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Abstract

The primary role of the boot firmware is to initialize essential system components
before booting an operating system. At the same time, it should provide hardware
descriptions and interaction mechanism through the UEFI and ACPI standards.

The current boot firmware for Enzian is unmaintainable due to its outdated design
and reliance on an obsolete EDK2 version, without any obvious way to update it.
Consequently, a complete rewrite is necessary.

This thesis undertakes the development of a boot firmware from the ground up.
Leveraging the latest version of EDK2, a UEFI implementation, the objective is to
build a solid foundation that’s both comprehensible and easily maintainable.

The firmware takes inspiration from existing platform ports of EDK2, resulting in
a greatly simplified development process, which is further improved by utilizing the
containerized build system.

The implementation produced, even though not yet able to boot an OS from disk,
aligns with established industry practices and aims to be a well-structured base.
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1 Introduction

The boot process involves a lot of software in modern days. There’s a lot of
hardware to be initialized and the differences between similar components can
be significant. Nonetheless, the same operating system must be able to run
seamlessly on vastly different hardware configurations.

The most obvious way to achieve this is to define standard ways for the OS
to interact with the firmware and hardware.

For this reason, the UEFI and ACPI specifications were developed. They in-
troduce a standard boot sequence, an interface between the OS and the firmware
and a way to describe the hardware and how to use it.

These two have been the standard on x86 machines for quite a while, whereas
ARM computers have only recently started to adopt them: in the past, Linux
only supported Flat Device Trees (FDTs) on ARM and lacked a complete ACPI
support [2].

Since FDTs are only a way to describe how the hardware is structured, the
current operation of devices is entirely a responsibility of the kernel, even down
to power management. Interfaces to interact with the hardware and for platform
and power management are instead provided by ACPI with the ACPI Machine
Language (AML) [6]. This language can describe the devices within a system,
their properties and the functions that they support, while being platform-
independent. An OS supporting ACPI can then interpret this byte code to
use the devices described, effectively replacing the platform-specific code in the
kernel that achieved this.

Given all the advantages that ACPI can provide, ARM has decided that
it should be preferred over FDTs on servers that implement Server Base Boot
Requirements [10].

Enzian already had a UEFI implementation written by Cavium, though it
required a full rewrite: the repository’s history is not available, the structure
is outdated, the documentation is lacking and EDK2 has changed quite a bit
in the meantime. In my opinion, the burden of maintaining such project or
porting it to a new EDK2 version is unjustifiable, as most of the stuff needs to
be rewritten or heavily adapted.

Similar to the previous implementation, the UEFI firmware is booted by the
Arm Trusted Firmware (ATF), which should be as small as possible and contain
just enough code to accomplish its goals. This was not the case for the old ATF
implementation on Enzian: together with the BDK, it was responsible for the
initialization of many components that were only required in the later boot
stages, such as the PCIe controllers and SATA controllers. This is undesirable,
since the UEFI as a higher footprint anyway and the PEI boot phase (introduced
in the next section) can be used to perform platform initialization.

In contrast, the new ATF implementation developed by A. Legnani [13] does
not perform such tasks: this means that it is now the UEFI’s responsibility to
initialize the needed hardware. Unluckily, the project required more time than
anticipated, thus the current UEFI implementation doesn’t yet contain modules
to set up GSER, PCI and SATA. As such, it requires the use of the old ATF in
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order to use said functionality, until the relevant code gets ported.
This report explains the reasoning and the process behind the development of

the new firmware which, even tough still incomplete, aims to be a solid base for
future projects, by attempting to closely follow current approaches in platform
implementation.
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2 Background

2.1 Arm Trusted Firmware (ATF)

The Trusted Firmware-A (TF-A) [15] is a reference implementation of secure
software that sits before UEFI in the boot process. It was formerly known as
Arm Trusted Firmware (ATF) and in the document I will refer to it by this
older name.

Its tasks are to create a trusted computing environment and to enable secure
system initialization before the hand-off to UEFI (or other bootloaders). It
consists of several stages (BL1, etc.), the last of which is BL33, the bootloader.
In our case this stage is EDK2 (introduced later), but alternatives like U-Boot
are available.

2.1.1 Secure Monitor Call (SMC)

The ATF also needs to handle SMC s (Secure Monitor Call), conforming to their
calling convention. These calls can be used by later boot stages to interact with
hardware and the ATF. The SMC instruction generates a synchronous exception
that is then handled by Secure Monitor code running in EL3. Registers are used
to pass arguments and return values.

One example of the currently available SMCs is one to interact with the
Enzian Firmware Resource Interface (EFRI) [19].

2.2 UEFI

The Unified Extensible Firmware Interface (UEFI) provides an interface to allow
interaction between the OS and the firmware. It provides data tables containing
platform information and service calls. It is only a specification, with the goal
to standardize these interactions. There are implementations of course, one of
which is EDK2, described later.

2.2.1 Components

Its main components are the following, each serving a distinct purpose:

Boot Manager The boot manager is responsible for managing the available boot
options, enabling the user to select the desired boot configuration.

Boot Services The Boot Services provide a set of runtime processes that are
available during the boot process, including but not limited to: memory
allocation and file system access.

Runtime Services Similar to Boot Services, but are available after the OS has
started, providing a way for applications and drivers to interact with the
firmware.
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UEFI Drivers These provide initialization and management functions, enabling
the firmware to interact with various hardware components, such as stor-
age devices and network interfaces.

UEFI Applications Standalone programs that can run directly from the firmware
environment. These are commonly diagnostic tools and configuration in-
terfaces.

2.2.2 Boot Stages

The UEFI specification defines the following boot stages, whose implemen-
tation can vary greatly: for example, some platforms might skip SEC phase
completely, and the modules used in the PEI phase change depending on the
architecture (e.g. the Arm-specific ArmPlatformPkg/MemoryInitPei/Memo-
ryInitPeim.inf).

SEC (Security Phase) First stage in UEFI boot, but may be preceded by other
binary code. Usually set up the stack and verifies PEI before hand-off. In
the past it also used to be responsible for a lot of the tasks that the ATF
now performs, thus it has considerably shrunk.

PEI (Pre-EFI Initialization) The PEI phase is responsible for setting up the (mini-
mal) components required for the subsequent phases. It usually initializes
main memory, a serial port, handles the case in which the system is waking
up after sleep.
This phase also loads PEI modules (PEIMs) and dispatches them in a
dependency-aware way: each PEIM can specify its dependencies, and it’s
executed after they are met, in a non-deterministic order (decided at run-
time). They also inherit dependencies from the libraries they link to.

DXE (Driver Execution Environment) In this phase, a dispatcher executes DXE
modules after checking their dependencies. During this phase, needed
devices are initialized by DXE drivers (e.g. SATA Controllers, network
interfaces, ...).

BDS (Boot Device Select) It’s part of DXE and just processes boot options, ini-
tializes boot devices and starts executing them.

TSL (Transient System Load) Stage before OS hand-off. Allows one to enter an
UEFI shell or run an application.

RT- Runtime UEFI hands-off to the OS. The OS is responsible to exit boot
services to free all memory that is not needed anymore. Usually the OS
uses its own drivers to control hardware devices. Some runtime services,
such as ACPI, remain.
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2.3 EDK2

Tianocore EDK2 (EFI Development Kit) is the reference implementation of
UEFI by Intel. It contains various libraries and components to aid in the im-
plementation of UEFI for a specific platform.

Most components are platform-agnostic, as they are designed to depend on
pre-defined APIs. These APIs must then be implemented by custom platform-
specific libraries (e.g. PciHostBridgeLib).

At the time of writing there are many platform implementations publicly
available online[26], but none for Enzian.

By browsing through the pre-existing implementations (including the old
UEFI firmware by Cavium), it’s apparent that the standard practice is to modify
a pre-existing platform - usually ARM VExpress - to implement new ones. It’s
sensible, as a big set of libraries and components is shared by all platforms; this
way, the package structure is kept similar.

While the build system is quite flexible, it lacks meaningful IDE support,
making editing a bit more complex than it could be if the configuration files
were automatically parsed.

Now let’s define some EDK2 terminology, useful to understand how the
project is structured and how the build system works.

Package
Each package can contain other packages, files for a set of modules. They
are described by a DSC and DEC file, and optionally contain an FDF file
for platform packages. A platform package is the implementation for a
specific platform, which specifies what components and libraries to use, as
well as the values of each PCD and more.

INF file
An INF file[4] is used to define a module (see below). Its syntax is similar
to an INI file: it’s composed by sections and each section contains entries
in key-value format. It describes what a module is, its dependencies, what
source files it contains, and more. For example, the Defines section sets
the name, unique ID, module type, etc., while the Depex section is used
to specify dependencies.

Module
A module is described by an INF file, and it can be either a library instance
or a component. It can have different types; the most relevant ones for
this work are BASE (used for libraries), SEC (a SEC module), PEIM (a
PEI Module), DXE_DRIVER (a driver in the DXE phase, commonly to
provide protocols for devices, explained below), or UEFI_APPLICATION
(executable EFI image, for example the UEFI Shell itself).
Each module can have dependencies, commonly PCDs, PPIs and Proto-
cols, described below.
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Component
An executable image. Can be a runtime driver, a PEI module (PEIM),
and more.

Library
A library consists of an implementation of a certain interface. A Library
Instance is the actual implementation, defined by an INF file, specifying
the Library Class (the API for a library, usually the C header) it imple-
ments. Then, in the platform package’s DSC file, each library class needed
is mapped to a library instance in the following way:

1 # Library Class | Implementation path
2 SerialPortLib|ArmPlatformPkg/Library/PL011SerialPortLib/

PL011SerialPortLib.inf

There can be many implementations of the same library class and different
ones can be used in the same platform at different boot stages (for example,
two distinct memory allocators).

Driver
Can follow the UEFI or the non-UEFI driver model.
UEFI drivers provide bindings that expose functions to check whether a
device is supported, a start and to stop function; they must not configure
any hardware.
DXE drivers have fewer restrictions: they can install any protocol and per-
form necessary hardware and software initialization. For this reason they
are the commonly chosen way to initialize devices such as PCIe controllers.

UEFI Application
Executable image that is automatically unloaded after executing. An
example is the EFI Shell.

PCD
PCD stands for Platform Configuration Database. When referring to a
PCD one usually refers to an entry in such database. PCDs can ei-
ther be fixed at build time or dynamic, and they are one of the main
ways to pass around values between modules. A common use case is
to specify platform configuration: for example, where the stack begins
(PcdCPUCoresStackBase), or what level of verbosity the firmware should
use when printing debug information (PcdDebugPrintErrorLevel).
Modules can require PCDs and/or produce new ones. An example defini-
tion of a PCD value in a DSC file is

1 # PCD identifier | Value
2 gArmPlatformTokenSpaceGuid.PcdCPUCoresStackBase|0x00B00000

HOB
A Hand-off-block commonly contains information about resources. They
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are used in early stages to hand-off system information. One common
use case is to pass information about system memory from the ATF
to UEFI. The full list of HOB types is defined in a header file in the
EDK2 repository, edk2/MdePkg/Include/Pi/PiHob.h. Common ones
are EFI_HOB_TYPE_CPU and EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.

GUID
A 128-bit globally unique identifier. They are used to uniquely identify
things such as modules (using the FILE_GUID field) and PPIs/Protocols.
In the latter case, they are defined in a C header and can then be referenced
from INF files and C source files, in order to be used in a module.
These two are example GUID definitions, one in a header and one in an
INF file:

1 #define EFI_DRIVER_BINDING_PROTOCOL_GUID \
2 { \
3 0x18a031ab, 0xb443, 0x4d1a, {0xa5, 0xc0, 0xc, 0x9, 0x26, 0x1e, 0x9f,

0x71 } \
4 }

1 ## Include/Path/To/Guid.h
2 gEfiDriverBindingProtocolGuid = {0x18a031ab, 0xb443, 0x4d1a, {0xa5, 0xc0,

0xc, 0x9, 0x26, 0x1e, 0x9f, 0x71}}

PPI A PEIM-to-PEIM Interface (PPI) is an interface between different PEI
modules. Each PPI is identified by a GUID and provides an API. The
functions defined in the API can be called after retrieving the PPI. The
GUID is used to retrieve the PPI.

1 // ... GUID usually defined elsewhere ...
2 EFI_GUID gEfiExampleGuid = {...};
3

4 // -- EFI_PEI_EXAMPLE_PPI’s definition is omitted. --
5 // This initializes the API.
6 EFI_PEI_EXAMPLE_PPI gEfiExamplePpi = {
7 Func1,
8 Func2
9 };

10

11 // Descriptor of our PPI
12 EFI_PEI_PPI_DESCRIPTOR gExamplePpiDesc = {
13 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
14 &gEfiExampleGuid,
15 &gEfiExamplePpi
16 };
17

18 // Publish example PPI
19 Status = PeiServicesInstallPpi (&gExamplePpiDesc);
20 ASSERT_EFI_ERROR (Status);
21

22 // Retrieve and use the PPI
23 Status = PeiServicesLocatePpi (
24 &gEfiExampleGuid,
25 0,
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26 NULL,
27 (VOID **)&ExamplePpi
28 );
29 ASSERT_EFI_ERROR (Status);
30

31 // Call a function of our API
32 ExamplePpi->Func1(...);

Protocol
A way to communicate between DXE drivers, analogous to PPIs for PEMs.
There are Boot Services (Section 2.2.1) to install protocols and retrieve
them, such as InstallProtocolInterface(), ReInstallPorotocol-
Interface(), InstallMultipleProtocolInterfaces(), LocatePro-
tocol(), OpenProtocol()[24].
Examples are the Disk I/O protocol (exposing ReadDisk and WriteDisk)
and PCI Root Bridge I/O protocol.
Code adapted from [24].

1 // Protocol handle. It will be assigned when installing the protocol.
2 EFI_HANDLE msampleHandle = NULL;
3

4 // API defined somewhere else.
5 EFI_SAMPLE_PROTOCOL mSampleProtocol = {
6 SampleProtocolApi,
7 OtherSampleProtocolApi
8 };
9

10 // Install the protocol (then don’t forget to handle Status)
11 Status = gBS->InstallMultipleProtocolInterfaces (
12 &mSampleHandle,
13 &gefiSampleProtocolGuid,
14 NULL
15 );
16

17 // ...
18 // Somewhere else, retrieve the protocol and use it
19 EFI_SAMPLE_PROTOCOL *SampleProtocol;
20 Status = gBS->LocateProtocol(&gefiSampleProtocolGuid, NULL, (VOID**) &

SampleProtocol);
21 // Handle Status before the next line...
22 Status = SampleProtocol->SampleProtocolApi();

2.4 Enzian

Enzian [9] is a research computer developed at ETH Zürich, boasting a server-
class CPU (Cavium ThunderX) coupled to a large Xilinx FPGA. These two are
connected through ECI, a coherent processor interconnect: this way, the FPGA
can act as a second NUMA node. This means that, for example, it can then
implement a memory controller to increase the system memory available to the
CPU.
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The Enzian machine is connected with the Board Management Controller
(BMC), which is responsible for power management, providing an implementa-
tion of the EFRI protocol [19] and more.

The fact that this system’s structure can change through the FPGA does
not necessarily complicate boot firmware development, as long as the operating
system can be booted through the components on the CPU side (e.g. on a drive
attached to a SATA controller). On the other hand, if the system were to boot
via PXE through one of the FPGA-connected NICs, then the firmware would
need a way to interact with devices exposed by the FPGA.

2.5 Podman

Podman [17] is my tool of choice to manage OCI containers in the project. It’s
used to set up a build and development environment by creating a container, us-
ing a Tianocore-provided image that contains all required tools to build EDK2.

It runs on Linux, or on macOS and Windows using a podman-managed
virtual machine.

I prefer it over docker because it runs without root privileges and because
its CLI is Docker-compatible [12].

Alternatively Docker can be used, though it might mess with the permissions
of the folders, since by default it runs as root.

2.6 Arm Development Studio

Arm Development Studio (ArmDS) [14] is a development solution specific for
the Arm architecture. Its Arm Debugger is the software that I used to trou-
bleshoot the firmware on an Enzian prototype, which was connected with an
Arm DSTREAM debug probe.
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3 Implementation

Now that the related technologies have been introduced, the implementation of
the UEFI firmware for Enzian (based on EDK2) is explained, from the folder
structure and the build system, to the PCI driver.

During the implementation, one of the main difficulties I’ve encountered was
the lack of sources explaining platform porting. The documentation for EDK2
is divided into multiple documents (e.g. [5]) and is broad, but it doesn’t contain
many concrete examples on implementing processor-specific libraries and such.
The best way to find this is to browse the source code for pre-existing drivers for
other platforms, whose specifications are often proprietary and thus not publicly
available: understanding why another implementation does what it does without
it can be complicated.

The fact that examples on how to port a platform can be hard to comprehend
is not the only obstacle: I also did not manage to uncover a complete and useful
guide to do so; the process of writing a platform package and its drivers started
very slowly, and it initially felt a lot like trial and error, with lots of debugging
required in the early stages (see Section 3.1.3).

Another big barrier is the fact that the previous firmware uses an old folder
structure (described later in Section 3.1.1) that coupled the EDK2 source to
the platform package. Moreover, the full history of said firmware has not been
provided. These two gave me a hard time in figuring out what was changed
in EDK2 itself and how to correctly port the now obsolete components and
libraries. I had to dig in the commit history of the EDK2 repository [25] to
figure out what changes had been made and why, often being unable to find any
meaningful results. To add insult to injury, some EDK2 libraries and drivers
were modified in-place, without any obvious way to figure out which changes
have been made.

In the first weeks of the thesis I started from the old firmware’s platform
package and tried to port it to the latest version of EDK2, without success.
Many changes had occurred in the repo, with APIs changing, modules being
renamed, moved or even being removed altogether. Due to the huge refactor
needed, which was not even guaranteed to produce a working platform, I instead
decided to start the implementation from scratch.

First, the new implementation makes some assumptions regarding what the
ATF does before handing-off to UEFI. Some of these assumptions could be
removed by directly implementing features on the UEFI side.

1. Memory is already initialized.

2. The serial ports are initialized.

3. The UEFI firmware is located at address 0x500000 (in memory).

4. The UEFI firmware’s size is at most 0x400000.

5. The stack is at 0xB00000, and it can be at most 0x7000 big.
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6. There are some SMC calls that can be used.

7. The PCIe and SATA controllers are initialized.

8. Information about system memory, such as start address and size, can be
retrieved.

These assumptions are required for convenience: for example, the ATF al-
ready prints debug information to the serial port, meaning that it already has
to initialize it itself, so there is no need to do it again.

Also, memory initialization is very hard and, since the ATF has to initialize
it anyway to work, it makes sense that UEFI should just worry about mapping
it.

The firmware being located at said address is just for convenience during
development. One could bundle ATF and UEFI together to reduce space by
having no padding, but this would complicate memory mapping, and it would
make the flashing procedure harder, as now the starting address of UEFI is
unknown. By having a clear reserved flash region for UEFI, the firmware knows
the start address at compile time, independently of the ATF. The same applies
to the stack start address.

Some SMC calls can be used to interact with the hardware through the ATF,
in order to avoid duplicating functionality (e.g. using EFRI).

In the old firmware by Cavium, both PCIe and SATA controllers were ini-
tialized by lower level firmware; the UEFI implementation did not contain ini-
tialization code for them neither in PEIMs nor in DXE drivers.

This is not the case anymore in the new ATF implementation, so supporting
them requires either a custom PEIM or DXE driver. As of now, I did not
manage to implement this due to time constraints, though the procedure could
be ported from the already existing implementation in the BDK.
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3.1 Project Structure

The first thing a person sees when opening the repository on GitLab is the
README, accompanied by the files in the root directory. For this reason, it is
important to have a clear and comprehensible structure that’s easy to navigate,
thus it makes sense for it to be introduced before the rest. After the structure
itself, the containerized build system is illustrated.

The current Cavium firmware for the Enzian platform requires very spe-
cific tools to be built (even a custom GCC, which is not readily available) and
setting up such development environment is very cumbersome. Also, the folder
structure mixes together the platform-specific implementation and the platform-
agnostic EDK2, making it hard to distinguish changes made to one or the other.

For this reason, I’ve tried to choose the most sensible setup in order to allow
for quick and reproducible builds, while at the same time simplifying the time
required to understand the project and make changes. Lastly, the chosen folder
structure (adapted from the edk2-platforms repository[26]) should help in
keeping the EDK2 [25] version up to date; it is explained in the next section.

3.1.1 File structure

As already said, the file structure is a very important choice that will affect how
easily distinguishable different components are.

$WORKSPACE
ArmPkg
ArmPlatformPkg

Drivers
Include
...
ThunderPkg

ThunderPkg.dsc
ThunderPkg.dec
ThunderPkg.fdf
...

...
BaseTools
...
UnixPkg
...
Makefile

(a) Dirtree of old firmware

$WORKSPACE
edk2

ArmPkg
...

enzian-platform
Platform

Cavium
ThunderPkg

ThunderPkg.dec
ThunderPkg.dsc
ThunderPkg.fdf
...

build-container.sh
...

(b) Dirtree of new firmware

Fig. 1: Different structure of old and new

The old firmware, written by Cavium, can be found in the enzian-uefi
repository [11]. Its structure (Figure 1a) is quite awkward to work with, and
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it is not recommended anymore: it consists in putting the platform package
inside the EDK2 ArmPlatformPkg one. This causes issues, as now the folder
structures of both the firmware implementation and the platform port are tied:
the repository is now a fork of edk2/master and syncing it with new changes
in EDK2 is harder, as even the histories are correlated.

Also, getting started with the project structure is harder: the platform pack-
age is "hidden away" in the firmware itself and the root of the repository is
composed of tens of folders, among which the README, the build scripts and
the Build directory are dispersed.

Instead, I used the same structure as the edk2-platforms [26] repository:
The edk2 repository is available as a separate folder in the root, while the
platform package is located inside the enzian-platform folder. Also, the edk2
folder is a submodule, meaning that it can be updated and downgraded at will,
independently of the rest of the project.

This kind of folder structure also allows build scripts, build directory and
various READMEs to live in the root of the repository. The consequence is
that they are easily identifiable from implementation-related files, as those are
entirely contained in separate folders.

Inside the edk2-platforms folder, as per the official Tianocore repo’s stan-
dard, there is a Platform folder. Normally one should split part of the imple-
mentation to the Silicon, which I did not yet do. Preferably, this should be
the case, as it allows distinguishing between the processor-specific definitions
and the board ones. In the future, this makes it possible to share a lot of the
implementation between Enzian 3 and the potential Enzian 4 platform.

Currently, there is an issue with the structure: the Conf folder resides inside
the edk2 directory. Some future changes might require changes to the files
within it, which only requires setting an environment variable to indicate the
new path of said folder; it’s thus possible to keep it separate from the submodule.

The ThunderPkg is the platform package, containing all the definitions and
implementations needed to build a working firmware.

As shown in figure Figure 1b, three such files are ThunderPkg.dsc, Thun-
derPkg.dec and ThunderPkg.fdf.

First, the ThunderPkg.dsc file states all required component/libraries and
sets the Pcd values needed, as well as the build options for the platform package.

Then there’s the ThunderPkg.fdf file, which describes the layout of the
produced image (size, expected start address, alignment, etc.), as well as its
contents (components, etc.).

The ThunderPkg.dec file is used to define new Pcds, Guids and more for
this package.

Other than these files, there are directories to contain drivers, libraries,
headers and others. This makes it easy to distinguish between each module
type, as otherwise one would have to open the INF file to distinguish between
libraries and drivers.
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3.1.2 Build system

The project’s build system leverages EDK2 itself and either Podman or Docker.
The build-container.sh script uses one of the two to set up a build en-

vironment, preferring Podman if available.
At the present time, EDK2 recommends the use of containers to be built [22].

The container is based on a Tianocore-provided image (currently an Ubuntu-
based one1) and mounts the entire project folder inside its work directory. Af-
terwards, it runs the build.sh script.

This script uses EDK2’s build tools to build the platform module. It func-
tions as follows: First, the edk2 git submodule is initialized with the recursive
option (as it contains other submodules itself).

Then, the required env vars are set, either in build.sh or env.sh.

TOOLCHAIN=GCC5
In our case we’re using GCC, but one could use the Microsoft compiler
instead.

ARCH=AARCH64
The architecture that our platform uses.

PACKAGE=Platform/Cavium/ThunderPkg/ThunderPkg.dsc
The package that we want to build (our platform package).

GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
The prefix of our toolchain, which then is prepended to e.g. gcc.

PWD=$(pwd)
The workdir (the current folder inside the container).

PACKAGES_PATH="$PWD/edk2:$PWD/enzian-platform"
A list of root folders inside which the build system can look for packages.

WORKSPACE="$PWD"
The root of the project.

NUM_CPUS=$((‘getconf _NPROCESSORS_ONLN‘ + 2))
Threads to use for building.

Afterwards, different steps are performed:
First, the edk2/edksetup.sh script is run. This checks that WORKSPACE is

set, checks whether python3 is present and whether the BaseTools directory
exists.

Then a python virtual env is set up in .venv (if not already present) and
activated. Inside this env the required packages are then installed from the
edk2/pip-requirements.txt file.

The last step before building is to make BaseTools. It looks like using the
-j argument breaks it, so its build process is single-threaded.

1 ghcr.io/tianocore/containers/ubuntu-22-build:latest

ghcr.io/tianocore/containers/ubuntu-22-build:latest
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Afterwards, the build script found in BaseTools has been added to the
PATH, thus we can run it. According to the EDK2 build instructions, it is now
preferable to use stuart instead, but I’ve chosen build because I find it easier
to get started with; it’s also the one used in the old project.

This script takes some arguments, the main ones being the following:

-n $NUM_CPUS threads to use.

-a $ARCH architecture to build for.

-t $TOOLCHAIN toolchain to use.

-p $PACKAGE The package to build.

-b DEBUG Since the implementation is not complete I only performed DEBUG
builds, with fewer optimizations and more logging.

-y report.txt Tells the build system to produce a report. This file is espe-
cially useful when looking for the dependency chains of each component,
since they not only have dependencies of their own (specified in the INF
file), but also inherited from all the libraries they depend on. This re-
port saves a lot of time when figuring out why a component is not being
executed by the DXE dispatcher.

After running it, a Build folder (Figure 2) will appear in the workspace
together with the report.txt file.

This folder contains all built components (both as ELF files with debug
symbols and as PE32+), all firmware volumes and the final flash image THUN-
DER_EFI.fd. This image encapsulates all firmware volumes (see Section 3.2.1)
which, in turn, contain all components.

Build
ThunderPkg

DEBUG_GCC5
FV..................................FVs and final THUNDER_EFI.fd

THUNDER_EFI.fd.....................................file to flash
FVMAIN_COMPACT.Fv
...

AARCH64...........................................Built components
ArmPlatformPrePeiCore.debug............ELF file, symbols
ArmPlatformPrePeiCore.efi.......PE32+, without symbols

Fig. 2: Dirtree of $WORKSPACE/Build

To boot, the final image can then be flashed on a machine at the correct
address (currently 0x600000).
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3.1.3 Flashing and Debugging

For development, I used mostly the hinterrugg0X prototype boards, as the
flashing procedure requires less steps than an Enzian machine. Also, to be able
to debug the firmware, I needed hinterrugg01 since, at the time, it was the
only prototype boards equipped with a debugger connection.

In order to flash the image, one has to attach to the BMC console and run
thunder_update -a 0x600000 -n path/to/THUNDER_EFI.fd to flash the im-
age in flash at the given offset.

Given how hard it is to find documentation on how to port an ARM platform
with EDK2, I often ran into runtime errors originating from PCDs that I did
not set. This is because these PCDs, when not set, inherit their default value
(specified in their definition), often 0x0. Many PCDs are used to specify ad-
dresses of registers, offsets, sizes and so on, which resulted in runtime errors that
required a debugger in order to be diagnosed, such as Data Abort Exceptions.

In later boot stages (e.g. DXE), exceptions are trapped and the correspond-
ing error message is printed, including the location in the C source at which
it occurred. This makes the debugger less of a requirement for driver develop-
ment. Given how the flash image is structured, the components that necessitate
a debugger the most are those in the first Firmware Volume, FVMAIN_COMPACT.

Adding the source files to Arm Development Studio requires uploading the
.debug files to the machine where said software runs. Its debugger is GDB
based, so to add each of them one has to use the add-symbol-file command.
This command takes a path to the symbol file and the offset at which it’s located
in memory. Entering the correct path and offset combination for each file is a
long and error-prone process, as the user has to manually figure out where it
was placed in memory. Also, this location might change between builds, which
makes a manual computation of said offsets unfeasible in the long run.

In order to automatically compute these offsets and to generate the required
GDB commands to add the symbol files to the debugger, I’ve created the script
gen-symbol-files.py. This script works by processing some intermediate files
produced by the build system.

Inside the Build folder (Figure 2) there is FV/FVMAIN_COMPACT.Fv.map,
which then contains entries in this format:

ModuleName (... EntryPoint=0x1234abcd ...)

With a regex it becomes trivial to extract the two pieces of information in
bold text, which are the name (without extension) of the symbol file and the
entry_address. Note that this address indicates where the first instruction
(entry point) resides, and not where the file actually starts in memory. This
needs to be computed with the next step.

Now, the symbol file path is resolved and the e_entry field of its ELF header
[1] is read. This field is the relative offset of entry_address from the start of the
file, thus the offset of the symbol file in memory is offset = entry_address
- e_entry.
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The ModulePath depends on the path of the symbol file on the debugger
machine, which is specified in a variable in the script. This path does not have
to be fixed and can be changed if desired.

Finally, the completed commands, add-symbol-file ModulePath off-
set, can be appended to a .ds file that can be executed by the debugger to:

1. Add all symbol files.

2. Add a breakpoint at the firmware entry.

I did not manage to find better ways to debug the firmware other than
uploading all the .debug files and the generated .ds script to the debugger
machine. However, since they can be uploaded via scp as a folder, different
iterations of the firmware can be easily debugged by using the correct bundle.
Also, the procedure of uploading said auto-generated folder is quick and leaves
little room for error.

The only downside is that the source files need to be uploaded separately and
one has to map the paths correctly, since the symbol files contain paths relative
to the build environment and not the debug one (concretely, EDK2 source files
have the prefix /source/edk2 since they are built in a container). I did not
try to solve this issue, but one solution could be to bundle the sources together
with the symbol files and to include a directive in the ds script to substitute
paths.



3 Implementation 21

3.2 Boot Flow

When the ATF is done executing, it hands off to UEFI. To do so, it just jumps
to the start of the UEFI image (0x500000). Now the UEFI firmware starts
executing, runs to platform initialization, and at some point it starts dispatching
modules, drivers, etc. at runtime. This is where a more in-depth description
the FDF file becomes necessary.

3.2.1 ThunderPkg.fdf

The FDF file specifies how big the image is, where it expects to sit, the align-
ment, which Firmware Volumes it contains and in what order (optionally where
exactly they are located); then, for each FV, it tells what modules it must
include and in what order. Finally, the instructions on how to combine the
produced binaries.

The FDF [23] file starts with the FD.THUNDER_EFI section, which defines
the entire flash image for the device. This contains:

BaseAddress = 0x500000 Tells the build system that the image assumes
to start the specific address when it starts executing. In the code, it’s followed
by |g....Pcd..., which assigns the value (left) to the given PCD (right).

Size = 0x400000 This is the length of the image. By previous convention,
the image has a fixed size to aid in flashing it, as one only has to erase the given
memory range. This size is bigger than needed, to stay conservative in case the
firmware needs to grow in the future.

ErasePolarity = 1 To erase flash, 0xFF bytes are written to it. Currently,
the flashing procedure already erases the memory region before writing data, so
this parameter is useless. Nevertheless, it is here in case this changes.

Blocks These two are related to the previous one, as Size = BlockSize *
NumBlocks. These properties depend on the flash.

1 BlockSize = 0x1000
2 NumBlocks = 0x400

FV definition These next lines of code are strictly related to each other and
define what FV is to be placed where.

1 0x00000000 | 0x00400000
2 ...PcdFvBaseAddress | ...PcdFvSize
3 FV = FVMAIN\_COMPACT

The Firmware Volume (FV) is what then contains modules and components.
The second line of PCDs are assigned a value based on the first line: it sets
0x400000 to PcdFvSize and adds 0x0 to PcdFvBaseAddress, which was pre-
viously set to BaseAddress above! At the start of the project, a typo in the
PCD name produced an image that would jump to the wrong entry point, which
prevented it from functioning. The last line is the identifier of the FV to be
placed in the given region.
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Next, the Firmware Volume sections, which define the components to be
placed within them. Note that a Firmware Volume can also contain another
one, nested within.

The different INF statements place a component in the FV, sequentially,
in order. FILE statements can place other FV sections, binary blobs, and
more. There are two sections used, FV.FvMain, containing DXE modules, and
FV.FVMAIN_COMPACT, containing the entry point, PEIMs and the entry point of
DXE. Splitting these two parts can be beneficial, as the second one is larger and
could be compressed.

First, FV.FV_COMPACT. The parameters are the following:

BaseAddress = 0x500000
Again, since this image contains the entry point, we need to specify the
base address.

FvAlignment = 16
Aligned to 16 bytes.

Rest The other parameters are less relevant, and I’ve never seen them being
changed for other platforms, so I omit them.

After these parameters there’s the list of things to be included.
The entry point of UEFI is the first element of the list, PrePeiCoreMPCore,

as it is placed at the start.
The other INF entries are just PEIMs and the DXE entry point.
The last entry is a FILE FV_IMAGE, which is the FV section to be nested

within this one.
After this one, there’s another FV section, containing all the components

for the DXE phase (mostly drivers). The parameters are similar and again, the
components are included with INF directives.

The only difference is the presence of an APRIORI directive: this indicates
a list of modules that must be dispatched in a prescribed order, ignoring their
dependencies.

3.2.2 SEC Phase

As said before, the first instruction at BaseAddress is a jump. This executes
the entry point of PrePeiCoreMPCore. This module is for (almost) every Arm
platform that EDK2 supports. It is written in assembly and C and its entry
point does the following:

1. If executing in EL3, switch to EL2 before jumping to PEI. Otherwise, if
in EL1 or EL2 Sec, it goes straight to PEI. Some setup is done depending
on the level.

2. Then jump to MainEntryPoint, where only the primary core is allowed to
run.
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3. The temporary stack is set up (later permanent memory will be setup)
and backtraces are terminated by setting the frame pointer to null.

4. Jump to CEntryPoint.

Now that the stack is set up, C code can run.
CEntryPoint is defined in PrePeiCore.c. This function invalidates cache,

sets up the exception vector table, enables the VFP, and then branches depend-
ing on whether it’s executing on primary core or not. The secondary cores run
the SecondaryMain function, which I will not discuss, while the primary one,
in order:

1. Runs all library constructors

2. Prints firmware version and initializes the debug agent (including the serial
port).

3. Calls ArmPlatformInitialize

4. Calls PrimaryMain.

The serial port initialization is explained in its own section, see Section 3.3.
ArmPlatformInitialize is defined in the ArmPlatformLib library. In our

case it does nothing.

3.2.3 PEI Phase

After this, PeiMain is called. This module is the PEI entry point and its job is
to describe the memory and map it (system memory, firmware locations, etc.),
and then transition into DXE. It should be as small as possible. Often one
might want to initialize some devices before DXE. This phase also dispatches
PEIM (Pre-EFI Modules) at runtime, in a dependency-aware fashion, explained
in the background section.

One of the most important libraries here is again ArmPlatformLib, where
one must also define a function that sets up a table of memory mappings. This
function, ArmPlatformGetVirtualMemoryMap, is responsible for creating a ta-
ble that describes all memory regions and their types, such as system memory
and configuration registers for devices.

The module MemoryInitPeim requires this library, as it calls said function in
order to obtain the table of mappings. This table is then used to map memory
accordingly and to know what type each region is. In our case, all physical
memory ranges are mapped 1-to-1.

The main regions are:

• The available system memory (starting at 0x1400000, after the firmware-
reserved space).

• The UEFI firmware and stack themselves.

• Various registers for peripherals (UART, GIC, PCI, and more).
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Each memory region also has attributes that describe what it is: for exam-
ple, the UART will have attributes ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
while system memory might have attribute DDR_ATTRIBUTES_UNCACHED.

Given this table, EDK2 can autonomously map each of the ranges and know
what every one of them corresponds to.

Since the system memory configuration can change between boots (and some
machines even have hot-pluggable memory), its range should be described in a
HOB produced before this module runs, or retrieved with an SMC call. Other-
wise, one must know the memory configuration at build time, which can be the
case for a Single Board Computer, but does not apply to our situation. This
HOB is commonly handed-off by the ATF to the UEFI, since the ATF knows
exactly the configuration after initializing DRAM.

An example memory mapping is defined as follows:
1 // VirtualMemoryTable contains the list of regions to be mapped.
2 // DRAM Mapping for UEFI code and Stack, see header for values.
3 VirtualMemoryTable[Index].PhysicalBase = ARM_THUNDER_DRAM_UEFI_BASE;
4 VirtualMemoryTable[Index].VirtualBase = ARM_THUNDER_DRAM_UEFI_BASE;
5 VirtualMemoryTable[Index].Length = ARM_THUNDER_DRAM_UEFI_SZ;
6 VirtualMemoryTable[Index].Attributes = DDR_ATTRIBUTES_UNCACHED;

The last PEIM is DxeImpl, which is responsible for loading the DXE Core
from an FV.

3.2.4 DXE Phase

During DXE phase, a dispatcher executes drivers based on their dependency
chains. The goal of the DXE phase is to get to the BDS phase: to do so, all
dependencies of the BDS driver must be met.

There are some DXE drivers that require either custom libraries or partial
reimplementations depending on the platform. For example, since there is no
RTC on Enzian machines, a custom driver that retrieves time through EFRI
should be implemented.

One of the most commonly modified set of drivers I’ve encountered are those
related to PCI and SATA, since different machines might have vastly different
PCI configurations, with varying numbers of Host Bridges, Root Bridges and
very different ways to initialize them.

Notably, the following drivers are the most important ones for the project,
as they are required in order to boot from a disk: AtaAtapiPassThru, AtaBus-
Dxe, PciHostBridgeDxe and SataControllerDxe. They are described in Sec-
tion 3.4.2 and Section 3.5.

3.2.5 BDS Phase

In the BDS phase, a UI is available to the user to choose a boot option or
configure the machine. From here, it’s possible to also enter the UEFI Shell.

At this point, all drivers that deal with SATA drives, network interfaces need
to be correctly initialized.
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3.3 Serial Port

In order to display information and to read user input, the firmware needs a
serial port.

First, the serial port of the ThunderX is PL011 compatible, but there are
some differences, such as the clock divider used. This means that EDK2’s PL011
library is not able to compute the divisor correctly given baudrate and clock.
In our case, the port is already initialized, thus we can simply avoid resetting
it.

The implementation in the old firmware actually modified the EDK2 PL011
serial port library to not write to its configuration registers, which I believe to
be bad practice.

The first issue with this approach is that this was not documented anywhere.
Second of all, the structure of EDK2 is made so that one can separate the
platform implementation from the universal components/libraries, making it
easy to understand what is platform-specific and what is not.

In fact, I encountered issues while setting up the serial port: the PCDs
defined in the old implementation’s DSC file suggested that the baud was not
the expected 115200. This is because all operations done in the PL011 library
were never actually written to any register: all computed register values were
indeed wrong, but they were never actually used.

My approach is also a bit hacky, even though it has the advantage of leaving
the library untouched and leveraging intended behavior. Since the baud rate and
the clock are fixed in our case, I’ve hardcoded the values in the ThunderPkg.dsc
file.

The library is implemented so that, if the clock and the divisor are specified
and equal to the current ones, then the library does not re-initialize the serial
port, leaving the registers untouched. To obtain this result, I just pulled the
values from the same registers and set the PCDs found in table Table 1:

gArmPlatformTokenSpaceGuid.PL011UartInteger 0x48
gArmPlatformTokenSpaceGuid.PL011UartFractional 0x15

gArmPlatformTokenSpaceGuid.PL011UartClkInHz 133315200

Tab. 1: PCDs for the PL011SerialPortLib
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3.4 PCI Controller

I managed to complete a mostly-working PCI driver, though for some reason the
SATA driver AtaAtapiPassthruDxe fails, and the drive is never read. I did not
manage to diagnose the issue in time This process is explained in Section 3.4.2
and Section 3.4.3.

Again, to collect all available options, I looked at the old driver and at
how the various comparable platforms did it in the platforms repository[26],
especially ones from Ampere, Marvell and Hisilicon; these have characteristics
analogous to our platform, except of course the FPGA connection, so they
should provide insight.

Initially, I tried using the old PciHostBridgeDxe driver, which did not work,
as the configuration registers could not be read for some reason. Then I tried
implementing my own: after some unsuccessful attempts, I managed to set up
a PCI stack that seems to work fine.

In order to understand the design of a PCI driver, one must know some
terminology and how PCI is structured in general; different sources might use
the same term interchangeably, which is confusing.

3.4.1 Structure and terminology

The terminology used is mostly taken from [18], in order to stay consistent with
the one used in EDK2.

A platform can be abstracted as a set of CPUs that are connected to a set of
chipset components. These components can produce a certain amount of Host
Bridges.

The different host bridges have separate configuration, memory and IO
spaces.

Fig. 3: Host Bridges (HB) in a system

A system might have one or more host bridges and each host bridge can then
be composed of one or more Root Bridges.
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A Segment is a collection of Busses that share the same Configuration
Space. Different chipsets might need to abstracted in different ways and a
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance might abstract one segment or
just a portion of one. It is possible to have multiple segments in a system.

The next component is the ECAM block. Software initiates ready/writes to
the ECAM address space by forming an ECAM address; then this is forwarded
to the correct bus/device/function.

On an Enzian machine, this ECAM address has a specific format, which
includes the ECI node number, the ECAM number, the bus, the function and
the register offset within the device.

In this case, I abstract the system with 1 host bridge and 4 root bridges (one
per ECAM ). Technically it has 4 host bridges, since the different ECAMs have
different configuration spaces, but for EDK2 this is not a problem: the config
spaces for each can be handled in the PciSegmentLib library, by returning a
different one based on the segment.

The PEMs are used to access off-chip functions and their configuration reg-
isters are specified by the PCIe standard. Since the devices are external, these
registers are implemented within the device itself. The ECAM was created for
PCI Express and provides a convenient mechanism to access their PCI config-
uration registers.

Some devices, such as the SATA Controllers, are available through the root
bridges.

Initially I represented the 4 ECAMs and the 6 PEMs as Root Bridges (they
defined in the next section), though I made a mistake in the implementation:
this caused the configuration registers for some of them to be read from the
wrong address. This old implementation is explained in Section 3.4.5.

Finally, I only represented the 4 ECAMs as Root Bridges. I realized that
the PEMs can be enumerated through two of the ECAMs and, consequently,
also all PCI devices and busses in all segments.

On an Enzian machine, the different ECAMs allow enumerating and config-
uring many devices. These include the SATA Controllers, off-chip PCIe devices,
the network interface and other internal components.

3.4.2 Drivers and Libraries

Currently, for a PCI controller to work, there are different components and
libraries required. The main ones are the following:

PciBusDxe Probes all PCI devices and allocates Memory Mapped I/O (MMIO)
space and IO space for each, optionally with hot plug support. This driver
is usually left untouched.

PciHostBridgeDxe Located in MdeModulePkg, this driver is what installs the
main protocol EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, which is required
by other components related to PCI. This protocol offers ways to access
I/O, MMIO and PCI configuration space and more. For most platforms,
this driver doesn’t need rewrites, as it depends on two libraries that have
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been created with flexibility in mind: PciHostBridgeLib and PciSeg-
mentLib.

PciHostBridgeLib This library’s main function is to return a list of instances
of type PCI_ROOT_BRIDGE, each of which is a description of a root bridge:
it contains its attributes, segment and MMIO/IO ranges. This description
does not include the configuration space range and any indication of what
host bridge it belongs to. We need to modify this library in order to return
a list describing the platform’s different root bridges.

PciSegmentLib This library provides ways to access the configuration space
of every segment, given an internal 64-bit Segment Address in the form
SEGMENT:BUS:DEVICE:FUNCTION:REGISTER, encoded as a UINT64. In
order to implement PCI for our platform, this library requires a lot of
tweaks: it’s this library’s job to map the above addresses to the physical
memory-mapped address in the configuration space. The design I initially
preferred is the one from Marvell[16], which can be found in the edk2-
platforms repository. However, as I will explain at the end of the section, I
propose the use of another implementation of this library moving forward.

Now let’s briefly introduce the differences between the old implementation
and what I think the new one should be.

The in the old firmware there is no PciHostBridgeDxe driver in EDK2 itself,
so the driver present is structured very differently from the one currently used by
most platforms. Also, it did not have PciHostBridgeLib nor PciSegmentLib:
I speculate that they did not exist at the time when firmware was initially
written. Though I have no confirmation of this, since the history is unavailable.

In newer platforms from Ampere and Marvell, the approach used is different
and, in my opinion, superior: it does not modify any driver code and platform-
specific behavior is handled by implementing the two libraries above.

The requirements to write a working PCI implementation are:

• PciHostBridgeLib correctly describes all available Root Bridges.

• PciSegmentLib correctly implements configuration space access for all
root bridges.

• PCI Controllers are initialized by either the ATF or UEFI, e.g. in the
PciHostBridgeLib library constructor.

The implementation of each component is explained in the following sections.

3.4.3 Implementation

The first step to understand how to proceed was of course to comprehend how
the old firmware’s driver is implemented. The function definitions it provides
are quite similar to the modern one, though their implementation varies a lot.
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Not only the two libraries mentioned before don’t exist, but a lot of the struct
used have different fields different, e.g. the one to describe root bridges.

This old driver seems to partially work with minor modifications, but for
some reason the SATA driver doesn’t. As explained later, I tried both the old
and the new SATA driver without success, so I figured out that the culprit is to
be found in the evolution of PCI related libraries and drivers in EDK2.

For this reason and to conform to what other platforms do I decided that a
reimplementation of the PCI stack is necessary. Also, adding initialization code
in UEFI could be done at a later time.

The first thing I did is to extract the root bridges’ configuration from the
old firmware and adapt it to the new one. The configuration space memory
aperture is to be used later to implement the segment library, while all other
information has to be translated to the new format.

The format of the struct PCI_ROOT_BRIDGE that must be returned in Pci-
HostBridgeLib is quite different from the old one, especially when it comes to
the way that memory apertures are specified.

The old firmware did so by specifying an aperture’s base device address, the
limit (either top address or length), and the base CPU address to which the
device one maps.

In the new firmware they need to be translated to a different format and each
aperture is to be split in two fields, one for memory up to 4G and one for mem-
ory above 4G. The format is device_base address, limit (top address) and
translation, where translation = device_base - cpu_base. For spaces
starting before 4G and ending after it, one must specify both apertures. If the
space starts after 4G, only the aperture above 4G is required. Unused apertures
are to be specified with device_base = UINT64_MAX and limit = 0.

This way, all root bridges (ECAMs) are correctly described, and the driver
can then compute base addresses, length, translate between device addresses
and CPU addresses, and so on.

The next step is to implement the PciSegmentLib library. Here there are
functions to read/write from/to configuration space. To access it, the library
must, in order:

1. Get the segment index from a segment address.

2. Map said index to the base configuration space address of a root bridge.

3. Perform the access to the corrected address.

The map of addresses is derived from the old firmware root bridge definitions,
while the segment index is trivial to obtain, as it is Address[32..47].

3.4.4 Possible improvement for PciSegmentLib

There is a second (and possibly better) approach to be investigated in the future,
the PciSegmentLibSegmentInfo library: it’s made to access PCI configuration
space solely through ECAM, and it allows to specify a list of PCI_SEGMENT_INFO
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to map a segment to a specific configuration space base address and a range of
busses. Unluckily I discovered it only at the time of writing the report, and
thus I was not able to test it in time.

With this library the Root Bridge representation might need to be adapted.
It’s possible that other components must be abstracted as Root Bridges and the
4 ECAMs should be left out, since the segment library explicitly uses ECAM to
access the PEM configuration. Though, the current segment library is working
so far, I’ve not investigated this alternative any further.

It could be an improvement for these three reasons:

• Reduces the amount of code to be written, since the segment library
doesn’t need to be modified: it performs address conversion automati-
cally based on the list of segment information provided.

• It allows accessing segments as a Runtime Service, which our library cur-
rently doesn’t.

3.4.5 Old Root Bridge representation for PciHostBridgeLib

Even though the older version I wrote doesn’t work (where the 6 PEMs are also
represented as root bridges), I’ll explain what it did and why. Since no Linux
boot has been achieved yet, I cannot rule out that the way the PCI system is
represented will work. One reason is that some PEMs might not be initialized,
since some of them contend a QLM with a SATA controller, and they cannot be
read from. In the future this might cause the firmware to crash, depending on
how PCI initialization is going to be implemented on UEFI: the disabled PEMs
must not be discoverable through ECAM, so that they are never accessed.

In the previous version, where the 6 PEMs were also represented as root
bridges, the library made sure that they were initialized before including them
in the representation.

To do so, it populates the list of root bridges in PciHostBridgeLib at
runtime, when the library constructor is called. The program starts with a full
list of root bridges, and then filters out the unavailable PEMs by doing the
following:

1. Read the configuration of the multiplexers to which this PEM is connected
[3].

2. If none of them are configured as PCI, then skip this PEM and proceed
to the next one.

3. Otherwise, read the register PEM_ON[0..1]: if it’s not exactly 3, the PEM
is not usable, and thus it must be skipped.

4. Next, check the link status. To do so, I used the register PEM_CFG_RD (64
bit wide), which can be used to read the PCIE RC-Mode configuration
registers. Write the RC register offset that needs to be read to the bottom
32 bits; the top 32 bits get set with the value contained in the given register
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offset. PEM_CFG_RD can now be read back, and the data is found in the
top half.
The PCIERC_CFG032 register is read using this mechanism; bit 29 must
be set and bit 27 has to be zero, otherwise this PEM is not ready to be
used, and it’s filtered out.

5. Keep the root bridge in the list as it can be used.

The ECAMs are always available, as all of them should be initialized.
Again, I believe that ECAM enumeration won’t end up registering unini-

tialized PEMs as long as the initialization is done properly, though I am not
completely sure.
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3.5 SATA Controller

In order to achieve the goal of booting Linux using the new firmware, the Sa-
taControllerDxe driver is required (standard driver provided by EDK2). It
depends on the protocol gEfiPciIoProtocolGuid, thus it requires a working
PCI driver.

The old firmware’s PCI implementation does not work for any of the SATA
drivers I tested, even the old one: disks are never enumerated (and thus nothing
can be read from them).

Moreover, the EDK2 standard SataControllerDxe implementation also
does not yet work on Enzian, because of a fault in the current SATA controller
initialization in the BDK (see the explanation in Section 3.5.2). I believe that
the best way to implement this going forward is to (properly) initialize the SATA
controllers in UEFI and then this standard driver should just work. I am not
aware of any peculiarities that could prevent the ThunderX’ SATA controllers
from functioning correctly with it, assuming that PCI is fully working.

Currently, an issue prevents the AtaBusDxe driver from completing drive
enumeration, though I have not yet found the culprit. Further investigation is
required.

As for the driver’s structure, the main three functions that require modifi-
cations are the following:

• SataControllerSupported

• SataControllerStart

• SataControllerStop

Other than this driver, the following ones are also required in order to per-
form disk I/O. They are provided by EDK2 and should not require any modifi-
cations, as they are implemented based on defined standards.

AtaAtapiPassThru Implements a protocol for ATA controllers. Implements
the functionality required to enumerate drives and interact with them
and the ports. For example, it allows to reset a port or a device.

AtaBusDxe Requires AtaAtapiPassThru and exposes a protocol for drive I/O.
It implements various functions to perform reads and writes to the given
disk.

DiskIoDxe Provides the Disk I/O Protocol. Used to layer on top of block de-
vices in order to present them as byte-oriented devices; it makes accessing
a disk easier, and it’s the protocol used for I/O by later modules.

Fat An implementation of the FAT.
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3.5.1 SataControllerSupported

This function returns EFI_SUCCESS if the given device is supported, or otherwise
it returns EFI_ALREADY_STARTED if the driver is already running on the device.
If it returns any other status, it means that the device is unsupported.

First, the PciIo protocol is obtained and then the class code of the device
is read. This code tells us whether the device is a SATA controller.

Afterwards, we must check whether the controller is actually wired to the
physical port through the multiplexer or not. This requires reading the GSER
configuration (see [3]) corresponding to this port to see whether this is the case.

If both these conditions are satisfied, then the device is supported, and we
return success.

3.5.2 SataControllerStart

This function is only called after obtaining a positive return value from the
previous SataControllerSupported, thus it can safely assume that the device
is indeed supported.

First, the PciIo protocol is again obtained and an instance of a struct
holding all private data for this controller is allocated and initialized.

The current PCI attributes are read and saved to be restored when stopping
the driver.

Then, if the controller is an IDE, the ChannelCount and DeviceCount are
set to their max values.

Otherwise, if it’s a SATA controller, then we must obtain the port count.
Normally the driver reads the PI register (AHCI HBA Memory, [20]), which is
a one-time writable register holding the count of implemented ports. For some
reason, this register is always zero, so it is either never written to or it’s zeroed.

I then looked through the old firmware and the manual and found an alter-
native way to obtain the port count. Similar to the old driver, I modified the
driver to read the CAP register instead, which contains the maximum number
of ports supported. This behavior doesn’t look right, and it should be fixed
once SATA initialization is reimplemented on the UEFI side, but for now this
approach should work.

Then ChannelCount is set to the discovered value plus 1 (as per the register
definition) and DeviceCount either to the max value.

Then the rest of the function is the same as the EDK2-provided implemen-
tation.

The controller then allocates some arrays to hold configuration, with one
entry for each channel of each device (thus DeviceCount * ChannelCount
entries).

At last, the protocol for this controller is installed. Optionally some values
are freed.
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3.5.3 SataControllerStop

This function looks exactly the same as the EDK2 implementation. It uninstalls
the protocol for this controller, frees previously allocated configuration fields and
finally restores the PCI attributes that were saved in the start function.
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3.6 ACPI

In order to not be limited in terms of software choice, Enzian should be able
to ideally boot as many OSes as possible. Otherwise, future research could be
hindered.

In order to fulfill the Server Base Boot Requirements (SBBR) [10], one of the
components required is the presence of ACPI Tables fulfilling some requirements
described in the cited specification, with emphasis on the Hardware-reduced
ACPI model [7]. The Hardware-reduced model requires, among other things,
to boot only in ACPI mode.

This is desirable for Enzian, as many OSes require SBBR compliance.
EDK2 already produces ACPI Tables on its own by including the hardware it

knows about, for example the components that have been enumerated through
ECAM. Moreover, the old firmware includes most of the tables required for
SBBR compliance.

I have no reason to believe that the ACPI standard cannot be used to rep-
resent Enzian: by design it is able to represent NUMA nodes with or without a
processor (e.g. with only a memory controller) and even convey their topology
[8].

Since the firmware is not yet able to boot an operating system, I was not
able to test whether these tables are up-to-date; though they seem to comply
with the specification.

3.6.1 Pre- or Post-boot

Now there are two approaches I can think of to create an ACPI representation
of the FPGA-synthesized hardware: in the firmware (pre-boot) or in the OS
(post-boot).

For pre-boot the firmware must somehow know what components are avail-
able through the FPGA: how could it be done?

To first way to make the ACPI tables available pre-boot is to either store
them somewhere when programming the FPGA, so that they can be retrieved
(e.g. on the BMC, retrievable through EFRI). The second way would be to pre-
define the base addresses of all possible components that can be synthesized,
which is obviously hard and limits the platform flexibility.

Pre-boot only makes sense if these devices need to be available before the
OS boots, which is rarely the case. Network interfaces, PCIe busses, SATA
Controllers, etc. are all available on the first node before the OS boot, so there
should be no situations where the boot process is hindered by this.

From the SBBR specification, these tables are required to boot an OS, fur-
ther consolidating the opinion that representing the FPGA is not necessary in
the firmware. This makes the post-boot choice obvious.

The easiest way I can think of is modifying the ACPI tables after boot using
a driver, directly from the OS. This potentially gives us even more control in
terms of deciding what is represented, and when.
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Also, it may be possible to bring-up and down the ECI link at runtime,
maybe allowing the FPGA to be reprogrammed after boot: this requires the
post-boot approach to be implemented.

Here are some examples of the hardware that could be added after boot
through the FPGA:

Memory Controller The FPGA can implement a DRAM controller to increase
system memory. Since Linux supports memory hot-plug it is possible to
make it available at runtime.

PCIe controller PCIe can be enumerated again and be hot-plugged, so it’s sup-
ported.

NICs Similar to PCIe.

In conclusion, further work should verify whether the pre-existing ACPI ta-
bles function correctly and then focus on ways to represent additional hardware
post-boot, such as the post-boot one.
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4 Evaluation

Since the firmware is not able to boot Linux, evaluation possibilities are very
limited.

To test the firmware, one of the Enzian prototypes can be used. The old
ATF and BDK are required.

The firmware needs to be flashed as described in Section 3.1.3.
After booting the machine, the firmware proceeds through every boot stage,

until it gets to the BDS stage. At this point, the Boot Menu (Figure 4a) is
shown. One can then enter the Boot Manager subsection (Figure 4b).

From there it’s currently possible to enter the UEFI Shell to execute various
commands. Running drivers results in a table illustrating the status of each
driver (Figure 4c).

(a) Boot Menu (b) Boot Manager

(c) UEFI Shell

Fig. 4: Terminal interface of the Boot Menu and UEFI Shell
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The shell in Figure 4c shows that the SataController driver is currently
managing 4 devices (column #D). Instead, the Ata* drivers are not managing
any device, as they have type ?, in this case resulting from an error during their
initialization. The bottom four ValidateSetVariable prints are shown due
to the verbosity level chosen.

From here, not much else can be done. Various commands can be executed
to get information about the system:

• To verify that no SATA drive is currently mapped, the command map can
be run.

• The command pci shows all enumerated PCI devices and their hierarchy.

• By running drivers, information about each driver is printed.

Performing benchmarks and other measurements would require the ability
to boot an operating system, which is not currently possible.
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5 Future Work

To recap, a lot of things still aren’t implemented or don’t work. Here’s a list
ordered by decreasing priority of the things I feel like should be done.

1. Re-implement SegmentLib with the second proposed approach, described
in Section 3.4.4.

2. Fix all the issues in the SATA driver that prevent it from working.

3. Get to successfully enumerating SATA drives and accessing them.

4. Try booting different UEFI applications from disk (e.g. GRUB).

5. Make sure that the PCI driver is fully working.

6. Obtain the memory configuration to correctly map memory, either through
a HOB from the ATF or through an SMC call.

7. Implement a EFRI-based UEFI variable store.

8. Port the ACPI tables from the old firmware, this is required in order to
successfully and properly boot Linux [21] [10].

9. Implement a way to represent FPGA-synthesized hardware at runtime,
directly in the OS.

The following tasks, instead, are optional. They are probably good to im-
prove the project further, but are not necessary in order for it to work. Still,
they can increase its longevity.

10. Separate the current implementation in enzian-platform into Platform
and Silicon. This splits the code in two modules, one that’s processor-
specific and one that’s platform-specific. After, the platform package can
include the definitions from the silicon package, making the project more
modular.
The concrete advantage is that, in the future, firmware for a next version
of Enzian could share the processor-specific modules with the previous
one, with improvements to that being reflected to every other platform.
Most platforms within edk2-platforms [26] are implemented this way.

11. Implement a proper RTC library that retrieves the current time through
EFRI, since the proper endpoint has recently been implemented. This is
not necessary by any means, but it’s a nice-to-have.
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6 Conclusion

Contrary to initial expectations, the progress made on the implementation has
not allowed to successfully boot Linux. Nevertheless, the still-standing barriers
are few and probably simple to overcome.

The differences between the old firmware and the ideal model for a new one
turned out to be great: both the structure and the implementation needed to
be heavily changed.

With the complete rewrite, the project structure is clear and, as a result,
maintenance is easier. Future work on the firmware will not require reverse-
engineering a previous implementation that takes very specific tools to set up
and build. Instead, it can be quickly set up and modified. Finally, since the
structure is similar to the one used for other platforms, one can analyze previous
work done on those in order to determine how to develop new drivers.

Overall, getting started with firmware development is a much quicker expe-
rience, given the containerized build environment (assuming one has Podman
or Docker installed), and the base knowledge required to do so can be found in
the background section of this document. Most of the reverse-engineering work
has been done, and any further work can benefit from the information obtained.

The current state of the firmware is as follows: It is able to boot from
the old ATF, to map some RAM (enough for initial testing), and to proceeds
through the boot stages, finally stopping at the SATA enumeration phase; a
yet-unresolved issue causes a failure, making it impossible to boot from disk.
Then the Boot Menu is shown (with no disks listed) and the user can choose to
launch the UEFI Shell. The shell correctly shows all the available PCI devices
with The pci command. Also, with the drivers command, one can verify that
the SATA driver is started, while AtaAtapiPassThru has encountered an error.

The firmware’s performance is currently limited by the baud of the serial
port, since the debug verbosity is kept high for development reasons. It can
be reduced as desired through the PcdDebugPrintErrorLevel PCD. Also, the
DEBUG build includes very little optimizations, to simplify debugging. The time
taken to reach the UEFI Shell is in line with the old firmware with debug info
enabled.

Overall this is a solid base that will simplify any further development, from
the completion of the firmware itself to implementation of other UEFI drivers.
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