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ABSTRACT
Anomaly detection is an essential building block of many applica-
tions, including DDoS detection, root cause analysis, traffic estima-
tion, and change detection. A vital part of detecting anomalies is
establishing a sense of normality, e.g., by learning distributions for
various features from benign traffic. Learning these distributions
in the control plane requires coping with the limited visibility of
sampling; learning distributions in the data plane requires relying
on simplistic techniques because of hardware constraints.

We propose a novel data- and control-plane co-design for learn-
ing distributions: in the control plane, we search for candidate
distributions with Bayesian optimization; in the data plane, we
evaluate how well each distribution matches all observed traffic,
without missing rare events. The aggregated evaluation results are
fed back to the control plane to guide the optimization and learn
accurate distributions. Our key insight is that while learning and
optimization are infeasible in the data plane, evaluating distribu-
tions is feasible and leverages data plane strengths. We confirm the
feasibility of our approach with a preliminary evaluation.
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1 INTRODUCTION
While essential to DDoS detection, root cause analysis, and many
more applications, detecting anomalies in network traffic is notori-
ously hard to get right. Anomaly detection requires establishing a
sense of normality [2]. This includes rare events (e.g., tails of traffic
distributions) to avoid errors on uncommon yet benign traffic.
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Current approaches struggle to capture these events. The con-
trol plane can run arbitrarily complex algorithms but has limited
visibility into the traffic (even sampling rates as high as 30% are not
enough [4]). In contrast, a programmable data plane can observe all
traffic but only run simple algorithms. For example, ACC-Turbo [1],
a state-of-the-art detection system in the data plane, uses an online-
learning approach that adaptively clusters traffic. However, it can
only track the minimum and maximum values of traffic features,1
and cannot track the distribution within a cluster. It identifies anom-
alies as high-volume clusters with high similarity, i.e., similar min
and max values. As such, it is vulnerable to rare outliers that stretch
the min/max value of a cluster, making an anomalous cluster seem
dissimilar and harmless, even if the distribution remains narrow.

We argue that anomaly detection can be improved by learning
feature (i) distributions based on the (ii) entire traffic. Is that feasible
given that neither the control- nor the data plane achieves both?

We show that this is indeed possible through a data- and control-
plane co-design that combines the strengths of both: Our key insight
is that learning distributions is only feasible in the control plane,
but once we have a distribution, it is possible to verify it in the data
plane. This verification can leverage the data-plane visibility of all
traffic without being limited by sampling.

In particular, we combine Bayesian optimization (BO) in the
control- with scoring in the data plane: Searching optimal distri-
bution parameters via BO is complex and must run in the control
plane. Yet, for each proposed distribution, BO requires only an ‘ob-
jective’ value to advance the search. We use the logarithmic score
as objective, and compute it from all traffic in the data plane. This
forms a feedback loop of optimization in the control- and scoring
in the data plane, iteratively learning distributions. Furthermore,
we show that we can use scoring to detect anomalies, as such traffic
scores significantly differently from expected traffic.

2 BAYESIAN SCORE OPTIMIZATION
Traffic features follow an arbitrary, unknown distribution 𝑃 . We use
Bayesian optimization (BO) to find a parametrized distribution𝑄 to
approximate 𝑃 . We cannot directly measure how well 𝑄 matches 𝑃 ,
but we can score 𝑄 based on observed packets. BO allows for maxi-
mizing a black-box function, and by maximizing a proper scoring
rule, we guarantee that the optimal 𝑄 minimizes the distance to 𝑃 .

We split the search into two parts: (i) executing BO on the con-
trol plane to propose candidate distributions; and (ii) scoring the
candidates in the data plane. Then, BO uses the scores to update
the candidates and we repeat the process.

Use case: Anomaly detection Our approach allows detecting
anomalies in the data plane. The key insight is that anomalies follow

1Measurable properties like ports, size, inter-packet time, flow duration, etc.
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(a) Anomaly detection degrades significantly
if the distribution is learned from data con-
taining a high fraction of attack packets.

(b) We can efficiently learn a distribution from data-plane scores (DP). Combined with anom-
aly detection, we avoid poisoning with attack traffic. Sampling achieves worse performance
because it misses a lot of traffic. Lines (shaded areas) show mean (std) over three runs.

a different distribution than benign traffic and thus score differently.
We calculate a confidence interval on the score of expected traffic
and classify any traffic scoring outside of this interval as anomalous.
By deferring this until a couple of packets arrive, we can reduce false
positives on single packets and only alert on anomalous sequences.

Further, we protect our learningmechanism from being poisoned
by attack traffic: We constantly update the learned models to adapt
to benign traffic shifts but discard updates from anomalous traffic.

Control-plane: Bayesian optimization Learning distributions
via BO can be stated as argmax𝑥∈X 𝑓 (𝑄𝑥 ), where X is the space of
distribution parameters. From the perspective of BO, 𝑓 is a noisy
black-box objective function representing the quality of 𝑥 . 𝑄 is
user-defined and may range from a single distribution to a mixture
of different distribution families, depending on the feature.

At each step, BO considers past measurements of 𝑓 (𝑄𝑥 ) to gen-
erate new sets of candidate parameters. For each candidate 𝑥 , we
evaluate 𝑓 on the actual traffic in the data plane. The results are
then used by BO to refine the parameters.

Data-plane: Evaluating distributions Given a set of candi-
dates 𝑥 , the data plane needs to measure the quality 𝑓 (𝑄𝑥 ) on the
observed traffic. This faces two main challenges:

First, it is hard to calculate how well a proposed model 𝑄𝑥

matches an unknown traffic distribution 𝑃 . To overcome that, we
represent 𝑓 (𝑄𝑥 ) with a proper scoring rule [3]. Proper scoring rules
can be computed from𝑄𝑥 and observed features, and amodel with a
higher score is guaranteed to be closer to 𝑃 , with a distance measure
associated with the scoring rule. Specifically, we use the logarithmic
score: 𝑓 (𝑄𝑥 , 𝑦) = 1

|𝑌 |
∑

𝑦 log𝑄𝑥 (𝑦), i.e., the average log probability
of observed features (𝑦) under the proposed model 𝑄𝑥 . This score
is associated with the Kullback-Leibler (KL) divergence, i.e., the 𝑄𝑥

that maximizes the score has the minimal KL divergence to 𝑃 .
Second, the scores may be computationally complex functions

that cannot be easily evaluated. For example, programmable data
planes are unable to compute logarithms. To bypass this issue, when
the control plane decides on a set of evaluation points 𝑥 , it precom-
putes the scores, in our case log𝑄𝑥 (𝑦), for various 𝑦s, converting
the parametrized distribution into a log-probability lookup table. As
a result, scoring the distribution is just a lookup and add, allowing
for calculating scores in the data plane, on all traffic. We can even

score multiple distributions in parallel for anomaly detection and
BO. Each additional distribution allows BO to explore more areas
of the parameter space at once.

3 PRELIMINARY EVALUATION
We evaluate the feasibility of our approach by simulating a traffic
feature that follows a Zipf distribution with 𝑎 = 1.3. In addition,
we simulate attack traffic that follows another Zipf distribution
with 𝑎 = 1.1. This feature might represent destination ports per
source: For benign sources, the distribution is narrow, as most
send packets to widely used ports. For attack sources, e.g., a port
scanning attacker, the distribution is naturally wider.

We score three distributions in the data plane: the current best
estimate for anomaly detection, and two others for exploration.

Anomaly detection Our approach works well if we can learn an
accurate distribution of benign traffic. The ROC curve in Figure 1a
shows the true and false positive rate for confidence interval (CI)
thresholds from 0–100%. After observing only 10 packets per flow
and using a 95% CI, we detect 94% of anomalies with 5% false
positives (green line, top left). Performance degrades with worse
distributions, e.g., if we learn from attack traffic.

Learning over time Figure 1b shows that we can learn accurate
distributions. We bootstrap learning with 20 iterations of 1000
benign packets each, followed by 10 iterations of 1000 benign and
attack packets each. By combining scoring with anomaly detection,
we avoid poisoning the model with attack traffic. Learning in the
control plane with a sampling rate of 10% misses the distribution
tail, degrading performance even before the attack starts.

4 CONCLUSION AND FUTUREWORK
We have shown that we can learn distributions to detect anomalies
in the control plane via BO by leveraging the data plane to score
distribution candidates on all traffic without sampling.

In future work, we want to explore the potential and limitations
of our approach. How complex distributions can we learn with a
given amount of data-plane resources for scoring? Furthermore,
we assume that attacks can be identified by sharp changes in the
distribution, such that we reject anomalies while learning benign
shifts. Does this assumption hold in practice?
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