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Abstract:	 Over	the	past	several	~100	ka	glacial-interglacial	cycles,	the	concentration	of	atmospheric	CO2	was	closely	coupled	to	global	
temperature,	which	indicates	the	importance	of	CO2	as	a	greenhouse	gas.	The	reasons	for	changes	in	atmospheric	CO2	have	
mainly	been	sought	in	the	ocean,	but	remain	elusive.	Moreover,	the	mid-Pleistocene	transition	from	the	‘41	ka	world’	during	the	
early	Pleistocene	before	~0.7	Ma	to	the	~100	ka	ice	age	cycles	is	poorly	understood.	The	classical	Milankovitch	theory	of	summer	
insolation	forcing	at	high	northern	latitudes	can	not	fully	explain	the	Pleistocene	ice	age	rhythm.

	 Based	on	the	recent	findings	that	the	amount	of	soil	organic	carbon	stored	in	high-latitude	permafrost	regions	has	been	greatly	
underestimated	and	the	simple	logic	that	permafrost	regions	and	respective	carbon	pools	were	likely	much	larger	during	gla-
cials	than	during	interglacials,	a	‘permafrost	glacial	hypothesis’	is	proposed:	(i)	Gradual	sequestration	of	CO2	in	permafrost	soils	
during	coolings	and	rapid	release	of	CO2	and	methane	during	terminations,	respectively,	provide	important	positive	feedbacks	
for	the	climate.	(ii)	Integrated	annual	insolation	at	the	southern	and	thus	most	sensitive	permafrost	boundary	may	act	as	a	trig-
ger	for	global	climate	changes.	(iii)	The	mid-Pleistocene	transition	might	be	readily	explained	with	permafrost	extents	reaching	
~45°N	during	the	long-term	Pleistocene	cooling,	resulting	in	a	transition	from	high-latitude	obliquity	(~41	ka)	to	mid-latitude	
eccentricity	(~100	ka)	forcing.

	 Eine Permafrost Hypothese – Kohlenstoff in Permafrostböden könnte helfen, die pleistozänen Eiszeiten zu erklären

Kurzfassung:	 Während	der	 letzten	~100	ka	Glazial-Interglazial-Zyklen	war	die	Konzentration	des	Treibhausgases	CO2	 in	der	Atmosphäre	
eng	mit	der	globalen	Temperatur	gekoppelt.	Die	Gründe	für	die	CO2	Konzentrationsschwankungen	wurden	bislang	vor	allem	
im	Ozean	vermutet,	bleiben	aber	rätselhaft.	Darüberhinaus	gibt	es	nur	spekulative	Erklärungsansätze	für	den	mittelpleistozä-
nen	Übergang	von	den	41	ka	Eiszeitzyklen	im	Frühpleistozän	vor	~0.7	Ma	zu	den	~100	ka	Eiszeitzyklen	danach.	Die	klassische	
Milankovitch	Theorie	der	Sommerinsolation	 in	hohen	nördlichen	Breiten	kann	die	Abfolge	der	pleistozänen	Eiszeiten	nicht	
vollständig	erklären.

	 Basierend	auf	jüngsten	Erkenntnissen,	dass	die	Menge	des	organischen	Bodenkohlenstoffs	in	Permafrostgebieten	massiv	un-
terschätzt	wurde,	und	der	simplen	Logik,	dass	Permafrostgebiete	und	die	entsprechende	Kohlenstoffspeicherung	in	den	Eis-
zeiten	vermutlich	wesentlich	größer	waren	als	in	den	Warmzeiten,	soll	hier	eine	„Permafrost	Hypothese“	vorgestellt	werden:		
(i)	Langsame	Anreicherung	von	Kohlenstoff	in	Permafrostböden	während	Abkühlungsphasen,	sowie	rasche	Freisetzung	von	
CO2	und	Methan	während	Erwärmungsphasen,	sind	entscheidende	positive	Rückkopplungsprozesse	für	das	Klima.	(ii)	Ände-
rungen	der	 integrierten	annuellen	 Insolation	an	der	 südlichen,	und	damit	 sensitiven	Permafrostgrenze	könnten	als	externe	
Auslöser	für	globale	Klimaveränderungen	fungieren.	(iii)	Der	mittelpleistozäne	Wechsel	der	Eiszeitzyklen	könnte	implizit	damit	
erklärt	werden,	dass	Permafrostgebiete	im	Laufe	der	langfristigen	pleistozänen	Abkühlung	Breiten	von	~45°N	erreichten.	Dort	
verschwindet	das	für	höhere	nördliche	Breiten	charakteristische	aus	der	Schiefe	der	Ekliptik	resultierende	~41	ka	Signal	der	
annuellen	Insolation,	und	es	dominiert	allein	das	~100	ka	Signal	der	orbitalen	Ekzentrizität.	
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1  Introduction

Recent	studies	have	suggested	that	much	more	soil	organic	
carbon	is	stored	in	northern	permafrost	regions	than	hith-
erto	assumed,	possibly	as	much	as	1670	Pg	C	(Schuur	et	al.		
2008;	Tarnocai	et	al.	2009).	On	the	one	hand,	such	high	fig-
ures	imply	that	the	role	of	permafrost	for	soil	organic	mat-
ter	preservation	may	have	been	underestimated,	particu-
larly	in	view	of	low	biomass	production	in	such	cold	eco-
systems.	On	the	other	hand,	these	revised	carbon	pool	es-
timates	have	fueled	concerns	that	anthropogenic	warming	
leads	to	thawing	of	permafrost,	enhanced	mineralization	of	
soil	organic	carbon,	and	release	of	CO2	and	methane	into	
the	 atmosphere	 (Khvorostyanov	 et	 al.	 2008;	 Schaefer	

et	al.	2011;	Schuur	et	al.	2008;	Zimov,	Schuur	&	Chapin	
III	2006).	While	the	temperature-sensitivity	of	soil	carbon	
mineralisation	and	the	related	feedbacks	to	climate	change	
remain	 somewhat	 controversial	on	a	global	 scale	 (Bond-
Lamberty	&	Thomson	2010;	Davidson	&	Janssens	2006),	
there	is	little	doubt	that	thawing	permafrost	will	emit	on	
the	order	of	several	hundred	Pg	carbon	over	the	next	few	
centuries,	and	will	thus	more	than	off-set	enhanced	carbon	
sequestration	by	expanding	biomass	 (Gruber	et	al.	 2004;	
Khvorostyanov	et	al.	2008;	Schaefer	et	al.	2011;	Schuur	
et	al.	2008).	It	should	be	noted	that	carbon	emissions	from	
thawing	permafrost	are	a	particularly	strong	positive	feed-
back	 mechanism,	 because	 part	 of	 the	 carbon	 is	 released	
as	methane,	which	has	a	higher	greenhouse	gas	potential	
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than	 CO2.	 Permafrost	 carbon	 dynamics	 are	 thus	 already	
widely	acknowledged	 to	be	 important	 for	 the	global	car-
bon	cycle	today.

However,	scientific	attention	has	much	less	focused	on	
the	possible	role	of	permafrost	carbon	dynamics	on	glacial-
interglacial	 timescales.	 This	 largely	 stems	 from	 the	 very	
limited	number	of	suitable	outcrops	to	study	past	changes	
in	 permafrost	 carbon	 pools.	 Outcrops	 along	 the	 Russian	
Arctic	coast	and	from	Alaska	rarely	span	more	then	sev-
eral	ten	thousand	years,	are	often	heavily	affected	by	cryo-
turbation	and	have	hiati	(Muhs	et	al.	2003;	Reyes,	Froese	
&	 Jensen	2010;	Schirrmeister	et	al.	2002;	Wetterich	et	
al.	2008).	The	only	published	permafrost	profile	so	far	that	
likely	 continuously	 spans	 two	 glacial	 cycles	 is	 the	 loess-
paleosol	sequence	‘Tumara’	in	northeast	Siberia	(M.	Zech	
et	al.	2010;	Zech,	Zech	&	Glaser	2007;	Zech	et	al.	2008).	
In	order	to	circumvent	any	shortcomings	stemming	from	
dating	uncertainties	and	to	obtain	a	direct	proxy	of	paleo-
temperatures	for	the	Tumara	Sequence,	we	have	recently	
analyzed	 the	 compound-specific	 deuterium/hydrogen	 ra-
tios	on	extracted	alkanes	(R.	Zech	et	al.	2010;	Zech	et	al.	
2011).	The	 respective	 results	now	unambiguously	 (i.e.	 to-
tally	independent	of	the	age	control)	corroborate	that	more	
organic	carbon	was	sequestered	at	this	site	during	glacials	
than	 during	 interglacials,	 supporting	 the	 logic	 that	 cold,	

glacial	conditions	favored	intensive	permafrost,	water	log-
ging,	and	soil	organic	matter	preservation	(Fig.	1).

Although	it	is	very	challenging	to	up-scale	the	observed	
local	 permafrost	 carbon	 dynamics,	 several	 hundred	 Pg	
‘excess	 carbon’	 might	 have	 been	 stored	 in	 the	 vast	 non-
glaciated	plains	in	Siberia	that	became	affected	by	perma-
frost	during	glacials	 (Fig.	2)	 (R.	Zech	et	al.	2010;	Zech	et	
al.	 2011).	 Apart	 from	 the	 obvious	 drawback,	 namely	 that	
more	comparable	outcrops	should	be	studied	 to	come	up	
with	robust	estimates	for	permafrost	carbon	stock	changes,	
one	needs	to	keep	in	mind	that	thawing	and	landscape	ero-
sion	during	interglacials	undoubtedly	leads	to	soil	carbon	
mineralization	and	destruction	of	much	of	the	evidence	for	
glacial-interglacial	permafrost	dynamics	in	many	places.	In	
that	sense,	the	Tumara	Paleosol	Sequence	might	be	special,	
because	probably	no	major	hiatus	occurred,	and	the	glacial	
sediments	are	still	frozen	and	well-preserved	today.	In	any	
case,	 the	 most	 accurate	 estimates	 for	 permafrost	 carbon	
stock	changes	on	glacial-interglacial	timescales	will	prob-
ably	have	to	come	from	models.	The	only	model	estimate	
published	 so	 far	 for	 soil	 carbon	 released	 from	 the	 vast,	
non-glaciated	Siberian	permafrost	regions	during	the	last	
deglaciation	 (~17–12	ka	BP,	before	present)	 indicates	 that	
more	than	1000	Pg	C	could	have	been	released	(Zimov	et	
al.	2009).	Modeling	the	complex	physical	and	biogeochemi-

Fig. 1: Stratigraphy and analytical results for the loess-
paleosol sequence ‘Tumara’. The stratigraphy illustrates 
the alternation between organic-rich, dark grey units 
B and D, and bright brown organic-poor units A, C 
and E. TOC = total organic carbon concentration. δ D = 
deuterium/hydrogen isotope ratios (blue: n-alkane C27, 
red: n-C29, green: n-C31, error bars: standard deviation 
of triplicate measurements, grey: average of all three 
alkanes). The tentative correlation with marine isotope 
stages (MIS) is shown to the right (modified from R. 
Zech et al. 2010; Zech et al. 2011). 

Abb. 1: Stratigraphie und Analysenergebnisse für das 
Löss-Paleoboden-Profil „Tumara“. Die Stratigraphie 
illustriert die Abfolge der organikreichen, dunkelgrauen 
Horizonte B und D, und der hellbraunen, organikarmen 
Horizonte A, C und E. TOC = Bodenkohlenstoffkonzent-
ration. δ D = Deuterium/Wasserstoff Isotopenverhältnis 
(blau: n-Alkan C27, rot: n-C29, grün: n-C31, Fehlerbal-
ken: Standardabweichung der Dreifachmessungen, grau: 
Mittelwert aller drei Alkane). Die Korrelation mit den 
Marinen Isotopen Stadien (MIS) ist rechts dargestellt 
(verändert nach R. Zech et al. 2010; Zech et al. 2011). 
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Fig. 2: Location of the Tumara Sequence (red star) and mean annual temperatures (MAT in °C) in Siberia (New et al., 2002). The -5°C isotherm (red dashed 
line) approximately marks the southward extent of continuous permafrost today (Tarnocai et al. 2009). Discontinuous permafrost exists until MAT 0°C, 
and the +5°C isotherm (dashed blue line) indicates the approximate southward expansion of continuous permafrost during glacials assuming a 10°C tem-
perature reduction (from R. Zech et al. 2010; Zech et al. 2011).

Abb. 2: Lage des Tumara Profils (roter Stern) und mittlere annuelle Temperaturen (MAT in °C) in Sibirien (New et al. 2002). Die -5°C Isotherme (rote, 
gestrichelte Linie) markiert ungefähr die heutige südliche Grenze des kontinuierlichen Permafrostes (Tarnocai et al. 2009). Diskontinuierlichen Permafrost 
gibt es bis MAT ~0°C, und die +5°C Isotherme (gestrichelte blaue Linie) markiert ungefähr die südliche Ausdehnung des kontinuierlichen Permafrostes 
während der Eiszeiten (unter Annahme einer 10°C Temperaturerniedrigung, nach R. Zech et al. 2010; Zech et al. 2011). 

cal	processes	in	permafrost	soils	is	challenging,	and	future	
studies	are	necessary	to	evaluate	this	enormous	figure.	

Nonetheless,	it	is	an	interesting	and	worthwhile	endeav-
or	to	pursue	the	potential	consequences	of	assuming	such	
large	amounts	of	permafrost	carbon	being	sequestered	re-
peatedly	in	permafrost	regions	during	each	glacial.	In	the	
following,	 I	 will	 (i)	 briefly	 recap	 the	 state	 of	 knowledge	
concerning	Pleistocene	climate	and	the	role	of	carbon	diox-
ide,	and	then	show	that	(ii)	permafrost	carbon	might	have	
contributed	 significantly	 to	 the	observed	glacial-intergla-
cial	 changes	 in	 atmospheric	 CO2	 concentrations	 without	
violating	 existing	 proxy	 evidence	 from	 carbon	 isotopes.	
(iii)	 I	 speculate	 that	 integrated	 annual	 insolation	 forcing	
of	 the	 permafrost	 carbon	 dynamics	 might	 have	 acted	 as	
trigger	 for	 global	 changes	 and	 (iv)	 suggest	 that	 the	 mid-
Pleistocene	transition	could	be	readily	explained	with	the	
southern	permafrost	boundary	reaching	mid-latitudes	dur-
ing	the	course	of	the	Pleistocene	cooling	trend.

2  State of knowledge – ‘burden’ and ‘helper’ scenarios

As	we	know	from	Antarctic	ice	cores,	the	~100	ka	rhythm	
of	 glacials	 and	 interglacials	 during	 the	 past	 ~800	 ka	 was	
closely	 coupled	 to	 the	global	 carbon	 cycle	 (Luethi	 et	 al.	

2008;	Petit	et	al.	1999;	Shackleton	2000).	While	low	con-
centrations	of	atmospheric	CO2	(~180	to	200	ppm)	coincid-
ed	with	and	most	likely	caused	glacial	periods,	high	con-
centrations	 (~250	 to	 300	 ppm)	 were	 characteristic	 for	 the	
interglacials.	The	prevailing	notion	to	explain	the	glacial-
interglacial	changes	in	atmospheric	CO2	concentrations	is	
that	the	oceans	were	the	principal	driver	and	acted	as	net	
carbon	sink	during	glacials	(Archer	et	al.	2000;	Broecker	
1982;	Kohfeld	&	Ridgwell	2010;	Sigman	&	Boyle	2000;	
Sigman,	Hain	&	Haug	2010).	This	 shall	here	be	 referred	
to	as	‘ocean	hypothesis’.	Such	a	notion	indeed	appears	un-
equivocal	at	first	glance	given	the	enormous	size	of	the	car-
bon	pool	in	the	ocean	(~60	times	the	atmospheric	carbon).	
Particularly	 changes	 in	 the	 Southern	 Ocean	 circulation	
have	 recently	 been	 invoked	 to	 control	 atmospheric	 CO2,	
because	up-welling	of	deep	ocean	water	masses	mainly	oc-
curs	 around	Antarctica,	where	 thus	CO2	 from	 remineral-
ized	marine	organic	material	is	vented	back	into	the	atmos-
phere	 (Fischer	 et	 al.	 2010;	 Sigman,	 Hain	 &	 Haug	 2010;	
Toggweiler,	Russell	&	Carson	2006).	

Virtually	all	current	glacial	hypotheses	and	climate-car-
bon	 models,	 regardless	 of	 their	 favorite	 mechanisms	 and	
their	specific	model	set-ups,	not	only	build	on	the	assump-
tion	that	physical	and/or	biological	changes	in	the	ocean	led	
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to	the	sequestration	of	carbon	dioxide	in	the	deep	glacial	
ocean,	 they	also	assume	 that	 the	 terrestrial	 carbon	pools	
during	glacials	were	smaller,	and	thus	the	ocean	had	to	take	
up	even	more	than	just	the	~200	Pg	C	from	the	atmosphere	
(~100	ppm	change).	Reduced	carbon	storage	on	 land	is	 in	
agreement	with	the	 intuitive	view	that	net	production	of	
terrestrial	biomass	is	lower	during	glacials,	because	lower	
temperatures,	 lower	atmospheric	CO2,	and	 increased	gla-
cial	aridity	are	less	favorable	conditions	for	plant	growth.	
Quantitative	 estimates	 based	 on	 vegetation	 models	 indi-
cate	that	the	‘burden’	may	have	been	on	the	order	of	~600–
800	Pg	C	(François	et	al.	1998;	Joos	et	al.	2004;	Kaplan	et	
al.	2002),	although	much	larger	figures	have	been	proposed	
as	well	(Adams	&	Faure	1998).	Estimates	of	300	to	700	Pg	
C	have	been	derived	 from	~0.32‰	more	negative	marine	
carbon	isotopes	(Bird,	Llyod	&	Farquhar	1996;	Duplessy	
et	al.	1988)	that	are	commonly	interpreted	to	document	a	
net	transfer	of	(isotopically	negative)	terrestrial	carbon	to	
the	ocean.

There	 are,	 however,	 various	 reasons	 to	 doubt	 the	 cur-
rently	widely	accepted	burden	scenario:
1.	 Even	 when	 taking	 all	 possible	 physical	 and	 biological	

changes	in	the	ocean	into	account,	current	carbon	mod-
els	are	unable	to	convincingly	explain	the	full	range	of	
glacial-interglacial	changes	in	atmospheric	CO2	(Arch-
er	et	al.	2000;	Brovkin	et	al.	2007;	Fischer	et	al.	2010;	
Kohfeld	&	Ridgwell	2010;	Tagliabue	et	al.	2009).

2.	The	‘ocean	hypothesis’	suggests	that	a	large	pool	of	‘old’	
radiocarbon	was	trapped	in	the	glacial	deep	ocean,	yet	
there	 has	 been	 no	 success	 so	 far	 in	 finding	 this	 pool	
(Broecker	 &	 Barker	 2007;	 De	 Pol-Holz	 et	 al.	 2010;	
Skinner	et	al.	2010).	

3.	 Models	 have	 not	 yet	 included	 permafrost	 carbon	 –	 a	
largely	underestimated	terrestrial	carbon	pool	that	was	
most	likely	even	much	larger	during	glacials.	

It	should	be	noted	that	earlier	studies	have	already	raised	
doubts	concerning	the	burden	scenario.	Zeng	(2003;	2007)	
has	 suggested	 that	 the	 assumed	 terrestrial	 burden	 might	
have	been	too	large,	because	organic	carbon	buried	below	
ice	sheets	has	been	ignored.	Zeng	also	emphasized	that	a	
‘helper	scenario’,	i.e.	a	net	release	of	terrestrial	carbon	dur-
ing	terminations,	would	not	be	implausible.	The	recent	es-
timates	 of	 huge	 amounts	 of	 carbon	 stored	 in	 permafrost	
soils,	 and	 particularly	 the	 potential	 release	 of	 more	 than	
1000	Pg	C	from	thawing	permafrost	regions	in	Siberia	dur-
ing	the	last	deglaciation	(Zimov	et	al.	2009)	may	now	need	
to	be	considered	in	the	overall	balance	as	well	and	fuel	the	
debate.	

3  Reconciling permafrost carbon dynamics with the  
 global carbon cycle

The	uncertainties	regarding	the	amount	of	‘excess’	soil	car-
bon	storage	in	permafrost	regions	during	glacials	may	be	
very	large,	but	nonetheless	it	is	certainly	a	justified	endeav-
or	to	explore	the	potential	consequences	of	large	changes	
in	permafrost	carbon	with	regard	to	the	global	carbon	cy-
cle	on	glacial-interglacial	timescales.

To	begin	with,	if	one	took	the	1000	Pg	C	released	from	
thawing	 permafrost	 during	 terminations	 at	 face	 value	 as	

hitherto	 unrecognized	 additional	 terrestrial	 carbon	 pool	
change,	 this	 amount	 would	 massively	 affect	 the	 global	
climate.	When	considered	 in	 isolation	of	other	 terrestrial	
pools,	 most	 of	 the	 released	 permafrost	 carbon	 would	 be	
taken	 up	 by	 the	 ocean	 within	 a	 few	 millennia,	 and	 only	
about	10%,	i.e.	~100	Pg	C,	would	remain	in	the	atmosphere	
(Archer	et	al.	2004).	Still,	this	would	be	equivalent	to	~50	
ppm	atmospheric	CO2	and	thus	be	a	significant	contribu-
tion	 to	 the	 carbon	 balance	 on	 glacial-interglacial	 times-
cales.

A	more	balanced	approach	additionally	has	 to	consid-
er	 that	 carbon	 released	 from	 thawing	 permafrost	 would	
partly	be	captured	in	other	terrestrial	carbon	pools	that	in-
crease	during	terminations,	for	example	via	plant	and	peat	
re-growth	in	formerly	glaciated	areas.	Given	the	large	un-
certainties	related	to	all	involved	carbon	pools,	it	is	proba-
bly	impossible	at	this	point	to	provide	a	robust	calculation,	
but	 simply	balancing	 the	proposed	1000	Pg	C	permafrost	
carbon	(Zimov	et	al.	2009)	against	estimates	of	~600	to	800	
Pg	C	for	terrestrial	carbon	based	on	vegetation	models	(ex-
cluding	permafrost)	(François	et	al.	1998;	Joos	et	al.	2004;	
Kaplan	et	al.	2002)	leaves	a	net	release	of	~200	to	400	Pg	
C	of	terrestrial	carbon	into	the	atmosphere-ocean	system	
during	 termination.	 Note	 that	 this	 balance	 is	 not	 includ-
ing	 hundreds	 of	 Pg	 C	 that	 may	 have	 been	 buried	 below	
glacial	 ice	 sheets	 and	 also	 released	 during	 terminations	
(Zeng	2003;	2007),	but	that	it	also	ignores	the	onset	of	peat	
formation	after	deglaciation,	particularly	in	formerly	glaci-
ated	areas	of	Siberia	and	North	America	(Jones	&	Yu	2010;	
MacDonald	et	al.	2006).	Nonetheless,	our	back-of-the-en-
velope	calculation	suggests	that	the	‘burden’	for	the	ocean	
may	have	been	strongly	overestimated,	and	that	a	‘helper’	
scenario	may	be	realistic.	

Would	such	a	helper	scenario	be	in	contradiction	with	
marine	and	ice	core	proxies?	

3.1  Carbon isotopic signals during deglaciation

Negative	 carbon	 isotopic	 excursions	 of	 ~0.5‰	 δ13C	 in	 ice	
core	CO2	(Lourantou	et	al.	2010)	and	many	ocean	records	
(Spero	&	Lea	2002)	during	the	termination,	as	well	as	the	
simultaneous	~200‰	drop	in	atmospheric	Δ14C	(Broecker	
&	Barker	2007;	Hughen	et	al.	2006)	have	generally	been	
interpreted	as	evidence	for	the	release	of	(isotopically	de-
pleted	and	old)	carbon	that	was	trapped	in	the	deep	ocean	
during	 glacials.	 Apart	 from	 the	 fact	 that	 this	 supposedly	
trapped	large	deep	ocean	carbon	pool	has	not	been	found	
so	far	(Broecker	&	Barker	2007;	De	Pol-Holz	et	al.	2010;	
Skinner	et	al.	2010),	one	should	keep	in	mind	that	the	iso-
topic	signature	of	this	pool	would	be	very	similar	to	per-
mafrost	carbon	(Brovkin	et	al.	2002).	It	may	thus	be	worth	
pursuing	 the	 idea	 of	 massive	 permafrost	 carbon	 release	
during	terminations	instead	of,	or	at	least	in	combination	
with	deep	ocean	carbon.

Back-of-the-envelope	calculations	could	be	based	on	a	
net-release	of	 200	 to	 400	Pg	C	permafrost	 carbon	 (~-27‰	
δ13C	and	radiocarbon	dead,	i.e.	-1000‰	Δ14C)	into	the	gla-
cial	atmosphere	(~400	Pg	C,	~-7‰	δ13C	and	~400‰	Δ14C).	As	
the	ocean	will	take	up	~90%	of	the	released	permafrost	car-
bon	on	millennial	timescales,	the	mass	balance	needs	to	be	
made	with	the	remaining	10%,	i.e.	~20	to	40	Pg	C.	This	yields	
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a	~1	to	2‰	drop	in	atmospheric	(and	upper	ocean)	δ13C	and	
a	~70	to	140‰	drop	Δ14C,	which	is	in	reasonable	agreement	
with	 the	 observations.	 More	 sophisticated	 calculations	
and	modeling	studies,	similar	to	the	one	by	Koehler	et	al.	
(2006),	would	of	course	be	promising	to	refine	those	num-
bers	and	put	better	constraints	on	the	permafrost	carbon	
pool	changes.

3.2  Carbon isotopic signals during the LGM

The	~0.32‰	more	negative	mean	ocean	δ13C	during	the	last	
glacial	has	traditionally	been	suggested	to	reflect	a	net	car-
bon	transfer	of	300	to	700	Pg	C	from	the	terrestrial	biosphere	
to	the	ocean	(Bird,	Llyod	&	Farquhar	1996;	Duplessy	et	
al.	1988).	The	hypothetical	helper	scenario	above,	however,	
would	imply	a	net	terrestrial	carbon	storage	of	200	to	400	Pg	
during	glacials,	which	would	leave	the	ocean	(and	atmos-
phere)	 more	 enriched	 by	 ~0.2–0.4‰.	 Two	 considerations	
might	help	to	reconcile	these	apparent	discrepancies.	

First,	the	widely	used	value	of	-0.32‰	was	derived	from	
a	 relatively	 limited	 set	 of	 ocean	 sediment	 cores,	 and	 al-
though	a	more	recent	synthesis	undoubtedly	corroborates	
more	negative	values	in	the	deep	ocean	during	glacials,	it	
also	shows	that	large	differences	exist	between	individual	
records,	and	that	the	signal	is	much	less	clear	in	interme-
diate	and	surface	ocean	waters	(Oliver	et	al.	2010).	Above	
~2000	 m	 water	 depth,	 the	 oceans	 may	 have	 been	 more	
δ13C	positive	during	glacials	(see	also	Curry	&	Oppo	2005;	
Matsumoto	et	al.	2002).	An	independent	piece	of	evidence	
for	more	positive	surface	waters	might	in	fact	come	from	
the	ice	core	δ13CO2.	The	LGM	and	Holocene	δ13CO2	values	
are	 almost	 identical,	 although	 the	 isotopic	 fractionation	
between	 the	 surface	 ocean	 and	 the	 atmosphere	 changed	
by	~0.5‰	due	to	 lower	temperatures	and	increased	salin-
ity	 (Köhler,	Fischer	&	Schmitt	2010;	Lourantou	et	al.	
2010).	Whereas	Koehler	et	al.	 (2010)	 invoke	sea	 ice,	 iron	
fertilization	 and	 ocean	 circulation	 effects	 (which	 are	 all	
highly	uncertain,	 see	 e.g.	Kohfeld	&	Ridgwell	 2010)	 to	
offset	the	temperature	and	salinity	effect,	it	might	also	be	
possible	to	reconcile	the	ice	core	δ13CO2	observations	with	
more	δ13C	positive	surface	ocean	waters	and	a	helper	rather	
than	a	burden	scenario	(see	also	Tagliabue	et	al.	2009).	

Second,	and	more	 importantly,	 it	 is	not	 trivial	 to	 infer	
past	 isotopic	changes	 in	dissolved	 inorganic	carbon	 from	
δ13C	measured	in	foraminifera,	because	many	other	factors,	
such	as	ocean	chemistry,	ocean	circulation	and	vital	effects,	
need	to	be	considered	(e.g.	Oliver	et	al.	2010).	Culture	ex-
periments,	for	example,	indicate	that	the	glacial	rise	in	sur-
face	 ocean	 carbonate	 ion	 concentrations	 can	 account	 for	
at	least	a	0.25–0.5‰	drop	in	shell	δ13C	(Spero	et	al.	1997).	
Lea	et	al.	(1999)	further	elaborate	on	this	issue	and	predict	
anomalies	in	shell	δ13C	between	-0.3	and	-0.9‰.	Both	stud-
ies	acknowledge	that	similar	corrections	may	not	be	valid	
for	 the	 deep	 ocean	 isotope	 records,	 but	 one	 could	 argue	
that	changes	in	the	biological	pump,	deep	ocean	chemistry,	
and	ocean	circulation	leave	plenty	of	possible	explanations	
for	a	negative	bias	of	the	deep	ocean	δ13C	record.			

In	summary,	a	significant	permafrost	carbon	contribu-
tion	 to	 the	glacial-interglacial	 carbon	balance	 is	not	nec-
essarily	contradicting	existing	carbon	isotope	proxies	and	
might	in	fact	help	reconciling	many	observations.	

4  Integrated annual insolation as external forcing for  
 permafrost and trigger for global climate change

In	the	following,	we	shall	hypothetically	assume	that	the	
permafrost	carbon	contributions	are	large	enough	to	domi-
nate	the	net	terrestrial	carbon	fluxes	and	to	affect	atmos-
pheric	CO2.	This	 specific	helper	 scenario	could	be	coined	
‘permafrost	scenario’.	To	provide	again	a	rough	quantita-
tive	estimate,	 the	net	 terrestrial	carbon	of	~200	 to	400	Pg	
C	 released	 during	 the	 last	 termination	 (from	 the	 above	
back-of-the-envelope	 calculation)	would	be	 equivalent	 to	
~100	to	200	ppm	atmospheric	CO2.	Particularly	in	view	of	
the	 fact	 that	part	of	 the	permafrost	carbon	 is	 released	as	
methane	and	thus	as	efficient	greenhouse	gas,	these	large	
numbers	 suggest	 that	 permafrost	 carbon	 dynamics	 could	
be	sufficient	to	trigger	global	climate	changes.	One	needs	
to	keep	in	mind,	of	course,	that	~90%	of	the	emitted	carbon	
will	be	taken	up	by	the	ocean	within	a	few	millennia.	Thus,	
other	mechanisms,	such	as	previously	suggested	physical	
and	biological	changes	in	the	ocean,	ultimately	still	need	to	
explain	most	of	the	~100	ppm	glacial-interglacial	changes	
in	atmospheric	CO2.	 In	that	sense,	permafrost	carbon	dy-
namics	should	be	considered	only	a	hitherto	unrecognized,	
additional	 mechanism.	 Importantly,	 however,	 permafrost	
carbon	dynamics	may	not	only	be	a	positive	feedback,	but	
also	 act	 as	 trigger	 for	 climate	 change,	 with	 many	 of	 the	
other	mechanisms	acting	as	amplifiers.	

But	what	in	turn	could	be	the	forcing	for	permafrost	car-
bon	dynamics?	One	can	argue	that	permafrost	carbon	dy-
namics	are	most	sensitive	to	changes	of	the	southern	per-
mafrost	boundary,	because	the	existence	of	permafrost	ex-
erts	an	important	control	on	the	drainage	of	soil	water	and	
thus	soil	organic	matter	preservation,	whereas	the	depth	of	
the	active	layer	in	permafrost	regions	is	of	secondary	im-
portance.	And	as	mean	annual	temperatures	determine	the	
existence	of	permafrost,	the	search	for	the	external	forcing	
leads	us	to	the	mean	or	integrated	annual	insolation	at	the	
southern	permafrost	boundary.	

At	high	 latitudes	 (>45°N),	 integrated	 annual	 insolation	
is	 mainly	 controlled	 by	 the	 orbital	 parameter	 obliquity	
(Huybers	2006)	(Fig.	3).	Decreasing/low	obliquity	can	ac-
cordingly	be	expected	to	favor	the	expansion	of	permafrost	
and	enhanced	carbon	sequestration	every	~41	ka.	Increas-
ing/high	 obliquity,	 on	 the	 other	 hand,	 favors	 permafrost	
thawing	and	soil	carbon	mineralization.	This	forcing	could	
readily	explain	the	ice-age	rhythm	in	the	’41	ka	world’	dur-
ing	the	early	Pleistocene	(~1-2	Ma),	which	was	character-
ized	 by	 ~41  ka	 glacial-interglacial	 cycles	 (Huybers	 2006;	
Raymo	&	Nisancioglu	2003)	(Fig.	4).

5  The mid-Pleistocene transition

But	what	could	have	caused	the	mid-Pleistocene	transition,	
i.e.	the	transition	from	the	‘41	ka	world’	to	longer,	approxi-
mately	100	ka	glacial	cycles	(Clark,	Alley	&	Pollard	1999;	
Huybers	2006;	Raymo	&	Nisancioglu	2003;	Tziperman	&	
Gildor	2003)	(Fig.	4)?	After	the	explanation	of	the	glacial-
interglacial	changes	in	atmospheric	CO2,	this	is	in	fact	the	
second	‘holy	grail’	in	Quaternary	paleoclimatology.	It	has	
recently	been	recognized	that	the	~100	ka	glacial	cycles	are	
probably	~80	or	~120	ka	cycles	and	thus	related	to	the	orbit-
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al	parameter	obliquity	 rather	 than	eccentricity	 (Huybers	
2007),	 yet	 adequate	 and	 convincing	 explanations	 for	 the	
‘skipped	obliquity	cycles’	remain	elusive.	In	the	following,	
I	 outline	how	 the	permafrost	glacial	hypothesis	provides	
an	intriguingly	simple	and	elegant	concept	that	could	ex-
plain	the	transition.

As	 long	as	the	southern	permafrost	boundary	is	north	
of	~45°N,	 the	 insolation	 forcing	of	permafrost	carbon	dy-
namics	is	directly	and	only	controlled	by	obliquity	(Fig.	3).	
While	this	was	probably	the	case	before	the	transition	and	
could	explain	the	41	ka	world,	the	overall	long-term	cooling	
trend	during	the	Pleistocene	must	have	reached	a	thresh-
old,	 when	 expansion	 of	 permafrost	 areas	 during	 glacials	
reached	latitudes	south	of	~45°N.	Note	that	today,	continu-
ous	permafrost	regions	in	Siberia	already	extend	to	~55°N	
(Tarnocai	et	al.	2009)	(Fig.	2),	and	that	during	the	last	gla-
cial,	permafrost	regions	undoubtedly	extended	southward	
beyond	45°N.	Integrated	annual	 insolation	south	of	~45°N	
shows	the	opposite	signal	compared	to	north	of	~45°N,	be-
cause	obliquity	(the	tilt	of	the	Earth’	axis)	basically	controls	
the	amount	of	insolation	that	reaches	high	latitudes	rather	
than	the	equator.	The	exact	latitude	where	the	sign	of	the	
obliquity	forcing	flips	may	in	fact	be	between	43	and	44°N	
(Fig.	3),	but	 the	crux	 is	 that	once	 the	Pleistocene	cooling	
was	sufficient	for	glacial	permafrost	areas	to	reach	mid-lat-
itudes,	the	southern	permafrost	boundary	and	the	related	
carbon	dynamics	became	insensitive	(or	at	least	less	sensi-
tive)	to	changes	in	obliquity.	The	external	forcing	that	re-
mains	is	then	eccentricity.	I	suggest	that	as	a	consequence,	
obliquity	cycles	(glacial	terminations)	were	skipped	during	
the	Middle	and	Late	Pleistocene,	when	they	coincided	with	
decreasing	annual	insolation	at	mid-latitudes	due	to	eccen-
tricity.	 Only	 the	 next	 obliquity	 maximum	 that	 coincided	
with	increasing	eccentricity	kicked	off	the	warming	feed-
backs	related	to	thawing	permafrost	and	CO2	and	methane	
releases.	 The	 result	 are	 glacial	 terminations	 every	 ~80	 or	
120	ka	during	the	Late	Pleistocene,	i.e.	exactly	the	observed	
succession	of	the	ice	ages	(Huybers	2007)	(Fig.	4).

6  Conclusions

Recent	studies	have	shown	that	the	amount	of	soil	organic	
carbon	 in	permafrost	regions	has	been	greatly	underesti-
mated	today,	and	very	likely	even	more	so	during	past	gla-
cials.	Permafrost	plays	a	very	important	role	for	the	hydro-
logical	conditions	in	soils,	and	thus	also	for	changes	in	min-
eralization	 versus	 preservation	 of	 organic	 material.	 This	
leads	to	the	formulation	of	a	permafrost	glacial	hypothesis:		

(i)	The	amount	of	soil	organic	carbon	released	from	thaw-
ing	permafrost	during	glacial	terminations	at	least	part-
ly	 compensated	 the	 carbon	 sequestered	 by	 expanding	
biomass,	facilitating	the	explanation	of	glacial-intergla-
cial	changes	in	atmospheric	CO2	concentrations.

(ii)	Carbon	isotopic	records	derived	from	marine	sediments	
and	ice	cores	might	be	more	easily	reconciled	when	tak-
ing	 permafrost	 carbon	 dynamics	 into	 account.	 In	 any	
case,	they	do	not	necessarily	contradict	a	net	release	of	
terrestrial	carbon	during	terminations.	Thus	the	‘terres-
trial	burden’	may	not	only	have	been	overestimated,	the	
possibility	of	a	‘helper	scenario’	should	also	not	be	ruled	
out.

(iii)	 Integrated	annual	 insolation	forcing,	which	 likely	af-
fects	 permafrost	 carbon	 dynamics	 most	 effectively	 at	
the	 southern	 permafrost	 boundary,	 provides	 an	 exter-
nal	 forcing	 for	permafrost	carbon	dynamics	on	orbital	
timescales.	

(iv)	The	long	Pleistocene	cooling	trend	implies	the	expan-
sion	of	permafrost	regions	to	mid-latitudes	at	some	point	
in	the	past.	If	this	occurred	during	the	mid-Pleistocene	
transition,	it	could	automatically	explain	the	transition	
from	 obliquity	 forcing	 (dominant	 north	 of	 ~45°N)	 to	
longer	~80	or	120	ka	ice	age	cycles,	because	permafrost	
carbon	dynamics	at	mid-latitudes	are	dominantly	forced	
by	eccentricity.	

Fig. 3: Integrated annual insolation for 
47.5, 44, 43 and 40°N (Berger & Loutre 
1991). The 400 ka means are ~9.4, 9.9, 
10.0, and 10.4 GJ/m2.

Abb. 3: Integrierte annuelle Insolation 
für 47.5, 44, 43 und 40°N (Berger & 
Loutre 1991). Die 400 ka Mittelwerte 
sind ~9.4, 9.9, 10.0, und 10.4 GJ/m2.
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Although	 the	permafrost	glacial	hypothesis	may	seem	to	
challenge	much	of	the	current	knowledge	and	existing	hy-
potheses	at	first	glance	(particularly	the	paradigm	that	the	
glacial	ocean	acted	as	net	sink	for	CO2),	many	marine	prox-
ies	and	findings	from	global	carbon	models	might	 in	fact	
be	 reconciled	more	 easily	when	permafrost	 is	 taken	 into	
account.	

Two	approaches	seem	to	be	most	appropriate	to	evalu-
ate	the	permafrost	glacial	hypothesis.	The	first	one	could	be	
to	further	investigate	the	potential	carbonate	ion	or	pH	ef-
fect	on	shell	d13C	in	benthic	foraminifera,	in	order	to	come	
up	with	new	estimates	 for	mean	ocean	d13C	 changes	 and	
thus	 net	 terrestrial	 carbon	 budgets	 on	 glacial-interglacial	
timescales.	The	second	approach	could	be	to	develop	more	
sophisticated	 soil	 carbon	 –	 climate	 models	 that	 explicitly	
include	permafrost	dynamics	and	peatland	growth,	in	order	
to	obtain	more	robust	estimates	of	the	amount	of	organic	
carbon	stored	at	high	latitudes	during	glacials.	I	hope	this	
manuscript	inspires	respective	research	in	the	near	future.
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