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Abstract
We consider a chromatic variant of the art gallery problem, where each guard is assigned one
of k distinct colors. A placement of such colored guards is conflict-free if each point of the
polygon is seen by some guard whose color appears exactly once among the guards visible to
that point. What is the smallest number k(n) of colors that ensure a conflict-free covering of
all n-vertex polygons? We call this the conflict-free chromatic art gallery problem. The problem
is motivated by applications in distributed robotics and wireless sensor networks where colors
indicate the wireless frequencies assigned to a set of covering “landmarks” in the environment
so that a mobile robot can always communicate with at least one landmark in its line-of-sight
range without interference. Our main result shows that k(n) is O(logn) for orthogonal and
for monotone polygons, and O(log2 n) for arbitrary simple polygons. By contrast, if all guards
visible from each point must have distinct colors, then k(n) is Ω(n) for arbitrary simple polygons
and Ω(

√
n) for orthogonal polygons, as shown by Erickson and LaValle [3].
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Keywords and phrases art gallery problem, conflict-free coloring, visibility
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1 Introduction

The Art Gallery Theorem is a classical result in computational geometry, first posed by Klee
and proved by Chvátal [2], which says that bn/3c (point) guards are always sufficient, and
sometimes necessary, to cover a simply-connected n-vertex polygon. In the last 30 years,
many extensions, variations, and generalizations involving different types of guards, polygons,
and visibility constraints have been investigated. (See [6] and [8], for instance.)

Besides their mathematical elegance and appeal, the interest in art gallery problems is
also spurred by applications in distributed surveillance, monitoring, and robotics. In many of
these applications, the “guards” are “landmarks” deployed in an environment to help provide
navigation and localization service to mobile robots. The mobile device communicates with
these landmarks through wireless, or other “line-of-sight” signaling mechanisms. In order for
the signaling mechanism to work correctly, the different landmarks visible to the robot at
any position must operate on different frequency—the robot is unable to receive the signal if
multiple landmarks in its range are transmitting at the same frequency. This motivates a
“chromatic” version of the art gallery theorem, where the goal is not to optimize the number
of guards, but rather the number of distinct colors needed to distinguish the guards.
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Problem Motivation and the Results

Radio transceivers are cheap but tuning them to many different frequencies requires costly
hardware. If the polygons can be covered by guards of very few distinct colors (frequencies),
then it would enable inexpensive robot localization and navigation. This was the motivation
behind the work of Erickson and LaValle [4] who sought to guard the polygon so that each
point of the polygon is seen by guards of distinct colors only—that is, the robot located
anywhere in the polygon is able to communicate without interference with any of the guards
in its line-of-sight. Surprisingly, Erickson and LaValle discovered that this strong chromatic
condition does not lead to much savings in the number of colors: there are simple polygons
that require Ω(n) colors, and even monotone orthogonal polygons require Ω(

√
n) colors [3].

Motivated by this negative result, we consider a weaker chromatic condition, which is
sufficient for the original robotics application of interference-free communication with a guard
at all locations. Specifically, we call a placement of colored guards conflict-free if each point
of the polygon is seen by some guard whose color appears exactly once among the guards
visible to that point. Thus, for any placement of the robot in the polygon, there is at least
one guard that can communicate with the robot without interference. We want to determine
the smallest number k(n) of colors that ensure a conflict-free coloring of some guard set in
all n-vertex polygons. We call this the conflict-free chromatic art gallery problem.

The main result of our paper is to prove that k(n) is O(logn) for orthogonal and for
monotone polygons, and k(n) = O(log2 n) for arbitrary simple polygons. Thus, not only
does the conflict-free coloring yield significantly smaller bounds for distinct colors, it also
fulfills the hopeful vision of robotics application that a few colors suffice.

Related Work and Hypergraph Coloring

The chromatic art gallery problem is related to hypergraph coloring, where one must assign
colors to the vertices of a hypergraph H = (V, E), so that its edges, which are subsets of
vertices, are appropriately colored. In the most basic form, called the proper coloring, every
edge e with at least two vertices must be non-monochromatic; that is, there must be two
vertices x, y ∈ e whose colors are distinct. In the conflict-free coloring of H, every edge e must
have a vertex that is uniquely colored among the vertices in e. Smorodinsky [9, 11] considers
several simple geometric hypergraphs, such as those induced by disks or rectangles. For
instance, the rectangle hypergraph has a finite set of axis-aligned rectangles, and each maximal
subset of rectangles with a common intersection forms an hyperedge. For these hypergraphs,
it is known that the conflict-free chromatic number is Ω(logn) and O(logn) [7, 10].

To see the connection between chromatic art gallery and the hypergraph coloring, consider
a guard set S, and let R be the set of the guards’ visibility regions in the polygon. Then
we have a hypergraph H = (V, E), whose vertices correspond to S and in which a subset
Se ⊆ S corresponds to an edge if there is a point pe in the polygon contained exactly in
the visibility regions of the guards in Se and no others. A conflict-free hypergraph coloring
of H is easily seen to be also a conflict-free coloring of the guard set S. Of course, in the
chromatic art gallery, we need to simultaneously choose the guard set and color it, so it does
not quite reduce to the hypergraph coloring. Even if we were to consider a fixed guard set,
the visibility regions are not as well-behaved as disks or rectangles, and no non-trivial bound
is known for their conflict-free chromatic number.

The previous result that is most directly relevant to our work is the mentioned version of
the chromatic art gallery, with a stronger chromatic condition on the guard’s coloring. This
original version relates to a strong hypergraph coloring of the corresponding hypergraph H.

STACS’12



162 Conflict-free Chromatic Art Gallery Coverage

Organization

Section 2 introduces some basic definitions and concepts. In Section 3, we prove the O(logn)
bound for the conflict-free coloring of orthogonal polygons, and the general proof strategy
that is used later for simple polygons as well. In Section 4, we prove the O(logn) bound for
monotone polygons, which is the key to establishing the O(log2 n) upper bound for general
polygons in Section 5.

2 The conflict-free chromatic art gallery problem

Let P be a simple polygon, whose boundary we denote as ∂P ⊂ P . We say that two points
p, q ∈ P are visible to each other if the line segment pq is a subset of P . The visibility
region of a point p is defined as V (p) := {q ∈ P | q is visible from p}. A finite point set
S ⊂ P is called a guard set if

⋃
p∈S V (p) = P and we call the points in S guards. A coloring

c : S → {1, . . . , k} of the guards with k colors is called conflict-free if each point p ∈ P is
seen by a guard whose color appears exactly once among all guards that see p. Let kcf (S)
be the minimum number of colors required to color a guard set S conflict-free and let S(P )
be the set of all guard sets of P . Then the conflict-free chromatic guard number of a polygon
P is defined as χ(P ) := minS∈S(P ) kcf (S). We want to determine the smallest number k(n)
such that for all n-vertex polygons Pn we have χ(Pn) ≤ k(n).

Figure 1 This polygon requires bn/3c
guards but its conflict-free chromatic
guard number is just 2.

The classical art gallery theorem says that bn/3c
guards are both necessary and sufficient for cover-
ing a n-vertex polygon, but the number of colors
needed to ensure conflict-free covering may be signif-
icantly smaller. For instance, the construction that
forces bn/3c guards (Fig. 1) only requires two colors.
A polygon is called orthogonal, if its edges meet at
right angles. A polygon P is called monotone with respect to a line ` if every line orthogonal
to ` intersects the boundary of P at most twice. P is called x-monotone (y-monotone) if P
is monotone with respect to the x-axis (respectively the y-axis).

The following concept of independence is central to our proofs, and forms a basis for
coloring by partitioning into independent subpolygons.

I Definition 1 (Independence). Let P be a polygon. We call two subpolygons P1 and P2 of
P independent if there are no points p1 ∈ P1 and p2 ∈ P2 that are mutually visible.

I Lemma 2. Let {A1, . . . , Am} be a partition of the polygon P into m families of pairwise
independent subpolygons. That is, each Ai = {Pi1, . . . , Piki

} is a collection of subpolygons
that are pairwise independent and all the subpolygons in the m families form a partition of
P . Then we have χ(P ) ≤

∑m
i=1 maxPij∈Ai

{χ(Pij)}.

Proof. Let {C1, . . . , Cm} be m disjoint color sets, where |Ci| = maxPij∈Ai
{χ(Pij)}. Then

we can guard every subpolygon Pij ∈ Ai conflict-free in itself with guards that get colors
from Ci, giving a total number of |C1| + . . . + |Cm| colors. We claim that this coloring
ensures that every point p ∈ P sees a guard of unique color among all guards that see p.
To prove this claim, without loss of generality, suppose that p is contained in a subpolygon
Pij1 of Ai and s1 is its guard of unique color in Pij1 . Any other guard s2 in P that has the
same color as s1 must lie in a subpolygon Pij2 6= Pij1 , which is contained in Ai and hence
independent of Pij1 . Thus s2 does not see p, and s1 is not only a guard of unique color
among all guards in Pij1 , but among all guards in P . Thus, we have found a conflict-free
covering with |C1|+ . . .+ |Cm| colors, which completes the proof. J
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Lemma 2 naturally suggests a divide-and-conquer strategy: we partition the polygon into
four sets of subpolygons and then conquer each set by recursively splitting the regions into
sets of independent regions and applying Lemma 2.

I Remark. We only require the interiors of subpolygons P1 and P2 to be independent, and
allow mutual visibility among their boundary points as long as these points also belong to
the boundary of another subpolygon that is responsible for their conflict-free covering. In
particular, for a line segment e contained in two boundaries ∂P1 and ∂P2, we will explicitly
mention whether P1 or P2 is “responsible” for guarding e.

3 Orthogonal Polygons

Our basic strategy is to partition the orthogonal polygon P into four types of monotone
orthogonal subpolygons. These subpolygons have a boundary consisting of a single base edge
and another subchain that is either x-monotone or y-monotone. The chain can be either
above the base edge or below in the former case, and to the left or to the right in the latter
case. We use mnemonic identifiers U (up), D (down), L (left) and R (right) to refer to these
four types. When we show all or parts of the partition, we display these types with the
colors red, green, black and blue, always using the following consistent mapping U → red,
D → green, L → black and R → blue.

The partitioning process

Given a polygon P we construct a partition by iteratively adding monotone subpolygons. In
each odd-numbered step we add subpolygons of Type U and D, and in each even-numbered
step we add subpolygons of Type L and R. Figures 2 and 3 illustrate the construction.

1
e

Q

R

Figure 2 The first step of the parti-
tioning process.

Step 1 Let e be the lowest horizontal edge of P ’s
boundary. Let Q be the set of all points q ∈ P which
are vertically visible from e and lie on or above e. Q
is the first subpolygon in our partitioning, and it is
of type U. Because P is a simply-connected region,
with no holes, it is easy to see that Q splits it in parts
that lie entirely to its left or entirely to its right, and
each part R shares exactly one edge with Q, which
is a vertical line segment.

1

2

2

2

2

2

Figure 3 The second step of the par-
titioning process.

Step 2 The line segments on the boundary of
Q become the base edges for new subpolygons of
Type L and R, which are defined analogously as the
first subpolygon, with vertical visibility replaced by
horizontal visibility. We note that the remaining
regions lie entirely above or below a subpolygon of
type L or R and share exactly one horizontal line
segment with these subpolygons, but not with the
first subpolygon Q.

Step 3 The horizontal line segments from Step 2 in turn generate subpolygons of Type U
and D.

We repeat steps 2 and 3 until we have a complete partition. In each odd-numbered step
we construct red (U) and green (D) polygons and in each even-numbered step black (L) and
blue (R) subpolygons.

STACS’12
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I Lemma 3. The partitioning process terminates within n+ 2 steps.

Proof. In each step at least one subpolygon is added to the partition. Such a subpolygon
touches at least one edge e = {u, v} previously not touched. In at most two additional
steps, both the endpoints of e, u and v, become completely surrounded by subpolygons of
the partition. The polygon is completely covered if all vertices are surrounded, hence the
partitioning process ends after at most n+ 2 steps. J

The schematic tree

The recursive partitioning generates four families of polygons: up-polygons AU , down-
polygons AD, left-polygons AL, and right-polygons AR. Ideally, we would like to invoke
Lemma 2 on this partition partitioned {AU , AD, AL, AR}. Unfortunately the subpolygons
in each family are not independent, see Fig. 4 for an example. We, therefore, introduce a
condition that allows us to subdivide the group AU into sets of independent subpolygons. In
the following, we focus exclusively on the red (up) polygon group; the other three groups are
handled in the same way.

We first introduce a schematic tree that is a convenient graphical representation of the
polygon partition we have. This graph is a 4-colored directed graph, where each vertex
represents a subpolygon of the partition of the same color. There exists a directed edge
from a subpolygon Pi to a subpolygon Pj if and only if Pj has been constructed over a line
segment e that is part of Pi’s boundary. As mentioned earlier, we consider e to be part of Pi

but not of Pj . Since P has no holes, T contains no cycle and is a tree. The first constructed

Q

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 4 The complete partition and the corresponding schematic tree.

subpolygon Q has no incoming edge, and it represents the root of our tree. (The base edge
of Q is considered to be a part of this subpolygon.) Since all other vertices have indegree 1,
T is a rooted directed tree and any subpolygon constructed in Step k has depth k − 1 in T .
Hence all red and green vertices have even height and all vertices of color blue or black have
odd height. Therefore every directed path in T alternates between vertices of red or green
color and vertices of blue or black color.
I Remark. Let pi ∈ Pi and pj ∈ Pj be two points of two subpolygons of the partition. Then
the shortest path between pi and pj in P goes through a subpolygon Pk if and only if Pk lies
on the shortest path between Pi and Pj in T .

I Lemma 4. Let P be a polygon with the given partition and the schematic tree T . Let Pi

and Pj be two arbitrary subpolygons of type U. Then, either (i) Pi and Pj are independent, or
(ii) there exists a red-black-alternating (or a red-blue-alternating) directed path in T between
Pi and Pj.

Proof. Suppose Pi and Pj are not independent, then there exist points pi ∈ Pi and pj ∈ Pj

that are mutually visible. The shortest path in P between pi and pj , therefore, must be a
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line segment. The way we included the base edges to be part of just one subpolygon excludes
the possibility of the line segment being horizontal or vertical. Without loss of generality, let
us assume that the line segment is directed up and to the left, with pi at the bottom-right,
and pj at the top-left. Since Pi is a U polygon, the visibility ray −−→pipj can only leave it
through its left boundary, and therefore it must enter a type L subpolygon. Next, by the
upward direction of −−→pipj , it can leave this L subpolygon only through a top boundary edge,
which forces it to enter a U subpolygon. This process repeats until we reach Pj , showing
that the sequence of polygons traversed by the shortest path from pi to pj is an alternating
U-L sequence, which corresponds to a red-black-alternating path in T . J

Conquering red-black-alternating trees: Staircase and recursion

Deriving a bound on the conflict-free chromatic guard number for family AU directly seems
difficult, because of inter-dependence of the subpolygons within the family. Instead, we use
the property of Lemma 4 to look at that portion of AU that forms a red-black-alternating tree.
That is, consider the union of the subpolygons that corresponds to a red-black alternating
tree in T . Suppose Pn is such an n-vertex orthogonal polygon, namely, whose partition is
a red-black alternating tree. We will cover a part of Pn with a staircase polygon in such a
way that all other relevant parts (containing red subpolygons) are independent and proceed
recursively for all of them.

Recall that a staircase (orthogonal) polygon is an orthogonal polygon whose boundary
can be split into two subchains with alternating convex and reflex interior vertices, with the
two endpoints being convex. A staircase polygon in which one of the subchains has only
one interior vertex is called a convex fan. Convex fans are star-shaped and can clearly be
guarded with one guard (and one color).

I Lemma 5. The conflict-free chromatic number for a staircase polygon P is at most 3.

Proof. Consider the following placement of colored guards in a staircase polygon: Starting
from the top, we place a guard s1 on the first convex vertex of the lower subchain. Then
we iteratively place a guard si+1 on the lowest convex vertex visible from si, alternating
between the two subchains until the staircase polygon is covered. To each guard si we assign
the color in {1, 2, 3} with the same residue class as i modulo 3. One can check that the
coloring is conflict-free, and a complete proof can be found in [4]. J

Let f(n) denote the smallest number of colors that ensure a conflict-free covering of all
type U subpolygons in any orthogonal Pn corresponding to a red-black-alternating tree. In
other words, for every Pn there is a guard set S ⊂ Pn that can be colored with f(n) colors
such that each point of a type U subpolygon is seen by some guard whose color appears
exactly once among the guards visible to that point. In the following we give a placement of
colored guards, which shows that f(n) is O(logn).

Since Pn consists of type U and type L subpolygons, it “grows to the left”. Therefore we
will cover Pn with staircases ascending to the left in a natural way: Let e be a horizontal
edge with two reflex vertices. We call the horizontal line through e a decision line, see Figure
5. A decision line splits Pn in a lower part and two or more independent upper parts, of
which at most one upper part contains more than bn/2c vertices. Starting from the lowest
and rightmost vertex of Pn we construct a staircase ascending to the left, which at every
decision line follows the upper part with the most vertices. We guard this staircase with
colors {1, 2, 3}. Furthermore at every intersection of the staircase’s lower subchain with a
base edge of a type U subpolygon, we insert a convex fan that is oriented to the left and to
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2&4

1

2

3

1

4

4

staircase polygon

remaining regions

convex fan

decision linee

type U base edge

type L base edge

second round

first round

third round

Figure 5 The first staircase subpolygon and covering with staircases and convex fans.

the top. These convex fans are bounded from the right by the staircase polygon and hence
independent. We guard every convex fan with a guard of color 4 placed on the intersection.
By iteratively adding staircases together with convex fans we can prove an upper bound on
f(n):

I Lemma 6. Suppose Pn is an orthogonal polygon with a partition that has a red-black-
alternating schematic tree. Then a conflict-free coloring of all the red regions of Pn needs at
most 4 logn colors. The same bound also holds for a red-blue-alternating schematic tree.

Proof. We cover a part of the type U subpolygons with a staircase and convex fans as
described. The remaining regions of the type U subpolygons are parts of smaller red-black-
alternating trees. These smaller trees are all bounded from below by a decision line and from
above and from the side by Pn’s boundary, hence they are independent. Furthermore all of
the smaller trees contain at most bn/2c of Pn’s vertices because during the construction we
choose at every decision line the upper part with the most remaining vertices.

Thus, the chromatic number follows the recurrence f(n) ≤ f(n/2) + 4, which yields
f(n) ≤ 4 logn. The same holds also for the red-blue-alternating trees by symmetry. J

A logarithmic upper bound for orthogonal polygons

We will show how one can cover all type U subpolygons in an arbitrary orthogonal polygon
Pn with O(logn) colors. Let T be the schematic tree of the partition and let A and B be two
disjoint color sets of size f(n). We use the A and B to iteratively cover red-black-alternating
and red-blue-alternating subtrees of T . In each step we must ensure that the subtrees of the
same type are independent so that we can use the same colors for all of the subtrees:

Step 1 Take a not yet covered subpolygon Ps corresponding to a vertex vs of minimal
depth in T . Let Ts denote the inclusion-maximum red-black-alternating subtree rooted at vs.
By Lemma 6 we can guard all type U subpolygons corresponding to red vertices in the tree
Ts with A.

Step 2 For every type U subpolygon in Ts (which now are all guarded) check whether it
has red grandchildren in T that are not yet guarded (and thus must be connected through
a blue vertex). These grandchildren are pairwise independent by Lemma 4, hence for each
grandchild v it is possible to cover the inclusion-maximum red-blue-alternating subtree rooted
at v with guards colored with colors in B conflict-free by Lemma 6. We have no conflicts
with the type U subpolygons covered before since A and B are disjoint.

Step 3 As in Step 2, cover the independent inclusion-maximum red-black-alternating
subtrees rooted at not yet covered red grandchildren of type U subpolygons in one of the
red-blue-alternating subtrees. We use the color set A, which gives no conflicts with the
guards in the red-blue-alternating subtrees, since they have colors from B. Furthermore
we have also no conflicts with the guards in a previous red-black-alternating subtree by
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Lemma 4, since the shortest path must go through the root of a red-blue-alternating subtree
and hence through both a type L and a type R subpolygon.

Step 4 Repeat Step 2 and Step 3 as long as there are grandchildren. Otherwise we either
have covered all type U subpolygons, or there remain type U subpolygons connected through
a green vertex, which are thus independent by Lemma 4. In that case we start over with
Step 1.

In this way, we get a conflict-free covering of all type U subpolygons in Pn with at most
|A|+ |B| = 2f(n) = O(logn) colors. We can apply the same procedure to type D, L and
R subpolygons in alternating trees, since these cases are axis symmetric or rotationally
symmetric. For each type we use two new color sets of size f(n), which yields a conflict-free
coloring of all subpolygons of the partition of an orthogonal polygon, where we use at most
8f(n) = O(logn) colors in total. We have established the main result of this section.

I Theorem 7. The conflict-free chromatic guard number for orthogonal polygons on n vertices
is k(n) = O(logn).

4 Monotone Polygons: a Step Towards Simple Polygons

The recursive partitioning technique of the previous section will form the basis for our proof
of the general (non-orthogonal) polygons as well. However, the more complex visibility
structure of non-orthogonal polygons forces us first to establish an intermediate result for
monotone polygons. Specifically, our proof structure works by partitioning the polygon into
families of simpler staircase-shaped subpolygons. In the orthogonal case, staircase polygons
are easily covered using 3 colors (Lemma 5), but non-orthogonal staircases appear to be
more complicated. The main result of this section is to show that this basic building block
has conflict-free chromatic guard number O(logn). We then use this result to show that
arbitrary simple polygons have conflict-free chromatic guard number O(log2 n). A second
(albeit minor) is that a naive recursive partitioning using x-aligned and y-aligned visibility
may not even terminate in general polygons, and so we appropriately modify the partitioning
to ensure finite termination. In the following, we assume without loss of generality that our
polygon is x-monotone.

Monotone polygons

vs

vt

Figure 6 Partitioning a monotone
polygon into independent monotone sub-
polygons over concave subchains.

The monotone polygons are easily reduced to a col-
lection of independent monotone polygons with a
specialized structure, where one of the chains is either
a line segment or a concave chain. Specifically, given
an x-monotone polygon, consider the shortest path
between the leftmost and the rightmost vertices. This
path splits the polygon into a family of x-monotone
pieces, with pieces of the shortest path forming one
of their chains. In addition, all the subpolygons lying
below the shortest paths are mutually independent, as are those lying above the path. Due
to lack of space, the proof of the following lemma is omitted from this extended abstract.

I Lemma 8. The conflict-free chromatic guard number for monotone polygons is at most
twice the conflict-free chromatic guard number for monotone polygons over a concave chain.

In the following, we show that monotone polygons over a concave chain have conflict-free
chromatic guard number O(logn). The basic units of interest, however, turn out to be
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168 Conflict-free Chromatic Art Gallery Coverage

monotone polygons over an edge or over a convex chain. The following subsection handles
their coloring, which in turn forms the basis for coloring of monotone polygons over concave
chains.

Monotone polygons over a convex subchain

Let Pn be a monotone polygon over a single horizontal edge. Let g(n) denote the smallest
number of colors that ensure a conflict-free covering for any such Pn. Similar to our method
for constructing staircases in orthogonal polygons, we consider decision lines through either
horizontal edges with adjacent reflex vertices or through a vertex for which both of its
neighbors have a higher y-coordinate. A decision line splits Pn in a lower part and two or
more independent upper parts, of which at most one part contains more than bn/2c vertices.
Then we construct a subpolygon that contains the base edge of Pn and at each decision
line follows the part with the most remaining vertices, see the left picture in Figure 7. This
subpolygon is star-shaped and can thus be guarded with a single guard. The remaining
regions are mutually independent, x-monotone over a horizontal edge and contain at most
bn/2c of Pn’s vertices. We get the recurrence g(n) ≤ g(n/2) + 1, which yields g(n) ≤ logn.

1
2 2

3

3 3

3

Figure 7 x-monotone polygons over a single horizontal edge, a sloped edge and a convex chain.

Now let’s look at a monotone polygon over a single non-horizontal edge, without loss of
generality ascending to the right. We show in the middle picture of Figure 7 that Pn can be
partitioned into a set of independent monotone polygons over a horizontal edge and a tilted
monotone polygon over a horizontal edge. Hence by Lemma 2 for any such polygon we have
χ(Pn) ≤ 2g(n) ≤ 2 logn.

Monotone polygons Pn over a convex subchain are also easily covered with O(logn) colors.
The shortest path in Pn from the leftmost vertex to the rightmost vertex cuts off independent
monotone polygons over a single edge. The remaining subpolygon is bounded by a concave
chain on top and the convex chain at the bottom. We can cover such a polygon using logn
colors, by the following recursive process: place a guard of color i = 1 at the middle vertex of
the concave chain; increment the color to i = 2, place guards of color 2 at the middle vertex
of the two subchains, and so on. Clearly this requires logn colors, so it remains to show that
the polygon is covered and the coloring is conflict-free. Let p be a point in the remaining
subpolygon and let l(p) be the list of all guard colors p can see. Between any two guards on
the concave subchain that have the same color there must lie a guard of lower color between
them. Hence the minimal color in l(p) is a unique color among all guards that contain p in
their visibility region. Therefore by Lemma 2, for any monotone polygon Pn over a convex
chain we have χ(Pn) ≤ 2g(n) + logn ≤ 3 logn.

Monotone polygons over a concave subchain

For monotone polygons Pn over a concave chain, we cut off independent monotone subpolygons
over a horizontal edge as we did before in the case of a non-horizontal base edge. This
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results in two additional independent subpolygons whose boundary consists of a lower
subchain which is concave and strictly increasing (respectively strictly decreasing) and an
upper subchain which is monotonically increasing (respectively monotonically decreasing).
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3

3

3 2

2

Figure 8 Guard placement for mono-
tone polygon over a concave subchain.

In both of these subpolygons we place colored guards
on the concave subchains as we did in the case of
monotone subpolygons over a convex subchain. We
show the partition and the guard placement and col-
oring in Figure 8. Let P be the subpolygon over the
strictly increasing concave subchain. If a point p in
P is guarded by a guard on the concave subchain, it
has a guard of unique color among all other guards
on the concave subchain that see p. However, there
may be regions in P not guarded by the guards on
the concave subchain. For these regions we have the
following technical lemma, whose proof is omitted due to lack of space.

I Lemma 9. If a point p ∈ P is not visible from any of the guards on the concave subchain,
then p lies in a not yet guarded simply connected region, which has the shape of a monotone
subpolygon over a convex chain. Furthermore all such regions are independent.

Thus, we have a partition into monotone polygons over a single horizontal edge (where
we need at most logn colors), monotone polygons over a convex chain (at most 3 logn colors)
and the two independent subpolygons guarded by the guards on the concave chain (at most
logn colors). By Lemma 2 we have that for any monotone polygon Pn over a concave chain,
χ(Pn) ≤ 5 logn. In view of Lemma 8, we now have the main result of this section.

I Theorem 10. The conflict-free chromatic guard number for monotone polygons on n

vertices is k(n) = O(logn).

5 Arbitrary Simple Polygons

Our proof structure for orthogonal polygons has the following form. We first partitioned
the polygon into four different types of subpolygons and showed that the process terminates
after a finite number of steps (Lemma 3). We then derived a necessary condition for two
subpolygons of the same type not to be independent (Lemma 4). We then found a conflict-free
covering using three colors for the basic building blocks, the staircase polygons (Lemma 5).
We used this to get an upper bound of 4 logn for polygons corresponding to red-black-
alternating subtrees (Lemma 6). Finally we put all subtrees together to achieve an O(logn)
upper bound on the chromatic guard number k(n) for orthogonal polygons.

Our proof for non-orthogonal simple polygons follows the same outline, with appropriate
differences spelled out. Specifically, given a n-vertex polygon Pn, we construct a partition
{AU , AD, AL, AR}, where AU , AD, AL, AR, respectively, is the collection of up-polygons
(depicted in red), down-polygons (in green), left-polygons (in black) and right-polygons (in
blue). We rotate Pn in such a way that we can start with a horizontal line segment which
gives rise to a first subpolygon of type U. Since the polygon’s edges are no longer axis parallel,
the partitioning process can be trapped between to edges e and f that ascend to the same
direction. This gives rise to a long and possibly infinite alternating path, see the left picture
in Figure 9.

In order to deal with this difficulty, we do the following. When an edge e of P gets
touched during the partitioning process for the second time by a subpolygon of the same
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type, without any vertex being touched in the meantime, we extend this subpolygon until it
touches a vertex of e or f , see the right picture in Figure 9. This ensures that in at least

f

e

f

e

Figure 9 Replacing a red-black-alternating path with an augmented U subpolygon.

every third step of the partitioning process a vertex gets touched. Now any vertex v can be
touched at most five times, since after the first time v gets touched, in each following step
at least an additional 90◦ of v’s interior angle are covered by a subpolygon of the partition.
Along the lines of Lemma 3, this modification allows us to prove the following result, whose
proof is omitted from this extended abstract due to lack of space.

I Lemma 11. The revised partitioning process gives a complete partition after a finite number
of (at most 15n) steps.

This replacement of alternating paths with a single polygon slightly changes the definition
of the subpolygon types in the partitioning, but its does not change the relations between
subpolygons of the same type when it comes to visibility—we simply replaced an alternating
path with a shorter alternating path. This means that the schematic tree of the revised
partitioning process has the same properties as the original partitioning process in orthogonal
polygons, in particular we get as a corollary from Lemma 4:

I Lemma 12. Let P be a polygon with the given revised partition and the schematic tree
T . Let Pi and Pj be two arbitrary subpolygons of type U. Then, either (i) Pi and Pj are
independent, or (ii) there exists a red-black-alternating (or a red-blue-alternating) directed
path in T between Pi and Pj.

This allows us to invoke the same coloring strategy as used in orthogonal polygons. We
first focus on polygon regions corresponding to red-black-alternating trees. A polygon Pn

corresponding to a red-black-alternating tree consists of type U and type L subpolygons; it
“grows to the left”. In place of Lemma 5, which states a constant conflict-free chromatic guard
number for staircase polygons, we have Theorem 10, which gives an O(logn) for monotone
polygons. We cover a part of Pn with a polygon that is both x- and y-monotone: Starting
from the lowest and rightmost vertex of Pn, at every decision line we follow the upper part
with the most vertices. We need O(logn) colors to do this plus an additional color to cover
the convex fans to its left as before. We are left with independent subtrees, all of size ≤ bn/2c.
We recursive each of them and cover all type U subpolygons of Pn in at most logn rounds.
This leads to the following result.

I Lemma 13. Suppose Pn is a simple polygon with a partition that has a red-black-alternating
schematic tree. Then a conflict-free coloring of all the red regions of Pn needs at most O(log2 n)
colors. The same bound also holds for a red-blue-alternating schematic tree.

The composition of red-black-alternating trees and red-blue-alternating trees that we
described earlier depended only on the condition of Lemma 4, which we preserved in the
revised partition of arbitrary polygons, see Lemma 12. Considering this, we can put subtrees
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together as we did in the case of orthogonal polygons. Thus we finally get an upper bound
for simple polygons.

I Theorem 14. The conflict-free chromatic guard number for simple non-orthogonal polygons
on n vertices is k(n) = O(log2 n).

6 Conclusions

The art gallery problems provide a conceptually clean and mathematically elegant framework
to study many applied questions related to surveilling, monitoring and covering of a physical
environment. In this paper, we studied a chromatic variant of the art gallery, where the
primary concern is to minimize the number of distinct colors assigned to guards. Our two
main results are that (i) every n-vertex simple polygon has a conflict-free chromatic art
gallery coverage with O(log2 n) colors, and (ii) if the polygon is orthogonal, then the number
of colors is only O(logn). A stronger form of coloring, which requires all guards visible
to a point to be distinct in colors, needs Ω(n) colors for simple polygons and Ω(

√
n) for

orthogonal polygons [3], showing that the weaker conflict-free condition gives a significant
improvement in the number of colors.

Our work suggests several directions for future research. Perhaps the most natural
question is to investigate the lower bounds on the number of colors needed. Currently,
we have none. What is the tight bound for the simple non-orthogonal polygons? Finally,
the line-of-sight visibility model is a crude model for wireless communication. Recently,
Fabila-Monroy et al. [5] have investigated the art gallery problems that allows the signal to
penetrate k walls. One could consider our chromatic art gallery in a similar setting.
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