than the ones ob-
tained with a classical constrained layer damping solution. This part of
the thesis reveals the difficulty to design composite laminates with inte-
grated damping layers. Two distinctives design rules have to be followed,
depending on whether the goal is to reach high mechanical porperties or
high damping properties. They are:

• The damping layer has to be in the middle of the lay-up, to have
open edges, to cover at least half of the plate’s surface and to have
a soft shear modulus in order to reach a significant damping rate.

• The damping layer has to be as far away as possible from the lami-
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nate mid-plane, to have closed edges, to be as short as possible and
to have a high shear modulus in order to obtain high mechanical
properties.

Among the three integration solutions, the most promising solution is the
one with an integrated damping layer having closed edges along its length
and width. Closing all edges enables to cancel the decoupling effect due to
the damping layer. The main advantage is that it significantly increases
the structural bending stiffness, strength and buckling properties. The
main limitation is that the damping layer has to have special properties.
It must have a high shear modulus to reach high mechanical properties
and a high loss factor to reach high damping rate objectives. Addition-
ally, it must also have larger dimensions than a classical constrained layer
damping treatment in order to reach the same damping rate.

Potential applications for this integrated concept are where the design
objectives are only high bending stiffness and buckling strength. Signifi-
cant damping rates could be reached assuming that stiff damping materi-
als with high energy dissipation capabilities are available. It could be used
in the automotive industry for car body panels. For example, floor and
roof panels have to exhibit a high bending stiffness and be able to dissipate
as much vibrating energy as possible to improve passengers acoustic con-
fort. The main limitation of this concept is the weight penalty. Therefore,
it is not suitable for aeronautics and aerospace applications.

Finally, it must be concluded that the constrained layer damping treat-
ment is the best solution to achieve the objectives of high mechanical
properties, high damping performances and low weight.

7.2 Outlook

To ensure the validity of the model predictions, it is required to have
a precise measurement of the material properties of the composite and
damping layers. The latter are very critical because of their frequency- and
temperature-dependent behaviour. Then, the corrected properties could
be also used to investigate the long-term reliability, fatigue, delamination
and impact resistance behaviour of the integrated concept.
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This thesis is concluded by summarizing ideas for further research:

• Manufacturing process: If an industrial application is consid-
ered, it is required to have an efficient manufacturing process. It is
important to study the effect of the damping layer on the laminate
quality and to identify how the parameters of the process are affected
by the damping layer. A comparative study of different processes
could be performed with the goal to identify the most appropriate
one for the integrated concept.

• Segmented constrained layer damping treatment: Because
of the more promising results, the work on segmented CLD should
be extended to more generic load-carrying structures. The best
segment’s topologies should be investigated with the goal to identify
the one that provides the largest loss factor increase on the largest
frequency range.



Appendix A

Composite structures
with embedded damping
layers

Generalized damping matrices

[Ad] = 2π
Nl∑
k=1

∫ hk
hk−1

[Ec]k [ηc]k dz (A.1)

(
Bjd

)
in

= 2π
Nl∑
k=1

∫ hk
hk−1

([Ec]k [ηc]k)in F
j (z) dz (A.2)

with i,n = 1, 2, 6

(
Bjd

)
in

= 2π
Nl∑
k=1

∫ hk
hk−1

([Ec]k [ηc]k)in F
j
,z (z) dz (A.3)

with i,n = 4, 5
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(
Djmd

)
in

= 2π
Nl∑
k=1

∫ hk
hk−1

([Ec]k [ηc]k)in F
jFm (z)dz (A.4)

with i,n = 1, 2, 6

(
Djmd

)
in

= 2π
Nl∑
k=1

∫ hk
hk−1

([Ec]k [ηc]k)in F
j
,zF
m
,z (z) dz (A.5)

with i,n = 4, 5

Generalized stiffness matrix

[A] =
Nl∑
k=1

∫ hk
hk−1

[Ec]k dz (A.6)

(
Bj
)
in

=
Nl∑
k=1

∫ hk
hk−1

([Ec]k)in F
j (z)dz (A.7)

with i,n = 1, 2, 6

(
Bj
)
in

=
Nl∑
k=1

∫ hk
hk−1

([Ec]k)in F
j
,z (z)dz (A.8)

with i,n = 4, 5

(
Djm

)
in

=
Nl∑
k=1

∫ hk
hk−1

([Ec]k)in F
jFm (z) dz (A.9)

with i,n = 1, 2, 6
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(
Djm

)
in

=
Nl∑
k=1

∫ hk
hk−1

([Ec]k)in F
j
,zF
m
,z (z)dz (A.10)

with i,n = 4, 5

Generalized mass matrices

[Am] =
Nl∑
k=1

∫ hk
hk−1

[diag (ρ)]k dz (A.11)

[
Bjm
]

=
Nl∑
k=1

∫ hk
hk−1

[diag (ρ)]k F
i (z)dz (A.12)

[
Djmm

]
=
Nl∑
k=1

∫ hk
hk−1

[diag (ρ)]k F
iFm (z) dz (A.13)
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Pagano’s exact solution
and CPT solution of
composite laminates in
cylindrical bending

B.1 Pagano’s exact solution

The main steps of the derivation of Pagano’s exact solution are here re-
called. The author refers to [20] for further details. Pagano’s early no-
tation of coordinates differs from a latter standard which can be found
for instance in [82]. The considered mechanical situation is presented in
Figure B.1. The laminates consists of m orthotropic layers. It is assumed
to be in a state of plane strain with respect to the xz plane and is simply
supported at both ends. A normal traction load is applied on the upper
surface

q (x) = q0sin (px) (B.1)

where q0 is a constant and
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p =
nπ

l
(B.2)

Z

X
l

q(x)

(1)

(m)

Figure B.1: Plate notation

Each layer is orthotropic with the material principal directions aligned
with x or y. The constitutive equations are given by

εx = R11σx +R12σz (B.3)
εz = R12σx +R22σz (B.4)

γxz = R66σxz (B.5)

where Rij are reduced compliance coefficents for plane strain, defined by

Rij = Sij − Si3 − Sj3
S33

(B.6)

and Sij are the compliances with respect to the axes of the material
symmetry. The equilibrium conditions are

σx,x + τxz,z = 0 (B.7)
σz,z + τxz,x = 0 (B.8)
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The natural boundary conditions on the upper and lower surfaces are
given by

σz

(
0, h

2

)
= q (x) (B.9)

σz

(
x,−h

2

)
= τxz

(
x,±h

2

)
= 0 (B.10)

The boundary conditions

σx (0, z) = σx (l, z) (B.11)
w (0, z) = w (l, z) = 0 (B.12)

simulate the simple supports. Each layer is identified by an index i, where
the top layer corresponds to i equal to 1. For each layer, a local coordinate
system xi, yi and zi is defined on the centre line of the ith layer at the
end x=0. At the interface of each layer, the continuity of the traction and
displacement must be fullfilled

σiz

(
x,−hi

2

)
= σi+1

z

(
x,−hi+1

2

)
(B.13)

τ ixz

(
x,−hi

2

)
= τ i+1
xz

(
x,−hi+1

2

)
(B.14)

ui

(
x,−hi

2

)
= ui+1

(
x,−hi+1

2

)
(B.15)

wi

(
x,−hi2

)
= wi+1

(
x,−hi+1

2

)
(B.16)

with i going from 0 to m− 1. The stress components have the following
form
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σix = sin (px)
4∑
j=1
Aijm

2
jiexp (mjizi) (B.17)

σiz = −p2sin (px)
4∑
j=1
Aijexp (mjizi) (B.18)

τ ixz = −pcos (px)
4∑
j=1
Aijmjiexp (mjizi) (B.19)

The displacement components are

ui = cos (px)
p

4∑
j=1
Aij
(
Ri12p

2 −Ri11m
2
ji

)
exp (mjizi) (B.20)

wi = sin (px)
4∑
j=1
Aij

(
Ri12mji −

Ri22
mji
p2
)
exp (mjizi) (B.21)

where mji are given by

m1i = p
(
ai + bi
ci

)1/2
(B.22)

m2i = −p
(
ai + bi
ci

)1/2
(B.23)

m3i = p
(
ai − bi
ci

)1/2
(B.24)

m4i = −p
(
ai − bi
ci

)1/2
(B.25)

with
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ai = Ri66 + 2Ri12 (B.26)

bi =
(
a2
i − 4Ri11R

i
22
)1/2 (B.27)

ci = 2Ri11 (B.28)

Aij are constants, determined by the boundary conditions.

B.2 Classical plate theory solution

The governing equations of the CPT for a cylindrical bending load case
are

Au0,xx−Bw,xxx= 0 (B.29)
Dw,xxxx−Bu0,xxx= 0 (B.30)

where w is the plate deflection and u0 is the central plane displacement
in the x-direction. A, B and D are given by

(A,B,D) =
∫ h

2

−h2
Q11

(
1, z, z2

)
dx (B.31)

Qij are the reduced stiffness coefficients for plane stress. The displacement
components are

u = Bq0
Fp3
cos (px) (B.32)

w = Aq0
Fp4
sin (px) (B.33)

where

F = AD −B (B.34)
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The stress components are given by

σix = q0Q
i
11

Fp2
(Az −B) sin (px) (B.35)

σiz = −q0Q
i
11
F

(
A

6
z3 − B

2
z2 +Hiz + Li

)
sin (px) (B.36)

τ ixz = −q0Q
i
11
Fp

(
A

2
z2 −Bz +Hi

)
cos (px) (B.37)

where Hi and Li are determined with the boundary conditions.
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