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Artificial intelligence driven design of
catalysts and materials for ring opening
polymerization using a domain-specific
language

Nathaniel H. Park 1 , Matteo Manica 2, Jannis Born 2,3, James L. Hedrick1,
Tim Erdmann1, Dmitry Yu. Zubarev1, Nil Adell-Mill2,4 & Pedro L. Arrechea1

Advances in machine learning (ML) and automated experimentation are
poised to vastly accelerate research in polymer science. Data representation is
a critical aspect for enabling ML integration in research workflows, yet many
data models impose significant rigidity making it difficult to accommodate a
broad array of experiment and data types found in polymer science. This
inflexibility presents a significant barrier for researchers to leverage their
historical data in ML development. Here we show that a domain specific lan-
guage, termed Chemical Markdown Language (CMDL), provides flexible,
extensible, and consistent representation of disparate experiment types and
polymer structures. CMDL enables seamless use of historical experimental
data to fine-tune regression transformer (RT)models for generativemolecular
design tasks. We demonstrate the utility of this approach through the gen-
eration and the experimental validation of catalysts and polymers in the
context of ring-opening polymerization—although we provide examples of
how CMDL can be more broadly applied to other polymer classes. Critically,
we show how the CMDL tuned model preserves key functional groups within
the polymer structure, allowing for experimental validation. These results
reveal the versatility of CMDL and how it facilitates translation of historical
data into meaningful predictive and generative models to produce experi-
mentally actionable output.

Artificial intelligence (AI) systems and machine learning (ML) models
hold immense potential to accelerate development of polymeric
materials by providing a significant reduction in time and labor costs
to identify further optimizedmaterial platforms1–5. The combination of
ML systems with automated experimentation platforms offers the
possibility of realizing even greater reductions in research timelines5–7.
The immensity of the potential benefits of ML systems for polymer

science has resulted in intense development of models for a variety of
use cases. These range from general inverse design of materials with
given properties8–13 to specific applications including gas separation14,
thermal conductivity15, mechanical toughness16, MRI contrast agents17,
cloud point engineering18, and polymer electrolytes19. In several
instances, the developed ML model was able to offer actionable
material designs or predictions, leading to experimental validation of

Received: 21 July 2022

Accepted: 12 June 2023

Check for updates

1IBM Research–Almaden, 650 Harry Rd., San Jose, CA 95120, USA. 2IBM Research–Zurich, Säumerstrasse 4, Rüschlikon 8803, Switzerland. 3Department of
Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland. 4Present address: Arctoris, 120E Olympic Avenue, Abingdon,
OX14 4SA Oxfordshire, UK. e-mail: npark@us.ibm.com

Nature Communications |         (2023) 14:3686 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6564-3387
http://orcid.org/0000-0002-6564-3387
http://orcid.org/0000-0002-6564-3387
http://orcid.org/0000-0002-6564-3387
http://orcid.org/0000-0002-6564-3387
http://orcid.org/0000-0002-8872-0269
http://orcid.org/0000-0002-8872-0269
http://orcid.org/0000-0002-8872-0269
http://orcid.org/0000-0002-8872-0269
http://orcid.org/0000-0002-8872-0269
http://orcid.org/0000-0001-8307-5670
http://orcid.org/0000-0001-8307-5670
http://orcid.org/0000-0001-8307-5670
http://orcid.org/0000-0001-8307-5670
http://orcid.org/0000-0001-8307-5670
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39396-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39396-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39396-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39396-3&domain=pdf
mailto:npark@us.ibm.com


themodel itself12,17,18. AlthoughML systems for polymer science are still
in their early stages, it is clear they will play increasingly critical roles
within research activities.

The routine application of ML models within polymer research
workflows faces numerous obstacles. The absence of a mature open-
source polymer data ecosystem has contributed to the limited data
availability, accuracy, diversity, volume, and relevance for develop-
ment of robust ML models3,4,20. Recent advances in open-source data
repositories for polymeric materials such as the Polymer Genome or
CRIPT will greatly assist in alleviating this issue as their respective data
volume increases21–23. Historical data and data from automated
experimentation systems can potentially provide both sufficient and
immediately relevant training data for ML development, yet the data
format and representation can be a significant barrier to utilization.
Consequently, many reported ML models employ bespoke data
models or polymer representations, which may not be readily adap-
table to different application domains17,18,24. Improved data models for
polymer chemistry have been developed to specifically address this
issue23,25,26. However, software support for these models is still in the
nascent stage and may require additional programming knowledge to
utilize effectively. Our own work on compiling historical experimental
datasets for polymer ML applications12,27 frequently required adding
fields or elements that lay outside of the scope of existing data mod-
eling approaches23,25,26 or traditional electronic lab notebooks28,29 in
order to ensure accurate representation of the data. Thus, while open-
source repositories, data models, and polymer representations have
significantly advanced the development of ML models for polymer
chemistry, there exists a need for software tools which provide flex-
ibility in experimental data representations and their translation into
ML training sets. Such tools would remove significant barriers for
researchgroups to begin leveraging their ownhistorical datasets inML
applications as well as provide an interface to the broader ecosystem
of open-source tools, databases, and models being developed for
polymer informatics.

To create a highly adaptable software toolkit for data repre-
sentation and demonstrate its utility in ML workflows for catalyst and
materials design (Fig. 1a), we first identified three critical features:
(1) extensibility—such that newdata or experiment types canbe readily
accommodated, (2) support for definition of polymer representations,
and (3) support for representation of continuous-flow experiments.
Initial efforts to implement such features within a web application,
while successful, proved cumbersome to use and maintain. Taking a
step back, we noted that the key requirement of extensibility is already
a common feature in modern programming languages insofar as it
enables users can define their owndata structures and types to suit the
needs of their application. Additionally, programming languages are
parsed into abstract syntax trees (ASTs)30, a convenient intermediate

data structure for further elaboration into formats required by ML
pipelines. Because of these features, we surmised that a domain spe-
cific language (DSL)31–33 could be used as foundation of a software
toolkit to enable data documentation upon which the other require-
ments—supporting polymer and continuous-flow reactor representa-
tions could be implemented.

Results
Domain-specific languages for data representation
Prior work on DSLs surrounding organic synthesis33–38, inorganic
synthesis39, and biochemistry40 has focused on extracting action
sequences from experimental protocols which in turn may be exe-
cuted on compatible automated experimentation platforms33,34,38. In
contrast, we sought to take advantage of benefits of DSLs to enable
researchers to represent a broad variety of experiment data for use
within AI-development pipelines, independent of the need for explicit
execution on laboratory hardware. Herein, we developed theChemical
Markdown Language (CMDL) to provide a simple and declarative
syntax for experimental documentation (see Supplementary Infor-
mation for examples and overview of CMDL syntax). CMDL is an
executable DSL and we deployed CMDL initially within a custom
notebook extension for Visual Studio Code (VS Code)41—which pro-
vides an application programming interface (API) to define interactive
computing applications analogous to JupyterLab42, Apache Zepplin43,
and others44,45. The custom notebook extension—called IBM Materials
Notebook46—provides a convenient execution environment for CMDL
as well as allows users to leverage features of modern integrated
development environments (IDEs)—such as code completion, tem-
plates, and snippets—to streamline documentation of experimental
data using CMDL. Additionally, it enables researchers to use CMDL
with minimal setup as the extension is easily installed from within
VS Code.

Within the notebook extension, raw textwritten in CMDL is parsed
and validated by the CMDL compiler into an AST (Fig. 1b). The valid
CMDL ASTs are then passed to the CMDL interpreter, which traverses
the ASTs and executes basic computations—such as reaction stoichio-
metry or residence time estimations—as well as performing tabulation
and formatting of the data (Fig. 1b). The terms compiler and interpreter
here are used looselywith regards toCMDLand simply refer to sections
of the code performing static type checking and model execution,
respectively. Once the CMDL has been compiled and interpreted, the
final record may be exported in JavaScript object notation (JSON) for
further aggregation into trainingdata forMLmodels (Fig. 1b). An added
advantage of CMDL is that it is relatively unopinionated on how
experimental data should be organized, leaving these decisions to
users. This is in contrast to more rigidly defined schema, such as
PolyDat or CRIPT, which are gearedmore towards building largemulti-

Generative 
models

Automated 
experimentation data

Historical data

IBM Materials 
Notebook

a

Chemical Markdown Language

CMDL 
compiler

CMDL 
interpreter

• Syntax & type 
checking

• Symbol table

• Stoichiometry 
calculations

• Residence time 
estimations

• Polymer graph 
weight computation

Notebook 
output

b

IBM Materials 
Notebook

• Polymer structures

• Continuous-flow reactors

• Reaction data

Fig. 1 | Enabling development of improved ML for guiding discoveries in
polymer science. a The workflow for enabling consumption of historical and
automated experimentation data in generative models using the IBM Materials

Notebook and CMDL. b Workflow of how data is processed within the IBM Mate-
rials Notebook. Colors in both panels are for visual differentiation of each stage in
the workflow.
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user applications surrounding centralized databases23,25. Future ver-
sions of CMDL will maintain such flexibility while providing additional
interoperability with data models such as PolyDat, CRIPT, and others
when data are exported from CMDL notebooks.

Polymer representation in CMDL
Definition and representation of polymer structures within experi-
mental records is one of the key features of CMDL. The principal dif-
ficulty for polymer representation is that the stochastic nature of
polymers precludes explicit definitions using line notations, such as
Simplified Molecular Input Line Entry System (SMILES)47. In spite of
this, there has been numerous efforts to define representations for
polymers. Many reported ML models for polymers use SMILES strings
denoting variable attachment points with an asterisk for repeat
units13,48. BigSMILES provided a syntactical extension to the SMILES to
allow broader representation of stochastic structures and end
groups49. PolyGrammar was developed to facilitate both representa-
tion and generation of polymer structures through a context-sensitive
grammar that combines a hypergraph representation and production
rules to create polymer structures, however is currently implemented
for only polyurethane structures50. Other approaches have focused on
representing the polymeric structures as graphs, with nodes on the
graph defined by SMILES and edges defining the stochastic
connections8,51,52. For all polymer structural representation systems, its
relationship with experimentally measured property values in the
overall data structure is highly important for fully defining the sto-
chastic properties of the polymer itself and establishing
structure–property relationships23,25. With this in mind, were drawn to
a graph representation approach for polymer structures as it would
enable experimentally measured values—such as degree of poly-
merization (DPn)—to easily be embedded within the representation
itself, allowing for differentiation of identical polymer structures on a
basis of their stochastic properties. Moreover, using CMDL to define
and reference polymer graph representations would allow users a
simple and straightforward means to connect polymer structures (or
components therein) with experimental conditions and property
measurements—imparting potentially greater meaning and predictive
capabilities to ML models.

To implement a polymer graph representation, a polymer struc-
ture may be deconstructed into the requisite nodes and edges which
comprise a graph data structure. In this case, nodes represent discrete
structural elements of polymer, such as an end group, repeat unit, or
branch point. Edges correspond to a covalent bond or bonds between
nodes. For example, poly(valerolactone) 1a is comprised of two nodes,
one for the 1-pyrenebutanol end group 1b and one for the valer-
olactone repeat unit 1c (Fig. 2a, b). The structure of each node element
is encoded by a SMILES string containing non-atomic characters (R, Q,
X, or Z) to distinguish different attachment points (Fig. 2b). Node ele-
ments containing multiple attachment points with identical chemical
environments—such as structures with symmetric elements—are given
same non-atomic character (Supplementary Fig. 19). Edges within the
graph specify the source and target attachment point on the same
node or between two different nodes (Fig. 2b). Assigning DPn values to
nodes allows for the computation of weights for the various edges
within the graph representation, with the edge weight corresponding
to the fraction of a particular edge (bond type) within the polymer
graph. In Fig. 2c, d, theDPn valueof 50 is assigned to 1cwhile a valueof 1
is given to 1b. These values allow computation of the weights for the
two edges within the graph when the representation is processed by
CMDL interpreter (see Supplementary Figs. 11–13 for examples).

The computation of the weights for polymer graphs is facilitated
by their conversion to an intermediate composite tree representation
within the CMDL compiler (Fig. 2c). The composite tree is a tree data
structure whose leaf elements may comprised of nodes, edges, or
containers. The node and edge elements within the composite tree are

identical to those in the final polymer graph representation, whereas
containers are elements that may have nodes, edges, or other con-
tainers as child elements (Fig. 2c). The use of a composite tree provides
a more structured and chemically relevant means of programmatically
traversing the polymer representation for computation of edge
weights or other properties (Fig. 2d). This is especially important for
more complex polymer architectures, such as dendrimers or grafted
polymers, as it becomes difficult to consistently differentiate between
main and side chains during traversal of the polymer graph, thereby
complicating the accurate computation of edge weights. Instead, the
hierarchyof the composite tree allows for clear differentiationbetween
main and side chains within a polymer structure as well as nested
repeating structure commonly found in many step-growth materials
(Supplementary Figs. 21–22). Once the experimental values are
assigned to different nodes, the intermediate composite tree repre-
sentation can be used to recursively compute different edge weights.

While the CMDL syntax facilitates definition polymer graphs and
assignment of experimental values to individual nodes, this approach
can become tedious and repetitive when the polymer architecture
becomes complex. To simplify this, we introduced a second edge
weight indicating the quantity of identical edges within a polymer
graph based on molecular symmetry. In Fig. 2e, the 1d was initiated
from a diol, providing two identical, yet distinct repeating nodes in the
polymer graph. Rather than assigning DPn values for each node indi-
vidually, we can add an edge quantity weight to the edge between the
diol initiator and the valerolactone repeat unit. This quantity weight is
accounted for when the CMDL interpreter computes the weights for
each edge within the graph representation. For more complex grafted
or dendritic architectures (1f), this approach significantly reduces the
number of nodes needing to be defined and assigned values (Fig. 2f).

Representation of continuous-flow reactors in CMDL
Along with representation of polymeric materials, the representation
of experiments done under continuous-flow conditions are typically
not supported in most data modeling efforts or traditional electronic
lab notebooks28,29. Continuous-flow experiments are distinct from
batch experiments and require modeling of the reactor system itself
for accurate documentation. To facilitate this, continuous-flow reac-
tors are represented as directed graphs whose nodes represent phy-
sical hardware components, edges the connections between the
components, and the edge direction capturing the direction of flow
(Fig. 3a). An analogous approach to reactor representation was
developed for automated batch systems such as the Chemputer,
although it was principally directed towards reactor process control33.
As with polymer graphs, reactor graphs are defined separately (Sup-
plementary Fig. 14) and referenced by other elements in the CMDL
syntax, where inputs, outputs, and flow rates are assigned components
of the reactor graph (Supplementary Fig. 16). A single run of a
continuous-flow reactor may involve significant variation of the reac-
tor conditions, such as changes in flow rates of the reactor inputs, and
by extension, the residence time and stoichiometry of the reaction.
Thus, each flow reaction group in the CMDL syntax represents a
reaction conducted on single set of input conditions for a particular
reactor. This simplifies the execution of models in the CMDL inter-
preter to propagate reagent flow through the reactor graph for stoi-
chiometry calculations and estimation of residence times
(Supplementary Figs. 16–17). Figure 3b depicts a Sankey diagram of a
reactor graph with flow rates and their propagation through the
reactor graph. While CDML representation of automated systems was
initially focused toward continuous-flow systems, it can readily be
extended to other high-throughput experimentation platforms. In
these cases, a more abstract representation of the system and its
inputs in CMDL syntax would be needed depending on its complexity.
Future versions of CMDL will provide a means for defining these
representations as well as automated processes actions and unit
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Fig. 2 | Graph representation of polymers. a Molecular structure of 1a.
b Schematic of a polymer graph representation of 1a. Colored circles represent the
polymer nodes within the graph with the corresponding boxes (labeled node)
contain the SMILES fragment embeddedwithin each node (1b or 1c) along with the
molecular structure with the attachment point ([R] or [Q]) highlighted in color
corresponding to the node’s circle. The SMILES fragment within each node box
highlights the attachment points in bold. Edges are represented by the grey dashed
arrows with a label in angle brackets containing the source node and target node
attachment points ([R] or [Q]) with the format of: <source attachment point |
target attachment point >. The boxes labeled edge are color coded to match the
source node from which the edge originates and contain the source and target
nodes with their respective edge attachment points in parentheses. c A composite

tree representation of a polymer graph for computing the edge weights of 1a.
Boxes are color coded to match their respective nodes or edge sources from
a except container boxes which are colored red. Edge boxes contain the edge
source node and target node information in the angle bracket form described in b.
d Example of polymer edge weights computed from composite tree in c. Weights
are listed as a third element in the edge angle bracket notation: <source attachment
point | target attachmentpoint | weight >. e Exampleof polymer graph compression
using symmetry elements. Blue dashed line on 1b represents a line of symmetry in
the polymer. f Example of polymer graph compression for a dendritic polymer 1f.
Colored circles in skeletal structure represent distinct nodes in the polymer graph.
Edge quantities for the graph are the numerical values listed above each edge
(dashed grey arrow). Angle bracket notation for edges omitted for clarity.
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operations33–36,38—allowing a complete description of an automated
high-throughput experimental process.

Development and evaluation of regression transformer models
Having established the critical capabilities of CMDL and the encom-
passing notebook application, we could now better represent and
merge historical experimental datasets and datasets from automated
continuous-flow reactors. Next, we sought to utilize these data to
developMLmodels for assistance in catalyst andmaterials design. Our
initial focus was on catalyst design for ROP, as generation of small-
molecule catalyst structures and their experimental evaluation ismore
straightforward than that of material design. Additionally, catalyst
selection is profoundly important for ROP and has dramatic effects on
the overall viability of the ROP reaction12,53,54. Poor selection can lead to
a mismatch between catalyst activity and monomer reactivity, giving
either nopolymerization or polymerizationwith poor control over end
group fidelity and molecular weight distributions. Given the large
breadth of catalysts and viable monomers for ROP, catalyst selection
canbe difficult—particularly formultiblock or statistical copolymers as
co-monomers canexhibit very large differences in polymerizability55,56.
Strategies such as using continuous-flow reactors or performing in situ
catalyst switching can overcome some issues surrounding catalyst
performance57. However, there exists a significant need for the devel-
opment of catalysts for controlled ROP as well uncover critical design
principles for more efficient organocatalysts in ROP, a task which can
be greatly assisted through ML model development.

To this end, we fine-tuned a property-driven a Regression Trans-
former (RT)58 generative model for local chemical space exploration
(pretrained on ChEMBL data) with a ROP reaction dataset con-
structed from historical data using CMDL. The fine-tuned RT was then
primed with monomers from the dataset and desired physical prop-
erties of interest and generated ≈2.5M monomer–catalysts pairs
(Fig. 4c). The RT was trained in a multitask fashion to regress conver-
sion, dispersity and Mn, GPC from the SMILES strings of a
monomer–catalyst pair (blue boxes, Fig. 4a) as well as to conditionally
generate catalysts given a monomer and desired property values
(yellow boxes, Fig. 4a). The RT learned to predict conversion and
dispersity with high accuracy (Pearson correlation > 0.8). For
monomer–catalyst pairs affording high conversion, the predictions
were particularly accurate. TheMn, GPC prediction, performed on a log
scale, was less successful (Pearson correlation 0.59). The lower pre-
dictive accuracy of absolute Mn, GPC values may be a result of biases
within the historical dataset regarding monomer types and their
influenceon the resulting polymer’s hydrodynamic volume. This could
potentially confound the RT learning to predictMn, GPC valuesmore so

than conversion and dispersity, which are more independent of poly-
mer identity. Given, these potential confounding factors, these prop-
erty predictors were primarily used to filter and rank the generated
catalysts to facilitate selection of promising candidates for experi-
mental validation based on subject matter expert (SME) feedback
(Fig. 5).

Of the SMEselected examples in Fig. 5b and c, only 3b and4ghave
been previously reported as catalysts for ROP54,59, whereas the ami-
dine, amide, guanidine, urea, and thiourea motifs present in the other
generated catalysts are common components of known ROP
catalysts53,60–63. Despite the common structural features, it is well
known that small structural modifications to ROP organocatalysts can
drastically affect reaction kinetics, selectivity, and control over the
polymerization59,60,64. Thus, the generated catalysts are highly impor-
tant in identifying potentially useful catalyst platformswhichmayoffer
significant improvements over existing systems. Experimental eva-
luation of the catalyst structures as generated may not be practical in
all cases, particularly where the structure is somewhat complex. To
test the viability of some of the generated catalysts, we chose five
catalysts, four of which were modified by SMEs from their original
form to expedite evaluation of their catalyst properties. Here, 5a
(Fig. 6) was selected as a modified version of 4e to improve possible
solubility issues of the catalyst during ROP. Thiourea catalyst 5a has
only been reported for use as ROP catalyst with highly reactive o-
carboxyanhydrides65, yet is untested in polymerizations with lactones
or cyclic carbonates. Catalysts 5c and 5d (Fig. 6) were selected both on
terms of straightforward synthetic accessibility as well as serving as
surrogates for the generated catalyst 3g, preserving the endocyclic
guanidine moiety. Commercially available catalyst 5b serves as a
contrasting, acyclic guanidine catalyst to 5c and 5d. The cyclic versus
acyclic nature of guanidine catalysts for ROP is known to influence
catalyst reactivity and thus is important to include both here for
experimental validation64,66.

The selected catalysts selected for experimental validation can
largely be split between hydrogen bond donors (4c and 5a) as elec-
trophilic activators of the monomer or Brønsted bases as nucleophilic
activators of the initiator (5b–5d, Fig. 6), none of which have pre-
viously been utilized in ROP. While some hydrogen bond donors may
act as single-component catalysts for ROP, this is typically only for
instances where such systems contain a pendant tertiary amine67. With
the case of 5a, the attached pyridine group did not provide sufficient
activation of the alcohol initiator to facilitate polymerization by itself,
despite NMR experiments showing a strong affinity association of 5a
with 2a (Fig. 6c). Instead, use of a DBU co-catalyst was needed to
enable ROP of both 2a and 2d (entries 1 and 8, Table 1). In the case of

Fig. 3 | Graph representation of continuous-flow reactors. a Schematic repre-
sentation of a continuous-flow reactor graph. Dotted boxes (Reactor A and
Reactor B) denote elements belonging to a specific reactor wherein a chemical
reaction takes place in the graph representation. Colors are used to differentiate
nodes belonging to different reactors or the final terminal node in the reactor
graph (Collection). See Supplementary Fig. 14 for an example of a reactor graph

in CMDL syntax. b Sankey diagram reactor graph from a, where flow rate values
have been assigned to the input nodes (Quench syringe, catalyst syringe, and
monomer syringe) and propagated through the rest of the graph. Nodes in the
Sankey diagram are color-coded to match those from Fig. 3a. Source data for
b are provided as a Source Data file.
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Fig. 4 | Generation of ROP using regression transformers. a Flowchart depicting
training process for the regression transformer (RT). The RT can predict physical
and experimental properties of monomer-catalyst pairs (blue stream) or con-
ditionally generate catalysts given a monomer and desired properties (yellow
stream). The SMILES input and output of the RT are shown here, however the RT
internally uses SELFIES representations71. See the Methods section for details.
b Prediction performance for conversion, dispersity, and Mn, GPC properties of
monomer–catalyst pairs from the test data set (blue circles). Solid blue line is the
linear regression fit, shaded blue area represents 95% confidence for the linear

regression fit, and dashed grey line is hypothetical perfect fit. All Pearson correla-
tions were statistically significant (p <0.001; two-sided; normality assumption). R2

values are 0.66, 0.64 and 0.35 for conversion, dispersity and Mn, GPC respectively.
Themean-absolute-errors are0.12 (conversion), 0.10 (dispersity) and0.26 (Mn, GPC).
Note that Mn, GPC has been modeled on a log10 scale. Conversion values are per-
centages plotted between 0 and 1, where 0 equals 0% conversion and 1 equals 100%
conversion. c Tree manifold approximation and projection (TMAP) visualization74

of generated catalysts and their physical properties (colored here by synthesiz-
ability scores, SAS). Source data for b and c are provided as a Source Data file.
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Fig. 5 | Selected generatedROP catalysts. aMonomers pairedwith ROP catalysts.
b Selected generated nucleophilic/initiator activation ROP catalysts. Predicted
values for dispersity, percent conversion of the paired monomer, and Mn, GPC are
provided below each catalyst. c Selected generated electrophilic activation ROP

catalysts. Predicted values for dispersity, percent conversion of the paired
monomer, and Mn, GPC are provided below each catalyst. Mn, GPC values in b and
c are in units of g mol−1.
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2d, comparison of the use of DBU alone to DBUwith 5a demonstrated
that the addition of 5a provided greater control over the dispersity
without slowing down the polymerization reaction (entries 5 and 8,
Table 1). The guanidinederivatives 5b–5d also performedwell as single
component ROP catalysts, providing high monomer conversion and
narrow dispersity (entries 3–5, 9, and 10, Table 1). Both 5c and 5d
displayed a linear relationship between Mn, GPC versus monomer con-
version (Fig. 6c), characteristic of living ROP53.

By having a historical dataset for ROP reactions with a variety of
monomers, we can make some broader comparisons of the reactivity
of the generated catalysts and similar catalysts from the historical

dataset assembled inCMDLandused tofine-tune the catalyst RT.Here,
we compared the historical results of triazabicyclodecene (TBD), DBU,
and 7-Methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ene (MTBD) with the
guanidine catalyst systems 5b–5d in terms of monomer conversion,
reaction time, and the resulting dispersity of the polymeric material.
Based on these metrics, we can see that all the generated guanidine
bases are clearly comparable to traditional catalysts both in terms of
reaction time and control over the molecular weight distribution
(Fig. 7). Of particular interest is the clear difference in reactivity
between the cyclic guanidine 5c and the acyclic analogue 5b, where 5b
exhibits faster kinetics and comparable control over dispersity. This

Fig. 6 | Experimental evaluation of generated ROP catalysts. a Scheme for
polymerization reaction for experimental. b Selected and SME modified catalysts
from Fig. 5 for experimental evaluation. c Plot of Mn, GPC versus monomer con-
version for 5c and 5d in the polymerization of 2a. d Plot of dispersity versus
monomer conversion for 5c and 5d in the polymerization of 2a. e Overlay of 1H
NMR spectra in benzene-d6 showing the association of 5a to 2a and the observed

in the change in chemical shift of the N–H protons of 5a. The blue 1H NMR spec-
trum shows a mixture of 5a and 2a. The black 1H NMR spectrum shows 5a alone
with itsN–Hprotons labeledwith the numbers 1 or 2. See Supplementary Fig. 23 for
1H NMR association of 4c with 2a. 4-MBA= 4-methylbenzyl alcohol, DBU= 1,8-
diazabicyclo[5.4.0]undec-7-ene. Source data for c and d are provided as a Source
Data file.
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behavior is consistent with previously observed trends between cyclic
and acyclic guanidines in ROP and other reactions66,68.

Having successfully demonstrated the RT model for develop-
ment of polymerization catalysts, we next sought to leverage a
similar model for the design of polymeric materials. The use of
inverse design approaches or generative models for identification of
polymeric materials with improved properties are becoming
increasingly important for guiding experimental research for poly-
mericmaterials1,11,15,16,69. Much of the focus of generativemodeling for

polymer structures has been on homopolymers11,15,69 or simple
copolymers derived from polycondensation or polyaddition
reactions16,50. Additionally, relatively fewof these studies have carried
out subsequent experimental synthesis and validation of the gener-
ated structures16. Thus, while existing reports are successful in gen-
erating new repeat units for polymer structures, there is no
guarantee that these generated polymers are experimentally acces-
sible. This is especially true if the chemical environment of the
attachment points in a repeat unit SMILES string have been

Table 1 | ROP data from experimental evaluation of generated catalysts

Entry Monomer [M]0:[I]0a Catalyst Time Conversion (%) Mn, GPC (kg mol−1) Đ
1 2a 60 5a + DBU 18h 100 24.9 1.51

2 2a 60 4c + DBU 18h >95 9.7 1.48

3 2a 60 5b 4min 100 14 1.15

4 2a 60 5c 32min 60 9.8 1.06

5 2a 60 5d 190min 84 19.3 1.06

6 2d 50 DBU 30min 99 13.7 1.24

8 2d 50 5a 30min 0 — —

8 2d 50 DBU + 5a 30min 99 18.4 1.06

9 2d 60 5c 45min 100 4.7 1.34

10 2 f 60 5b 2min 100 16 1.21
aInitial monomer (M) to initiator (I) ratio.

Fig. 7 | Comparison of historical ROP reaction data for with generated cata-
lysts. a Historical data for monomer conversion versus reaction time for single
component guanidine and amidine catalyzed ROP reactions for all targeted DPn.
b Historical data for monomer conversion versus reaction time with a targeted
DPn ≈ 50, similar to experiments fromTable 1. cHistorical data fordispersity versus

reaction time for single component guanidine and amidine catalyzed ROP reac-
tions for all targeted DPn. d Historical data for dispersity versus reaction time for
single component guanidine and amidine catalyzed ROP reactions with a targeted
DPn of ≈ 50, similar to experiments from Table 1. In all plots, the reaction time is
plotted on a log10 scale. Source data for all plots are provided as a Source Data file.
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modified by the model—potentially precluding the newly generated
repeat unit from known polymerization reactions. In contrast to
small-molecule synthesis, polymerization reactions tend to have
more stringent requirements in order to realize successful enchain-
ment of monomeric repeat units. In the case of ROP, it is well
understood that small changes in monomer structure can dramati-
cally alter its thermodynamic parameters for polymerization,
potentially rendering it impossible to enchain55,56. To address this, we
felt that the CMDL polymer graph representation in combination
with a more restricted RT model—where modifications are limited to
certain segments of a particular structural entity in a node or edges
between nodes (Fig. 8a)—would provide a means for both preserving
the repeat unit attachment points as well as generate more complex
architectures than reported by previous approaches.

Although CMDL represents polymers as graphs natively, the
CMDL interpreter can readily serialize them, enabling their consump-
tion within language models (Fig. 8a, Supplementary Fig. 26). Using
these polymer graph strings and their dispersity values from the
experimental ROP dataset, we fine-tuned a modified RT model to
produce over 2500 polymer structures focused primarily on block and
statistical copolymers (Fig. 8a). The generated polymer graph strings
were parsed into CMDL syntax and embedded within a notebook
document for inspection and selection of promising candidates by
SMEs for experimental evaluation (Fig. 8a, Supplementary Fig. 18).
Upon inspection,many of the generated polymer structures contained
invalid SMILES strings. These SMILES strings were either incomplete—
such as missing a parenthesis—or produced chemically invalid struc-
tures. Other generated structures simply reproduced the training data

25 27 29 31 33 35
Retention Time (min)

Final polymer

TMC block

a

b

I. 6c, DBU, 1-pyrenebutanol, 
CH2Cl2,  rt

II. 6d

6c 6d

Mn, GPC = 4.0 kg mol-1
Đ = 1.16

Mn, GPC = 3.6 kg mol-1
Đ = 1.09

6e
Predicted Đ = 1.1, Achieved Đ = 1.16 

Conversion 6c: 83%
Conversion 6d: >99%

c d

+

25 27 29 31 33 35
Retention Time (min)

RI
UV

Regression 
transformer

<PDI>1.1

<A|[R]OCCCCC1=C2C(C3=C4C=C2)=C(C=CC3=CC=C4)
C=C1|A.R -> B.R><B|O=C([R])CCCCCO[Q]|B.Q -> 
C.R|B.Q -> B.R><C|O=C([R])[m][m][m]CO[Q]|C.Q -> C.R>

Polymer structure generation

6a
Đ = 1.2

6b
Đ = 1.13

<PDI>1.1

<A|[R]OCCCCC1=C2C(C3=C4C=C2)=C(C=CC3=CC=C4)
C=C1|A.R -> B.R><B|O=C([R])CCCCCO[Q]|B.Q -> 
C.R|B.Q -> B.R><C|O=C([R])CCCCO[Q]|C.Q -> C.R>

Fig. 8 | Generation and evaluation of polymers with regression transformers
using CMDL polymer graph representations. a General flowchart (blue boxes)
depicting training process for the polymer graph RT. In the blue boxes, the dis-
persity property (encoded as <PDI > ) and the polymer graph string is listed below.
As in Fig. 2, the non-atomic placeholder characters in the SMILES string are set in
bold and enclosed in brackets. See Supplementary Fig. 26 for an explanation of the

polymer graph string syntax. 6a and 6b are examples of the generated polymer
structures from the RT. b Reaction schema for the experimental evaluation of
generated polymer structure 6e. c Overlay of GPC traces recorded RI and UV
detection. d Overlay of GPC traces from the first block—TMC block (6c)—and the
final polymer (6e). Data for GPC traces in c and d have been normalized. Source
data for c and d are provided as a Source Data file.
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with no modification, which is not unexpected given the more
restricted masking approach used in this RT model. Finally, several
generated polymer structures contained invalid repeating chemistry.
Aside from these examples, there were a substantial number of
examples where the model performed precisely as intended—mod-
ifying only certain portions of the discrete structural entities in the
nodes of the polymer graph.

The successful examples typically fell into three categories:
modification of the repeat units, modification of the initiator, or
recombination of existing repeat units into (co)polymer architectures.
Selected examples can be found in Fig. 8a and Supplementary Figs. 28
and 29, along with their predicted dispersity. For both the strict
modification of the monomer (6a, Fig. 8a and Supplementary Fig. 24)
and modification of the initiator (6b, Fig. 8a, Supplementary Fig. 25a),
the model performed admirably by making targeted modifications to
the overall polymer structure while preserving the connectivity
between repeat units. For the examples of generating (co)polymer
architectures from existing repeat units, it is likely many of these were
produced by a single atommodification to give a different repeat unit
that also existed in the training data. For example, the trimethylene
carbonate repeat unit in generated polymer 10c (Supplementary
Fig. 25b) was likely produced via conversion of the alpha methylene
carbon of valerolactone to an oxygen atom, converting the ester
repeat unit into a carbonate. Additionally, several instances were
observed where the model produced a somewhat ambiguous assign-
ment of connectivity between the nodes of the generated polymer
graph (6e, Fig. 8b and 10a, Supplementary Fig. 25b). In these cases, we
interpreted the polymer architecture as the corresponding AB block
copolymer architectures, given that the statistical copolymer versions
were part of the training data and were also correctly reproduced by
the model output.

Although polymer structures containing new repeat units can
potentially afford and desirable properties, they can also require sig-
nificant time and effort realize experimentally. As noted above, new
monomer structures may have profoundly different abilities to
undergo ROP as a result of changes in their thermodynamic para-
meters. This change in reactivity also influences the choice of catalyst,
necessitating careful selection in order to avoid deleterious side-
reactions during polymerization. With these factors in mind, we
selected polycarbonate block copolymer 6e (Fig. 8b) for experimental
evaluation as both monomers are present in the training data, but not
in this particular block copolymer architecture. Here, using DBU as
catalyst, we were able to smoothly prepare 6e in a single pot trans-
formation using 1-pyrenebutanol as an initiator (Fig. 8b). Overlay of
GPC traces using refractive index (RI) and ultraviolet (UV) detection
showed good agreement (Fig. 8c), indicating high end group fidelity.
Additionally, GPC traces of thefirst blockand thefinalpolymer showed
an increase in molecular weight and minimal broadening of the
molecular weight distribution (Fig. 8d). Notably, the predicted and
realized dispersity (1.10 vs. 1.16) are very close, and better agreement
could likely be obtained through optimization of the reaction time for
the more reactive monomer (6d, Fig. 8b).

While the RT generative model was successful in producing valid
polymer structures, it can be difficult to place the predicted structures
in the context of the historical training data. One of the major advan-
tages of the CMDLgraph representation is that enables the embedding
of experimentally measured DPn values within nodes of the repre-
sentation itself (Fig. 2b, c). Using this feature within the polymer graph
representation system, we can group polymer graphs from the his-
torical data based on common structural entities and the edges
between them. Entities with embedded DPn values can be further split
into buckets based on ranges for DPn, including a bucket for DPn equal
to 0, indicating a failed polymerization. Once the polymer graph data
has been grouped, it may be visualized as a Sankey diagram (Fig. 9),
with thewidthof eachnodeor edge indicating the number ofmaterials

in the dataset with that particular entity or connection between enti-
ties, respectively. In Fig. 9, two Sankey diagrams are shown for all
polymer graphs containing either 6d (Fig. 9a) or 6c (Fig. 9b). These
visualizations help provide a broad overview of the types of materials
prepared, the range of assigned DPn values, and their inter-
connectivity. For 6c, the monomer has been frequently used within
the historical dataset within a variety of material types (Fig. 9b). In
contrast, 6d has only been used in materials with 6c and
1-pyrenebutanol (Fig. 9a). Notably, some of the generated polymers
containing 6c or6d as repeat units (8 f and 8g, Supplementary Fig. 24;
10c, Supplementary Fig. 25b), the connectivity between their corre-
sponding structural elements is not present in the Sankey diagrams
(Fig. 9), indicating again the value of the RT in generating new, viable
polymer structures.

Discussion
The ability to routinely employ ML models for day-to-day research
activitieswill have a dramatic impacton the research anddevelopment
of polymeric materials. However, to effectively develop and use ML in
experimental research, there must be a straightforward way to easily
leverage relevant experimental data from a variety of sources. Herein
we have demonstrated how CMDL and its implementation within the
IBMMaterialsNotebook extension can serve as a platform to represent
andmerge disparate experimental data types. In particular, the built-in
support for graph representation of polymeric structures and
continuous-flow reactors allows for straightforward use of these
representation systems and their connection to experimental data. In
turn, datasets created through use of CMDL facilitated the develop-
ment of highly effective RTmodels for the design of ROP catalysts and
architecturally valid co-polymers. Successful experimental evaluation
of the generated catalyst structures and preparation of a generated
block co-polymer demonstrate the utility of thesemodels in providing
both actionable and useful output. Importantly, the use of CMDL
polymer graph representations facilitated the generation of more
experimentally viable polymer candidates through the preservation of
critical functional groups. Expansion and refinement of this approach
will likely afford significant advances in ML-designed polymeric
materials with optimized properties which are also experimentally
accessible. Overall, CMDL and its application within experimental
research workflows provides a highly adaptable tool for enabling
researchers to use historical experimental data for the development of
more meaningful and impactful ML models.

Methods
IBM Materials Notebook
IBM Materials Notebook is an open-source extension written in
TypeScript for Microsoft’s Visual Studio Code (VS Code)41. The
extension provides support for a custom notebook allowing for
composing and executing CMDL using VS Code’s notebook extension
API (https://code.visualstudio.com/api) Visualization of chemical
structures within the IBM Materials Notebook extension was accom-
plished using a TypeScript implementation of the SmilesDrawer
package (https://github.com/reymond-group/smilesDrawer). Tutor-
ials, examples, and additional documentation for IBM Materials
Notebook and CMDL can be found at the repository documentation
website (https://ibm.github.io/ibm-materials-notebook/).

Data Visualization
Historical experimental data was written in CMDL, exported as JSON
files using the IBM Materials Notebook built-in export command, and
subsequently imported to a local instance of MongoDB (https://www.
mongodb.com). This database was queried for data for Figs. 7 and 9
using Pymongo (https://pymongo.readthedocs.io/en/stable/), the
Python database driver for MongoDB, and imported to a Jupyter
Notebook (within a JupyterLab42 environment) where the data was
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transformed using Pandas (https://pandas.pydata.org/) and plotted
using the Seaborn70 and Plotly (https://plotly.com/python/) libraries.

Fine-tuning process for the catalyst model
Following the original implementation andhyperparametersof theRT,
the drug-likeness (QED) model as described by Born & Manica58 was
taken as starting point. This model had been pre-trained on 1.4 million
molecules from ChEMBL (https://www.ebi.ac.uk/chembl/) with drug-
likeness as single property with two alternating training objectives of
predicting a sequence of characters corresponding to the continuous
QED value (thus performing a regression task) and a generative
objective where the RT had to reconstruct a full molecule given a
corrupted (i.e., partially masked) molecule as well as its continuous
property value. We then finetuned this RT on 549 monomer–catalyst
pairs, each associated to three physical and experimental properties
(monomer conversion, dispersity, andMn, GPC). During training, the RT
alternated between predicting the properties for monomer–catalyst

pair and generating catalysts given amonomer anddesired properties.
We used a learning rate of 0.0002, a batch size of 8 with 5 steps for
gradient accumulation. The two tasks were alternated every 50 steps.
In the generative task, 40% of the catalyst tokens were masked, the
monomers were not masked. The maximal span length was 7 tokens.
We used the self-consistency loss as proposed by Born & Manica58

since it produces superior performance for generative tasks (in
exchange to slight performance loss on predictive tasks). The property
prediction results reported in Fig. 6bwere produced on a held-out test
set of 61 samples. Catalysts and monomers were represented as
SELFIES71 rather than SMILES strings (to ease the generative task) and
data augmentation72 was used with a factor of 32 on the training
dataset to boost model generalization.

Fine-tuning process for the polymer model
For the block copolymer experiments, we leveraged the RT model
pretrained on 2.8 million chemical reactions from USPTO,

Fig. 9 | Sankey visualization of grouped polymer graphs from historical
experimental data. a Visualization for all polymer graphs in training data con-
taining 6d. b Visualization of all polymer graphs in training data containing 6c, see
Supplementary Fig. 27 for corresponding structures for the Sankey nodes. Black
outlined, blue boxes are nodes within the Sankey visualization and light blue paths
between nodes are the links. The width of the link corresponds to the number of
materials in the historical data containing the corresponding edge in the polymer

graph representation. In both a and b, numerical suffixes (e.g., −25 or −100) on the
Sankey node label indicate the bin value for the experimentally assigned DPn of
that element within the polymer graph. A value of 0 indicates a failed poly-
merization reaction (e.g., TMC-0). No suffix indicates the element was not a repeat
unit (no self-referencing edge, such asMeOor BnOH) or where noDPn information
was available (TMC). Source data for both plots are provided as a Source Data file.
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represented as SMILES sequences as described in the work by Born
and Manica58. This model was then finetuned on the polymer graph
representation, wherein each node consisted of a SMILES fragment,
of 1566 polymers, each associated to two experimental properties
(dispersity and Mn, GPC). The polymers were represented by a
sequence representation derived from the CMDL. To the best of our
knowledge, it thus constitutes the first generative model for block
copolymers. Like for the catalyst model, the RT training alternated
every 50 steps two tasks, in this case predicting the properties and
completing partially masked block copolymers given the property
scores. In the generative task, 30% of the tokens of the block copo-
lymersweremasked and themaximal span length was again 7 tokens.
No data augmentation was used. The learning rate was 0.002 and the
batch size was again 8. All models were trained on a single Nvidia
A100/V100 GPU for less than a day. The generated polymers were
converted to CMDL and inspected using the IBMMaterials Notebook
prior to selecting a candidate for experimental validation, see Sup-
plementary Fig. 18 for an example.

General procedure for ROP experiments
In a nitrogen-filled glovebox, a vial containing a magnetic stir-bar was
charged with 4-MBA (1 eq), catalyst (2.5 eq), and co-catalyst (2.5 eq, if
needed) were dissolved in CH2Cl2 (0.9mL). Under vigorous stirring, a
solution of monomer (50 eq) in CH2Cl2 was added via syringe to the
vial containing the initiator/catalyst solution. Aliquots were taken
periodically andquenchedwith0.1mLof a benzoic acid (24.4mg, 5 eq)
solution in CH2Cl2 (0.5mL). Solvents were evaporated under reduced
pressure and crude samples analyzed by GPC and 1H NMR. Following
completion of the reaction, excess benzoic acid was added, and the
reaction mixture was removed from the glovebox. The polymer was
purified by precipitation into isopropanol (45mL), followed by cen-
trifugation (1132×g) and decantation of the supernatant. This process
was repeated 3 times. The isolated polymer was dried in vacuo before
characterization via GPC and NMR.

Polymerization of 2a (Table 1, entry 3)
Following the general procedure, 4-MBA (4.9mg, 0.04mmol, 1 eq), 5b
(5.2mg, 0.03mmol, 1 eq), 2a (288mg, 2mmol, 50 eq), and CH2Cl2
(1mL) were reacted for 4min. The title compound was isolated after
workup and purification as described in the general procedure. Mn

(GPC): 14 kgmol−1 Dispersity: 1.15 1H NMR (400MHz, CDCl3): δ (ppm):
5.17–5.15 (m, 2H), 1.59–1.58 (m, 6H).

Polymerization of 2d (Table 1, entry 7)
Following the general procedure, 4-MBA (4.9mg, 0.04mmol, 1 eq),
DBU (15.2mg, 0.1mmol, 2.5 eq), 5a (36.5mg, 0.1mmol, 2.5 eq), 2d
(500mg, 2mmol, 50 eq), and CH2Cl2 (1mL) were reacted for 30min.
The title compound was isolated after workup and purification as
described in the general procedure.Mn (GPC): 18.4 kgmol−1; Dispersity:
1.06; 1H NMR (400MHz, CDCl3): δ (ppm): 7.29 (m, 102H), 7.16 (m, 2H),
5.12 (m, 40H), 5.10 (s, 2H), 4.27 (m, 74H), 2.33 (s, 3H), 1.22 (s, 58H).

Polymerization of 2 f (Table 1, entry 9)
Following the general procedure, 4-MBA (4.9mg, 0.04mmol, 1 eq), 5b
(36.5mg, 0.1mmol, 2.5 eq), 2 f (265mg, 1.2mmol, 30 eq), and CH2Cl2
(1mL) were reacted for 30min. The title compound was isolated after
workup and purification as described in the general procedure. Mn

(GPC): 16 kgmol−1; Dispersity: 1.21; 1HNMR (400MHz, CDCl3):δ (ppm):
7.03 (m, 65H), 6.55 (m, 65H), 5.09 (m, 2H), 4.22 (m, 124H), 3.57 (m,
127H), 2.34 (s, 3H), 2.22 (m, 92H).

Synthesis of 6e (Fig. 8b)
In a nitrogen filled glove box, a 5mL vial was charged with
1-pyrenebutanol (0.0269 g, 0.09mmol), DBU (0.014 g, 0.09mmol), and
CH2Cl2 (0.25 g). 6c (0.30 g, 2.90mmol), was dissolved in CH2Cl2 (0.8 g)

andadded to the vial containing 1-pyrenebutanol andDBU. The reaction
mixture was stirred at rt and aliquots were periodically removed as to
assess 6c conversion by 1H NMR. After reaching 86% conversion of 6c
(95min), 6d (0.32 g, 1.74mmol) was dissolved in CH2Cl2 (0.8 g) and
added to the reaction mixture. Aliquots were removed to monitor the
reaction progress and after full conversion of 6c, excess benzoic acid
was added to quench the polymerization. The reaction mixture was
removed from the glovebox and the copolymer was purified by pre-
cipitation in isopropanol (45mL), centrifugation (1,132 × g), and decan-
tation of the supernatant. The isolated solid was subsequently dried in
vacuo. Mn (GPC): 4.0 kgmol−1; Dispersity: 1.16; 1H NMR (400MHz,
CDCl3): δ (ppm): 4.73 (s, 2H), 4.24 (m, 11H), 2.05 (m, 4H), 1.29 (s, 2H).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used and generated in this study can be found at the IBM
Materials NotebookGitHub repository at https://github.com/IBM/ibm-
materials-notebook/tree/main/data46. Source data are provided with
this paper.

Code availability
Code for CMDL and the IBM Materials Notebook are available at the
GitHub repository under https://github.com/IBM/ibm-materials-
notebook46. The VS Code extension for IBM Materials Notebook is
freely available for download and use from the VS Code extension
marketplace at https://marketplace.visualstudio.com/items?
itemName=IBMMaterials.ibm-materials-notebook. The regression
transformer models can be found at https://huggingface.co/spaces/
GT4SD/regression_transformer73.
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