
A Programming Language Approach
to Smart Contract Privacy

Samuel Lutz Steffen

Diss. ETH No. 28962

0 1

2

3
4

5
6

7
8

9

10

11
12

13

14

15

16 17

18

19

20

2122

23

24

25

26





DISS. ETH NO. 28962

A Programming Language Approach to

Smart Contract Privacy

A dissertation submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

SAMUEL LUTZ STEFFEN
MSc CS, ETH Zurich

born on 7 August 1994

accepted on the recommendation of

Prof. Martin Vechev (ETH Zurich)
Prof. Ilya Sergey (National University of Singapore)

Prof. Elaine Shi (Carnegie Mellon University)

2022



Samuel Lutz Steffen: A Programming Language Approach to Smart Contract
Privacy, © 2022



In memory of Daniel Yu





A B S T R A C T

In distributed ledgers (often called blockchains), a globally distributed state
is updated by a history of irrevocable transactions. Modern blockchains
allow programming these updates with custom logic using so-called smart
contracts, which enables realizing decentralized applications without re-
quiring a trusted third party. Typically, the data stored and processed on
programmable blockchains is public, which prevents applications handling
sensitive data from being ported to smart contracts.

In this thesis, we investigate how to ensure privacy for general smart
contracts. While many works on private cryptocurrency transfers exist, the
few proposals targeting general smart contracts suffer from various limita-
tions and often require developers to instantiate advanced cryptographic
primitives. In contrast, we adopt a programming language approach and
design three systems usable by developers without cryptographic expertise.

First, we introduce the zkay language and compiler, which hide the
data involved in smart contracts using encryption and non-interactive zero-
knowledge (NIZK) proofs. The zkay language features a privacy type
system allowing developers to express data ownership and preventing
implicit information leaks. Our compiler automatically compiles zkay
contracts to contracts executable on the popular Ethereum blockchain.

In our second system ZeeStar, we extend zkay to support computations
on unknown private data—an essential feature required to implement
important applications such as confidential payments. To this end, we
modify zkay’s type system and extend its compiler to instantiate additively
homomorphic encryption.

Third, we explore how to not only hide the data but also the parties
involved in a transaction. Specifically, we introduce the Zapper system,
which hides the accessed objects and the identities of its users using a
combination of Merkle hash trees, key-private encryption, and NIZK proofs.
Zapper contracts are compiled to a custom assembly language, which is
subject to an access control mechanism and executed on a NIZK processor.

For each system, we provide a proof demonstrating that it respects a well-
defined notion of privacy. We implement all systems, relying on advanced
techniques including elliptic curve embedding to achieve practical perfor-
mance when combining cryptographic primitives. Finally, we demonstrate
the systems’ versatility and efficiency on a variety of example contracts.
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Z U S A M M E N FA S S U N G

Distributed-Ledger-Technologien (häufig Blockchains genannt) aktualisie-
ren einen global verteilten Zustand durch eine Abfolge unwiderruflicher
Transaktionen. Moderne Blockchains erlauben es, diese Transaktionen mit-
tels sogenannten Smart Contracts individuell zu programmieren. Dies
ermöglicht die Realisierung dezentralisierter Anwendungen ohne eine
vertrauenswürdige Drittperson. Typischerweise sind die auf programmier-
baren Blockchains gespeicherten und verarbeiteten Daten öffentlich. Für
Anwendungen welche sensible Daten bearbeiten wird dadurch jedoch ein
Portieren auf Smart Contracts verhindert.

Diese Arbeit präsentiert neue Systeme für den Erhalt der Vertraulichkeit
in Smart Contracts. Obwohl viele Publikationen zu vertraulichen Überwei-
sungen von Kryptowährungen existieren, gibt es nur wenige Vorschläge,
welche allgemeine Smart Contracts unterstützen. Leider unterliegen die-
se Systeme verschiedenen Einschränkungen und verlangen von Entwick-
lern häufig das manuelle Instanziieren kryptografischer Bausteine. Diese
Arbeit verfolgt im Gegensatz dazu einen Ansatz basierend auf Program-
miersprachen und präsentiert drei Systeme, welche von Entwicklern ohne
kryptographische Expertise angewendet werden können

Als Erstes werden die Zkay-Sprache und -Compiler entworfen. Diese
verstecken die in Smart Contracts verarbeiteten Daten mittels Verschlüs-
selung und nicht-interaktiven Zero-Knowledge-Beweisen. Basierend auf
einem Vertraulichkeits-Typensystem erlaubt Zkay den Entwicklern das
Ausdrücken von Datenbesitz und das Verhindern ungewollter Datenlecks.
Der Zkay-Compiler transformiert Smart Contracts in der Zkay-Sprache zu
Smart Contracts für die beliebte Ethereum Blockchain.

Zweitens wird Zkay durch das ZeeStar-System um die Möglichkeit zur
Berechnung auf unbekannten Daten erweitert. Diese Funktionalität ist essen-
tiell um wichtige Anwendungen wie vertrauliche Zahlungen zu realisieren.
Das Zkay-Typensystem und der Zkay-Compiler werden so erweitert, dass
diese zusätzlich additiv-homomorphe Verschlüsselung instanziieren.

Als Drittes wird untersucht, wie zusätzlich zur Vertraulichkeit der Da-
ten auch die Vertraulichkeit der involvierten Parteien erhalten werden
kann. Das resultierende Zapper-System versteckt die aufgerufenen Objekte
und die Identitäten seiner Benutzer mittels Merkle-Bäumen, Key-Private-
Verschlüsselung und nicht-interaktiven Zero-Knowledge-Beweisen. Zapper-
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Programme werden in eine spezielle Assembler-Sprache transformiert,
welche einer Zugriffskontrolle unterliegt und auf einem Zero-Knowledge-
Prozessor ausgeführt wird.

Für jedes System wird ein mathematischer Beweis präsentiert, welcher
zeigt, dass eine wohldefinierte Form von Vertraulichkeit respektiert wird.
Alle Systeme werden implementiert, wobei zur Leistungserhaltung bei der
Kombination kryptographischer Bausteine fortschrittliche Techniken wie
das Einbetten elliptischer Kurven angewendet werden. Die Vielseitigkeit
und Effizienz der Systeme werden schliesslich an verschiedenen Beispielan-
wendungen demonstriert.
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1
I N T R O D U C T I O N

Modern distributed ledgers or blockchains allow decentralized but trusted
execution of programs (so-called smart contracts) without relying on a
trusted third party. The key idea is to automatically enforce execution of
program logic that has been previously agreed upon by the involved parties.
Due to their versatility, smart contracts have gained significant popularity
in recent years. For instance, smart contracts are used to implement custom
“tokens” traded on the blockchain [10], to enable decentralized exchanges
of assets [11], or even to conduct lotteries [12]. Also beyond financial
applications, many real-world processes such as voting schemes [13], the
collection of medical data [14], and power consumption measurements [15]
are being ported to smart contracts.

The most popular blockchains are permissionless, allowing any user
to join the network without explicit permission from a governing entity.
The prevalent permissionless blockchain supporting smart contracts is
Ethereum [16]. In Ethereum, developers can use the Solidity programming
language to implement custom high-level application logic. In Fig. 1.1,
we show a basic example contract modeling a custom coin. The contract
uses the bal mapping to store the number of coins owned by each user
(identified by their address). It provides a transfer function to transfer
val coins to a recipient to, where the user calling the function is identified
by its address msg.sender. The function checks whether the sender of the
coin has sufficient balance, and then updates the bal mapping.

1 contract Coin {
2 mapping(address => uint) bal;
3 function transfer(uint val, address to) public {
4 require(val <= bal[msg.sender]);
5 bal[msg.sender] = bal[msg.sender] - val;
6 bal[to] = bal[to] + val;
7 }
8 }

Figure 1.1: A basic Solidity smart contract modeling a (non-private) coin.
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2 introduction

By design, all data stored and processed on permissionless blockchains
is public. In particular, function calls initiated by users (so-called transac-
tions) are processed by the blockchain’s miner nodes, which requires the
transactions’ operations and data to be made available to all miners. In the
example of Fig. 1.1, this means that any miner can see the balances of all
accounts, the number of coins transferred during a transfer, and the sender
and recipient accounts. In practice, this can be undesirable, as individuals
may be linked to their purchases and trading partners.

While exemplified in the context of a coin, the lack of privacy on permis-
sionless blockchains is especially problematic for applications that handle
sensitive information such as health data [14] or voting ballots [13]. In
fact, there are many more applications which would benefit from a smart
contract system that ensures privacy. For example, such a system would
allow realizing private auctions, untraceable digital train tickets, or even a
double-blind academic peer review system on a permissionless blockchain. 1

The current lack of privacy on permissionless blockchains gives rise to
the following key research question:

How can we ensure privacy for general smart
contracts on permissionless blockchains?

In this thesis, we address the above question from a programming languages
perspective by designing, analyzing, and implementing multiple systems
for private smart contracts.

1.1 related work

Before introducing the contributions of this thesis, we next provide an
overview of previous and concurrent work addressing similar research
questions. In later chapters, we will discuss further related works and
compare these to the systems presented in this thesis on a technical level.

privacy for payments A long line of work brings privacy to cryp-
tocurrency transactions. Most of the earlier works hide the relationship
between transactions by collecting and “mixing” pending transactions. Sys-
tems employing such mixers include Dash [17], MixCoin [18], CoinJoin [19],
CoinShuffle [20], and CoinParty [21]. Unfortunately, these systems only
provide relatively weak privacy guarantees [22].

1 In Chapter 4, we will actually realize these applications.



1.2 this work 3

Other works rely on advanced cryptographic primitives such as non-
interactive zero-knowledge (NIZK) proofs. For instance, the popular Mon-
ero [23] blockchain leverages ring signatures and range proofs to hide both
the transaction amounts and the involved parties. Similarly, Zerocoin [24]
relies on signatures of knowledge and RSA accumulators. Its successor
Zerocash [25] (commercially deployed as Zcash [26] and ported to Ethereum
as ZETH [27]) leverages zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKs) to provide strong privacy guarantees. Similarly,
BlockMaze [28] is based on zk-SNARKs. Finally, some works combine
NIZK proofs and homomorphic encryption or commitments, including
Zether [29, 30] and Quisquis [31].

Unfortunately, all these works focus on privacy for payments and do not
support general smart contracts.

privacy for smart contracts Various works propose smart contract
systems providing some notion of privacy.

Some of the existing systems trade privacy for additional trust assump-
tions. For example, Hawk [32] and Arbitrum [33] rely on trusted managers.
Similarly, Ekiden [34] and FastKitten [35] leverage trusted hardware. While
convenient, these additional assumptions arguably undermine the weak
trust assumptions of permissionless blockchains.

The trust assumption of Hawk is weakened in zkHawk [36] and V-
zkHawk [37]. However, these systems require interactive parties—a fun-
damental limitation in the context of permissionless blockchains, where
parties are typically communicating asynchronously.

The recent SmartFHE [38] and ZEXE [39] systems provide strong privacy
guarantees for general smart contracts with weak trust assumptions. How-
ever, implementing smart contracts for these systems requires manually
instantiating a fully-homomorphic encryption scheme or zk-SNARKs, re-
spectively, inhibiting their usage by developers which are not cryptographic
experts.

1.2 this work

In this thesis, we aim to address the limitations of previous work. In
particular, we investigate how to bring privacy to general smart contracts
without introducing unnecessary additional trust assumptions, while pro-
viding a simple interface to developers which abstracts all cryptographic
components.



4 introduction

features of private smart contracts Before discussing our ap-
proach, we should first elaborate on what it means to provide “privacy” for
smart contracts. In fact, there are multiple dimensions of privacy which are
relevant to our context. A basic notion of privacy would just hide the mem-
ory contents stored and processed on the blockchain. In our example in
Fig. 1.1, this means that the individual balances stored in the bal mapping,
and the arguments val and to of the function transfer are hidden from
third parties (for example, by encrypting them). This notion, which we call
data privacy in this thesis, is very useful as it hides the contents of accessed
memory. However, it does not necessarily hide which memory locations are
accessed.

This gives rise to a second dimension of privacy, determining whether
the accessed memory locations are hidden. In the example of Fig. 1.1, not
hiding these would leak the sender and recipient addresses of the transfer
as these addresses determine the indices of bal to be accessed.

A third dimension is concerned with whether the party creating a trans-
action can remain anonymous. In Fig. 1.1, if the transaction needs to be
signed by the sender, then the signature may reveal the sender’s identity
(even if the values of all variables and the accessed memory locations are
hidden). We say a smart contract system satisfies identity privacy if it is able
to hide the identities of its involved parties. Typically, this requires both
hiding the accessed memory locations and hiding the transaction creator.
A system providing identity privacy is well-suited to implement a fully
private coin.

Independently of these dimensions, an additional concern is whether a
private smart contract system prohibits accidentally or implicitly leaking
private information to other parties. For instance, in Fig. 1.1, the balance
of the recipient is increased by val. If val is considered private informa-
tion belonging to the sender, this update leaks private information to the
recipient. While this amount of leakage is fundamentally necessary in our
example (the recipient will always have to learn how many coins it receives),
a good private smart contract system would prevent executing such a code
without an explicit declaration by the programmer accepting the leak.

challenges Designing a smart contract system with all of the above
privacy features is challenging. First, providing strong privacy guarantees
for payments only is already difficult per se, as illustrated by the long line of
work on this matter and multiple demonstrations of successful attacks [25,
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40]. Extending existing systems with programmability is highly non-trivial,
as these are typically tailored to payments.

Second, instantiating advanced cryptographic primitives such as zk-
SNARKs or homomorphic encryption in a private smart contract system
is challenging, as these primitives (i) typically expose a rather low-level
interface; (ii) are not expressive enough on their own but must be in-
stantiated in combination with other primitives; (iii) provide non-trivial
guarantees, in particular when instantiated in combination; and (iv) often
lead to prohibitively low performance if instantiated naively.

Further, preventing implicit information leaks requires a concept of data
ownership and means to express explicit leakage, as well as a (static or
dynamic) analysis of ownership to detect implicit leaks.

approach To address the above challenges, we employ core techniques
from the area of programming languages and use these to automatically
instantiate advanced cryptographic primitives.

In particular, we leverage type systems, static program analysis, and com-
pilation in order to transform high-level and intuitive privacy specifications
into low-level cryptographic primitives. As core cryptographic primitives,
we use zk-SNARKs, (partially) homomorphic encryption, and Merkle hash
trees. An introduction to these primitives is provided in §1.3.

A main goal of this thesis is to provide an intuitive interface to developers.
In particular, using our systems should not require any cryptographic
expertise, but only familiarity with existing non-private smart contract
programming languages such as Solidity.

designed systems While exploring answers to the key research ques-
tion stated on page 2, we have designed and implemented three systems for
private smart contracts, presented in Chapters 2–4. We provide an overview
of these systems in Tab. 1.1. The systems have different privacy features
according to the dimensions discussed above (first four rows in Tab. 1.1),
and come with different levels of expressivity and blockchain support (last
two rows). Next, we briefly introduce these systems.

zkay In Chapter 2, we introduce the zkay system. Being the first system
of its kind, zkay only provides data privacy: it allows developers to
hide the memory contents involved in their smart contracts, but not
the accessed memory locations or the transaction creator.

On a technical level, this chapter introduces the zkay programming
language, which allows developers to specify their desired privacy
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Table 1.1: Overview of the three systems presented in this thesis.
zkay ZeeStar Zapper

Chapter 2 Chapter 3 Chapter 4

hides memory contents • • •
hides memory locations •
hides transaction creator •
prevents implicit leaks • •
can compute on unknown data •
supported blockchain Ethereum Ethereum custom ledger

notion using privacy annotations. In particular, the zkay language
extends Solidity by privacy types indicating the owner of private values
and expressions to explicitly reveal values to other parties. Using
its privacy type system, zkay then prevents implicit leaks. Contracts
written in the zkay programming language are automatically com-
piled to contracts executable on a permissionless blockchain, which
are realized using zk-SNARKs and asymmetric encryption. Our im-
plementation of zkay allows the resulting contracts to be deployed on
Ethereum and natively interact with the Ethereum ecosystem.

A fundamental limitation of zkay is its inability to compute on un-
known data. For instance, a private variant of the coin in Fig. 1.1
cannot be readily implemented in zkay without restructuring, as the
used cryptographic primitives do not allow the sender to update the
private balance bal[to] owned by the recipient.

zeestar In order to address the expressivity limitations of zkay, we extend
zkay to support restricted modifications of unknown data in Chapter 3.
The resulting system, called ZeeStar, supersedes zkay as it provides
the same privacy features but allows implementing a wider variety of
use cases on Ethereum. For example, ZeeStar can be readily used to
implement a private variant of the coin in Fig. 1.1, where the balances
and transferred value are private. Still, ZeeStar does not provide
identity privacy as accessed memory locations are not hidden and the
transaction creator signs any transaction using its own key.

Technically, ZeeStar integrates homomorphic encryption as an addi-
tional cryptographic primitive into its compilation pipeline, allowing
parties to modify unknown values encrypted for others. Instantiating
such an encryption scheme together with zk-SNARKs is challenging:
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these primitives must be instantiated in close combination and great
care must be taken in order to maintain the desired correctness and
privacy guarantees, as well as to achieve acceptable performance. On
the front end, we modify the privacy type system of zkay to be aware
of homomorphic operations, while only requiring minimal changes
to the privacy annotations of zkay.

zapper The previously introduced zkay and ZeeStar systems are designed
for a blockchain featuring an account-based execution model (such
as Ethereum). As this execution model is not well-suited to provide
identity privacy, most existing systems for private payments follow
an unspent transaction output (UTXO) model. In Chapter 4, we use
ideas of these systems to design the novel private smart contract
system Zapper. Zapper’s execution model resembles the UTXO style
and its design is hence significantly different to that of zkay and
ZeeStar. Instead of having a static privacy type system with fine-
grained ownership annotations, Zapper assigns a dynamic owner
address to each object as a whole. While this system currently does
not support prevention of implicit leaks, it provides identity privacy
by hiding the transaction creator and the accessed memory locations.

Conceptually, Zapper can be thought of as an extension of Zero-
cash [25] or Zcash [26], allowing coins to be programmed with custom
logic. On a technical level, Zapper combines Merkle hash trees, zk-
SNARKs, and key-private asymmetric encryption.

While Zapper has privacy features incomparable to the other two
systems, it allows readily implementing a fully private coin, a double-
blind peer review system, and further interesting applications. On
the other hand, Zapper is not designed to work with the Ethereum
blockchain, and does not allow computation on unknown data.

1.3 cryptography background

This thesis aims to be accessible to a general computer science audience.
As it relies on advanced cryptographic primitives, we next provide an
introduction to these primitives.
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1.3.1 Non-interactive Zero-knowledge Proofs

A non-interactive zero-knowledge (NIZK) proof [41, 42] allows a prover to
demonstrate to a verifier that she knows a secret, without revealing that
secret. More precisely, she can prove knowledge of a secret witness w
satisfying a predicate ϕ(x; w) for some public value x, without revealing
anything else about w other than the fact that ϕ(x; w) holds. In this thesis,
we call ϕ the proof circuit, w the private (or secret) input, and x the public
input.

For example, for a cyclic group G with generator g and h ∈ G, one can
prove knowledge of the discrete logarithm z of h for base g using the proof
circuit ϕ(h; z) satisfied iff gz = h.

Zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKs) [43, 44, 45] are generic NIZK proof constructions supporting any
arithmetic circuit ϕ and featuring constant-cost proof verification in the size
of ϕ (plus a typically negligible linear cost in the size of x). Due to their
low verification costs, zk-SNARKs are frequently used on the Ethereum
blockchain [46].

1.3.2 Additively Homomorphic Encryption

An additively homomorphic encryption scheme allows adding the plain-
texts underlying a pair of ciphertexts without knowledge of private keys.
More formally, let pkα and skα be the public and private key of a party α,
respectively, and Enc(x, pkα, r) the encryption of plaintext x under pkα using
randomness r. This scheme is additively homomorphic if there exists a
function ⊕ on ciphertexts such that for all x, y, α, r, r′:

Enc(x, pkα, r)⊕ Enc(y, pkα, r′) = Enc(x + y, pkα, r′′) (1.1)

for some r′′, where ⊕ can be efficiently evaluated without knowledge of skα.
Note that both arguments to ⊕ must be encrypted under the same public
key. Usually, additively homomorphic schemes also allow the homomorphic
evaluation of subtraction using a function ⊖ defined analogously.

For example, the Paillier encryption scheme [47] is additively homo-
morphic in Zn (that is, + in Eq. (1.1) is addition modulo n) for an RSA
modulus n, and exponential ElGamal encryption [48] over a group G is
additively homomorphic in Z|G|, where |G| is the order of G (see App. A.4).
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1.3.3 Merkle Hash Trees

A Merkle hash tree [49] is a cryptographic data structure maintaining a list
of elements, allowing efficient summarization of the list and containment
checks of elements. In a Merkle hash tree, elements are stored as leaves of
a binary tree whose root contains a root hash r summarizing its contents.

More formally, for a collision-resistant hash function H, the value of a
leaf holding an element v is H(v), where empty elements are represented
by v = 0. The value of an inner node (including the root node) is H(v1 ∥ v2),
where v1 and v2 are the values of its two children. A Merkle hash tree of
height l hence maintains 2l elements.

Elements can be inserted into a Merkle hash tree T by replacing an
empty leaf and recomputing the root hash r. Further, one can certify the
containment of a leaf in T using a Merkle certificate [50, §2.1.1], which
contains the list of sibling values along the root-to-leaf path in T.

1.4 thesis contributions

This thesis makes the following contributions.

• In Chapter 2, we introduce the zkay programming language for writ-
ing private smart contracts. Its privacy type system allows tracking
ownership of data and detecting implicit information leaks. We
present an automatic compilation of zkay contracts into contracts
executable on a permissionless account-based blockchain such as
Ethereum. The compilation automatically instantiates asymmetric
encryption and zk-SNARKs. We present a formal definition of data
privacy for zkay along with a simulation-based proof in the symbolic
model showing that our compilation respects privacy. We imple-
mented our approach for Ethereum2 and evaluated it on 10 example
contracts. We demonstrate that zkay can express interesting applica-
tions, offers significant advantages over manual instantiation of NIZK
proofs, and results in moderate costs.

• In Chapter 3, we present an extension of zkay to improve its expressiv-
ity and realize this extension in the novel ZeeStar system. In particular,
we extend zkay’s privacy type system to allow addition-based mod-
ifications of values owned by other parties, and show how zkay’s
compilation pipeline can be extended by additively homomorphic

2 Publicly available at https://github.com/eth-sri/zkay/tree/ccs2019

https://github.com/eth-sri/zkay/tree/ccs2019
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encryption in order to realize such modifications. We further present
how we can add support for private multiplication of unknown val-
ues, and mixing non-homomorphic and homomorphic encryption
schemes. We present a simulation-based security proof in the compu-
tational model demonstrating that the resulting system respects data
privacy. We implemented ZeeStar for Ethereum3 and demonstrate in
our evaluation of 12 example contracts that ZeeStar is expressive and
practical.

• In Chapter 4, we introduce the private smart contract system Zapper,
which provides data and identity privacy for rich smart contracts
expressed in a Python-embedded frontend. We present a compila-
tion of such contracts to a custom assembly language, as well as an
access control system ensuring the data held by smart contracts is
protected from untrusted code. Further, we present a cryptographic
construction inspired by previous work to maintain and efficiently
update the system state while satisfying key security properties. We
present a simulation-based security proof in the computational model
demonstrating that Zapper provides data and identity privacy. We
implemented Zapper4 on top of a custom ledger and demonstrate on
12 example classes that Zapper is efficient.

3 Publicly available at https://github.com/eth-sri/zkay/tree/sp2022
4 Publicly available at https://github.com/eth-sri/zapper

https://github.com/eth-sri/zkay/tree/sp2022
https://github.com/eth-sri/zapper


2
A L A N G UA G E A N D C O M P I L E R F O R S M A RT
C O N T R A C T S W I T H D ATA P R I VA C Y

In this chapter, we make the first steps to bring privacy to permissionless
blockchains. Specifically, we present a base system called zkay, which
provides data privacy on Ethereum without yet focusing on expressivity or
identity privacy. In particular, this system does not allow computation on
unknown data—a restriction we will relieve in Chapter 3.

In contrast to all existing systems for smart contract privacy (see §2.10),
zkay follows a programming-language based approach, allowing developers
to specify their desired privacy notion in an ergonomic manner directly
in the input contracts, and compiling this specification to an equivalent
“public” smart contract.

2.1 introduction

As we already discussed in §1.1, multiple previous works have proposed sys-
tems for private smart contracts. Broadly, these can be categorized into two
classes: The first class of systems introduces additional trust assumptions
by relying on trusted managers or hardware (e.g., Hawk [32], Arbitrum [33],
and Ekiden [34]). However, a fundamental property of permissionless
blockchains is the relatively low level of trust required. Therefore, introduc-
ing these trusted entities is arguably undesirable. A second class of systems
leverages cryptographic primitives to achieve privacy without undermining
the trust model of permissionless blockchains. However, as we discuss in
§2.10, the existing systems in this class unfortunately suffer from individual
shortcomings.

the promise of nizk proofs A “folklore” approach to achieve data
privacy on permissionless blockchains is to apply the following construc-
tion [51]: First, users encrypt (or hash) their private data and store the
resulting ciphertext on the blockchain. Then, to execute a function f of
a smart contract modifying private data, the user provides the updated
ciphertext (i.e., the ciphertext obtained by encrypting the result of running f

11
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on the plaintext private data) along with a NIZK proof (see §1.3.1) certifying
that the encrypted values are correct with respect to f .

limitations of nizk proofs Fortunately, practical NIZK proof con-
structions have been proposed [43, 52, 53, 54] and made available in
Ethereum [46, 55]. However, while the above construction seems rela-
tively simple, instantiating it for real-world smart contracts is non-trivial
due to the following four fundamental challenges C1–4:

(C1) Incompleteness of NIZK Proofs: Real-world smart contracts are imple-
mented in high-level expressive languages (e.g., Solidity [56]) supporting
features—such as unbounded state and loops1—that cannot be captured by
NIZK proof circuits. This is because existing proof constructions reduce the
proven statement to an arithmetic circuit that cannot encode arbitrary func-
tions or handle statements of non-constant size. Because of this limitation,
developers cannot simply encode the entire function f in a NIZK proof but
are forced to use a hybrid solution, where private operations are proven
correct using NIZK proofs, but some public operations remain on-chain (i.e.,
are performed on the blockchain).

(C2) Knowledge Restrictions: Smart contracts have multiple users with
dedicated secrets (e.g., Alice does not know Bob’s secrets). However, to
invoke f , Alice must have access to all private data used by f , otherwise
she cannot produce a NIZK proof certifying correctness. For example, Alice
cannot increment a counter private to Bob without knowing Bob’s secret
key and the counter’s value.

nizk proofs obfuscate contracts Especially due to C1, contracts
incorporating NIZK proofs are hard to understand, resulting in two addi-
tional challenges. We show a typical example in Fig. 2.1b (contract) and
Fig. 2.1c (NIZK proof circuit); its logic is hard to follow and implementation
mistakes are easy to make.

(C3) Obfuscated Logic: Smart contracts incorporating NIZK proofs are
obfuscated by logic scattered across off-chain and on-chain computation,
making it difficult to determine the intended behavior. As a consequence,
unaided development of such contracts is highly error-prone, and the
resulting contracts are not easily interpretable.

1 Relying on Ethereum’s block gas limit to derive a bound on the number of loop iterations is
not straightforward as this limit is dynamic and the amount of gas required may vary with
each loop iteration.
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(C4) Obfuscated Leaks: Because NIZK proofs leak the validity of statements
about private values, they do leak information. For example, Alice may
encrypt a sum of secret values for Bob, proving the ciphertext indeed holds
the sum. Thus, we must distinguish intended from unintended information
leaks. However, unintended leaks cannot be easily detected in the (already
obfuscated) deployed contract, because developers are not forced to make
them explicit.

zkay To address these challenges, we introduce zkay, a language cleanly
separating the task of specifying logic and ownership of private data from
the task of realizing this specification using NIZK proofs.

specification We show an example zkay contract in Fig. 2.1a. To
address the first task, zkay is carefully designed to support fine-grained, ex-
pressive, and intuitive privacy specifications allowing developers to specify
data ownership by annotating variables as private to particular accounts.
Further, it features declassification statements to force developers to explic-
itly specify what information is revealed by the smart contract. We formally
define the data privacy semantics of zkay contracts to cleanly capture the
notion of privacy specified by developers.

Addressing the aforementioned challenges, zkay’s type system incorpo-
rates privacy types to statically enforce important properties. First, the type
system disallows unrealizable programs (C1), ensuring that a well-typed
zkay contract can be realized using NIZK proofs. For example, it ensures
that private operations of a function only depend on a constant amount
of private data. Second, it restricts operations to be purely based on data
available to the caller (C2), ensuring contract functions can always be ex-
ecuted. Third, the logic of zkay programs is easy to follow by ignoring
privacy types (C3). Finally, zkay prevents implicit information leaks, e.g.
by disallowing writes of private data to public storage without explicit
declassification (C4).

realization To realize zkay contracts, we present a fully automated
transformation of zkay contracts to equivalent fully public contracts deploy-
able on public blockchains such as Ethereum. The transformed contracts
leverage encryption for privacy and NIZK proofs for correctness. Since not
all operations can be done privately in proof statements (C1), our trans-
formation produces hybrid contracts performing some public operations
on-chain.
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As our transformation is provably correct, users can directly work with
the original zkay contract to understand its logic, instead of reading the
obscure, transformed contract (C3). Further, assuming a Dolev-Yao-style
model of NIZK proof and encryption security, transformed contracts are
provably private, i.e., equivalent to the original zkay contracts where infor-
mation leaks are explicit (C4).

system and experiments We instantiate our approach by implement-
ing a proof-of-concept system type-checking zkay contracts and transform-
ing them to Solidity contracts [56] executable on Ethereum. We evaluate
our approach on 10 example zkay contracts covering a variety of domains.
Our results indicate that (i) zkay can express interesting real-world con-
tracts, (ii) programming in zkay offers significant advantages over using
NIZK proofs directly, and that (iii) on-chain and off-chain costs of using
our transformed contracts are moderate (on-chain costs are roughly 106 gas
per transaction).

outline The remainder of this chapter is organized as follows.

• After giving an overview of zkay (§2.2), we introduce the zkay lan-
guage for writing private smart contracts (§2.3) and provide its formal
semantics (§2.4).

• In §2.5, we present a privacy-preserving transformation of zkay con-
tracts into equivalent, fully public zkay contracts.

• Next, in §2.6 we provide a formal definition of privacy for zkay
contracts along with a simulation-based proof that each transformed
contract is private with respect to its specification contract.

• In §2.7–§2.8 we present an implementation and evaluation of our
approach, followed by a discussion of possible extensions in §2.9.

• Finally, in §2.10–§2.11 we discuss related work and conclude the
chapter.

2.2 overview

In this section, we use a motivating example to illustrate how one leverages
zkay to specify privacy constraints and how these specifications are trans-
formed into a smart contract executable on a permissionless blockchain.
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example : medical statistics Contract MedStats in Fig. 2.1a allows
a hospital to collect statistics on blood donors. To this end, the hospital can
record every donor’s information using function record. As arguments,
the hospital passes the donor’s address and whether that person belongs
to a risk group, e.g. due to travel history or a recent illness. Ignoring the
blue privacy annotations for now, record (i) records the provided data
in the risk mapping under the donor’s key and (ii) increments count by
one iff the donor belongs to a risk group. To check the integrity of the
collected statistics, the donor can use the check function, which requires
that risk[me] stores the correct value r. Here, me refers to the caller
(analogous to msg.sender in Solidity). Observing many successful calls
of check by other donors, a donor can be confident that the statistics are
computed correctly. After recording the statistics of many donors, the
hospital may reveal the count, possibly protecting it, e.g. by a differential
privacy mechanism (not shown).

2.2.1 Privacy Specification

Whether a donor belongs to a risk group is sensitive information, which
can be protected using zkay’s type system as we show next.

specifying privacy To protect the information about risk group mem-
bership, MedStats specifies privacy constraints using privacy annotations,
enforcing that a value of type τ@α (consisting of data type τ and privacy
type α) can only be read by its owner α. For example, Line 3 specifies that
count is private to its owner hospital, meaning that only the hospital may
read count. We note that, in contrast to reads, writes are not restricted,
and therefore anyone may write to count. In contrast to count, hospital in
Line 2 has no privacy annotation, meaning that its value is public (i.e., any
account may read it). To emphasize that a type is public, we may annotate
it explicitly as @all.

For mappings, zkay supports fine-grained privacy specifications where
the owner of mapping entries can depend on the mapping key. For example,
Line 4 tags the key of mapping risk with name x and refers to this name
in its entry type bool@x. Consequently, risk[don] in Line 13 is private to
don. Explicitly tagging the mapping key is particularly useful for nested
mappings. That is, for m of type mapping(address!x => mapping(address

=> uint@x)), we have that m[α][β] is private to α.
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Γ ⊩ L : τ@α Γ ⊢ e : τ@α′ (α = α′ ∨ α′ = all)

Γ L=e Γ
Γ ⊢ e : τ@me

Γ ⊢ reveal(e, α) : τ@α

Γ ⊩ L : τ@α α provably evaluates to caller
Γ ⊢ L : τ@me

Figure 2.2: Selected typing rules: Γ ⊢ e : τ@α (resp. Γ ⊩ L : τ@α) denotes that
expression e (resp. location L) is of type τ@α under the typing con-

text Γ. Γ P Γ′ denotes that statement P is well-typed and transforms
the typing context Γ to Γ′.

In general, a privacy annotation α can be (i) me, (ii) all, (iii) a state
variable (i.e., a contract field), or (iv) a mapping key tag. For case (iii),
zkay’s type system ensures the type of α is address@all, meaning that
owners are (publicly known) addresses, and that α is declared final (e.g.,
hospital in Line 2). The type system of zkay ensures that final variables
remain constant. This prevents ownership transfer, which we disallow in zkay
for simplicity. In §2.9, we discuss how zkay can be extended to support
ownership transfer for fields. For example, modifying hospital would
implicitly cause count to get a new owner. The interpretation of privacy
types will become more clear when we discuss the semantics of zkay (§2.4).

type system exemplified We now introduce zkay’s type system and
illustrate how it checks function record, addressing challenges C1–C4. We
present three key rules of zkay’s type system (illustrated shortly) in Fig. 2.2;
further details on the type system will be given in §2.3.

Require: In Line 12, expression hospital == me must be public, as the
outcome of require leaks its value (C4, obfuscated leaks).

Reads With Explicit Reclassification: In Line 13, the type system prevents
us from directly storing r into risk[don] to avoid implicitly leaking r to
the donor (C4, obfuscated leaks). Concretely, the type rule for assignments
L = e (Fig. 2.2) requires (i) typing the target location L as τ@α, (ii) the
expression e as τ@α′, and (iii) α = α′ ∨ α′ = all. Thus, typing risk[don]=r

requires instantiating this rule by L := risk[don], e := r, τ := bool,
α := don, and α′ := me, which violates constraint (iii).

To avoid type errors, we must explicitly reclassify r for don using reveal,
making the leak explicit (see Line 13). The type rule for reveal (Fig. 2.2)
only allows reclassifying expressions private to the caller. This is because
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(i) expressions private to other accounts cannot be read by the caller (C2,
knowledge restriction), and (ii) public expressions can be implicitly classi-
fied. For example, in Line 8, the constant 0 of type uint@all is automatically
classified for hospital. Such classifications can never leak information, but
improve the readability of zkay (C3, obfuscated logic).

Reads Without Explicit Reclassification: In order to evaluate the right-hand
side in Line 14, the caller must read count of type uint@hospital and r

of type bool@me. The type system allows reading locations (i.e., variables
and mapping entries) only if they are (i) public, or (ii) private to me (C2,
knowledge restriction). In the case of count, this is non-obvious as syntacti-
cally, hospital is not me. Still, we want to allow Line 14 without forcing an
explicit reclassification (C3, obfuscated logic). Thus, zkay employs static
analysis (more precisely, Abstract Interpretation [57]) to prove that hospital
equals me, which is possible due to the preceding require statement in
Line 12. To reflect this, the type rule for private locations (Fig. 2.2) requires
that α provably evaluates to the caller. Of course, our static analysis is
necessarily incomplete, i.e., it may fail to prove that an owner variable
equals me. In this case, a programmer can manually encode additional
knowledge using require statements, thus helping our static analysis.

zkay only enforces privacy type α ∈ {me, all} for expressions the caller
must read. In Line 13, the right-hand side is of type uint@don, even though
in general, don != me. zkay allows this, as the right-hand side is directly
assigned, without using it as a sub-expression.

In Line 14, the expression r ? 1 : 0 has both private (r) and public (0,
1) sub-expressions. To prevent implicit information leaks (C4), we type it
as uint@me. Generally, we type native functions (such as a + b, r ? 1 : 0,
etc.) conservatively, making them private to me if any of their arguments is
private to me.

Loops and Conditionals: For loops and if-then-else statements (not used in
MedStats), zkay enforces that the condition expression is public, as control
flow may implicitly leak the condition’s value (C4, obfuscated leaks). Hence,
if programmers want control flow to depend on private values, they either
need to explicitly declassify these values using reveal, or re-write the code
to make use of conditional expressions e1? e2 : e3 (where e1 can be private).
Moreover, zkay requires the body and condition of loops to be fully public
(i.e., to not involve any private variables). This is necessary since NIZK
proof constructions do not support unbounded loops in the statement (C1,
incompleteness). In our transformation, we employ a hybrid construction
where public loops are executed on-chain.
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2.2.2 Enforcing the Privacy Specification

To enforce privacy specifications in contracts, we provide a transformation
from an arbitrary well-typed zkay contract to a semantically equivalent and
privacy-preserving yet fully public contract (§2.5). A contract is fully public
if all its locations and expressions are public.

main ideas The core ideas of the transformation are (i) to store private
values encrypted under the public key of their owner, and (ii) to use NIZK
proofs to ensure that state modifications are consistent with the intended
operations. In Fig. 2.1b, we show the transformed version MedStats of the
contract MedStats.

Our transformation ensures that at every execution step in MedStats, the
transformed contract holds an equivalent state where all private values are
encrypted under their owner’s public key. For example, assume risk[0x01]

holds the value true after Line 13 in MedStats. Then, in MedStats, assum-
ing proof verification (verify, discussed below) in Line 17 succeeds, after
Line 14 risk[0x01] holds Enc(true, R, pk0x01), where R is some random-
ness and pk0x01 is the public key of the account with address 0x01.

We now discuss the transformation in more detail on the example of
function record. When transforming record, we first replace the type of its
parameter r by the ciphertext type bin@all, as r will now hold encrypted
values. Since Line 12 (Fig. 2.1a) is fully public, we do not transform it (cp.
Line 13, Fig. 2.1b).

Ciphertexts, Proofs, and Proof Circuit: To transform Line 13, we must store
into risk[don] the value of r, encrypted for don. Because we cannot
compute this value on-chain without violating privacy, the caller computes
the ciphertext off-chain and provides it as an additional argument v0. Then,
we store v0 into risk[don] (Line 14, Fig. 2.1b). To force the caller to provide
the correct value for v0, we collect a correctness constraint in ϕ (see Fig. 2.1c,
this represents the proof circuit verified later). Concretely, Line 4 in ϕ checks
that v0 is the result of encrypting rdec using randomness R0 and key pkdon,
the public key of don. Here, we obtain rdec by decrypting r in Line 3 using
the caller’s secret key sk. The highlighted private inputs R0 and sk of ϕ
cannot be provided on-chain because knowing R0 enables guessing attacks
on v0 and knowing sk allows decrypting r. Upon calling record, the caller
provides a NIZK proof proof certifying she knows these secrets such that ϕ
is satisfied together with the remaining arguments provided on-chain (see
next). This proof is verified in Line 17 of Fig. 2.1b, where the arguments of
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verify serve as the public arguments of ϕ (pk fetches public keys). Due to
the nature of NIZK proofs, verification does not leak any information about
the secret arguments besides their existence. Proof verification verifyϕ can
be realized on public blockchains using tools like ZoKrates [46].

Finally, we transform Line 14 (Fig. 2.1a) to Line 16 (Fig. 2.1b), replacing
the private expression count + (r ? 1 : 0) by an argument v1. Again,
ϕ checks the correctness of v1 (Lines 5–7). Note that to read the original
value of count in Line 5 of ϕ, we must record it in Line 15 of Fig. 2.1b, as
we overwrite count in Line 16.

Hybrid Approach: Our approach is hybrid in the sense that some operations
are executed inside the contract, outside the proof circuit. For instance,
mapping entries are always resolved on-chain (e.g., risk[me] in Line 21

of Fig. 2.1b) so to avoid passing whole mappings to the verifier (see C1

in §2.1). This requires us to disallow encrypting mappings as a whole and
enforce mapping keys to be public.

Transactions: To enable calling the transformed functions, we also transform
transactions. For example, we transform a transaction record(0x01,false)

to record(0x01,r,v0,v1,p), where r, v0, v1 are computed off-chain in
accordance with ϕ (e.g., v0 is the encryption of false for 0x01), and p is an
appropriate NIZK proof.

privacy It is not clear a priori what it means for a contract to be private.
Prohibiting any leak of information is too restrictive: even the specification
contract MedStats leaks some information about its private data (e.g., due
to the declassification in Line 18), which is reflected also in its transformed
variant MedStats.

In this chapter, we introduce a formal definition of privacy taking this
subtlety into account. Privacy of a contract is always defined with respect
to a specification contract. We define contract MedStats to be private
w.r.t. contract MedStats iff any transaction on MedStats does not leak more
information than the analogous transaction on MedStats executed in an
ideal world where private values are kept secret for the respective owner.
We formalize this notion by introducing traces leaked by transactions on
zkay contracts. We prove that our transformation respects privacy (§2.6) by
showing that any trace t of a transaction in MedStats can be simulated from
the corresponding trace in MedStats by producing a trace indistinguishable
from t.
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2.3 the zkay language

We now discuss the zkay language and its privacy type system in more
detail.

2.3.1 Syntax

Fig. 2.3 shows the syntax of zkay, which is inspired by Solidity [56]. In
order to focus on key insights, zkay is deliberately kept simple.

The zkay language consists of (memory) locations, expressions, data and
privacy types, statements, functions, and contracts. A type declaration
(τ@α) in zkay consists of a data type (τ), and a privacy type (α) specifying
the owner of a construct. Privacy types consist of me, a pseudo-address
indicating public accessibility (all), and identifiers (covering state variables
and mapping key tags). For readability, we often omit all, writing τ
instead of τ@all. Locations (L) consist of contract field identifiers, function
arguments and local variables (‘id’, alphanumeric strings), and mapping
entries (L[e]).

The only zkay-specific expressions are the runtime address of the caller
(me), and re-classification of information (reveal). The highlighted expres-
sions can be viewed as evaluations of so-called native functions g(e1, . . . , en),
including standard arithmetic and boolean operators (captured by ⊖,⊕).
The expression pk(e) returns the public key of the address expression e
from a public key infrastructure. It is straightforward to extend zkay with
additional native functions (as indicated by ‘· · · ’ in Fig. 2.3). For simplicity,
we don’t discuss the handling of calls to functions of the same or other con-
tracts. zkay can, however, support such calls whenever the called function
bodies are statically known; we discuss this in §2.9.

In addition to well-known data types (bool and uint), zkay supports
addresses indicating accounts (address), and binary data capturing NIZK
proofs, public keys and ciphertexts (bin). In addition, types include map-
pings (mapping(τ1 => τ2@α2)) and named mappings of the form

mapping(address!id => τ@α),

defining name ‘id’ for the key of the map to be used in the key type τ@α. It
is straightforward to extend zkay with additional types, such as floating
point numbers, structs, and arrays (conceptually, arrays are equivalent to
mapping(uint => τ@α)).



22 a language and compiler for smart contracts with data privacy

L
::=

id
|L

[e]
(Location

)
α

::=
m
e|

a
l
l|id

(Privacy
type)

e
::=

c|
m
e|L

|
r
e
v
e
a
l
(e,α

)|
⊖

e|e1 ⊕
e2 |e1 ?

e2
:

e3 |
p
k
(e)|···

(Expression
)

τ
::=

b
o
o
l|

u
i
n
t|

a
d
d
r
e
s
s|

b
i
n|

m
a
p
p
i
n
g
(

τ1
=
>

τ2 @
α

2 )|
m
a
p
p
i
n
g
(
a
d
d
r
e
s
s
!id

=
>

τ@
α
)

(D
ata

type)

P
::=

s
k
i
p|

τ@
α

id
|L

=
e|P

1 ;P
2 |

r
e
q
u
i
r
e
(e)|

i
f

e{P
1 }

e
l
s
e
{P

2 }
|
w
h
i
l
e

e{P}
|
v
e
r
i
f
y

ϕ
(e0 ,e1 ,...,en

)
(Statem

ent)

F
::=

f
u
n
c
t
i
o
n

f(
τ1 @

α
1

id
1 ,...,τn @

α
n

id
n
)

r
e
t
u
r
n
s

τ@
α
{P

;r
e
t
u
r
n

e;}
(Function

)

C
::=

c
o
n
t
r
a
c
t

id{
(f
i
n
a
l
)?

τ1 @
α

1
id

1 ;
...

(f
i
n
a
l
)?

τn @
α

n
id

n ;
F1

...Fm }
(C

ontract)

F
i
g

u
r

e
2.

3:Syntax
of

zkay,w
here

f
and

‘id’are
identifiers,c

is
a

constant,and
ϕ

an
arithm

etic
circuit.N

ative
functions

are
highlighted

.



2.3 the zkay language 23

Statements (P) in zkay are mostly standard. To declare a local variable,
we write τ@α id. If e does not evaluate to true, require(e) throws an
exception. Finally, zkay supports NIZK proof verification (verify). We only
include this statement to express transformed contracts and assume spec-
ification contracts never use verify. In statement verifyϕ(e0, e1, . . . , en),
the proof circuit ϕ is an arithmetic circuit (i.e., a loop-free mathematical
function) taking n public and m secret arguments, and returning a number
in {0, 1}. The verification statement verifies that e0 is a valid NIZK proof
certifying there exist m secret values v1, . . . , vm such that ϕ returns 1 when
given n public arguments e1, . . . , en and secret arguments v1, . . . , vm. Proof
verification does not leak any information about the secret arguments of
the circuit ϕ other than the fact that ϕ returns 1. We could easily include
cryptocurrency transfers (transfer in Solidity) in zkay, but omit them for
simplicity.

While we only discuss functions (F) which return a value, zkay also
allows constructors and functions without return values (e.g., see Fig. 2.1a).
Contracts (C) consist of contract field declarations and function declarations,
where contract fields may be declared final.

2.3.2 Privacy Type System

As the typing rules to derive data types are standard, we only discuss
privacy types here.

We write Γ ⊢ e : τ@α (resp. Γ ⊩ L : τ@α) to indicate that expression e
(resp. location L) is of type τ@α under the typing context Γ. We write
⊢ g : ∏n

i=1 τi@αi → τ@α to express that the i-th argument of a native
function g is of type τi@αi, and the return value is of type τ@α, where
α, α1, . . . , αn ∈ {me, all}. Allowing other privacy types is not desirable,
since functions should only be able to read public arguments or arguments
private to the caller, and the caller should only be able to read public or

self-owned return values. We write Γ P Γ′ to indicate that statement P
is well-typed and transforms the typing context Γ to Γ′, capturing that P
might declare new variables and thereby modify the context.

expressions In general, expressions can only be read if they are public
or private to the caller. We still allow expressions with privacy type α /∈
{me, all}, but our type system ensures that such expressions can only be
used as right-hand sides of assignments (e.g., reveal(10, x) for x of type
address@all).
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c ∈ JτK
Γ ⊢ c : τ@all

Γ ⊢ e : τ@me
Γ ⊢ reveal(e, α) : τ@α

Γ ⊩ L : τ@all
Γ ⊢ L : τ@all

Γ ⊩ L : τ@α α provably evaluates to caller
Γ ⊢ L : τ@me

priv-read

⊢ g : ∏n
i=1 τi@αi → τ@α

Γ ⊢ e1 : τ1@α1
· · ·

Γ ⊢ en : τn@αn

Γ ⊢ g(e1, . . . , en) : τ@α
eval-native

Figure 2.4: Typing rules for expressions.

Expression me has type address@all. The remaining typing rules for
expressions are shown in Fig. 2.4. The rule for constants c indicates they are
always public. Here, JτK denotes the set of values with type τ. For example,
JuintK denotes non-negative integers. We provide the formal definition of
J·K in App. A.2.

The next rule describes how reveal(e, α) can be used to reveal an ex-
pression e (private to the caller) to an arbitrary privacy type α. This allows
explicitly declassifying information to make it public (by setting α = all),
or reclassifying information for some other owner α /∈ {me, all}. Note that
in the latter case, the resulting expression can only be used as a right-hand
side of an assignment.

Though the privacy type of locations can be an arbitrary address, when
reading from a location L, it is crucial that L is readable for the caller.
In this case, we treat L as an expression and restrict its privacy type to
α ∈ {me, all}. If the location is public, the expression based on this location
can be annotated as all. Otherwise, rule priv-read enforces that the
location is provably private to the caller. We leverage lightweight Abstract
Interpretation [57] to check whether α can be proven to evaluate to the same
value as me at runtime. If so, the rule annotates the expression reading the
location as me.

The rule eval-native for evaluating native functions is standard (we
discuss how to type native functions themselves shortly).

privacy types A privacy type α is either an identifier id of type
address@all, me, or all. Although all is technically not an expression, we
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x : τ@α ∈ Γ
Γ ⊩ x : τ@α

Γ ⊩ L : mapping(τ => τ′@α)@all Γ ⊢ e : τ@all

Γ ⊩ L[e] : τ′@α

Γ ⊩ L : mapping(address!id => τ@α)@all
Γ ⊢ e : address@all

id /∈ Γ
(e = id′ ∨ e = me)

Γ ⊩ L[e] : τ@α[id 7→ e]

Figure 2.5: Typing rules for locations.

also assign it the type address@all for simplicity, meaning that all privacy
types are of type address@all.

locations Fig. 2.5 shows the typing rules for locations. The type of
identifiers is determined by the typing context.

For mappings, in order to avoid passing whole mappings to the proof
circuit later, we require mappings themselves and keys into mappings to
be public, and only allow individual mapping entries to be private. For a
general key type τ, each entry in the mapping must be annotated with the
same privacy type α, and reading the entry at key e yields L[e] of privacy
type α. For key type address, we allow α to contain ‘id’, enabling the
privacy types of the entries of L to depend on the key. When reading L at
key e, we syntactically substitute ‘id’ by e in τ@α. Because ‘id’ stands for a
privacy type, we require e to be either an identifier id′ or me.

statements The rules for sequential composition and skip statements
are standard. The condition of loops and if-then-else statements is en-
forced to be of type bool@all (to prevent implicitly leaking the condition’s
value). Further, the body and condition of loops cannot involve any private
variables.

We show typing rules for the remaining statements in Fig. 2.5. A state-
ment ‘τ@α id’ declares a variable of type τ@α, and its typing rule ensures
that α in fact evaluates to a public address. The typing rule for verifyϕ is
included to express transformed contracts and we assume that the original
contracts never use a verifyϕ statement. The rule requires that the data
types of the provided arguments match the types of the first n arguments
of ϕ, and that they are public. The proof circuit ϕ is a function taking n + m
arguments, the first n of which are publicly provided, and the remaining
m arguments are part of the proof e0. The data types τi, τ′i are restricted to
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Γ ⊢ α : address@all id /∈ Γ

Γ τ@α id Γ, id : τ@α

decl

Γ ⊩ L : τ@α Γ ⊢ e : τ@α′ (α = α′ ∨ α′ = all)

Γ L=e Γ

Γ ⊢ e : bool@all

Γ
require(e)

Γ

ϕ :
(

∏n
i=1JτiK×∏m

j=1Jτ′j K
)
→ {0, 1} τi, τ′j primitive

Γ ⊢ e0 : bin@all Γ ⊢ e1 : τ1@all · · · Γ ⊢ en : τn@all

Γ
verifyϕ(e0,e1,...,en)

Γ

Figure 2.6: Typing rules for statements.

primitive types (i.e. bool, uint, address, and bin) to avoid passing whole
mappings to verification.

The typing rule for assignments ensures that the data type of the location L
is consistent with the right-hand side expression e. We allow the privacy
type of L to be different from the privacy type of e only if e is public. Hence,
we allow implicit classification of a public value for any owner, but forbid
implicit de- or reclassification. Assignments can be used in combination
with reveal expressions to write explicitly reclassified information.

functions and contracts The return value of native functions
g(e1, . . . , en) is conservatively typed private if at least one of the arguments
ei is private to the caller, and public otherwise. We provide multiple
signatures for different argument privacy types. The signatures are of the
form τ1@α1 × · · · × τn@αn → τ@ min(α1, . . . , αn), where min returns all

if and only if all its arguments are all, and me otherwise. For example,
e1? e2 : e3 takes a condition (bool) and two numbers (uint), and returns a
number (uint). Hence, the following pattern captures all possible signatures
of this native function:

bool@α1 × uint@α2 × uint@α3 → uint@ min(α1, α2, α3).

The data types of native functions are as follows. The public key infras-
tructure pk takes an address (address) and returns the public key of that
address (bin). The rules for unary (⊖) and binary (⊕) arithmetic and
boolean expressions are standard.

A function defined in a contract is well-typed if its body P is well-typed
in a context including all contract fields and arguments. Like for native
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functions, its arguments and return value must have a privacy type in
{all, me}. A contract C is well-typed if all its functions are well-typed
(under the context induced by the fields of C), and all privacy annotations
of its fields are all or public addresses declared as final.

2.4 semantics by example

We now define how transactions update the contract state by evaluating zkay
statements, expressions and locations. Further, we present how transactions
generate traces containing information about intermediate execution steps,
modeling leaked information.

2.4.1 Traces

Every execution in zkay (e.g., expression evaluation or statement execution)
produces a trace. Intuitively, the trace defines which information is leaked
during execution (including control flow, reads, writes, and calculations)
and to whom it is leaked. Traces are essential to define zkay’s privacy
notion (§2.6). Formally, a trace t is a sequence of entries vi@ai for values
vi and privacy levels ai. The latter is either (i) an address, indicating that vi
is private to ai and can only be seen by ai, or (ii) all, indicating that vi is
public. For brevity, we usually omit @all from traces.

We write Tx(a)
C. f (v1:n) to denote a transaction issued by address a, calling

function f of contract C with arguments v1:n. We write ⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩ to

denote that executing transaction T on state σ (introduced next) produces
the trace t, updates the state to σ′, and returns the value v. If T throws an
exception, we set v = fail for a reserved failure value fail.

2.4.2 Example Transaction

We introduce the key aspects of zkay’s semantics on an example (formal
semantics for zkay is provided in App. A.2). Consider the contract in
Fig. 2.7a consisting of a mapping field m and a function f. In Line 5, ϕ is an
arithmetic circuit defined as follows (v1 is a public and v2 a secret argument
of ϕ):

ϕ(v1; v2) = 1 ⇐⇒ v1 − 1 = v2.
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1 contract C {
2 mapping(uint => uint) m;
3 function f(uint a, uint@me x, bin p) {
4 x = reveal(x + 1, all) * 2;
5 verifyϕ(p, m[a]);
6 } }

(a) Example contract C.

(b) Trace emitted by Line 4 of C.

(c) Trace emitted by Line 5 of C.

Figure 2.7: The semantics of zkay illustrated for an example transaction where
address 0x1 calls f(0, 2, Proofψ(R; 5; 4)) on C, assuming m[0] = 5.

states and values The state σ of a contract specifies the values
of all fields. For our example, assuming that m[0] holds value 5, we
write σ = {m 7→ {0 7→ 5}}. We use symbolic representations for val-
ues of type bin (i.e., keys, ciphertexts and NIZK proofs). Specifically,
we write Enc(v, R, pka) to denote the encryption of v using the public
key of a and symbolic randomness R. NIZK proofs are represented by
Proofϕ(R; v1:n; v′1:m), where ϕ is the proof circuit, R is symbolic random-
ness used to generate the proof, and v1:n := v1, . . . , vn (resp. v′1:m) are
the public (resp. secret) arguments for ϕ bound in the proof. A similar
notation is introduced in [58]. We say that Proofϕ(R; v1:n; v′1:m) is valid iff
ϕ(v1:n; v′1:m) = 1.

Assume a caller with address 0x1 starts a transaction calling f with
arguments (0, 2, Proofψ(R; 5; 4)). Here, it is ψ = ϕ (though in general, we
may have ψ ̸= ϕ). Before Line 4 (Fig. 2.7a), the state is:

σ′ = {m 7→ {0 7→ 5}, a 7→ 0, x 7→ 2, p 7→ Proofψ(R; 5; 4), me 7→ 0x1}
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expressions and assignments We now describe how the assignment
in Line 4 is evaluated. Fig. 2.7b illustrates which trace entries vi@ai are
emitted by each evaluation step.

Evaluation of the right-hand side expression starts at the leafs. Evaluating
the constant 1 emits trace entry 1 with privacy level all (omitted), because
constants are public. The location x is private to the caller, which has
address 0x1. When reading x, two trace entries are emitted. First, we emit
x to indicate the accessed location. This entry is public to model the fact
that accessed memory locations cannot be hidden. This is in contrast to the
value of x, which is added to the trace as 2@0x1 with privacy level 0x1. The
expression x + 1 is private to the caller according to the type system, hence
its evaluation result 2 + 1 = 3 is added to the trace as 3@0x1. This reflects
that nobody except address 0x1 can see this result. The reveal expression
emits all (evaluating its second argument) and reveals the value 3 of its
first argument by emitting the public trace entry 3. Note how the value 3

is now visible to everyone. Multiplying it with the constant 2 emits public
trace entries 2,6.

For the left-hand side of the assignment, the location x is added to the
trace as a public entry. Note how the right-hand side is implicitly classified
for 0x1: the public value is written to x, which is private to the caller
according to the type system. Hence, a final entry 6@0x1 is added to the
trace and the value of x in σ′ is updated to 6 (the value stored in the state
has no privacy level attached).

In summary, the trace generated when executing Line 4 is

x, 2@0x1, 1, 3@0x1, all, 3, 2, 6, x, 6@0x1

and the new state is

{m 7→ {0 7→ 5}, a 7→ 0, x 7→ 6 , p 7→ Proofψ(R; 5, 4), me 7→ 0x1}.

proof verification Next, we describe how the proof p is verified in
Line 5. Fig. 2.7c illustrates the emitted trace entries.

First, p is evaluated to the proof P := Proofψ(R; 5; 4), emitting entries p,P.
Then, m[a] is evaluated to 5, which emits entries a, 0 (from evaluating a)
followed by m[0], 5. Note the entry m[0] in the trace: in contrast to the
(syntactic) location m[a], this so-called runtime location specifies the key
value.

Next, the proof P is verified. This includes checking that (i) the circuit
bound in P (here: ψ) equals the target circuit of the verification statement
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(here: ϕ), (ii) the public value bound in P (here: 5) matches the value of
the second argument of verify (here: m[a] = 5), and (iii) P is valid (i.e.,
checking that ψ(5, 4) = 1). Because verification is successful, the verify

statement emits a public trace entry 1. Note how no other trace entries
are generated by verify, reflecting the zero-knowledge nature of proof
verification.

The transaction is finished successfully. The final contract state only
retains the values of contract fields and is hence equal to the initial state σ
in our example (the value of m was not updated).

In case of verification failure (e.g., if ϕ ̸= ψ in Line 5), an exception would
be thrown: execution is stopped immediately and the state is rolled back to
the state before the transaction. In this case, the trace would still contain the
previously collected information, but end with a special entry “rollback.”

2.5 transformation

We now describe how to transform a zkay contract C to a fully public
zkay contract C (§2.5.1–§2.5.3) while preserving privacy (discussed in §2.6).
Because C has a different interface than C, we also discuss how to transform
transactions T on C to transactions T on C (§2.5.4).

correctness By construction, our transformation ensures correctness,
as formalized in Thm. 2.1.

Theorem 2.1 (Correctness). Given a contract C and its transformation C, for
any two equivalent states σ and σ and any transaction T, running T on C, σ
either throws an exception or there exists a transaction T for the same function
and using the same public arguments as T such that: ⟨T, σ⟩ t

=⇒ ⟨σ′, v⟩ in C and

⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩ in C for some σ′,v equivalent to σ′,v and some traces t, t.

Formally, value v in C is equivalent to value v′ in C, if either v is public and
v = v′, or v is private to a and v′ = Enc(v, R, pka) for some randomness R.
As a natural extension, state σ in C is equivalent to state σ′ in C if all values
in σ and σ′ are equivalent.

2.5.1 Transformation Overview

The general idea of transforming a contract C to C is to (i) replace private
expressions by encrypted arguments provided by the caller, (ii) replace
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function f(...) {
P;
return e;

}

function f(..., F , bin proof) {

T(P)

verify
ϕ
(proof, P );

return Te(e) ;

}

for ϕ :
(
P , S

)
→ {0, 1}

(a) Transformation of a zkay function.

out(e, α) ::= vi (invariant: e@me or e@all)

F ← F , vi

P ← P , vi, pk(α)

S ← S , Ri

ϕ← ϕ; vi == enc( Tϕ(e) , Ri, pk(α)) ;

(b) Transformation out(e, α). If α = all, the highlighted part is omitted.

in(e, α) ::= decτ( vi, sk) (invariant: e@α, α ∈ {me, all})

add to T(P) : τ′@all vi = Te(e); for τ′ ::=

{
τ α = all

bin α ̸= all

P ← P , vi
S ← S , sk

(c) Transformation in(e, α). If α = all, the highlighted part is omitted.

Figure 2.8: Overview of zkay transformations (part 1). We write e@α to indicate
that e has privacy type α. The symbol vi denotes a fresh variable.
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T(P1; P2) ::= T(P1); T(P2) (2.1)

T(L@α = e@α) ::= TL(L) = Te(e) (we use TL = Te) (2.2)

T(L@α = e@all) ::= TL(L) = out(e, α) (α ̸= all) (2.3)

T(require(e)) ::= require(Te(e)) (2.4)

T(while e {P}) ::= while e {P} (P is fully public) (2.5)

T(if e {P1} else {P2}) ::= if (Te(e)) {T(P1, Te(e))} (2.6)

else {T(P2, Te(!e))}

(a) Transforming statements using T.

Te(c) ::= c const c (2.7)

Te(id) ::= id var id (⋆) (2.8)

Te(L[e]) ::= TL(L)[Te(e)] mapping entry (2.9)

Te((e1 + e2)@all) ::= Te(e1) + Te(e2) native functions (2.10)

Te(reveal(e, α)) ::= out(e, α) (invariant: e@me) (2.11)

Te(e@α) ::= out(e, α) (invariant: e@me) (2.12)

(b) Transforming expressions in zkay using Te. For private function arguments id, ⋆ adds
an additional correctness constraint to ϕ.

Tϕ(c) ::= c const c (2.13)

Tϕ(L@α) ::= in(L, α) (invariant: α ∈ {all, me}) (2.14)

Tϕ(reveal(e, α)) ::= Tϕ(e) (2.15)

Tϕ(e1 + e2) ::= Tϕ(e1) + Tϕ(e2) native functions (2.16)

(c) Transforming expressions in the proof circuit using Tϕ.

Figure 2.9: Overview of zkay transformations (part 2). We write e@α to indicate
that e has privacy type α.
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declassified expressions by cleartext arguments provided by the caller, and
(iii) require the caller to provide NIZK proofs certifying correctness (i.e.,
equivalence) of these arguments w.r.t. C.

Figs. 2.8–2.9 show an overview of our transformation. To avoid notational
clutter, the figures do not describe how to transform the types of private
locations. Because these hold encrypted values in C, our transformation
changes their type to bin@all. An example is count in Line 3 of Fig. 2.1a,
transformed to Line 3 of Fig. 2.1b.

transforming functions A well-typed zkay contract C is trans-
formed by transforming all its functions according to Fig. 2.8a. The function
body and returned expression are transformed using statement transforma-
tion T (Fig. 2.9a) and expression transformation Te (Fig. 2.9b), respectively.
The function’s parameters are extended by parameters F and a NIZK proof.
During transformation of the body and return value, we collect correctness
constraints on F in a proof circuit ϕ. The proof proof is verified w.r.t. ϕ,
public arguments P and secret arguments S (bound to the proof during
proof generation) at the end of the body. No verification statement is added
if ϕ is empty (i.e., if no correctness constraints were collected).

encoding proof circuits Up until now, we have viewed proof cir-
cuits ϕ as abstract mathematical functions. We will later use the NIZK
verifier generation tool ZoKrates [46] to instantiate verifyϕ for a given ϕ,
hence the latter ultimately needs to be encoded in the DSL of ZoKrates.
To avoid introducing this DSL, from now on we encode ϕ using zkay as-
signments, variable declarations, and boolean expression (e.g., equality)
constraints. We augment expressions by asymmetric encryption and decryp-
tion with standard semantics: the expression enc(x, R, k) encrypts x using
randomness R and public key k to yield the (symbolic) value Enc(x, R, k)
of data type bin, while decτ(x, k) decrypts x of data type bin using the
secret key k and returns a value of data type τ. We define ϕ to return 1 iff
evaluating ϕ according to zkay semantics results in all constraints being
satisfied. Fig. 2.1c shows an example of a proof circuit encoding.

2.5.2 Transformation Example

We now provide an intuition of the transformation defined in Figs. 2.8–2.9
using a concrete example. Particularly, we discuss how the function f

shown in Fig. 2.10a is transformed step-by-step (Fig. 2.10b) to f.
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transforming statements We begin by transforming the body
of f using the statement transformation T formally defined in Fig. 2.9a.
Fig. 2.10b (left, first two lines) shows how we apply rule (2.2).

In general, T ensures that intermediate states in C and C are equivalent.
More precisely, for any statement P, it ensures the following invariant:
Assuming the constraints expressed in ϕ hold at the end of f, P is equivalent
to T(P). Formally, statement P in C is equivalent to statement P′ in C if for
any states σ in C equivalent to σ′ in C, successfully running P in σ and P′

in σ′ results in equivalent states. Here, “successfully” means in absence of
exceptions.

transforming expressions Next, we transform the right-hand side
x + a using expression transformation Te (Fig. 2.9b). At a high-level, Te
recursively transforms expressions while (i) leaving public expressions
unchanged, and (ii) substituting private expressions by fresh function ar-
guments vi whose correctness is enforced by adding constraints to ϕ. In
our case, the argument x + a of Te is private to me and we hence apply
rule (2.12). Because x + a cannot be evaluated on-chain in f without vio-
lating privacy, we require the caller to pass the encryption of x + a via a
fresh function argument, and to prove its correctness. Conceptually, this
amounts to evaluating x + a in ϕ, and making the result available within f

(i.e., moving x + a out of ϕ). This is achieved using out(x + a, me), discussed
in the next paragraph.

We apply location transformation TL to the left-hand side y. Because
TL is equal to Te, except for ⋆ in Fig. 2.9b (discussed in §2.5.3), we do not
discuss it further. In our example, we apply rule (2.8).

In general, for any expression e, expression transformation Te ensures the
following invariant : Assuming the constraints expressed in ϕ hold at the end of f,
e in C is equivalent to Te(e) in C. Formally, expression e in C is equivalent to
e′ in C if for any states σ in C equivalent to σ′ in C, successfully evaluating
e in σ and e′ in σ′ yields equivalent values. TL ensures that TL(L) in C
evaluates to the same runtime location as L in C.

moving values out of the proof circuit The transformation out
(Fig. 2.8b) ensures that the correct encryption of x + a is computed in ϕ
and “moved out” to f. It performs two steps: First, it replaces x + a by
a fresh function argument v0 (see also Fig. 2.10a) and thereby concludes
the transformation in f (see highlighted in Fig. 2.10). Then, it continues
transformation inside the proof circuit ϕ (see right box in Fig. 2.10b). It
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makes v0 available in ϕ by adding v0 to the public arguments P , and adds
a constraint to ϕ ensuring that v0 is a proper encryption of the correct
cleartext value of x + a. This involves adding the encryption key pk(me) to
P and fresh randomness R0 to the secret proof circuit arguments S . 2 R0
must be secret, as the ciphertext would otherwise be vulnerable to guessing
attacks.

transforming expressions in the proof circuit To ensure cor-
rectness of the computation, we need to compute the cleartext value of
x + a in ϕ (note that this remains private), which is achieved using the
transformation Tϕ (Fig. 2.9c). Addition can directly be performed in ϕ and
we apply rule (2.16). Next, we apply rule (2.14) to make the cleartext values
of variables x and a accessible to ϕ. This is, we “move them into” ϕ using
in (discussed next).

In general, for any expression e, Tϕ(e) ensures that successfully evaluating
e in C results in the same (unencrypted) value as evaluating Tϕ(e) in ϕ during
verification of ϕ in C.

moving values into the proof circuit Note that because x is
private in f, it is encrypted in f. To make the cleartext value of x available
in ϕ, in (Fig. 2.8c) performs the following steps. First, it passes the current
(encrypted) value of x from f to ϕ by (i) adding a new public proof argument
v1 to ϕ, (ii) storing the current state of x in a fresh local variable v1 in f (see
highlighted in Fig. 2.10a, this step is important as the value of x could in

general change later), and (iii) passing v1 to ϕ at verify. As a result, v1
in ϕ will contain the current encrypted value of x. Second, in decrypts v1
using the caller’s secret key sk, which is added as a private argument to ϕ.
The cleartext value of a is similarly made available in ϕ via a public proof
circuit argument v2. Because a is public in f, a is not encrypted in f and no
decryption is required.

The resulting constraint in ϕ (see highlighted in Fig. 2.10b, right) en-
forces that v0 is a proper encryption of x + a, according to f, under the
caller’s public key.

Because our transformation invariants ensure that for in(e, α), e is never
private to somebody else than the caller, in never requires somebody else’s
private key (cp. C2, knowledge restrictions).

2 To simplify notation, we directly refer to pk(me) inside ϕ. In our implementation, we actually
introduce a fresh parameter to pass the public key (cp. pkme in Fig. 2.1c)
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2.5.3 Additional Rules

We now describe some additional transformation rules.

statements Rule (2.3) handles implicit classifications by moving the
appropriately encrypted value out of the proof circuit. Our type system
enforces while loops to be fully public, meaning that their termination
conditions and bodies do not involve private variables. Hence, they are left
untransformed by T. We transform if e {P1} else {P2} by individually
transforming e, P1 and P2 (note that e may include declassifications). Since
transformation of P1 (resp. P2) may add constraints to ϕ which are only
relevant if e evaluates to true (resp. false), we extend the functions T and Te
to take a guard condition b as an optional second argument. All constraints c
added to ϕ by T(P, b) or Te(P, b) are only enforced if b is true by replacing
them by !b || c. To avoid clutter, we do not incorporate guard conditions in
Fig. 2.8.

expressions When being transformed with Te, private function param-
eters require adding a correctness constraint (not shown) to ϕ ensuring
the argument is indeed a value encrypted for the correct account (see ⋆ in
rule (2.8)). This is not required for TL.

Rules (2.10) and (2.11) together ensure that public expressions are recur-
sively transformed until a declassification is hit. For example, Te transforms
a@all+ reveal(x@me+ 1, all) to a@ + vi, where the function argument vi
containing the revealed cleartext has to be provided by the caller.

2.5.4 Transforming Transactions

Transforming a transaction T for C to T for C is simple at a conceptual level:
the function arguments for T are constructed such that proof verification in
C succeeds. Function arguments public in T can directly be used in T, while
private function arguments are encrypted under the caller’s public key in T.
Additional function arguments vi introduced by transformation are chosen
in accordance with the constraints generated when vi is introduced, see the
update of ϕ in Fig. 2.8b. We note that transforming T is only allowed if it
does not throw an exception on C for the current state.

To generate the proof, we must determine both public (P) and secret (S)
arguments to ϕ. To determine P , we simulate the partial transaction T
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(which does not yet include a proof) on C. For S , we simply provide fresh
randomness and the caller’s secret key.

2.6 privacy model for zkay

We now define privacy for zkay contracts and prove that any transformed
contract C is private with respect to its original contract C. We first define a
model of an attacker interacting with C in the real world (§2.6.1), and how
C is executed in an ideal world (§2.6.2). Finally, we prove that an attacker
can learn nothing more from transactions on C in the real world than on C
in the ideal world (§2.6.3).

At a high level, we prove a simulation-based indistinguishability notion
of privacy. To support intuition and simplify the privacy proof, we employ
a symbolic view with perfect cryptography in this chapter. However, in
Chapter 3 we provide a more standard computational proof for an extension
of zkay, thereby increasing confidence in the security of the system.

2.6.1 Attacker Model

We consider an active attacker interacting with a public blockchain as
modeled by our semantics (§2.4). We model an attacker as the set A of
addresses she controls (i.e., the attacker knows the secret keys of accounts
in A) and call all other accounts honest. Let C be the result of transforming
a contract C. The attacker A can interact with the fully public contract C in
the following two ways. First, she can observe all traces of any transaction
on C, including transactions by honest callers. This captures the behavior of
public blockchains such as Ethereum, where miners (including the attacker)
run contracts locally and thereby learn every intermediate execution step.
Second, the attacker can issue transactions on C on behalf of any account
in A, capturing potentially malicious calls by dishonest accounts.

We adopt a symbolic view in the standard Dolev-Yao model [59], where
cryptographic primitives are assumed to be perfect. As usual, we use
distinct sets Radv and Rhon for randomness generated by the attacker and,
respectively, honest accounts (cp. [58]).

We define the attacker capabilities by which (symbolic) values she can
distinguish and which not (e.g., based on cryptographic operations and
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comparisons). We assume a strong attacker who can distinguish almost all
inequal values, with few exceptions. 3

value indistinguishability Formally, we define the capabilities of
A by a relation ∼A on values, where v1 ∼A v2 means that A cannot distin-
guish values v1 and v2 in the symbolic model. Specifically, we augment the
set of values by fake proofs of the form SimPrϕ(R; v1:n) (introduced shortly)
and define ∼A to be the smallest relation satisfying:

(i) For any v (which may also be an encryption): v ∼A v

(ii) For any m, m′, b /∈ A, and R ̸= R′ with R, R′ ∈ Rhon:

Enc(m, R, pkb) ∼A Enc(m′, R′, pkb)

(iii) For any m, a ∈ A, and R, R′ ∈ Rhon:

Enc(m, R, pka) ∼A Enc(m, R′, pka)

(iv) For any ϕ, v1:n, v′1:m such that ϕ(v1:n, v′1:m) = 1 and R ̸= R′ with
R, R′ ∈ Rhon:

Proofϕ(R; v1:n; v′1:m) ∼A SimPrϕ(R′; v1:n)

Rule (i) simply models that A cannot distinguish identical values. Rule
(ii) models a randomized public key encryption scheme where A can not
distinguish encryptions under different honest randomness but identical
public key of an honest account. 4 This rule requires the encryption scheme
to hide the length of the encrypted plaintext, which can be achieved by
an appropriate padding scheme. Further, the rule implicitly assumes that
A can never learn (a) any private keys of honest accounts, and (b) any
honest randomness in Rhon. This assumption is justified: because honest
accounts respect the transformation of §2.5, in any trace (a) no such private
keys appear, and (b) honest randomness only occurs in the position of
encryption or NIZK proof randomness. Rule (iii) states that the adversary
cannot distinguish two fresh encryptions of the same message for the
adversary by honest accounts.

3 Our notion is stronger than standard Dolev-Yao-style knowledge deduction rules. For example,
in our model the attacker can distinguish encrypted values from randomness, which is usually
not possible in the latter model [60].

4 This rule can be viewed as a symbolic model of the standard IND-CPA property of (randomized)
public key encryption schemes.
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The rule (iv) models the zero-knowledge property of NIZK proofs. First,
we introduce symbolic fake proofs of the form SimPrϕ(R; v1:n) for a proof
circuit ϕ, randomness R and public arguments v1:n. Then, in rule (iv), we de-
fine valid proofs generated with honest randomness to be indistinguishable
from simulated proofs for the same proof circuit and public arguments. 5

Intuitively, the existence of an indistinguishable fake proof SimPrϕ(R; v1:n),
which is independent of the private arguments v′1:m, captures the fact that
Proofϕ(R; v1:n; v′1:m) does not leak any information about v′1:m.

trace indistinguishability Next, we define indistinguishability for
traces. Two public trace entries v1@all and v2@all are indistinguishable
for A, denoted v1@all ∼A v2@all, if v1 ∼A v2. Two public traces t1 and
t2 are indistinguishable if they (i) are entry-wise indistinguishable, and
(ii) have consistent repetition patterns. To understand (ii), consider traces
t1 = a, a and t2 = b, c with a ∼A b and a ∼A c for b ̸= c. Now, A can
distinguish t1 from t2 by checking if the two entries of the trace are identical.

Formally, t1 ∼A t2 iff (i) t1 and t2 have equal length, and (ii) there exists
a bijection π on values such that ∀i. π(ti

1) = ti
2 ∧ π(ti

1) ∼A ti
1, where ti is

the i-th entry of a trace t.

2.6.2 Observable Information in the Ideal World

We now describe which parts of traces of transactions on a contract C an
attacker A can read if C is executed in an ideal world. From now on, we
assume that A contains all, reflecting that the attacker can always access
public trace entries.

The observable trace describes what parts of a trace are leaked to A in
an ideal world. For a trace t and an attacker A, the observable trace of t,
obsA(t), is obtained by (i) hiding all values in t whose privacy level is not in
A using a placeholder , and (ii) dropping all privacy levels. For example,
for t = 1@0x0, 2@0x1, 3 and A = {all, 0x0}, it is obsA(t) = 1, , 3.

2.6.3 Data Privacy

Let C be the transformation of a well-typed contract C. Intuitively, C is
private w.r.t. C iff transactions on C in the real world do not leak more
information than transactions on C in the ideal world. Consider an arbitrary

5 This can be viewed as a symbolic model of the standard zero-knowledge property, which is
defined by the existence of a simulator generating such fake proofs [42].
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state σ originating from a sequence of transactions on C and let σ be the
equivalent state in C (σ exists by Thm. 2.1 and is unique). C is private w.r.t.
C iff for any attacker A, there exists a simulator Sim who can, for any trans-
action T′ on C under σ yielding trace t, produce a trace t2 indistinguishable
from t. Sim only has access to σ and information observed by A in the ideal
world. It has the same capabilities as A (e.g., it can encrypt values under
any public key, but cannot break honest encryption for honest accounts),
with two exceptions: it can generate fake proofs (see the definition of ∼A)
and fresh honest randomness r ∈ Rhon. 6

The intuitive idea is that if such a simulator exists, then A could have
simulated t herself, without any knowledge of the private data protected
by C. Hence, this data is protected by C. We treat the case of honest and
dishonest callers separately, because in the latter case, the transaction may
not be the result of a transformation.

honest caller If transaction T′ is issued by an honest caller a /∈ A,
then T′ is the transformation of a transaction T in C not throwing an
exception (honest callers adhere to §2.5.4). Assuming the attacker already
knows the current state σ, Sim constructs t2 from σ, the observable trace of
T and the contract code C. This expresses that the attacker learns nothing
new from t than what he can learn from the code in C and the observable
trace of T.

Definition 2.1 (Privacy for Honest Callers). Contract C is private w.r.t. C for
honest callers iff for all attackers A, there exists a simulator Sim such that for all
σ, σ as defined above the following holds: if ⟨T, σ⟩ t

=⇒ ⟨σ′, v⟩ for some T, t, σ′,

v ̸= fail, and ⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩ for some t, σ′, v, with T being the transformation

of T, then t ∼A t2 for t2 = Sim(σ, obsA(t), C).

dishonest caller If the caller a is dishonest (i.e., a ∈ A), T′ might not
be a transformed transaction. Therefore, the simulator constructs t2 only
from σ, T′ and the code in C. This expresses that the attacker cannot learn
any information by crafting arbitrary transactions.

Definition 2.2 (Privacy for Dishonest Callers). C is private w.r.t. C for dishon-
est callers iff for any attacker A, there exists a simulator Sim′ such that, if running

6 If Sim could only generate dishonest randomness, the attacker could always distinguish
encryptions produced by the simulator from honest encryptions. Note that Sim’s randomness
is fresh, meaning that it is not used by any honest account.
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a transaction T′ generated by the attacker (i.e., using only private keys from

accounts in A) yields ⟨T′, σ⟩ t
=⇒ ⟨σ′, v⟩, then t ∼A t2 for t2 = Sim′(σ, T′, C).

privacy theorem Thm. 2.2 states that our transformation respects
privacy according to Def. 2.1 and Def. 2.2.

Theorem 2.2. The contract C transformed from a well-typed contract C according
to §2.5 is private w.r.t. C for honest and dishonest callers.

2.6.4 Privacy Proof

We now provide a proof of Thm. 2.2. It is based on the fact that the simulator
can follow the control flow (which is public) in both C and C, and simulate
encrypted values and NIZK proofs by indistinguishable ciphertexts and
fake proofs, respectively.

The simulator has access to the contract code C and hence to C (as the
transformation is deterministic). To simplify the proof, we assume that
the specification contract C does not perform NIZK proof verification. We
consider privacy for dishonest and honest callers separately.

dishonest callers Let A be an arbitrary attacker and consider an

arbitrary transaction T′ issued on C by the attacker such that ⟨T′, σ⟩ t
=⇒

⟨σ′, v⟩ for some t, σ′, v. The trace t can easily be simulated by the attacker
by locally running the execution steps of T′ on C and initial state σ, because
no additional input by any honest account is required.

honest callers We next construct the simulator Sim for honest caller
transactions. Let A be an arbitrary attacker, let σ be a state in C that is

equivalent to some σ in C, and assume ⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩ for some T, t, σ′,

v ̸= fail and ⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩ for some t, σ′, v. Below, we show how Sim

constructs a trace t2 indistinguishable from t, given σ, t∗ := obsA(t) and
the contract code of C.

simulating encryptions and nizk proofs We first describe how
Sim can simulate (meaning, produce values indistinguishable from) NIZK
proofs and encrypted values occurring in t by introducing four simulation
procedures (S1–S4).
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(S1) Encryptions created by honest for honest accounts: Sim simulates en-
cryptions of the form Enc(m, R, pka) for some m, R ∈ Rhon, and a /∈ A
by computing Enc(0, R′, pka) for some fresh honest randomness R′ ∈ Rhon
and constant 0. Because R′ ̸= R (since R′ is fresh), the two values are
indistinguishable by (ii) in §2.6.1.

(S2) Encryptions created by honest for dishonest accounts: Such encryptions
have the form Enc(m, R, pka) for some m, R ∈ Rhon and a ∈ A. If the sim-
ulator knows m, it can simulate the encryption by creating Enc(m, R′, pka)
for some fresh randomness R′ ∈ Rhon. The two values are indistinguishable
by (iii) in §2.6.1.

(S3) Encryptions created by dishonest accounts: Such encryptions have the form
Enc(m, R, pka) for some m, R ∈ Radv and some address a. Because the caller
is honest, such encryptions cannot be part of transaction parameters and
only occur in t if they are part of σ. Hence, the simulator can simulate these
values by copying them from σ. The copied values are indistinguishable by
(i) in §2.6.1.

(S4) NIZK proofs: Given v1:n, a valid proof Proofϕ(R; v1:n; v′1:m) can be
simulated by constructing SimPrϕ(R′; v1:n) for fresh R′ ∈ Rhon. These
proofs are indistinguishable by (iv) in §2.6.1.

simulating the real world trace Transforming C to C leads
to the following structural changes: (i) additional function arguments
are introduced, (ii) private composite and declassified expressions are
replaced by such function arguments, and (iii) NIZK proof verifications are
introduced at the end of each (private) function.

Because all control flow conditions in C are readily available in t∗ (they
are public), Sim can follow the control flow of transaction T in C. Next, we
will show how Sim can simultaneously track the (identical) control flow in
C and build t2 by respecting the three changes (i–iii) described above and
simulating encryptions and NIZK proofs using S1–S4.

Creating a trace indistinguishable from t requires consistently reproduc-
ing repetitions of equal values (see the bijection π in the definition of trace
indistinguishability, §2.6.1). Sim can track the runtime locations accessed in
C because it knows the code of C and all used mapping keys are available
in t∗ (they are public by the type system). Hence, in the following, Sim
can produce consistent repetitions by remembering previously simulated
values for each runtime location.

We now describe how Sim extends t2 when following T in C step by step.
All entries in t are public and, to avoid notational clutter, we will omit the
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privacy level @all from simulated trace entries in the remainder of the
proof.

Start (transaction): The start of t is simulated by copying the beginning
of t∗, where arguments private to honest accounts (which are hidden
in t∗) are replaced by simulations using S1, and arguments private to
dishonest accounts (whose plaintext is available in t∗) are replaced by
simulations using S2. Transformation may have introduced three kinds
of additional function arguments in C, which are simulated as follows.
(i) Private arguments: Similarly as the other private arguments, they are
simulated using S1 and S2. (ii) Public arguments: Such an argument may
only have been introduced by transformation as a result of transforming
a declassification (see Fig. 2.9b). Hence, its plaintext is always contained
in trace t∗, namely in the part where the declassification is evaluated, and
can be copied by Sim. (iii) NIZK proof: Since the caller is honest, the proof
is valid. The public arguments of the proof are available at the end of t∗

where the arguments for verify (which are public by the type system) are
evaluated. Knowing the public arguments, Sim uses S4 to simulate the
NIZK proof.

Variable declarations, skip statements: Trivial to simulate.

Private Expressions: Private composite expressions are substituted by en-
crypted function arguments vi during transformation. If the expression
is private to an honest account in C, accessing vi in C is simulated by S1.
Otherwise, its plaintext value is available in t∗ and accessing vi can be
simulated by S2. The only non-composite private expressions are private
locations. Reading from these is simulated analogously, however, they may
also contain encryptions generated by dishonest accounts, which are simu-
lated by S3. Further, reading mapping entries involves resolving (public)
mapping keys, which is simulated as described next.

Public Expressions: Evaluation of public expressions is simulated by copying
the corresponding parts of t∗ and simulating evaluation of any (potentially
private, due to declassification) subexpressions. Resolving any mapping
keys is simulated recursively.

Assignments: First, evaluating the runtime location of the assignment’s
left-hand side is simulated by copying the respective parts from t∗ (runtime
locations are always public in C due to the type system) and simulating
evaluations of any mapping keys using expression simulation described
before. Then, evaluation of the right-hand side expression is simulated as
described before.
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Require: The evaluation of the condition expression is simulated as de-
scribed before. Because T is assumed to not throw an exception, it passes
all require statements.

While: Since while-loops are enforced to be fully public by the type
system, the corresponding part in t∗ does not contain any hidden values.
Transformation does not change loops and Sim simulates them by copying
the corresponding parts in t∗.

If-then-else: The evaluation of the condition is simulated as described before.
Because the condition is enforced to be public by the type system, we can
determine the branch which is being executed by inspecting t∗ and simulate
that branch as described above.

End (proof verification): The transaction T ends with verifying the NIZK
proof. The trace of evaluating the proof and all other arguments to verifyϕ

is simulated by the expression simulation described above. Further, Sim
emits the trace entry 1@all to signify successful verification (because the
caller is honest, the verifyϕ statement is guaranteed to not throw an
exception in T). Note that no trace needs to be simulated for evaluating the
proof circuit ϕ during verification in T (see Fig. A.4).

2.7 implementation

We have instantiated our approach for transforming zkay to Solidity con-
tracts in a proof-of-concept implementation using roughly 3 500 lines of
Python code. 7 As shown in Fig. 2.11, our tool type-checks and transforms
zkay contracts to Solidity contracts executable on Ethereum, compiling the
proof circuits using ZoKrates (discussed shortly). Further, it transforms
zkay transactions specified in Python and produces JavaScript code ex-
ecuting the transformed transactions using the web3.js API [61]. In the
following, we discuss how to instantiate our approach for Solidity.

nizk proofs We use ZoKrates [46] (commit 224a7e6 with proving
scheme GM17 [44]) to generate Solidity code verifying NIZK proofs. Zo-
Krates allows representing a proof circuit ϕ in its custom circuit language
and generates a verification contract for ϕ. We instantiate verifyϕ state-
ments as calls to such contracts, and use ZoKrates to generate proofs during
transformation of transactions. Some operations (e.g., integer division) are
not supported by the used version of ZoKrates. We reflect these restrictions

7 The code is available on GitHub: https://github.com/eth-sri/zkay/tree/ccs2019

https://github.com/eth-sri/zkay/tree/ccs2019
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Figure 2.11: Overview of implementation.

in zkay’s type system by disallowing such operations for private values.
We still support them for public values by modifying Tϕ (Fig. 2.9c) to use
in for such expressions and computing them outside the proof circuit. For
example, the public division x@all/2 is computed in the contract and its
result passed as an argument to the proof circuit ϕ.

mapping zkay types to zokrates types ZoKrates only supports
computations on integers in [0, p − 1] for a large prime p. By directly
mapping the zkay uint type to ZoKrates integers, we retain correctness
in absence of over- and underflows. We encode boolean values false and
true consistently as numbers 0 and 1, respectively. Encryptions (type bin,
see next) are encoded as integers. Our implementation currently does not
support other primitive types within proof circuits.

encryption The used version of ZoKrates does not support asymmet-
ric encryption. Therefore, the proof-of-concept implementation evaluated
in this chapter relies on the (insecure) surrogate functions for encryption
(Enc(v, R, k) = v + k) and decryption (Dec(c, k) = c − k). Still, later im-
provements of our implementation (described in the technical report [62])
added support for real encryption, which have then also been integrated in
the implementation of zkay’s successor ZeeStar (presented in Chapter 3). As
we argue in §2.8 and empirically demonstrate in §3.6, changing surrogate
encryption to real encryption does not significantly affect the performance
of zkay, because the verification gas cost is essentially independent of the
encryption function and the off-chain cost for proof generation can only
grow moderately. This is because our implementation applies a standard
reduction [52] to the construction used by ZoKrates, allowing linear-time
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proof generation (in the size of the circuit), and constant-cost verification
after much cheaper hashing of public circuit arguments.

Because Ethereum does not provide a built-in public key infrastructure
(PKI), we implemented a simple PKI contract Cpki containing a public
key storage and providing setter (and getter) functions to announce (resp.
retrieve) public keys.

2.8 evaluation

In the following, we demonstrate that our approach is feasible and practical.
Specifically, we address the following research questions:

Q1 Can zkay express interesting real-world contacts?

Q2 What is the development complexity reduction when using zkay
compared to using NIZK proofs directly?

Q3 What are the (gas) costs for executing transformed contracts on
Ethereum?

Q4 What are the off-chain costs for transforming contracts and transac-
tions?

q1 : expressivity of zkay To showcase the expressivity of zkay, we
implemented 10 example contracts, described in Tab. 2.1. Our contracts
span a wide range of domains such as healthcare, energy, and gambling.
While there is active interest in developing blockchain contracts for these
domains [15], privacy concerns are a key roadblock preventing their adop-
tion [14].

When implementing the contracts in Tab. 2.1, zkay helped us to cleanly
capture our privacy intents. In our experience, zkay’s privacy annotations
are a natural way of expressing privacy constraints. Further, zkay’s type
system is essential: for instance, while developing our examples, we oc-
casionally had to add non-obvious declassifications. Our design choice
of explicit declassification and implicit classification is reasonable: while
forcing developers to think about leaks, it does not restrict development in
the absence of leaks.

Overall, we conclude that zkay is expressive enough to capture a rich
class of applications and that programming in zkay is natural.
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q2 : complexity reduction We now demonstrate that zkay signifi-
cantly reduces development complexity compared to using cryptographic
primitives directly. To this end, we transform all example contracts and
compare the number of lines of the originals with the transformed versions
(consisting of Solidity and ZoKrates code). Tab. 2.1 shows that the number
of lines increases significantly, on average by a factor of more than 6.

Note that because our implementation is not optimized and introduces
boiler-plate code, the number of generated code lines can be misleading.
Hence, we also evaluate a more specific complexity metric. That is, we
investigate the number of times our transformation crosses the boundary
between contract code and proof circuit. These crossings happen when-
ever transformation calls in or out, or processes a private argument. The
number of crossings is critical for development complexity: crossing the
boundary is highly error-prone due to the logic being scattered over the
contract, proof circuit, and off-chain computation. In particular, crossing
the boundary generally requires non-local modifications such as adding
statements and arguments to both the function and the proof circuit (as
performed by in and out in Fig. 2.8). We note that it is possible to reduce
code complexity for some crossings. For example, if private variable x is
read twice and not modified between the reads, we could pass it to the
circuit only once. However, as such optimizations require static insights,
they cannot substantially reduce development complexity.

Our results in Tab. 2.1 (column #crossings) indicate that even for simple
contracts such as MedStats (see Fig. 2.1a), many crossings are performed
by our tool. Hence, while programming in zkay is deceptively easy, finding
errors in transformed contracts is quite hard. Overall, we observe almost
0.4 boundary crossings per line of zkay code, even though many lines do
not have functionality (due to empty lines, etc.). We do not expect that the
number of crossings can be significantly reduced for our examples.

q3 : on-chain cost of privacy In the following, we discuss the
on-chain cost for executing transformed contracts. This cost is measured
in terms of gas and is particularly relevant as it directly corresponds to
monetary costs paid by the sender of a transaction.

To evaluate this cost, we compile the transformed example contracts,
deploy them to a simulated Ethereum blockchain using the truffle suite [63],
and execute small transaction scenarios (last column in Tab. 2.1). We use
version 0.5.0 of solc, 5.0.14 of Truffle, and 2.5.5 of Ganache. All experiments
were run on a machine with 32 GB RAM and 12 cores at 3.70 GHz. We note
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Figure 2.12: On-chain cost for contract MedStats (Fig. 2.1).

Figure 2.13: On-chain cost for transformed private transactions.

that on-chain costs only depend on the contract code, not on the simulating
machine.

We first discuss the on-chain cost for the MedStats contract (Fig. 2.1),
depicted in Fig. 2.12. Later, we will show how our observations generalize
to the other examples. Fig. 2.12 distinguishes three phases. The first
phase ( ) prepares infrastructure required by all contracts. This includes
deploying libraries required by ZoKrates (BN256G2, Pairing), and our PKI
(PKI, announcePk). Since this is a global one-time task, its (moderate) cost
is mostly irrelevant.

The second phase ( ) deploys the contract itself (constr.) and a verifier
contract for every private function. This phase only occurs once per de-
ployed contract, and its cost is in the same order of magnitude as the cost
of transactions (a repeated cost, discussed shortly). Hence, compared to the
cost of transactions, the cost of contract deployment is negligible.

For the final phase ( ), we have implemented a specific scenario
where the hospital calls record for two different patients who later call
check. These transaction costs are most relevant, as they occur many times.
Fig. 2.12 shows that every transaction costs roughly 106 gas. We believe this
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is a moderate cost for protecting critical data. This cost is close to optimal,
as it is dominated by the cost of proof verification: Even the (trivial) veri-
fication that a private value x equals 0 costs about 0.84 · 106 gas. We note
that proof verification costs may be reduced in the future (e.g., using more
efficient proof constructions, as discussed in [46]).

The above observations are general: Fig. 2.13 shows private transaction
costs of example scenarios for all contracts. Across all examples, the cost
is roughly 106 gas. Overall, we conclude that running transactions on
transformed contracts is feasible at a moderate cost.

q4 : off-chain cost of privacy For all our examples, contract trans-
formation took less than 5 minutes, where more than 99% of the total time is
due to verifier generation in ZoKrates. Likewise, transforming transactions
for our example scenarios took less than 1 minute per transaction, and
again, more than 99% of this time is due to proof generation in ZoKrates.

We expect the off-chain computation overhead of real encryption over
our surrogate encryption during proof generation to be moderate for each
transaction in our evaluation. To estimate this overhead, we used Jsnark
with proving scheme GM17 (as for ZoKrates) to prove that PKCS#1 v2.2
RSA encryption of a message using a 2048-bit key yields a given ciphertext.
Generating this proof took roughly 13 seconds, and our generated circuits
never used more than 9 encryptions or decryptions.

2.9 discussion

In this section, we discuss possible extensions of zkay.

ownership transfer The zkay language prevents ownership transfer
by requiring owner fields to be declared final. Allowing writing to an
owner field id outside the constructor would require statically determining
all locations owned by id and forcing the caller to provide new encryptions
(under the new owner’s public key) of these locations at modification
time, along with an appropriate NIZK proof. Unfortunately, this is not
possible if id owns entries of dynamically growing mappings (e.g., in
mapping(uint => uint@id)) since the set of locations owned by id cannot be
determined at compile time in this case. Still, zkay could be easily extended
to support mutability of fields not owning array entries.
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function calls Extending zkay to support calls to fully public func-
tions is straightforward. Handling calls to non-recursive private functions
with statically known body is also possible, by tunneling arguments in-
duced by the transformation of the callee (such as proofs) through the
caller. We note that recursive functions are rare in Solidity contracts, as they
quickly exceed the gas limit.

We integrated this extension in later improvements of our implementation,
described in the technical report [62].

alternative realizations This work leverages encryptions and
NIZK proofs to realize zkay contracts. However, we stress that zkay’s
interpretable syntax together with its intuitive enforced privacy notion is
largely independent of its realization. Thus, zkay is not fundamentally
restricted to NIZK proofs on encrypted states, but could also leverage other
building blocks, such as homomorphic encryption (as we will explore in
Chapter 3), trusted hardware, or NIZK proofs on hashed states. Thus, zkay
can be seen as part of a broader effort to lift realizations using low-level
building blocks to high-level specifications.

setup phase Current NIZK proof constructions compatible with Ethe-
reum [44, 45, 53] rely on a trusted setup phase (once per circuit)—a known
deployment issue [39]. However, secure multi-party computation (SMC)
can be used to reduce trust for this setup phase [64], which is only required
once per contract.

compatibility with existing analysis tools Various tools enable
verification, testing, and other analysis of smart contracts [65, 66, 67]. Apply-
ing them to zkay is possible, as dropping privacy annotations from a zkay
specification contract (i.e., before transformation) results in a fully public
contract whose functionality can be checked by existing tools. However,
note that properties affected by the transformation (e.g., gas cost) can only
be verified in the transformed contracts.

2.10 related work

We now discuss the works that are most closely related to zkay.

blockchain privacy As we have already discussed in §1.1, many
works bring privacy to payments and transactions using mixers [17, 18,
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19, 20, 21] or by cryptographic means [23, 24, 25]. In contrast to all these
approaches, zkay brings data privacy to general smart contracts.

Like zkay, Hawk [32], Arbitrum [33], and Ekiden [34] provide data pri-
vacy for general smart contracts without complicating contract development.
However, they all rely on trusted managers or hardware. Concretely, Hawk
and Arbitrum trust managers for privacy (but not for correctness), meaning
a compromised manager can disclose users’ private data—a substantial
risk, as data leaks are hard to detect and even harder to prevent. We note
that replacing trusted managers by secure multi-party computation (SMC)
or trusted execution environments (TEEs) introduces scalability issues for
SMC (discussed shortly) and new attack vectors for TEEs (cp. Ekiden).
Ekiden leverages trusted hardware in the form of TEEs. However, if an
attacker can forge attestation reports for a small set of K TEEs (a practical
attack [68]), she can violate the correctness of contracts computations. In
contrast to these approaches, zkay only relies on cryptographic primitives
and thus provides stronger security guarantees.

ZEXE [39] introduces a decentralized private computation scheme. Un-
fortunately, it uses non-standard function specification primitives (so-called
predicates) and does not discuss how these can for example incorporate
unbounded data structures or loops. In contrast, our approach provides an
explicit function encoding supporting dynamic mappings and public loops.

secure multi-party computation Private decentralized computa-
tion can also be realized using SMC, which hides the inputs of all parties
involved in a computation and thereby provides data privacy by construc-
tion. However, the execution model of SMC is fundamentally different
from that of blockchains: SMC typically requires interactive parties and
cannot scale to the number of participants in public blockchains—recent
SMC systems handle only up to 150 parties [69, 70]. Further, the common
semi-honest attacker model in two-party SMC is weaker than the active
attacker model in permissionless blockchains.

Various works explore how privacy-demanding applications can be ex-
pressed in high-level languages and compiled to SMC. While zkay targets
the instantiation of zk-SNARKs in a blockchain setting, it shares some
aspects with languages for SMC.

For instance, similar to zkay, SMCL [71], Wysteria [72], SCVM [73] and
ObliVM [74] use types or privacy labels to separate public from secret values.
In contrast, zkay additionally indicates the owner of private values. While
SMCL, SCVM and Wysteria support values stored at only one participant,
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these values are subject to tampering (i.e., their integrity is not enforced). In
contrast, zkay maintains integrity for all values. Similar to zkay, SCVM and
ObliVM perform a privacy analysis ensuring information is not implicitly
leaked to higher security levels, and provide declassification expressions.
While SCVM and ObliVM hide all accessed memory locations, mapping
indices are always public in zkay.

Some existing systems including SecreC [75] and ABY [76, 77] use lan-
guage constructs to indicate the used SMC schemes. In contrast, the privacy
types of zkay are not tied to a cryptographic primitive.

Like zkay, many of the above works pose restrictions on control flow
and loops in order to prevent leakages based on execution traces. For
instance, similarly to zkay, SecreC, SCVM and ObliVM do not support
unbounded loops with private conditions. Further, like zkay, SMCL and
SecreC specify the expected leakage of computations by ideal-world traces.
However, zkay’s ideal-world traces are more fine-grained, as they depend
on the owner of variables.

The recent Viaduct [78] system generalizes the above works by compiling
high-level programs into a combination of multiple protocols including
SMC and NIZK proofs. Its powerful type system tracks both privacy and
integrity constraints, allowing it to combine protocols for semi-honest and
active adversaries. However, similarly to other SMC languages and in
contrast to zkay, it is not targeted at smart contracts or blockchains.

zero-knowledge statements as programs Multiple systems trans-
form NP statements expressed as high-level programs to zero-knowledge
proofs. For instance, Pinocchio [79], Geppetto [80] and Buffet [81] allow
private and verifiable execution of programs written in high-level languages.
Similarly, TinyRAM [82, 83, 84] and xJsnark [85] provide optimized trans-
formations of high-level proof statements to zk-SNARK circuits.

Compared to zkay, these systems also provide a form of data pri-
vacy (by hiding the NP witness), but lack a privacy type system and a
blockchain-specific privacy notion. While our implementation of zkay uses
ZoKrates [46] to produce zk-SNARKs, its proof circuits could alternatively
be expressed in and optimized by xJsnark.

privacy policy languages JFlow [86] introduces information flow
annotations enforcing fine-grained and powerful access control. Jeeves [87,
88] and Jacqueline [89] are languages separating core logic from non-
interference policy specifications.
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All three languages are substantially different from zkay as their execu-
tion model assumes a trusted system enforcing these policies.

2.11 summary

In this chapter, we presented zkay, a smart contract programming language
using privacy types to specify owners of private values. To enable running
a zkay contract on public blockchains, we transform it to a contract where
values are encrypted for their owner and correctness is enforced using
NIZK proofs, guaranteeing that transformed contracts preserve privacy and
functionality w.r.t. the specification contract. Solving four key challenges
when using NIZK proofs, our language disallows contracts that cannot be
realized (cp. C1 and C2 in §2.1), allows intuitively specifying the contract’s
logic (C3), and prevents implicit leaks (C4).

Our evaluation shows that transformed contracts are runnable on the
Ethereum blockchain at a moderate cost. Our approach demonstrates
that automatic compilation of high-level privacy specifications to low-level
primitives for smart contracts is possible, setting the stage for more research
in this area.





3
A N E X T E N S I O N F O R C O M P U TAT I O N O N U N K N O W N
D ATA

The zkay system presented in the previous chapter does not allow perform-
ing computation on unknown data. More technically, an expression such as
x + y where x has type uint@me and y has type uint@Bob (where Bob ̸= me)
is not supported in zkay. In this chapter, we present an extension of zkay
allowing developers to perform this and other operations on unknown data.
This extension is key to making our smart contract system applicable for a
variety of use cases.

3.1 introduction

limitations of zkay The zkay system (Chapter 2) ensures data privacy
of smart contracts using the following high-level approach: Private values
are encrypted for their owner, and updates of encrypted values are enforced
to respect the smart contract logic using NIZK proofs.

Unfortunately, a fundamental limitation of this approach is that transac-
tions cannot operate on foreign values (i.e., values owned by parties other
than the caller). This precludes zkay from expressing private variants of
some of the most popular use cases of Ethereum [90], including private
wallets, where coin transfers typically require increasing foreign balances.

this chapter : zeestar In this chapter, we address the expressivity
restrictions of zkay by complementing it with homomorphic encryption,
which allows evaluating specific operations (most importantly, addition) on
foreign values.

The resulting system ZeeStar consists of an expressive language to specify
and a compiler to automatically enforce data privacy for smart contracts.
The ZeeStar language is based on zkay’s privacy annotations, but addi-
tionally admits programs which operate on foreign values. The ZeeStar
compiler combines NIZK proofs and additively homomorphic encryption
to enable running these programs on Ethereum. By cleverly combining
these two primitives, ZeeStar not only supports homomorphic addition, but
also multiplication for most combinations of owners. This allows express-
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ing complex applications such as oblivious transfer. Furthermore, ZeeStar
can mix homomorphic and non-homomorphic encryption schemes and is
provably private with respect to zkay’s privacy notion.

challenges Integrating homomorphic encryption into zkay is challeng-
ing. First, homomorphic encryption and NIZK proofs have incomparable
expressivity and must hence be instantiated in combination. For example,
realizing a private wallet requires enforcing different ciphertexts to hold the
same plaintext encrypted for different parties using a NIZK proof (§3.3.1).

Second, achieving tractable prover efficiency for this combination of
primitives is difficult in practice: for instance, combining Groth16 proofs [45]
with Paillier encryption [47] leads to an explosion of prover memory and
runtime (§3.5.1).

implementation We implemented ZeeStar as an extension of our zkay
implementation presented in §2.7. Our end-to-end tool relies on exponential
ElGamal encryption [48] and Groth16 NIZK proofs [45], and uses the idea of
elliptic curve embedding from [26, 39] to achieve high prover efficiency. Our
evaluation on 12 example contracts demonstrates that ZeeStar is expressive
and its costs are comparable to popular existing applications: on average, a
ZeeStar transaction costs 339 k gas (see §3.6.4). Further, ZeeStar can readily
express the existing confidential payment system Zether [29] at lower gas
costs and without requiring familiarity with cryptographic primitives.

outline The remainder of this chapter is organized as follows.

• After giving an overview of ZeeStar (§3.2), we present how the ZeeStar
compiler automatically enforces data privacy while allowing users to
perform addition-based modification of foreign values (§3.3).

• In §3.4, we present an extension of ZeeStar to support private multiplica-
tion and mixing multiple encryption schemes.

• Next, in §3.5–§3.6 we present our end-to-end implementation1 of ZeeStar
for Ethereum along with an evaluation on 12 contracts.

• Finally, we discuss related work (§3.7) and conclude the chapter (§3.8).

1 Publicly available at https://github.com/eth-sri/zkay/tree/sp2022

https://github.com/eth-sri/zkay/tree/sp2022
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3.2 overview

In Fig. 3.1, we provide an overview of ZeeStar.

example : private tokens Fig. 3.1a shows a ZeeStar contract modeling
a wallet holding private tokens (cp. Fig. 1.1). Besides the highlighted
annotations (discussed shortly) and keyword me (a shorthand for msg.sender

in Solidity), the code follows a straightforward Solidity implementation.
The mapping bal stores the number of tokens held by each individual party.
The transfer function is used to transfer val tokens from the sender me

(Line 5) to another party to (Line 6), after checking that the sender has
sufficient funds (Line 4). For simplicity, the contract does not contain logic
to initialize the balances.

Intuitively, the highlighted annotations specify the following notion of
privacy: the balances of all parties must be private to the individual parties,
and the number of transferred tokens must only be visible to the sender
and receiver party.

privacy annotations and types To enable precise and ergonomic
specification of privacy constraints, ZeeStar relies on the privacy annota-
tions of zkay (Chapter 2). Recall that these annotations are used to track
ownership of values in a privacy type system: Data types τ (such as integers
and booleans) are extended to types of the form τ@α, where α determines
the owner of the expression. The value of an expression can only be seen by
its owner. The owner α may be all (indicating the value is public), or an
expression of type address. In this chapter, we call expressions with owner
me to be self-owned, and expressions with owner α /∈ {me, all} to be foreign.

In Fig. 3.1a, we highlight the privacy annotations used to model the
privacy notion described above. Line 2 specifies that bal[a] is private to
the address a. The argument val of type uint@me (Line 3) is owned by the
sender, while to of type address (a shorthand for address@all) is public.

Like in zkay, in order to prevent implicit information leaks, private
expressions with owner α cannot be directly assigned to variables with
a different owner α′ ̸= α. Instead, developers can use reveal(e, a) to
explicitly reveal a self-owned expression e to another owner a. For example,
in Line 6 we reveal the transferred number of tokens val to the recipient to.
This is needed because bal[to] is owned by to. To avoid implicit leaks
based on access patterns, the control flow of a contract must not depend
on any private values. For example, require(e) rejects the transaction (i.e.,
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aborts and reverts it) if e evaluates to false. Thus, Line 4 publicly reveals
whether the sender owns at least the number of transferred tokens.

Note that the privacy annotations only induce minimal overhead com-
pared to existing, non-private smart contract languages such as Solidity.
As discussed next, privacy is enforced automatically by ZeeStar’s compiler,
without requiring developers to manually instantiate cryptographic primi-
tives. We note that zkay would reject the contract in Fig. 3.1a, as it cannot
increase the foreign value bal[to] by val (see Line 6).

compilation Like zkay, ZeeStar compiles the input contract to a con-
tract which is executable on Ethereum and enforces the specified privacy
constraints. Fig. 3.1b shows a simplified version of the contract generated
by ZeeStar for the token contract in Fig. 3.1a.

In the output contract, values with owner α ̸= all are encrypted under
the public key of α using an additively homomorphic encryption scheme.
Private expressions are pre-computed locally (i.e., off-chain) by the sender,
and only published on the blockchain (on-chain) in encrypted form. Expres-
sions revealed to all are additionally published in plaintext. For example,
private expression bal[me] - val (Line 5 in Fig. 3.1a) is replaced by a new
function argument new_me with ciphertext type bin (Line 6 in Fig. 3.1b),
holding the new encrypted balance of the sender. As discussed shortly,
ZeeStar uses a NIZK proof to ensure new_me is computed correctly. Similarly,
Line 6 in Fig. 3.1a is transformed to Line 7 in Fig. 3.1b. Moreover, the
revealed result of the comparison in Line 4 (Fig. 3.1a) is replaced by a
plaintext argument b in Fig. 3.1b.

ensuring correctness To ensure the function arguments val, b,
new_me, and new_to are computed correctly by the sender, ZeeStar relies
on both NIZK proofs and the homomorphic property of the encryption
scheme. To this end, for every function, ZeeStar constructs a proof circuit ϕ
enforcing correctness. Fig. 3.1c shows the proof circuit for transfer. As pub-
lic inputs, ϕ takes all encrypted function arguments (val and new balances),
revealed values (b), a subset of the previous state of the contract (previous
balances), and the public keys of all involved parties. The private inputs
consist of secrets known by the sender (most notably, her private key skme).

Intuitively, any expression involving only public and self-owned variables
is computed by the sender as follows: First, decrypt any private input
variables. Then, evaluate the expression on the plaintext arguments. Finally,
if the expression is private, encrypt the result using the owner’s public
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key. For example, to compute the new balance new_me, the sender decrypts
her previous balance and the val argument, computes the difference, and
encrypts the result under her own public key. ZeeStar collects constraints
reflecting this computation in the proof circuit ϕ (Fig. 3.1c). Here, Dec(x, sk)
denotes the decryption of x using private key sk.

leveraging homomorphic encryption Because the encryption
scheme is additively homomorphic, ZeeStar also allows evaluating expres-
sions e1 + e2 and e1 - e2 for e1, e2 with owner α /∈ {me, all}. For example,
the addition of Line 6 in Fig. 3.1a can be evaluated by the sender using the
homomorphic operation ⊕. First, the sender re-encrypts the plaintext of val
under the public key of to to obtain a ciphertext c. Then, the sender com-
putes bal[to]⊕ c to obtain new_to. In the proof circuit ϕ, ZeeStar ensures
that c is computed correctly. Perhaps surprisingly, the operation ⊕ is also
evaluated inside the proof circuit (see Fig. 3.1c). While this is not required
for privacy, it leads to reduced on-chain costs (in fact, as we discuss in §3.5,
doing otherwise is infeasible on Ethereum). Further, as we discuss shortly,
this allows for greater expressivity.

After constructing ϕ, ZeeStar inserts a proof verification statement into
the output contract (see Line 8 in Fig. 3.1b). When calling the transfer

function, the sender is required to generate and provide a NIZK proof for
the circuit ϕ as a function argument proof. This is verified by the blockchain
in Line 8, where the public arguments of ϕ are provided as arguments to
verify (see “...”). If verification fails, the transaction is rejected and the
contract state is reverted.

extensions The described design allows for interesting extensions.
In §3.4.1, we describe how ZeeStar can also homomorphically evaluate
multiplication for most combinations of owners. By repeated application
of ⊕, the sender can multiply foreign values by a public natural number.
Further, because ⊕ is evaluated inside the proof circuit, this also applies
to self-owned scalars (these simply occur as plaintexts in ϕ). For example,
assume x is owned by Alice. Bob can multiply x by a secret Bob-owned
scalar y, without revealing y to anyone else. This opportunity is unique to
the combination of NIZK proofs and additively homomorphic encryption.

In §3.4.2 we will discuss how ZeeStar can be extended to mix homomor-
phic and non-homomorphic encryption schemes using suitable annotations
and a modification of the type system. This is useful as practical homo-
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§3.3.2 §3.3.3 §3.3.4

Figure 3.2: Compilation steps of ZeeStar.

morphic encryption schemes may come with restrictions (e.g., only 32-bit
plaintexts), prompting the developer to only apply these selectively.

3.3 compilation

In this section, we provide a detailed description of ZeeStar. Fig. 3.2 visual-
izes the three high-level compilation steps. First, the privacy annotations
of the input contract are analyzed. Then, the contract is transformed to
a Solidity contract and a set of constraint directives C f for each function f .
Finally, each of these sets is transformed to a proof circuit ϕ f .

Before describing these steps in detail (§3.3.2–§3.3.5), we discuss the key
idea of ZeeStar’s compilation process.

3.3.1 Combining NIZK Proofs and Homomorphic Encryption

Next, we discuss how combining NIZK proofs and homomorphic encryp-
tion increases expressiveness.

incomparability of primitives Enforcing correctness in a ZeeStar
output contract amounts to ensuring correct computation of ciphertexts
(such as new_me in Fig. 3.1b). Unfortunately, the two primitives at hand are
incomparable in the sense that neither is strictly more expressive than the
other. While we can evaluate arbitrary expressions inside proof circuits,
using NIZK proofs for correctness generally requires the prover to decrypt
all input variables. For instance, the circuit in Fig. 3.1c decrypts the pre-
vious balance balme

old of the sender in order to prove correct computation
of balme

new. In contrast, additively homomorphic encryption can be used to
provide correctness guarantees “by construction,” but only for addition and
subtraction. For example, the sender does not need to know skto in order
to correctly update bal[to] in Fig. 3.1b.
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α ::= me | all | id
e ::= c | me | id | e1 op e2 | reveal(e, α)

S ::= S1;S2 | id = e | require(e)
op ∈ {+ ,- ,* ,/, %, ==, !=,<= ,< , &&, ||}

Figure 3.3: ZeeStar core privacy types α, expressions e and statements S, where c
are constants and id are variable identifiers.

In the example of Fig. 3.1, we cannot enforce correctness using only one
of the primitives. Relying only on NIZK proofs and non-homomorphic
encryption, the sender could not even compute the new balance new_to.
On the other hand, only using homomorphic encryption is insufficient to
guarantee correctness: First, the requirement for sufficient sender funds
(Line 4 in Fig. 3.1a) cannot be enforced without some sort of NIZK proof.
Second, while the new balance new_me of the sender could be updated
using ⊖, a correct instantiation would still need to somehow enforce that the
same value is removed from and added to bal[me] and bal[to], respectively
(note that the two balances are encrypted under different keys).

key idea In order to achieve high expressiveness, ZeeStar instantiates the
two primitives in combination. ZeeStar’s compilation is driven by privacy
annotations: for each expression, ZeeStar decides which cryptographic
primitive to use, based on privacy types and the actual expression. For
example, because bal[to] is foreign, ZeeStar determines that adding val to
it (Line 6 in Fig. 3.1a) requires homomorphic addition. However, because
val is self-owned, it needs to be re-encrypted under pkto in the proof circuit.

3.3.2 Privacy Type Analysis

As a first step, ZeeStar analyzes the privacy annotations in the input (see
Fig. 3.2). Before explaining this step in an example, we first discuss the
language fragment considered in this chapter in more detail.

language fragment In this chapter, we focus on the core language
fragment shown in Fig. 3.3 (a subset of the zkay language defined in
Fig. 2.3). The fragment allows introducing our key ideas without cluttering
the presentation.
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In our fragment, function bodies consist of the statements S shown in
Fig. 3.3. Besides sequential composition, these include assignments and
require statements. The argument to require must evaluate to true for
the transaction to be accepted. ZeeStar supports standard arithmetic and
boolean expressions as well as a dedicated reveal expression, which is used
to change the owner of a self-owned expression. Variable identifiers (id)
include function arguments, contrast fields, local variables, and mapping
entries, where the latter is not modeled separately for simplicity. We
consider three primitive data types: booleans (bool), addresses (address),
and unsigned integers (uint). In ZeeStar, variables can be self-owned (me),
public (all), or owned by a public variable of type address.

We can extend ZeeStar to other statements and expressions. In particular,
our implementation (see §3.5) accepts a much richer language based on
Solidity, including non-recursive function calls (realized by inlining), if-then-
else statements (realized by evaluating both branches and multiplexing),
and loops. As NIZK proof circuits have bounded size, the latter must be
either free from private variables, or manually unrolled up to statically
known bounds.

running example To explain the compilation process of ZeeStar, we
use the running example in Fig. 3.4. The code in Fig. 3.4a covers all relevant
aspects of compilation but does not implement any meaningful functionality.
The fields alice and bob are initialized in the constructor (not shown) and
declared final to ensure they are not modified later. Like in zkay, this is
used to prevent changing a variable’s owner at runtime.

privacy types ZeeStar analyzes the privacy annotations in the input
contract and assigns a privacy type to each subexpression. Privacy types
have two main purposes: they (i) prevent implicit information leaks, and
(ii) guide the compilation by stating which expressions should be encrypted
for which party. The privacy analysis ensures the privacy specification
is realizable. In particular, for any well-typed contract, the subsequent
compilation steps are guaranteed to succeed.

statements ZeeStar uses the same rules as zkay when analyzing state-
ments. In particular, it requires the argument e of require(e) to be public,
as the fact whether a transaction is accepted leaks the value of e. Also, for
assignment statements id = e, the owner of both sides must be equal, or e
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Γ ⊢ e0 : all Γ ⊢ e1 : all
Γ ⊢ e0 op e1 : all

binop-all

Γ ⊢ e0 : α0 Γ ⊢ e1 : α1 αi = me α1−i ∈ {all, me}
Γ ⊢ e0 op e1 : me

binop-me

Γ ⊢ e0 : α0 Γ ⊢ e1 : α1 αi /∈ {all, me} α1−i ∈ {αi, all} op ∈ {+ ,- }
Γ ⊢ e0 op e1 : αi

binop-foreign

Figure 3.5: Privacy type rules for binary expressions. Here, Γ ⊢ e : α indicates
that expression e has privacy type α.

must be public. This allows for implicitly making a public value private,
but not implicitly leaking any private values.

expressions Privacy types of expressions are determined recursively.
In Fig. 3.4b, we show the privacy types for the subexpressions in Line 8

and Line 9 of Fig. 3.4a. Constants c and the address me are public, while
the privacy type of variables or mapping entries (id) is determined by their
declaration. For example, in Fig. 3.4b-i, x has privacy type me, while the
constant 3 is public. The reveal(e, α) expression has privacy type α, where
e must be self-owned. Fig. 3.4b-i does not contain a node for all, because
all is formally not an expression (see Fig. 3.3).

For expressions, ZeeStar generally inherits the typing rules of zkay. How-
ever, to support operations on foreign data, it uses different typing rules
for binary expressions, as we show in Fig. 3.5.

If both operands are public, the result is public (rule binop-all). For
instance, in Fig. 3.4b-i, the inequality < is public as it compares public
values.

If one of the operands is self-owned and the other is public or self-owned,
the privacy type of the result is set to me (rule binop-me). This is because
the result depends on the private operand, so it should be kept private. For
example, the % operation in Fig. 3.4b-i has privacy type me.

If one operand is foreign, the only applicable operations are addition and
subtraction (rule binop-foreign), which will later be compiled to ⊕ and ⊖,
respectively. In this case, both operands must have the same owner, or one
operand must be public. ZeeStar disallows mixing foreign and self-owned
operands to prevent implicit leaks. If mixing is desired, developers can
always reveal the self-owned operand first.
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finding self-owned variables Sometimes, the owner of a variable
is syntactically different from me but still guaranteed to evaluate to the
sender’s address at runtime. For example, in Line 9 of Fig. 3.4a, field a has
privacy type alice (by its declaration) but Line 7 ensures that alice == me.
Like zkay, ZeeStar uses sound static analysis to find such cases. The
analysis is based on a few simple, sound, but incomplete rules: For instance,
a statement require(a== me) allows ZeeStar to later substitute a by me as
long as a is not overwritten. To exploit this, ZeeStar changes the privacy
type of fields to me whenever possible, before determining the privacy type
of expressions. For example, a has type @me in Fig. 3.4b-ii.

3.3.3 Contract Transformation

If the input contract is well-typed, ZeeStar transforms it to a contract
executable on a public blockchain and collects information required to later
construct proof circuits.

ideal world The input contract specifies executions in an ideal world,
where functions are executed according to the semantics of the zkay lan-
guage (presented in §2.4). In the following, we use JeK to denote the
plaintext value of an expression e when evaluating it in the ideal world.

correctness Intuitively, ZeeStar ensures that in the output contract,
the value of any field is encrypted for its owner. More precisely, for any
sequence of real-world transactions on the output contract, there exist
corresponding ideal-world transactions on the input contract. We formal-
ize this in Thm. 3.1, which assumes that the used NIZK proof system is
computationally sound (i.e., it is a zk-SNARG) .

Theorem 3.1 (Correctness). Assume ZeeStar is instantiated with a zk-SNARG
(Def. A.4 in App. A.1). Let C̄ be the output contract resulting from the compilation
of a well-typed ZeeStar contract C. For any equivalent states σ, σ̄ and any
transaction t̄x, with overwhelming probability: running t̄x on C̄ in starting state
σ̄ is either rejected, or there exists a transaction tx for the same function, sender
and public arguments as t̄x such that running tx on C in starting state σ results
in state σ′ equivalent to the output state σ̄′ of t̄x.

Here, we define a state σ to be equivalent to a state σ̄ if both states include
the same contract fields, and the (plaintext) value JzK of every field z in σ is
equivalent to the value of z in σ̄. We say JzK is equivalent to a value v iff either
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z is public and v = JzK, or z is owned by α ̸= all and v = Enc(JzK, pkα, r)
for some randomness r.

By an inductive argument, for any polynomial-length sequence of trans-
actions on C̄ in the empty starting state, with overwhelming probability
there exists a corresponding sequence of transactions on C. We will prove
Thm. 3.1 in §3.3.5.

processing a contract Alg. 3.1 describes how ZeeStar transforms a
contract. This algorithm replaces publicly revealed and private expressions
by new function arguments, and enforces the latter to respect equivalence
as defined above.

For each function f , ZeeStar runs Transform( f ), which modifies f in-
place and collects a list C f of constraint directives. A constraint directive
“x ≡α e” for variable x and expression e owned by α indicates that JeK must
be equivalent to the value of x. Each such directive will later be transformed
to a constraint in the proof circuit, thus enforcing correctness.

For example, Fig. 3.4c shows the modified function f and the produced
Cf when running Alg. 3.1 on Fig. 3.4a. Copies _a, _b (Line 2) and the verify

statement (Line 7) are discussed later.
For each expression e occurring in a statement require(e) or id = e inside

the function body, Lines 3–4 (Alg. 3.1) run TransformExpr(e, f , C f ). If e
is private to α, it is replaced by a new function argument arg (Line 10).
Further, ZeeStar adds “arg ≡α e” to C f , indicating that arg should contain
the encryption of JeK for α. In our example, the whole expression tree in
Fig. 3.4b-ii is replaced by a new function argument e2 with ciphertext type
bin (Line 5 in Fig. 3.4c). We add Eq. (3.2) shown in Fig. 3.4c to Cf. Line 10 in
Fig. 3.4a is processed analogously, yielding Line 6 and Eq. (3.3) in Fig. 3.4c.

public expressions Note that public expressions e may contain subex-
pressions of the form reveal(e′, all), where e′ is self-owned. For example,
in Fig. 3.4a, the result of the % operation is revealed publicly. Hence, Alg. 3.1
performs a top-down tree search (for example, BFS) over public expressions
e to find subtrees rooted at reveal(e′, all) expressions. These are replaced
by a new function argument, and an according constraint is added to C f .
In our example, Line 8 in Fig. 3.4a is replaced by Line 4 in Fig. 3.4c and we
record Eq. (3.1) in Fig. 3.4c.
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Algorithm 3.1 Transforming Function Bodies

1: procedure Transform( f )
2: C f = [ ]
3: for each require(e) or id = e in the body of f do
4: TransformExpr(e, f , C f )

5: return C f

6:
7: procedure TransformExpr(e, f , C f )
8: if e has privacy type α ̸= all then
9: add new function argument arg to f

10: replace e by variable arg
11: add “arg ≡α e” to C f
12: else (e is public)
13: for each node ei visited during BFS over e do
14: if ei has the form reveal(e′, all) then
15: add new function argument argi to f
16: replace subtree rooted at ei by variable argi
17: add “argi ≡all e′” to C f

3.3.4 Proof Circuit Construction

In the final step, for each function f , ZeeStar builds a proof circuit ϕ f based
on the previously collected C f .

proof circuit inputs First, ZeeStar assembles the public inputs for ϕ f .
These connect the actual values occurring in a transaction with the values
in the circuit. For each “x ≡α e” in C f , it adds public inputs x and pkα (if
α ̸= all) to ϕ f . Further, ZeeStar collects all variables id occurring in e (i.e.,
function arguments, contract fields, and local variables) and adds, for each
id, a public input idold to ϕ f . 2 Similarly, ZeeStar adds a public input me to
ϕ f if me occurs in e. To simplify our explanation, we assume that function
bodies are in static single assignment form: function arguments cannot
be assigned to, contract fields are never read after assignment, and local
variables are assigned to exactly once. By the introduction of fresh local
variables, any function can be converted to this form. This ensures that
constraint directives can be processed independently, and all accesses of a

2 If id is a mapping entry of the form e1[e2], ZeeStar also instantiates a single public input idold
for the entry. Analogously as in zkay, the mapping lookup will be performed outside ϕ f
(inside the contract), and idold is assigned the value of e1[e2]. This is possible as ZeeStar’s type
system enforces the key e2 to be public.
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variable id have the same value at runtime, accessible via idold in the proof
circuit. In our running example, by Eqs. (3.1)–(3.3), the public proof inputs
are: e1, e2, e3, xold, aold, bold, pkme, pkbob.

The private inputs of ϕ f include the private key skme (to decrypt self-
owned values) and a list of random values ri (see later). To enforce that skme
and pkme form a valid key pair, ZeeStar includes an according constraint
in ϕ f .

To pass the actual values of the public circuit inputs to ϕ f , ZeeStar adds a
proof verification statement to the output contract. To this end, the previous
values of any overwritten fields are copied at the beginning of the function.
For example, in Fig. 3.4c, ZeeStar first copies the old values of a and b in
Line 2. In Line 7, it introduces a verification statement accepting the proof
p and all public proof inputs. Here, pk(α) fetches the public key of α from a
public key infrastructure.

structure of expression trees We next discuss an important ob-
servation, leveraged in the rest of this work. Consider the expression tree e
of a constraint directive “x ≡α e” for a well-typed contract. If e contains
foreign nodes, these must lie at the top of the tree and include the root
node. This is enforced by the type system: foreign expressions cannot be
revealed to me or all as the argument of reveal must be self-owned.

More precisely, we can partition the nodes of e into two sets Foreign

and Own, where (i) Foreign contains all nodes with owner α /∈ {me, all},
(ii) Own contains all nodes with owner α ∈ {me, all}, and (iii) the subgraph
induced by Foreign is connected and, if non-empty, contains the root.
Conceptually, this divides the expression tree into an upper part Foreign

and a lower part Own. For example, in Fig. 3.4b-ii, Own contains the
nodes * , 2, a, and 4. If the root is self-owned, then Foreign = ∅, as for
the expression tree of constraint directive e1 ≡all x % 3 (rooted at % in
Fig. 3.4b-i).

As all nodes in Own are either self-owned or public, the sender can
always compute their plaintext value (analogously as in zkay). However, the
value of nodes in Foreign is generally not known to the sender. The main
idea of ZeeStar’s circuit construction step is to leverage the homomorphic
property of the encryption scheme for nodes in Foreign, and enforce correct
computation of nodes in Own by working with their plaintext values.

transforming expressions We now define two recursive transforma-
tion functions Tplain and Tα used to build constraints for ϕ f from expressions.
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x ≡α e ⇝


x = Tplain(e) if α = all

x = Enc(Tplain(e), pkme, ri) if α = me

x = Tα(e) otherwise

Figure 3.6: Transforming constraint directives to constraints.

Tplain(c) = c (3.10)

Tplain(me) = me (3.11)

Tplain(e1 op e2) = Tplain(e1) op Tplain(e2) (3.12)

Tplain(reveal(e, α)) = Tplain(e) (3.13)

Tplain(id) =

{
idold if id public
Dec(idold, skme) otherwise

(3.14)

Figure 3.7: Recursive expression transformation using Tplain.

The function Tplain is used to process nodes in Own. It is designed such that
for any e ∈ Own, evaluating Tplain(e) inside the proof circuit results in JeK.
On the other hand, Tα targets nodes in Foreign and nodes in Own whose
parents are in Foreign. For expression e, evaluating Tα(e) inside the proof
circuit results in the ciphertext Enc(JeK, pkα, ri) for some randomness ri.

Before discussing Tplain and Tα in detail, we describe how they are used.
Specifically, ZeeStar transforms each constraint directive “x ≡α e” in C f to a
constraint in ϕ f enforcing equivalence. Depending on α, the constraint has
a different form as shown in Fig. 3.6. If α = all, Tplain enforces that x holds
the plaintext value of e. This ensures that self-owned values are correctly
revealed by reveal(e, all). If α = me, x should contain the encryption of
JeK (determined using Tplain) under the sender’s public key pkme and some
randomness ri which is added to the private inputs. The third case deals
with expressions for which Foreign is non-empty. In this case, x is owned
by a party α ̸= me and we leverage Tα to ensure x contains the correctly
encrypted value. In our running example, based on Eqs. (3.1)–(3.3), ZeeStar
adds constraints (3.4)–(3.6) in Fig. 3.4d to ϕ f , where r0 is a new private
input.



3.3 compilation 73

Tα(c) = Encα(c) (3.15)
Tα(me) = Encα(me) (3.16)

Tα(id) =


idold if id owned by α

Encα(idold) else if id public
⊥ otherwise

(3.17)

Tα(e1 op e2︸ ︷︷ ︸
=: e

) =


Encα(Tplain(e)) if e public
Tα(e1)⊕ Tα(e2) else if op = +

Tα(e1)⊖ Tα(e2) else if op =-

⊥ otherwise

(3.18)

Tα(reveal(e, α′)) =

{
Encα(Tplain(e)) if α = α′

⊥ otherwise
(3.19)

where Encα(e) := Enc(e, pkα, ri) (3.20)

Figure 3.8: Recursive expression transformation using Tα. Undefined cases (⊥)
never apply for well-typed contracts.

plaintext evaluation Fig. 3.7 defines the function Tplain. At a high
level, this function decrypts any self-owned variables occurring in e and
recursively evaluates the expression (i.e., it works analogously as zkay).
The rules for constants, me, and binary operations are straightforward.
By Eq. (3.13), reveal expressions are ignored (these are only used for pre-
venting implicit leaks). Eq. (3.14) shows the rule for transforming a variable
id. If the variable id is public, idold can be accessed directly. Otherwise,
as the contract is well-typed and Tplain is applied only to nodes in Own,
the value is self-owned and is hence decrypted using skme. For example, in
Fig. 3.4d, Eq. (3.4) is transformed to Eq. (3.7).

homomorphic evaluation Fig. 3.8 defines Tα, which produces values
encrypted for α. Constants and me are public, hence their plaintext value is
encrypted under the public key of α using the function Encα (Eqs. (3.15)–
(3.16) and Eq. (3.20)). Here, ri is a new private input for ϕ f . For foreign
variables id, ZeeStar accesses idold, which holds a ciphertext for α (as the
contract is well-typed, Tα is never applied to private variables with owner
̸= α). If id is public, then it is encrypted for α.
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For binary operations (Eq. (3.18)), we distinguish multiple cases. If
the operation is public, then we compute its plaintext value using Tplain
and again apply Encα. Private additions and subtractions are computed
homomorphically: before applying ⊕ or ⊖, the arguments are recursively
transformed by Tα to obtain two ciphertexts encrypted for α. Well-typed
contracts do not involve other binary operations on foreign arguments.

For well-typed contracts, Tα is only applied to nodes in Foreign and
their direct children. Hence, an expression reveal(e, α′) is only reachable by
Tα if α′ = α, and we can apply Tplain and Encα (see Eq. (3.19)). Conceptually,
this and all other cases introducing Encα provide a “bridge” between
Foreign and Own. Note that public expressions can be mixed with foreign
expressions using+ or- : for example, the constant 4 in Fig. 3.4b-ii is in Own

but is an argument to the root + in Foreign. Hence, Eq. (3.15) introduces a
bridge for 4.

In the example of Fig. 3.4d, Eq. (3.5) is transformed to Eq. (3.8), where
r1, r2 are new private inputs of ϕ f .

Algorithm 3.2 Transforming Transactions

1: procedure Ttx(C, σ̄, tx, skme, Σ, pk)
2: Initialize transaction t̄x for same function and sender as tx
3: Copy values of public arguments from tx to t̄x.
4: for each private argument with value v in tx do
5: Add freshly encrypted argument Enc(v, pk(me), r) to t̄x
6: for each argument arg introduced by Alg. 3.1 in C do
7: Compute the value x of arg according to the rules in

Fig. 3.6, using skme to decrypt self-owned fields in σ̄
and public keys in pk to encrypt values for other
parties

8: Add x to t̄x
9: Use Σ to generate the NIZK proof π and add π to t̄x

10: return t̄x

transaction transformation To call a function f in the trans-
formed contract, the sender needs to prepare the arguments introduced
by ZeeStar. More precisely, let C be an input ZeeStar contract, and C̄ the
transformed output contract. In order to call a function f on C̄ in a starting
state σ̄, a sender first assembles a transaction tx for the input contract C,
where tx indicates f , the sender address sender[tx], and the arguments
to f . Let Σ be the cryptographic parameters of the NIZK proof system.
In the case of a zk-SNARG (Def. A.4 in App. A.1), this includes the com-



3.3 compilation 75

mon reference string (CRS) generated by the Setup algorithm. Further,
let pk be a table mapping accounts to their public keys. The sender runs
TTX(C, σ̄, tx, sksender[tx], Σ, pk) as shown in Alg. 3.2 to create a transaction t̄x
for C̄. At a high level, this function selects the public arguments of ϕ f such
that ϕ f is satisfied and generates a NIZK proof for ϕ f .

Our implementation (§3.5) includes a transparent interface performing
these steps automatically.

3.3.5 Discussion

correctness ZeeStar satisfies correctness, as stated in Thm. 3.1.

Proof sketch (Thm. 3.1). First, we prove that skme and pkme inside the proof
circuit belong to the transaction sender with overwhelming probability. As
the blockchain authenticates the sender of a transaction (e.g., via a signature
in Ethereum), the contract C̄ ensures that pkme, which is passed as a public
input for proof verification, belongs to the original sender. If the transaction
is accepted, the zk-SNARG is successfully verified by an honest verifier.
Therefore, by the computational soundness property, a private input skme
such that ϕ is satisfied must exist with overwhelming probability. As skme
is enforced to correspond to pkme in ϕ (e.g., see Fig. 3.1c), it is guaranteed
to belong to the original sender with overwhelming probability.

Given that skme and pkme are correct, the correctness of state updates
follows from the computational soundness of the zk-SNARG and induc-
tive reasoning on the transformation rules (Figs. 3.6–3.9), which ensure
correctness by construction via the constraint directives x ≡α e.

Note that proof malleability is not a problem for correctness, as the argu-
ment above only relies on the soundness property. Further, impersonation
attacks are prevented, assuming the ledger requires all transactions to be
signed by skme corresponding to the sender’s public key pkme. Then, an
adversary α trying to submit a tampered proof π′ must sign it with skα.
Therefore, because the ledger forwards pkα as a public input to π′, π′ is
only accepted if it enforces correctness with respect to pkα—thus defeating
the purpose of tampering with the proof in the first place.

privacy ZeeStar satisfies the following notion of privacy:

Theorem 3.2 (Privacy, informal). Let C̄ be the output contract resulting from
the compilation of a well-typed ZeeStar contract C. An active attacker cannot
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learn more from real transactions on C̄ than from the information observable in the
corresponding ideal-world transactions on C (see §3.3.3).

We prove a more formal version of Thm. 3.2 in App. A.3, assuming
that ZeeStar is instantiated with an IND-CPA encryption scheme and a
computationally sound and perfectly zero-knowledge NIZK proof system
(a weaker notion of zk-SNARK formalized as zk-SNARG in App. A.1). In a
standard simulation-based proof, we use a hybrid argument to show that
for any probabilistic polynomial-time (PPT) adversary statically corrupting
a set of parties, any sequence of real-world transactions is computationally
indistinguishable from transactions simulated from information available
to the adversary in the ideal world. As ZeeStar is an extension of zkay, this
proof supersedes the symbolic proof presented in §2.6.

limitations ZeeStar is limited by the expressiveness of proof circuits
and additively homomorphic encryption. Specifically, as proof circuits are
bounded, ZeeStar contracts cannot access unbounded amounts of private
memory or include unbounded loops with private operations. However,
this is not a concern in practice: Due to the block gas limit in Ethereum,
which bounds the computation of a transaction, using unbounded loops is
discouraged [91]. Instead, elements of an unbounded data structure should
be processed in individual transactions.

Further, foreign values can only be subject to addition or subtraction
where either both operands are owned by the same party, or one operand is
self-owned or public. In §3.4.1, we discuss how to alleviate this restriction
by allowing also multiplication for most combinations of owners.

3.4 extensions

Next, we show how ZeeStar can homomorphically evaluate multiplications
for most combinations of owners (§3.4.1), and how different encryption
schemes can be mixed (§3.4.2).

3.4.1 Homomorphic Multiplication by Known Scalars

Additively homomorphic encryption schemes can also be used for scalar
multiplication. We can define a function ⊕s x which homomorphically
multiplies a ciphertext x and a natural number s by homomorphically
adding x to itself s times: ⊕s x := x⊕ · · · ⊕ x. Using the double-and-add
algorithm, ⊕s x can be computed using only O(log s) applications of ⊕.
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Tα(e0 * e1) = ⊕Tplain(e1) Tα(e0) (3.21)

Tα(e0 * reveal(e1, α)) = (⊕Tplain(e1) Tα(e0)) (3.22)
⊕ Enc(0, pkα, ri)

Figure 3.9: Expression transformation rules for homomorphic scalar multiplica-
tion, where e0 is foreign and e1 is public (Eq. (3.21)) or self-owned
(Eq. (3.22)). Symmetric rules omitted.

multiplication by public scalars The compilation process de-
scribed in §3.3 can easily be extended to support homomorphic multipli-
cation of foreign values by public scalars. In particular, the privacy type
rule binop-foreign (Fig. 3.5) is extended to allow e0 * e1 for foreign e0 with
owner α and public e1 (or vice-versa) and assign privacy type α to the re-
sult. When transforming expressions, ZeeStar performs this multiplication
homomorphically inside the proof circuit. To this end, we extend Tα by
rule (3.21) in Fig. 3.9.

For example, the contract in Fig. 3.4a would still compile if we replaced
+ 4 in Line 9 by * 4. In this case, by Eq. (3.21), Eq. (3.8) in Fig. 3.4d would
change to

e2 = ⊕4 (bold ⊕ Enc(2 ·Dec(aold, skme), pkbob, r1)).

multiplication by self-owned scalars Because all homomorphic
operations introduced by ZeeStar are evaluated inside the proof circuit, we
can even extend homomorphic multiplication to self-owned scalars e1: the
plaintext value of e1 is known to the sender and can be made available in
ϕ f using Tplain(e1).

Intuitively, such multiplications have the form e0 * e1, where e0 is foreign
and e1 is self-owned. However, in order to prevent implicit leaks, ZeeStar
disallows mixing self-owned and foreign operands in binary operations.
Instead, ZeeStar allows expressions of the form e0 * reveal(e1, α) (and its
symmetric variant), even though the operation * is actually performed on
two foreign expressions. Any other pattern e0 * e1 for foreign e0, e1 is not
allowed because the plaintext value of e1 cannot be guaranteed to be known
by the sender.

Unfortunately, naively applying Eq. (3.21) to this case leads to a privacy
leak. Consider Alice producing y = ⊕s x, where x is encrypted for Bob and
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s is a private scalar owned by Alice. If an adversary Eve knows y and x, she
can enumerate the potentially small space of possible scalars s′ and find s
by checking if y = ⊕s′ x. To prevent this attack, Alice must re-randomize y
using fresh randomness before publishing y. To this end, when constructing
the proof circuit, ZeeStar re-randomizes the product z := ⊕Tplain(e1) Tα(e0)
by homomorphically adding a freshly encrypted constant 0 to z. This
is formalized in Eq. (3.22) of Fig. 3.9. Here, we assume the additional
property that Enc(x, pk, r)⊕ Enc(0, pk, r′) is indistinguishable from a fresh
encryption Enc(x, pk, r′′) for any x, pk, r. This property is formalized in
App. A.1. As we show in App. A.3, the above transformation preserves
privacy.

discussion At a high level, this extension allows homomorphically
multiplying two ciphertexts using an additively homomorphic encryption
scheme, as long as one of these is encrypted for the sender. This is unique to
the combination of NIZK proofs and additively homomorphic encryption:
without the former, we could not guarantee correctness of the result. In §3.6,
we show how such multiplications can be used to implement 1-out-of-2
oblivious transfer.

3.4.2 Mixing Homomorphic and Non-homomorphic Schemes

In practice, homomorphic encryption schemes are often subject to restric-
tions. For example, exponential ElGamal encryption [48] only supports
short plaintexts (≈ 32 bits; see §3.5.1). Therefore, it can be useful to use
non-homomorphic encryption where possible and only selectively apply
homomorphic encryption where needed. We now discuss an extension of
ZeeStar which allows mixing such schemes.

homomorphism tags We extend ZeeStar’s privacy annotations by
homomorphism tags of the form <µ> for µ ∈ {+ , }, where µ determines
the homomorphic property of the encryption scheme. In particular, when
declaring a variable, the developer adds a tag of the form <µ>, specifying
whether the variable should be encrypted using an additively homomorphic
scheme (by <+>) or a non-homomorphic scheme (by < > , or no tag). For
example, in the contract of Fig. 3.4a, the field a can be encrypted non-
homomorphically as it is never subject to foreign addition, by specifying
the following tags:

2 final address alice; uint@alice a;
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l = id

<µ>
!
= <µ′>

l = reveal

<µ>

Encµ

Own

l = +

<µ>
!
= <+>

Enc+ Own

Foreign

(a) (b) (c)

Figure 3.10: Cases for determining encryption scheme.

3 final address bob; uint@bob<+> b;

encryption schemes Let Enc+ and Enc be the encryption function
of an additively homomorphic and non-homomorphic encryption scheme,
respectively, and analogously for decryption functions Dec+ and Dec. We
modify ZeeStar’s compilation process to ensure that any variable annotated
as @α<µ> (for α ̸= all) will be encrypted using Encµ at runtime.

To this end, we adapt (i) ZeeStar’s proof circuit construction (§3.3.4) to
automatically select the appropriate encryption and decryption functions
when processing a constraint directive, and (ii) ZeeStar’s privacy analy-
sis (§3.3.2) to only accept contracts admitting a non-conflicting selection.
Decryption is only introduced by Eq. (3.14), where the function Decµ is
determined by the homomorphism tag <µ> of the variable.

selecting the encryption function Selecting the encryption func-
tion Encµ is more interesting. If α = all for a directive x ≡α e, no encryption
is needed. Otherwise, the directive must originate from Line 11 in Alg. 3.1
and e must therefore be the right-hand side of an assignment l = e. Below,
we distinguish the possible cases for α.

If α = me, the second case in Fig. 3.6 applies. The used encryption
function Encµ is then determined by the tag <µ> of l. For example, for
Line 10 in Fig. 3.4a, ZeeStar uses Enc to encrypt the result of x + 1 because
a is declared as @alice. Note that this allows for implicitly switching
encryption schemes of self-owned values: an assignment l = e is accepted
by ZeeStar even if l is annotated @me<+> and e contains variables annotated
as @me (or vice-versa). For instance, if x in Fig. 3.4a was declared as @me<+>,
the code would still compile.
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Otherwise (α /∈ {all, me}), we distinguish the three cases visualized in
Fig. 3.10. If e is a foreign variable id (Fig. 3.10a), no encryption operation is
introduced as id is already encrypted. To enable this, we adapt the privacy
analysis (§3.3.2) to raise a type error if the tag <µ′> of id does not match
the tag <µ> of l. If e is a reveal expression (Fig. 3.10b), e is processed by
Eq. (3.19). Then, the encryption scheme used in Encα is selected to match
the homomorphism tag <µ> of l. Otherwise, e must be an addition or
subtraction expression (Fig. 3.10c), to be evaluated in ϕ f using ⊕ or ⊖ by
Eq. (3.18). Using ⊕ or ⊖ requires their arguments to be ciphertexts under
Enc+ , which recursively applies to all + and - nodes in Foreign. Therefore,
we adapt the privacy analysis to reject private variables in Foreign which
do not have tag <+>, and instantiate Encα using Enc+ for all bridges to Own

(see Fig. 3.8). Further, ZeeStar ensures that the left-hand side l has tag <+>.

3.5 implementation

We now present our implementation of ZeeStar.

3.5.1 Efficient Cryptographic Operations

First, we discuss how encryption, decryption, and homomorphic operations
can be efficiently performed within ϕ.

expressing proof circuits Verification of a zk-SNARK typically in-
volves operations on an elliptic curve E1 over some base field. E1 determines
the scalar field Fq (integers modulo q for a prime q) over which proof circuits
ϕ operate. Thus, operations in ϕ must be expressed as operations over Fq.

problem : high costs Reducing ϕ to operations over Fq can lead to
high emulation overhead for some operations (e.g., for computation over a
field Fp ̸= Fq), resulting in prohibitively high proof generation costs. For
instance, generating a Groth16 [45] zk-SNARK for Paillier encryption [47]
with 2048-bit keys requires over 256 GB of RAM—an impractical require-
ment for commodity desktop machines.

solution : curve embedding To address this issue, we instead lever-
age an encryption scheme based on an elliptic curve E2 (discussed shortly).
This allows us to rely on curve embedding [26, 39], which reduces prover
costs for elliptic curve operations inside proof circuits. In this technique,
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E1 and E2 are carefully selected such that the base field of E2 equals Fq,
where q is determined by E1. This allows operations on E2 to be evaluated
natively in Fq, without emulation overhead.

Because at the time of this writing, Ethereum only provides precompiled
contracts for the BN254 curve [55, 92] and proof verification involves opera-
tions over E1, we use Groth16 [45] zk-SNARKs over E1 = BN254. For E2,
we use the Baby Jubjub curve [93], whose base field matches the scalar field
of BN254. This choice allows for efficient cryptographic operations in ϕ.

Due to the lack of precompiled contracts, evaluating operations on E2 on
Ethereum would induce prohibitively high gas costs. However, contracts
produced by ZeeStar never evaluate operations on E2: these are only used
inside proof circuits.

setup for zk-snarks Like other systems relying on Groth16 [39], our
implementation is subject to a circuit-specific trusted setup phase. This
setup can for instance be executed using SMC [64].

Still, we stress that ZeeStar is fundamentally not limited to zk-SNARKs
with a trusted setup. For instance, we could instantiate Bulletproofs [94] to
trade the trusted setup for increased verifier complexity. Recently, several
more efficient proving schemes with universal [95, 96, 97, 98] or transparent
setup [99] have been proposed. Once practical for Ethereum, these can
likely replace the Groth16 zk-SNARKs in ZeeStar.

homomorphic encryption To leverage the benefits of curve embed-
ding, our implementation relies on exponential ElGamal encryption [48]
over the Baby Jubjub curve [93]. As discussed in App. A.4, this scheme is
additively homomorphic, provides a closed-form formula for scalar mul-
tiplication, and supports re-randomization (as required by the extension
from §3.4.1).

In this scheme, decryption requires solving a discrete logarithm (see
App. A.4). For small plaintext lengths k, this can be computed efficiently3

using the baby-step giant-step algorithm [100]. However, decryption is
generally intractable if k is large. Therefore, like previous works [29, 31],
we restrict the plaintext to k = 32 bits for this encryption scheme. Longer
plaintexts can still be encrypted non-homomorphically using the extension
presented in §3.4.2. In our evaluation (§3.6), a single decryption never takes
longer than 7 s.

3 Of course, efficient decryption requires access to the private key.
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Even when restricting the plaintext size at encryption sites, the plaintext
underlying a homomorphic addition x⊕ y may still exceed 32 bits. Note that
not knowing both x and y, there is generally no way for the sender to detect
this. Like other work [29], we assume that application-specific logic is used
to prevent such overflows (and similarly, underflows at 0). For example,
when initializing the balances in Fig. 3.1a, we can use require statements
to enforce the sum of all balances in bal to be less than 232. To make
developers aware of this caveat, the type system of our implementation
distinguishes integers of different bit sizes (e.g., uint32 and uint64), and
restricts the homomorphic tag <+> to be only used with ≤ 32-bit integers.

3.5.2 ZeeStar for Ethereum

We implemented ZeeStar for Ethereum, including the extensions from §3.4,
by extending our implementation of zkay presented in §2.7.

Our end-to-end system accepts Solidity code with privacy annotations
and produces (i) a contract executable on Ethereum, and (ii) a transaction
interface allowing to transparently interact with ZeeStar contracts. It relies
on jsnark [101] and libsnark [102] to generate zk-SNARKs. For each proof
circuit, we generate a separate proof verification contract. We use solc
v0.6.12 to compile Solidity code and web3 v5.19 to interact with Ethereum.

We use ElGamal encryption as described in §3.5.1 with 251 bit keys. For
non-homomorphic encryption, we use the hybrid ECDH Chaskey cipher
(previously introduced to zkay as part of the extension described in [62])
with 253 bit keys.

3.6 evaluation

Next, we evaluate our implementation presented in §3.5. All our experi-
ments are conducted on a machine with 32 GB of RAM and 12 CPU cores
at 3.70 GHz. We use the eth-tester v0.5.0b4 backend (“Berlin” upgrade) to
simulate transactions.

3.6.1 Example Contracts

We used ZeeStar to implement 12 contracts shown in Tab. 3.1. Contracts
reviews and token are homomorphic variants of the examples with the
same names in Tab. 2.1. Zether-confidential and zether-large are based on
Zether [29] (discussed shortly). The other contracts were introduced by
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Table 3.1: Contracts used in the evaluation. We specify the number of code
lines (LoC), and whether the contracts use homomorphic addition (⊕),
homomorphic scalar multiplication (⊕s, see §3.4.1), or mix encryption
schemes (<µ>, see §3.4.2).

No. Name LoC ⊕ ⊕s <µ>

1 index-funds 46 •
2 inheritance 53 • •
3 inner-product 21 • •
4 member-card 25 •
5 oblivious-transfer 19 • •
6 reviews 40 • •
7 shared-prod 17 • •
8 token 20 •
9 voting 40 •
10 weighted-lottery 71 • •
11 zether-confidential 39 •
12 zether-large 46 • •

us. All contracts involve operations on foreign data and hence cannot be
expressed by zkay. Below, we discuss two contracts in more detail.

zether confidential transactions Zether [29] proposes a confi-
dential transaction contract for Ethereum, based on additively homomor-
phic encryption and NIZK proofs. The contract holds encrypted balances
in a table and allows sending a secret amount to another party. To prevent
front-running attacks, it maintains a separate “pending” state which is used
to receive currency and is periodically rolled over into the balance table.
Zether allows “locking” an account to a contract such that only this contract
can spend the account’s balance.

Using ZeeStar, we can readily implement the idea of Zether: the contract
zether-confidential implements an analogous contract in ZeeStar using just
39 lines of code. Because ZeeStar accounts are identified by Ethereum
addresses, we do not need to implement the “locking” mechanism in
order to support contract-owned accounts. We note that ZeeStar leverages
different primitives than Zether: ZeeStar uses Groth16 zk-SNARKs, while
Zether relies on custom Σ-Bullets proofs. Further, the authors present an
anonymous extension of Zether, which we do not model because we focus
on data privacy only.
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oblivious transfer 1-out-of-2 oblivious transfer [103] is a protocol
for sending one out of two messages x0, x1 to a receiver. The receiver can
choose i to learn xi, without learning the other message x1−i and without
revealing i to the sender.

We encode such a protocol as a ZeeStar contract oblivious-transfer. First,
the receiver stores his selection i in two bits b0, b1 with bi = 1 and b1−i = 0.
The bits are owned by the receiver and enforced to be well-formed using a
require statement. Next, the sender uses send to send messages x0, x1:

1 function send(uint@me x0, uint@me x1) {
2 m = b0 * reveal(x0, recv) + b1 * reveal(x1, recv);
3 }

Here, recv is the address of the receiver, and m is a field owned by recv.
The function uses homomorphic scalar multiplication by self-owned values
x0, x1. The messages xi are both marked as being revealed to the receiver,
but the receiver only learns the result of the sum: due to Eq. (3.18), the sum
is computed inside the proof circuit. Because exactly one of the bits bi is 1,
this is either x0 or x1. Note that revealing both x0 and x1 is unavoidable in
our type system because the receiver could potentially learn both x0 and x1
(but not at the same time).

3.6.2 Compilation and Setup Performance

We analyze the performance of ZeeStar by compiling each example in
Tab. 3.1. In addition to the steps described in §3.3, this includes, for each
proof circuit, a zk-SNARK setup phase (see §3.5.1). Compilation takes 66.9 s
per contract on average and requires at most 3.07 GB RAM. Runtime is
dominated by the setup phases (91% of the time on average). As the setup
time depends on the number and the sizes of proof circuits, compilation
time varies between 26.4 s (shared-prod) and 144.1 s (zether-large). These
are one-time costs per contract.

3.6.3 Transaction Generation Performance

Before a transaction is submitted to Ethereum, ZeeStar’s transaction in-
terface computes the values of the (potentially encrypted) new function
arguments and generates a NIZK proof. We now evaluate the performance
of this step.
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Table 3.2: Number of rank-1 constraint system (R1CS) constraints for crypto-
graphic operations.
Operation # Constraints

Encryption (Enc) 12 774

Decryption (Dec) 12 783

Re-randomization (⊕ Enc(0, ·, ·)) 12 031

Homomorphic Scalar Multiplication (⊕s) 1 495

Homomorphic Addition (⊕) 22

scenarios For each contract in Tab. 3.1, we prepare a short sequence of
transactions called scenario, which includes transactions for deploying the
verification contracts (§3.5.2) and executing the main contract constructor,
but omits the one-time effort of deploying the public key infrastructure.
For example, scenario 5 consists of three deployment transactions and two
rounds of oblivious transfer (two transactions each).

results In Fig. 3.11 (top), we show the runtime and peak memory of
transaction generation for all scenarios. Each bar shows the runtime of
one transaction, separately indicating the runtimes of proof generation
and decryption of ciphertexts (which includes solving a discrete logarithm,
see §3.5.1).

Generating a transaction takes at most 54.7 s and requires at most 2.8 GB
of memory. The runtimes are generally dominated by proof generation (57%
of total time), whose runtime is linear in the circuit size and hence varies
significantly. For some transactions (in particular, verifier deployment and
most contract constructors), no proof is generated. The remaining runtime
is mostly due to decryption (30%).

Overall, ZeeStar can efficiently generate privacy-preserving transactions
on commodity desktop machines.

proof circuit size In order to better understand the proof genera-
tion time, Tab. 3.2 indicates which operations in the proof circuit are most
expensive. Specifically, for each cryptographic operation of the ElGamal
encryption scheme presented in §3.5.1, Tab. 3.2 shows the number of gener-
ated rank-1 constraint system (R1CS) constraints. As proof generation time
is linear in the number of R1CS constraints, this number is a good indicator
for the cost of each operation.

Encryption and decryption are the most expensive operations because
these consist of relatively expensive Baby Jubjub curve point multiplica-
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tions by large 256-bit scalars. Note that for decryption, we do not need
to compute discrete logarithms logg(x) inside the proof circuit: instead,
we can use an additional private circuit input z = logg(x) and assert that
x = gz inside the proof circuit. Encrypting 0 can be optimized, hence
re-randomization is slightly more efficient. Homomorphic scalar multipli-
cation only requires two curve point multiplications by 32-bit scalars and
hence induces fewer constraints. Finally, homomorphic addition is very
efficient as it only consists of two curve point additions.

3.6.4 Transaction Execution Gas Costs

Transactions on Ethereum are subject to gas costs. We next measure these
costs for the transactions generated in §3.6.3.

results Fig. 3.11 (bottom) shows the gas costs for each transaction,
again grouped by scenario. Deployment transactions include deployments
of the verification contracts and the main contract constructors. The gas
costs of such transactions are relatively high because the sender has to pay
for storing the contracts’ byte code. However, these are one-time costs per
contract instance. For each scenario, the highest cost is induced by the
main contract constructor. The overall highest costs of 2.79 M and 2.77 M
are observed for inheritance and weighted-lottery, resp., which are the two
largest contracts (see Tab. 3.1).

For all non-deployment transactions, we separately indicate the costs
induced by proof verification. Because the complexity of zk-SNARKs
verification is essentially constant (see §1.3.1), these gas costs are very
similar across all transactions involving a NIZK proof. The remaining costs
vary between transactions, which we believe is due to the varying number
of costly storage operations. On average, a non-deployment transaction
costs 339 k gas. The highest non-deployment gas cost of 544.44 k is observed
for weighted-lottery.

These costs are comparable to existing applications: A transaction on
Uniswap [11] (on 2021-07-14, this was the top application on the ETH25

leaderbord4) frequently costs more than 250 k gas. 5

4 According to https://www.ethgasstation.info/ (accessed: 2021-07-21).
5 For example, see (accessed on 2021-07-14): https://etherscan.io/tx/
0x0894a389e86aa19ff393e921e3005867e717ef49a1296ae27f8b72f0ce0449ac

https://www.ethgasstation.info/
https://etherscan.io/tx/0x0894a389e86aa19ff393e921e3005867e717ef49a1296ae27f8b72f0ce0449ac
https://etherscan.io/tx/0x0894a389e86aa19ff393e921e3005867e717ef49a1296ae27f8b72f0ce0449ac
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comparison to zether In [29], a Zether confidential transfer is re-
ported to use 7 188 k gas. In contrast, the analogous ZeeStar transaction on
zether-confidential only requires 521.22 k gas.

The Ethereum gas cost model has changed since the publication of [29],
so we cannot directly compare these numbers. We have repeatedly tried to
contact the authors to provide us the contract code or assist us with updated
numbers, but we unfortunately did not receive a response. Zether relies
on the Σ-Bullets proof system, which does not require a trusted setup but
has high verifier costs. For cases where a trusted setup phase is acceptable
(potentially based on SMC, see §3.5.1), ZeeStar can offer significantly lower
gas costs than Zether.

monetary costs Transaction fees are computed by multiplying gas
costs by the gas price, determined by supply and demand. At the time of
writing, the gas price is extremely volatile: Even within a single day, the
recommended gas price6 fluctuates between 9 and 901 Gwei (2021-07-23).
Thus, depending on the time, an average ZeeStar transaction (339 k gas)
would have cost between 6.18 and 618.51 USD on this day (for 1 ETH =
2 025 USD). Hence, it is currently impossible to provide useful cost estimates
for ZeeStar transactions.

The high and volatile transaction fees of Ethereum are a well-known
problem [104, 105], which should be solved by the upcoming Serenity (Eth2)
upgrade [106]. This will likely make ZeeStar transactions highly affordable.

3.7 related work

We now discuss previous work related to ZeeStar.

payment privacy We already discussed works bringing privacy to
cryptocurrency transactions in §1.1. Similar to ZeeStar, several of these
works combine homomorphic encryption and NIZK proofs [29, 30, 31, 107].

In contrast to these works, ZeeStar brings data privacy to general appli-
cations beyond payments and combines NIZK proofs and homomorphic
encryption automatically. ZeeStar can be used to implement private pay-
ments: for instance, it can readily express the confidential variant of Zether
(see §3.6.1).

6 “Standard” gas price according to https://www.gasnow.org/ (discontinued; accessed on 2021-
07-23) for transactions expected to be mined within 3 minutes.

https://www.gasnow.org/
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Table 3.3: Tools for smart contract privacy. We indicate which tools rely on
minimal trust assumptions ( ), support Ethereum ( ), can operate
on foreign values ( ), or do not require the developer to instantiate
cryptographic primitives ( ).

Tool Remarks

Arbitrum [33] trusted manager
Ekiden [34] trusted hardware
Hawk [32] trusted manager
zkHawk [36] 1 requires interactive parties
smartFHE [38] 2

ZEXE [39] 3 4 non-standard exec. model
Zether [29, 30] 5 6 limited applications
zkay (Chapter 2) 3

ZeeStar (this chapter) 3 7

1 At most t parties corrupted 2 Mixed owners impractical
3 Approach proof-system-agnostic, impl. uses zk-SNARKs w/ trusted setup
4 Manual R1CS construction 5 Addition only 6 For general applications
7 Addition and multiplication for most combinations of owners

smart contract privacy In Tab. 3.3, we provide a structured com-
parison of existing approaches for smart contract privacy.

As we already discussed in §2.10, Arbitrum [33], Ekiden [34], and
Hawk [32] expose significant attack surface by relying on trusted man-
agers or hardware. While zkHawk [36] replaces Hawk’s manager by secure
multi-party computation (SMC), it requires interactive parties.

The recent SmartFHE [38] system (published after the creation of zkay)
proposes private smart contracts based on NIZK proofs and fully homomor-
phic encryption (FHE), where instantiating the latter at practical efficiency
is known to require cryptographic expertise [108]. Further, its single-key
variant requires all private inputs for a transaction to be owned by the
same party. This is in contrast to ZeeStar, where the sender can combine
self-owned and foreign values of multiple parties. Unfortunately, according
to the authors, SmartFHE’s multi-key variant is currently not practical.

ZEXE [39] targets a stronger privacy notion than ZeeStar by additionally
hiding the involved parties and the executed function. Unlike ZeeStar, it
requires the transaction sender to decrypt all input data and hence cannot
operate on foreign values. Further, it uses a non-standard execution model
based on records and predicates, and contract logic needs to be manually
encoded as multiple R1CS for zk-SNARKs.
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While Zether [29, 30] targets payments, it can be used for a limited set
of wrapper applications that rely on its interface. However, any other
applications or changes to the system (e.g., enforcing a minimal amount
for transactions) require manually adapting the involved cryptographic
primitives.

Compared to zkay (introduced in Chapter 2), ZeeStar comes with greater
expressivity as it allows operations on foreign data.

To the best of our knowledge, ZeeStar is the first tool for general private
smart contracts that allows operation on foreign values, automatically
instantiates cryptographic primitives, and minimizes trust assumptions.
Note that while our implementation currently uses zk-SNARKs with a
trusted setup phase, ZeeStar’s approach is proof-system-agnostic (see also
§3.5.1).

homomorphic encryption and zk-snarks SAVER [109] proposes
a “SNARK-friendly” homomorphic encryption scheme with efficient plain-
text access within zk-SNARK proof circuits. While it is presented in the
context of voting, it can be used in more general private smart contracts.
ZeeStar leverages curve embedding for efficiency, but could likely integrate
SAVER as an alternative.

3.8 summary

In this chapter, we presented ZeeStar, an extension of zkay by additively
homomorphic encryption.

In contrast to zkay, ZeeStar allows computation on unknown data, en-
abling it to express key applications such as private payment systems and
complex applications such as oblivious transfer. By relying on the language
and privacy type system of zkay, ZeeStar can realize intuitive privacy speci-
fications on permissionless blockchains, without requiring developers to
manually instantiate cryptographic primitives.

Our end-to-end implementation of ZeeStar for Ethereum is practical and
its gas costs are comparable to popular existing applications.



4
A S M A RT C O N T R A C T S Y S T E M W I T H D ATA A N D
I D E N T I T Y P R I VA C Y

The systems presented in Chapters 2–3 provide data privacy, which is
useful to express many important applications. However, the presented
systems do not hide the accessed memory locations and publish the identity
of the transaction sender. Fundamentally, this prevents smart contracts
from fully hiding all parties involved in a transaction—a notion we call
identity privacy (see also Chapter 1). In this chapter, we explore how to
achieve identity privacy for general smart contracts by designing a new
smart contract system independent of zkay and ZeeStar.

4.1 introduction

Identity privacy is concerned with hiding the parties involved in a trans-
action. For instance, the sender and recipient of a transferred coin should
remain anonymous. Achieving identity privacy is challenging: merely re-
moving account information from transactions is often not sufficient. First,
transactions may perform data-dependent operations, where the accessed
memory locations depend on information associated with accounts and
may hence leak this information. Second, even if accounts are not publicly
linked to physical users, transactions involving the same accounts may still
be matched. For example, Bitcoin is notoriously vulnerable to deanonymiza-
tion attacks, which identify the sender of individual transactions by tracing
coins [110].

privacy for cryptocurrencies As we have discussed in §1.1, ad-
dressing the privacy issues of cryptocurrencies has been the focus of a long
line of work [17, 18, 19, 20, 21, 23, 24, 26, 29, 30, 31].

Achieving privacy is challenging: systems based on mixers typically only
provide weak privacy guarantees [22], and even cryptographic approaches
such as Monero [23] are vulnerable to coin tracing attacks [40, 111].

Fortunately, some systems provide very strong privacy guarantees. For
instance, Zerocash [25] (commercially deployed as Zcash [26]) cryptographi-
cally shields all sensitive aspects of its transactions. Specifically, it leverages

91
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an oblivious Merkle tree construction to hide the sender and receiver of a
coin, as well as which coin was transferred.

privacy for smart contracts While Zerocash provides strong
privacy guarantees, it is not programmable. In contrast, almost all pro-
grammable permissionless blockchains expose their users to deanonymiza-
tion attacks or require strong trust assumptions (see §4.12 for details). The
only exception is ZEXE [39], which reliably prevents deanonymization
attacks. Conceptually, ZEXE extends Zerocash to programmable records
(units of data generalizing the concept of a coin) produced and consumed
by transactions. ZEXE inherits the strong privacy guarantees of Zerocash,
protecting not only the sender’s identity, but also the involved records, their
data, and the logic itself.

shortcomings of zexe Unfortunately, ZEXE suffers from multiple
shortcomings (see §4.11 for details). First, its applications are prone to
vulnerabilities, to the point where even the original authors missed two
attacks (presented in §4.11) on their motivating example. Further, the
prevention of one attack as recommended by the authors requires the smart
contract programmer to be intimately familiar with the combination of zero-
knowledge proofs and key-private public-key cryptography. Second, ZEXE
obstructs modular development of applications, as cooperating contracts
must typically be aware of each other to prevent future, malicious contracts
from bypassing the logic of existing contracts. Third, deploying a new
application on ZEXE requires a setup performed by a trusted party to
ensure the contract logic cannot be bypassed. Finally, ZEXE relies on a
non-standard and low-level programming model in terms of predicates,
which is unfamiliar to most developers.

zapper : privacy-preserving smart contracts In this chapter,
we present Zapper, a novel privacy-focused smart contract system. Zapper
allows developers to implement smart contracts in an intuitive, Python-
embedded frontend with a standard high-level programming model. It
provides data and identity privacy by hiding the involved parties, the
data, and the objects (i.e., memory locations) accessed in a transaction.
Additionally, Zapper achieves correctness (transactions respect the contract
logic), access control (malicious contracts cannot bypass the logic of other
contracts), integrity (transactions cannot be tampered with or replayed),
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and availability (valid transactions are not rejected), thus preventing the
vulnerabilities found in ZEXE applications.

approach Our key technical insight is to leverage a novel combination of
an oblivious Merkle tree construction and a NIZK processor. Our oblivious
Merkle tree construction hides the accessed objects and relies on techniques
from Zerocash [25, 26] and ZEXE [39], adapted to our context and avoiding
the vulnerabilities of ZEXE applications.

Our NIZK processor performs provably correct state updates without
revealing private information, and is inspired by a separate line of work [82,
83, 84]. In contrast to ZEXE, using a NIZK processor avoids requiring a
trusted party for deploying new contracts. To execute contracts on this
processor, Zapper compiles them to a custom assembly format. Importantly,
it sandboxes contracts by limiting their interactions to function calls. This
access control facilitates modular development of contracts.

We note that selecting and combining these techniques to form a pri-
vate, efficient, and secure smart contract system is a challenging task, as
evidenced by the shortcomings of ZEXE (see also §4.11).

outline The remainder of this chapter is organized as follows.

• We start by providing an overview of Zapper (§4.2), after which we
present the compilation of Zapper contracts to our custom assembly
language (§4.3).

• In §4.4, we introduce the cryptographic components used in Zapper.

• Next, we discuss how the system state is updated by transactions (§4.5),
and how Zapper ensures correct execution of contract logic (§4.6).

• In §4.7, we discuss the key security properties ensured by Zapper.

• We then present our end-to-end implementation of Zapper1 (§4.8), fol-
lowed by a thorough evaluation (§4.9) and a discussion of Zapper’s
limitations (§4.10).

• Finally, we discuss related work (§4.11–§4.12) and conclude the chap-
ter (§4.13).

1 The source code is publicly available at https://github.com/eth-sri/zapper

https://github.com/eth-sri/zapper
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4.2 overview

We next provide an overview of Zapper.

4.2.1 Running Examples: Coin and Exchange

Fig. 4.1 shows implementations of a coin (Fig. 4.1a) and a decentralized
coin exchange (DEX; Fig. 4.1b) in our Python-embedded frontend.

coin A coin consists of an amount (Line 2), a currency (Line 3), and an
owner identified by an address (Line 4, discussed shortly).

Users can issue a transaction to call a function of the coin. For example,
the transfer function (Line 17) transfers the coin to a new owner by
overwriting the owner field (Line 19). Here, Line 18 rejects (i.e., aborts and
reverts) the transaction unless the sender (the address of the account used
to create the transaction) is the coin’s owner. The expression self indicates
the receiver object of the transaction, while self.me holds the address of the
sender.

Function split (Line 21) splits the coin into two coins while preserving
the total amount. The function merge (omitted) merges two coins. Here,
Line 24 decreases the amount of the original coin by a, while Line 25 creates
a new coin with amount a via the constructor create. To prevent users
from creating coins “out of thin air,” the create function is marked as
internal (Line 7), meaning that it can only be called from within the Coin

class. The only non-internal constructor is mint (Line 13), which creates
a new currency with a fixed total amount. This function leverages the
built-in fresh() expression (Line 14) to obtain a fresh currency identifier.
This identifier is guaranteed (with overwhelming probability) to be unique,
preventing the minting of pre-existing currencies.

ownership To ensure that Zapper objects are private, Zapper encrypts
them under the public key of their owner, which is stored in a dedicated
owner field implicitly available in every class (see Line 4). Specifically, owner
holds the public key pkα (serving as the address) of an account α. Only
users with access to the corresponding secret key skα can read the contents
of the object or interact with it.
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Figure 4.2: An example usage of the Zapper classes in Fig. 4.1.

dexoffer and object ownership Class DexOffer allows a maker to
offer an exchange of a given coin (Line 29) for another coin of a specific
amount and currency (Line 30).

Fig. 4.2 visualizes an example usage of DexOffer. Initially, Alice ( ) and
Bob ( ) own one dollar (1$) and one euro (1€) coin, respectively. To offer a
coin exchange, Alice first creates a shared user account ( ) and distributes its
key pair (skshared, pkshared) to anyone she is willing to trade with, including
Bob. Then, she creates a DexOffer object dex by calling create (Line 34),
using her own account as the sender and passing (i) the public key of the
shared account, (ii) her coin, and (iii) the expected amount of 1€ to be
received in return.
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To ensure that Alice cannot spend her coin while the offer still stands,
Line 40 changes the coin’s owner to dex by calling transfer. To this end,
DexOffer is annotated as @has_address, which indicates that its instances
are assigned their own object account and can therefore own other objects.
Specifically, the address of dex is available via self.address (see Line 40).
Note that two public keys are relevant to dex: while dex is owned by
pkshared , the 1$ coin is transferred to dex using dex’s own key pkdex
(middle of Fig. 4.2).

As transfer updates the owner of the 1$ coin to dex, Alice can no longer
use her own account to spend it. However, the secret key skdex of dex is
stored as part of dex, allowing Alice and Bob (who know skshared) to access
it. To prevent both users from spending the coin, Zapper prohibits object
accounts to be used as sender accounts for a transaction. Thus, once the
coin is transferred to dex, the require statements in Line 18 and Line 22 of
Coin prevent Alice and Bob from interacting with the coin directly, even
though they know the secret key skdex of the coin’s owner. Instead, Alice
and Bob must interact with the coin via dex as follows.

To accept the offer, Bob calls accept, using his own account as the sender
and passing his 1€ coin (checked in Lines 44–45). The function transfers
the 1$ coin to Bob (Line 47) and Bob’s 1€ coin to Alice (Line 51). By
default, the sender address self.me is inherited in a nested function call:
in Line 51, the call to transfer uses Bob as the sender. However, because
the 1$ coin is owned by dex, the call in Line 47 sets the sender_is_self flag
(a reserved argument implicitly defined for any function), which sets the
sender address inside transfer to dex. Finally, Line 52 in accept destroys
dex and makes it inaccessible to future transactions.

If Bob refuses to accept the offer, Alice can reclaim her 1$ coin owned
by dex by calling abort (omitted). Further, to prevent unexpected privacy
leaks, the owner of an object with its own address (@has_address) cannot
be modified after construction (see §4.7).

discussion The decentralized exchange application implemented in
Fig. 4.1 is inspired by [39, §V] and captures an important practical use
case. In particular, DexOffer allows exchanging coins without handing over
custody of coins to trusted centralized exchanges, which are notoriously
vulnerable to attacks [112, 113]. Further, its privacy properties (discussed
shortly) hide the most sensitive aspects of trading patterns (most impor-
tantly, the user identity and involved amounts), thus preventing attackers
from exploiting these [114]. See [39] for a more elaborate discussion.
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While in our example, the maker shares the offer details with all potential
traders, the application can also be instantiated differently to provide more
privacy. For example, the maker could share skshared only with a centralized
order book service which then connects potential trading partners. Further,
the maker can remain anonymous by first creating an ephemeral user
account and then transferring the offered coin to this account before creating
dex. Once dex is accepted, the maker can privately transfer the received coin
back to its original account.

4.2.2 Security Properties Guaranteed by Zapper

We now discuss the security properties ensured by Zapper.

privacy Zapper ensures identity privacy: For every transaction, it hides
the sender address (i.e., the value of self.me). This avoids revealing the
Coin owner and hides the trading patterns of users.

Zapper also ensures data privacy: First, the values of all object fields
are only visible to users knowing the owner’s secret key. For example,
only these users can see a coin’s amount, and only users with access to
skshared can see the details of dex. Second, function arguments and return
values of a transaction are only visible to the user creating the transaction.
Importantly, this includes the identity of the receiver object (i.e., the value
of the self argument). In our example, this ensures that coins cannot be
tracked: it is hidden which of the coins in the system is modified by a
transfer transaction. This is critical because revealing the receiver object
enables tracing attacks which can compromise the sender’s identity [40].

correctness Zapper ensures that the logic defined in function bodies
cannot be violated at runtime. Combined with access control (discussed
next), this ensures that the behavior of a coin is completely defined by its
implementation, even if used by untrusted users or code. For example, Coin
ensures that the total amount of all coins of a specific currency remains
constant after minting.

access control Zapper classes are subject to access control, which
ensures that correctness cannot be violated by other, potentially malicious,
classes. First, as discussed in §4.2.1, calls to internal functions are only
permitted from within the same class. Second, the fields of an object can
only be written from within a function of the same class, forcing any state
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1 class Coin:
2 amount: Uint
3 currency: Long
4

5 def transfer(self, arg: Address) -> None
6 CID tmp0 self # tmp0 ← class id of self

7 EQ tmp1 tmp0 ’Coin’ # tmp1 ← tmp0 == ’Coin’

8 REQ tmp1 # reject unless tmp1 == 1

9 LOAD tmp2 self ’owner’ # tmp2 ← self.owner

10 EQ tmp3 tmp2 me # tmp3 ← tmp2 == me

11 REQ tmp3 # reject unless tmp3 == 1

12 STORE arg self ’owner’ # self.owner ← arg
13

14 ... # other functions

17 def transfer(self, recipient: Address):

18 self.require(self.owner == self.me)

19 self.owner = recipient

Figure 4.3: Zapper assembly language (Zasm) representation of Coin, using
named registers for the sender (me), receiver (self), temporaries
(tmpx), and arguments (arg).

changes to be performed via the function interface. For example, DexOffer
cannot directly update the owner of a coin but must use the transfer

function instead.

integrity and availability Finally, Zapper ensures that transactions
cannot be tampered with or replayed (integrity), and that valid transactions
are not rejected (availability). In our example, availability ensures that the
recipient of a coin is guaranteed to have access to it after transfer has been
executed.

4.2.3 Zapper Components

We now discuss the two main components of Zapper. The Zapper client
allows users to create classes and transactions. The Zapper executor stores
classes and objects, and executes transactions.

ledger While users run the Zapper client on their local machine, the Zap-
per executor runs on top of a shared ledger, whose consensus mechanism
maintains a globally consistent view of the system state. The realization of
such a ledger is out of the scope of this work—Zapper is ledger-agnostic
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and could for instance be deployed on an extension of the Zcash [26] ledger,
which maintains data structures similar to Zapper.

assembly code Before submitting a new Zapper class to the Zapper ex-
ecutor, the Zapper client compiles it to a custom Zapper assembly language
(Zasm) format. Zasm code consists of instructions for a (virtual) processor
ran when executing a transaction.

For example, Fig. 4.3 shows the Zasm code of Coin, focusing on function
transfer. Lines 6–8 perform a type check of self. This step is necessary
to prevent malicious users or code from passing a receiver of non-Coin
type to transfer and thereby bypassing Zapper’s access control. Here, CID
loads the class id (a number identifying the class) of self into a temporary
register tmp0. The EQ instruction stores 1 into tmp1 if and only if the two
arguments are equal (0 otherwise), where ’Coin’ represents the class id
of Coin in a readable fashion. Next, Lines 9–11 ensure that only the coin
owner can transfer coins (see Line 18 in Fig. 4.1a), where ’owner’ represents
the numerical offset of field owner in Coin. Finally, Line 12 updates the
coin’s owner.

assembly storage The Zapper executor stores Zasm code in an as-
sembly storage. It enforces access control by inferring the type of registers
in Zasm code and then checking whether the code respects the relevant
access control policies. For instance, Zapper checks that internal functions
are only called from within the same class and that only fields of the same
class as self are written by STORE.

In order to verify whether potentially untrusted Zasm code matches a
trusted Zapper Python class, users can separately compile the class and
check equality of Zasm code (analogously to how EVM bytecode is checked
to match Solidity code in Ethereum).

system state Fig. 4.4a visualizes the system state maintained by the
Zapper executor. In particular, objects are stored in an object tree T. More
precisely, the data of an object is encrypted under the owner’s public key
to obtain a record. The records representing the current and past states of
any object in the system are stored as leaves in T, which is an append-only
Merkle hash tree [49] whose root β is a cryptographic summary of the
object states.

Zapper further maintains two auxiliary data structures. First, to invalidate
records accessed by transactions (see shortly), Zapper uses an append-only
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Figure 4.4: State maintained by the Zapper executor. New transactions insert the
darker rectangles and update the rounded circles.

list of unique serial numbers. Second, an append-only list of unique seeds
allows various components of Zapper to produce provably unique values.
For instance, these seeds are used to compute values returned by fresh()

(Line 14 in Fig. 4.1a).

transactions The Zapper client allows users to execute a function
f of a previously registered Zasm class C by sending a transaction to the
Zapper executor (see Fig. 4.4b). Conceptually, this transaction executes the
Zasm instructions of C. f on the Zapper processor and updates the state
of the involved objects by inserting new records into the object tree. To
invalidate the previous state of the objects accessed (by reads or writes)
in the transaction, the transaction includes a list of serial numbers which
uniquely but privately indicate the accessed records. Enforcing the unique-
ness of serial numbers then ensures that each record is accessed at most
once. Similarly, a unique seed is produced uniformly at random.

Importantly, the unique seed, serial numbers, and new records do not leak
any information about the data, objects, or users involved in the transaction,
thus maintaining both data and identity privacy.

ensuring correctness The user also includes a NIZK proof Π in
the transaction to certify that the new records and serial numbers were
computed correctly. This proof is verified by the Zapper executor, which
upon success inserts the records, serial numbers, and unique seed into the
object tree, serial number list, and unique seed list, respectively (Fig. 4.4).
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4.3 assembly code

Next, we provide details on the Zasm code generated by the Zapper
client (§4.3.1). Then, we discuss how this code is processed by the Zapper
executor before storing it in the assembly storage (§4.3.2).

Overall, Zasm allows to enforce access control via type checking and is
designed to enable efficient execution on a NIZK processor.

4.3.1 Assembly Code in Client

The Zapper client compiles classes expressed in Zapper’s Python frontend
to Zasm code. As this step is conceptually straightforward, we only discuss
the resulting Zasm code.

types and values Zasm code contains type information. Supported
types include unsigned integers (Uint), addresses (Address), and pointers
to objects. For technical reasons (see §4.6.2 in §4.6), values produced by
fresh() are of the special large unsigned integer type Long precluded from
arithmetic operations.

All values are elements of a prime field Fq = {0, . . . , q− 1} for a large
prime number q, allowing for efficient correctness checks of processor
execution (see §4.8). Pointers to an object hold the object’s object id—a
unique identifier in Fq assigned to each object.

classes and instructions The Zasm code of a class defines its
fields and functions, including the types of fields, function arguments, and
return values (see Fig. 4.3). Further, function bodies are represented by a
sequence of Zasm instructions. In Tab. 4.1, we list all Zasm instructions.
The instruction set has been specifically designed to allow for efficient
generation of NIZK correctness proofs (see §4.6).

registers Zasm code operates on named registers reg, each holding
a value in Fq. The sender address (self.me in Zapper’s frontend), and
function arguments are available in dedicated registers.

basic operations Zasm supports standard arithmetic (+,−, ·), com-
parison (<,=), and conditional assignment operations (assigning some
value to a register iff a condition is true). Comparison operations return a
value 0 or 1 interpreted as false or true, respectively. Zapper can express
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Table 4.1: The Zasm instruction set, grouped by generic (upper part) and Zapper-
specific (lower part) instructions. Arguments marked as ⟨x⟩ may be
both constants or references to a register. We use val(x) for the value
of the constant or register indicated by ⟨x⟩.

NOOP No operation
MOV d ⟨s⟩ Writes val(s) to reg[d]
CMOV d ⟨c⟩ ⟨s⟩ Writes val(s) to reg[d] if val(c) = 1
ADD d ⟨s1⟩ ⟨s2⟩ Writes val(s1) + val(s2) to reg[d]
SUB d ⟨s1⟩ ⟨s2⟩ Writes val(s1)− val(s2) to reg[d]
MUL d ⟨s1⟩ ⟨s2⟩ Writes val(s1) · val(s2) to reg[d]
EQ d ⟨s1⟩ ⟨s2⟩ Writes 1 to reg[d] if val(s1) = val(s2), 0 otherwise
LT d ⟨s1⟩ ⟨s2⟩ Writes 1 to reg[d] if val(s1) < val(s2), 0 otherwise

REQ ⟨c⟩ Aborts transaction if val(c) ̸= 1
LOAD d ⟨oid⟩ i Loads i-th field of object with id val(oid) into reg[d]
STORE s ⟨oid⟩ i Stores reg[s] into the i-th field of object with id val(oid)
CID d ⟨oid⟩ Writes the class id of object with id oid to reg[d]
PK d ⟨oid⟩ Writes the public key of object with id oid to reg[d]
NEW d cid Creates a new object with class id cid and writes its object

id to reg[d]
KILL ⟨oid⟩ Destroys the object with id val(oid)
FRESH d Writes a unique secret value to reg[d]
NOW d Writes the current timestamp to reg[d]

boolean operations by arithmetic operations (e.g., a && b = a · b). Operation
REQ enforces assertions.

loading and storing object data Zasm provides object-aware
memory instructions to access objects by their object id. While this prohibits
advanced techniques such as pointer arithmetic, it enables efficient access
of object data within NIZK proof circuits (see §4.6).

For instance, the LOAD instruction first finds the object with object id
val(oid) and then loads the i-th field into the target register reg[d] (during
compilation, each field of a class is assigned a numerical offset). The
STORE instruction works analogously. Zasm further allows accessing object
metadata. First, the CID instruction gets the class id of an object. This is
useful to realize runtime type checks: for example, Lines 6–8 in Fig. 4.3
ensure that self is a Coin. Second, PK returns the object’s own address
(public key) if it has one.
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creating and destroying objects The NEW instruction stores the
object id of a new object of a given class into a target register. Subsequent
STORE instructions can then be used to populate the fields of the new ob-
ject. Conversely, the KILL instruction destroys a given object, making it
inaccessible for future instructions.

fresh values and timestamps The FRESH instruction creates and
stores a unique secret value into a target register (see fresh()).

The Zapper executor maintains a clock at coarse granularity. The NOW

instruction stores the current timestamp into a target register.

function calls Function calls are represented by a special CALL in-
struction indicating (i) the called function, (ii) the sender_is_self flag
determining whether the sender is set to self.address or inherited, and
(iii) the arguments, including the receiver object id. The CALL instruction is
not a native instruction supported by the Zapper processor and is hence
not shown in Tab. 4.1. Instead, as we will see later, function calls are inlined
before execution.

control flow To allow for efficient generation of NIZK correctness
proofs (§4.6), Zasm code does not support control flow, jumps, loops, or
operations modifying Zasm instructions at runtime (i.e., we assume a
Harvard architecture). In particular, Zasm instructions are always executed
in the given order.

However, by representing if-then-else using conditional assignments and
statically unrolling loops up to an upper bound, most smart contracts can
be expressed in Zasm.

4.3.2 Assembly Code in Executor

When the Zapper client registers a new Zasm class at the Zapper executor,
the latter ensures it does not violate access policies and prepares it for
execution on the Zapper processor.

malicious code Zasm code received at the Zapper executor cannot be
trusted, since an attacker could try to craft malicious Zasm code bypassing
the logic specified in existing Zasm classes. For instance, an attacker could
use STORE to increase the amount of a Coin object from a different class. To
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prevent such attacks, Zapper enforces multiple access policies, as discussed
next.

access control Zapper enforces several access policies by default.
First, STORE instructions within a class C can only target objects of type C,
ensuring that fields of other classes cannot be written directly. Similarly, to
prevent the destruction of unrelated objects, KILL may only destroy objects
of type C. Further, NEW may only create objects of type C (objects of different
type C′ must be created via a CALL to a constructor of C′). Also, STORE cannot
be used to update the owner field of classes annotated as @has_address

outside constructors (we discuss the necessity of this rule in §4.7). Finally,
the dedicated register holding the sender address (authenticated by Zapper)
must not be overwritten by any instruction.

We note that by design, Zapper ensures that the user creating a trans-
action knows the secret key of the owner of any accessed object (by LOAD,
STORE, CID, PK, or KILL), as their records must be decrypted. This is not
equivalent to self.require(self.owner == self.me): a user can only use
one sender account (which must be a user account) but may have access to
the secret keys of many accounts (including object accounts). For example,
in the second transaction of Fig. 4.2, Bob uses skshared, skdex, and skBob to
decrypt the inputs, but pkBob as the sender address.

In addition to the default access policies, Zapper allows specifying custom
policies for functions. In particular, the annotation @only(C) declares a
function internal to a class C, making it inaccessible to any class C′ ̸= C.
Zapper also provides an annotation @internal as a shorthand for @only(C),
where C is the current class.

static checks To enforce the above policies, the Zapper executor per-
forms a static type analysis on the received Zasm code. First, it checks
whether all fields of new objects are initialized (uninitialized objects can
violate type safety). Second, it checks whether the code is well-typed (e.g.,
arithmetic operations are only performed on Uint values, the types of argu-
ments in CALL match the target’s function signature, etc.) and determines
the target class of each LOAD, STORE, and CALL instruction. Next, Zapper
checks whether the code satisfies all default and custom access policies
described above. If any of these checks fail, the Zasm code is rejected.

runtime checks The types of any pointer arguments cannot be checked
statically as their value is selected by a potentially malicious user at run-
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time. Hence, the Zapper executor inserts dynamic type checks for these
arguments, relying on the CID instruction.

For example, consider the transfer function of Coin (Fig. 4.1a). To ensure
that the first argument self is of the expected type Coin, Zapper inserts
Lines 6–8 in Fig. 4.3.

inlining calls The Zapper processor does not natively support CALL
instructions. Instead, the Zapper executor inlines the function body of any
called function. Here, the sender address register of the called function is
correctly inherited or initialized with the caller address, depending on the
sender_is_self flag. For inlining to succeed, Zapper disallows (mutually)
recursive function calls.

allocating registers The Zapper processor only supports a fixed
number Nregs of registers reg[0], . . . , reg[Nregs − 1] for a system parame-
ter Nregs. Hence, in a final step, the Zapper executor allocates all named
registers to these indexed registers. Then, the Zasm code is stored in the
assembly storage, ready to be used by transactions.

4.4 cryptographic components

We next discuss the cryptographic components used in Zapper.

encryption To encrypt records, Zapper uses a key-private [115] asym-
metric encryption scheme. This ensures that attackers cannot determine
which public key was used to produce a given ciphertext, thus hiding the
identity of an encrypted record’s owner. We write Enc(p, pkα, R) to denote
the encryption of plaintext p under key pkα with encryption randomness R.

merkle tree Zapper relies on a Merkle hash tree [49] (see §1.3), which
uses a collision-resistant hash function H to derive a root hash β of all
records stored as leaves in the object tree T. This allows proving that a
given record r̂ is in T with root β using a Merkle certificate π [50, §2.1.1], and
updating β upon insertion of new records.

hash functions Zapper relies on a family of cryptographic hash
functions Hi : {0, 1}∗ → {0, 1}Ω(λ) with security parameter λ and the
following properties: (i) Hi is collision-resistant, and (ii) the function
f : {0, 1}∗ × {0, 1}Ω(λ) → {0, 1}Ω(λ) defined as f (x, k) := Hi(x ∥ k) is a
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pseudorandom function (i.e., for uniformly random k, the function f ( · , k)
is indistinguishable from a random function).

Various components of Zapper rely on Hi to derive a unique secret
value z using the following generic construction, inspired by ZEXE [39] and
Zcash [26]. For unique U and private R,

z = Hi(U ∥ R). (4.1)

Computed as in Eq. (4.1), z has two key properties:

• Secrecy: For uniformly random R, any user not knowing R cannot distin-
guish z from a uniformly random value. This follows from pseudoran-
domness.

• Uniqueness: with overwhelming probability, z is unique, even for adver-
sarially chosen R. This follows from collision-resistance.

nizk proofs Recall that for a predicate ϕ and a public input x, a NIZK
proof [41, 42] allows a prover to demonstrate that it knows a private input w
s.t. ϕ(x; w) holds, without leaking any information about w beyond the fact
that ϕ holds (see §1.3). In the context of Zapper, x includes the executed
function body and information on the state before and after execution,
while w includes private information known to the sender (e.g., secret keys),
allowing ϕ to check that the function was executed correctly.

To ensure correctness, Zapper relies on an SE-SNARK [44]: a zk-SNARK
satisfying perfect zero-knowledge, perfect completeness, and simulation-
extractability [44].

4.5 transactions

We now discuss how the Zapper system state is represented and updated
by transactions. Most importantly, our approach hides the accessed objects
by an oblivious Merkle tree construction. To this end, we rely on techniques
from Zerocash [25, 26] and ZEXE [39] but adapt them to our context and
avoid the vulnerabilities of ZEXE.

4.5.1 Example Transaction

To provide some intuition, we first discuss an example transaction calling
the accept function of DexOffer (Fig. 4.1b).
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Figure 4.5: Visualization of a transaction for DexOffer.accept (Fig. 4.2).
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input records The accept function accesses several objects: (i) the
DexOffer object self, (ii) the coin other transferred to the maker; and
(iii) the coin coin transferred to the transaction sender.

Fig. 4.5 shows how accept modifies these objects when called by Bob
(sender pkBob) with arguments args = (593...4, 300...7) indicating the object
ids of self and other (see the second transaction in Fig. 4.2). At a high level,
Zapper first loads the encrypted records r̂in

0 , . . . , r̂in
2 of the accessed objects,

which includes r̂in
2 containing the state of coin, from the object tree (we

discuss r̂in
3 shortly). Next, these are decrypted to obtain plain records rin

i .

plain records Specifically, the plain record of an object is a tuple

r = (cid, oid, skself , pkself , pkowner, payload),

where cid and oid are the class id and object id, respectively, pkowner is the
public key of the owner, and payload holds the values of the remaining fields.
Further, (skself , pkself ) is the key pair of the object account. For simplicity, we
also assign an account to objects not annotated as @has_address, however,
this account is never used. Note that in general, pkself (belonging to the
object) and pkowner (belonging to the object’s owner) are keys of different
accounts.

encrypted records Before encryption, a plain record r is extended
by a secret serial nonce ρ (a globally unique number later used to invalidate
outdated records). Then, it is encrypted under the public key of the object’s
owner to yield the encrypted record

r̂ = Enc((r, ρ), r.pkowner, R),

where R is some encryption randomness. Note that in contrast to ZEXE,
Zapper relies on encryption instead of commitments, preventing the denial-
of-funds attack in ZEXE (see §4.11).

processor After decryption, the plain records are fed to the Zapper
processor, which executes the Zasm code of accept to produce the plain
output records rout

i (Fig. 4.5 highlights changed entries).

output records Finally, the plain records rout
i are extended by fresh

serial nonces ρi and encrypted under the owners’ public keys to obtain r̂out
i .
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These records will be published to the ledger and inserted into the object
tree once the transaction is accepted.

dead records When an object is destroyed by KILL, the processor
sets the object id oid of the corresponding record to the reserved value 0,
indicating that this record is dead. Further, pkowner of the record is set to
the sender’s public key such that the resulting record is hidden from other
users. This is important as dead records may include stale data of the
previously represented object.

In Fig. 4.5, the DexOffer object r̂in
0 is destroyed, hence oid of rout

0 is set to 0
and pkowner is set to pkBob. The payload component of rout

0 still contains
private data (e.g., the value of the for_amount field), but as it will be
encrypted for Bob, no other user learns this.

The processor accepts exactly Nobj plain records as inputs, for a system
parameter Nobj. The inputs are appropriately padded using artificial dead
records. Similarly, the processor returns Nobj output records. In Fig. 4.5, it
is Nobj = 4 and r̂in

3 is used as a padding record.

transaction contents Importantly, the steps visualized in Fig. 4.5
are hidden from the Zapper executor to maintain data and identity privacy
(see the indicated privacy barrier). The data published by the Zapper client
only consists of the encrypted output records [r̂out] (bottom row in Fig. 4.5;
we use the notation [·] to indicate a list) and some bookkeeping data (see
also Fig. 4.4b).

Formally, a transaction tx = (C. f , β, [sn], [r̂out], u, Π) consists of the fully
qualified function name C. f of the called function, the current root hash β
of T, the serial numbers [sn] of accessed records, a list [r̂out] of new records,
a unique seed u, and a NIZK proof Π certifying correctness. §4.5.2–§4.5.3
explain the purpose of these items.

4.5.2 Creating Transactions

Next, we describe how the Zapper client creates a transaction tx for a user
who wishes to call a function C. f with arguments args.

simulation The Zapper client first loads the Zasm code zasm for C. f
from the assembly storage. It then locally simulates the execution of zasm
with arguments args. During simulation, the most recent records of any
pre-existing objects accessed by zasm (due to LOAD, STORE, CID, PK, or KILL)
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Algorithm 4.1 The main NIZK proof circuit ϕ.

1: Public inputs:
2: C. f , β, [sn], [r̂out], u as in Fig. 4.4b, timestamp t, code zasm
3: Private inputs:
4: C′. f ′: called class and function id [rout]: plain output records
5: skme, pkme: key pair of sender [π]: input record Merkle certificates
6: args: arguments for call [skα]: input record secret keys
7: [r̂in]: encrypted input records [R], [Rpr]: randomness

8: Authenticate sender: pkme
!
= derivePk(skme) and isUser(pkme)

!
= true

9: Check function: C. f !
= C′. f ′

10: for i ∈ {0, . . . , Nobj − 1} do
11: Decrypt record: (rin

i , ρin
i )← Dec(r̂in

i , skαi )

12: if rin
i .oid ̸= 0 then

13: Check that r̂in
i is in Merkle tree with root β (using πi)

14: else
15: Check serial nonce: ρin

i
!
= H2(i + Nobj ∥ u ∥ Ri+Nobj

)

16: Check serial number: sni
!
= H1(ρ

in
i ∥ skαi )

17: Run processor (Alg. 4.2) for zasm, u, t, pkme, args, [rin], [rout], [Rpr]
18: for i ∈ {0, . . . , Nobj − 1} do
19: Compute serial nonce: ρout

i ← H2(i ∥ u ∥ Ri)

20: Check encryption: r̂out
i

!
= Enc((rout

i , ρout
i ), rout

i .pkowner, Ri+2Nobj
)

are fetched from a local copy of the object tree, collected in a list [r̂in], and
decrypted using the owners’ secret keys. As a result, Zapper obtains (i) the
return value of C. f , which is returned to the user; and (ii) the list [rout] of
plain output records, which represent the updated states of the objects in
[r̂in] and any new objects. The list [r̂in] is then padded by an appropriate
number of dead records.

correctness proof circuit To prove that C. f was executed correctly,
the Zapper client creates a NIZK proof Π.

Alg. 4.1 shows the proof circuit ϕ for Π. Conceptually, the public inputs
of ϕ (Lines 1–2) are provided by the Zapper executor when verifying Π.
In contrast, the private inputs of ϕ (Lines 3–7) are provided by the Zapper
client when creating Π. These inputs include private information such as
the keys (skme, pkme) of the sender.
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sender authentication To ensure that the sender cannot be imper-
sonated by an unauthorized user, we check that the user creating Π knows
the secret key of the sender account. More precisely, Line 8 uses derivePk
to check whether skme corresponds to pkme.

checking the function Both the public and private inputs of ϕ
include identifiers of the called class C and function f . By checking that
these match (Line 9), the proof Π acts as a signature on C. f , ensuring that
C. f cannot be changed once the proof is generated.

enforcing object ownership Zapper objects can be owned by other
objects. For instance, during the lifetime of dex in Fig. 4.1, the coin coin is
owned by dex. The self.require(self.owner == self.me) statements in
Coin ensure that only dex can call its functions. Unfortunately, reflecting
these requirements in ϕ by checking that pkme equals the coin’s owner
address is not sufficient to prevent users from directly calling the functions
of a coin owned by dex: the secret key skdex is stored as part of dex’s record
and users with access to dex could hence use (skdex, pkdex) as sender account
key pair.

To prevent such object impersonation attacks, the public keys in the
system are partitioned into keys of user and object accounts. Line 8 explicitly
checks that pkme belongs to a user account. In our implementation (§4.8),
isUser returns the key’s least significant bit.

accessing objects Lines 11–13 access the input records [r̂in] while
hiding their location in T. First, Line 11 checks that [r̂in] are correctly
decrypted, yielding both serial numbers [ρin] (discussed shortly) and plain
records [r̂in]. Next, for each non-dead record r̂in

i , Line 13 verifies a Merkle
certificate πi (passed as a private input to ϕ) showing that r̂in

i is a leaf of
the current object tree with root β.

preventing access of outdated state Recall that new records are
appended to the object tree without replacing their original version (note
that replacement would leak the accessed object). Hence, the construction
presented so far only ensures that the accessed records represent some
previous state of the respective objects, but not necessarily the most recent
one. Therefore, we need to privately invalidate outdated records. To this
end, Zapper relies on a technique introduced in Zerocash [25], which uses
serial numbers to privately identify and invalidate accessed records.
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In particular, to invalidate the accessed records r̂in
i , Zapper derives and

publishes a unique serial number for each r̂in
i as

sni = H1(ρ
in
i ∥ skαi ). (4.2)

Here, ρin
i is the serial nonce contained in r̂in

i and skαi is the owner’s secret
key used to decrypt r̂in

i . Eq. (4.2) is checked in Line 16.
Because the computation of the serial number (Line 16) follows the

generic construction in Eq. (4.1), assuming the serial nonces ρin
i are globally

unique (discussed shortly), serial numbers of different records cannot
collide (uniqueness). Further, the serial number sni is indistinguishable from
a uniformly random value for any user not knowing skαi (secrecy). This is
important to ensure privacy: otherwise, a malicious user Eve who created
r̂in

i for owner Alice could tell when Alice accesses it by watching for sni.
Overall, the Zapper client computes the serial numbers [sn] and includes

them in tx. The Zapper executor will ensure that these are globally unique,
enforcing that any record can be accessed at most once. As this also applies
to records whose state is not changed but only read (e.g., by LOAD), the
Zapper processor output includes plain records of objects which were
only read. This ensures that a fresh record representing these objects is
re-inserted into the object tree.

processor execution Line 17 ensures that running the program zasm
with arguments args and current timestamp t on inputs [rin] results in the
plain output records [rout]. As this step is more involved, we discuss it
separately in §4.6.

deriving new serial nonces Before encrypting rout
i , Zapper derives

a new serial nonce ρout
i for rout

i as in Line 19, repeated here:

ρout
i = H2(i ∥ u ∥ Ri). (4.3)

Here, u is a public and globally unique seed, and Ri is fresh randomness.
Similarly, the serial nonce ρin

i of any dead input padding record is computed
as in Line 15, repeated here:

ρin
i = H2(i + Nobj ∥ u ∥ Ri+Nobj

). (4.4)

The seed u is selected uniformly at random by the Zapper client and
included in the transaction tx. Like the serial numbers, u is enforced to be
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globally unique by the Zapper executor (note that for a large seed space,
the selected u is unique with overwhelming probability). As we will see
in §4.6, the seed u is also used by the processor to derive other unique
values. Due to the uniqueness property of the construction in Eq. (4.1), the
nonces computed by Eqs. (4.3)–(4.4) are globally unique with overwhelming
probability.

In ZEXE, the serial numbers of dead inputs (called “dummy” by the
authors) are selected freely by the user, allowing a “lock-out” attack on
applications with shared keys (see §4.11). In contrast, Zapper prevents this
attack using the construction in Eq. (4.4).

encryption and proof generation Finally, Zapper encrypts the
plain records [rout] along with their serial nonces using the respective
owners’ public keys to obtain the output records [r̂out] (see Line 20). To
complete the data in tx, the Zapper client generates a NIZK proof Π for ϕ.
The transaction tx is then sent to the ledger.

4.5.3 Processing Transactions

We next describe how the Zapper executor processes transactions.

validity checks When the Zapper executor receives a transaction
tx = (C. f , β, [sn], [r̂out], u, Π), it first looks up the assembly code zasm for
the called function C. f in the assembly storage and prepares the public
inputs C. f , β, [sn], [r̂out], u, t, zasm for the proof circuit ϕ, where t is the
current timestamp. Then, the ledger

(i) checks the validity of the proof Π;

(ii) checks if β is a valid previous root hash of T;

(iii) checks if the serial numbers in [sn] are unique and do not already
occur in the serial number list; and

(iv) checks if u does not already occur in the unique seed list.

state updates If any of the validity checks fail, the transaction is
rejected. Otherwise, the system state is updated as follows:

1. For all sni ∈ [sn], insert sni into the serial number list.

2. Insert u into the unique seed list.
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3. For all r̂out
i ∈ [r̂out], insert r̂out

i into the object tree T.

concurrent transactions Note that another transaction tx′ may
have been accepted since the Zapper client started creating tx. For this
reason, in the validity check (ii) above, β is not required to be the most
recent root hash of T, but may be any previous root hash. As long as the
unique seed and records accessed in tx are distinct from the unique seed
and records accessed in any previous tx′, their ordering does not matter
and tx remains valid. In other words, concurrent transactions accessing
distinct objects will not affect each other. Importantly, a third party which
does not have access to (i.e., does not know the owner secret keys of) any
object involved in another transaction tx cannot perform a front-running
attack and block tx by trying to consume the same object(s).

If two concurrent transactions access the same records (i.e., read or
write the same object), the ledger rejects the transaction tx it receives last.
Assuming all assertions still hold and the involved objects still exist, the
user creating tx can always re-create it.

We assume that the granularity of timestamps is coarse enough (e.g., in
the order of hours) to account for the delay between transaction generation
and verification. In case the current timestamp changes in-between, the
user must re-create the transaction.

4.6 proving processor execution

We now discuss our zero-knowledge processor, which allows the Zapper
client to provably execute Zasm code. Our processor is inspired by previ-
ous work [82, 84], but adapted to reduce the cost of the most expensive
operations: we prefetch all accessed objects (see also §4.5) and precompute
the result of cryptographic operations.

4.6.1 Emulating the Processor

In Alg. 4.2, we show the sub-circuit checking correct execution of the
provided Zasm code. This sub-circuit is part of the main proof circuit ϕ
(Alg. 4.1) and emulates the cycles of the Zapper processor.

precomputation Lines 2–4 precompute values useful during the exe-
cution of the processor and will be discussed later.
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Algorithm 4.2 The sub-circuit checking Zasm code execution.

1: Inputs: zasm, u, t, pkme, args, [rin], [rout], [Rpr] as in Alg. 4.1

2: for i ∈ {0, . . . , Nfresh − 1} do
3: oidi ← H3(i ∥ u ∥ Rpr

3i ); fi ← H5(i ∥ u ∥ Rpr
3i+2)

4: ski ← H4(i ∥ u ∥ Rpr
3i+1); assert ¬isUser(derivePk(ski))

5: state0 ← ([rin], (pkme, args, 0, . . . , 0), [oid], [sk], [ f ])
6: for i ∈ {0, . . . , Ncycles − 1} do
7: statei+1 ← evalInst(zasmi, statei)

8: check output state: stateNcycles

!
= ([rout], ·, ·, ·, ·)

state The processor state state = ([r], regs, [oid], [sk], [ f ]) consists of the
current plain records [r] of the Nobj involved objects (some of which may be
dead), the array regs of Nregs register values, and three lists [oid], [sk], [ f ] of
precomputed values. Line 5 initializes this state, where the sender address
pkme is (by convention) placed in the first register, followed by args and
zero padding.

cycles Line 7 uses the sub-circuit evalInst(zasmi, statei) to capture how
the processor executes a single instruction zasmi on input state statei. Similar
to [82], as proof circuits do not allow for control flow, evalInst evaluates
the result of each possible instruction in parallel and then selects the correct
result to update statei according to the instruction zasmi using a multiplexer.
To reduce the proof circuit size, many parts of the computation (e.g., register
and object accesses; see shortly) are shared amongst instructions.

Analogously to [82], Alg. 4.2 unrolls the processor cycles by chaining
Ncycles copies of evalInst for a system parameter Ncycles, supporting any
Zasm program with at most Ncycles instructions (programs with less than
Ncycles instructions are padded with NOOP instructions). As a consequence,
any function of a Zapper class may consist of at most Ncycles instructions.
However, we note that such limits on the execution length are already
commonly used in existing smart contract systems (e.g., see Ethereum’s
block gas limit).

final state Finally, Line 8 checks whether the plain records in the final
state stateNcycles match the expected plain records [rout].
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4.6.2 Evaluating Instructions

We next discuss how evalInst evaluates a single processor cycle.

register access To load values from or store values to a register, we
use a linear loop to select the target register based on its index. As Nregs is
small in practice, this step is relatively efficient.

basic operations Arithmetic operations work on the regs list and
mostly correspond to the native field operations of the proof circuit. How-
ever, we impose additional checks to prevent unintended over- or under-
flows of field elements where necessary. For example, native addition or
subtraction inside the proof circuit wraps at the field prime (≈ 2255 in our
implementation, see §4.8), which may be unexpected. We hence restrict
values of type Uint to be in [0, 2120) and reject any operation leading to a
result outside this range. Values of type Long are not restricted, but cannot
(by the type system) be used in arithmetic operations. 2

loading and storing object data To implement LOAD, we perform
a linear lookup over the plain records [r] to find the targeted object id and
field. We proceed analogously for STORE, CID, and PK.

Smart contracts typically only access few objects in a transaction. There-
fore, the number of objects Nobj in [r] can be set to a small constant in
practice, making the above lookup relatively efficient.

As in [84], the memory of the Zapper processor is stored in a Merkle
tree. However, by prefetching the memory of few input objects in advance
(Alg. 4.1), Zapper induces significantly less overhead than checking a Merkle
tree memory access in each processor cycle.

destroying objects For the KILL instruction, the circuit simply marks
the targeted record as dead by setting its oid component to 0 and its owner
public key pkowner to pkme. Analogously to STORE, the targeted record is
found using a linear lookup.

creating objects The NEW instruction creates an object by initializing
a dead record with a new object id and secret key. Following the generic
construction in Eq. (4.1), the object id oidi of the i-th new object created

2 The 120 bits of a Uint value are not sufficient to provide collision-resistance of values produced
by FRESH. Hence, we use a separate data type Long for these values
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in zasm is derived as shown in Line 3. Here, u is the unique seed for the
current transaction, and R is a value chosen uniformly at random and
provided to ϕ as a private input. Line 3 ensures that oidi is globally unique,
even if R is selected by a malicious user (uniqueness). This is important,
as creating a new object o whose object id matches a pre-existing object o′

would allow hijacking o′ and violate correctness. Further, oid is hidden
from all other users (secrecy), thereby ensuring data privacy.

Analogously, the secret key ski of the i-th new object is derived as shown
in Line 4. Here, to ensure that ski indeed corresponds to an object account,
the Zapper client repeatedly samples uniform randomness Rpr

3i+1 until the
assertion in Line 4 holds.

fresh values The FRESH instruction computes a secret and unique
value f . The i-th such unique value fi is computed as shown in Line 4

(following Eq. (4.1)), for unique seed u and uniformly random R.

precomputation The computations of oidi, ski, and fi are based on
cryptographic hash functions Hi, which are relatively expensive to evaluate
within the proof circuit. Hence, instead of computing these in each processor
cycle, we precompute a fixed number Nfresh of these values in advance (see
Lines 2–4 in Alg. 4.2). Whenever such a value is required in zasm, we select
the next unused value, assuming a Zapper function requires at most Nfresh
such values.

discussion : universality Generally, zk-SNARKs require a trusted
setup, which either depends on the proof circuit (non-universal schemes)
or not (universal schemes). By emulating processor execution, Zapper can
use the same proof circuit to verify execution of arbitrary Zasm programs
(respecting the relevant bounds such as Ncycles). This allows Zapper to
be instantiated with an efficient non-universal SE-SNARK scheme such as
GM17 [44] (see §4.8), without requiring a trusted setup per program.

An alternative design could use a universal scheme such as Marlin [98]
to dynamically build a separate proof circuit per Zasm program, again
avoiding a trusted setup per program. Unfortunately, Marlin is significantly
more expensive than GM17: proof generation for a circuit of the same
size (2 million R1CS constraints, see §4.9.3) takes 17.1 s using GM17 and
116.7 s using Marlin. While using Marlin would avoid processor emulation
overhead, we expect this does not compensate for its higher cost: Zapper’s
proof circuit size is dominated by cryptographic operations, most of which



4.7 security properties 119

cannot be significantly reduced (see Fig. 4.6a and §4.9.2). Still, instantiating
Zapper with a universal zk-SNARK presents an interesting trade-off: De-
spite lower performance, such a system should allow easier extension to
more complex Zasm instructions without requiring a new trusted setup for
every extension.

4.7 security properties

In this section, we discuss the privacy, correctness, integrity, and availability
properties ensured by Zapper. We note that by construction, Zapper also
ensures access control as defined in §4.3.2.

attacker model We consider an active adversary which statically
corrupts a set of users and can intercept transactions by honest users. It
can craft arbitrary transactions from scratch or by modifying intercepted
transactions. See App. A.5 for a formal definition.

4.7.1 Privacy

Zapper achieves both data and identity privacy. In particular, only users
with access to the secret key of an object’s owner can observe when and
how the object is created, read, modified, or destroyed.

ideal world To formalize our notion of privacy, we introduce an ideal
world specifying the information available to each user. We sketch this
ideal world below (see App. A.5 for a formal definition).

The ideal world maintains the plaintext state of all objects and allows
users to make function calls, which are executed according to the semantics
of Zasm. When a user executes a function C. f with arguments args, other
users of the system only learn the following:

• Any user learns that C. f is called and that the conditions of all REQ

instructions are satisfied.

• All users who can access (see below) an object involved in a LOAD, STORE,
KILL, NEW, CID, or PK operation learn the object id and the loaded (for
LOAD) or stored (for STORE) value.

In particular, reading and writing fields is possible without revealing the
target object’s identity to any users without access to the object. Further, the
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arguments args, the return value, and the identity of the sender account are
not visible, unless these are explicitly revealed to some other user by STORE.
The same applies to any intermediate results of arithmetic operations.

accessible objects We say that user U can access object o if U knows
the secret key of o’s owner. In particular, U knows not only its own or shared
user secret keys, but also the secret keys of objects o if (i) U knows the secret
key of o’s owner, or (ii) U created o (and thereby, its secret key) but is not
necessarily its current owner. For example, in Fig. 4.2, Bob knows skBob,
skshared, and skdex and can hence access dex and both coins (1€ and 1$). See
App. A.5 for details.

Recall that Zapper prohibits changing the owner of objects with an
address (see @has_address) at runtime. This prevents unexpected privacy
leaks: if U owns o which in turn owns o′, then changing the owner of o
would not invalidate U’s access to o′, as U would still know the secret key
of o.

privacy Thm. 4.1 informally states our privacy notion.

Theorem 4.1 (Privacy, informal). From transactions created by honest users, the
adversary cannot learn more than in the ideal world.

In App. A.7 (Thm. A.5), we formalize and prove Thm. 4.1. At a high level,
privacy is ensured by the zero-knowledge property of the SE-SNARK, the
key-privacy of the encryption scheme, and the pseudorandomness of Hi
(see §4.4).

practical considerations The location or IP address from which
a transaction is submitted may leak the identity of the sender in practice.
Hence, as in similar systems [25], users may want to submit transactions
via an anonymous overlay network such as Tor [116].

4.7.2 Correctness, Integrity, Availability

We now informally present the remaining security properties (as introduced
in §4.2), which we formalize in App. A.5–A.6.

Theorem 4.2 (Correctness, informal). The adversary cannot violate the logic
specified in contracts registered at the Zapper executor.

Theorem 4.3 (Integrity, informal). Valid transactions cannot be modified “in
flight” or replayed by the adversary.



4.8 implementation 121

Theorem 4.4 (Availability, informal). Honest users can realize valid transactions
unless the adversary actively interferes.

At a high level, correctness is enforced by the construction of ϕ and
the soundness property of the SE-SNARK. Further, the non-malleability of
SE-SNARKs prevents transactions from being tampered with, and checking
the uniqueness of serial numbers prevents replay attacks. Note that since
our attacker model allows the adversary to intercept every transaction, it
can always block the current transaction. However, if the adversary does not
interfere with a transaction, Thm. 4.4 states that it will always be accepted.
In particular, the adversary cannot “lock” an object owned by an honest user
by publishing a colliding serial number or refusing to share the decryption
key. This prevents the “Faerie Gold” attack of Zerocash (allowing attackers
to permanently block coins of honest owners) [26] and two attacks on ZEXE
(discussed in §4.11).

4.8 implementation

We implemented Zapper in an end-to-end system consisting of a Python
frontend (3k LoC) exposed to application developers, and a Rust backend
(4k LoC) performing cryptographic tasks and relying on the efficient ark-
works libraries [117]. Our implementation includes an idealized centralized
ledger, which can be replaced by a shared ledger in an actual deployment.
Below, we describe how the cryptographic primitives are instantiated in our
implementation. All these primitives have been used in existing systems.

proving scheme and elliptic curves We use the simulation-
extractable GM17 [44] zk-SNARKs over the pairing-friendly Barreto-Lynn-
Scott [118] curve BLS12-381 introduced in Zcash [26]. The constraints of
the proof circuit ϕ are then expressed in the scalar field Fq of BLS12-381,
where q ≈ 2255. To allow for efficiently emulating the Zapper processor
in ϕ, Zasm code operates on values in Fq.

Like Zcash, we rely on curve embedding to efficiently evaluate crypto-
graphic primitives (see below) within ϕ. In particular, our primitives use
the Jubjub [119] twisted Edwards curve, whose base field matches the scalar
field Fq of BLS12-381. This allows us to natively evaluate Jubjub curve
operations in ϕ.

hash functions Like ZEXE [39], we rely on Pedersen and Blake2s
hashes. In particular, we instantiate the hash function H for the object tree
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Table 4.2: Evaluated example Zapper applications and classes. We indicate
the number of functions (#fun), and the min/max number of Zasm
instructions in the functions of each class (inst).

App Description Classes #fun (inst)

Auction A private decentralized coin auction. Auction$
3 (33–48)

Coin A private untraceable coin. Coin (Fig. 4.1) 5 (6–29)

Exchange A private decentralized coin exchange. DexOffer$ (Fig. 4.1) 3 (18–36)

Heritage A heritable coin wallet with anonymous
heirs and private shares.

Share 2 (7–8)
Wallet$

7 (9–80)

Reviews A double-blind peer-review system for
academic papers.

Review 3 (8–25)
Result 3 (10–11)
Paper 4 (17–32)

Tickets A public transport ticketing system with
untraceable multi-journey tickets.

TicketProof 1 (7)
Ticket$

4 (10–25)

WorkLog A system for aggregate working hours
reports hiding check-in/-out times.

Aggregated 1 (7)
WorkLog 4 (9–23)

$ makes use of the Coin class

by the Pedersen hash [26, §5.4.1.7] with 4-bit windows over Jubjub. H is
collision-resistant assuming it is hard to compute discrete logarithms in
Jubjub [120]. As Pedersen hashes do not provide pseudo-randomness, we
use the pseudo-random Blake2s hash function [121] to instantiate Hi(x) :=
Blake2s(i ∥ x) as per §4.4.

encryption Like the Dusk Network [122], we use a hybrid encryption
scheme based on Poseidon [123] and ElGamal [124]. In particular, to encrypt
a plain record r, we first select a random curve point k on Jubjub and encrypt
r with key k using Poseidon [123] in the DuplexSponge framework [125,
126]. Then, we encrypt k using ElGamal [124] over Jubjub with the owner’s
public key. As ElGamal encryption is key-private [115], this hybrid scheme
is also key-private.

4.9 evaluation

We now evaluate our implementation of Zapper (§4.8), demonstrating that it
is highly efficient. All our experiments are conducted on a desktop machine
with 32 GB RAM and 12 CPU threads at 3.70 GHz.
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4.9.1 Example Applications

To demonstrate the expressiveness of Zapper, we implemented the 7 appli-
cations described in Tab. 4.2 in Zapper’s Python frontend using a total of
12 classes. The applications span a variety of domains and correspond to
realistic use cases. The Coin and Exchange apps (see Fig. 4.1) closely follow
the “user-defined asset” and “intent-based DEX” examples of ZEXE [39].
In contrast to ZEXE, where these apps are implemented as low-level predi-
cates, they are naturally expressed in Zapper’s frontend. The other apps
are our creations. Being a core component, the Coin class is used across
multiple apps.

In all applications, Zapper’s data and identity privacy properties are key.
For example, “Ticket” allows travelers to punch multi-journey tickets valid
for a specific duration after punching, while preventing ticket holders to be
traced across journeys.

4.9.2 Performance

We now evaluate the performance of Zapper.

parameters For the following experiment, we instantiate the parame-
ters of Zapper as shown in Tab. 4.3a. Here, Nfields is the maximum number
of fields per object, excluding owner. The Merkle tree height Nheight is
sufficiently large for a real-world deployment and matches the height in
Zcash [26]. The other parameters were chosen to support the apps in
Tab. 4.2 with a comfortable margin.

The choice of parameters is subject to a trade-off: larger values enable
more complex applications but induce more overhead. In practice, Zapper
can support multiple combinations of parameters and prepare a separate
proof circuit for each combination, enabling Zapper to select the smallest
parameters sufficient to enable any given application. However, it is not
obvious how to allow setting Nheight dynamically, as all applications must
operate on the same Merkle tree. To help predict the performance of
future applications, §4.9.3 discusses the effect of individual parameters on
performance.

scenarios For each application in Tab. 4.2, we create a scenario consist-
ing of multiple transactions interacting with the application. For example,
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Table 4.3: Evaluation parameters and runtimes.

(a) Values for parameters.

Tree height Nheight 32

Objects in tx Nobj 4

Fresh values Nfresh 4

Processor cycles Ncycles 100

Registers Nregs 10

Object fields Nfields 9

(b) Runtimes for example scenarios.
Step Time (std. dev.)

one-time setup 37.207 s

per app compile 0.007 s (±0.003 s)

per tx create 21.639 s (±0.152 s)
verify 0.027 s (±0.003 s)

for Exchange we first mint two coins and then run create and accept

transactions as visualized in Fig. 4.2.

runtimes Tab. 4.3b summarizes the performance of Zapper for our
scenarios, showing that Zapper transactions are very efficient.

Before executing any transactions, we first initialize a new Zapper ledger
(“setup” in Tab. 4.3b). This global one-time step includes a trusted setup
phase for the GM17 [44] zk-SNARKs, which is relatively expensive and
dominates the runtime of the step (99.87%).

Next, we compile all applications in Tab. 4.2 to Zasm code and register
this code at the Zapper assembly storage. As shown in Tab. 4.3b (“compile”),
compiling and registering a single application is very efficient as it does not
involve any cryptographic operations.

Finally, we execute the scenarios on the Zapper ledger. Executing a
transaction consists of two steps. First, the Zapper client locally creates
the transaction (§4.5.2, “create”). The runtime of this step is dominated
by zk-SNARK generation (99.97% on avg.). Second, the Zapper executor
processes this transaction (§4.5.3, “verify”), which is dominated by zk-
SNARK verification (59.1%) and Merkle tree updates (40.6%). While the
first step is more expensive, it is only executed by the client. In contrast, the
second step is significantly cheaper. This is important, as it will be replicated
across many machines when deploying Zapper to a shared ledger.

runtime discussion As shown by the low standard deviations in
Tab. 4.3b, the runtimes for creating and verifying transactions are very
consistent across all scenarios: because the proof circuit for the zk-SNARK
in a transaction is independent of the application, the dominating proof
generation times are nearly identical.
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Our transaction runtimes are in line with ZEXE [39]. The authors report
that transactions require 52.5 s to generate and 0.046 s to verify on a similar
machine (3.00 GHz, 24 threads). While we used Nobj = 4 and the logic of
contracts in Tab. 4.2, the ZEXE evaluation assumed 2 inputs and 2 outputs,
and empty predicates.

transaction size Zapper transactions are small, consisting of only
3 312 bytes regardless of the called function. This is comparable to ZEXE,
whose transactions consist of 968 bytes.

4.9.3 Proof Circuit Size

The runtimes for zk-SNARK setup and proof generation, which are the
dominating parts of “setup” and “create” in Tab. 4.3b, are linear in the size
of the proof circuit. We next analyze this size, measured in the number of
R1CS constraints.

size of individual components For the parameters in Tab. 4.3a,
the proof circuit (Alg. 4.1) consists of 2.02·106 constraints (regardless of
the application). In Fig. 4.6a, we show the sizes of the individual compo-
nents. The largest two components are the checks of Merkle tree certificates
(Line 13 in Alg. 4.1) and preparation of precomputed values (Lines 2–4 in
Alg. 4.2), as they involve the evaluation of expensive cryptographic hash
functions. This is followed by the emulation of processor cycles (Lines 5–7

in Alg. 4.2), the derivations of serial numbers sn, nonces ρin, and nonces
ρout (Alg. 4.1).

effect of parameters We next measure the size of the proof circuit for
different parameters. This allows gauging the performance of Zapper when
parameters are selected dynamically from a set of prepared parameters. In
each of the subplots in Fig. 4.6b, we show the number of constraints when
varying a single parameter while setting all other parameters to the values
in Tab. 4.3a. Fig. 4.6b indicates that Nobj has the biggest impact, while
Nregs and Nfields have negligible effects. Overall, the main proof circuit has
asymptotic size:

O
(

Nobj(Nheight + Nfields)︸ ︷︷ ︸
Lines 8–16 & 18–20 in Alg. 4.1

+ Nfresh︸ ︷︷ ︸
Lines 2–4

in Alg. 4.2

+ Ncycles(NobjNfields + Nregs + Nfresh)︸ ︷︷ ︸
Lines 5–8 in Alg. 4.2

)
.
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To predict the performance of Zapper for given parameters, we have
further estimated the constants hidden in the above formula using an
empirical least-square fit. We find that the number of R1CS constraints in
the proof circuit can be predicted as:

3 400 + Nobj
(
160 000 + 3 300 Nheight + 1 900 Nfields

)
+ 130 000 Nfresh (4.5)

+ Ncycles
(
1 600 + 26 Nobj Nfields + 24 Nregs + 120 Nfresh + 76 Nobj

)
.

As indicated in Fig. 4.6b, this prediction is very accurate.

4.10 limitations

We now discuss limitations of Zapper.
First, Zapper only supports Zasm programs respecting its parameters

Ncycles, Nobj, Nfresh, Nfields, and Nregs. If these parameters limit expressivity,
developers can increase them (see §4.9.2).

As discussed in §4.3.1, Zapper does not natively support control flow, but
if-then-else branches can always be rewritten as conditional assignments,
and bounded loops can be unrolled. While unbounded loops are not sup-
ported, these are already discouraged in non-private smart contracts [91]
and can instead be split into individual, bounded-length transactions. Fur-
ther, Zapper disallows pointer arithmetic and self-modifying code, which
are however uncommon in smart contracts. Also, Zasm programs with
recursion are disallowed and must be restructured. We expect this is often
feasible, e.g. by rewriting tail recursion into loops or by splitting recursive
calls into individual non-recursive transactions.

A fundamental limitation of Zapper is that it only allows users to cre-
ate transactions for which the data of all accessed objects is known. In
particular, contracts cannot privately communicate “amongst each other”
while keeping the communicated data hidden from all users. To enable this,
Zapper would need to leverage additional cryptographic primitives such as
homomorphic encryption.

Finally, some applications such as private machine learning are not
suitable for Zapper, but can be realized using SMC or FHE. However, these
techniques are generally less scalable in terms of the number of involved
parties, communication, or computation.
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4.11 comparison to zexe

We now elaborate on the shortcomings of ZEXE [39] compared to Zapper
(see also §4.1). ZEXE specifies smart contracts using records and predicates.
It provides strong data, identity, and function privacy based on nested
zk-SNARKs and ideas from Zerocash [25].

application vulnerabilities We have discovered two vulnerabil-
ities in ZEXE’s motivating example of a DEX [39, §I-A], which allow an
attacker to lock a coin belonging to another user. Both attacks have been
confirmed by the authors of ZEXE ([127, Acknowledgments] and private
correspondence). Note that our notion of availability (§4.7) prevents such
attacks by design.

First, as ZEXE only stores commitments of data, transferring data to
another user requires out-of-band communication. As this can be denied
by a malicious user, DEX is subject to a “denial-of-funds” attack, where
the attacker accepts an offer but refuses to share the information required
to receive the attacker’s coin. To prevent this attack, the ZEXE authors
recommended adapting DEX to store the encrypted output record in a
public memorandum field and extending the predicates to check for cor-
rect encryption [127, Remark 6.1]. However, only developers intimately
familiar with key-private and NIZK-friendly encryption can implement this
securely and efficiently. Even if cryptographic experts provide according
cryptographic primitives, developers still need to decide whether to use
these, depending on the application (note that the attack does not exist for
the coin itself, but only when the coin is used in a DEX). In contrast, Zapper
by design uses an appropriate encryption scheme instead of commitments.

Second, we have identified a “lock-out” attack on the DEX application.
Like Zapper, ZEXE pads input records by dead records. However, unlike
Zapper, ZEXE does not enforce that their serial nonces ρin are globally
unique (see Line 15 in Alg. 4.1). Thus, an attacker knowing the shared
address secret key of a DEX record can block access to the record by
consuming a dead record with a conflicting serial nonce and serial number,
thus blocking the coin to be traded by the DEX indefinitely. We expect that
our attack can be prevented in ZEXE by constraining serial nonces of dead
records.
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lack of modularity ZEXE obstructs modular development, as co-
operating applications must typically be mutually aware of each other to
ensure that their logic cannot be violated in the future.

For example, ZEXE’s motivating example of a DEX [39, §I-A] introduces
a tight coupling between DexOffer and Coin. Specifically, to prevent ad-
versaries from creating coins out of thin air, their birth predicate (which
must be satisfied when creating a new coin) ensures that coins can only be
created in exchange for existing coins (identified by their birth predicate).
However, because a DexOffer record cannot “own” a coin record (ZEXE
has no concept of ownership), a newly created DexOffer consumes the coin
to be traded. In turn, accepting a DexOffer hence re-creates the previously
consumed coin, which requires the DexOffer to have the same birth predi-
cate as coin (see above), thus essentially merging both applications. Note
that adapting the Coin birth predicate to allow consuming non-merged
DexOffer objects would require trusting that DexOffer does not create coins
out of thin air.

Following the above pattern, all potential applications using coins must
be anticipated and implemented in advance—a severe limitation in practice.

In contrast, Zapper’s object ownership feature and access control policies
allow classes to be developed independently and modularly.

trusted setup and usability ZEXE requires a separate trusted setup
for each application, which when performed by dishonest parties allows
violating correctness. 3 In contrast, Zapper only requires a single trusted
setup for its application-agnostic proof circuit ϕ. Also, ZEXE relies on a non-
standard programming model in terms of predicates, while the programming
model of Zapper is closer to the most widely used smart contract language
Ethereum.

function privacy Unlike Zapper, ZEXE hides the function being
executed in a transaction. However, this is often not required in practice
(see Tab. 4.2). Still, future work could extend Zapper to function privacy
by providing Zasm instructions as private inputs to the proof circuit and
performing class registrations in zero-knowledge.

3 This problem can be partially mitigated by an expensive SMC, assuming trustworthy partici-
pants can be found for every new application.
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4.12 related work

We next discuss works related to Zapper.

private cryptocurrencies We have already discussed anonymous
payment systems in §1.1. In contrast to Zapper, these systems focus on
payments only and do not support general smart contracts. However,
Zapper does rely on the techniques of Zerocash [25, 26] to hide the objects
accessed in a transaction.

private smart contracts Various works bring privacy to smart
contracts. Hawk [32], Arbitrum [33], Ekiden [34], and FastKitten [35]
assume a strong trust model by relying on trusted managers or hardware.
In contrast, Zapper only relies on a single trusted zk-SNARK setup. While
zkHawk [36] and V-zkHawk [37] weaken the trust assumption of Hawk,
they require interactive parties. The zkay and ZeeStar systems introduced
in Chapters 2–3 provide data privacy for smart contracts with weak trust
assumptions, but do not target identity privacy and leak the accessed
memory locations. Similarly, SmartFHE [38], does not provide identity
privacy. We have already discussed ZEXE [39] separately in §4.11.

zero-knowledge rollups Complementary to Zapper, ZK rollups
such as StarkNet [128], zkSync [129], and Aztec [130] combine multiple
smart contract transactions into a single one using NIZK proofs. However,
to date, StarkNet and zkSync do not provide privacy [131, 132]. While
the announced Aztec “ZK-ZK-Rollup” system [133] aims to achieve private
rollups, it has not yet been released at the time of this writing.

zero-knowledge processors The idea of executing a processor in
zero-knowledge has been thoroughly studied before Zapper. For instance,
BubbleRAM [134], BubbleCache [135], and ZKarray [136] present zero-
knowledge processors with efficient RAM. However, unlike Zapper, they
target an interactive setting.

Similar to Zapper, the TinyRAM line of work [82, 83, 84] emulates a
processor inside (non-interactive) zk-SNARKs. As discussed in §4.6, the
Zapper processor applies techniques introduced by these works. Zapper
could potentially be extended, e.g., to target a von Neumann architecture,
allowing powerful techniques such as self-modifying code [83]. However,
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as we demonstrate in §4.9, the Zapper processor already supports realistic
applications.

4.13 summary

In this chapter, we presented Zapper, a smart contract system providing
both data and identity privacy. Zapper allows developers to express smart
contracts in an intuitive frontend and executes these on a custom distributed
ledger. It supports important applications such as anonymous coins and
private decentralized exchanges.

Zapper is highly efficient and achieves data and identity privacy, correct-
ness, access control, integrity, and availability.
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C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we explored how to ensure privacy for smart contracts on
permissionless blockchains. In contrast to previous work, we have followed
a programming language approach to design and implement systems for
private smart contracts. The three presented systems provide different
levels of privacy and expressivity.

In Chapter 2, we presented the zkay system, which relies on asymmetric
encryption and NIZK proofs to hide the data involved in transactions. We
introduced the zkay programming language, whose privacy types allow
specifying and tracking owners of private data, as well as preventing im-
plicit information leaks. Our automatic compilation of zkay to Ethereum
contracts enables the deployment of practical privacy-preserving applica-
tions.

Being the first work of its kind, zkay does not allow computation on
unknown data. In Chapter 3, we presented the ZeeStar system, which ex-
tends zkay by homomorphic encryption in order to relieve this fundamental
restriction. We discussed how to extend the zkay privacy type system to
support computation on unknown data, and how to automatically combine
zk-SNARKs with homomorphic encryption in an efficient manner. Unlike
zkay, ZeeStar allows developers to readily express key applications such as
private coins.

Chapters 2–3 focused on data privacy. In Chapter 4, we investigated
how to achieve an even stronger notion of privacy, where also the accessed
memory locations and parties involved in a transaction are hidden. In
particular, we presented the Zapper system, which conceptually is an
extension of Zerocash [25] allowing “coins” to be programmed with custom
logic. Zapper’s custom assembly language and access control mechanism
support modular development of applications while preventing malicious
code from arbitrarily interfering with other applications. We realize Zapper
by combining modern zk-SNARKs with NIZK-friendly encryption.

We implemented all three systems and demonstrated their efficiency on
several example applications. By making the implementations publicly
available under permissive licenses, we facilitate extensions of our work by
other researchers and practitioners.

133
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Throughout this thesis, we employed core techniques from the area
of programming languages, including type systems, program analysis,
and compilation. We used these techniques to automatically combine
advanced cryptographic primitives, allowing us to make their instantiation
transparent to application developers. We believe such an approach is
crucial in order to allow developers without cryptographic expertise to
implement privacy-preserving smart contracts. We hope that the research
community continues to make smart contract privacy more accessible.

future work While this thesis makes several important contributions,
we have by far not explored the posed research question to completeness.
Below, we suggest several items for future work.

Coalescing all Systems: The presented systems have incomparable properties.
While the privacy type system of zkay and ZeeStar prevents implicit infor-
mation leaks, there is no such mechanism in Zapper. On the other hand,
Zapper provides identity privacy, while zkay and ZeeStar only provide data
privacy. Further, ZeeStar supports computation on unknown data, which
is not possible in Zapper. Combining all these features in a single system
providing identity privacy, checking for implicit leaks, and allowing for
computation on unknown data is an interesting item for future work.

Extended Privacy Types: The privacy type systems of zkay and ZeeStar are
limited as each value can only be owned by a single address. By extending
the privacy types to support multiple owners, we can likely support more
interesting applications. For instance, future work could investigate how to
support group annotations of the form @{Alice, Bob}, indicating that the
respective value can be accessed by both Alice and Bob.

Ownership Transfer: The address of an owner field cannot be changed in
zkay or ZeeStar once the contract has been constructed. This is in contrast to
Zapper, which allows dynamically changing the owner of an object. Unlike
Zapper, zkay and ZeeStar feature a fine-grained model of privacy, where
different fields of the same contract and different mapping entries of the
same mapping can be owned by different addresses. Hence, supporting
ownership transfer in zkay or ZeeStar requires statically determining all
values owned by an owner field. As we already discuss in §2.9, such an
extension is left to future work.

Reducing Trust: Being based on non-universal NIZK proof schemes, our
implementations of the zkay and ZeeStar systems require a separate trusted
setup for each contract. Recently, several schemes with universal [95, 96,
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97, 98] or transparent setup [99] have been proposed. Instantiating such
schemes in zkay and ZeeStar would relieve the requirement of a per-contract
setup. However, this is challenging, as the resulting system should still
allow for acceptable Ethereum gas costs, and some schemes [97] are not
targeted at the R1CS abstraction used in this work.

Extending the Zasm Processor: While supporting a variety of applications,
the instruction set of the Zasm processor is deliberately kept at a minimum
complexity. As a result, Zapper currently does not support control flow,
pointer arithmetic, or self-modifying code. In future work, we propose to
extend the Zasm processor to support these and other features. To this end,
one can likely re-use ideas from existing work on NIZK processors [82, 83,
84].

Improving Scalability: The object tree of Zapper stores an ever-growing
list of data, because all previous states of any object are kept indefinitely.
In fact, the privacy notion of Zapper prevents the automatic deletion of
outdated object data, because it is unknown which records correspond to
current states. This is a problem, as a long-running ledger will eventually
require an untractable amount of storage to process new transactions. In
future work, we could investigate how to reduce the amount of storage, for
instance by leveraging nested NIZK proofs.





A
A P P E N D I X

a.1 security definitions

Below, we summarize security definitions used in this thesis. By negligible,
we mean negligible in the (implicit) security parameters of the cryptographic
primitives.

Definition A.1 (Advantage). For probabilistic algorithms D0, D1 and a prob-
abilistic polynomial-time (PPT) algorithm E , the advantage AdvE (D0, D1) is
defined as

AdvE (D0, D1) :=
∣∣Pr[E(x) = 1 : x ← D0]

− Pr[E(x) = 1 : x ← D1]
∣∣.

Definition A.2 (IND-CPA). A public-key encryption scheme with encryption
function Enc is IND-CPA if, for any PPT adversary E and any two messages m0,
m1 of equal length, the following advantage is negligible:

AdvE (F(0, m0, m1), F(1, m0, m1)),

where F(i, m0, m1) generates a fresh public key pk and uniform randomness r to
return (m0, m1, pk, Enc(mi, pk, r)).

Definition A.3 (Randomizability). An additively homomorphic public-key en-
cryption scheme with encryption function Enc is randomizable if, for any PPT
adversary E , any m and any r

AdvE (F(m, r), G(m, r)) = 0,

where F generates a fresh public key pk and uniform randomness r′ to return
(m, r, pk, Enc(m, pk, r′)), and G generates a fresh public key pk and uniform
randomness r′ to return (m, r, pk, Enc(m, pk, r)⊕ Enc(0, pk, r′)).

Definition A.4 (zk-SNARG [45]). A zero-knowledge succinct non-interactive
argument system is a tuple (Setup, Prove, Verify) of PPT algorithms, where
Setup(ϕ) returns a CRS Σ and trapdoor τ, Prove(Σ, ϕ, x, w) returns a proof π for
the circuit ϕ(x; w), Verify(Σ, ϕ, x, π) returns 1 iff π is considered valid, and:

137
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• Succinctness. The size of π is polynomial in the security parameter λ, and
Verify runs in time polynomial in λ + |x|.

• Perfect completeness. For any ϕ, x, w such that ϕ(x; w) holds, it is

Pr
[

Verify(Σ, ϕ, x, π) = 1 :
(Σ, τ)← Setup(ϕ)

π ← Prove(Σ, ϕ, x, w)

]
= 1.

• Computational soundness. For any PPT adversary E and any ϕ, the following
is negligible:

Pr
[

Verify(Σ, ϕ, x, π) = 1
∧ ∄w. ϕ(x; w) holds

:
(Σ, τ)← Setup(ϕ)
(x, π)← E(Σ, ϕ)

]
.

• Perfect zero-knowledge. There exists a PPT simulator SimProof such that
for any PPT adversary E and any ϕ, x, w s.t. ϕ(x; w) holds, AdvE (F, G) = 0,
where

– F runs (Σ, τ)← Setup(ϕ), π ← Prove(Σ, ϕ, x, w) to return (Σ, τ, ϕ, x, π)

– G runs (Σ, τ)← Setup(ϕ), π ← SimProof(Σ, τ, ϕ, x) to return (Σ, τ, ϕ, x, π)

a.2 formal semantics of zkay

types For each data type τ, we define the set JτK of values a vari-
able of type τ may assume. For example, JuintK = [0, 232 − 1], JboolK =
{true, false}, and JaddressK = {0, 1}∗. Further, JbinK consists of symbolic
representations of keys, ciphertexts, proofs and encryption randomness.
Symbolic public and secret keys are of the form pka and ska, for an ad-
dress a. The semantics of mapping(τ1 => τ2) is given by a partial function
from Jτ1K to Jτ2K. For example, a value of type mapping(uint => uint)

is {1 7→ 4, 2 7→ 4}. Reading a mapping for an uninitialized key yields
undefined behavior.

contexts A typing context Γ contains typed variables and contract
fields. Its semantics JΓK describes the set of all possible states with respect
to the typed variables and contract fields contained in it. For instance, the
context Γ = {x : mapping(uint => uint@all), y : uint} contains the state
σ = {x 7→ {1 7→ 2}, y 7→ 2} To update a state σ, we write σ[l ← v] for a
runtime location l and value v.
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⟨me, σ⟩ σ(me)@all7−−−−−−→ σ(me)

⟨all, σ⟩ all@all7−−−−→ all

⟨c, σ⟩ c@all7−−−→ c

⟨e, σ⟩ t17−→ v ⟨α, σ⟩ t27−→ a

⟨reveal(e, α), σ⟩ t1,t2,v@a7−−−−→ v

⟨L, σ⟩
t1
⊩→ l ⟨α, σ⟩ t27−→ a

⟨L, σ⟩ t1,t2,σ(l)@a7−−−−−−→ σ(l)

⟨L, σ⟩
t1
⊩→ l ⟨e, σ⟩ t27−→ v

⟨L[e], σ⟩
t1,t2,l[v]@all

⊩−−−−−−→ l[v]

Figure A.2: Semantics for selected expressions and locations. For location reads,
we assume that L is typed according to Fig. 2.4.

Locations ⟨L, σ⟩
t
⊩→ l

Expressions ⟨e, σ⟩ t7−→ v

Functions ⟨F, σ, v1:n⟩ t7−→ ⟨σ′, v⟩
Statements ⟨P, σ⟩ t7−→ σ′

Transactions ⟨T, σ⟩ t
=⇒ ⟨σ′, v⟩

Figure A.1: Notation for semantics.

language constructs In
Fig. A.1, we summarize the no-
tation for the semantics of lan-
guage constructs. All executions
(i) start from a state σ ∈ JΓK,
where Γ is the typing context at
the beginning of the execution,
and (ii) produce a trace t. Evalu-
ating a location L yields a runtime location l. Evaluating an expression e
yields a value v. Evaluating a function F requires a starting state σ (provid-
ing values for contract fields) and function arguments (v1, . . . , vn). It results
in an updated state σ′ and a return value v. Executing a statement returns
a state σ′. Finally, executing a transaction on state σ (providing values for
contract fields) results in an updated state σ′ (also providing values for
contract fields) and a return value v.

Exceptions: Executions in zkay may throw exceptions, captured by setting
the right-hand side of the semantic rule to fail. For example, the semantics

of a division-by-zero expression is ⟨1/0, σ⟩ 1,0,fail7−−−−→ fail. Analogously, we
set l, v or σ′ to fail to indicate exceptions for other constructs. Thrown
exceptions stop the execution of a given transaction.

Locations: For location evaluation, the trace t ends with the runtime location
annotated with privacy level all, reflecting the fact that the location of a
write cannot be hidden. Identifiers need not be evaluated further, hence

their semantics is ⟨id, σ⟩
id@all
⊩−−−→ id. Further, Fig. A.2 provides semantics

for mapping lookups.

Expressions: For simplicity, our expressions do not support side effects. In
general, the trace t when evaluating expression e contains (as its last entry)
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F = function id(τ1@α1 id1, . . . , τn@αn idn) returns τ@α {P; return e; } ⟨P, σ[C][id1:n ← v1:n ]⟩
t17−→ σ′ ⟨e, σ′⟩ t27−→ v

⟨F, σ, (v1, . . . , vn)⟩
t1,t27−−→ ⟨σ[C ← σ′ [C]], v⟩

Figure A.3: Semantics for contract functions.

⟨L, σ⟩
t1
⊩→ l ⟨e, σ⟩ t27−→ v ⟨α, σ⟩ t37−→ a

⟨L = e, σ⟩ t1,t2,t3,v@a7−−−−−−→ σ[l ← v]

⟨p, σ⟩ t07−→ Proofϕ(R; v1:n; v′1:m)
ϕ(v1, . . . , v′m) = 1

⟨e1, σ⟩ t17−→ v1
· · ·

⟨en, σ⟩ tn7−→ vn

⟨verifyϕ(p, e1, . . . en), σ⟩ t0,t1,...,tn ,1@all7−−−−−−−−−→ σ

Figure A.4: Semantics for selected statements. Typed by Fig. 2.5, where α is the
privacy type of L.

the value v resulting from evaluating e, with privacy level a based on the
privacy type of e. Assuming the privacy type of e is α, we determine the
privacy level a of v by evaluating α.

Fig. A.2 provides semantics for selected expressions. While all is not
technically an expression, providing semantics for it enables us to evaluate
privacy types α. For location reads, the rule determines the privacy level a
of the value at location l by evaluating α.

Functions: The semantics of native functions g(e1, . . . , en) is standard and
thus omitted. The trace of the evaluation only consists of the return value
and the traces of evaluating the arguments.

Fig. A.3 describes the semantics of contract functions. A function specified
in contract C (i) keeps only the contract fields and the caller field me from
the current state σ (indicated by σ[C]), (ii) extends the resulting state σ[C]
with all arguments (indicated by id1:n ← v1:n), (iii) runs the function body P,
resulting in state σ′, and (iv) evaluates e, resulting in value v. Then, it (v)
updates σ with the contract fields from σ′ (indicated by σ[C ← σ′[C]]) and
(vi) returns v.

Statements: Fig. A.4 shows the semantics of selected statements. For verify,
it checks whether p is a NIZK proof certifying that there exist private values
v′1:m such that ϕ evaluates to 1 when applied to the values of the public
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C[ f ] = F ⟨F, σ[me← a], (v1, . . . , vn)⟩ t7−→ ⟨σ′, v⟩

⟨Tx(a)
C. f (v1, . . . , vn), σ⟩ C@all, f @all,a@all,v1@α1,...,vn@αn ,t

=====================⇒ ⟨σ′[C], v⟩
T-ok

C[ f ] = F ⟨F, σ[me← a], (v1, . . . , vn)⟩ t7−→ fail

⟨Tx(a)
C. f (v1, . . . , vn), σ⟩ C@all, f @all,a@all,v1@α1,...,vn@αn ,t,rollback@all

=============================⇒ ⟨σ, fail⟩
T-fail

Figure A.5: Semantics for transactions. Here, the privacy level αi is all if the i-th
argument is public, and a otherwise.

expressions e1, . . . , en and the private values v′1:m. An analogous rule (not
shown) throws an exception if any of the preconditions does not hold.

The semantics for the remaining statements is mostly straightforward.
Sequential composition propagates exceptions to the end of the program.
For example, if P1 fails, we skip P2, and directly return fail. For require(e),
we leave the state unchanged if e evaluates to true. Otherwise, we throw
an exception.

Transactions: In a transaction, an account a calls a function f of a contract C
using arguments v1, . . . , vn, written as Tx(a)

C. f (v1, . . . , vn).
Fig. A.5 shows the semantics of transactions. The rule T-ok (i) looks up

f in C by C[ f ], (ii) runs F on the current state (extended with the caller
address a stored under me) and the provided arguments, resulting in a new
state σ′ and a return value v and (iii) returns the result v and updates the
state to σ′[C], only keeping contract fields in C. The resulting trace contains
(i) C publicly, (ii) f publicly, (iii) the caller address publicly, (iv) all public
arguments, (v) all private arguments, and (vi) the trace of running f (which
includes the final return value v). If F throws an exception, it triggers rule
T-fail, which rolls back the state to the σ and returns fail.

a.3 privacy of zeestar

attacker and observable information We consider an active
PPT adversary statically corrupting a set of dishonest accounts A. The
adversary can observe all transactions in the system, and send arbitrary
transactions in the name of accounts in A.

To formalize the information the attacker is expected to learn, we again
use the observable ideal-world traces defined for zkay (§2.6.2). In the
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Algorithm A.1 RealEA(C, tx1:n) and SimE ,S
A (C, tx1:n)

1: Run ZeeStar to transform C to C̄
2: For every proof circuit ϕ in C̄: (Σϕ, τϕ)← Setup(ϕ)
3: For every account α, generate a fresh key pair (pkα, skα)
4: Collect all public keys in the mapping pk(α) 7→ pkα

5: Create the initial empty state σ̄0 for C̄ and σ0 for C

6: P .Init(C, pk, {skα}α/∈A, {Σϕ}) S .Init(C, pk,A, {Σϕ}, {τϕ})
7: E .Init(C, pk, {skα}α∈A, {Σϕ})
8: for i = 1, . . . , n do:
9: if sender[txi] ∈ A then

10: t̄xi ← E .Tx(C, σ̄i−1)

11: txi ← GetIdeal(t̄xi, {Σϕ}, C̄, σ̄i−1, {skα}α∈A)
12: else

13:
t̄xi ← P .Tx(C, σ̄i−1, txi) t← obsA(C, σi−1, txi)

t̄xi ← S .Tx(C, σ̄i−1, t)

14: Run t̄xi on C̄, σ̄i−1 to get σ̄i and txi on C, σi−1 to get σi

15: E .Notify(t̄xi)

16: return E .Decide()

following, let obsA(C, σ, tx) denote the ideal-world trace observable by
the parties in A when a transaction tx is executed on contract C in the
ideal-world state σ.

real world In Alg. A.1, we define two algorithms. The left (highlighted)

parts define RealEA, which models the execution of a sequence of n transac-
tions tx1:n on contract C in the real world, assuming an idealized blockchain
with perfect authentication of parties and transactions, and sequential con-
sistency. This protocol uses two sub-protocols P and E .

The PPT protocol P captures the behavior of honest accounts. P .Init
(Line 6) registers global configuration and keys, and P .Tx(C, σ̄i−1, txi)
(Line 13) transforms the transaction txi by calling the function TTX de-
fined in Alg. 3.2 using the information previously received via P .Init.

The PPT protocol E models the active adversary, which gets access to
the secret keys of dishonest accounts α ∈ A (Line 7), can craft arbitrary
dishonest-sender transactions (Line 10), and observes all transactions on the
blockchain (Line 15). E .Decide (Line 16) returns a value specifying whether
E believes to interact with the real world, or a simulated world (see next).
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simulated world The right (highlighted) parts in Alg. A.1 define

SimE ,S
A . This algorithm differs from RealEA in two aspects. First, SimE ,S

A addi-
tionally keeps track of the ideal-world states σi equivalent to the real-world
states σ̄i (see Line 5 and Line 14). Here, σi is updated according to ideal-
world transactions txi. For transactions t̄xi created by E , txi is constructed
from t̄xi (see Line 11) as follows. If the proof in t̄xi is invalid (determined
by C̄, σ̄i−1 and {Σϕ}), an invalid txi ← ⊥ is returned. Otherwise, the secret
keys of the adversary are used to decrypt self-owned function arguments
in t̄xi and obtain an equivalent ideal-world transaction txi.

Second, the steps of honest accounts P are simulated by a PPT protocol S ,
which does not get access to private information of honest parties. In
particular, S does not get access to any secret keys (Line 6), and it obtains
only observable ideal world traces t of transactions txi (Line 13).

privacy If S can be instantiated such that any adversary E cannot
distinguish whether it is interacting with real honest parties (in RealEA) or
with simulated parties (in SimE ,S

A ), then the system respects privacy. This is
formalized in Thm. A.1.

Theorem A.1 (Privacy of ZeeStar). Assume ZeeStar is instantiated with a
randomizable (Def. A.3) and IND-CPA (Def. A.2) encryption scheme, and a zk-
SNARG (Def. A.4). Let C be a well-typed ZeeStar contract and A any set of
parties. Further, let tx1:n be any sequence of n transactions, where n is polynomial
in the security parameter. There exists a PPT protocol S⋆ such that for any PPT
adversaries E , E ′, the following advantage (Def. A.1) is negligible:

AdvE
′(

RealEA(C, tx1:n), SimE ,S⋆
A (C, tx1:n)

)
.

Proof. Let C, A, and tx1:n as in Thm. A.1. We next construct PPT simulators
Si for i ∈ {0, . . . , 8}, following the ideas of the symbolic proof in §2.6. By
defining S⋆ := S8, Thm. A.1 follows from Lems. A.1–A.9 below and the
triangle inequality.

the simulator S0 We define Sim+E ,S
A equal to SimE ,S

A , but where S .Init
is additionally passed {skα}α/∈A in Line 6, and S .Tx is additionally passed
txi in Line 13. Then, we define S0 running P as a sub-protocol as follows.
S0.Init(C, pk,A, {Σϕ}, {τϕ}, {skα}α/∈A) remembers {τϕ},A and forwards
the other arguments to P .init. S0.Tx(C, σ̄, t, tx) simply calls P .Tx(C, σ̄, tx),
ignoring t.
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Lemma A.1. For any PPT adversaries E , E ′, it is

AdvE
′
(RealEA(C, tx1:n), Sim+E ,S0

A (C, tx1:n)) = 0.

Proof. Straightforward, by construction.

the simulator S1 S1 is the same as S0, but with the following modifi-
cation. Instead of executing Lines 2–3 in Alg. 3.2 (as part of P .Tx), S1 reads
the function, sender address, and values of the public arguments from the
observable trace t. This is possible as these items are public and therefore
available in t.

Lemma A.2. For any PPT adversaries E , E ′ it is:

AdvE
′
(Sim+E ,S0

A (C, tx1:n), Sim+E ,S1
A (C, tx1:n)) = 0.

Proof. By construction, both output the same distribution.

the simulator S2 S2 is the same as S1, but we change the behavior of
Line 7 in Alg. 3.2 as follows.

Whenever S1 creates an encryption Encα(Tplain(e)) for a dishonest party
α ∈ A due to the first case in rule (3.18), S2 does not call Tplain, but reads
the plaintext value v of e from the ideal-world trace t. As e is public, v
occurs in t.

Similarly, whenever S1 creates an encryption Encα(Tplain(e)) for α ∈ A
due to Eq. (3.19), S2 reads the plaintext value v of e from the ideal-world
trace t. As e is revealed to α ∈ A, v is visible in t.

Also, whenever S1 calls Tplain due to the first case in Fig. 3.6, S2 reads
the plaintext value v of e from the ideal-world trace t. As e is revealed to
the public, v occurs in t.

Finally, when processing the rule (3.21), S2 reads the plaintext value v of
e1 from t. Again, as e1 is public, v occurs in t.

Lemma A.3. For any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′
(Sim+E ,S1

A (C, tx1:n), Sim+E ,S2
A (C, tx1:n)).

Proof. By construction, the simulators S1 and S2 output the same distribu-
tion if the values v accessed as described above are correct. By Thm. 3.1
(correctness) and because n is polynomial, this is the case with overwhelm-
ing probability.
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the simulator S3 S3 is the same as S2, but we modify Eq. (3.22) as
follows. If α ∈ A, then the value v1 of e1 is revealed to the adversary (due
to the reveal expression) and hence available in the trace t. In this case,
instead of calling Tplain in S2, S3 reads v1 from t.

Lemma A.4. For any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′
(Sim+E ,S2

A (C, tx1:n), Sim+E ,S3
A (C, tx1:n)).

Proof. By construction, the simulators S2 and S3 output the same distribu-
tion if the values v1 accessed as described above are correct. By Thm. 3.1
(correctness) and because n is polynomial, this is the case with overwhelm-
ing probability.

the simulator S4 S4 is the same as S3, but instead of generating
real proofs in Line 9 of Alg. 3.2, S4 uses SimProof (Def. A.4) to generate
simulated proofs from Σϕ and τϕ.

Lemma A.5. For any PPT adversaries E , E ′ it is:

AdvE
′
(Sim+E ,S3

A (C, tx1:n), Sim+E ,S4
A (C, tx1:n)) = 0.

Proof. Follows from the perfect zero-knowledge property (Def. A.4) of the
zk-SNARG.

the simulator S5 S5 is the same as S4, but instead of encrypting v in
Line 5 of Alg. 3.2, S5 encrypts the constant 0.

Lemma A.6. For any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′
(Sim+E ,S4

A (C, tx1:n), Sim+E ,S5
A (C, tx1:n)).

Proof. Follows from the IND-CPA property (Def. A.2) of the encryption
scheme (E does not learn the secret key skme of the sender), and the fact that
n is polynomial. Note that the introduced encryptions of 0 are never de-
crypted in Sim+E ,S5

A (C, tx1:n). Further, by the IND-CPA property, SimProof
in S4 and S5 return indistinguishable proofs, even though its public input
changes.

the simulator S6 S6 is the same as S5, but we change the behavior of
Line 7 in Alg. 3.2 as follows.
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First, the call to Tplain in the second case of Fig. 3.6, is replaced by the
constant 0. That is, S6 simply computes Enc(0, pkme, ri). Second, all calls to
Encα in Fig. 3.8 for honest parties α /∈ A are replaced by fresh encryptions
Enc(0, pkα, r) of the constant 0.

Lemma A.7. For any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′
(Sim+E ,S5

A (C, tx1:n), Sim+E ,S6
A (C, tx1:n)).

Proof. Follows from the IND-CPA property (Def. A.2) of the encryption
scheme (E does not learn skme or skα for any α /∈ A), and the fact that n is
polynomial. Again, the introduced encryptions of 0 are never decrypted in
Sim+E ,S6

A (C, tx1:n).

the simulator S7 S7 is the same as S6, but we modify Eq. (3.22) as
follows: If α /∈ A, S7 computes Enc(0, pkα, r).

Lemma A.8. For any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′
(Sim+E ,S6

A (C, tx1:n), Sim+E ,S7
A (C, tx1:n)).

Proof. By the randomizability of the encryption scheme (Def. A.3), the
simulators S7 and S6 output a perfectly indistinguishable distribution.

the simulator S8 We finally define, for empty value ⊥,

S8.Init(C, . . . , {τϕ}) := S7.Init(C, . . . , {τϕ},⊥)
S8.Tx(C, σ̄, t) := S7.Tx(C, σ̄, t,⊥).

Lemma A.9. For any PPT adversaries E , E ′ it is:

AdvE
′
(Sim+E ,S7

A (C, tx1:n), SimE ,S8
A (C, tx1:n)) = 0.

Proof. All calls to Tplain have been removed in S7, making rule (3.14) un-
reachable. Hence, S7 no longer accesses skme. Also, S7 no longer accesses
tx1:n. Therefore, the simulators S7 and S8 output the same distribution.
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a.4 exponential elgamal encryption

The ElGamal encryption scheme with messages in the exponent [48] is
defined over a cyclic group G. It is IND-CPA (Def. A.2), assuming the
decisional Diffie-Hellman assumption holds in G [137].

For group G with order |G| and generator g, the private key skα of a
party α is selected uniformly at random from {1, . . . , |G| − 1} and its public
key is derived as pkα = gskα .

Let k with 2k ≤ |G| be the maximal message bit length. For uniformly
chosen randomness r ∈ {0, . . . , |G| − 1}, the encryption of a message m ∈
{0, . . . , 2k − 1} is

Enc(m, pk, r) := (gr, gm · pkr).

Decryption of ciphertext (c1, c2) using the private key sk is

Dec((c1, c2), sk) := logg(c2 · c|G|−sk
1 ),

where logg denotes the discrete logarithm to the base g.
Defining (c1, c2)⊕ (d1, d2) := (c1 · d1, c2 · d2), this scheme is additively

homomorphic:

Enc(x, pk, r)⊕ Enc(y, pk, r′) = (gr+r′ , gx+y · pkr+r′)

= Enc(x + y, pk, r + r′), (A.1)

where + is addition modulo |G|. Homomorphic subtraction can be defined
as (c1, c2)⊖ (d1, d2) := (c1, c2)⊕ (d−1

1 , d−1
2 ).

Homomorphic scalar multiplication by a natural number s can be defined
in closed-form as ⊕s (c1, c2) := (cs

1, cs
2), which can be efficiently computed

using the well-known double-and-add algorithm involving O(log s) appli-
cations of ⊕. By homomorphically adding a freshly encrypted constant 0,
an existing ciphertext can be re-randomized:

Enc(m, pk, r)⊕ Enc(0, pk, r′) = (gr+r′ , gm · pkr+r′)

= (gr′′ , gm · pkr′′) = Enc(m, pk, r′′)

for r′′ := r + r′ mod |G|. Because r′ is a uniformly random number in
{0, . . . , |G| − 1}, so is r′′ and the result is perfectly indistinguishable from
a fresh encryption of m. Hence, this scheme is randomizable according to
Def. A.3.
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a.5 correctness of zapper

In the following, we assume that Zapper is instantiated with a simulation-
extractable zk-SNARK (SE-SNARK [44]). This scheme satisfies perfect com-
pleteness [44, Def. 2.7], perfect zero-knowledge [44, Def. 2.8], and is
simulation-extractable [44, Def. 2.10].

a.5.1 Attacker Model

Let U be the set of users in the system. In the following, we consider
an active PPT adversary E which statically corrupts a subset A ⊆ U of
users, can create arbitrary transactions, and can observe and modify all
transactions sent to the Zapper executor (formally defined shortly).

a.5.2 Ideal World

In Alg. A.2, we define a protocol I modeling the ideal world. This protocol
maintains the current plaintext data of all objects in a plain state σ̃ map-
ping object ids to plain records. Additionally, it maintains a graph Gkey,
discussed next.

accessible objects A user u can access an object o if it knows the
secret key of its owner. We use the directed graph Gkey to formally specify
the keys known by a given user. Specifically, the vertices in Gkey represent
public keys, and its edges connect (pkα, pkα′) if a user knowing skα also
knows skα′ . Keys of (human) users represent the initial knowledge of the
user and therefore have no incoming edges. Keys of objects o can be learned
in two ways and therefore have two incoming edges. First, the user who
created o also created its secret key, and therefore knows it, as indicated by
edge (pkme, s.pkself ) in Line 19. Second, any user knowing the secret key of
the owner of o can decrypt o to learn its secret key, as indicated by edge
(s.pkowner, s.pkself ) in Line 20.

Overall, let pkU denote the set of keys known by user u. Then, u can
access object o, denoted by canAccessGkey(pkU , o) if Gkey admits a path
from a key in pkU to the key of the owner of o. In this case, u can observe
and interact with o in the ideal world.

initialization In Alg. A.2, the function I .Init accepts a set C of Zapper
contracts, the identity of the dishonest users A, and a map Pk mapping
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Algorithm A.2 Ideal-world protocol I .

1: function Init(C,A, Pk)
2: Remember C
3: Initialize empty Gkey and σ̃
4: pkA ← {Pk[α] | α ∈ A} ▷ Public keys of dishonest users

5:
6: function Run(txideal, T , pkacc, dryrun)
7: if txideal = ⊥∨ ¬isUser(txideal.pkme) then return ⊥
8: if values in T not unique then return ⊥
9: C. f , args, pkme ← txideal

10: run C. f in C with arguments args and sender address pkme

11:

- use input state σ̃ and create output state σ̃′

- for NEW, read new object id and object account secret key from T
- for FRESH, read fresh value from T
- collect sets in, out and new containing object ids of objects which are
(i) accessed but not newly created, (ii) accessed but not destroyed, and
(iii) newly created, resp., by C. f

12: for oid ∈ in do
13: if ¬canAccessGkey (pkacc, σ̃[oid]) then
14: return ⊥
15: infoideal ← GetInfo(C. f , pkA, Gkey, σ̃, σ̃′, in, out) ▷ Alg. A.4
16: if ¬dryrun then
17: for each oid ∈ new do
18: s← σ̃′[oid]
19: Add edge (pkme, s.pkself ) to Gkey

20: Add edge (s.pkowner, s.pkself ) to Gkey

21: σ̃← σ̃′

22: return infoideal
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each user u ∈ U to its public key. It creates an empty plain state and key
graph.

running transactions The function I .Run accepts an ideal trans-
action txideal, a tape T of unique values, a set pkacc of public keys, and
a boolean flag dryrun. Here, txideal specifies the called function C. f , the
function arguments args and the public key pkme of the sender account
used for the transaction (see Line 9). The tape T contains unique values to
be used for the object ids and secret keys of new objects, and fresh values
generated by FRESH. The set pkacc is used for access checks: it contains the
public keys corresponding to the secret keys known to the sender. Finally,
the flag dryrun determines whether the txideal should update the state.
I .Run executes txideal on the current plain state σ̃ using the values in
T while keeping track of the current key graph Gkey. For simplicity, we
do not consider timestamps in the ideal world (Lines 10–11). Importantly,
Lines 7–8 and Lines 12–14 abort by returning ⊥ if the transaction is invalid
(e.g., if pkacc cannot access an input object). For the moment, the reader can
ignore Line 15, which returns information visible to the adversary and will
only be relevant for the privacy definition (App. A.7). Finally, Lines 16–21

update the state and Gkey (discussed before).

a.5.3 Real World

The algorithm RealEA (Alg. A.3, ignoring blue instructions) models the
real world when executing a list [txideal] of transactions on Zapper classes C.
The reader can ignore Line 18 and all instructions highlighted in blue for
the moment—they will be relevant later to formalize our notion of privacy.

assumptions Without loss of generality, we assume that all classes
in C are registered at the assembly storage before the first transaction is
submitted to the Zapper executor, and that user accounts are not shared. 1

Further, for simplicity, we assume that the Zapper executor runs on an
idealized ledger, ignore the timestamp mechanism of Zapper, and assume
that transactions of honest users are always created based on the latest
object tree root hash β.

1 Sharing an account between two users u1, u2 is equivalent to introducing a new user u3 with
its own account, where u3 is part of A iff u1 or u2 are in A.
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Algorithm A.3 RealEA(C, [txideal]) and SimE ,S
A (C, [txideal])

1: Trusted setup for zk-SNARK: (Σ, τ)← Setup()
2: Register Zasm classes C at assembly storage
3: For all α ∈ U , generate key pair (skα, pkα) and set Pk[α]← pkα
4: Initialize empty Zapper system state σ

5: I .Init(C,A, Pk)

6: P .Init(C, pk, {skα}α/∈A, Σ) S .Init(C, pk, Σ, τ, {skα}α∈A)
7: E .Init(C, pk, {skα}α∈A, Σ)
8: for txideal in [txideal] do
9: tx← ⊥

10: if txideal.pkme ∈ {pkα}α/∈A then

11: infoideal ← I .Run(txideal, Rand(), {txideal.pkme}, true)

12: tx← P .Create(txideal, σ) tx← S .Create(infoideal, σ)

13: tx′ ← E .Create(σ, tx)
14: S .Update(tx′, E)
15: tx′ideal, T ′, pkacc ← Extract(tx′, σ, Σ)

16: I .Run(tx′ideal, T ′, pkacc, false)

17: Verify and execute tx′ on the current state σ

18: return E .Decide()
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modeling users In RealEA, the steps of honest users are modeled by
a protocol P which gets access to the honest users’ secret keys (Line 6),
where Line 12 creates transactions tx according to §4.5. The steps of the
attacker are modeled by a PPT protocol E , which gets access to the dishonest
users’ secret keys (Line 7) and can craft arbitrary transactions (Line 13).
Importantly, the adversary gets access to transactions created by honest
users in Line 13, allowing the adversary to observe and modify transactions
before they are received at the Zapper executor.

tracking the ideal world In order to define correctness, we in-
tegrate the ideal-world protocol I in RealEA (see highlighted ). The ideal
world is initialized in Line 5. In Line 11, ideal-world transactions txideal of
honest users are executed in dry-run mode in order to determine whether
txideal is valid and to obtain information visible to the adversary (relevant
for privacy). Here, the new object ids, object secret keys, and fresh values
in T are selected uniformly at random by Rand.

The ideal-world state is updated in Line 16. Here, an ideal-world transac-
tion tx′ideal, tape T ′ and keys pkacc corresponding to the real-world transac-
tion tx′ are created in the Extract function as follows (Line 15): First, it is
checked whether tx′ is valid (i.e., whether according to σ, the proof Π is
valid, the serial numbers are unique, and the unique seed is unique). If not,
then Extract returns (⊥,⊥,⊥). Otherwise, the witness extractor X of the
SE-SNARK [44, Def. 2.10] is used to extract the private inputs C′. f ′, args,
pkme, [skα] and [Rpr] for ϕ from Π and (i) assemble the ideal-world transac-
tion tx′ideal = (C′. f ′, args, pkme); (ii) compute T ′ from [Rpr] by Lines 2–4 in
Alg. 4.2; and (iii) derive pkacc = {derivePk(skα) | skα ∈ [skα]}.

a.5.4 Correctness

To define correctness, we finally introduce a function GetPlain(σ, {skα}α∈U ),
which computes an ideal-world plain state σ̃ corresponding to a real-world
state σ as follows. First, it decrypts all records in the object tree of σ using
the provided secret keys to obtain a set R of plain records. Next, it derives
all serial numbers for all records in R and removes any records from R
whose serial number appears in the serial number list of σ. The resulting
plain records R are stored in a map σ̃ mapping object ids to plain records.

Theorem A.2 (Correctness of Zapper). Assume Zapper is instantiated with an
SE-SNARK [44]. Let A be any set of users, C a set of Zapper classes, [txideal] a
list of n ideal-world transactions, where n is polynomial in the security parameter,
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and E a PPT protocol. Further, let σ be the state right after Line 17 during some
iteration of the loop in RealEA, and σ̃ the ideal-world state held in I at this point.
Then, with overwhelming probability, it is

GetPlain(σ, {skα}α∈U ) = σ̃.

Intuitively, Thm. A.2 captures the fact that for any transaction accepted
in the real world, there exists a corresponding transaction accepted in the
ideal world. In particular, transactions created or modified by the adversary
must adhere to the Zasm code of registered classes.

Note that the ideal world only enforces new object ids, keys and fresh
values to be unique (Line 8 in Alg. A.2). While honest users would compute
these according to Lines 2–4 in Alg. 4.2 for uniform randomness, dishonest
users may use non-random values for [Rpr].

Proof of Thm. A.2. At a high level, Thm. A.2 follows from the simulation-
extractability of the SE-SNARK and the construction of ϕ.

If tx′ is rejected in the real world in Line 17, Extract returns tx′ideal = ⊥,
which will also be rejected in the ideal world.

Otherwise, the proof Π in tx′ is valid and Extract returns an ideal-world
transaction tx′ideal = (C. f , args, pkme), tape T ′, and keys pkacc.

First, we argue that I .Run successfully updates its state and does not
return ⊥ when receiving tx′ideal, T ′, pkacc. By the simulation-extractability
of the SE-SNARK, all constraints in ϕ are satisfied with overwhelming
probability. The check in Line 7 of Alg. A.2 succeeds as ϕ includes a
corresponding constraint (Line 8 in Alg. 4.1). The check in Line 8 of
Alg. A.2 succeeds with overwhelming probability by the fact that the entries
in T ′ were computed according to Lines 2–4 in Alg. 4.2 and the collision-
resistance of Hi (u in tx′ is unique). Further, the keys pkacc by construction
allow to access all objects involved in the transaction, so the checks in
Line 13 of Alg. A.2 succeed.

Second, we argue that the state update performed in I .Run is reflected
in the real world. By construction, the proof circuit ϕ ensures that the
output records [r̂out] included in tx′ have been computed according to
C. f , args, pkme based on some previous state of the involved objects. As the
serial numbers in tx′ are unique, the most recent state of all involved objects
has been used. Therefore, with overwhelming probability, the plain records
underlying [r̂out] are equal to the corresponding records in the ideal-world
state σ̃.
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a.6 availability and integrity of zapper

In order to prove availability and integrity, we first formulate and prove
some helper lemmas.

Lemma A.10 (Creation Success). If infoideal ̸= ⊥, then P succeeds to create a
transaction tx ̸= ⊥ with valid proof Π in Line 12 of RealEA.

Proof. By following §4.5, P succeeds to create a transaction with valid proof,
provided P has access to (i) the sender’s secret key skme, and (ii) the secret
keys skα required to decrypt the input records.

For (i), P has learned skme in Line 6. For (ii), as infoideal ̸= ⊥, Line 13

in Alg. A.2 has confirmed that the user knowing pkme can access all input
objects.

Lemma A.11 (Serial Nonce Uniqueness). The serial nonces contained in any
encrypted record stored in σ in Line 17 of RealEA are globally unique with over-
whelming probability.

Proof. Transactions are only accepted in the real world if the unique seed u
is globally unique. By the simulation-extractability of SE-SNARK, the serial
nonces ρout

i contained in encrypted records of accepted transactions must
have been computed according to Line 19 in Alg. 4.1 with overwhelming
probability. The lemma thus follows from the collision-resistance of H2.

Lemma A.12 (Serial Number Uniqueness). Assume infoideal ̸= ⊥ in RealEA.
Then, the serial numbers in tx computed in Line 12 cannot collide with any serial
numbers in σ, except with negligible probability.

Proof. By Lem. A.10, P successfully created tx, including a valid proof
Π. Likewise, any transaction accepted in the real world included a valid
proof. By the simulation-extractability of the SE-SNARK, any serial number
sni in tx or σ has been computed according to Line 16 in Alg. 4.1. The
corresponding serial nonce ρin

i either originates from (i) a non-dead input
record or (ii) a dead input record introduced for padding. For case (i), ρin

i
is unique with overwhelming probability by Lem. A.11. For case (ii), ρin

i
is computed according to Line 15 in Alg. 4.1. By the uniqueness property
of the construction Eq. (4.1) used in Eq. (4.4), it follows that ρin

i must be
unique with overwhelming probability. The uniqueness of sni then follows
from the collision-resistance of H1 in Line 16 in Alg. 4.1.
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Theorem A.3 (Availability of Zapper). Assume Zapper is instantiated with an
SE-SNARK [44] and let A, C, [txideal], E as in Thm. A.2. In Line 17 of RealEA, the
following holds with overwhelming probability:

infoideal ̸= ⊥∧ tx = tx′ =⇒ txideal = tx′ideal

Intuitively, Thm. A.3 ensures that if the adversary does not interfere and
txideal is valid in the ideal world, then tx′ corresponds to txideal. In particular,
previous transactions of the adversary cannot prevent honest users from
realizing any successful ideal-world transaction in the real world, thereby
defeating the “Faerie Gold” attack [26].

Proof of Thm. A.3. Assume infoideal ̸= ⊥ and tx = tx′. In this case, txideal is
valid in the ideal world and the adversary E did not modify the transaction
tx originally created by P .

First, we show that tx is accepted in the real world with overwhelming
probability. By Lem. A.10, the proof in tx is valid. Further, the unique seed
u in tx is indeed unique as it was selected by P . Further, by Lem. A.12, all
serial numbers in tx are unique with overwhelming probability.

Second, by the simulation-extractability of the SE-SNARK, the function
Extract with overwhelming probability returns tx′ideal = txideal, as tx′ideal is
extracted from tx′ = tx, where tx was created from txideal.

Theorem A.4 (Integrity of Zapper). Assume Zapper is instantiated with an
SE-SNARK [44] and let A, C, [txideal], E as in Thm. A.2. Consider Line 17 of
RealEA in any iteration. Let O be the set of objects accessed by tx′ideal, and let Tx be
the set of transactions tx created by P in Line 12 so far. The following holds with
overwhelming probability:

tx′ /∈ Tx ∧ tx′ideal ̸= ⊥
=⇒ (A.2)

tx′ideal.pkme ∈ pkA ∧ ∀o ∈ O. canAccessGkey(pkA, o).

Further, let Tx′ be the set of transactions tx′ created by E in Line 13 in any previous
iteration. Then:

tx′ ∈ Tx′ =⇒ tx′ideal = ⊥. (A.3)

Intuitively, Eq. (A.2) captures the fact that the adversary can block or
delay transactions by honest users, but cannot modify such transactions “in
flight” such that they are still accepted, except if the resulting transactions
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could have been generated by the adversary from scratch. This for instance
prevent attacks that change the arguments to a function call by an honest
user in the attacker’s favour. Further, Eq. (A.3) prevents replay attacks.

Proof of Thm. A.4. To prove Eq. (A.2), we assume tx′ /∈ Tx and tx′ideal ̸= ⊥.
As tx′ideal ̸= ⊥, tx′.Π is valid. Consider any tx′′ ∈ Tx. As tx′ /∈ Tx, either

tx′′.Π ̸= tx′.Π or any of the public arguments used to generate tx′′.Π or
tx′.Π, respectively, are different (all components C. f , β, [sn], [r̂out], u of a
transaction are public inputs of the proof circuit). Therefore, E has created
a proof for a public input not seen previously, or a different proof for public
inputs seen previously. By the simulation-extractability of the SE-SNARK,
we can hence extract from E the private inputs skme and [skα] used to
generate tx′.Π with overwhelming probability. As E only has access to the
secret keys corresponding to pk∗A, the theorem follows.

To prove Eq. (A.3), we observe that the serial numbers included in tx′ are
checked to be unique. Thus, repeated submissions of tx′ are rejected.

a.7 privacy of zapper

We next formalize Zapper’s privacy notion using a simulation-based defini-
tion.

simulated real world The algorithm SimE ,S
A (Alg. A.3, after replac-

ing orange instructions by blue instructions) simulates the real world

using a simulator protocol S . In SimE ,S
A , the steps of honest users are

replaced by a simulator S , which does not get access to the secret keys of
honest users, but is provided the zk-SNARK simulation trapdoor τ and the
secret keys of dishonest users (Line 6). Further, S gets access to the transac-
tions crafted by the adversary as well as the internal state of E (Line 14).
Transactions created by honest users are simulated by S .Create based on
information infoideal obtained from I (Line 12) as discussed next.

ideal-world information Alg. A.4 shows how the information
infoideal visible to the users A in an ideal world is created as part of running
an ideal-world transaction txideal in Alg. A.2. The information infoideal
includes (i) the name of the called function (see Line 2 in Alg. A.4); (ii) the
object ids of all input objects the adversary can access (Line 5); and (iii) the
plain state of all output objects the adversary can access (Line 10).
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Algorithm A.4 Information visible to adversary in ideal world.

1: function GetInfo(C. f , pkA, Gkey, σ̃, σ̃′, in, out)
2: infoideal ← {f: C. f , in: [], out: []}
3: for each oid ∈ in do
4: if canAccessGkey (pkA, σ̃[oid]) then
5: infoideal.in.append(oid)
6: else infoideal.in.append(0)

7: pad infoideal.in by 0 to length Nobj
8: for each oid ∈ out do
9: if canAccessGkey (pkA, σ̃[oid]) then

10: infoideal.out.append(σ̃′[oid])
11: else infoideal.out.append(0)

12: pad infoideal.out by 0 to length Nobj
13: return infoideal

privacy The goal of E is to decide whether it is interacting with the real
world (Alg. A.3, orange ) or a simulation thereof (Alg. A.3, blue ) using
the E .Decide() function (Line 18 in Alg. A.3). If E cannot distinguish these
two worlds except with negligible probability, then Zapper is private. We
formalize this in Thm. A.5.

Theorem A.5 (Privacy of Zapper). Assume Zapper is instantiated with an
SE-SNARK [44] and a key-private IK-CPA [115] and CPA-secure [138, Def. 3.22]
encryption scheme. Let A, C, [txideal] as in Thm. A.2. There exists a PPT protocol
S⋆ such that for any PPT adversaries E , E ′ the following advantage is negligible:

AdvE
′ (

RealEA(C, [txideal]), SimE ,S⋆
A (C, [txideal])

)
Proof. In the following, let C, A and [txideal] as in Thm. A.5. We prove
Thm. A.5 using a hybrid argument, by constructing a sequence PPT of
simulators S0, . . . ,S6 and defining S⋆ := S6. Thm. A.5 follows from
Lems. A.13–A.19 introduced below and the triangle inequality.

simulator S0 We define Sim+E ,S
A to be SimE ,S

A with the following
modifications. First, S .Init is additionally passed the secret keys of honest
users {skα}α/∈A in Line 6. Second, S .Create is additionally passed txideal in
Line 12.
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Next, we define S0 to forward the arguments received at Init and Create
to the honest protocol P while ignoring the arguments τ, {skα}α∈A and
infoideal. S0.Update does nothing.

Lemma A.13. For any PPT protocols E , E ′, the following advantage is zero:

AdvE
′ (

RealEA(C, [txideal]), Sim+E ,S0
A (C, [txideal])

)
Proof. By construction.

simulator S1 S1 is the same as S0, but if infoideal = ⊥, S1.Create does
not forward txideal to P but instead directly returns ⊥. Otherwise, S1.Create
ignores the zk-SNARK Π in the transaction returned by P and instead uses
the proof simulator ZSimProve of the SE-SNARK [44, Def. 2.8] to create a
simulated proof based on Σ and τ.

Lemma A.14. For any PPT protocols E , E ′, the following advantage is zero:

AdvE
′ (

Sim+E ,S0
A (C, [txideal]), Sim+E ,S1

A (C, [txideal])
)

Proof. Follows from the perfect zero-knowledge property.

simulator S2 S2 is the same as S1, but S2.Create ignores the function
name C. f and root hash β in the transaction returned by P . Instead, S2
reads C. f from the ideal-world information infoideal and β from the current
state σ.

Lemma A.15. For any PPT protocols E , E ′, the following advantage is zero:

AdvE
′ (

Sim+E ,S1
A (C, [txideal]), Sim+E ,S2

A (C, [txideal])
)

Proof. By construction, the replaced values are equal.

simulator S3 S3 is the same as S2, but S3.Create ignores the unique
seed u in the transaction returned by P and instead selects a seed u uni-
formly at random.

Lemma A.16. For any PPT protocols E , E ′, the following advantage is zero:

AdvE
′ (

Sim+E ,S2
A (C, [txideal]), Sim+E ,S3

A (C, [txideal])
)

Proof. Both P and S3 sample u from the same distribution.
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simulator S4 S4 simulates serial numbers. To this end, it keeps track
of information known to the adversary. In particular, S4 is S3 with the
following modifications.

First, S4 maintains a set keys and a map data. The set keys contains all
secret keys known to E . It consists of the secret keys {skα}α∈A of dishonest
accounts and the secret keys of new objects created in transactions by E .
The map data maps object ids to a pair of serial nonce and secret key. In
particular, data contains an entry for oid iff the most recent record of the
object with id oid (i) was created by E , and (ii) is encrypted under a public
key pkowner whose corresponding secret key skowner is known by E . In this
case, data[oid] contains a pair (ρ, skowner) containing the serial nonce ρ and
owner account secret key skowner for the indicated object.

Next, to keep track of keys and data, S4.Update(tx′, E) performs the
following steps. First, if tx′ has been previously simulated by S .Create, the
function returns. Otherwise, it verifies whether the zk-SNARK Π contained
in tx′ is valid. If no, the function returns. Otherwise, it uses the witness
extractor X of the SE-SNARK [44, Def. 2.10] to extract from Π the secret
keys of any newly created objects as part of tx and adds these to keys.
Next, S4 uses the internal state of E to extract from Π: the owner public
key pki

owner, object id oidi, and serial nonce ρout
i of all non-dead output

records rout
i . For each i, if the secret key ski

owner corresponding to pki
owner is

in keys, it updates data[oidi]← (ρout
i , ski

owner).
Finally, S4.Create ignores the serial numbers [sn] in the transaction re-

turned by P and instead simulates the i-th serial number by sn′i as follows.

Case (i): If oid := infoideal.in[i] ̸= 0 and data contains an entry for oid,
then S4 looks up (ρ, skowner) ← data[oid] and computes the serial number
sn′i ← H1(ρ ∥ skowner). Additionally, it deletes the entry data[oid].

Case (ii):: Otherwise, S4 selects sn′i uniformly at random.

Lemma A.17. For any PPT protocols E , E ′, the following advantage is negligible:

AdvE
′ (

Sim+E ,S3
A (C, [txideal]), Sim+E ,S4

A (C, [txideal])
)

Proof. By construction, keys contains all secret keys known to the adver-
sary E . Because the owner of objects which have their own account cannot
be changed, for every account α the adversary E either learns skα immedi-
ately or never.

For case (i), the serial number sn′i is by construction identical to sni
computed by P .
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For case (ii), the adversary by construction does not know either the
secret key skowner or the nonce ρin

i used to derive sni in P , or both. If the
adversary does not know skowner, then sn′i is indistinguishable from sni
by the pseudorandomness property of H1. Otherwise (i.e., the adversary
does not know ρin

i ), ρin
i must originate from P , where we again distinguish

two cases. (a) If the i-th input record is dead, then P has computed ρin
i

according to Line 15 in Alg. 4.1 using fresh randomness. (b) Otherwise, ρin
i

has been computed by P in a previous transaction according to Line 19 in
Alg. 4.1 using fresh randomness.

In both cases (a) and (b), by the pseudorandomness property of H2, sni is
indistinguishable from a uniform random value.

simulator S5 S5 simulates encrypted records. In particular, S5 is the
same as S4, but all calls to P are removed and infoideal is used to simulate
the i-th output record r̂out

i by r̂′i as follows.

Case (i): If infoideal.out[i] ̸= 0, S5 creates an encrypted record as fol-
lows. First, it selects a uniformly random serial nonce ρ′. Then, it selects
uniform randomness R and creates r̂′i = Enc((ρ′, s), s.pkowner, R), where
s = infoideal.out[i].

Case (ii): Otherwise, S5 creates a fresh key pair (sk′, pk′) and creates
r̂′i = Enc((0, 0), pk′, R) for uniform randomness R.

Lemma A.18. For any PPT protocols E , E ′, the following advantage is negligible:

AdvE
′ (

Sim+E ,S4
A (C, [txideal]), Sim+E ,S5

A (C, [txideal])
)

Proof. The transactions returned by P .Create are completely ignored in S5,
hence removing P does not change the distribution.

For case (i), the plaintext (ρ′, s) encrypted by S5 is indistinguishable
from the plaintext (ρ, rin

i ) in r̂out
i , except with negligible advantage: First,

the nonce ρ has been derived by P according to Line 19 in Alg. 4.1 using
fresh randomness, and the pseudorandomness of Hi ensures that ρ is
indistinguishable from ρ′. Second, the values on the tape used in Line 11

are indistinguishable from the values created by P according to Lines 2–4

in Alg. 4.2 due to the pseudorandomness of Hi. Hence, by Thm. A.2, s is
equal to rin

i except with negligible probability.
For case (ii), E does not know the secret key which could be used to

decrypt r̂out
i produced by P (note that any dead records are encrypted

using the dishonest sender account’s key). By the IK-CPA property and
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CPA-security of the encryption scheme, r̂′i is indistinguishable from r̂out
i

except with negligible advantage.

simulator S6 We define S6 as follows:

S6.Init(C, . . . , {skα}α∈A) := S5.Init(C, . . . , {skα}α∈A, ∅)

S6.Create(infoideal, σ) := S5.Create(infoideal, σ, ∅)

Lemma A.19. For any PPT protocols E , E ′, the following advantage is zero:

AdvE
′ (

Sim+E ,S5
A (C, [txideal]), Sim+E ,S6

A (C, [txideal])
)

Proof. S5 no longer accesses {skα}α/∈A or txideal, hence the simulators S6
and S5 output same distribution.
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