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Figure 1: Open-vocabulary 3D instance segmentation.

Abstract
We introduce the task of open-vocabulary 3D instance segmentation. Traditional
approaches for 3D instance segmentation largely rely on existing 3D annotated
datasets, which are restricted to a closed-set of object categories. This is an im-
portant limitation for real-life applications where one might need to perform tasks
guided by novel, open-vocabulary queries related to objects from a wide variety.
Recently, open-vocabulary 3D scene understanding methods have emerged to ad-
dress this problem by learning queryable features per each point in the scene. While
such a representation can be directly employed to perform semantic segmentation,
existing methods have limitations in their ability to identify object instances. In this
work, we address this limitation, and propose OpenMask3D, which is a zero-shot
approach for open-vocabulary 3D instance segmentation. Guided by predicted
class-agnostic 3D instance masks, our model aggregates per-mask features via
multi-view fusion of CLIP-based image embeddings. We conduct experiments and
ablation studies on the ScanNet200 dataset to evaluate the performance of Open-
Mask3D, and provide insights about the open-vocabulary 3D instance segmentation
task. We show that our approach outperforms other open-vocabulary counterparts,
particularly on the long-tail distribution. Furthermore, OpenMask3D goes beyond
the limitations of close-vocabulary approaches, and enables the segmentation of
object instances based on free-form queries describing object properties such as
semantics, geometry, affordances, and material properties.

1 Introduction

3D instance segmentation, which is the task of predicting 3D object instance masks along with
their corresponding object categories, has many crucial applications in fields such as robotics and
augmented reality. Due to its significance, 3D instance segmentation has been receiving a growing
amount of attention in recent years. Despite the notable progress made in 3D instance segmentation
methods [8, 47, 55, 59], it is noteworthy that all of these methods operate under a closed-set paradigm,
in which the set of object categories is limited and closely tied to the datasets used during training.

We argue that there are two key problems with closed-vocabulary 3D instance segmentation. First,
these approaches are limited in their ability to understand a scene beyond the object categories
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seen during training. Despite the significant success of 3D instance segmentation approaches from
recent years, these closed-vocabulary approaches may fail to recognize novel objects, or potentially
incorrectly classify them. One of the main advantages of open-vocabulary approaches, on the other
hand, is their capacity to zero-shot learn categories which are not present at all in the training set.
This ability has potential benefits for many applications in fields such as robotics, augmented reality,
scene understanding and 3D visual search. For example, it is vital for an autonomous robot to have
the ability to navigate an unknown environment where novel objects can be present. Furthermore, the
robot might need to perform an action based on a free-form query, such as “find the side table with a
flower vase on it”, which is challenging to perform with the existing closed-vocabulary 3D instance
segmentation methods. Hence, the second key problem with closed-vocabulary approaches is their
inherent limitation in handling free-form queries.

In an attempt to address and overcome the limitations of a closed-vocabulary setting, there has been a
growing interest in open-vocabulary approaches that are able to handle free-form queries. A line of
work [18, 39, 41] investigated open-vocabulary 2D image segmentation task. These approaches are
driven by the progress in model training at large-scale, and they largely rely on recent foundation
models such as CLIP [52] and ALIGN [30] to obtain text-image embeddings. Motivated by the
success of these 2D open-vocabulary approaches, another line of work has started exploring 3D open-
vocabulary scene understanding task [21, 29, 49], based on the idea of lifting image features from
models such as CLIP [52] and OpenSeg [18] to 3D. These approaches aim to obtain a task-agnostic
feature representation for each 3D point in the scene, which can be used for querying concepts with
open-vocabulary descriptions such as object semantics, affordances or material properties. Their
output is typically a heatmap over the points in the scene, which has limited applications in certain
aspects, such as handling object instances.

In this work, we propose OpenMask3D, an open-vocabulary 3D instance segmentation method which
has the ability to reason beyond a pre-defined set of concepts. Given an RGB-D sequence, and the
corresponding 3D reconstructed geometry, OpenMask3D predicts 3D object instance masks, and
computes a mask-feature representation. Our two-stage pipeline consists of a class-agnostic mask
proposal head, and a mask-feature aggregation module. Guided by the predicted class-agnostic 3D
instance masks, our mask-feature aggregation module first finds the frames in which the instances
are highly visible. Then, in a multi-scale and crop-based manner, it extracts CLIP features from
the best images of each mask. These features are then aggregated across multiple views to obtain a
feature representation associated with each 3D instance mask. Our approach is intrinsically different
from the existing 3D open-vocabulary scene understanding approaches [21, 29, 49] as we propose an
instance-based feature computation approach instead of a point-based one. Computing a mask-feature
per object instance enables us to retrieve object instance masks based on their similarity to any given
query, equipping our approach with open-vocabulary 3D instance segmentation capabilities. As
feature computation is performed in a zero-shot manner, OpenMask3D is capable of preserving
information about novel objects as well as long-tail objects better, compared to trained or fine-
tuned counterparts. Furthermore, OpenMask3D goes beyond the limitations of a closed-vocabulary
paradigm, and enables segmentation of object instances based on free-form queries describing object
properties such as semantics, geometry, affordances, and material properties.

Our contributions are three-fold:
• We introduce the open-vocabulary 3D instance segmentation task in which the object

instances that are similar to a given text-query are identified.
• We propose OpenMask3D, which is the first approach that performs open-vocabulary 3D

instance segmentation in a zero-shot manner.
• We conduct experiments to provide insights about design choices that are important for

developing an open-vocabulary 3D instance segmentation model.

2 Related work
Closed-vocabulary 3D semantic and instance segmentation. Given a 3D scene as input, 3D
semantic segmentation task aims to assign a semantic category to each point in the scene [2–4, 8,
12, 13, 19, 25, 26, 28, 35, 38, 40, 42, 43, 50, 51, 58, 59, 61, 64, 66]. 3D instance segmentation
goes a step further by distinguishing multiple objects belonging to the same semantic category,
predicting individual masks for each object instance [11, 14, 22, 24, 31, 37, 55, 60, 62, 67]. Current
state-of-the-art approach on the ScanNet200 benchmark [9, 54] is Mask3D, proposed by Schult et al.
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[55]. Mask3D leverages a transformer architecture to produce 3D mask proposals, together with
their corresponding semantic labels. However, similar to existing methods, it assumes a limited set
of semantic class labels that can potentially be assigned to an instance. In particular, the number of
labels is dictated by the annotations provided in the training datasets, 200 – in the case of ScanNet200
[54]. Given that the English language encompasses numerous nouns, totaling in the range of several
hundred thousand [63], it is clear that existing closed-vocabulary approaches have an important
limitation in terms of handling object categories and descriptions.

Foundation models. Recent text-image foundation models such as CLIP [52], OpenCLIP [7],
ALIGN [30], and Flamingo [1] leverage large-scale pretraining to learn image representations guided
by natural language descriptions. These models enable zero-shot transfer to various downstream tasks
such as object recognition and classification. Driven by the progress in large-scale model pre-training,
similar foundation models for images were also explored in another line of work [5, 48], which
aim to extract significant class-agnostic features from images. Recently, steps towards a foundation
model for the image segmentation task were taken with SAM [33]. SAM has an ability to generate a
class-agnostic 2D mask for an object instance, given a set of points that are assumed to belong to that
instance. This capability is valuable for our application, especially for recovering high-quality 2D
masks from projected 3D instance masks, as further explained in Sec. 3.2.2.

Open vocabulary 2D segmentation. As CLIP gained popularity for image classification, numerous
new approaches [18, 20, 23, 29, 36, 39, 41, 44, 53, 65, 68, 69] have emerged to tackle open-vocabulary
image semantic segmentation. One notable shift was the transition from image-level embeddings
to pixel-level embeddings, enhancing models with localization capabilities alongside classification.
However, methods with pixel-level embeddings, such as OpenSeg [18] and OV-Seg [41], strongly
rely on the accuracy of 2D segmentation masks, and require a certain degree of training. In our work,
we rely on CLIP features without finetuning or any additional training, and compute 2D masks using
the predicted 3D instance masks.

Open-vocabulary 3D scene understanding. Recent success of 2D open-vocabulary segmentation
models such as LSeg [39], OpenSeg [18], and OV-Seg[41] has motivated researchers in the field
of 3D scene understanding to explore the open vocabulary setting [6, 10, 17, 21, 27, 29, 32, 34, 45,
49, 56, 57]. OpenScene [49] uses per-pixel CLIP features extracted from posed images of a given
scene and obtains a point-wise semantic representation of the scene as described in Sec. 2. On the
other hand, approaches such as LERF [32] and DFF [34] leverage the interpolation capabilities of
NERF [46] to extract a semantic field of the scene. However, it is important to note that all of these
approaches have a limited understanding of object instances and may face challenges when dealing
with instance-related tasks.

3 Method

Overview. Our OpenMask3D model is illustrated in Fig. 2. Given a set of posed RGB-D images
captured in a scene, along with its reconstructed point cloud 1⃝, OpenMask3D predicts 3D instance
masks along with associated per-mask feature representations, which can be used for querying
instances based on open-vocabulary concepts 4⃝. Our OpenMask3D has two main building blocks,
a class agnostic mask proposal head 2⃝, and a mask-feature computation module 3⃝. The class-
agnostic mask proposal head predicts binary instance masks over the points in the point cloud. The
mask-feature computation module leverages pre-trained CLIP [52] vision-language model in order
to compute meaningful and flexible features for each mask. For each proposed instance mask, the
mask-feature computation module first selects the views in which the 3D object instance is highly
visible. Subsequently, in each selected view, the module computes a 2D segmentation mask guided
by the projection of the 3D instance mask, and refined by the SAM model [33]. Next, the CLIP
encoder is employed to obtain image-embeddings of multi-scale image-crops bounding the computed
2D masks. These image-level embeddings are then aggregated across the selected frames in order to
obtain a mask-feature representation. Sec. 3.1 describes the class agnostic mask proposal head, and
Sec. 3.2 describes the mask-feature computation module.

The key novelty of our method is that it follows an instance-mask oriented approach, contrary to
existing 3D open-vocabulary scene understanding models which typically compute per-point features.
These point-feature oriented models have limitations in certain aspects, particularly for identifying
object instances. Our model aims to overcome such limitations by introducing a framework that
employs class agnostic instance masks and aggregates informative features for each object instance.
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Figure 2: An overview of our approach. We propose OpenMask3D, the first open-vocabulary 3D instance
segmentation model. Our pipeline consists of four subsequent steps: 1⃝ Our approach takes as input posed
RGB-D images of a 3D indoor scene along with its reconstructed point cloud. 2⃝ Using the point cloud, we
compute class-agnostic instance mask proposals. 3⃝ Then, for each mask, we compute a feature representation.
4⃝ Finally, we obtain an open-vocabulary 3D instance segmentation representation, which can be used to retrieve

objects related to queried concepts embedded in the CLIP [52] space.

Input. Our pipeline takes as input a collection of posed RGB-D images captured in an indoor scene,
and the reconstructed point cloud representation of the scene. We assume known camera parameters.

3.1 Class agnostic mask proposals

The first step of our approach involves generating M class-agnostic 3D mask proposals
m3D

1 , . . . ,m3D
M . Let P ∈ RP×3 denote the point cloud of the scene, where each 3D point is as-

sociated with its corresponding 3D coordinates. Each 3D mask proposal is represented by a binary
mask m3D

i = (m3D
i1 , . . . ,m3D

iP ) where m3D
ij ∈ {0,1} indicates whether the j-th point belongs to

i-th object instance. To generate these masks, we leverage the transformer-based mask-module of
a pre-trained 3D instance segmentation model [55], which is frozen during our computations. The
architecture consists of a sparse convolutional backbone based on the MinkowskiUNet [8], and
a transformer decoder. Point features obtained from the feature backbone are passed through the
transformer decoder, which iteratively refines the instance queries, and predicts an instance heatmap
for each query. In the original setup, [55] produces two outputs: a set of M binary instance masks
obtained from the predicted heatmaps, along with predicted class labels (from a predefined closed set)
for each mask. In our approach, we adapt the model to exclusively utilize the binary instance masks,
discarding the predicted class labels and confidence scores entirely. These class-agnostic binary
instance masks are then utilized in our mask-feature computation module, in order to go beyond
semantic class predictions limited to a closed-vocabulary, and obtain open-vocabulary representations
instead. Further details about the class-agnostic mask proposal module are provided in Appendix A.1.

3.2 Mask-feature computation module
Mask-feature computation module aims to compute a task-agnostic feature representation for each
predicted instance mask obtained from the class-agnostic mask proposal module. The purpose of this
module is to compute a feature representation that can be used to query open-vocabulary concepts.
As we intend to utilize the CLIP text-image embedding space and maximally retain information about
long-tail or novel concepts, we solely rely on the CLIP visual encoder to extract image-features on
which we build our mask-features.

As illustrated in Fig. 3, the mask-feature computation module consists of several steps. For each
instance mask-proposal, we first compute the visibility of the object instance in each frame of the
RGB-D sequence, and select top-k views with maximal visibility. In the next step, we compute a 2D
object mask in each selected frame, which is then used to obtain multi-scale image-crops in order to
extract effective CLIP features. The image-crops are then passed through the CLIP visual encoder to
obtain feature vectors that are average-pooled over each crop and each selected view, resulting in the
final mask-feature representation. In Sec. 3.2.1, we describe how we select a set of top-k frames for
each instance. In Sec. 3.2.2, we describe how we crop the frames, based on the instance we want to
embed. In Sec. 3.2.3, we describe how we compute the final mask-features.
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Figure 3: Mask-Feature Computation Module. For each instance mask, a⃝ we first compute the visibility
of the instance in each frame, and select top-k views with maximal visibility. In b⃝, we compute a 2D object
mask in each selected frame, which is used to obtain multi-scale image-crops in order to extract effective CLIP
features. c⃝ The image-crops are then passed through the CLIP visual encoder to obtain feature vectors that are
average-pooled over each crop and d⃝ each selected view, resulting in the final mask-feature representation.

3.2.1 Frame selection
Obtaining representative images of the proposed object instances is crucial for predicting accurate
CLIP features (see Appendix A.2.1 for details). To achieve this, we devise a strategy to select, for
each of the M predicted instances, a subset of representative frames (Fig. 3, a⃝) from which we
extract CLIP features. In particular, our devised strategy selects frames based on their visibility scores
sij for each mask i in each view j. Here, we explain how we compute these visibility scores.

Given a mask proposal m3D
i corresponding to the i-th instance, we compute the visibility score

sij ∈ [0,1] for the j-th frame using the following formula:

sij =
vis(i, j)

maxj′ (vis(i, j′))

Here, vis(i, j) represents the number of points from mask i that are visible in frame j. Note that we
assume that each mask is visible in at least one frame. We compute vis(i, j) using the following
approach: First, for each 3D point from the i-th instance mask, we determine whether the point
appears in the camera’s field of view (FOV) in the j-th frame. To achieve this, we use intrinsic (I) and
extrinsic (R∣t) matrices of the camera from that frame to project each 3D point in the point cloud to the
image plane. We obtain corresponding 2D homogeneous coordinates p2D = (u, v,w)

⊺ = I ⋅ (R∣t) ⋅x,
where x = (x, y, z,1)⊺ is a point represented in homogeneous coordinates. We consider a point
to be in the camera’s FOV in the j-th frame if w ≠ 0, and the u

w
value falls within the interval

[0,W − 1] while v
w

falls within [0,H − 1], where W and H represent the width and height of the
image, respectively. Next, it is important to note that 3D points that are in the camera’s FOV are not
necessarily visible from a given camera pose, as they might be occluded by other parts of the scene.
Hence, we need to check whether the points are in fact visible. In order to examine whether a point is
occluded from a given camera viewpoint, we compare the depth value of the 3D point deriving from
the geometric computation (i.e. w) and the measured depth, i.e. depth value of the projected point in
the depth image. We consider points that satisfy the inequality w − d > kthreshold as occluded, where
kthreshold is a hyper-parameter of our method. If the projection of a point from mask i is not occluded
in the j−th view, it contributes to the visible point count, vis(i, j).

Once we compute mask-visibility scores for each frame, we select the top kview views with the highest
scores sij for each mask i. Here, kview represents another hyperparameter.

3.2.2 2D mask computation and multi-scale crops

In this section, we explain our approach for computing CLIP features based on the selected frames
from the previous step. Given a selected frame for a mask, our objective is to find the optimal image
crops from which to extract features, as illustrated in (Fig. 3, b⃝). Simply considering all of the
projected points of the mask often results in imprecise and noisy bounding boxes, largely affected
by the outliers (see Appendix A.2.2 for details). To address this, we employ a class-agnostic 2D
segmentation model, SAM [33], which predicts a 2D mask conditioned on a set of input points, along
with a mask confidence score.
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SAM is sensitive to the set of input points (please see Appendix A.2.3, A.2.4). Hence, in order to
obtain a high quality mask from SAM with a high confidence score, we draw inspiration from the
RANSAC algorithm [16] and proceed as outlined in Algorithm 1. We sample ksample points from
the projected points, and run SAM using these points. The output of SAM at a specific iteration r is a
2D mask (m2D

r ) and a confidence score (scorer). This process is repeated for krounds iterations,
and the 2D mask with the highest confidence score is selected.

Algorithm 1 - 2D mask selection algorithm

score∗ ← 0, m2D
∗
← 0, r ← 0

while r < krounds do
Sample ksample points among the projected points at random
Compute the mask m2D

r and the score scorer based on the sampled points using SAM
if scorer > score∗ then

score∗ ← scorer, m2D
∗
←m2D

r
end if
r ← r + 1

end while

Next, we use the resulting mask m2D
∗

to generate L = 3 multi-level crops of the selected image.
This allows us to enrich the features by infusing more context information from the surrounding
environment. Specifically, the first bounding box b1 = (x1

1, y
1
1 , x

1
2, y

1
2) with 0 ≤ x1

1 < x
1
2 <W and

0 ≤ y11 < y
1
2 < H is a tight bounding box derived from the 2D mask. The other bounding boxes b2

and b3 are incrementally larger, and their 2D coordinates are obtained as follows:

xl
1 =max(0, x1

1 − (x
1
2 − x

1
1) ⋅ kexp ⋅ l)

yl1 =max(0, y11 − (y
1
2 − y

1
1) ⋅ kexp ⋅ l)

xl
2 =min(x1

2 + (x
1
2 − x

1
1) ⋅ kexp ⋅ l,W − 1)

yl2 =min(y12 + (y
1
2 − y

1
1) ⋅ kexp ⋅ l,H − 1)

l = 2,3 represents the level of the features under consideration, kexp = 0.2 is a predefined constant.

3.2.3 CLIP feature extraction and mask-feature aggregation
For each instance mask, we collect k ⋅L images by selecting top-k views and obtaining L multi-level
crops as described in Sec. 3.2.1 and Sec. 3.2.2. Collected image-crops are then passed through the
CLIP visual encoder in order to extract image features in the CLIP embedding space, as illustrated
in (Fig. 3, c⃝). We then aggregate the features obtained from each crop that correspond to a given
instance mask in order to get an average per-mask CLIP feature (Fig. 3, d⃝). The computed features
are task-agnostic, and can be used for various instance-based tasks by encoding a given text or
image-based query, using the same CLIP model we employed to encode the image-crops.

4 Experiments
In this section, we present quantitative and qualitative results from our method. To quantitatively eval-
uate our approach, we compare OpenMask3D with supervised 3D instance segmentation approaches
as well as existing open-vocabulary 3D scene understanding models we adapted for the 3D instance
segmentation task. Furthermore, we provide an ablation study for OpenMask3D. In addition, we
provide qualitative results from our method on the open-vocabulary 3D instance segmentation task,
demonstrating potential applications. Additional results are provided in Appendix C.

4.1 Quantitative results: closed-vocabulary 3D instance segmentation evaluation
We quantitatively evaluate our approach on the closed-vocabulary 3D instance segmentation task on
the ScanNet200 [9, 54] dataset. Results are presented in Tab. 1.

4.1.1 Experimental setting

Data. We perform our experiments using the 312 validation scenes from the ScanNet200 dataset [54],
and evaluate for 3D instance segmentation task using the closed vocabulary of 200 categories from
the ScanNet200 [54] annotations. Rozenberszki et al. [54] also provide a grouping of ScanNet200
categories based on the frequency of the number of labeled surface points in the training set, resulting
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Model Supervision Image Features AP AP50 AP25 head (AP) common (AP) tail (AP)

Closed-vocabulary
Mask3D [55] fully - 26.9 36.2 41.4 39.8 21.7 17.9

Open-vocabulary
OpenScene [49] (2D Fusion) - OpenSeg [18] 11.7 15.2 17.8 13.4 11.6 9.9
OpenScene [49] (3D Distill) - OpenSeg [18] 4.8 6.2 7.2 10.6 2.6 0.7
OpenScene [49] (2D/3D Ensemble) - OpenSeg [18] 5.3 6.7 8.1 11.0 3.2 1.1
OpenScene [49] (2D Fusion) - LSeg [39] 6.0 7.7 8.5 14.5 2.5 1.1
OpenMask3D (Ours) - CLIP [52] 12.8 16.8 19.0 14.0 11.6 13.0

Table 1: 3D instance segmentation results on the ScanNet200 validation set. Metrics are AP evaluated at
50%, 25% and averaged over an overlap range. We also report AP scores on the head, common, tail subsets of
the ScanNet200 dataset [54]. Note that Mask3D [55] relies on fully-supervised training on 3D scenes, while
OpenScene [49] is built upon on 2D models (i.e. LSeg [39] and OpenSeg [18]), both trained on labeled datasets
for 2D semantic segmentation. Our approach OpenMask3D outperforms other open-vocabulary counterparts,
particularly on the long-tail classes.

in 3 subsets: head (66 categories), common (68 categories), tail (66 categories). This grouping enables
us to evaluate the performance of our method on the long-tail distribution, making ScanNet200 a
natural choice as the evaluation dataset.

Metrics. We employ a commonly used 3D instance segmentation metric, average precision (AP).
AP scores are evaluated at mask overlap thresholds of 50% and 25%, and averaged over the overlap
range of [0.5 ∶ 0.95 ∶ 0.05] following the evaluation scheme from ScanNet [9]. Computation of the
metrics requires each mask to be assigned a prediction confidence score. We assign a prediction
confidence score of 1.0 for each predicted mask in our experiments.

OpenMask3D implementation details. We use posed RGB-depth pairs from the validation set
of the ScanNet dataset, and we process the RGB-D sequences at a frame rate of 3Hz. In order to
compute image features on the mask-crops, we use CLIP [52] visual encoder from the ViT-L/14
model pre-trained at a 336 pixel resolution, which has a feature dimensionality of 768. For the
visibility score computation, we use kthreshold = 0.2, and for top-view selection we use kview = 5.
In all experiments with multi-scale crops, we use L = 3 levels. In the 2D mask selection algorithm
based on SAM [33], we repeat the process for krounds = 10 rounds, and sample ksample = 5 points
at each iteration. For the class-agnostic mask proposal, we use the Mask3D [55] model trained on
ScanNet200 instances, and exclusively use the instance mask heatmaps. We do not filter any instance
mask proposals, and run DBSCAN [15] to obtain spatially contiguous clusters, breaking down masks
into smaller new masks when necessary. This process results in a varying number of mask proposals
for each scene. For further implementation details about OpenMask3D, please refer to Appendix A.
Computation of the mask-features of a ScanNet scene on a single GPU takes on average 2-5 minutes
depending on the number of mask proposals and number of frames in the RGB-D sequence.

Methods in comparison. We compare with Mask3D [55], which is the current state-of-the-art on the
ScanNet200 3D instance segmentation benchmark. We additionally compare against recent open-
vocabulary 3D scene understanding model variants (2D-fusion, 3D distill, 2D/3D ensemble) from
OpenScene [49]. As the output from OpenScene is a per-point task-agnostic feature representation,
we have to adapt it for the instance-segmentation task using our class-agnostic masks. We aggregate
per-mask features from OpenScene by average-pooling per-point features for each point in a given
instance mask (please refer to Appendix B for further details).

Class assignment. Our open-vocabulary approach does not predict semantic category labels per each
instance mask, but it instead computes a task-agnostic feature vector for each instance, which can
be used for performing a semantic label assignment. In order to evaluate our model on the closed-
vocabulary 3D instance segmentation task, we need to assign each object instance to a semantic
category. Similar to OpenScene [49], we compute cosine similarity between mask-features and the
text embedding of a given query in order to perform class assignments. Following Peng et al. [49],
we use prompts in the form of “a {} in a scene”, and compute text-embeddings using CLIP model
ViT-L/14(336px) [52] for each semantic class in the ScanNet200 dataset. This way, we compute a
similarity score between each instance and each object category, and assign instances to the category
with the closest text embedding.

4.1.2 Results
3D closed-vocabulary instance segmentation results. We quantitatively evaluate our approach on
the closed-vocabulary instance segmentation task on the ScanNet200 [9, 54] dataset, and qualitatively
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Top-k 2D Mask Multi-Scale AP AP50 AP25 head (AP) common (AP) tail (AP)

Top-k analysis
1 ✓ ✓ 11.1 14.2 16.9 12.6 10.5 9.9
5 ✓ ✓ 12.8 16.8 19.0 14.0 11.6 13.0

10 ✓ ✓ 12.7 16.4 18.9 14.3 11.8 11.8
all ✓ ✓ 11.9 15.2 17.6 12.9 10.5 12.4

Component analysis
5 ✗ ✗ 9.0 12.0 13.9 11.2 7.6 8.0
5 ✗ ✓ 11.5 14.9 17.0 13.1 10.7 10.4
5 ✓ ✗ 11.4 15.0 17.5 13.6 9.6 11.0
5 ✓ ✓ 12.8 16.8 19.0 14.0 11.6 13.0

Table 2: OpenMask3D Ablation Study. Top-k frame selection, 2D mask and multi-scale crop components. 2D
mask refers to whether SAM was employed for computing 2D masks. Results on the ScanNet200 validation set.

Model Supervision Image Features AP head (AP) common (AP) tail (AP)

Closed-vocabulary
Mask3D [55] fully − 26.9 39.8 21.7 17.9

Open-vocabulary
OpenScene [49] (2D Fusion, oracle masks) − OpenSeg [18] 22.9 26.2 22.0 20.2
OpenScene [49] (2D Fusion, oracle masks) − LSeg [39] 11.8 26.9 5.2 1.7
OpenMask3D (Ours, oracle masks) − CLIP [52] 23.4 24.6 19.3 27.0

Table 3: 3D instance segmentation results on the ScanNet200 validation set, using oracle masks. All
open-vocabulary results were computed using ground-truth masks as an oracle. All open-vocabulary approaches
use a query of the form: ‘a {} in a scene’.

investigate the performance on open-vocabulary queries. Closed-vocabulary instance segmentation
results on the ScanNet200 dataset are provided in Tab. 1.

State-of-the-art fully supervised approach Mask3D [55] demonstrates superior performance com-
pared to open-vocabulary counterparts. While this gap is more prominent for the head and common
categories, the difference is less apparent for the tail categories. This outcome is expected, as Mask3D
benefits from full-supervision using the class labels from the ScanNet200 dataset. Furthermore, as
there are more training samples for categories within the head and common subsets (please refer to
[54] for statistics), the fully-supervised approach is more frequently exposed to these categories -
resulting in a stronger performance. When we compare OpenMask3D with other open-vocabulary
approaches, we observe that our method performs better on 5 out of 6 metrics. Notably, OpenMask3D
surpasses the performance of other open-vocabulary counterparts, particularly on the tail categories
by a significant margin. These results indicate that our instance-centric method OpenMask3D specifi-
cally designed for the open-vocabulary 3D instance segmentation task shows stronger performance
compared to other open-vocabulary approaches which adopt a point-centric feature representation.

Ablation Study. In Tab. 2, we analyze design choices for OpenMask3D, i.e., top-k view selection,
multi-scale cropping and 2D mask segmentation. 2D mask segmentation refers to whether we use
SAM [33] for refining the 2D mask from which we obtain a 2D bounding box. When SAM is not
used, we simply crop the tightest bounding box around the projected 3D points. The ablation study
shows that multi-scale cropping and segmenting a 2D mask to obtain a more accurate image crop
for a given instance both positively affect the performance. Our analysis on the components of
OpenMask3D shows that the effect of 2D mask segmentation is less significant than the effect of
multi-scale cropping. Based on our analysis on the top-k view selection, we suspect that using too
many frames (in which an object instance is visible) could detriment the quality of the mask-features.

How well would our approach perform if we had perfect masks? Another analysis we conduct
is related to the class-agnostic masks. As the quality of the masks plays a key role in our process,
we aim to quantify how much the performance could improve if we had “perfect” oracle masks. For
this purpose, we run OpenMask3D using ground truth instance masks from the ScanNet200 dataset
instead of using our predicted class-agnostic instance masks. In a similar fashion, we re-compute
mask-features for the OpenScene 2D-fusion variant (best-performing variant of OpenScene for our
task), using the oracle masks. In Tab. 3, it is evident that the quality of the masks plays an important
role for our task. Remarkably, our mask-feature computation approach that is not trained on any
labeled data, when provided with oracle masks, even surpasses the performance of the fully supervised
method Mask3D, on the long-tail categories by +9.1% AP. While open-vocabulary counterparts
perform well on head and common subsets, this is again expected, as OpenSeg [18] and LSeg [39]
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models involve a certain degree of training with class labels. Overall, this analysis indicates that our
approach has indeed promising results which can be further improved by higher quality class-agnostic
masks, without requiring any additional training or finetuning with labeled data.

4.2 Qualitative results

In Fig. 4, we share qualitative results from our approach for the open-vocabulary 3D instance
segmentation task. With its zero-shot learning capabilities, OpenMask3D is able to segment a
given query object that might not be present in common segmentation datasets. Furthermore, object
properties such as colors, textures, situational context and affordances are successfully recognized by
OpenMask3D. Additional qualitative results in this direction are provided in Appendix C.

“a green seat” “an armchair with floral print”

“a bed without clothes on it ” “the sofa in front of the wallpaper”

“cool down” “a white pillow”

“pool” “pepsi”
Figure 4: Qualitative results from OpenMask3D. Our open-vocabulary instance segmentation approach is
capable of handling different types of queries. Novel objects as well as objects described by colors, textures,
situational context and affordances are successfully retrieved by OpenMask3D.

In Fig. 5, we provide qualitative comparisons between our instance-based open-vocabulary represen-
tation and the point-based representation provided by OpenScene [49]. Our method OpenMask3D
computes the similarity between the query embedding and each per-mask feature vector for each
object instance, which results in crisp instance boundaries. This is particularly suitable for the use

9



cases in which one needs to handle object instances. Additional analysis and further details about the
visualization are provided in Appendix B.

Query: “a dollhouse”

OpenScene [49] OpenMask3D (Ours)

Query: “a desk with a backpack on it”

OpenScene [49] OpenMask3D (Ours)

Query: “Cetaphil”

OpenScene [49] OpenMask3D (Ours)

Figure 5: Qualitative comparisons. Heatmaps illustrating the similarity between the CLIP embeddings of
a specific query and the open-vocabulary representation of the scene. A comparison is made between the
point-based OpenScene approach (left) and our mask-based approach OpenMask3D (right). Dark red means
high similarity, and dark blue means low similarity with the query text.

5 Conclusion
We propose OpenMask3D, the first open-vocabulary 3D instance segmentation model that can identify
objects instances in a 3D scene, given arbitrary text queries. This is beyond the capabilities of existing
3D semantic instance segmentation approaches, which are typically trained to predict categories from
a closed vocabulary. With OpenMask3D, we push the boundaries of 3D instance segmentation. Our
method is capable of segmenting object instances in a given 3D scene, guided by open-vocabulary
queries describing object properties such as semantics, geometry, affordances, material properties
and situational context. Thanks to its zero-shot learning capabilities, OpenMask3D is able to segment
multiple instances of a given query object that might not be present in common segmentation datasets
on which closed-vocabulary instance segmentation approaches are trained. This opens up new
possibilities for understanding and interacting with 3D scenes in a more comprehensive and flexible
manner. We encourage the research community to explore open-vocabulary approaches, where
knowledge from different modalities can be seamlessly integrated into a unified and coherent space.

Limitations The experiments conducted with oracle masks indicate that there is room for improve-
ment in terms of the quality of 3D mask proposals. In addition, designing an evaluation scheme for
systematically assessing open-vocabulary capabilities still remains a challenge. Closed-vocabulary
evaluation, while valuable for initial assessment, falls short in revealing the true extent of open-
vocabulary potentials of proposed models.
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Appendix
The Appendix section is structured as follows: In Sec. A, we provide further details about our OpenMask3D
model, and we elaborate on certain design choices. In Sec. B, we provide further details on the baseline
experiments . In Sec. C, we show additional qualitative results. Our code and model will be made publicly
available.

A OpenMask3D details

A.1 Class-agnostic mask proposal module

As OpenMask3D is an instance-centric approach, we first need to obtain instance mask proposals. In the
open-vocabulary setting, these instance masks are not associated with any class label; they are class agnostic.

We use the mask module of the transformer-based Mask3D [55] architecture as a basis for our class-agnostic
mask proposal module. Specifically, we train the proposal module on the training set of ScanNet200 [54] for
instance segmentation (without class labels). For the open-set class assignments, we keep the weights of the
mask proposal module frozen. Unlike Mask3D, our mask proposal module discards class predictions and mask
confidence scores which are based on class likelihoods, and we only retain the binary instance mask proposals.

Our mask proposal architecture consists of a sparse convolutional backbone based on the MinkowskiUNet [8],
and a transformer decoder. Point features obtained from the feature backbone are passed through the transformer
decoder, which iteratively refines the instance queries, and predicts an instance heatmap for each query. The
query parameter specifies the desired number of mask proposals from the transformer-based architecture. We set
the number of queries to 150, following the original implementation of Mask3D. This choice enables us to obtain
a sufficient number of mask proposals for our open-vocabulary setting. Output from the final mask-module in
the transformer decoder is a set of binary instance masks.

The original implementation of the Mask3D [55] model first ranks the proposed instance masks based on their
confidence scores, and retains the top k masks based on this ranking. As the confidence scores are guided by
class likelihoods, we do not utilize such scores to rank the masks, and do not filter out any of the proposed
instance masks. Furthermore, since we aim to retain as many mask proposals as possible, we do not perform
mask-filtering based on object sizes, or pairwise mask overlaps. In other words, we keep all masks proposed by
the mask module as each of these masks might correspond to a potential open-vocabulary query.

As the model may occasionally result in mask proposals that are not spatially contiguous, the original imple-
mentation of Mask3D employs the DBSCAN clustering algorithm [15] to break down such masks into smaller,
spatially contiguous clusters. We follow this practice, and perform DBSCAN clustering on the instance masks,
setting the epsilon parameter, ϵ, to 0.95. This procedure often increases the final number of instance masks.
As such, our OpenMask3D model generates class-agnostic instance masks, for which we compute open-set
mask-features as described next.

A.2 Mask-feature computation module details

In the main paper, we outlined the steps to extract per-mask CLIP [52] features. In this section, we will delve
into the motivations behind specific design choices made throughout the process.

A.2.1 Per mask view ranking: assumptions and visualizations

Once we obtain the class-agnostic masks, our primary objective is to determine the best CLIP features for each
of them. We operate under the assumption that CLIP is capable of extracting meaningful features from instances
when provided with a favorable viewpoint, and in our feature computation process, we prioritize selecting views
that offer a higher number of visible points. In practice, to assess the quality of a particular viewpoint for each
mask, we compute the proportion of points of the 3D instance mask that are visible from that view. Next, we
rank the views based on their visibility scores, and we select the top k views with the highest scores, where k is
a hyper parameter.

Fig. 6 illustrates this concept, where two views of a given instance are compared based on the number of visible
points. The view that has a higher number of visible points from the instance is selected (outlined in green).

A.2.2 Why do we need SAM?

In order to get the CLIP image features of a particular instance in the selected views, we need to crop the image
part containing the instance. This involves obtaining an initial tight crop of the instance projected in 2D and then
incrementally expanding the crop to include some visual context around it.
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1428 visible points
591 visible points

Figure 6: Visual comparison between a selected view (marked in green outline) for the corresponding chair
instance and a discarded view. The green points in the images represent the 3D instance points projected onto
the 2D image. In the selected view the instance is fully visible, and mostly occluded in the discarded one.

A straightforward approach to perform the cropping would be to project all of the visible 3D points belonging to
the mask onto the 2D image, and fit a bounding box around these points. However, as we do not discard any
mask proposals, the masks can potentially include outliers, or the masks might be too small as an outcome of
the DBSCAN algorithm described in Sec. A.1. As depicted in Fig. 7, this can result in bounding boxes that are
either too large or too small. Using CLIP-image features obtained from crops based solely on projected points
can lead to inferior instance mask-features.

To address this challenge, and to improve the robustness of our model against noisy instance masks, we propose
using a 2D segmentation method that takes a set of points from the mask as input, and produces the corresponding
2D mask, together with its confidence score. The Segment Anything Model (SAM) [33] precisely fulfills this
task, allowing us to generate accurate 2D masks in a class-agnostic manner.

Figure 7: Difference between the bounding boxes obtained by tightly cropping around the projected points from
the 3D instance mask (left), and the bounding box obtained from the 2D mask generated by SAM (right).

A.2.3 Which points should we give as input to SAM?

When using SAM for predicting a 2D mask, we need to determine a set of points which the mask generation
process will be conditioned on. Initially, we attempted to input all the visible points projected from the 3D mask.
However, this approach resulted in poor quality masks due to the inaccuracies of the projections and the noise
present in the 3D masks, as illustrated in Figure 8.

To address this issue, we explored an alternative approach. Instead of using all of the visible points as input for
SAM, we randomly sample a subset of points from the projected 3D mask. Interestingly, this method produces
much cleaner masks, as it can be seen in Fig. 9.
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SAM score = 0.694

Figure 8: Output of SAM, using all of the visible points from the projected 3D mask as input.
SAM score = 0.978

Figure 9: Output of SAM, using only 5 randomly sampled points (visualized as green dots) of the projected 3D
mask as input.

A.2.4 Why do we need to run SAM for multiple rounds?

Relying solely on a small set of random points as input for SAM might be unreliable, particularly, when the
sampled points are outliers, or too concentrated in a particular area of the instance we want to segment.

To address this limitation, we implemented a sampling algorithm (as outlined in the main paper) inspired by
RANSAC [16]. In this approach, we perform kround = 10 sampling rounds, and in each round we randomly
sample ksample = 5 points from the projected 3D instance mask. SAM returns the predicted 2D mask along
with the corresponding mask confidence score for each set of sampled points. Based on the confidence scores
returned by SAM, we select the mask with the highest score. Fig. 10 illustrates an example where the points
sampled in one round are concentrated in a small spatial range, resulting in an incorrect mask prediction by
SAM.

SAM score = 0.949

Figure 10: Output of SAM, using only 5 randomly sampled points of the mask as input. Here the sampled
points (the green points visualized in the image) are concentrated in a small spatial range and cause SAM to
predict a wrong mask, which does not include the legs of the chair.

However, by employing our sampling algorithm and running SAM for multiple rounds, we achieve improved
results. The iterative process allows us to select the mask with the highest score among the rounds, as shown
in Fig. 11. In this particular example, the selected mask, i.e. the one with the highest SAM confidence score,
accurately segments the chair.

B Details on baseline experiments

Quantitative baseline experiments

As mentioned in the main paper, to compare our OpenMask3D method with the 3D open-vocabulary scene
understanding approach OpenScene [49], we adapted OpenScene for the 3D instance segmentation task. As
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SAM score = 0.985

Figure 11: Illustration of the results from the round which gives the highest confidence score. On the left, we
visualize the 5 sampled points which are given as input to SAM. On the right, we visualize the SAM mask
prediction, showing a perfect segmentation of the chair.

OpenScene computes a per-point feature representation for each point in the point cloud, we use our proposed
class-agnostic instance masks to aggregate OpenScene features for each mask. This way, we can associate each
object instance mask with a "per-mask" feature computed from OpenScene features.

OpenScene provides 3 different model variants, namely 2D fusion, 3D distill, and 2D/3D ensemble. We primarily
compare with the OpenScene models using OpenSeg [18] features, whereas we also experiment with the 2D
fusion model using LSeg [39] features. The main reason why we primarily compare against the models using
OpenSeg features is that the features have a dimensionality of 768, relying on the same CLIP architecture
we employ in our work – ViT-L/14 (336px) [52] –, whereas the LSeg features have a dimensionality of 512.
For our closed-vocabulary experiments with the OpenScene model using LSeg features, we embed each text
category using ViT-B/32 CLIP text encoder, and we assign object categories using these embeddings. In all other
experiments, we embed text queries using the CLIP architecture ViT-L/14 (336px).

Qualitative baseline experiments
In addition to the quantitative results presented in the main paper, we conducted qualitative comparisons to
further evaluate our mask-based open-world representation in comparison to the point-based representation
provided by OpenScene [49].

In Fig. 12, we provide these qualitative comparisons. We show results from the OpenScene [49] 2D fusion
model using OpenSeg [18] features, and from OpenMask3D. To visualize results from OpenScene, for a given
query, we compute the similarity score between each point-feature and the query text embedding, and visualize
the similarity scores for each point as a heatmap over the points. On the other hand, OpenMask3D results are
based on mask-features, i.e., each mask has an associated feature vector, for which we compute a similarity
score. Hence, we visualize the similarity scores for each mask as a heatmap over the instance masks, and each
point in a given instance mask is assigned to the same similarity score.

As evident from Fig. 12, while similarity computation between the query embedding and each OpenScene
per-point feature vector results in a reasonable heatmap, it is challenging to extract object instance information
from the heatmap representation. Our method OpenMask3D, on the other hand, computes the similarity between
the query embedding and each per-mask feature vector. This results in crisp instance boundaries, particularly
suitable for the use cases in which one needs to handle object instances.

C Qualitative results

In this section, we provide additional qualitative results.

In Fig. 13, we show results from object categories that are not present in the ScanNet200 label set. Objects from
these novel categories are successfully segmented using our OpenMask3D approach. Thanks to its zero-shot
learning capabilities, OpenMask3D is able to segment a given query object that might not be present in common
segmentation datasets on which closed-vocabulary instance segmentation approaches are trained.

In Fig. 14, we show open-vocabulary 3D instance segmentation results using queries describing various object
properties such as affordances, color, geometry, material type and object state. This highlights that our model
is able to preserve information about such object properties and go beyond object semantics, contrary to the
capabilities of existing closed-vocabulary 3D instance segmentation approaches.

18



Query: “a dollhouse”

OpenScene [49] OpenMask3D (Ours)

Query: “a desk with a backpack on it”

OpenScene [49] OpenMask3D (Ours)

Query: “Cetaphil”

OpenScene [49] OpenMask3D (Ours)

Figure 12: Qualitative comparisons. Heatmaps illustrating the similarity between the CLIP embeddings
of a specific query and the open-vocabulary representation of the scene. A comparison is made between the
point-based OpenScene approach proposed by Peng et al. [49] (left) and our mask-based approach OpenMask3D
(right). Dark red means high similarity, and dark blue means low similarity with the query.
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“dollhouse” “Cetaphil”

“Roomba” “flip-flops”

“gym bench” “rice cooker”

Figure 13: Qualitative results from OpenMask3D. We show open-vocabulary instance segmentation results
using arbitrary queries involving object categories that are not present in the ScanNet200 dataset labels. In
each scene, we visualize the instance with the highest similarity score for the given query embedding. These
predictions show the zero-shot learning ability of our model, highlighting the open-vocabulary capabilities.
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Affordance “sit” “wash”

Color “an orange pillow” “a yellow pillow”

Geometry “a circular table” “a rectangular table”

Material “a leather chair” “a fabric chair”

State “an empty table” “a side table with a flower vase on it”

State “a full garbage bin” “an empty garbage bin”

Figure 14: Qualitative results from OpenMask3D, queries related to object properties. We show open-
vocabulary 3D instance segmentation results using queries describing various object properties such as af-
fordances, color, geometry, material type, and object state. In each row, we show two different queries per
category, for which our method successfully segments different object instances. These results highlight the
strong open-vocabulary 3D instance segmentation capabilities of our model, going beyond object semantics.
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